
Creating and
Downloading
Waveform
Files

Keysight Technologies
Signal Generators
E4438C RF

E8267D PSG Microwave

N5162A/82A MXG RF

Notice: This document contains references to Agilent.
Please note that Agilent’s Test and Measurement business
has become Keysight Technologies. For more
information, go to www.keysight.com.

Notices

© Keysight Technologies, Inc.
2006 - 2020

No part of this manual may be
reproduced in any form or by any
means (including electronic storage
and retrieval or translation into a
foreign language) without prior
agreement and written consent from
Keysight Technologies, Inc. as
governed by United States and
international copyright laws.

Trademark Acknowledgements

Manual Part Number

E4400-90627

Publication Date

Edition 1: October 2020

Supersedes: January 2015

Published in USA

Keysight Technologies Inc.
1400 Fountaingrove Parkway
Santa Rosa, CA 95403

Warranty

THE MATERIAL CONTAINED IN THIS
DOCUMENT IS PROVIDED “AS IS,”
AND IS SUBJECT TO BEING
CHANGED, WITHOUT NOTICE, IN
FUTURE EDITIONS. FURTHER, TO
THE MAXIMUM EXTENT PERMITTED
BY APPLICABLE LAW, KEYSIGHT
DISCLAIMS ALL WARRANTIES,
EITHER EXPRESS OR IMPLIED WITH
REGARD TO THIS MANUAL AND
ANY INFORMATION CONTAINED
HEREIN, INCLUDING BUT NOT
LIMITED TO THE IMPLIED
WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE.
KEYSIGHT SHALL NOT BE LIABLE
FOR ERRORS OR FOR INCIDENTAL
OR CONSEQUENTIAL DAMAGES IN
CONNECTION WITH THE
FURNISHING, USE, OR
PERFORMANCE OF THIS
DOCUMENT OR ANY INFORMATION
CONTAINED HEREIN. SHOULD
KEYSIGHT AND THE USER HAVE A
SEPARATE WRITTEN AGREEMENT

WITH WARRANTY TERMS
COVERING THE MATERIAL IN THIS
DOCUMENT THAT CONFLICT WITH
THESE TERMS, THE WARRANTY
TERMS IN THE SEPARATE
AGREEMENT WILL CONTROL.

Technology Licenses

The hardware and/or software
described in this document are
furnished under a license and may be
used or copied only in accordance
with the terms of such license.

U.S. Government Rights

The Software is “commercial
computer software,” as defined
by Federal Acquisition Regulation
(“FAR”) 2.101. Pursuant to FAR
12.212 and 27.405-3 and
Department of Defense FAR
Supplement (“DFARS”) 227.7202,
the U.S. government acquires
commercial computer software
under the same terms by which
the software is customarily
provided to the public.
Accordingly, Keysight provides
the Software to U.S. government
customers under its standard
commercial license, which is
embodied in its End User License
Agreement (EULA), a copy of
which can be found at
http://www.keysight.com/find/sweula
The license set forth in the EULA
represents the exclusive authority
by which the U.S. government
may use, modify, distribute, or
disclose the Software. The EULA
and the license set forth therein,
does not require or permit,
among other things, that
Keysight: (1) Furnish technical
information related to
commercial computer software
or commercial computer
software documentation that is
not customarily provided to the
public; or (2) Relinquish to, or
otherwise provide, the
government rights in excess of
these rights customarily provided
to the public to use, modify,
reproduce, release, perform,
display, or disclose commercial
computer software or

commercial computer software
documentation. No additional
government requirements
beyond those set forth in the
EULA shall apply, except to the
extent that those terms, rights, or
licenses are explicitly required
from all providers of commercial
computer software pursuant to
the FAR and the DFARS and are
set forth specifically in writing
elsewhere in the EULA. Keysight
shall be under no obligation to
update, revise or otherwise
modify the Software. With
respect to any technical data as
defined by FAR 2.101, pursuant
to FAR 12.211 and 27.404.2 and
DFARS 227.7102, the U.S.
government acquires no greater
than Limited Rights as defined in
FAR 27.401 or DFAR 227.7103-5
(c), as applicable in any technical
data.

Safety Notices

A CAUTION notice denotes a
hazard. It calls attention to an
operating procedure, practice, or
the like that, if not correctly
performed or adhered to, could
result in damage to the product
or loss of important data. Do not
proceed beyond a CAUTION
notice until the indicated
conditions are fully understood
and met.

A WARNING notice denotes a
hazard. It calls attention to an
operating procedure, practice, or
the like that, if not correctly
performed or adhered to, could
result in personal injury or death.
Do not proceed beyond a
WARNING notice until the
indicated conditions are fully
understood and met.

Contents

iii

Table of Contents

Creating and Downloading Waveform Files

Overview of Downloading and Extracting Waveform Files . 2
Waveform Data Requirements . 3

Understanding Waveform Data . 4
Bits and Bytes . 4
LSB and MSB (Bit Order). 5
Little Endian and Big Endian (Byte Order) . 5
Byte Swapping. 6
DAC Input Values. 7
2’s Complement Data Format . 10
I and Q Interleaving . 10

Waveform Structure . 12
File Header . 12
Marker File . 12
I/Q File . 14
Waveform . 14

Waveform Phase Continuity . 15
Phase Discontinuity, Distortion, and Spectral Regrowth . 15
Avoiding Phase Discontinuities . 16

Waveform Memory . 18
Memory Allocation . 20
Memory Size . 22

Commands for Downloading and Extracting Waveform Data. 25
Waveform Data Encryption . 25
File Transfer Methods . 27
SCPI Command Line Structure . 28
Commands and File Paths for Downloading and Extracting Waveform Data . 28
FTP Procedures . 33

Creating Waveform Data . 37
Code Algorithm . 37
2. Save the I/Q data to a text file to review. 39

Downloading Waveform Data. 43
Using Simulation Software . 43
Using Advanced Programming Languages . 45

Loading, Playing, and Verifying a Downloaded Waveform . 49
Loading a File from Non–Volatile Memory . 49
Playing the Waveform . 49
Verifying the Waveform. 50
Building and Playing Waveform Sequences . 50

Using the Download Utilities . 52

Downloading E443xB Signal Generator Files . 53
E443xB Data Format . 53
Storage Locations for E443xB ARB files . 53
SCPI Commands . 55

iv

Contents

Programming Examples . 56
C++ Programming Examples. 57
MATLAB Programming Examples . 86
Visual Basic Programming Examples . 95
HP Basic Programming Examples . 102

Troubleshooting Waveform Files . 111
Configuring the Pulse/RF Blank (Keysight MXG) . 112
Configuring the Pulse/RF Blank (ESG/PSG) . 112

 1

Keysight Technologies Signal Generators
E4438C RF, E8267D PSG Microwave, and N5162A/82A MXG RF

Creating and Downloading Waveform Files

Creating and Downloading Waveform Files

This manual explains how to create Arb–based waveform data and download it
into the signal generator. This information is also available in the signal
generator's Programming Guide.

— “Overview of Downloading and Extracting Waveform Files” on page 2

— “Understanding Waveform Data” on page 4

— “Waveform Structure” on page 12

— “Waveform Phase Continuity” on page 15

— “Waveform Memory” on page 18

— “Commands for Downloading and Extracting Waveform Data” on page 25

— “Creating Waveform Data” on page 37

— “Downloading Waveform Data” on page 43

— “Loading, Playing, and Verifying a Downloaded Waveform” on page 49

— “Using the Download Utilities” on page 52

— “Downloading E443xB Signal Generator Files” on page 53

— “Programming Examples” on page 56

— “Troubleshooting Waveform Files” on page 111

The ability to play externally created waveform data in the signal
generator is available only in the N5162A/82A with Option 651, 652 or 654,
E4438C ESG Vector Signal Generators with Option 001, 002, 601, or 602,
and E8267D PSG Vector Signal Generators with Option 601 or 602.

On the Keysight MXG, the internal baseband generator speed upgrade
Options 670, 671, and 672 are option upgrades that require Option 651 and
652 to have been loaded at the factory (refer to the Data Sheet for more
information). Any references to 651, 652, or 654 are inclusive of 671, 672,
and 674.

For the N5162A, the softkey menus and features mentioned in this manual
are only available through the Web–Enabled MXG or through SCPI
commands. Refer to Programming Guide and to the SCPI Command
Reference.

 2 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Overview of Downloading and Extracting Waveform Files

Overview of Downloading and Extracting Waveform Files
The signal generator lets you download and extract waveform files. You can
create these files either external to the signal generator or by using one of the
internal modulation formats (ESG/PSG only). The signal generator also
accepts waveforms files created for the earlier E443xB ESG signal generator
models. For file extractions, the signal generator encrypts the waveform file
information. The exception to encrypted file extraction is user–created I/Q
data. The signal generator lets you extract this type of file unencrypted. After
extracting a waveform file, you can download it into another Keysight signal
generator that has the same option or software license required to play it.
Waveform files consist of three items:

1. I/Q data
2. Marker data
3. File header

The signal generator automatically creates the marker file and the file header if
the two items are not part of the download. In this situation, the signal
generator sets the file header information to unspecified (no settings saved)
and sets all markers to zero (off).

There are three ways to download waveform files: FTP, programmatically or
using one of three available free download utilities created by Keysight
Technologies:

— N7622A Signal Studio Toolkit 2
http://www.keysight.com/find/signalstudio

— Keysight Waveform Download Assistant for use only with MATLAB
http://www.keysight.com/find/downloadassistant

— Intuilink for Keysight PSG/ESG Signal Generators
http://www.keysight.com/find/intuilink

This order of download is required, as the I/Q data downloads results in
the overwriting of all of these three parts of the file.

Intuilink is not available for the Keysight MXG.

Keysight Vector Signal Generators Creating and Downloading Waveform Files 3

Creating and Downloading Waveform Files
Overview of Downloading and Extracting Waveform Files

Waveform Data Requirements

To be successful in downloading files, you must first create the data in the
required format.

— Signed 2’s complement

— 2–byte integer values

— Input data range of -32768 to 32767

— Minimum of 60 samples per waveform (60 I and 60 Q data points)

— Interleaved I and Q data

— Big endian byte order

— The same name for the marker, header, and I/Q file

This is only a requirement if you create and download a marker file and or
file header, otherwise the signal generator automatically creates the marker
file and or file header using the I/Q data file name.

For more information, see “Waveform Structure” on page 12.

For more information on waveform data, see “Understanding Waveform Data”
on page 4.

FTP can be used without programming commands to transfer files from
the PC to the signal generator or from the signal generator to the PC.

 4 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Understanding Waveform Data

Understanding Waveform Data
The signal generator accepts binary data formatted into a binary I/Q file. This
section explains the necessary components of the binary data, which uses ones
and zeros to represent a value.

Bits and Bytes

Binary data uses the base–two number system. The location of each bit within
the data represents a value that uses base two raised to a power (2n–1). The
exponent is n - 1 because the first position is zero. The first bit position, zero, is
located at the far right. To find the decimal value of the binary data, sum the
value of each location:

1101 = (1 x 23) + (1 x 22) + (0 x 21) + (1 x 20)
 = (1 x 8) + (1 x 4) + (0 x 2) + (1 x 1)
 = 13 (decimal value)

Notice that the exponent identifies the bit position within the data, and we read
the data from right to left.

The signal generator accepts data in the form of bytes. Bytes are groups of
eight bits:

01101110 = (0 x 27) + (1 x 26) + (1 x 25) + (0 x 24) +(1 x 23) + (1 x 22) + (1 x 21)
+ (0 x 20) = 110 (decimal value)

The maximum value for a single unsigned byte is 255 (11111111 or 28-1), but
you can use multiple bytes to represent larger values. The following shows two
bytes and the resulting integer value:

01101110 10110011= 28339 (decimal value)

The maximum value for two unsigned bytes is 65535. Since binary strings
lengthen as the value increases, it is common to show binary values using
hexadecimal (hex) values (base 16), which are shorter. The value 65535 in hex
is FFFF. Hexadecimal consists of the values 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D,
E, and F. In decimal, hex values range from 0 to 15 (F). It takes 4 bits to
represent a single hex value.

For I and Q data, the signal generator uses two bytes to represent an integer
value.

1 = 0001 2 = 0010 3 = 0011 4 = 0100 5 = 0101

6 = 0110 7 = 0111 8 = 1000 9 = 1001 A = 1010

B = 1011 C = 1100 D = 1101 E = 1110 F = 1111

Keysight Vector Signal Generators Creating and Downloading Waveform Files 5

Creating and Downloading Waveform Files
Understanding Waveform Data

LSB and MSB (Bit Order)

Within groups (strings) of bits, we designate the order of the bits by identifying
which bit has the highest value and which has the lowest value by its location
in the bit string. The following is an example of this order.

Little Endian and Big Endian (Byte Order)

When you use multiple bytes (as required for the waveform data), you must
identify their order. This is similar to identifying the order of bits by LSB and
MSB. To identify byte order, use the terms little endian and big endian. These
terms are used by designers of computer processors.

Notice in the previous figure that the LSB and MSB positioning changes with
the byte order. In little endian order, the LSB and MSB are next to each other in
the bit sequence.

Most Significant Bit (MSB) This bit has the highest value (greatest weight) and is located at the far left of the bit
string.

Least Significant Bit (LSB) This bit has the lowest value (bit position zero) and is located at the far right of the bit
string.

1 0 1 1 0 1 1 1 1 1 1 0 1 0 0 1

LSBMSB

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data
Bit Position

Because we are using 2 bytes of data, the LSB appears in the second byte.

1 0 1 1 0 1 1 1 1 1 1 0 1 0 0 1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data
Bit Position

1 0 1 1 0 1 1 1
15 14 13 12 11 10 9 8

Data
Bit Position

Big Endian Order

Little Endian Order

1 1 1 0 1 0 0 1
7 6 5 4 3 2 1 0

Hex values = E9 B7

Hex values = B7 E9

LSB MSB

MSB LSB

The lowest order byte that contains bits 0–7 comes first.

The highest order byte that contains bits 8–15 comes first.

For I/Q data downloads, the signal generator requires big endian order.
For each I/Q data point, the signal generator uses four bytes (two integer
values), two bytes for the I point and two bytes for the Q point.

 6 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Understanding Waveform Data

The byte order, little endian or big endian, depends on the type of processor
used with your development platform. Intel processors and its clones use little
endian. Sun and Motorola processors use big endian. The Apple PowerPC
processor, while big endian oriented, also supports the little endian order.
Always refer to the processor’s manufacturer to determine the order they use
for bytes and if they support both, to understand how to ensure that you are
using the correct byte order.

Development platforms include any product that creates and saves waveform
data to a file. This includes Keysight Technologies Advanced Design System
EDA software, C++, MATLAB, and so forth.

The byte order describes how the system processor stores integer values as
binary data in memory. If you output data from a little endian system to a text
file (ASCII text), the values are the same as viewed from a big endian system.
The order only becomes important when you use the data in binary format, as
is done when downloading data to the signal generator.

Byte Swapping

While the processor for the development platform determines the byte order,
the recipient of the data may require the bytes in the reverse order. In this
situation, you must reverse the byte order before downloading the data. This is
commonly referred to as byte swapping. You can swap bytes either
programmatically or by using either the Keysight Technologies Intuilink for
ESG/PSG Signal Generator software, or the Signal Studio Toolkit 2 software.
For the signal generator, byte swapping is the method to change the byte
order of little endian to big endian. For more information on little endian and
big endian order, see “Little Endian and Big Endian (Byte Order)” on page 5.

The following figure shows the concept of byte swapping for the signal
generator. Remember that we can represent data in hex format (4 bits per hex
value), so each byte (8 bits) in the figure shows two example hex values.

To correctly swap bytes, you must group the data to maintain the I and Q
values. One common method is to break the two–byte integer into one–byte
character values (0–255). Character values use 8 bits (1 byte) to identify a

E9 B7 53 2A

0 1 2 3

E9B7 532A

0 1 2 3

I data = bytes 0 and 1
Q data = bytes 2 and 3

Little Endian

Big Endian

16–bit integer values (2 bytes = 1 integer value)

I Q

Keysight Vector Signal Generators Creating and Downloading Waveform Files 7

Creating and Downloading Waveform Files
Understanding Waveform Data

character. Remember that the maximum unsigned 8–bit value is 255 (28 - 1).
Changing the data into character codes groups the data into bytes. The next
step is then to swap the bytes to align with big endian order.

DAC Input Values

The signal generator uses a 16–bit DAC (digital–to–analog convertor) to
process each of the 2–byte integer values for the I and Q data points. The DAC
determines the range of input values required from the I/Q data. Remember
that with 16 bits we have a range of 0–65535, but the signal generator divides
this range between positive and negative values:

— 32767 = positive full scale output
— 0 = 0 volts
— -32768 = negative full scale output

Because the DAC’s range uses both positive and negative values, the signal
generator requires signed input values. The following list illustrates the DAC’s
input value range.

Notice that it takes only 15 bits (215) to reach the Vmax (positive) or Vmin
(negative) values. The MSB determines the sign of the value. This is covered in
“2’s Complement Data Format” on page 10.

Using E443xB ESG DAC Input Values

In this section, the words signal generator with or without a model number
refer to an N5162A/82A Keysight MXG, E4438C ESG, E8267D PSG. The signal
generator input values differ from those of the earlier E443xB ESG models. For
the E443xB models, the input values are all positive (unsigned) and the data is
contained within 14 bits plus 2 bits for markers. This means that the E443xB
DAC has a smaller range:

The signal generator always assumes that downloaded data is in big
endian order, so there is no data order check. Downloading data in little
endian order will produce an undesired output signal.

Voltage DAC Range Input Range Binary Data Hex Data
Vmax

Vmin

0 Volts

32767

–32768

0

01111111 11111111

00000000 00000000
00000000 00000001

11111111 11111111

10000000 00000000

1

-1

7FFF

0001
0000
FFFF

80000

32767

65535

32766

32768

 8 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Understanding Waveform Data

— 0 = negative full scale output
— 8192 = 0 volts
— 16383 = positive full scale output

Although the signal generator uses signed input values, it accepts unsigned
data created for the E443xB and converts it to the proper DAC values. To
download an E443xB files to the signal generator, use the same command
syntax as for the E443xB models. For more information on downloading
E443xB files, see “Downloading E443xB Signal Generator Files” on page 53.

Scaling DAC Values

The signal generator uses an interpolation algorithm (sampling between the
I/Q data points) when reconstructing the waveform. For common waveforms,
this interpolation can cause overshoot, which may exceed the limits of the
signal process path’s internal number representation, causing arithmatic
overload. This will be reported as either a data path overload error
(N5162A/82A) or a DAC over–range error condition (E4438C/E8267D).
Because of the interpolation, the error condition can occur even when all the I
and Q values are within the DAC input range. To avoid the DAC over–range
problem, you must scale (reduce) the I and Q input values, so that any
overshoot remains within the DAC range.

Keysight Vector Signal Generators Creating and Downloading Waveform Files 9

Creating and Downloading Waveform Files
Understanding Waveform Data

There is no single scaling value that is optimal for all waveforms. To achieve
the maximum dynamic range, select the largest scaling value that does not
result in a DAC over–range error. There are two ways to scale the I/Q data:

— Reduce the input values for the DAC.
— Use the SCPI command :RADio:ARB:RSCaling <val> to set the

waveform amplitude as a percentage of full scale.

To further minimize overshoot problems, use the correct FIR filter for your
signal type and adjust your sample rate to accommodate the filter response.

Whenever you interchange files between signal generator models, ensure
that all scaling is adequate for that signal generator’s waveform.

The signal generator factory preset for scaling is 70%. If you reduce the
DAC input values, ensure that you set the signal generator scaling
(:RADio:ARB:RSCaling) to an appropriate setting that accounts for the
reduced values.

FIR filter capability is only available on the N5162A/82A with Option 651,
652, or 654, the E4438C with Option 001, 002, 601, or 602, and on the
E8267D with Option 601 or 602.

 10 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Understanding Waveform Data

2’s Complement Data Format

The signal generator requires signed values for the input data. For binary data,
two’s complement is a way to represent positive and negative values. The most
significant bit (MSB) determines the sign.

— 0 equals a positive value (01011011 = 91 decimal)

— 1 equals a negative value (10100101 = -91 decimal)

Like decimal values, if you sum the binary positive and negative values, you get
zero. The one difference with binary values is that you have a carry, which is
ignored. The following shows how to calculate the two’s complement using
16–bits. The process is the same for both positive and negative values.

I and Q Interleaving

When you create the waveform data, the I and Q data points typically reside in
separate arrays or files. The signal generator requires a single I/Q file for
waveform data playback. The process of interleaving creates a single array with
alternating I and Q data points, with the Q data following the I data. This array
is then downloaded to the signal generator as a binary file. The interleaved file
comprises the waveform data points where each set of data points, one I data
point and one Q data point, represents one I/Q waveform point.

The following figure illustrates interleaving I and Q data. Remember that it
takes two bytes (16 bits) to represent one I or Q data point.

Convert the decimal value to binary.

23710 = 01011100 10011110
Notice that 15 bits (0–14) determine the value and bit 16 (MS2B) indicates a positive value.
Invert the bits (1 becomes 0 and 0 becomes 1).

10100011 01100001

Add one to the inverted bits. Adding one makes it a two’s complement of the original binary value.

 10100011 01100001
+ 00000000 00000001
 10100011 01100010

The MSB of the resultant is one, indicating a negative value (-23710).
Test the results by summing the binary positive and negative values; when correct, they produce zero.

 01011100 10011110
+ 10100011 01100010
 00000000 00000000

The signal generator can accept separate I and Q files created for the
earlier E443xB ESG models. For more information on downloading E443xB
files, see “Downloading E443xB Signal Generator Files” on page 53.

Keysight Vector Signal Generators Creating and Downloading Waveform Files 11

Creating and Downloading Waveform Files
Understanding Waveform Data

11001010 01110110 01110111 00111110I Data

Q Data 11101001 11001010 01011110 01110010

11001010 01110110 11101001 11001010 01110111 00111110 01011110 01110010

I Data Q DataI Data Q Data

Interleaved Binary Data

CA 76 E9 CA 77 3E 5E 72

Q Data Q DataI DataI Data

Interleaved Hex Data

Binary
Hex CA 76 77 3E

Binary
Hex E9 CA 5E 72

Waveform
data point

Waveform
data point

Waveform data point Waveform data point

MSB MSBLSB LSB

 12 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Waveform Structure

Waveform Structure
To play back waveforms, the signal generator uses data from the following
three files:

— File header
— Marker file
— I/Q file

All three files have the same name, the name of the I/Q data file, but the signal
generator stores each file in its respective directory (headers, markers, and
waveform). For information on file extractions, see “Commands for
Downloading and Extracting Waveform Data” on page 25.

File Header

The file header contains settings for the ARB modulation format such as
sample rate, marker polarity, I/Q modulation attenuator setting and so forth.
When you create and download I/Q data, the signal generator automatically
creates a file header with all saved parameters set to unspecified. With
unspecified header settings, the waveform either uses the signal generator
default settings, or if a waveform was previously played, the settings from that
waveform. Ensure that you configure and save the file header settings for each
waveform.

Marker File

The marker file uses one byte per I/Q waveform point to set the state of the
four markers either on (1) or off (0) for each I/Q point. When a marker is active
(on), it provides an output trigger signal to the rear panel EVENT 1 connector
(Marker 1 only) or and the AUX IO, event 2 connector pin (Markers 1, 2, 3, or 4),
that corresponds to the active marker number. (For more information on active
markers and their output trigger signal location, refer to your signal
generator’s User’s Guide.) Because markers are set at each waveform point,
the marker file contains the same number of bytes as there are waveform
points. For example, for 200 waveform points, the marker file contains 200
bytes.

If you have no RF output when you play back a waveform, ensure that the
marker RF blanking function has not been set for any of the markers. The
marker RF blanking function is a header parameter that can be
inadvertently set active for a marker by a previous waveform. To check for
and turn RF blanking off manually, refer to “Configuring the Pulse/RF
Blank (Keysight MXG)” on page 112 and “Configuring the Pulse/RF Blank
(ESG/PSG)” on page 112.

Keysight Vector Signal Generators Creating and Downloading Waveform Files 13

Creating and Downloading Waveform Files
Waveform Structure

Although a marker point is one byte, the signal generator uses only bits 0–3 to
configure the markers; bits 4–7 are reserved and set to zero. The following
example shows a marker byte.

The following example shows a marker binary file (all values in hex) for a
waveform with 200 points. Notice the first marker point, 0f, shows all four
markers on for only the first waveform point.

If you create your own marker file, its name must be the same as the waveform
file. If you download I/Q data without a marker file, the signal generator
automatically creates a marker file with all points set to zero. For more
information on markers, see the User’s Guide.

Marker Byte 0000 1 0 1 1

Binary
Hex

Marker Number Position4 3 2 1

Reserved

0000 0101
05

Sets markers 1 and 3 on for a waveform point

Example of Setting a Marker Byte

01 = Marker 1 on
05 = Markers 1 and 3 on
04 = Marker 3 on
00 = No active markers

0f = All markers on

Downloading marker data using a file name that currently resides on the
signal generator overwrites the existing marker file without affecting the
I/Q (waveform) file. However, downloading just the I/Q data with the same
file name as an existing I/Q file also overwrites the existing marker file
setting all bits to zero.

 14 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Waveform Structure

I/Q File

The I/Q file contains the interleaved I and Q data points (signed 16–bit integers
for each I and Q data point). Each I/Q point equals one waveform point. The
signal generator stores the I/Q data in the waveform directory.

Waveform

A waveform consists of samples. When you select a waveform for playback, the
signal generator loads settings from the file header. When the ARB is on, it
creates the waveform samples from the data in the marker and I/Q (waveform)
files. The file header, while required, does not affect the number of bytes that
compose a waveform sample. One sample contains five bytes:

To create a waveform, the signal generator requires a minimum of 60 samples.
To help minimize signal imperfections, use an even number of samples (for
information on waveform continuity, see “Waveform Phase Continuity” on
page 15). When you store waveforms, the signal generator saves changes to
the waveform file, marker file, and file header.

If you download I/Q data using a file name that currently resides on the
signal generator, it also overwrites the existing marker file setting all bits
to zero and the file header setting all parameters to unspecified.

I/Q Data Marker Data 1 Waveform Sample+ =
2 bytes I
(16 bits)

2 bytes Q
(16 bits)

1byte (8 bits)
Bits 4–7 reserved—Bits 0–3 set

5 bytes

Keysight Vector Signal Generators Creating and Downloading Waveform Files 15

Creating and Downloading Waveform Files
Waveform Phase Continuity

Waveform Phase Continuity

Phase Discontinuity, Distortion, and Spectral Regrowth

The most common arbitrary waveform generation use case is to play back a
waveform that is finite in length and repeat it continuously. Although often
overlooked, a phase discontinuity between the end of a waveform and the
beginning of the next repetition can lead to periodic spectral regrowth and
distortion.

For example, the sampled sinewave segment in the following figure may have
been simulated in software or captured off the air and sampled. It is an
accurate sinewave for the time period it occupies, however the waveform does
not occupy an entire period of the sinewave or some multiple thereof.
Therefore, when repeatedly playing back the waveform by an arbitrary
waveform generator, a phase discontinuity is introduced at the transition point
between the beginning and the end of the waveform.

Repetitions with abrupt phase changes result in high frequency spectral
regrowth. In the case of playing back the sinewave samples, the phase
discontinuity produces a noticeable increase in distortion components in
addition to the line spectra normally representative of a single sinewave.

Sampled Sinewave with Phase Discontinuity

Waveform length

discontinuity
Phase

 16 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Waveform Phase Continuity

Avoiding Phase Discontinuities

You can easily avoid phase discontinuities for periodic waveforms by
simulating an integer number of cycles when you create your waveform
segment.

By adding off time at the beginning of the waveform and subtracting an
equivalent amount of off time from the end of the waveform, you can address
phase discontinuity for TDMA or pulsed periodic waveforms. Consequently,
when the waveform repeats, the lack of signal present avoids the issue of
phase discontinuity.

However, if the period of the waveform exceeds the waveform playback
memory available in the arbitrary waveform generator, a periodic phase
discontinuity could be unavoidable. N5110B Baseband Studio for Waveform
Capture and Playback alleviates this concern because it does not rely on the
signal generator waveform memory. It streams data either from the PC hard
drive or the installed PCI card for N5110B enabling very large data streams.
This eliminates any restrictions associated with waveform memory to correct
for repetitive phase discontinuities. Only the memory capacity of the hard drive
or the PCI card limits the waveform size.

The following figures illustrate the influence a single sample can have. The
generated 3–tone test signal requires 100 samples in the waveform to maintain
periodicity for all three tones. The measurement on the left shows the effect of
using the first 99 samples rather than all 100 samples. Notice all the distortion

If there are N samples in a complete cycle, only the first N–1 samples are
stored in the waveform segment. Therefore, when continuously playing
back the segment, the first and Nth waveform samples are always the
same, preserving the periodicity of the waveform.

Sampled Sinewave with No Discontinuity

Waveform length

Added sample

Keysight Vector Signal Generators Creating and Downloading Waveform Files 17

Creating and Downloading Waveform Files
Waveform Phase Continuity

products (at levels up to -35 dBc) introduced in addition to the wanted 3–tone
signal. The measurement on the right shows the same waveform using all 100
samples to maintain periodicity and avoid a phase discontinuity. Maintaining
periodicity removes the distortion products.

3–tone – 20 MHz Bandwidth3–tone – 20 MHz Bandwidth
Measured distortion = 35 dBc

Phase Continuity

Measured distortion = 86 dBc

Phase Discontinuity

 18 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Waveform Memory

Waveform Memory
The signal generator provides two types of memory, volatile and non–volatile.
You can download files to either memory type.

Volatile Random access memory that does not survive cycling
of the signal generator power. This memory is
commonly referred to as waveform memory (WFM1) or
waveform playback memory. To play back waveforms,
they must reside in volatile memory. The following file
types share this memory:

Non–volatile Storage memory where files survive cycling the signal
generator power. Files remain until overwritten or
deleted. To play back waveforms after cycling the signal
generator power, you must load waveforms from
non–volatile waveform memory (NVWFM) to volatile
waveform memory (WFM1). On the Keysight MXG the

The MXG’s ARB Waveform File Cache is limited to 128 files. Consequently,
once the 128 file cache limit has been reached, the waveform switching
speed will be much slower for files loaded into the volatile waveform
memory (BBG).

Table 1 Signal Generators and Volatile Memory Types

Volatile Memory Type Model of Signal Generator

N5162A,
N5182A with
Option 651,
652, or 654

E4438C with
Option 0011,

0021, 601, or
602

1. Options 001 and 002 apply only to the E4438C ESG.

E8267D
Option 601
or 602

I/Q x x x

Marker x x x

File header x x x

User PRAM – x x

Keysight Vector Signal Generators Creating and Downloading Waveform Files 19

Creating and Downloading Waveform Files
Waveform Memory

non–volatile memory is referred to as internal media
and external media. The following file types share this
memory:

The following figure on Figure 1 on page 20 shows the locations within the
signal generator for volatile and non–volatile waveform data.

Table 2 Signal Generators and Non–Volatile Memory Types

Non–Volatile Memory Type Model of Signal Generator

N5162A,
N5182A with
Option 651,
652, or 654

E4438C with
Option 001,
002, 601, or
602

E8267D
Option 601
or 602

I/Q x x x

Marker x x x

File header x x x

Sweep List x x x

User Data x x x

User PRAM – x x

Instrument State x x x

Waveform Sequences
(multiple I/Q files played
together)

x x x

 20 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Waveform Memory

Figure 1

Memory Allocation

Volatile Memory

The signal generator allocates volatile memory in blocks of 1024 bytes. For
example, a waveform file with 60 samples (the minimum number of samples)
has 300 bytes (5 bytes per sample x 60 samples), but the signal generator
allocates 1024 bytes of memory. If a waveform is too large to fit into 1024
bytes, the signal generator allocates additional memory in multiples of 1024
bytes. For example, the signal generator allocates 3072 bytes of memory for a
waveform with 500 samples (2500 bytes).

3 x 1024 bytes = 3072 bytes of memory

As shown in the examples, waveforms can cause the signal generator to
allocate more memory than what is actually used, which decreases the amount
of available memory.

ARBI ARBQ NVARBQNVARBI

USER

HEADER MARKERS WAVEFORM

SEQ

SECUREWAVE

BBG1

E443xB Volatile E443xB Non–volatile
waveform data1 waveform data1

Non–volatile

Volatile waveform directory

HEADER MARKERS WAVEFORM SECUREWAVE

Root directory

Volatile waveform data

1For information on using the E443xB directories, see “Downloading E443xB Signal Generator Files” on page 53.
2The Keysight MXG uses an optional “USB media” to store non–volatile waveform data.
3The Keysight MXG internal non–volatile memory is referred to as “internal storage”.
4This NONVOLATILE directory shows the files with the same extensions as the USB media and is useful with ftp.

Waveform sequences

MXG (only) USB media:
File listing with extensions1, 2

NONVOLATILE

Keysight MXG (Only): 4

Non–volatile waveform data (internal storage1, 3)

In the first block of data of volatile memory that is allocated for each
waveform file, the file header requires 512 bytes (N5162A/82A) or 256
bytes (E4438C/E8267D).

Keysight Vector Signal Generators Creating and Downloading Waveform Files 21

Creating and Downloading Waveform Files
Waveform Memory

Non–Volatile Memory (Keysight MXG)

On the N5162A/82A, non–volatile files are stored on the non–volatile internal
signal generator memory (internal storage) or to an USB media, if available.

The Keysight MXG non–volatile internal memory is allocated according to a
Microsoft compatible file allocation table (FAT) file system. The Keysight MXG
signal generator allocates non–volatile memory in clusters according to the
drive size (see Table 3 on page 22). For example, referring to Table 3 on
page 22, if the drive size is 15 MB and if the file is less than or equal to 4K
bytes, the file uses only one 4 KB cluster of memory. For files larger than 4 KB,
and with a drive size of 15 MB, the signal generator allocates additional
memory in multiples of 4KB clusters. For example, a file that has 21,538 bytes
consumes 6 memory clusters (24,000 bytes).

For more information on default cluster sizes for FAT file structures, refer to
Table 3 on page 22 and to http://support.microsoft.com/.

If the Keysight MXG’s external USB flash memory port is used, the USB
flash memory can provide actual physical storage of non–volatile data in
the SECUREWAVE directory versus the “virtual” only data.

ARB waveform encryption of proprietary information is supported on the
external non–volatile USB flash memory.

To copy unencrypted data files from an external media (as in USB Flash
Drive [UFD]) for playing on a signal generator, the full filename extension is
required (i.e., .MARKER, .HEADER, .WAVEFORM, etc.). For more
information on unencrypted data, refer to “Commands for Downloading
and Extracting Waveform Data” on page 25. For more information on how
to work with files, refer to the User’s Guide.

To copy compatible licensed encrypted data files (i.e., .SECUREWAVE) from
an external media, download (copy) the files to the signal generator (refer
to the User’s Guide for information on how to work with files). When using
the external media along with the signal generator’s Use as or Copy File to
Instrument softkey menus, encrypted data files can be automatically
detected by the Keysight MXG, regardless of the suffix (e.g. .wfm, .wvfm,
and no suffix, etc.). These various waveform files can be selected and
played by the Keysight MXG. For more information on encrypted data,
refer to “Commands for Downloading and Extracting Waveform Data” on
page 25. When using the Copy File to Instrument, the signal generator
prompts the user to select between BBG Memory and Internal Storage
memories as locations to copy the files.

 22 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Waveform Memory

Non–Volatile Memory (ESG/PSG)

The ESG/PSG signal generators allocate non–volatile memory in blocks of 512
bytes. For files less than or equal to 512 bytes, the file uses only one block of
memory. For files larger than 512 bytes, the signal generator allocates
additional memory in multiples of 512 byte blocks. For example, a file that has
21,538 bytes consumes 43 memory blocks (22,016 bytes).

Memory Size

The amount of available memory, volatile and non–volatile, varies by option
and the size of the other files that share the memory. When we refer to
waveform files, we state the memory size in samples (one sample equals five
bytes). The ESG and PSG baseband generator (BBG) options (001, 002, 601, or
602) and the Keysight MXG baseband generator (BBG) Option (651, 652, and
654) contain the waveform playback memory. Refer to Tables 4 on page 23
through Table 6 on page 24 for the maximum available memory.

Table 3 Drive Size (logical volume)

Drive Size (logical volume) Cluster Size (Bytes)
(Minimum Allocation Size)

0 MB – 15 MB 4K

16 MB – 127 MB 2K

128 MB – 255 MB 4K

256 MB – 511 MB 8K

512 MB – 1023 MB 16K

1024 MB – 2048 MB 32K

2048 MB – 4096 MB 64K

4096 MB – 8192 MB 128K

8192 MB – 16384 MB 256K

Keysight Vector Signal Generators Creating and Downloading Waveform Files 23

Creating and Downloading Waveform Files
Waveform Memory

Volatile and Non–Volatile Memory (N5162A/82A)

Volatile Memory and Non–Volatile Memory (E4438C and E8267D Only)

On the E4438C and E8267D, the fixed file system overhead on the signal
generator is used to store directory information. When calculating the available
volatile memory for waveform files it is important to consider the fixed file
system overhead for the volatile memory of your signal generator.

Table 4 N5162A/82A Volatile (BBG) and Non–Volatile (Internal
Storage and USB Media) Memory

Volatile (BBG) Memory Non–Volatile (Internal Storage and USB
Media) Memory

Option Size Option Size

N5162A/82A1

1. On the N5162A/82A, 512 bytes is reserved for each waveform’s header file
(i.e. The largest waveform that could be played with a N5162A/82A with
Option 019 (320 MB) is: 320 MB – 512 bytes = 319,999,488 MB.)

651/652/654
(BBG)

8 MSa (40 MB) Standard
(N5182A)

800 MSa (4 GB)2

2. For serial numbers <MY4818xxxx, US4818xxxx, and SG4818xxxx, the per-
sistent memory value = 512 MB.

019 (BBG) 64 MSa (320 MB) USB Flash Drive
(UFD)

user determined

When considering volatile memory, it is not necessary to keep track of
marker data, as this memory is consumed automatically and proportionally
to the I/Q data created (i.e. 1 marker byte for every 4 bytes of I/Q data).

Table 5 Fixed File System Overhead

Volatile (WFM1) Memory and Fixed File Overhead

Option Size Maximum
Number of
Files

(MaxNumFiles)

Memory (Bytes) Used
for Fixed File System
Overhead1

[16 + (44 x
MaxNumFiles)]

Memory Available
for Waveform
Samples

E4438C and E8267D

001, 601
(BBG)

8 MSa (40 MB) 1024 46,080 8,377,088
Samples

002 (BBG) 32 MSa (160 MB) 4096 181,248 33,509,120
Samples

 24 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Waveform Memory

602 (BBG) 64 MSa (320 MB) 8192 361,472 67,018,496
Samples

1. The expression [16 + (44 x MaxNumFiles)] has been rounded up to nearest memory block (1024
bytes). (To find the I/Q waveform sample size, this resulting value needs to be divided by 4.)

Table 5 Fixed File System Overhead

Volatile (WFM1) Memory and Fixed File Overhead

Table 6 E4438C and E8267D Non–Volatile (NVWFM) Memory

Non–Volatile (NVWFM) Memory

Option Size

E4438C and E8267D

Standard 3 MSa (15 MB)

005 (Hard disk) 1.2 GSa (6 GB)

Keysight Vector Signal Generators Creating and Downloading Waveform Files 25

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

Commands for Downloading and Extracting Waveform Data
You can download I/Q data, the associated file header, and marker file
information (collectively called waveform data) into volatile or non–volatile
memory. For information on waveform structure, see “Waveform Structure” on
page 12.

The signal generator provides the option of downloading waveform data either
for extraction or not for extraction. When you extract waveform data, the signal
generator may require it to be read out in encrypted form. The SCPI download
commands determine whether the waveform data is extractable.

If you use SCPI commands to download waveform data to be extracted later,
you must use the MEM:DATA:UNPRotected command. If you use FTP
commands, no special command syntax is necessary.

You can download or extract waveform data created in any of the following
ways:

— with signal simulation software, such as MATLAB or Advanced Design
System (ADS)

— with advanced programming languages, such as C++, VB or VEE
— with Keysight Signal Studio software
— with the signal generator

Waveform Data Encryption

You can download encrypted waveform data extracted from one signal
generator into another signal generator with the same option or software
license for the modulation format. You can also extract encrypted waveform
data created with software such as MATLAB or ADS, providing the data was
downloaded to the signal generator using the proper command.

When you generate a waveform from the signal generator’s internal ARB
modulation format (ESG/PSG only), the resulting waveform data is
automatically stored in volatile memory and is available for extraction as an
encrypted file.

When you download an exported waveform using a Keysight Signal Studio
software product, you can use the FTP process and the securewave directory or
SCPI commands, to extract the encrypted file to the non–volatile memory on
the signal generator. Refer to “File Transfer Methods” on page 27.

On the N5162A/82A, :MEM:DATA enables file extraction. On the
N5162A/82A the :MEM:DATA:UNPRotected command is not required to
enable file extraction. For more information, refer to the SCPI Command
Reference.

 26 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

Encrypted I/Q Files apage 26nd the Securewave Directory

The signal generator uses the securewave directory to perform file encryption
(extraction) and decryption (downloads). The securewave directory is not an
actual storage directory, but rather a portal for the encryption and decryption
process. While the securewave directory contains file names, these are
actually pointers to the true files located in signal generator memory (volatile
or non–volatile). When you download an encrypted file, the securewave
directory decrypts the file and unpackages the contents into its file header, I/Q
data, and marker data. When you extract a file, the securewave directory
packages the file header, I/Q data, and marker data and encrypts the
waveform data file. When you extract the waveform file (I/Q data file), it
includes the other two files, so there is no need to extract each one
individually.

The signal generator uses the following securewave directory paths for file
extractions and encrypted file downloads:

Volatile /user/bbg1/securewave/file_name or swfm:file_name

Non–volatile /user/securewave or snvwfm1:file_name

Encrypted I/Q Files and the Securewave Directory (Keysight MXG)

When downloading encrypted files (.SECUREWAVE) from the USB media that
have had the file suffix changed to something other than .SECUREWAVE, you
must use the Use As or Copy File to Instrument menus to play an encrypted
waveform file in the signal generator.

To extract files (other than user–created I/Q files) and to download
encrypted files, you must use the securewave directory. If you attempt to
extract previously downloaded encrypted files (including Signal Studio
downloaded files or internally created signal generator files (ESG/PSG
only)) without using the securewave directory, the signal generator
generates an error and displays:
ERROR: 221, Access Denied.

Header parameters of files stored on the Keysight MXG’s internal or USB
media cannot be changed unless the file is copied to the volatile BBG
memory. For more information on modifying header parameters, refer to
the User’s Guide.

Keysight Vector Signal Generators Creating and Downloading Waveform Files 27

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

File Transfer Methods

— SCPI using VXI–11 (VMEbus Extensions for Instrumentation as defined in
VXI–11)

— SCPI over the GPIB or RS 232
— SCPI with sockets LAN (using port 5025)
— File Transfer Protocol (FTP)

 28 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

SCPI Command Line Structure

The signal generator expects to see waveform data as block data (binary files).
The IEEE standard 488.2–1992 section 7.7.6 defines block data. The following
example shows how to structure a SCPI command for downloading waveform
data (#ABC represents the block data):

:MMEM:DATA "<file_name>",#ABC
"<file_name>" the I/Q file name and file path within the signal

generator

indicates the start of the data block

A the number of decimal digits present in B

B a decimal number specifying the number of data bytes
to follow in C

C the actual binary waveform data

The following example demonstrates this structure:

WFM1: the file path

my_file the I/Q file name as it will appear in the signal
generator’s memory catalog

indicates the start of the data block

3 B has three decimal digits

240 240 bytes of data to follow in C

12%S!4&07#8g*Y9@7... the ASCII representation of some of the
binary data downloaded to the signal generator,
however not all ASCII values are printable

Commands and File Paths for Downloading and Extracting Waveform
Data

You can download or extract waveform data using the commands and file
paths in the following tables:

— Table 7, “Downloading Unencrypted Files for No Extraction (Extraction
allowed on the Keysight MXG Only),” on page 29

— Table 8, “Downloading Encrypted Files for No Extraction (Extraction
allowed on the Keysight MXG Only),” on page 29

file_name A C

MMEM:DATA “WFM1:my_file”,#3 240 12%S!4&07#8g*Y9@7...

B

Filenames should not exceed 23 characters.

Keysight Vector Signal Generators Creating and Downloading Waveform Files 29

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

— Table 9, “Downloading Unencrypted Files for Extraction,” on page 30
— Table 11, “Downloading Encrypted Files for Extraction,” on page 31
— Table 12, “Extracting Encrypted Waveform Data,” on page 31

Table 7 Downloading Unencrypted Files for No Extraction (Extraction allowed on the
Keysight MXG1 Only)

Download Method/
Memory Type

Command Syntax Options

SCPI/volatile memory MMEM:DATA "WFM1:<file_name>",<blockdata>
MMEM:DATA "MKR1:<file_name>",<blockdata>
MMEM:DATA "HDR1:<file_name>",<blockdata>

SCPI/volatile memory with
full directory path

MMEM:DATA "user/bbg1/waveform/<file_name>",<blockdata>
MMEM:DATA "user/bbg1/markers/<file_name>",<blockdata>
MMEM:DATA "user/bbg1/header/<file_name>",<blockdata>

SCPI/non–volatile memory MMEM:DATA "NVWFM:<file_name>",<blockdata>
MMEM:DATA "NVMKR:<file_name>",<blockdata>
MMEM:DATA "NVHDR:<file_name>",<blockdata>

SCPI/non–volatile memory
with full directory path

MMEM:DATA /user/waveform/<file_name>",<blockdata>
MMEM:DATA /user/markers/<file_name>",<blockdata>
MMEM:DATA /user/header/<file_name>",<blockdata>

1. Refer to note on page 26.

Table 8 Downloading Encrypted Files for No Extraction (Extraction allowed on the
Keysight MXG1 Only)

Download Method
/Memory Type

Command Syntax Options

SCPI/volatile memory MMEM:DATA "user/bbg1/securewave/<file_name>",<blockdata>
MMEM:DATA "SWFM1:<file_name>",<blockdata>
MMEM:DATA "file_name@SWFM1",<blockdata>

SCPI/non–volatile memory MMEM:DATA "user/securewave/<file_name>",<blockdata>
MMEM:DATA "SNVWFM:<file_name>",<blockdata>
MMEM:DATA "file_name@SNVWFM",<blockdata>

1. Refer to note on page 26.

 30 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

Table 9 Downloading Unencrypted Files for Extraction

Download Method/
Memory Type

Command Syntax Options

SCPI/volatile

memory1
MEM:DATA:UNPRotected "/user/bbg1/waveform/file_name",<blockdata>
MEM:DATA:UNPRotected "/user/bbg1/markers/file_name",<blockdata>
MEM:DATA:UNPRotected "/user/bbg1/header/file_name",<blockdata>
MEM:DATA:UNPRotected "WFM1:file_name",<blockdata>
MEM:DATA:UNPRotected "MKR1:file_name",<blockdata>
MEM:DATA:UNPRotected "HDR1:file_name",<blockdata>
MEM:DATA:UNPRotected "file_name@WFM1",<blockdata>
MEM:DATA:UNPRotected "file_name@MKR1",<blockdata>
MEM:DATA:UNPRotected "file_name@HDR1",<blockdata>

SCPI/non–volatile

memory1

MEM:DATA:UNPRotected "/user/waveform/file_name",<blockdata>
MEM:DATA:UNPRotected "/user/markers/file_name",<blockdata>
MEM:DATA:UNPRotected "/user/header/file_name",<blockdata>
MEM:DATA:UNPRotected "NVWFM:file_name",<blockdata>
MEM:DATA:UNPRotected "NVMKR:file_name",<blockdata>
MEM:DATA:UNPRotected "NVHDR:file_name",<blockdata>
MEM:DATA:UNPRotected "file_name@NVWFM",<blockdata>
MEM:DATA:UNPRotected "file_name@NVMKR",<blockdata>
MEM:DATA:UNPRotected "file_name@NVHDR",<blockdata>

FTP/volatile memory2 put <file_name> /user/bbg1/waveform/<file_name>
put <file_name> /user/bbg1/markers/<file_name>
put <file_name> /user/bbg1/header/<file_name>

FTP/non–volatile

memory2
put <file_name> /user/waveform/<file_name>
put <file_name> /user/markers/<file_name>
put <file_name> /user/header/<file_name>

1. On the N5162A/82A the :MEM:DATA:UNPRotected command is not required to be able
to extract files (i.e. use :MEM:DATA). For more information, refer to the SCPI Command
Reference.

2. See “FTP Procedures” on page 33.

Table 10 Extracting Unencrypted I/Q Data

Download
Method/Memory
Type

Command Syntax Options

SCPI/volatile
memory

MMEM:DATA? "/user/bbg1/waveform/<file_name>"
MMEM:DATA? "WFM1:<file_name>"
MMEM:DATA? "<file_name>@WFM1"

SCPI/non–volatile
memory

MMEM:DATA? "/user/waveform/<file_name>"
MMEM:DATA? "NVWFM:<file_name>"
MMEM:DATA? "<file_name>@NVWFM"

FTP/volatile

memory1
get /user/bbg1/waveform/<file_name>
get /user/bbg1/markers/<file_name>
get /user/bbg1/header/<file_name>

Keysight Vector Signal Generators Creating and Downloading Waveform Files 31

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

FTP/non–volatile

memory1
get /user/waveform/<file_name>
get /user/markers/<file_name>
get /user/header/<file_name>

1. See “FTP Procedures” on page 33.

Table 11 Downloading Encrypted Files for Extraction

Download
Method/Memory
Type

Command Syntax Options

SCPI/volatile1
memory

MEM:DATA:UNPRotected "/user/bbg1/securewave/file_name",<blockdata>
MEM:DATA:UNPRotected "SWFM1:file_name",<blockdata>
MEM:DATA:UNPRotected "file_name@SWFM1",<blockdata>

SCPI/non–volatile
memory
SCPI/non–volati
le memory1

MEM:DATA:UNPRotected "/user/securewave/file_name",<blockdata>
MEM:DATA:UNPRotected "SNVWFM:file_name",<blockdata>
MEM:DATA:UNPRotected "file_name@SNVWFM",<blockdata>

FTP/volatile

memory2
put <file_name> /user/bbg1/securewave/<file_name>

FTP/non–volatile

memory2
put <file_name> /user/securewave/<file_name>

1. On the N5162A/82A the :MEM:DATA:UNPRotected command is not required to be able
to extract files (i.e. use :MEM:DATA). For more information, refer to the SCPI Command
Reference.

2. See “FTP Procedures” on page 33.

Table 12 Extracting Encrypted Waveform Data

Download
Method/Memory
Type

Command Syntax Options

SCPI/volatile
memory

MMEM:DATA? "/user/bbg1/securewave/file_name"
MMEM:DATA? "SWFM1:file_name"
MMEM:DATA? "file_name@SWFM1"

SCPI/non–volatile
memory

MMEM:DATA? "/user/securewave/file_name"
MMEM:DATA? "SNVWFM:file_name"
MMEM:DATA? "file_name@SNVWFM"

FTP/volatile

memory1
get /user/bbg1/securewave/<file_name>

Table 10 Extracting Unencrypted I/Q Data

Download
Method/Memory
Type

Command Syntax Options

 32 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

FTP/non–volatile

memory1
get /user/securewave/<file_name>

1. See “FTP Procedures” on page 33.

Table 12 Extracting Encrypted Waveform Data

Download
Method/Memory
Type

Command Syntax Options

Keysight Vector Signal Generators Creating and Downloading Waveform Files 33

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

FTP Procedures

There are three ways to FTP files:

— use Microsoft’s® Internet Explorer FTP feature
— use the PC’s or UNIX command window
— use the signal generator’s internal web server following the firmware

requirements in the table below

Using Microsoft’s Internet Explorer

1. Enter the signal generator’s hostname or IP address as part of the FTP
URL.

ftp://<host name> or

ftp://<IP address>

2. Press Enter on the keyboard or Go from the Internet Explorer window.

The signal generator files appear in the Internet Explorer window.

3. Drag and drop files between the PC and the Internet Explorer window

Avoid using the *OPC? or *WAI commands to verify that the FTP process
has been completed. These commands can potentially hang up due to the
processing of other SCPI parser operations. Refer to the SCPI Command
Reference.

If you are remotely FTPing files and need to verify the completion of the
FTP process, then query the instrument by using SCPI commands such as:
':MEM:DATA:', ':MEM:CAT', '*STB?', 'FREQ?', '*IDN?', 'OUTP:STAT?'. Refer to
the SCPI Command Reference.

Signal Generator Firmware Version (Required for
Web Server Compatibility)

N516xA1, N518xA

1. The N5162A requires firmware version
A.0140 or newer.

All

E44x8C ≥ C.03.10

E82x7D, E8663B All

 34 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

Using the Command Window (PC or UNIX)

This procedure downloads to non–volatile memory. To download to volatile
memory, change the file path.

1. From the PC command prompt or UNIX command line, change to the
destination directory for the file you intend to download.

2. From the PC command prompt or UNIX command line, type ftp
<instrument name>. Where instrument name is the signal
generator’s hostname or IP address.

3. At the User: prompt in the ftp window, press Enter (no entry is required).

4. At the Password: prompt in the ftp window, press Enter (no entry is
required).

5. At the ftp prompt, either put a file or get a file:

To put a file, type:

put <file_name> /user/waveform/<file_name1>
where <file_name> is the name of the file to download and
<file_name1> is the name designator for the signal generator’s
/user/waveform/ directory.

If <filename1> is unspecified, ftp uses the specified <file_name> to
name <file_name1>.

— If a marker file is associated with the data file, use the following
command to download it to the signal generator:
put <marker file_name> /user/markers/<file_name1>
where <marker file_name> is the name of the file to download and
<file_name1> is the name designator for the file in the signal
generator’s /user/markers/ directory. Marker files and the
associated I/Q waveform data have the same name.

Get and Put commands write over existing files by the same name in
destination directories. Remember to change remote and local filenames
to avoid the loss of data.

If a filename has a space, quotations are required around the filename.

Always transfer the waveform file before transferring the marker file.

For additional information on FTP commands, refer to the operating
system’s Window Help and Support Center.

Keysight Vector Signal Generators Creating and Downloading Waveform Files 35

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

For more examples of put command usage refer to Table 13.

To get a file, type:

get /user/waveform/<file_name1> <file_name>
where <file_name1> is the file to download from the signal generator’s
/user/waveform/ directory and <file_name> is the name designator for
the local PC/UNIX.

— If a marker file is associated with the data file, use the following
command to download it to the local PC/UNIX directory:
get /user/markers/<file_name1> <marker file_name>
where <marker file_name1> is the name of the marker file to
download from the signal generator’s /user/markers/ directory
and <marker file_name> is the name of the file to be downloaded
to the local PC/UNIX.

For more examples of get command usage refer to Table 14.

6. At the ftp prompt, type: bye
7. At the command prompt, type: exit

Table 13 Put Command Examples

Command
Results

Local Remote Notes

Incorrect put
<filename.wfm>
put
<filename.mkr>

/user/waveform/<filename
1.wfm>
/user/marker/<filename1.
mkr>

Produces two
separate and
incompatible files.

Correct put
<filename.wfm>
put
<filename.mkr>

/user/waveform/<filename
1>
/user/marker/<filename1>

Creates a waveform
file and a compatible
marker file.

Table 14 Get Command Examples

Command
Results

Local Remote Notes

Incorrect get
/user/waveform/file
get /user/marker/file

file1
file1

Results in file1 containing only the
marker data.

Correct get
/user/waveform/file
get /user/marker/file

file1.wfm
file1.mkr

Creates a waveform file and a
compatible marker file. It is easier to
keep files associated by varying the
extenders.

 36 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

Using the Signal Generator’s Internal Web Server

1. Enter the signal generator’s hostname or IP address in the URL.

http://<host name> or <IP address>

2. Click the Signal Generator FTP Access button located on the left side of
the window.

The signal generator files appear in the web browser’s window.

3. Drag and drop files between the PC and the browser’s window

For more information on the web server feature, see Programming Guide.

Keysight Vector Signal Generators Creating and Downloading Waveform Files 37

Creating and Downloading Waveform Files
Creating Waveform Data

Creating Waveform Data
This section examines the C++ code algorithm for creating I/Q waveform data
by breaking the programming example into functional parts and explaining the
code in generic terms. This is done to help you understand the code algorithm
in creating the I and Q data, so you can leverage the concept into your
programming environment. The SCPI Command Reference, contains
information on how to use SCPI commands to define the markers (polarity,
routing, and other marker settings). If you do not need this level of detail, you
can find the complete programming examples in “Programming Examples” on
page 56.

You can use various programming environments to create ARB waveform data.
Generally there are two types:

— Simulation software— this includes MATLAB, Keysight Technologies EESof
Advanced Design System (ADS), Signal Processing WorkSystem (SPW),
and so forth.

— Advanced programming languages—this includes, C++, VB, VEE, MS
Visual Studio.Net, Labview, and so forth.

No matter which programming environment you use to create the waveform
data, make sure that the data conforms to the data requirements shown on
page 3. To learn about I/Q data for the signal generator, see “Understanding
Waveform Data” on page 4.

Code Algorithm

This section uses code from the C++ programming example “Importing, Byte
Swapping, Interleaving, and Downloading I and Q Data—Big and Little Endian
Order” on page 78 to demonstrate how to create and scale waveform data.

There are three steps in the process of creating an I/Q waveform:

1. Create the I and Q data.
2. Save the I and Q data to a text file for review.
3. Interleave the I and Q data to make an I/Q file, and swap the byte order for

little–endian platforms.

For information on downloading I/Q waveform data to a signal generator, refer
to “Commands and File Paths for Downloading and Extracting Waveform
Data” on page 28 and “Downloading Waveform Data” on page 43.

1. Create I and Q data.

The following lines of code create scaled I and Q data for a sine wave. The I
data consists of one period of a sine wave and the Q data consists of one
period of a cosine wave.

 38 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Creating Waveform Data

Line Code—Create I and Q data

1
2
3
4
5
6
7
8
9

10
11

const int NUMSAMPLES=500;
main(int argc, char* argv[]);
{
 short idata[NUMSAMPLES];
 short qdata[NUMSAMPLES];
 int numsamples = NUMSAMPLES;
 for(int index=0; index<numsamples; index++);
 {
 idata[index]=23000 * sin((2*3.14*index)/numsamples);
 qdata[index]=23000 * cos((2*3.14*index)/numsamples);
 }

Line Code Description—Create I and Q data

1 Define the number of waveform points. Note that the maximum number of waveform points that you can set is
based on the amount of available memory in the signal generator. For more information on signal generator
memory, refer to “Waveform Memory” on page 18.

2 Define the main function in C++.

4 Create an array to hold the generated I values. The array length equals the number of the waveform points.
Note that we define the array as type short, which represents a 16–bit signed integer in most C++ compilers.

5 Create an array to hold the generated Q values (signed 16–bit integers).

6 Define and set a temporary variable, which is used to calculate the I and Q values.

7–11 Create a loop to do the following:

— Generate and scale the I data (DAC values). This example uses a simple sine equation,
where 2*3.14 equals one waveform cycle. Change the equation to fit your application.

— The array pointer, index, increments from 0–499, creating 500 I data points over
one period of the sine waveform.

— Set the scale of the DAC values in the range of -32768 to 32767, where the values
-32768 and 32767 equal full scale negative and positive respectively. This example
uses 23000 as the multiplier, resulting in approximately 70% scaling. For more
information on scaling, see “Scaling DAC Values” on page 8.

NOTE The signal generator comes from the factory with I/Q scaling set to 70%. If you
reduce the DAC input values, ensure that you set the signal generator scaling
(:RADio:ARB:RSCaling) to an appropriate setting that accounts for the
reduced values.

— Generate and scale the Q data (DAC value). This example uses a simple cosine equation,
where 2*3.14 equals one waveform cycle. Change the equation to fit your application.

— The array pointer, index, increments from 0–499, creating 500 Q data points over
one period of the cosine waveform.

— Set the scale of the DAC values in the range of -32767 to 32768, where the values
-32767 and 32768 equal full scale negative and positive respectively. This example
uses 23000 as the multiplier, resulting in approximately 70% scaling. For more
information on scaling, see “Scaling DAC Values” on page 8.

Keysight Vector Signal Generators Creating and Downloading Waveform Files 39

Creating and Downloading Waveform Files
Creating Waveform Data

2. Save the I/Q data to a text file to review.

The following lines of code export the I and Q data to a text file for validation.
After exporting the data, open the file using Microsoft Excel or a similar
spreadsheet program, and verify that the I and Q data are correct.

3. Interleave the I and Q data, and byte swap if using little endian
order.

This step has two sets of code:

— Interleaving and byte swapping I and Q data for little endian order
— Interleaving I and Q data for big endian order

For more information on byte order, see “Little Endian and Big Endian (Byte
Order)” on page 5.

Line Code Description—Saving the I/Q Data to a Text File

12
13
14
15
16
17
18
19

char *ofile = "c:\\temp\\iq.txt";
FILE *outfile = fopen(ofile, "w");
if (outfile==NULL) perror ("Error opening file to write");
for(index=0; index<numsamples; index++)
{
 fprintf(outfile, "%d, %d\n", idata[index], qdata[index]);
}
fclose(outfile);

Line Code Description—Saving the I/Q Data to a Text File

12 Set the absolute path of a text file to a character variable. In this example, iq.txt is the file name and *ofile
is the variable name.

For the file path, some operating systems may not use the drive prefix (‘c:’ in this example), or may require only
a single forward slash (/), or both ("/temp/iq.txt")

13 Open the text file in write format.

14 If the text file does not open, print an error message.

15–18 Create a loop that prints the array of generated I and Q data samples to the text file.

19 Close the text file.

 40 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Creating Waveform Data

Line Code—Interleaving and Byte Swapping for Little Endian Order

20
21
22
23
24
25
26
27
28
29
30

char iqbuffer[NUMSAMPLES*4];
for(index=0; index<numsamples; index++)
{
 short ivalue = idata[index];
 short qvalue = qdata[index];
 iqbuffer[index*4] = (ivalue >> 8) & 0xFF;
 iqbuffer[index*4+1] = ivalue & 0xFF;
 iqbuffer[index*4+2] = (qvalue >> 8) & 0xFF;
 iqbuffer[index*4+3] = qvalue & 0xFF;
}
return 0;

Line Code Description—Interleaving and Byte Swapping for Little Endian Order

20 Define a character array to store the interleaved I and Q data. The character array makes byte swapping easier,
since each array location accepts only 8 bits (1 byte). The array size increases by four times to accommodate
two bytes of I data and two bytes of Q data.

21–29 Create a loop to do the following:

— Save the current I data array value to a variable.
NOTE In rare instances, a compiler may define short as larger than 16 bits. If this

condition exists, replace short with the appropriate object or label that defines a
16–bit integer.

— Save the current Q data array value to a variable.
— Swap the low bytes (bits 0–7) of the data with the high bytes of the data (done for both

Keysight Vector Signal Generators Creating and Downloading Waveform Files 41

Creating and Downloading Waveform Files
Creating Waveform Data

21–29 the I and Q data), and interleave the I and Q data.

— shift the data pointer right 8 bits to the beginning of the high byte (ivalue >> 8)

— AND (boolean) the high I byte with 0xFF to make the high I byte the value to store
in the IQ array—(ivalue >> 8) & 0xFF

— AND (boolean) the low I byte with 0xFF (ivalue & 0xFF) to make the low I byte the
value to store in the I/Q array location just after the high byte [index * 4 + 1]

— Swap the Q byte order within the same loop. Notice that the I and Q data interleave
with each loop cycle. This is due to the I/Q array shifting by one location for each I
and Q operation [index * 4 + n].

Line Code Description—Interleaving and Byte Swapping for Little Endian Order

1 0 1 1 0 1 1 1
15 14 13 12 11 10 9 8

Data
Bit Position

Little Endian Order

1 1 1 0 1 0 0 1
7 6 5 4 3 2 1 0

Hex values = E9 B7
Data pointer Data pointer shifted 8 bits

1 0 1 1 0 1 1 1
15 14 13 12 11 10 9 8

Hex value =B7
1 1 1 1 1 1 1 1 Hex value =FF
1 0 1 1 0 1 1 1 Hex value =B7

1 0 1 1 0 1 1 1
15 14 13 12 11 10 9 8

Data
Bit Position

I Data in I/Q Array after Byte Swap (Big Endian Order)

1 1 1 0 1 0 0 1
7 6 5 4 3 2 1 0

Hex value = B7 E9

1 0 1 1 0 1 1 1
15...................... 8

Data
Bit Position

Interleaved I/Q Array in Big Endian Order

1 1 1 0 1 0 0 1
7.................... 0

1 1 1 0 0 1 0 1
15...................... 8

0 1 1 0 1 0 1 1
7.................... 0

I Data Q Data

 42 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Creating Waveform Data

To download the data created in the above example, see “Using Advanced
Programming Languages” on page 45.

Line Code—Interleaving I and Q data for Big Endian Order

20
21
22
23
24
25
26

short iqbuffer[NUMSAMPLES*2];
for(index=0; index<numsamples; index++)
{
iqbuffer[index*2] = idata[index];
iqbuffer[index*2+1] = qdata[index];
}
return 0;

Line Code Description—Interleaving I and Q data for Big Endian Order

20 Define a 16–bit integer (short) array to store the interleaved I and Q data. The array size increases by two times
to accommodate two bytes of I data and two bytes of Q data.

NOTE In rare instances, a compiler may define short as larger than 16 bits. If this
condition exists, replace short with the appropriate object or label that defines a
16–bit integer.

21–25 Create a loop to do the following:

— Store the I data values to the I/Q array location [index*2].
— Store the Q data values to the I/Q array location [index*2+1].

1 0 1 1 0 1 1 1
15...................... 8

Data
Bit Position

Interleaved I/Q Array in Big Endian Order

1 1 1 0 1 0 0 1
7.................... 0

1 1 1 0 0 1 0 1
15...................... 8

0 1 1 0 1 0 1 1
7.................... 0

I Data Q Data

Keysight Vector Signal Generators Creating and Downloading Waveform Files 43

Creating and Downloading Waveform Files
Downloading Waveform Data

Downloading Waveform Data
This section examines methods of downloading I/Q waveform data created in
MATLAB (a simulation software) and C++ (an advanced programming
language). For more information on simulation and advanced programming
environments, see “Creating Waveform Data” on page 37.

To download data from simulation software environments, it is typically easier
to use one of the free download utilities (described on page 52), because
simulation software usually saves the data to a file. In MATLAB however, you
can either save data to a .mat file or create a complex array. To facilitate
downloading a MATLAB complex data array, Keysight created the Waveform
Download Assistant (one of the free download utilities), which downloads the
complex data array from within the MATLAB environment. This section shows
how to use the Waveform Download Assistant.

For advanced programming languages, this section closely examines the code
algorithm for downloading I/Q waveform data by breaking the programming
examples into functional parts and explaining the code in generic terms. This is
done to help you understand the code algorithm in downloading the
interleaved I/Q data, so you can leverage the concept into your programming
environment. While not discussed in this section, you may also save the data to
a binary file and use one of the download utilities to download the waveform
data (see “Using the Download Utilities” on page 52).

 If you do not need the level of detail this section provides, you can find
complete programming examples in “Programming Examples” on page 56.
Prior to downloading the I/Q data, ensure that it conforms to the data
requirements shown on page 3. To learn about I/Q data for the signal
generator, see “Understanding Waveform Data” on page 4. For creating
waveform data, see “Creating Waveform Data” on page 37.

Using Simulation Software

This procedure uses a complex data array created in MATLAB and uses the
Waveform Download Assistant to download the data. To obtain the Waveform
Download Assistant, see “Using the Download Utilities” on page 52.

There are two steps in the process of downloading an I/Q waveform:

1. Open a connection session.
2. Download the I/Q data.

To avoid overwriting the current waveform in volatile memory, before
downloading files into volatile memory (WFM1), change the file name or turn
off the ARB. For more information, on manually turning off the ARB, refer
to the User’s Guide.

To turn off the ARB remotely, send: :SOURce:RADio:ARB:STATe OFF.

 44 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Downloading Waveform Data

1. Open a connection session with the signal generator.

The following code establishes a LAN connection with the signal generator,
sends the IEEE SCPI command *idn?, and if the connection fails, displays an
error message.

2. Download the I/Q data

The following code downloads the generated waveform data to the signal
generator, and if the download fails, displays a message.

Line Code—Open a Connection Session

1

2
3
4
5

io = agt_newconnection('tcpip','IP address');
%io = agt_newconnection('gpib',<primary address>,<secondary
address>);
[status,status_description,query_result] = agt_query(io,'*idn?');
if status == -1
display ‘fail to connect to the signal generator’;
end;

Line Code Description—Open a Connection Session with the Signal Generator

1 Sets up a structure (indicated above by io) used by subsequent function calls to establish a LAN connection to
the signal generator.

— agt_newconnection() is the function of Waveform Download Assistant used in MATLAB to
build a connection to the signal generator.

— If you are using GPIB to connect to the signal generator, provide the board, primary
address, and secondary address: io = agt_newconnection('gpib',0,19);
Change the GPIB address based on your instrument setting.

2 Send a query to the signal generator to verify the connection.

— agt_query() is an Waveform Download Assistant function that sends a query to the signal
generator.

— If signal generator receives the query *idn?, status returns zero and query_result returns
the signal generator’s model number, serial number, and firmware version.

3–5 If the query fails, display a message.

Line Code—Download the I/Q data

6

7
8
9

[status, status_description] = agt_waveformload(io, IQwave,
'waveformfile1', 2000, 'no_play','norm_scale');
if status == -1
display ‘fail to download to the signal generator’;
end;

Keysight Vector Signal Generators Creating and Downloading Waveform Files 45

Creating and Downloading Waveform Files
Downloading Waveform Data

Using Advanced Programming Languages

This procedure uses code from the C++ programming example “Importing,
Byte Swapping, Interleaving, and Downloading I and Q Data—Big and Little
Endian Order” on page 78.

For information on creating I/Q waveform data, refer to “Creating Waveform
Data” on page 37.

There are two steps in the process of downloading an I/Q waveform:

1. Open a connection session.
2. Download the I/Q data.

Line Code Description—Download the I/Q data

6 Download the I/Q waveform data to the signal generator by using the function call (agt_waveformload) from
the Waveform Download Assistant. Some of the arguments are optional as indicated below, but if one is used,
you must use all arguments previous to the one you require.

Notice that with this function, you can perform the following actions:

— download complex I/Q data
— name the file (optional argument)
— set the sample rate (optional argument)

If you do not set a value, the signal generator uses its preset value of 125 MHz
(N5162A/82A) or 100 MHz (E4438C/E8267D), or if a waveform was previously play, the
value from that waveform.

— start or not start waveform playback after downloading the data (optional argument)
Use either the argument play or the argument no_play.

— whether to normalize and scale the I/Q data (optional argument)
If you normalize and scale the data within the body of the code, then use no_normscale,
but if you need to normalize and scale the data, use norm_scale. This normalizes the
waveform data to the DAC values and then scales the data to 70% of the DAC values.

— download marker data (optional argument)
If there is no marker data, the signal generator creates a default marker file, all marker set
to zero.

To verify the waveform data download, see “Loading, Playing, and Verifying a Downloaded
Waveform” on page 49.

7–9 If the download fails, display an error message.

 46 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Downloading Waveform Data

1. Open a connection session with the signal generator.

The following code establishes a LAN connection with the signal generator or
prints an error message if the session is not opened successfully.

2. Download the I/Q data.

The following code sends the SCPI command and downloads the generated
waveform data to the signal generator.

Line Code Description—Open a Connection Session

1

2
3
4
5
6
7

char* instOpenString ="lan[hostname or IP address]";
//char* instOpenString ="gpib<primary addr>,<secondary addr>";
INST id=iopen(instOpenString);
if (!id)
{
 fprintf(stderr, "iopen failed (%s)\n", instOpenString);
 return -1;
}

Line Code Description—Open a Connection Session

1 Assign the signal generator’s LAN hostname, IP address, or GPIB address to a character string.

— This example uses the IO library’s iopen() SICL function to establish a LAN connection with
the signal generator. The input argument, lan[hostname or IP address] contains the
device, interface, or commander address. Change it to your signal generator host name or
just set it to the IP address used by your signal generator. For example:
“lan[999.137.240.9]”

— If you are using GPIB to connect to the signal generator, use the commented line in place
of the first line. Insert the GPIB address based on your instrument setting, for example
“gpib0,19”.

— For the detailed information about the parameters of the SICL function iopen(), refer to the
online “Keysight SICL User’s Guide for Windows.”

2 Open a connection session with the signal generator to download the generated I/Q data.

 The SICL function iopen() is from the IO library and creates a session that returns an identifier to id.

— If iopen() succeeds in establishing a connection, the function returns a valid session id. The
valid session id is not viewable, and can only be used by other SICL functions.

— If iopen() generates an error before making the connection, the session identifier is always
set to zero. This occurs if the connection fails.

— To use this function in C++, you must include the standard header
#include <sicl.h> before the main() function.

3–7 If id = 0, the program prints out the error message and exits the program.

Keysight Vector Signal Generators Creating and Downloading Waveform Files 47

Creating and Downloading Waveform Files
Downloading Waveform Data

Line CodeDescription—Download the I/Q Data

8
9

10
11
12
13

14
15
16

int bytesToSend;
bytesToSend = numsamples*4;
char s[20];
char cmd[200];
sprintf(s, "%d", bytesToSend);
sprintf(cmd, ":MEM:DATA \"WFM1:FILE1\", #%d%d", strlen(s),
bytesToSend);
iwrite(id, cmd, strlen(cmd), 0, 0);
iwrite(id, iqbuffer, bytesToSend, 0, 0);
iwrite(id, "\n", 1, 1, 0);

Line Code Description—Download the I/Q data

8 Define an integer variable (bytesToSend) to store the number of bytes to send to the signal generator.

9 Calculate the total number of bytes, and store the value in the integer variable defined in line 8.

In this code, numsamples contains the number of waveform points, not the number of bytes. Because it
takes four bytes of data, two I bytes and two Q bytes, to create one waveform point, we have to multiply
numsamples by four. This is shown in the following example:

numsamples = 500 waveform points
numsamples x 4 = 2000 (four bytes per point)
bytesToSend = 2000 (numsamples x 4)

For information on setting the number of waveform points, see “1. Create I and Q data.” on page 37.

10 Create a string large enough to hold the bytesToSend value as characters. In this code, string s is set to 20
bytes (20 characters—one character equals one byte)

11 Create a string and set its length (cmd[200]) to hold the SCPI command syntax and parameters. In this code,
we define the string length as 200 bytes (200 characters).

12 Store the value of bytesToSend in string s. For example, if bytesToSend = 2000; s = ”2000”

sprintf() is a standard function in C++, which writes string data to a string variable.

13 Store the SCPI command syntax and parameters in the string cmd. The SCPI command prepares the signal
generator to accept the data.

— strlen() is a standard function in C++, which returns length of a string.

— If bytesToSend = 2000, then s = “2000”, strlen(s) = 4, so
cmd = :MEM:DATA ”WFM1:FILE1\” #42000.

14 Send the SCPI command stored in the string cmd to the signal generator, which is represented by the session
id.

— iwrite() is a SICL function in IO library, which writes the data (block data) specified in the
string cmd to the signal generator (id).

— The third argument of iwrite(), strlen(cmd), informs the signal generator of the number of
bytes in the command string. The signal generator parses the string to determine the
number of I/Q data bytes it expects to receive.

— The fourth argument of iwrite(), 0, means there is no END of file indicator for the string. This
lets the session remain open, so the program can download the I/Q data.

 48 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Downloading Waveform Data

15 Send the generated waveform data stored in the I/Q array (iqbuffer) to the signal generator.

— iwrite() sends the data specified in iqbuffer to the signal generator (session identifier
specified in id).

— The third argument of iwrite(), bytesToSend, contains the length of the iqbuffer in bytes. In
this example, it is 2000.

— The fourth argument of iwrite(), 0, means there is no END of file indicator in the data.

In many programming languages, there are two methods to send SCPI commands and
data:

— Method 1 where the program stops the data download when it encounters the first
zero (END indicator) in the data.

— Method 2 where the program sends a fixed number of bytes and ignores any zeros
in the data. This is the method used in our program.

For your programming language, you must find and use the equivalent of method two.
Otherwise you may only achieve a partial download of the I and Q data.

16 Send the terminating carriage (\n) as the last byte of the waveform data.

— iwrite() writes the data “\n” to the signal generator (session identifier specified in id).

— The third argument of iwrite(), 1, sends one byte to the signal generator.

— The fourth argument of iwrite(), 1, is the END of file indicator, which the program uses to
terminate the data download.

To verify the waveform data download, see “Loading, Playing, and Verifying a Downloaded
Waveform” on page 49.

Line Code Description—Download the I/Q data

Keysight Vector Signal Generators Creating and Downloading Waveform Files 49

Creating and Downloading Waveform Files
Loading, Playing, and Verifying a Downloaded Waveform

Loading, Playing, and Verifying a Downloaded Waveform
The following procedures show how to perform the steps using SCPI
commands. For front panel key commands, refer to the User’s Guide or to the
Key help in the signal generator.

Loading a File from Non–Volatile Memory

Select the downloaded I/Q file in non–volatile waveform memory (NVWFM)
and load it into volatile waveform memory (WFM1). The file comprises three
items: I/Q data, marker file, and file header information.

Send one of the following SCPI command to copy the I/Q file, marker file and
file header information:

:MEMory:COPY:NAME "<NVWFM:file_name>","<WFM1:file_name>"
:MEMory:COPY:NAME "<NVMKR:file_name>","<MKR1:file_name>"
:MEMory:COPY:NAME "<,"<HDR:file_name>"

Playing the Waveform

Play the waveform and use it to modulate the RF carrier.

1. List the waveform files from the volatile memory waveform list:

Send the following SCPI command:

 :MMEMory:CATalog? "WFM1:"
2. Select the waveform from the volatile memory waveform list:

Send the following SCPI command:

:SOURce:RADio:ARB:WAVeform "WFM1:<file_name>"
3. Play the waveform:

Send the following SCPI commands:

:SOURce:RADio:ARB:STATe ON
:OUTPut:MODulation:STATe ON
:OUTPut:STATe ON

When you copy a waveform file, marker file, or header file information from
volatile or non–volatile memory, the waveform and associated marker and
header files are all copied. Conversely, when you delete an I/Q file, the
associated marker and header files are deleted. It is not necessary to send
separate commands to copy or delete the marker and header files.

If you would like to build and play a waveform sequence, refer to “Building
and Playing Waveform Sequences” on page 50.

 50 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Loading, Playing, and Verifying a Downloaded Waveform

Verifying the Waveform

Perform this procedure after completing the steps in the previous procedure,
“Playing the Waveform” on page 49.

1. Connect the signal generator to an oscilloscope as shown in the figure.

2. Set an active marker point on the first waveform point for marker one.

Send the following SCPI commands:

:SOURce:RADio:ARB:MARKer:CLEar:ALL "WFM1:<file_name>",1
:SOURce:RADio:ARB:MARKer:SET "WFM1:<file_name>",1,1,1,0.

3. Compare the oscilloscope display to the plot of the I and Q data from the
text file you created when you generated the data.

If the oscilloscope display, and the I and Q data plots differ, recheck your
code. For detailed information on programmatically creating and
downloading waveform data, see “Creating Waveform Data” on page 37
and “Downloading Waveform Data” on page 43. For information on the
waveform data requirements, see “Waveform Data Requirements” on
page 3.

Building and Playing Waveform Sequences

The signal generator can be used to build waveform sequences. This section
assumes you have created the waveform segment file(s) and have the
waveform segment file(s) in volatile memory. The following SCPI commands
can be used to generate and work with a waveform sequence. For more
information refer to the signal generator’s SCPI Command Reference and
User’s Guide.

Select the same waveform selected in “Playing the Waveform” on page
49.

If you would like to verify the waveform sequence, refer to “Verifying the
Waveform” on page 50.

Keysight Vector Signal Generators Creating and Downloading Waveform Files 51

Creating and Downloading Waveform Files
Loading, Playing, and Verifying a Downloaded Waveform

1. List the waveform files from the volatile memory waveform list:

Send the following SCPI command:

 :MMEMory:CATalog? "WFM1:"
2. Select the waveform segment file(s) from the volatile memory waveform

list:

Send the following SCPI command:

:SOURce:RADio:ARB:WAVeform "WFM1:<file_name>"
3. Save the waveform segment(s) (“<waveform1>”, “<waveform2>”, ...), to

non–volatile memory as a waveform sequence (“<file_name>”), define
the number of repetitions (<reps>), each waveform segment plays, and
enable/disable markers (M1|M2|M3|M4|...), for each waveform segment:

Send the following SCPI command:

:SOURce:RADio:ARB:SEQuence
"<file_name>","<waveform1>",<reps>,M1|M2|M3|M4,{"<waveform
2>",<reps>,ALL}

:SOURce:RADio:ARB:SEQuence? "<file_name>"

4. Play the waveform sequence:

Send the following SCPI commands:

:SOURce:RADio:ARB:STATe ON
:OUTPut:MODulation:STATe ON
:OUTPut:STATe ON

M1|M2|M3|M4 represent the number parameter of the marker selected (i.e.
1|2|3|4). Entering M1|M2|M3|M4 causes the signal generator to display an
error. For more information on this SCPI command, refer to the signal
generator’s SCPI Command Reference.

 52 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Using the Download Utilities

Using the Download Utilities
Keysight provides free download utilities to download waveform data into the
signal generator. The table in this section describes the capabilities of three
such utilities.

For more information and to install the utilities, refer to the following URLs:

— Keysight Signal Studio Toolkit 2:
http://www.keysight.com/find/signalstudio

This software provides a graphical interface for downloading files.

— IntuiLink for Keysight PSG/ESG/E8663B Signal Generators:
http://www.keysight.com/find/intuilink

This software places icons in the Microsoft Excel and Word toolbar. Use the
icons to connect to the signal generator and open a window for
downloading files.

— Waveform Download Assistant:
http://www.keysight.com/find/downloadassistant

This software provides functions for the MATLAB environment to download
waveform data.

Intuilink is not available for the Keysight MXG.

Features Keysight Signal
Studio Toolkit 2

IntuiLink1 Waveform
Download
Assistant

Downloads encrypted waveform files X

Downloads complex MATLAB waveform data X

Downloads MATLAB files (.mat) X

Downloads unencrypted interleaved 16–bit I/Q files 2 X X

Interleaves and downloads earlier 14–bit E443xB I and Q files2 X X

Swaps bytes for little endian order X

Manually select big endian byte order for 14–bit and 16–bit I/Q
files

X

Downloads user–created marker files X X X

Performs scaling X X X

Starts waveform play back X X

Sends SCPI Commands and Queries X X

Builds a waveform sequence X X

1. Intuilink is not available for the Keysight MXG.
2. ASCII or binary format.

Keysight Vector Signal Generators Creating and Downloading Waveform Files 53

Creating and Downloading Waveform Files
Downloading E443xB Signal Generator Files

Downloading E443xB Signal Generator Files
To download earlier E443xB model I and Q files, use the same SCPI commands
as if downloading files to an E443xB signal generator. The signal generator
automatically converts the E443xB files to the proper file format as described
in “Waveform Structure” on page 12 and stores them in the signal generator’s
memory. This conversion process causes the signal generator to take more
time to download the earlier file format. To minimize the time to convert earlier
E443xB files to the proper file format, store E443xB file downloads to volatile
memory, and then transfer them over to non–volatile (NVWFM) memory.

E443xB Data Format

The following diagram describes the data format for the E443xB waveform
files. This file structure can be compared with the new style file format shown in
“Waveform Structure” on page 12. If you create new waveform files for the
signal generator, use the format shown in “Waveform Data Requirements” on
page 3.

Storage Locations for E443xB ARB files

Place waveforms in either volatile memory or non–volatile memory. The signal
generator supports the E443xB directory structure for waveform file downloads
(i.e. “ARBI:”, “ARBQ:”, “NVARBI:”, and “NVARBQ:”, see also “SCPI Commands”
on page 55).

Volatile Memory Storage Locations

— /user/arbi/
— /user/arbq/

Non–Volatile Memory Storage Locations

— /user/nvarbi/

You cannot extract waveform data downloaded as E443xB files.

 54 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Downloading E443xB Signal Generator Files

— /user/nvarbq/

Loading files into the above directories (volatile or non–volatile memory) does
not actually store them in those directories. Instead, these directories function
as “pipes” to the format translator. The signal generator performs the following
functions on the E443xB data:

— Converts the 14–bit I and Q data into 16–bit data (the format required by
the signal generator).
Subtract 8192, left shifts the data, and appends two bits (zeros) before the
least significant bit (i.e. the offset binary values are converted to 2’s
complement values by the signal generator).

— Creates a marker file and places the marker information, bits 14 and 15 of
the E443xB I data, into the marker file for markers one and two. Markers
three and four, within the new marker file, are set to zero (off).

— Interleaves the 16–bit I and Q data creating one I/Q file.

— Creates a file header with all parameters set to unspecified (factory default
file header setting).

1100110110111001 0000100111011001

1001011011100100

E443xB 14–Bit Data

 I data Q data

Subtracts 8192, Left Shifts, and Adds Zeros—Removes Marker and Reserved Bits

16–bit I data 16–bit Q data

Marker bits Reserved bits

(16–Bit Data Format)

Bits addedBits added

11

Marker bits removed

100001110110010000

Reserved bits removed

14 data bits14 data bits

0011

Places the I Marker Bits into the Signal Generator Marker File

Marker 3 and 4 bits
Marker 1 and 2 bits from the E443xB I data

Keysight Vector Signal Generators Creating and Downloading Waveform Files 55

Creating and Downloading Waveform Files
Downloading E443xB Signal Generator Files

SCPI Commands

Use the following commands to download E443xB waveform files into the
signal generator.

The variables <I waveform block data> and <Q waveform block data>
represents data in the E443xB file format. The string variable <file_name> is
the name of the I and Q data file. After downloading the data, the signal
generator associates a file header and marker file with the I/Q data file.

To avoid overwriting the current waveform in volatile memory, before
downloading files into volatile memory (WFM1), change the file name or turn
off the ARB. For more information, on manually turning off the ARB, refer
to the User’s Guide.

To turn off the ARB remotely, send: :SOURce:RADio:ARB:STATe OFF.

Extraction Method/
Memory Type

Command Syntax Options

SCPI/
volatile memory

:MMEM:DATA "ARBI:<file_name>", <I waveform block data>
:MMEM:DATA "ARBQ:<file_name>", <Q waveform data>

SCPI/
non–volatile memory

:MMEM:DATA "NVARBI:<file_name>", <I waveform block data>
:MMEM:DATA "NVARBQ:<file_name>", <Q waveform block data>

 56 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples

Programming Examples

The programming examples use GPIB or LAN interfaces and are written in the
following languages:

— C++ (page 57)
— MATLAB (page 86)
— Visual Basic (page 95)
— HP Basic (page 102)

See the signal generator’s Programming Guide for information on interfaces
and IO libraries.

The example programs are also available on the signal generator
Documentation CD–ROM, which allows you to cut and paste the examples
into an editor.

The programming examples contain instrument–specific information.
However, users can still use these programming examples by substituting
in the instrument–specific information for your signal generator. Model
specific exceptions for programming use, will be noted at the top of each
programming section.

Keysight Vector Signal Generators Creating and Downloading Waveform Files 57

Creating and Downloading Waveform Files
Programming Examples

C++ Programming Examples

This section contains the following programming examples:

— “Creating and Storing Offset I/Q Data—Big and Little Endian Order” on
page 57

— “Creating and Storing I/Q Data—Little Endian Order” on page 63
— “Creating and Downloading I/Q Data—Big and Little Endian Order” on

page 65
— “Importing and Downloading I/Q Data—Big Endian Order” on page 70
— “Importing and Downloading Using VISA—Big Endian Order” on page 72
— “Importing, Byte Swapping, Interleaving, and Downloading I and Q

Data—Big and Little Endian Order” on page 78

Creating and Storing Offset I/Q Data—Big and Little Endian Order

On the documentation CD, this programming example’s name is
“offset_iq_c++.txt.”

This C++ programming example (compiled using Microsoft Visual C++ 6.0)
follows the same coding algorithm as the MATLAB programming example
“Creating and Storing I/Q Data” on page 86 and performs the following
functions:

— error checking
— data creation
— data normalization
— data scaling
— I/Q signal offset from the carrier (single sideband suppressed carrier signal)
— byte swapping and interleaving for little endian order data
— I and Q interleaving for big endian order data
— binary data file storing to a PC or workstation
— reversal of the data formatting process (byte swapping, interleaving, and

normalizing the data)

After creating the binary file, you can use FTP, one of the download utilities, or
one of the C++ download programming examples to download the file to the
signal generator.

// This C++ example shows how to

// 1.) Create a simple IQ waveform

// 2.) Save the waveform into the ESG/PSG Internal Arb format

// This format is for the E4438C, E8267C, E8267D

// This format will not work with the ESG E443xB or the
Keysight MXG N518xA

// 3.) Load the internal Arb format file into an array

 58 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples

#include <stdio.h>

#include <string.h>

#include <math.h>

const int POINTS = 1000; // Size of waveform

const char *computer = “PCWIN”;

int main(int argc, char* argv[])

{

 // 1.) Create Simple IQ Signal

 // This signal is a single tone on the upper

 // side of the carrier and is usually refered to as

 // a Single Side Band Suppressed Carrier (SSBSC) signal.

 // It is nothing more than a cosine wavefomm in I

 // and a sine waveform in Q.

 int points = POINTS; // Number of points in the waveform

 int cycles = 101; // Determines the frequency offset from the
carrier

 double Iwave[POINTS]; // I waveform

 double Qwave[POINTS]; // Q waveform

 short int waveform[2*POINTS]; // Holds interleaved I/Q data

 double maxAmp = 0; // Used to Normalize waveform data

 double minAmp = 0; // Used to Normalize waveform data

 double scale = 1;

 char buf; // Used for byte swapping

 char *pChar; // Used for byte swapping

 bool PC = true; // Set flag as appropriate

 double phaseInc = 2.0 * 3.141592654 * cycles / points;

 double phase = 0;

 int i = 0;

Keysight Vector Signal Generators Creating and Downloading Waveform Files 59

Creating and Downloading Waveform Files
Programming Examples

 for(i=0; i<points; i++)

 {

 phase = i * phaseInc;

 Iwave[i] = cos(phase);

 Qwave[i] = sin(phase);

 }

 // 2.) Save waveform in internal format

 // Convert the I and Q data into the internal arb format

 // The internal arb format is a single waveform containing
interleaved IQ

 // data. The I/Q data is signed short integers (16 bits).

 // The data has values scaled between +-32767 where

 // DAC Value Description

 // 32767 Maximum positive value of the DAC

 // 0 Zero out of the DAC

 // -32767 Maximum negative value of the DAC

 // The internal arb expects the data bytes to be in Big Endian
format.

 // This is opposite of how short integers are saved on a PC
(Little Endian).

 // For this reason the data bytes are swapped before being saved.

 // Find the Maximum amplitude in I and Q to normalize the data
between +-1

 maxAmp = Iwave[0];

 minAmp = Iwave[0];

 for(i=0; i<points; i++)

 {

 if(maxAmp < Iwave[i])

 maxAmp = Iwave[i];

 else if(minAmp > Iwave[i])

 minAmp = Iwave[i];

 if(maxAmp < Qwave[i])

 60 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples

 maxAmp = Qwave[i];

 else if(minAmp > Qwave[i])

 minAmp = Qwave[i];

 }

 maxAmp = fabs(maxAmp);

 minAmp = fabs(minAmp);

 if(minAmp > maxAmp)

 maxAmp = minAmp;

 // Convert to short integers and interleave I/Q data

 scale = 32767 / maxAmp; // Watch out for divide by zero.

 for(i=0; i<points; i++)

 {

 waveform[2*i] = (short)floor(Iwave[i]*scale + 0.5);

 waveform[2*i+1] = (short)floor(Qwave[i]*scale + 0.5);

 }

 // If on a PC swap the bytes to Big Endian

 if(strcmp(computer,”PCWIN”) == 0)

 //if(PC)

 {

 pChar = (char *)&waveform[0]; // Character pointer to short
int data

 for(i=0; i<2*points; i++)

 {

 buf = *pChar;

 *pChar = *(pChar+1);

 *(pChar+1) = buf;

 pChar+= 2;

 }

 }

 // Save the data to a file
 // Use FTP or one of the download assistants to download the file
to the
 // signal generator

 char *filename = “C:\\Temp\\PSGTestFile”;

Keysight Vector Signal Generators Creating and Downloading Waveform Files 61

Creating and Downloading Waveform Files
Programming Examples

 FILE *stream = NULL;

 stream = fopen(filename, “w+b”);// Open the file

 if (stream==NULL) perror (“Cannot Open File”);

 int numwritten = fwrite((void *)waveform, sizeof(short),
points*2, stream);

 fclose(stream);// Close the file

 // 3.) Load the internal Arb format file

 // This process is just the reverse of saving the waveform

 // Read in waveform as unsigned short integers.

 // Swap the bytes as necessary

 // Normalize between +-1

 // De-interleave the I/Q Data

 // Open the file and load the internal format data

 stream = fopen(filename, “r+b”);// Open the file

 if (stream==NULL) perror (“Cannot Open File”);

 int numread = fread((void *)waveform, sizeof(short),
points*2, stream);

 fclose(stream);// Close the file

 // If on a PC swap the bytes back to Little Endian

 if(strcmp(computer,”PCWIN”) == 0)

 {

 pChar = (char *)&waveform[0]; // Character pointer to short
int data

 for(i=0; i<2*points; i++)

 {

 buf = *pChar;

 *pChar = *(pChar+1);

 *(pChar+1) = buf;

 pChar+= 2;

 }
 }

 // Normalize De-Interleave the IQ data

 double IwaveIn[POINTS];

 double QwaveIn[POINTS];

 62 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples

 for(i=0; i<points; i++)

 {

 IwaveIn[i] = waveform[2*i] / 32767.0;

 QwaveIn[i] = waveform[2*i+1] / 32767.0;

 }

 return 0;

}

Keysight Vector Signal Generators Creating and Downloading Waveform Files 63

Creating and Downloading Waveform Files
Programming Examples

Creating and Storing I/Q Data—Little Endian Order

On the documentation CD, this programming example’s name is
“CreateStore_Data_c++.txt.”

This C++ programming example (compiled using Metrowerks CodeWarrior 3.0)
performs the following functions:

— error checking
— data creation
— byte swapping and interleaving for little endian order data
— binary data file storing to a PC or workstation

After creating the binary file, you can use FTP, one of the download utilities, or
one of the C++ download programming examples to download the file to the
signal generator.

#include <iostream>

#include <fstream>

#include <math.h>

#include <stdlib.h>

using namespace std;

int main (void)

{

 ofstream out_stream; // write the I/Q data to a file

 const unsigned int SAMPLES =200; // number of sample pairs in
the waveform

 const short AMPLITUDE = 32000; // amplitude between 0 and
full scale dac value

 const double two_pi = 6.2831853;

 //allocate buffer for waveform

 short* iqData = new short[2*SAMPLES];// need two bytes for each
integer

 if (!iqData)

 {

 cout << "Could not allocate data buffer." << endl;

 return 1;

 }

 64 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples

 out_stream.open("IQ_data");// create a data file

 if (out_stream.fail())

 {

 cout << "Input file opening failed" << endl;

 exit(1);

 }

 //generate the sample data for I and Q. The I channel will have
a sine

 //wave and the Q channel will a cosine wave.

 for (int i=0; i<SAMPLES; ++i)

 {

 iqData[2*i] = AMPLITUDE * sin(two_pi*i/(float)SAMPLES);

 iqData[2*i+1] = AMPLITUDE * cos(two_pi*i/(float)SAMPLES);

 }

 // make sure bytes are in the order MSB(most significant byte)
first. (PC only).

 char* cptr = (char*)iqData;// cast the integer values to
characters

 for (int i=0; i<(4*SAMPLES); i+=2)// 4*SAMPLES

 {

 char temp = cptr[i];// swap LSB and MSB bytes

 cptr[i]=cptr[i+1];

 cptr[i+1]=temp;

 }

 // now write the buffer to a file

 out_stream.write((char*)iqData, 4*SAMPLES);

 return 0;

}

Keysight Vector Signal Generators Creating and Downloading Waveform Files 65

Creating and Downloading Waveform Files
Programming Examples

Creating and Downloading I/Q Data—Big and Little Endian Order

On the documentation CD, this programming example’s name is
“CreateDwnLd_Data_c++.txt.”

This C++ programming example (compiled using Microsoft Visual C++ 6.0)
performs the following functions:

— error checking
— data creation
— data scaling
— text file creation for viewing and debugging data
— byte swapping and interleaving for little endian order data
— interleaving for big endian order data
— data saving to an array (data block)
— data block download to the signal generator

// This C++ program is an example of creating and scaling

// I and Q data, and then downloading the data into the

// signal generator as an interleaved I/Q file.

// This example uses a sine and cosine wave as the I/Q

// data.

//

// Include the standard headers for SICL programming

#include <sicl.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <math.h>

// Choose a GPIB, LAN, or RS-232 connection

char* instOpenString =”lan[galqaDhcp1]”;

//char* instOpenString =”gpib0,19”;

// Pick some maximum number of samples, based on the

// amount of memory in your computer and the signal generator.

const int NUMSAMPLES=500;

int main(int argc, char* argv[])

 66 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples

{

 // Create a text file to view the waveform

 // prior to downloading it to the signal generator.

 // This verifies that the data looks correct.

 char *ofile = “c:\\temp\\iq.txt”;

 // Create arrays to hold the I and Q data

 int idata[NUMSAMPLES];

 int qdata[NUMSAMPLES];

 // save the number of sampes into numsamples

 int numsamples = NUMSAMPLES;

 // Fill the I and Q buffers with the sample data

 for(int index=0; index<numsamples; index++)

 {

 // Create the I and Q data for the number of waveform

 // points and Scale the data (20000 * ...) as a precentage

 // of the DAC full scale (-32768 to 32767). This example

 // scales to approximately 70% of full scale.

 idata[index]=23000 * sin((4*3.14*index)/numsamples);

 qdata[index]=23000 * cos((4*3.14*index)/numsamples);

 }

 // Print the I and Q values to a text file. View the data

 // to see if its correct and if needed, plot the data in a

 // spreadsheet to help spot any problems.

 FILE *outfile = fopen(ofile, “w”);

 if (outfile==NULL) perror (“Error opening file to write”);

 for(index=0; index<numsamples; index++)

 {

Keysight Vector Signal Generators Creating and Downloading Waveform Files 67

Creating and Downloading Waveform Files
Programming Examples

 fprintf(outfile, “%d, %d\n”, idata[index], qdata[index]);

 }

 fclose(outfile);

 // Little endian order data, use the character array and for
loop.

 // If big endian order, comment out this character array and for
loop,

 // and use the next loop (Big Endian order data).

 // We need a buffer to interleave the I and Q data.

 // 4 bytes to account for 2 I bytes and 2 Q bytes.

 char iqbuffer[NUMSAMPLES*4];

 // Interleave I and Q, and swap bytes from little

 // endian order to big endian order.

 for(index=0; index<numsamples; index++)

 {

 int ivalue = idata[index];

 int qvalue = qdata[index];

 iqbuffer[index*4] = (ivalue >> 8) & 0xFF; // high byte of i

 iqbuffer[index*4+1] = ivalue & 0xFF; // low byte of i

 iqbuffer[index*4+2] = (qvalue >> 8) & 0xFF; // high byte of q

 iqbuffer[index*4+3] = qvalue & 0xFF; // low byte of q

 }

 // Big Endian order data, uncomment the following lines of code.

 // Interleave the I and Q data.

 // short iqbuffer[NUMSAMPLES*2]; // Big endian order,
uncomment this line

 // for(index=0; index<numsamples; index++) // Big endian order,
uncomment this line

 // { // Big endian order,
uncomment this line

 68 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples

 // iqbuffer[index*2] = idata[index]; // Big endian order,
uncomment this line

 // iqbuffer[index*2+1] = qdata[index]; // Big endian order,
uncomment this line

 // } // Big endian order,
uncomment this line

 // Open a connection to write to the instrument

 INST id=iopen(instOpenString);

 if (!id)

 {

 fprintf(stderr, “iopen failed (%s)\n”, instOpenString);

 return -1;

 }

 // Declare variables to hold portions of the SCPI command

 int bytesToSend;

 char s[20];

 char cmd[200];

 bytesToSend = numsamples*4; // calculate the number of
bytes

 sprintf(s, “%d”, bytesToSend); // create a string s with that
number of bytes

 // The SCPI command has four parts.

 // Part 1 = :MEM:DATA “filename”,#

 // Part 2 = length of Part 3 when written to a string

 // Part 3 = length of the data in bytes. This is in s from
above.

 // Part 4 = the buffer of data

 // Build parts 1, 2, and 3 for the I and Q data.

 sprintf(cmd, “:MEM:DATA \”WFM1:FILE1\”, #%d%d”, strlen(s),
bytesToSend);

 // Send parts 1, 2, and 3

Keysight Vector Signal Generators Creating and Downloading Waveform Files 69

Creating and Downloading Waveform Files
Programming Examples

 iwrite(id, cmd, strlen(cmd), 0, 0);

 // Send part 4. Be careful to use the correct command here. In
many

 // programming languages, there are two methods to send SCPI
commands:

 // Method 1 = stop at the first ‘0’ in the data

 // Method 2 = send a fixed number of bytes, ignoring ‘0’ in the
data.

 // You must find and use the correct command for Method 2.

 iwrite(id, iqbuffer, bytesToSend, 0, 0);

 // Send a terminating carriage return

 iwrite(id, “\n”, 1, 1, 0);

 printf(“Loaded file using the E4438C, E8267C and E8267D
format\n”);

 return 0;

}

 70 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples

Importing and Downloading I/Q Data—Big Endian Order

On the documentation CD, this programming example’s name is
“impDwnLd_c++.txt.”

This C++ programming example (compiled using Metrowerks CodeWarrier 3.0)
assumes that the data is in big endian order and performs the following
functions:

— error checking
— binary file importing from the PC or workstation.
— binary file download to the signal generator.

// Description: Send a file in blocks of data to a signal generator

//

#include <sicl.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

// ATTENTION:

// - Configure these three lines appropriately for your instrument

// and use before compiling and running
//

char* instOpenString = "gpib7,19"; //for LAN replace with
“lan[<hostname or IP address>]”

const char* localSrcFile = "D:\\home\\TEST_WAVE"; //enter file
location on PC/workstation

const char* instDestFile = "/USER/BBG1/WAVEFORM/TEST_WAVE"; //for
non-volatile memory

 //remove BBG1 from file path

// Size of the copy buffer

const int BUFFER_SIZE = 100*1024;

int

main()

{

 INST id=iopen(instOpenString);

 if (!id)

Keysight Vector Signal Generators Creating and Downloading Waveform Files 71

Creating and Downloading Waveform Files
Programming Examples

 {

 fprintf(stderr, "iopen failed (%s)\n", instOpenString);

 return -1;

 }

 FILE* file = fopen(localSrcFile, "rb");

 if (!file)

 {

 fprintf(stderr, "Could not open file: %s\n", localSrcFile);

 return 0;

 }

 if(fseek(file, 0, SEEK_END) < 0)

 {

 fprintf(stderr,"Cannot seek to the end of file.\n");

 return 0;

 }

 long lenToSend = ftell(file);

 printf("File size = %d\n", lenToSend);

 if (fseek(file, 0, SEEK_SET) < 0)

 {

 fprintf(stderr,"Cannot seek to the start of file.\n");

 return 0;

 }

 char* buf = new char[BUFFER_SIZE];

 if (buf && lenToSend)

 {

 // Prepare and send the SCPI command header

 char s[20];

 sprintf(s, "%d", lenToSend);

 int lenLen = strlen(s);

 72 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples

 char s2[256];

 sprintf(s2, "mmem:data \"%s\", #%d%d", instDestFile, lenLen,
lenToSend);

 iwrite(id, s2, strlen(s2), 0, 0);

 // Send file in BUFFER_SIZE chunks

 long numRead;

 do

 {

 numRead = fread(buf, sizeof(char), BUFFER_SIZE, file);

 iwrite(id, buf, numRead, 0, 0);

 } while (numRead == BUFFER_SIZE);

 // Send the terminating newline and EOM

 iwrite(id, "\n", 1, 1, 0);

 delete [] buf;

 }

 else

 {

 fprintf(stderr, "Could not allocate memory for copy
buffer\n");

 }

 fclose(file);

 iclose(id);

 return 0;

}

Importing and Downloading Using VISA—Big Endian Order

On the documentation CD, this programming example’s name is
“DownLoad_Visa_c++.txt.”

This C++ programming example (compiled using Microsoft Visual C++ 6.0)
assumes that the data is in big endian order and performs the following
functions:

— error checking

Keysight Vector Signal Generators Creating and Downloading Waveform Files 73

Creating and Downloading Waveform Files
Programming Examples

— binary file importing from the PC or workstation
— binary file download to the signal generator’s non–volatile memory

To load the waveform data to volatile (WFM1) memory, change the instDestfile
declaration to: “USER/BBG1/WAVEFORM/”.

//***

// PROGRAM NAME:Download_Visa_c++.cpp

//

// PROGRAM DESCRIPTION:Sample test program to download ARB waveform
data. Send a

// file in chunks of ascii data to the signal generator.

//

// NOTE: You must have the IO Libraries installed to run this
program.

//

// This example uses the LAN/TCPIP to download a file to the signal
generator's

// non-volatile memory. The program allocates a memory buffer on the
PC or

// workstation of 102400 bytes (100*1024 bytes). The actual size of
the buffer is

// limited by the memory on your PC or workstation, so the buffer
size can be

// increased or decreased to meet your system limitations.

//

// While this program uses the LAN/TCPIP to download a waveform file
into

// non-volatile memory, it can be modified to store files in
volatile memory

// WFM1 using GPIB by setting the instrOpenString =
"TCPIP0::xxx.xxx.xxx.xxx::INSTR"

// declaration with "GPIB::19::INSTR"

//

// The program also includes some error checking to alert you when
problems arise

// while trying to download files. This includes checking to see if
the file exists.

//***

// IMPORTANT: Replace the xxx.xxx.xxx.xxx IP address in the
instOpenString declaration

 74 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples

// in the code below with the IP address of your signal generator.
(or you can use the

// instrument's hostname). Replace the localSrcFile and instDestFile
directory paths

// as needed.

//***

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include "visa.h"

//

// IMPORTANT:

// Configure the following three lines correctly before compiling
and running

char* instOpenString ="TCPIP0::xxx.xxx.xxx.xxx::INSTR"; // your
instrument's IP address

const char* localSrcFile = "\\Files\\IQ_DataC";

const char* instDestFile = "/USER/WAVEFORM/IQ_DataC";

const int BUFFER_SIZE = 100*1024;// Size of the copy buffer

int main(int argc, char* argv[])

{

 ViSession defaultRM, vi;

 ViStatus status = 0;

 status = viOpenDefaultRM(&defaultRM);// Open the default
resource manager

 // TO DO: Error handling here

Keysight Vector Signal Generators Creating and Downloading Waveform Files 75

Creating and Downloading Waveform Files
Programming Examples

 status = viOpen(defaultRM, instOpenString, VI_NULL, VI_NULL,
&vi);

 if (status)// If any errors then display the error and exit the
program

 {

 fprintf(stderr, "viOpen failed (%s)\n", instOpenString);

return -1;

 }

 FILE* file = fopen(localSrcFile, "rb");// Open local source file
for binary reading

 if (!file) // If any errors display the error and exit the
program

 {

 fprintf(stderr, "Could not open file: %s\n", localSrcFile);

return 0;

 }

 if(fseek(file, 0, SEEK_END) < 0)

 {

 fprintf(stderr,"Cannot lseek to the end of file.\n");

 return 0;

 }

 long lenToSend = ftell(file);// Number of bytes in the file

 printf("File size = %d\n", lenToSend);

 if (fseek(file, 0, SEEK_SET) < 0)

 {

 fprintf(stderr,"Cannot lseek to the start of file.\n");

 return 0;

 }

 76 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples

 unsigned char* buf = new unsigned char[BUFFER_SIZE]; // Allocate
char buffer memory

 if (buf && lenToSend)

 {

 // Do not send the EOI (end of instruction) terminator on any
write except the

 // last one

 viSetAttribute(vi, VI_ATTR_SEND_END_EN, 0);

 // Prepare and send the SCPI command header

 char s[20];

 sprintf(s, "%d", lenToSend);

 int lenLen = strlen(s);

 unsigned char s2[256];

// Write the command mmem:data and the header.The number lenLen
represents the

// number of bytes and the actual number of bytes is the variable
lenToSend

 sprintf((char*)s2, "mmem:data \"%s\", #%d%d", instDestFile,
lenLen, lenToSend);

// Send the command and header to the signal generator

 viWrite(vi, s2, strlen((char*)s2), 0);

 long numRead;

// Send file in BUFFER_SIZE chunks to the signal generator

Keysight Vector Signal Generators Creating and Downloading Waveform Files 77

Creating and Downloading Waveform Files
Programming Examples

 do

 {

 numRead = fread(buf, sizeof(char), BUFFER_SIZE, file);

 viWrite(vi, buf, numRead, 0);

 } while (numRead == BUFFER_SIZE);

 // Send the terminating newline and EOI

 viSetAttribute(vi, VI_ATTR_SEND_END_EN, 1);

 char* newLine = "\n";

 viWrite(vi, (unsigned char*)newLine, 1, 0);

 delete [] buf;

 }

 else

 {

 fprintf(stderr, "Could not allocate memory for copy
buffer\n");

 }

 fclose(file);

 viClose(vi);

 viClose(defaultRM);

 return 0;

}

 78 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples

Importing, Byte Swapping, Interleaving, and Downloading I and Q
Data—Big and Little Endian Order

On the documentation CD, this programming example’s name is
“impDwnLd2_c++.txt.”

This C++ programming example (compiled using Microsoft Visual C++ 6.0)
performs the following functions:

— error checking
— binary file importing (earlier E443xB or current model signal generators)
— byte swapping and interleaving for little endian order data
— data interleaving for big endian order data
— data scaling
— binary file download for earlier E443xB data or current signal generator

formatted data

// This C++ program is an example of loading I and Q

// data into an E443xB, E4438C, E8267C, or E8267D signal

// generator.

//

// It reads the I and Q data from a binary data file

// and then writes the data to the instrument.

// Include the standard headers for SICL programming

#include <sicl.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

// Choose a GPIB, LAN, or RS-232 connection

char* instOpenString =”gpib0,19”;

// Pick some maximum number of samples, based on the

// amount of memory in your computer and your waveforms.

const int MAXSAMPLES=50000;

int main(int argc, char* argv[])

Keysight Vector Signal Generators Creating and Downloading Waveform Files 79

Creating and Downloading Waveform Files
Programming Examples

{

 // These are the I and Q input files.

 // Some compilers will allow ‘/’ in the directory

 // names. Older compilers might need ‘\\’ in the

 // directory names. It depends on your operating system

 // and compiler.

 char *ifile = “c:\\SignalGenerator\\data\\BurstA1I.bin”;

 char *qfile = “c:\\SignalGenerator\\data\\BurstA1Q.bin”;

 // This is a text file to which we will write the

 // I and Q data just for debugging purposes. It is

 // a good programming practice to check your data

 // in this way before attempting to write it to

 // the instrument.

 char *ofile = “c:\\SignalGenerator\\data\\iq.txt”;

 // Create arrays to hold the I and Q data

 int idata[MAXSAMPLES];

 int qdata[MAXSAMPLES];

 // Often we must modify, scale, or offset the data

 // before loading it into the instrument. These

 // buffers are used for that purpose. Since each

 // sample is 16 bits, and a character only holds

 // 8 bits, we must make these arrays twice as long

 // as the I and Q data arrays.

 char ibuffer[MAXSAMPLES*2];

 char qbuffer[MAXSAMPLES*2];

 // For the E4438C or E8267C/67D, we might also need to interleave

 // the I and Q data. This buffer is used for that

 // purpose. In this case, this buffer must hold

 // both I and Q data so it needs to be four times

 // as big as the data arrays.

 80 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples

 char iqbuffer[MAXSAMPLES*4];

 // Declare variables which will be used later

 bool done;

 FILE *infile;

 int index, numsamples, i1, i2, ivalue;

 // In this example, we’ll assume the data files have

 // the I and Q data in binary form as unsigned 16 bit integers.

 // This next block reads those binary files. If your

 // data is in some other format, then replace this block

 // with appropriate code for reading your format.

 // First read I values

 done = false;

 index = 0;

 infile = fopen(ifile, “rb”);

 if (infile==NULL) perror (“Error opening file to read”);

 while(!done)

 {

 i1 = fgetc(infile); // read the first byte

 if(i1==EOF) break;

 i2 = fgetc(infile); // read the next byte

 if(i2==EOF) break;

 ivalue=i1+i2*256; // put the two bytes together

 // note that the above format is for a little endian

 // processor such as Intel. Reverse the order for

 // a big endian processor such as Motorola, HP, or Sun

 idata[index++]=ivalue;

 if(index==MAXSAMPLES) break;

 }

 fclose(infile);

 // Then read Q values

 index = 0;

Keysight Vector Signal Generators Creating and Downloading Waveform Files 81

Creating and Downloading Waveform Files
Programming Examples

 infile = fopen(qfile, “rb”);

 if (infile==NULL) perror (“Error opening file to read”);

 while(!done)

 {

 i1 = fgetc(infile); // read the first byte

 if(i1==EOF) break;

 i2 = fgetc(infile); // read the next byte

 if(i2==EOF) break;

 ivalue=i1+i2*256; // put the two bytes together

 // note that the above format is for a little endian

 // processor such as Intel. Reverse the order for

 // a big endian processor such as Motorola, HP, or Sun

 qdata[index++]=ivalue;

 if(index==MAXSAMPLES) break;

 }

 fclose(infile);

 // Remember the number of samples which were read from the file.

 numsamples = index;

 // Print the I and Q values to a text file. If you are

 // having trouble, look in the file and see if your I and

 // Q data looks correct. Plot the data from this file if

 // that helps you to diagnose the problem.

 FILE *outfile = fopen(ofile, “w”);

 if (outfile==NULL) perror (“Error opening file to write”);

 for(index=0; index<numsamples; index++)

 {

 fprintf(outfile, “%d, %d\n”, idata[index], qdata[index]);

 }

 fclose(outfile);

 // The E443xB, E4438C, E8267C or E8267D all use big-endian

 // processors. If your software is running on a little-endian

 82 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples

 // processor such as Intel, then you will need to swap the

 // bytes in the data before sending it to the signal generator.

 // The arrays ibuffer and qbuffer are used to hold the data

 // after any byte swapping, shifting or scaling.

 // In this example, we’ll assume that the data is in the format

 // of the E443xB without markers. In other words, the data

 // is in the range 0-16383.

 // 0 gives negative full-scale output

 // 8192 gives 0 V output

 // 16383 gives positive full-scale output

 // If this is not the scaling of your data, then you will need

 // to scale your data appropriately in the next two blocks.

 // ibuffer and qbuffer will hold the data in the E443xB format.

 // No scaling is needed, however we need to swap the byte order

 // on a little endian computer. Remove the byte swapping

 // if you are using a big endian computer.

 for(index=0; index<numsamples; index++)

 {

 int ivalue = idata[index];

 int qvalue = qdata[index];

 ibuffer[index*2] = (ivalue >> 8) & 0xFF; // high byte of i

 ibuffer[index*2+1] = ivalue & 0xFF; // low byte of i

 qbuffer[index*2] = (qvalue >> 8) & 0xFF; // high byte of q

 qbuffer[index*2+1] = qvalue & 0xFF; // low byte of q

 }

 // iqbuffer will hold the data in the E4438C, E8267C, E8267D

 // format. In this format, the I and Q data is interleaved.

 // The data is in the range -32768 to 32767.

 // -32768 gives negative full-scale output

 // 0 gives 0 V output

Keysight Vector Signal Generators Creating and Downloading Waveform Files 83

Creating and Downloading Waveform Files
Programming Examples

 // 32767 gives positive full-scale output

 // From these ranges, it appears you should offset the

 // data by 8192 and scale it by 4. However, due to the

 // interpolators in these products, it is better to scale

 // the data by a number less than four. Commonly a good

 // choice is 70% of 4 which is 2.8.

 // By default, the signal generator scales data to 70%

 // If you scale the data here, you may want to change the

 // signal generator scaling to 100%

 // Also we need to swap the byte order on a little endian

 // computer. This code also works for big endian order data

 // since it swaps bytes based on the order.

 for(index=0; index<numsamples; index++)

 {

 int iscaled = 2.8*(idata[index]-8192); // shift and scale

 int qscaled = 2.8*(qdata[index]-8192); // shift and scale

 iqbuffer[index*4] = (iscaled >> 8) & 0xFF; // high byte of
i

 iqbuffer[index*4+1] = iscaled & 0xFF; // low byte of i

 iqbuffer[index*4+2] = (qscaled >> 8) & 0xFF; // high byte of
q

 iqbuffer[index*4+3] = qscaled & 0xFF; // low byte of q

 }

 // Open a connection to write to the instrument

 INST id=iopen(instOpenString);

 if (!id)

 {

 fprintf(stderr, “iopen failed (%s)\n”, instOpenString);

 return -1;

 }

 // Declare variables which will be used later

 int bytesToSend;

 84 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples

 char s[20];

 char cmd[200];

 // The E4438C, E8267C and E8267D accept the E443xB format.

 // so we can use this next section on any of these signal
generators.

 // However the E443xB format only uses 14 bits.

 bytesToSend = numsamples*2; // calculate the number of
bytes

 sprintf(s, “%d”, bytesToSend); // create a string s with that
number of bytes

 // The SCPI command has four parts.

 // Part 1 = :MEM:DATA “filename”,

 // Part 2 = length of Part 3 when written to a string

 // Part 3 = length of the data in bytes. This is in s from
above.

 // Part 4 = the buffer of data

 // Build parts 1, 2, and 3 for the I data.

 sprintf(cmd, “:MEM:DATA \”ARBI:FILE1\”, #%d%d”, strlen(s),
bytesToSend);

 // Send parts 1, 2, and 3

 iwrite(id, cmd, strlen(cmd), 0, 0);

 // Send part 4. Be careful to use the correct command here. In
many

 // programming languages, there are two methods to send SCPI
commands:

 // Method 1 = stop at the first ‘0’ in the data

 // Method 2 = send a fixed number of bytes, ignoring ‘0’ in the
data.

 // You must find and use the correct command for Method 2.

 iwrite(id, ibuffer, bytesToSend, 0, 0);

 // Send a terminating carriage return

 iwrite(id, “\n”, 1, 1, 0);

Keysight Vector Signal Generators Creating and Downloading Waveform Files 85

Creating and Downloading Waveform Files
Programming Examples

 // Identical to the section above, except for the Q data.

 sprintf(cmd, “:MEM:DATA \”ARBQ:FILE1\”, #%d%d”,
strlen(s),bytesToSend);

 iwrite(id, cmd, strlen(cmd), 0, 0);

 iwrite(id, qbuffer, bytesToSend, 0, 0);

 iwrite(id, “\n”, 1, 1, 0);

 printf(“Loaded FILE1 using the E443xB format\n”);

 // The E4438C, E8267C and E8267D have a newer faster format which

 // allows 16 bits to be used. However this format is not
accepted in

 // the E443xB. Therefore do not use this next section for the
E443xB.

 printf(“Note: Loading FILE2 on a E443xB will cause \”ERROR: 208,
I/O error\”\n”);

 // Identical to the I and Q sections above except

 // a) The I and Q data are interleaved

 // b) The buffer of I+Q is twice as long as the I buffer was.

 // c) The SCPI command uses WFM1 instead of ARBI and ARBQ.

 bytesToSend = numsamples*4;

 sprintf(s, “%d”, bytesToSend);

 sprintf(cmd, “:mem:data \”WFM1:FILE2\”, #%d%d”,
strlen(s),bytesToSend);

 iwrite(id, cmd, strlen(cmd), 0, 0);

 iwrite(id, iqbuffer, bytesToSend, 0, 0);

 iwrite(id, “\n”, 1, 1, 0);

 printf(“Loaded FILE2 using the E4438C, E8267C and E8267D
format\n”);

 return 0;

}

 86 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples

MATLAB Programming Examples

This section contains the following programming examples:

— “Creating and Storing I/Q Data” on page 86
— “Creating and Downloading a Pulse” on page 90

Creating and Storing I/Q Data

On the documentation CD, this programming example’s name is
“offset_iq_ml.m.”

This MATLAB programming example follows the same coding algorithm as the
C++ programming example “Creating and Storing Offset I/Q Data—Big and
Little Endian Order” on page 57 and performs the following functions:

— error checking
— data creation
— data normalization
— data scaling
— I/Q signal offset from the carrier (single sideband suppressed carrier signal)
— byte swapping and interleaving for little endian order data
— I and Q interleaving for big endian order data
— binary data file storing to a PC or workstation
— reversal of the data formatting process (byte swapping, interleaving, and

normalizing the data)

function main

% Using MatLab this example shows how to

% 1.) Create a simple IQ waveform

% 2.) Save the waveform into the Keysight MXG/ESG/PSG Internal Arb
format

% This format is for the N5162A/82A, E4438C, E8267C, and E8267D

% This format will not work with the earlier E443xB ESG

% 3.) Load the internal Arb format file into a MatLab array

% 1.) Create Simple IQ Signal

% This signal is a single tone on the upper

% side of the carrier and is usually refered to as

% a Single Side Band Suppressed Carrier (SSBSC) signal.

% It is nothing more than a cosine wavefomm in I

% and a sine waveform in Q.

%

Keysight Vector Signal Generators Creating and Downloading Waveform Files 87

Creating and Downloading Waveform Files
Programming Examples

points = 1000; % Number of points in the waveform

cycles = 101; % Determines the frequency offset from the
carrier

phaseInc = 2*pi*cycles/points;

phase = phaseInc * [0:points-1];

Iwave = cos(phase);

Qwave = sin(phase);

% 2.) Save waveform in internal format

% Convert the I and Q data into the internal arb format

% The internal arb format is a single waveform containing
interleaved IQ

% data. The I/Q data is signed short integers (16 bits).

% The data has values scaled between +-32767 where

% DAC Value Description

% 32767 Maximum positive value of the DAC

% 0 Zero out of the DAC

% -32767 Maximum negative value of the DAC

% The internal arb expects the data bytes to be in Big Endian
format.

% This is opposite of how short integers are saved on a PC (Little
Endian).

% For this reason the data bytes are swapped before being saved.

% Interleave the IQ data

waveform(1:2:2*points) = Iwave;

waveform(2:2:2*points) = Qwave;

%[Iwave;Qwave];

%waveform = waveform(:)’;

% Normalize the data between +-1

waveform = waveform / max(abs(waveform)); % Watch out for divide
by zero.

 88 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples

% Scale to use full range of the DAC

waveform = round(waveform * 32767); % Data is now effectively
signed short integer values

% waveform = round(waveform * (32767 / max(abs(waveform)))); %
More efficient than previous two steps!

% PRESERVE THE BIT PATTERN but convert the waveform to

% unsigned short integers so the bytes can be swapped.

% Note: Can’t swap the bytes of signed short integers in MatLab.

waveform = uint16(mod(65536 + waveform,65536)); %

% If on a PC swap the bytes to Big Endian. If the processor uses Big
Endian already, delete the following line.

waveform = bitor(bitshift(waveform,-8),bitshift(waveform,8));

% Save the data to a file

% Note: The waveform is saved as unsigned short integers. However,

% the acual bit pattern is that of signed short integers and

% that is how the Keysight MXG/ESG/PSG interprets them.

filename = ‘C:\Temp\PSGTestFile’;

[FID, message] = fopen(filename,’w’);% Open a file to write data

if FID == -1 error(‘Cannot Open File’); end

fwrite(FID,waveform,’unsigned short’);% write to the file

fclose(FID); % close the file

% 3.) Load the internal Arb format file

% This process is just the reverse of saving the waveform

% Read in waveform as unsigned short integers.

% Swap the bytes as necessary

% Convert to signed integers then normalize between +-1

% De-interleave the I/Q Data

Keysight Vector Signal Generators Creating and Downloading Waveform Files 89

Creating and Downloading Waveform Files
Programming Examples

% Open the file and load the internal format data

[FID, message] = fopen(filename,’r’);% Open file to read data

if FID == -1 error(‘Cannot Open File’); end

[internalWave,n] = fread(FID, ‘uint16’);% read the IQ file

fclose(FID);% close the file

internalWave = internalWave’; % Conver from column array to row
array

% If on a PC swap the bytes back to Little Endian. If the processor
uses Big Endian already, delete the following line.

internalWave=
bitor(bitshift(internalWave,-8),bitshift(bitand(internalWave,255),8
));

% convert unsigned to signed representation

internalWave = double(internalWave);

tmp = (internalWave > 32767.0) * 65536;

iqWave = (internalWave - tmp) ./ 32767; % and normalize the data

% De-Interleave the IQ data

IwaveIn = iqWave(1:2:n);

QwaveIn = iqWave(2:2:n);

 90 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples

Creating and Downloading a Pulse

On the documentation CD, this programming example’s name is “pulsepat.m.”

This MATLAB programming example performs the following functions:

— I and Q data creation for 10 pulses
— marker file creation
— data scaling
— downloading using Waveform Download Assistant functions (see “Using

the Download Utilities” on page 52 for more information)

% Script file: pulsepat.m

%

% Purpose:

% To calculate and download an arbitrary waveform file that
simulates a

% simple antenna scan pulse pattern to the Keysight MXG/PSG vector
signal generator.

%

% Define Variables:

% n -- counting variable (no units)

% t -- time (seconds)

% rise -- raised cosine pulse rise–time definition (samples)

% on -- pulse on–time definition (samples)

% fall -- raised cosine pulse fall–time definition (samples)

% i -- in–phase modulation signal

% q -- quadrature modulation signal

n=4; % defines the number of points in the
rise–time and fall–time

t=–1:2/n:1–2/n; % number of points translated to time

rise=(1+sin(t*pi/2))/2; % defines the pulse rise–time shape

on=ones(1,120); % defines the pulse on–time
characteristics

This section applies only to the Keysight MXG and the PSG.

For the Keysight MXG, the maximum frequency is 6 GHz, and the
pulsepat.m program’s SOURce:FREQuency 20000000000 value must be
changed as required in the following programs. For more frequency
information, refer to the signal generator’s Data Sheet.

Keysight Vector Signal Generators Creating and Downloading Waveform Files 91

Creating and Downloading Waveform Files
Programming Examples

fall=(1+sin(–t*pi/2))/2; % defines the pulse fall–time shape

off=zeros(1,896); % defines the pulse off–time
characteristics

% arrange the i–samples and scale the amplitude to simulate an
antenna scan

% pattern comprised of 10 pulses

i = .707*[rise on fall off...

[.9*[rise on fall off]]...

[.8*[rise on fall off]]...

[.7*[rise on fall off]]...

[.6*[rise on fall off]]...

[.5*[rise on fall off]]...

[.4*[rise on fall off]]...

[.3*[rise on fall off]]...

[.2*[rise on fall off]]...

[.1*[rise on fall off]]];

% set the q–samples to all zeroes

q = zeros(1,10240);

% define a composite iq matrix for download to the Keysight MXG/PSG
using the

% Waveform Download Assistant

IQData = [i + (j * q)];

% define a marker matrix and activate a marker to indicate the
beginning of the waveform

Markers = zeros(2,length(IQData)); % fill marker array with
zero, i.e no markers set

Markers(1,1) = 1; % set marker to first point of playback

% make a new connection to theKeysight MXG/PSG over the GPIB
interface

io = agt_newconnection('gpib',0,19);

 92 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples

% verify that communication with the Keysight MXG/PSG has been
established

[status, status_description, query_result] = agt_query(io,'*idn?');

if (status < 0) return; end

% set the carrier frequency and power level on the Keysight MXG/PSG
using the Keysight
%Waveform Download Assistant

[status, status_description] = agt_sendcommand(io, 'SOURce:FREQuency
20000000000');

[status, status_description] = agt_sendcommand(io, 'POWer 0');

% define the ARB sample clock for playback

sampclk = 40000000;

% download the iq waveform to the PSG baseband generator for
playback

[status, status_description] = agt_waveformload(io, IQData,
'pulsepat', sampclk, 'play', 'no_normscale', Markers);

% turn on RF output power

[status, status_description] = agt_sendcommand(io, 'OUTPut:STATe
ON')

You can test your program by performing a simulated plot of the in–phase
modulation signal in Matlab (see Figure 2 on page 93). To do this, enter plot
(i) at the Matlab command prompt.

Keysight Vector Signal Generators Creating and Downloading Waveform Files 93

Creating and Downloading Waveform Files
Programming Examples

Figure 2 Simulated Plot of In–Phase Signal

The following additional Matlab M–file pulse programming examples are also
available on the
Documentation CD–ROM for your Keysight MXG and PSG signal generator:

barker.m. This programming example calculates and downloads
an arbitrary waveform file that simulates a simple 7–bit
barker RADAR signal to the PSG vector signal
generator.

chirp.m. This programming example calculates and downloads
an arbitrary waveform file that simulates a simple
compressed pulse RADAR signal using linear FM chirp
to the PSG vector signal generator.

FM.m. This programming example calculates and downloads
an arbitrary waveform file that simulates a single tone
FM signal with a rate of 6 KHz, deviation of
=/– 14.3 KHz, Bessel null of dev/rate=2.404 to the
Keysight MXG/PSG vector signal generator.

nchirp.m. This programming example calculates and downloads
an arbitrary waveform file that simulates a simple
compressed pulse RADAR signal using non–linear FM
chirp to the PSG vector signal generator.

pulse.m. This programming example calculates and downloads
an arbitrary waveform file that simulates a simple
pulse signal to the PSG vector signal generator.

For the Keysight MXG, the SOURce:FREQuency 20000000000 value must be
changed as required in the following programs. For more information, refer
to the Data Sheet.

 94 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples

pulsedroop.m. This programming example calculates and downloads
an arbitrary waveform file that simulates a simple
pulse signal with pulse droop to the PSG vector signal
generator.

Keysight Vector Signal Generators Creating and Downloading Waveform Files 95

Creating and Downloading Waveform Files
Programming Examples

Visual Basic Programming Examples

Creating I/Q Data—Little Endian Order

On the documentation CD, this programming example’s name is
“Create_IQData_vb.txt.”

This Visual Basic programming example, using Microsoft Visual Basic 6.0, uses
little endian order data, and performs the following functions:

— error checking
— I an Q integer array creation
— I an Q data interleaving
— byte swapping to convert to big endian order
— binary data file storing to a PC or workstation

Once the file is created, you can download the file to the signal generator using
FTP (see “FTP Procedures” on page 33).

'**

' Program Name: Create_IQData

' Program Description: This program creates a sine and cosine wave
using 200 I/Q data

' samples. Each I and Q value is represented by a 2 byte integer. The
sample points are

' calculated, scaled using the AMPLITUDE constant of 32767, and then
stored in an array

' named iq_data. The AMPLITUDE scaling allows for full range I/Q
modulator DAC values.

' Data must be in 2's complemant, MSB/LSB big-endian format. If your
PC uses LSB/MSB

' format, then the integer bytes must be swapped. This program
converts the integer

' array values to hex data types and then swaps the byte positions
before saving the

' data to the IQ_DataVB file.

'**

Private Sub Create_IQData()

Dim index As Integer

Dim AMPLITUDE As Integer

Dim pi As Double

Dim loByte As Byte

Dim hiByte As Byte

 96 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples

Dim loHex As String

Dim hiHex As String

Dim strSrc As String

Dim numPoints As Integer

Dim FileHandle As Integer

Dim data As Byte

Dim iq_data() As Byte

Dim strFilename As String

strFilename = "C:\IQ_DataVB"

Const SAMPLES = 200 ' Number of sample PAIRS of I and Q integers
for the waveform

AMPLITUDE = 32767 ' Scale the amplitude for full range of the
signal generators

 ' I/Q modulator DAC

pi = 3.141592

Dim intIQ_Data(0 To 2 * SAMPLES - 1) 'Array for I and Q integers:
400

ReDim iq_data(0 To (4 * SAMPLES - 1)) 'Need MSB and LSB bytes for
each integer value: 800

'Create an integer array of I/Q pairs

 For index = 0 To (SAMPLES - 1)

 intIQ_Data(2 * index) = CInt(AMPLITUDE * Sin(2 * pi * index
/ SAMPLES))

 intIQ_Data(2 * index + 1) = CInt(AMPLITUDE * Cos(2 * pi *
index / SAMPLES))

 Next index

 'Convert each integer value to a hex string and then write into the
iq_data byte array

 'MSB, LSB ordered

 For index = 0 To (2 * SAMPLES - 1)

Keysight Vector Signal Generators Creating and Downloading Waveform Files 97

Creating and Downloading Waveform Files
Programming Examples

 strSrc = Hex(intIQ_Data(index)) 'convert the integer to a hex
value

 If Len(strSrc) <> 4 Then

 strSrc = String(4 - Len(strSrc), "0") & strSrc 'Convert to
hex format i.e "800F

 End If 'Pad with 0's
if needed to get 4

 'characters
i.e '0' to "0000"

 hiHex = Mid$(strSrc, 1, 2) 'Get the first two hex values
(MSB)

 loHex = Mid$(strSrc, 3, 2) 'Get the next two hex values
(LSB)

 loByte = CByte("&H" & loHex) 'Convert to byte data type LSB

 hiByte = CByte("&H" & hiHex) 'Convert to byte data type MSB

 iq_data(2 * index) = hiByte 'MSB into first byte

 iq_data(2 * index + 1) = loByte 'LSB into second byte

 Next index

 'Now write the data to the file

FileHandle = FreeFile() 'Get a file number

numPoints = UBound(iq_data) 'Get the number of bytes in the file

Open strFilename For Binary Access Write As #FileHandle Len =
numPoints + 1

On Error GoTo file_error

 For index = 0 To (numPoints)

 data = iq_data(index)

 98 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples

 Put #FileHandle, index + 1, data 'Write the I/Q data to the
file

 Next index

Close #FileHandle

Call MsgBox("Data written to file " & strFilename, vbOKOnly,
"Download")

Exit Sub

file_error:

 MsgBox Err.Description

 Close #FileHandle

End Sub

Downloading I/Q Data

On the signal generator’s documentation CD, this programming example’s
name is “Download_File_vb.txt.”

This Visual Basic programming example, using Microsoft Visual Basic 6.0,
downloads the file created in “Creating I/Q Data—Little Endian Order” on
page 95 into non–volatile memory using a LAN connection. To use GPIB,
replace the instOpenString object declaration with “GPIB::19::INSTR”. To
download the data into volatile memory, change the instDestfile declaration to
“USER/BBG1/WAVEFORM/”.

This program also includes some error checking to alert you when problems
arise while trying to download files. This includes checking to see if the file
exists.

'**

' Program Name: Download_File

' Program Description: This program uses Microsoft Visual Basic 6.0
and the Keysight

The example program listed here uses the VISA COM IO API, which
includes the WriteIEEEBlock method. This method eliminates the need to
format the download command with arbitrary block information such as
defining number of bytes and byte numbers. Refer to “SCPI Command Line
Structure” on page 28 for more information.

Keysight Vector Signal Generators Creating and Downloading Waveform Files 99

Creating and Downloading Waveform Files
Programming Examples

' VISA COM I/O Library to download a waveform file to the signal
generator.

'

' The program downloads a file (the previously created ‘IQ_DataVB’
file) to the signal

' generator. Refer to the Programming Guide for information on
binary

' data requirements for file downloads. The waveform data
'IQ_DataVB' is

' downloaded to the signal generator's non-volatile memory(NVWFM)

' " /USER/WAVEFORM/IQ_DataVB". For volatile memory(WFM1) download to
the

' " /USER/BBG1/WAVEFORM/IQ_DataVB" directory.

'

' You must reference the Keysight VISA COM Resource Manager and VISA
COM 1.0 Type

' Library in your Visual Basic project in the Project/References
menu.

' The VISA COM 1.0 Type Library, corresponds to VISACOM.tlb and the

' VISA COM Resource Manager, corresponds to AgtRM.DLL.

' The VISA COM 488.2 Formatted I/O 1.0, corresponds to the
BasicFormattedIO.dll

' Use a statement such as "Dim Instr As VisaComLib.FormattedIO488"
to

' create the formatted I/O reference and use

' "Set Instr = New VisaComLib.FormattedIO488" to create the actual
object.

'**

' IMPORTANT: Use the TCPIP address of your signal generator in the
rm.Open

' declaraion. If you are using the GPIB interface in your project
use "GPIB::19::INSTR"

' in the rm.Open declaration.

'**

Private Sub Download_File()

' The following four lines declare IO objects and instantiate them.

Dim rm As VisaComLib.ResourceManager

 100 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples

Set rm = New AgilentRMLib.SRMCls

Dim SigGen As VisaComLib.FormattedIO488

Set SigGen = New VisaComLib.FormattedIO488

' NOTE: Use the IP address of your signal generator in the rm.Open
declaration

Set SigGen.IO = rm.Open("TCPIP0::000.000.000.000")

Dim data As Byte

Dim iq_data() As Byte

Dim FileHandle As Integer

Dim numPoints As Integer

Dim index As Integer

Dim Header As String

Dim response As String

Dim hiByte As String

Dim loByte As String

Dim strFilename As String

strFilename = "C:\IQ_DataVB" ‘File Name and location on PC

 'Data will be saved to the signal
generator’s NVWFM ‘/USER/WAVEFORM/IQ_DataVB
directory.

FileHandle = FreeFile()

On Error GoTo errorhandler

With SigGen 'Set up the signal generator to accept a
download

 .IO.Timeout = 5000 'Timeout 50 seconds

 .WriteString "*RST" 'Reset the signal generator.

End With

numPoints = (FileLen(strFilename)) 'Get number of bytes in the
file: 800 bytes

Keysight Vector Signal Generators Creating and Downloading Waveform Files 101

Creating and Downloading Waveform Files
Programming Examples

ReDim iq_data(0 To numPoints - 1) 'Dimension the iq_data array
to the

 'size of the IQ_DataVB file:
800 bytes

Open strFilename For Binary Access Read As #FileHandle 'Open the
file for binary read

On Error GoTo file_error

For index = 0 To (numPoints - 1) 'Write the IQ_DataVB data to the
iq_data array

 Get #FileHandle, index + 1, data '(index+1) is the record
number

 iq_data(index) = data

Next index

 Close #FileHandle 'Close the file

'Write the command to the Header string. NOTE: syntax

 Header = "MEM:DATA ""/USER/WAVEFORM/IQ_DataVB"","

 'Now write the data to the signal generator's non-volatile memory
(NVWFM)

 SigGen.WriteIEEEBlock Header, iq_data

 SigGen.WriteString "*OPC?" 'Wait for the operation to
complete

 response = SigGen.ReadString 'Signal generator reponse to
the OPC? query

 Call MsgBox("Data downloaded to the signal generator", vbOKOnly,
"Download")

 Exit Sub

errorhandler:

 MsgBox Err.Description, vbExclamation, "Error Occurred",
Err.HelpFile, Err.HelpContext

Exit Sub

 102 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples

file_error:

 Call MsgBox(Err.Description, vbOKOnly) 'Display any error
message

 Close #FileHandle

End Sub

HP Basic Programming Examples

This section contains the following programming examples:

— “Creating and Downloading Waveform Data Using HP BASIC for
Windows®” on page 102

— “Creating and Downloading Waveform Data Using HP BASIC for UNIX” on
page 104

— “Creating and Downloading E443xB Waveform Data Using HP BASIC for
Windows” on page 106

— “Creating and Downloading E443xB Waveform Data Using HP Basic for
UNIX” on page 108

Creating and Downloading Waveform Data Using HP BASIC for
Windows®

On the documentation CD, this programming example’s name is
“hpbasicWin.txt.”

The following program will download a waveform using HP Basic for Windows
into volatile ARB memory. The waveform generated by this program is the
same as the default SINE_TEST_WFM waveform file available in the signal
generator’s waveform memory. This code is similar to the code shown for
BASIC for UNIX but there is a formatting difference in line 130 and line 140.

To download into non–volatile memory, replace line 190 with:

190 OUTPUT @PSG USING "#,K";":MMEM:DATA ""NVWFM:testfile"", #"

As discussed at the beginning of this section, I and Q waveform data is
interleaved into one file in 2’s compliment form and a marker file is associated
with this I/Q waveform file.

In the Output commands, USING “#,K” formats the data. The pound symbol
(#) suppresses the automatic EOL (End of Line) output. This allows multiple
output commands to be concatenated as if they were a single output. The “K”
instructs HP Basic to output the following numbers or strings in the default
format.

10 ! RE-SAVE "BASIC_Win_file"

20 Num_points=200

30 ALLOCATE INTEGER Int_array(1:Num_points*2)

Keysight Vector Signal Generators Creating and Downloading Waveform Files 103

Creating and Downloading Waveform Files
Programming Examples

40 DEG

50 FOR I=1 TO Num_points*2 STEP 2

60 Int_array(I)=INT(32767*(SIN(I*360/Num_points)))

70 NEXT I

80 FOR I=2 TO Num_points*2 STEP 2

90 Int_array(I)=INT(32767*(COS(I*360/Num_points)))

100 NEXT I

110 PRINT "Data Generated"

120 Nbytes=4*Num_points

130 ASSIGN @PSG TO 719

140 ASSIGN @PSGb TO 719;FORMAT MSB FIRST

150 Nbytes$=VAL$(Nbytes)

160 Ndigits=LEN(Nbytes$)

170 Ndigits$=VAL$(Ndigits)

180 WAIT 1

190 OUTPUT @PSG USING "#,K";":MMEM:DATA ""WFM1:data_file"",#"

200 OUTPUT @PSG USING "#,K";Ndigits$

210 OUTPUT @PSG USING "#,K";Nbytes$

220 WAIT 1

230 OUTPUT @PSGb;Int_array(*)

240 OUTPUT @PSG;END

250 ASSIGN @PSG TO *

260 ASSIGN @PSGb TO *

270 PRINT

280 PRINT "*END*"

290 END

Program Comments

10: Program file name

20: Sets the number of points in the waveform.

30: Allocates integer data array for I and Q waveform points.

40: Sets HP BASIC to use degrees for cosine and sine functions.

50: Sets up first loop for I waveform points.

60: Calculate and interleave I waveform points.

 104 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples

Creating and Downloading Waveform Data Using HP BASIC for UNIX

On the documentation CD, this programming example’s name is
“hpbasicUx.txt.”

The following program shows you how to download waveforms using HP Basic
for UNIX. The code is similar to that shown for HP BASIC for Windows, but
there is a formatting difference in line 130 and line 140.

To download into non–volatile memory, replace line 190 with:

190 OUTPUT @PSG USING "#,K";":MMEM:DATA ""NVWFM:testfile"", #"

As discussed at the beginning of this section, I and Q waveform data is
interleaved into one file in 2’s compliment form and a marker file is associated
with this I/Q waveform file.

In the Output commands, USING “#,K” formats the data. The pound symbol
(#) suppresses the automatic EOL (End of Line) output. This allows multiple
output commands to be concatenated as if they were a single output. The “K”
instructs HP BASIC to output the following numbers or strings in the default
format.

10 ! RE-SAVE "UNIX_file"

70: End of loop

80 Sets up second loop for Q waveform points.

90: Calculate and interleave Q waveform points.

100: End of loop.

120: Calculates number of bytes in I/Q waveform.

130: Opens an IO path to the signal generator using GPIB. 7 is the address of the GPIB card in the
computer, and 19 is the address of the signal generator. This IO path is used to send ASCII
data to the signal generator.

140: Opens an IO path for sending binary data to the signal generator.

150: Creates an ASCII string representation of the number of bytes in the waveform.

160 to 170: Finds the number of digits in Nbytes.

190: Sends the first part of the SCPI command, MEM:DATA along with the name of the file,
data_file, that will receive the waveform data. The name, data_file, will appear in
the signal generator’s memory catalog.

200 to 210: Sends the rest of the ASCII header.

230: Sends the binary data. Note that PSGb is the binary IO path.

240: Sends an End–of–Line to terminate the transmission.

250 to 260: Closes the connections to the signal generator.

290: End the program.

Program Comments (Continued)

Keysight Vector Signal Generators Creating and Downloading Waveform Files 105

Creating and Downloading Waveform Files
Programming Examples

20 Num_points=200

30 ALLOCATE INTEGER Int_array(1:Num_points*2)

40 DEG

50 FOR I=1 TO Num_points*2 STEP 2

60 Int_array(I)=INT(32767*(SIN(I*360/Num_points)))

70 NEXT I

80 FOR I=2 TO Num_points*2 STEP 2

90 Int_array(I)=INT(32767*(COS(I*360/Num_points)))

100 NEXT I

110 PRINT "Data generated "

120 Nbytes=4*Num_points

130 ASSIGN @PSG TO 719;FORMAT ON

140 ASSIGN @PSGb TO 719;FORMAT OFF

150 Nbytes$=VAL$(Nbytes)

160 Ndigits=LEN(Nbytes$)

170 Ndigits$=VAL$(Ndigits)

180 WAIT 1

190 OUTPUT @PSG USING "#,K";":MMEM:DATA ""WFM1:data_file"",#"

200 OUTPUT @PSG USING "#,K";Ndigits$

210 OUTPUT @PSG USING "#,K";Nbytes$

220 WAIT 1

230 OUTPUT @PSGb;Int_array(*)

240 WAIT 2

241 OUTPUT @PSG;END

250 ASSIGN @PSG TO *

260 ASSIGN @PSGb TO *

270 PRINT

280 PRINT "*END*"

290 END

Program Comments

10: Program file name

20: Sets the number of points in the waveform.

30: Allocates integer data array for I and Q waveform points.

 106 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples

Creating and Downloading E443xB Waveform Data Using HP BASIC for
Windows

On the documentation CD, this programming example’s name is
“e443xb_hpbasicWin2.txt.”

The following program shows you how to download waveforms using HP Basic
for Windows into volatile ARB memory. This program is similar to the following
program example as well as the previous examples. The difference between
BASIC for UNIX and BASIC for Windows is the way the formatting, for the most
significant bit (MSB) on lines 110 and 120, is handled.

To download into non–volatile ARB memory, replace line 160 with:

160 OUTPUT @ESG USING "#,K";":MMEM:DATA ""NVARBI:testfile"", #"

and replace line 210 with:

210 OUTPUT @ESG USING "#,K";":MMEM:DATA ""NVARBQ:testfile"", #"

40: Sets HP BASIC to use degrees for cosine and sine functions.

50: Sets up first loop for I waveform points.

60: Calculate and interleave I waveform points.

70: End of loop

80 Sets up second loop for Q waveform points.

90: Calculate and interleave Q waveform points.

100: End of loop.

120: Calculates number of bytes in I/Q waveform.

130: Opens an IO path to the signal generator using GPIB. 7 is the address of the GPIB card in the computer,
and 19 is the address of the signal generator. This IO path is used to send ASCII data to the signal
generator.

140: Opens an IO path for sending binary data to the signal generator.

150: Creates an ASCII string representation of the number of bytes in the waveform.

160 to 170: Finds the number of digits in Nbytes.

190: Sends the first part of the SCPI command, MEM:DATA along with the name of the file, data_file, that
will receive the waveform data. The name, data_file, will appear in the signal generator’s memory
catalog.

200 to 210: Sends the rest of the ASCII header.

230: Sends the binary data. Note that PSGb is the binary IO path.

240: Sends an End–of–Line to terminate the transmission.

250 to 260: Closes the connections to the signal generator.

290: End the program.

Program Comments (Continued)

Keysight Vector Signal Generators Creating and Downloading Waveform Files 107

Creating and Downloading Waveform Files
Programming Examples

First, the I waveform data is put into an array of integers called Iwfm_data and
the Q waveform data is put into an array of integers called Qwfm_data. The
variable Nbytes is set to equal the number of bytes in the I waveform data.
This should be twice the number of integers in Iwfm_data, since an integer is
2 bytes. Input integers must be between 0 and 16383.

In the Output commands, USING “#,K” formats the data. The pound symbol
(#) suppresses the automatic EOL (End of Line) output. This allows multiple
output commands to be concatenated as if they were a single output. The “K”
instructs HP Basic to output the following numbers or strings in the default
format.

10 ! RE-SAVE "ARB_IQ_Win_file"

20 Num_points=200

30 ALLOCATE INTEGER
Iwfm_data(1:Num_points),Qwfm_data(1:Num_points)

40 DEG

50 FOR I=1 TO Num_points

60 Iwfm_data(I)=INT(8191*(SIN(I*360/Num_points))+8192)

70 Qwfm_data(I)=INT(8191*(COS(I*360/Num_points))+8192)

80 NEXT I

90 PRINT "Data Generated"

100 Nbytes=2*Num_points

110 ASSIGN @Esg TO 719

120 !ASSIGN @Esgb TO 719;FORMAT MSB FIRST

130 Nbytes$=VAL$(Nbytes)

140 Ndigits=LEN(Nbytes$)

150 Ndigits$=VAL$(Ndigits)

160 OUTPUT @Esg USING "#,K";":MMEM:DATA ""ARBI:file_name_1"",#"

170 OUTPUT @Esg USING "#,K";Ndigits$

180 OUTPUT @Esg USING "#,K";Nbytes$

190 OUTPUT @Esgb;Iwfm_data(*)

200 OUTPUT @Esg;END

210 OUTPUT @Esg USING "#,K";":MMEM:DATA ""ARBQ:file_name_1"",#"

220 OUTPUT @Esg USING "#,K";Ndigits$

230 OUTPUT @Esg USING "#,K";Nbytes$

240 OUTPUT @Esgb;Qwfm_data(*)

250 OUTPUT @Esg;END

 108 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples

260 ASSIGN @Esg TO *

270 ASSIGN @Esgb TO *

280 PRINT

290 PRINT "*END*"

300 END

Creating and Downloading E443xB Waveform Data Using HP Basic for
UNIX

On the documentation CD, this programming example’s name is
“e443xb_hpbasicUx2.txt.”

The following program shows you how to download waveforms using HP
BASIC for UNIX. It is similar to the previous program example. The difference is
the way the formatting for the most significant bit (MSB) on lines is handled.

First, the I waveform data is put into an array of integers called Iwfm_data and
the Q waveform data is put into an array of integers called Qwfm_data. The
variable Nbytes is set to equal the number of bytes in the I waveform data.
This should be twice the number of integers in Iwfm_data, since an integer is
represented 2 bytes. Input integers must be between 0 and 16383.

In the Output commands, USING “#,K” formats the data. The pound symbol
(#) suppresses the automatic EOL (End of Line) output. This allows multiple
output commands to be concatenated as if they were a single output. The “K”
instructs HP BASIC to output the following numbers or strings in the default
format.

10 ! RE-SAVE "ARB_IQ_file"

20 Num_points=200

30 ALLOCATE INTEGER
Iwfm_data(1:Num_points),Qwfm_data(1:Num_points)

Program Comments

10: Program file name.

20 Sets the number of points in the waveform.

30: Defines arrays for I and Q waveform points. Sets them to be integer arrays.

40: Sets HP BASIC to use degrees for cosine and sine functions.

50: Sets up loop to calculate waveform points.

60: Calculates I waveform points.

70: Calculates Q waveform points.

80: End of loop.

160 and 210: The I and Q waveform files have the same name

90 to 300: See the table on page 103 for program comments.

Keysight Vector Signal Generators Creating and Downloading Waveform Files 109

Creating and Downloading Waveform Files
Programming Examples

40 DEG

50 FOR I=1 TO Num_points

60 Iwfm_data(I)=INT(8191*(SIN(I*360/Num_points))+8192)

70 Qwfm_data(I)=INT(8191*(COS(I*360/Num_points))+8192)

80 NEXT I

90 PRINT "Data Generated"

100 Nbytes=2*Num_points

110 ASSIGN @Esg TO 719;FORMAT ON

120 ASSIGN @Esgb TO 719;FORMAT OFF

130 Nbytes$=VAL$(Nbytes)

140 Ndigits=LEN(Nbytes$)

150 Ndigits$=VAL$(Ndigits)

160 OUTPUT @Esg USING "#,K";":MMEM:DATA ""ARBI:file_name_1"",#"

170 OUTPUT @Esg USING "#,K";Ndigits$

180 OUTPUT @Esg USING "#,K";Nbytes$

190 OUTPUT @Esgb;Iwfm_data(*)

200 OUTPUT @Esg;END

210 OUTPUT @Esg USING "#,K";":MMEM:DATA ""ARBQ:file_name_1"",#"

220 OUTPUT @Esg USING "#,K";Ndigits$

230 OUTPUT @Esg USING "#,K";Nbytes$

240 OUTPUT @Esgb;Qwfm_data(*)

250 OUTPUT @Esg;END

260 ASSIGN @Esg TO *

270 ASSIGN @Esgb TO *

280 PRINT

290 PRINT "*END*"

300 END

Program Comments

10: Program file name.

20 Sets the number of points in the waveform.

30: Defines arrays for I and Q waveform points. Sets them to be integer arrays.

40: Sets HP BASIC to use degrees for cosine and sine functions.

50: Sets up loop to calculate waveform points.

 110 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples

60: Calculates I waveform points.

70: Calculates Q waveform points.

80: End of loop.

160 and 210: The I and Q waveform files have the same name

90 to 300 See the table on page 105 for program comments.

Program Comments (Continued)

Keysight Vector Signal Generators Creating and Downloading Waveform Files 111

Creating and Downloading Waveform Files
Troubleshooting Waveform Files

Troubleshooting Waveform Files

Symptom Possible Cause

ERROR 224, Text file busy

Attempting to download a waveform that has the same name as the waveform
currently being played by the signal generator.

To solve the problem, either change the name of the waveform being downloaded
or turn off the ARB.

ERROR 628, DAC over range The amplitude of the signal exceeds the DAC input range. The typical causes are
unforeseen overshoot (DAC values within range) or the input values exceed the DAC
range.

To solve the problem, scale or reduce the DAC input values. For more information,
see “DAC Input Values” on page 7.

On the Keysight MXG, this error can occur if an encrypted file (.SECUREWAVE) is
being downloaded to the signal generator from a PC or USB Media with a different
suffix (i.e. not .SECUREWAVE).

To solve the problem, use the Use as or Copy File to Instrument softkey
menus to download the encrypted file to the instrument. For more information, see
“Encrypted I/Q Files and the Securewave Directory (Keysight MXG)”
on page 26.

ERROR 629, File format invalid The signal generator requires a minimum of 60 samples to build a waveform and
the same number of I and Q data points.

ERROR –321, Out of memory

There is not enough space in the ARB memory for the waveform file being
downloaded.

To solve the problem, either reduce the file size of the waveform file or delete
unnecessary files from ARB memory. Refer to “Waveform Memory” on
page 18.

No RF Output The marker RF blanking function may be active. To check for and turn RF blanking
off, refer to “Configuring the Pulse/RF Blank (Keysight MXG)” on
page 112 and “Configuring the Pulse/RF Blank (ESG/PSG)” on
page 112. This problem occurs when the file header contains unspecified settings
and a previously played waveform used the marker RF blanking function.

For more information on the marker functions, see the User’s Guide.

Undesired output signal Check for the following:

— The data was downloaded in little endian order. See “Little Endian
and Big Endian (Byte Order)” on page 5 for more information.

— The waveform contains an odd number of samples. An odd number
of samples can cause waveform discontinuity. See “Waveform
Phase Continuity” on page 15 for more information.

 112 Keysight Vector Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Troubleshooting Waveform Files

Configuring the Pulse/RF Blank (Keysight MXG)

Configuring the Pulse/RF Blank (ESG/PSG)

For details on each key, use the key help. Refer to Programming Guide and the User’s Guide. For additional SCPI command information,
refer to the SCPI Command Reference.

If the default marker is used,
toggle the Pulse/RF Blank (None)
softkey to None. For more
information on markers, refer to
“Marker File” on page 12.

SCPI commands:

For details on each key, use the Key and Data Field Reference. For additional SCPI command information, refer to the SCPI Command
Reference.

If the default marker is
used, toggle the
Pulse/RF Blank (None)
softkey to None. For
more information on
markers, refer to
“Marker File” on
page 12.

Mode
Setup

SCPI commands:

Index

 113

Index

Numerics
2’s complement data format 10

A
ARB waveform file downloads

data requirements
waveform 3

download utilities 2
waveform download utilities 52

B
Baseband Studio

for Waveform Capture and Playback 16
big-endian

byte order, interleaving and byte swapping 39
changing byte order 6
example, programming 95

bits and bytes 4
byte order

byte swapping 6
changing byte order 6
interleaving I/Q data 39

C
C++

programming examples 57
creating waveform data

C++, using 37
saving to a text file for review 39

creating waveform files
overview 1

D
DAC input values 7
data

encryption 26
format, e443xb signal generator 53
requirements, waveform 3

decryption 26
download

utilities
IntuiLink for signal generators 2
Keysight Signal Studio, Toolkit 2
Waveform Download Assistant 2

waveform data
advanced programming languages 45
commands 25

e443xb signal generator files 7, 53
encrypted files for extraction 31
encrypted files for no extraction 29
FTP procedures 33
memory locations 26
overview 1, 43
simulation software 43
unencrypted files for extraction 30
unencrypted files for no extraction 29

downloading
C++, using 57
HP Basic 102
MATLAB 90
Visual Basic 98

E
e443xb

files
downloading 53, 55
formatting 7, 53
programming examples 78
storing 53

programming examples 102
encryption

downloading
for extraction 31
for no extraction 29

extracting waveform data 30, 31
I/Q files 26
I/Q files, keysight mxg (only) 26
securewave directory

esg 26
keysight mxg (only) 26
psg 26

waveform data 25
even number of samples 14
example programs See programming examples 56

F
files

decryption 26
encryption 25, 26
encryption, keysight mxg (only) 26
extraction commands and file paths 28
header information 12, 26
transfer methods 27
waveform download utilities 52

 114

waveform structure 12
FTP

downloading and extracting files, commands

30–32
methods 27
procedures for downloading files 33
web server procedure 36

G
global settings

e8663b 112
esg 112
Keysight mxg 112
psg 112

H
hexadecimal data 95
HP Basic

programming examples 102

I
I/Q data

creating, advanced programming languages 37
encryption 25, 26
encryption, keysight mxg (only) 26
interleaving

big endian and little endian 39
byte swapping 39
little endian, byte swapping 39
waveform data, creating 10

memory locations 19, 41
saving to a text file for review 39
scaling 8
waveform structure 14

input values, DAC 7
interleaving, See I/Q data 10
IntuiLink for signal generators 52

K
Keysight

e8663b
global settings, configuring 112

esg
global settings, configuring 112
memory allocation, non-volatile memory 22
Pulse/RF Blank, configuring 112
Waveform Download Assistant 52

mxg
global settings, configuring 112

memory allocation, non-volatile memory 21
Waveform Download Assistant 52

psg
global settings, configuring 112
memory allocation, non-volatile memory 22
Pulse/RF Blank, configuring 112
Waveform Download Assistant 52

Pulse/RF Blank, configuring 112
Signal Studio 52
Signal Studio Toolkit 2

L
LAN

establishing a connection 44, 46
little-endian

byte order, interleaving and byte swapping 39
loading waveforms 49
LSB 5
LSB/MSB 95

M
marker file 12, 26
MATLAB

download utility 52
downloading data 43
programming examples 86

media
external

waveform memory 18
internal

waveform memory 18
memory

See also media
allocation 20
defined 18
locations 18
non-volatile (NVWFM) 26
size 22
volatile (WFM1) 26

MSB 5

N
n5162a/82a

Pulse/RF Blank configuring 112
non-volatile memory

memory allocation
esg 22
Keysight mxg 21
psg 22

Index

 115

securewave directory 26
waveform 18

P
PC 95
phase discontinuity

avoiding 16
Baseband Studio, for Waveform Capture and

Playback 16
samples 16
waveform 15

phase distortion 15
playing waveforms 49
programming

creating waveform data 37
downloading waveform data 43
little endian order, byte swapping 39

programming examples
C++ 57
e443xb

files 78
e443xb files 102
HP Basic 102
introduction 56
MATLAB 86
Visual Basic 95, 98

Pulse/RF Blank
esg setting 112
n5162a/82a, setting 112
psg setting 112
setting 112

S
samples

even number 14
waveform 14

scaling I/Q data 8
SCPI

file transfer methods 27
SCPI commands

command line structure 28
download e443xb files 55
encrypted files 29, 31
extraction 25, 28, 30, 31
no extraction 28, 29
unencrypted files 29, 30

securewave directory
decryption, file 26
downloading encrypted files 31

downloads, file 26
encryption, file 26
extracting waveform data 30, 31
extraction, file 26

sequences
waveforms, building 50

setting
Pulse/RF Blank

e8663b 112
esg 112
n5162a/82a 112
psg 112

signal generator
Waveform Download Assistant 52

Signal Studio Toolkit 2, 52
simulation software 43

T
Toolkit, Signal Studio 2, 52

U
unencrypted files

downloading for extraction 30
downloading for no extraction 29

usb media
file extensions 21

V
verifying waveforms 49
VISA

library 95
Visual Basic

programming examples 95
volatile memory

file, decryption 26
file, encryption 26
memory allocation 20
securewave directory 26

memory, volatile (WFM1) 26
waveform 18

W
waveform data

2’s complement data format 10
bits and bytes 4
byte order 6
byte swapping 6
commands for downloading and extracting 25–35
creating 37

 116

DAC input values 7
data requirements 3
encrypted data 21
encryption 25–31
explained 4
extracting 25, 30
I and Q interleaving 10
LSB and MSB 5
saving to a text file for review 39

waveform download
utilities

differences 52
waveform downloads

advanced programming languages, using 45
download utilities, using 52
HP BASIC, using 102–108
memory 18

allocation 20
size 22
volatile and non-volatile 18

samples 14
simulation software, using 43
structure 14
troubleshooting files 111
using advanced programming languages 45
with Visual Basic 6.0 98

waveform files
creating 1
downloading 1

waveform generation
C++ 57
HP Basic, using 102
MATLAB, using 86
Visual Basic 6.0, using 95

waveforms
loading 49
playing 49
sequences, building 50
verifying 49

WriteIEEEBlock 98

This information is subject to change
without notice.
© Keysight Technologies 2020

Edition 1, October 2020

E4400-90627

www.keysight.com

	Title Page
	Notices
	Table of Contents
	Creating and Downloading Waveform Files
	Overview of Downloading and Extracting Waveform Files
	Waveform Data Requirements

	Understanding Waveform Data
	Bits and Bytes
	LSB and MSB (Bit Order)
	Little Endian and Big Endian (Byte Order)
	Byte Swapping
	DAC Input Values
	2’s Complement Data Format
	I and Q Interleaving

	Waveform Structure
	File Header
	Marker File
	I/Q File
	Waveform

	Waveform Phase Continuity
	Phase Discontinuity, Distortion, and Spectral Regrowth
	Avoiding Phase Discontinuities

	Waveform Memory
	Memory Allocation
	Memory Size

	Commands for Downloading and Extracting Waveform Data
	Waveform Data Encryption
	File Transfer Methods
	SCPI Command Line Structure
	Commands and File Paths for Downloading and Extracting Waveform Data
	FTP Procedures

	Creating Waveform Data
	Code Algorithm
	2. Save the I/Q data to a text file to review.

	Downloading Waveform Data
	Using Simulation Software
	Using Advanced Programming Languages

	Loading, Playing, and Verifying a Downloaded Waveform
	Loading a File from Non–Volatile Memory
	Playing the Waveform
	Verifying the Waveform
	Building and Playing Waveform Sequences

	Using the Download Utilities
	Downloading E443xB Signal Generator Files
	E443xB Data Format
	Storage Locations for E443xB ARB files
	SCPI Commands

	Programming Examples
	C++ Programming Examples
	MATLAB Programming Examples
	Visual Basic Programming Examples
	HP Basic Programming Examples

	Troubleshooting Waveform Files
	Configuring the Pulse/RF Blank (Keysight MXG)
	Configuring the Pulse/RF Blank (ESG/PSG)

	Index

