Oscilloscope Test Measurements You Can Count On

Whether you design, debug, or perform compliance tests, you need proven measurement technology to be successful. Our oscilloscope hardware, with signal integrity, high effective number of bits (ENOB), and the fastest waveform update rates, captures the true performance of your device under test. Couple this with superior protocol decoding, analysis, and compliance software, and you’re guaranteed to get measurements you can trust.

Basic of oscilloscopes for beginners

New to Oscilloscopes?

Learn the basics and advanced applications to help you develop a deeper understanding of oscilloscopes. Understand the functions of an oscilloscope, signal characteristics, types of waveforms, how an oscilloscope works, types of oscilloscopes, and key specifications to look out for when selecting an oscilloscope.

Which Oscilloscope Test Probe Do You Need?

Keysight offers a broad range of voltage, current, and optical probing solutions for InfiniiVision and Infiniium Series oscilloscopes. Check out this guide to see which probe is right for your testing needs.

Understanding common probing mistakes is crucial to making accurate measurements. Probes can introduce loading, noise, and jitter into your system. The electrical behavior of your probes greatly affects your measurement results and potentially even the operation of your device. Learn how to avoid common oscilloscope probing pitfalls in this eBook.

Oscilloscope Probing on a Circuit

Related Use Cases

How to Debug Electronic Devices with High Accuracy

How to Debug Electronic Devices with High Accuracy

Achieving quality consumer electronics performance requires debugging small signals, isolating rare glitches, and analyzing serial buses. Learn how to use a high-accuracy oscilloscope to identify and resolve issues within the system quickly.
How to Measure AC Signals Over DC Signals

How to Measure AC Signals Over DC Signals

Measuring small AC signals over large DC signals requires a low-noise, high-bit ADC oscilloscope. Learn how a low-noise, high-bit ADC oscilloscope can help accurately measure AC signals over DC signals.
How to Test for HDMI Physical Layer Sink Compliance

How to Test for HDMI Physical Layer Sink Compliance

Testing HDMI sink compliance requires a source capable of generating a wide range of test patterns. Learn how to use an arbitrary waveform generator and automated test software to automate HDMI sink compliance test.
How to Test 5G Communication Systems

How to Test 5G Communication Systems

Testing 5G wireless communication systems requires a flexible test environment to address many possible real-world scenarios. Learn how to evaluate waveforms with various algorithms using a variety of modulation schemes at many different frequencies and modulation bandwidths.
How to Test USB4 Version 2.0 Transmitter Compliance

How to Test USB4 Version 2.0 Transmitter Compliance

Testing a USB4 version 2.0 transmitter requires a high-performance real-time oscilloscope to capture and analyze transmitted PAM3 signals. Learn how compliance test software automates the test process and provides test results to show if your device passed or failed each test.
How to Test 400G / 800G Electrical Transmitter Conformance

How to Test 400G / 800G Electrical Transmitter Conformance

Evaluating the interoperability of 100 Gb/s Ethernet electrical transmitters require high-bandwidth oscilloscopes to measure 53 GBd PAM4 signals and analyze their performance against IEEE and OIF compliance test standards. Learn how to use a high-performance oscilloscope, combined with compliance test software, to automate the test process and provide fast, accurate interoperability results.
How to Analyze and Debug USB Type-C Links

How to Analyze and Debug USB Type-C Links

Analyzing the USB4 Type-C link requires oscilloscopes, a link fixture, and protocol triggering and decoding software to debug and optimize the connection. Learn how to establish a high-speed, crosstalk-limited, Type-C link quickly.
如何測試 USB Type-C 電力傳輸

如何測試 USB Type-C 電力傳輸

測試 USB Type-C 電力傳輸模組時,您需要使用 300 kHz 信號來監控 CC 線,同時量測產生的電壓和電流。了解如何使用示波器分析產生的眼圖,以確保 USB Type-C 電力傳輸所提供的動態可變功率與標準相符。
如何測試 5G NR MIMO

如何測試 5G NR MIMO

進行 MIMO 特性分析時,需要使用通道模擬系統來量測衰減和多路徑。 了解如何針對 28 GHz FR2 頻段中的 2x2 5G NR MIMO 信號設定 EVM 量測,然後對高頻毫米波等新興應用進行除錯。
How to Test for DDR4 Compliance

How to Test for DDR4 Compliance

Testing DDR4 (double data rate) compliance requires measurements such as eye diagram analysis, mask testing, and ringing, which are critical for characterizing DDR4 devices. Learn how to use an oscilloscope with automated test software to correlate simulated results with actual characterization measurements.
如何自動執行乙太網路效能除錯和驗證

如何自動執行乙太網路效能除錯和驗證

進行速度與雙工測試時,您需使用示波器和機器人流程自動化(RPA)軟體來驗證硬體效能。 了解如何搭配使用 RPA 軟體和測試儀器,自動執行硬體驗證測試。
如何測試 USB 2.0 介面相符性

如何測試 USB 2.0 介面相符性

執行 USB 2.0 相符性測試時,您需使用 2 GHz 或更高頻寬的示波器、專用的測試夾具,以及 USB 2.0 相符性測試軟體。 了解如何測試 USB 2.0 相符性,以確保互通性。
如何評估高速乙太網路鏈路的 FEC 效能

如何評估高速乙太網路鏈路的 FEC 效能

要分析超大規模資料中心的 FEC 效能,您需深入了解所有乙太網路通道,以便偵測並關聯有意義的錯誤。 了解如何設定 FEC 測試,以量化不同裝置在叢發乙太網路流量中的誤碼率(BER)和前向誤差修正(FEC)效能。
如何測試切換式電源供應器

如何測試切換式電源供應器

對各種切換式應用進行準確的功率量測,需要將電壓探棒和電流探棒之間的時間延遲進行等化。 了解如何利用時差校正,來分析切換式電源供應器的特性。
如何分析嵌入式串列匯流排特性

如何分析嵌入式串列匯流排特性

要分析嵌入式設計的串列匯流排特性,您需進行除錯,然後建立資料傳輸與其他混合信號交互作用的關聯性。 了解如何使用示波器,對 I2C、SPI、UART 和其他串列匯流排進行除錯。
如何測試 PCIe® 6.0 發射器的相符性

如何測試 PCIe® 6.0 發射器的相符性

驗證 PCIe® 6.0 裝置時,您需進行發射器互通性和相符性測試,確保您的裝置符合 PCI-SIG® 規格。 了解如何使用高頻寬示波器和自動化軟體等測試工具,來執行實體層測試,以便根據測試規格,快速驗證標準相符性。
如何驗證汽車乙太網路發射器的相符性

如何驗證汽車乙太網路發射器的相符性

您需對汽車乙太網路設計使用的發射器進行各種測試,以便驗證其符合性。了解如何使用一套應用軟體,測試發射器是否符合 IEEE 和 OPEN Alliance 標準。
如何分析 PCB 信號完整性

如何分析 PCB 信號完整性

分析印刷電路板設計的信號完整性時,您需逐一解決串擾、抖動、垂直雜訊和相位雜訊的檢測和診斷問題。 了解如何使用示波器和模擬軟體分析即時眼圖。
如何測試汽車 SerDes 發射符合性

如何測試汽車 SerDes 發射符合性

驗證汽車串列器/解串列器(SerDes)發射器時,您需在已知狀態下執行各種量測。 了解如何準確驗證 SerDes 設計的效能和符合性。
如何執行電源完整性分析

如何執行電源完整性分析

分析電源完整性時,您需執行配電網路(PDN)阻抗、電軌完整性和控制迴路響應等量測。 了解如何使用即時示波器量測並分析多個電軌。
如何加速進行高速數位相符性測試

如何加速進行高速數位相符性測試

為了加速進行高速數位相符性測試,您需將資料處理和報告任務,交給外部高效能伺服器執行。 了解如何將示波器的資料處理任務,轉移到可平行處理資料的高效能運算資源上,以便更快獲得相符性測試結果。
如何測試 DDR5 發射器的相符性

如何測試 DDR5 發射器的相符性

為確保 DDR5 發射器與其他裝置的互通性,您需要依據 JEDEC 符合性標準進行各種測試。 了解如何使用高頻寬示波器和探棒,以及轉接器板,在盡可能靠近矽晶的地方進行探量,以便執行符合性測試所要求的所有相符性量測和測試案例。
如何量測頻率響應(波特圖)

如何量測頻率響應(波特圖)

欲執行頻率響應分析,您需要專用的網路分析儀,或配備頻率分析響應軟體的示波器。 了解如何使用自動化軟體和桌上型示波器,執行頻率響應(波特圖)分析。
如何測試 USB4 發射器的相符性

如何測試 USB4 發射器的相符性

測試 USB4 發射器時,您需使用高效能即時示波器來擷取和分析發射碼型。 了解相符性測試軟體如何實現測試流程自動化,善用其提供邊限分析等測試結果,以顯示您的裝置在每項測試中的通過或不通過。
如何分析汽車串列匯流排特性

如何分析汽車串列匯流排特性

要分析汽車串列匯流排的特性,您需對匯流排進行除錯,然後建立資料傳輸與其他混合信號交互作用的關聯性。 了解如何使用示波器和協定解碼軟體,對 CAN、CAN FD、LIN、SENT 和其他汽車串列匯流排進行除錯。

KeysightAccess

Reduce budget challenges with KeysightAccess subscription service.

Featured Resources

查看所有資源

查看所有資源

Frequently Asked Questions - Oscilloscopes

An oscilloscope, sometimes shortened to “scope” or “o-scope”, is a test instrument that captures and displays the behavior of electrical signal over time. For example, it can plot a graph of voltage (y-axis) versus time (x-axis) on its display.

Oscilloscopes are powerful tools that engineers use for designing and testing electronic devices. They are vital in determining which components of a system are behaving correctly and which are malfunctioning. They can also help you determine whether or not a newly designed component behaves the way you intended. This can be done by analyzing signal properties such as amplitude, period, frequency, rise time, pulse width, and more. Modern digital oscilloscopes can also perform mathematical functions on waveforms, such as a Fourier transform, making analysis quicker.

Real-Time Oscilloscope, Sampling Oscilloscope, Modular Oscilloscope

All modern oscilloscopes are digital storage oscilloscopes (DSOs), which use digital signal processing to capture and display the analog signal. If the scope has the ability to accept digital signals, it is a mixed-signal oscilloscope (MSO). If the scope has a spectrum analyzer feature built into it, it is a mixed-domain oscilloscope (MDO), though this terminology is less common.

Test engineers and developers use oscilloscopes to display, graph, and analyze electrical signals during research and development, validation, quality assurance, and troubleshooting or debugging of electronic systems, circuit boards, and integrated circuits. Oscilloscopes play a key role across all industries for a variety of applications and technologies, including high-speed digital electronics, optical communication, RF, power electronics, automotive, and aerospace and defense. 

An oscilloscope is a critical test instrument for observing, analyzing, or recording the behavior of an electrical signal. Some specific use cases for oscilloscopes in an electronics laboratory include measuring voltage waveforms, analyzing electronic signals, detecting unwanted noise and crosstalk, and evaluating harmful transients in power systems. 

In high-speed signal analysis, oscilloscopes can measure signal integrity by displaying and measuring eye diagrams, including eye height and width. Mixed-signal oscilloscopes can help debug digital circuits by displaying the logic status and timing of measured digital signals. Advanced oscilloscopes can even help emulate ideal reference receivers for transmitter testing, use optical-to-electrical transceivers for measuring fiber optic signals, and analyze RF signals. 
 
Due to their versatility, oscilloscopes have many different performance levels and software features depending on the application. They are indispensable tools for electronic development, troubleshooting, and analysis.
Oscilloscopes play a key role across all industries for a variety of applications and technologies, including high-speed digital electronics, optical communication, RF, power electronics, automotive, and aerospace and defense.

An oscilloscope uses a probe to connect to a test point in a circuit and amplifies or attenuates the voltage at that point. The signal path after that depends on the scope, but in general analog circuitry conditions the signal and an analog-to-digital converter digitizes it for further evaluation, processing, and analysis.

An oscilloscope captures and displays a signal in the time domain, while a spectrum analyzer captures and displays a signal in the frequency domain. Sometimes, an oscilloscope will have a spectrum analyzer feature built into it for the convenience of analyzing the signal in the time and frequency domains.

With so many brands and types of oscilloscopes available, they might look different from one another, but most have the same basic steps to get started. Here’s a step-by-step guide on how to use an oscilloscope:

  1. Connect the Probe: Attach the probe to the oscilloscope's input channel. Make sure it’s securely connected. If you have an attenuated probe, you may need to compensate your probe until you have a perfect square waveform.
  2. Probe the DUT: Connect the probe to your device under test (DUT) by attaching the probe tip to the point of interest on the circuit and connecting the ground clip to a common ground point on the DUT.
  3. Adjust Vertical and Horizontal Scales: Use the oscilloscope controls to adjust the vertical (voltage) and horizontal (time) scales. This ensures that the waveform is displayed correctly on the screen.
  4. Set the Trigger: Use the trigger setting to stabilize the waveform. The trigger helps ensure that the signal is consistently displayed. Adjust the trigger level and type as needed.
  5. Interpret the Waveform: Look at the waveform on the screen. The x-axis represents time, and the y-axis represents voltage. Observe the shape, frequency, and amplitude of the signal.
  6. Analyze the Waveform: Identify any issues or anomalies. Is the signal behaving as expected? Are there noise spikes or irregularities? Troubleshoot any detected problems to ensure accurate signal performance. You may use the oscilloscope's features, like cursors and automated measurements, to assist in your analysis.

More information:

Keysight offers a wide range of free technical resources for engineers to learn about essential oscilloscope functions and how to get started.

A step-by-step guide on how to use an oscilloscope.

Want help or have questions?