開啟瀏覽器cookie以提升網站功能與效能。
Here's the page we think you wanted. See search results instead:
Keysight Technologies
Toggle Menu
即時對談
聯絡我們
Welcome

歡迎登入

  • 我的資料
  • 登出
  • 會員登入
  • 註冊
索取報價
  • 您的是德網路即時報價無內容。
  • 索取自訂報價
  • 採購/租賃說明
中國臺灣

確認您的國家或地區

中國臺灣

  • 中国
  • 日本
  • 繁體中文
  • 한국
  • Россия
  • Brasil
  • Canada
  • Deutschland
  • France
  • India
  • Malaysia
  • United Kingdom
  • United States
  • Australia
  • Austria
  • Belgium
  • Denmark
  • Finland
  • Hong Kong, China
  • Ireland
  • Israel
  • Italy
  • Mexico
  • Netherlands
  • Singapore
  • Spain
  • Sweden
  • Switzerland (German)
  • Thailand
  • 更多..

請確認

確認您的國別以取得相關報價、產品促銷訊息、活動訊息,以及聯絡資訊。

  • 產品與服務
    • 示波器與分析儀
      • 示波器
      • 頻譜分析儀(信號分析儀)
      • 網路分析儀
      • 邏輯分析儀
      • 協定分析儀與模擬器
      • 誤碼率測試儀
      • 雜訊指數分析儀與雜訊信號源
      • 高速數位轉換器和多通道資料擷取解決方案
      • 交流電源分析儀
      • 直流電源分析儀
      • 材料測試設備
      • 元件電流波形分析儀
      • 半導體參數/元件分析儀系列
    • 儀錶
      • 數位萬用電錶(DMM)
      • 相位雜訊量測
      • 功率錶和功率感測器
      • 53200 Series RF and Universal Frequency Counter / Timers
      • LCR 錶和阻抗量測產品
      • B2980A 系列 Femto/Pico 微電流錶和靜電錶/高阻計
    • 產生器、信號源、電源
      • 信號產生器(信號源)
      • 波形與函數產生器
      • 任意波形產生器
      • 脈衝產生器
      • HEV/EV/Grid 模擬器和測試系統
      • 直流電源供應器
      • 電源量測設備
      • 直流電子負載
      • 交流電源
    • 軟體
      • Application Software Testing
      • PathWave 設計軟體
      • PathWave 測試軟體
      • Application Software
      • 生產力軟體
      • Software Enterprise Agreement
      • 所有設計與測試軟體  
    • 無線產品
      • 無線網路模擬器
      • 通道模擬器
      • Nemo 無線網路解決方案
      • 5G OTA 暗室
      • Wireless Analyzers
      • 物聯網法規相符性測試解決方案
    • 模組化儀器
      • PXI 產品
      • AXIe 產品
      • 資料擷取 - DAQ
      • USB 產品
      • VXI 產品
      • 參考解決方案
      • All Modular Instruments  
    • 網路測試
      • 協定與負載測試
      • 網路測試硬體
      • Cloud Test
      • 網路效能監測
      • 5G NR 基地台測試
      • 無線存取和核心網路測試
      • Network Modeling
      • All Network Test  
    • 網路安全性與可視度
      • 網路導流設備
      • Cloud Visibility
      • 網路分流器
      • 旁路交換器
      • 網路安全
      • Application and Threat Intelligence
    • 新增產品
      • 在線測試系統
      • 特定應用測試系統與元件
      • 參數測試解決方案
      • 光學量測產品
      • 雷射干涉儀與校驗系統
      • Monolithic Laser Combiners & Precision Optics
      • MMIC 毫米波與微波裝置
    • 服務
      • KeysightCare 服務和支援
      • KeysightAccess Service
      • 校驗服務
      • 維修服務
      • Technology Refresh Services
      • 測試即服務(TaaS)
      • Network/Security Services
      • Consulting Services
      • Financial Services
      • 訓練服務
      • Keysight Support Portal
      • Used Equipment
      • 所有服務  
    • 所有產品、軟體、服務  
  • 解決方案
    • 5G
    • 雲端
    • 車聯網
    • 資料中心基礎設施
    • 設計與自動化
    • 嶄新技術
    • 能源生態系統
    • 高速數位系統設計
    • 物聯網(IoT)
    • 製造測試
    • 量測基本原理
    • 網路安全
    • 網路測試
    • 網路可視化
    • SDN,NFV,虛擬化
    • 軟體測試自動化
    • 所有解决方案  
  • 產業
    • 航太與國防
    • 汽車與能源
    • 通訊
    • 教育
    • 企業
    • 政府
    • 半導體
    • 服務提供者
    • 所有產業 + 技術  
  • 洞見是德
    • 探索新知
    • 成功案例
    • 部落格
    • Keysight University
  • 資源
  • 支援
    • 是德科技產品支援
    • Ixia 產品支援
No product matches found - System Exception
New Pulse Signal Processing and Analysis Techniques
Application Notes

New Pulse Signal Processing and Analysis Techniques

Show Description

Introduction

Pulsed signals are widespread in radar and other EW applications, and they must be accurately measured for manufacturing, design of countermeasures, and threat assessment. However pulse measurements are an especially challenging area for signal analysis due to a combination of factors.

– Wide pulse bandwidth—the result of short pulse duration and fast transitions

– Complex signal environments containing pulses from a number of different sources, often with dramatically different characteristics such as bandwidth, repetition rate and modulation type

– Pulse environments with wide dynamic range in the pulses to be analyzed or created

– Pulses with complex modulation that must be demodulated and decoded or measured

– Pulses that are difficult to detect due to very low duty cycle, intermixing with other signals, and low apparent power level at the analysis point

Fortunately many of the improving signal processing and analog-digital conversion technologies behind the generation of complex pulse environments also enable new techniques for effective pulse analysis. This application note will discuss the best tools and latest developments for different types of pulse analysis, along with display and analysis techniques for various signals and measurement goals. This note will also cover key signal acquisition and processing technologies such as IF and frequency mask triggering, signal capture, and post-processing.

The analysis described here is available in two comprehensive pulsed radar analysis applications:

The N9067C X-Series pulse measurement application is a new internal measurement application for Keysight’s X-Series signal analyzers, providing a high performance one-box measurement solution with bandwidths as wide as 1 GHz that can be operated from the multi-touch front panel interface or through SCPI programming. Option BHQ for the 89600 VSA software adds to general vector signal analysis measurements a broad set of analysis tools and statistical reports of pulse characteristics, operating on both RF/microwave signal analyzer and oscilloscope platforms.

Both of these pulse measurement applications use the same algorithms, providing consistent measurement results and improving measurement confidence. This application note will describe the choice of application software and the associated hardware platforms, along with available triggering and measurement types and displays.

Table of Contents

  • Pulsed Signals and the Challenge of Signal Acquisition
  • Choosing RF/microwave hardware for signal analysis
  • Software for measurements and signal processing
  • Pulse Analysis Measurement Process and Tools
  • Functional blocks of pulse measurement
  • Meeting the Challenges of Complex Pulse Analysis
  • IF Magnitude trigger
  • Frequency mask trigger
  • Time qualified trigger
  • Oscilloscope holdoff trigger
  • Dynamic Range and Bandwidth Tradeoffs for Wideband Signals
  • Capturing Large Numbers of Pulses with Efficient Memory Use
  • Completely Characterizing Pulse Modulation
  • Summary

Pulsed Signals and the Challenge of Signal Acquisition

In the past, basic pulse measurements were generally made with swept spectrum analyzers. The intermediate frequency (IF) bandwidth or resolution bandwidth (RBW) of the spectrum analyzer was generally narrower than the effective bandwidth of the pulse, so the spectrum analyzer was used to measure the resulting pulse spectrum. The pulse spectrum could then be used to measure basic signal characteristics such as pulse repetition rate or interval (PRI), duty cycle, power, etc. Spectrum analyzers were also used in more traditional ways to make out-of-band measurements such as spurious and harmonics of pulsed signals.

Though indirect and slightly clumsy, the pulse spectrum approach was adequate for simple pulses and signal environments containing only a single pulse train, and where frequency agility was low or could be inhibited.

Modern systems use much more complex pulses, and many signals or signal environments include a number of different pulses (along with other signals) from one or multiple emitters, as shown in the real-time spectrum measurement of Figure 1.

The combination of complex signals and detailed measurement requirements means that pulse measurements must now be made using digital signal processing (DSP) techniques on digitally sampled signals.

Choosing RF/Microwave hardware for signal analysis

A critical first step is to choose the main measurement hardware platform, a choice that will influence the pulse measurement software that will be discussed later in this note. Rapid increases in signal analyzer bandwidths and improved resolution in digital oscilloscopes are constantly changing the tradeoffs that affect pulse measurements.

Two different RF/microwave hardware measurement platforms—shown in Figure 2—are generally used for this purpose: signal analyzers with a wideband digital IF, and oscilloscopes or digitizers with a sampling rate high enough to directly handle microwave RF/microwave signals at the baseband.

The two hardware front-end approaches are conceptually similar for most pulse measurements. In both cases, the output of the RF/microwave front end (including subsequent processing) is a stream or data file of I/Q samples of the signal or signal environment. The principal architectural difference is the location of the analog to digital conversion (ADC) operations and the type of processing used to focus analysis on the frequency band of interest.

Signal analyzers use a fundamental or harmonic analog mixing process and analog filters to convert RF or microwave signals to an IF section where ADC operations are performed.

Oscilloscopes (and other time-domain samplers such as modular digitizers) sample the RF or microwave signals directly in a baseband fashion, and subsequent downconversion and band-limiting are performed by DSP.

變更email?
必填欄位

必填欄位

必填欄位

必填欄位

必填欄位

必填欄位

必填欄位

必填欄位

必填欄位

必填欄位

必填欄位

必填欄位

必填欄位

必填欄位

必填欄位

按下此鍵,代表您同意提供您的個人資料給是德科技。如需關於我們如何使用這些資料的資訊, 請查閱是德科技隱私權聲明。.

感謝您!
Download

探索

  • 產品與服務
  • 解決方案
  • 產業
  • 活動
  • Keysight University

Insights

  • Discover Insights
  • 成功案例
  • 資源
  • 部落格
  • 社群

夥伴

支援

  • 是德科技產品支援
  • Ixia 產品支援
  • 管理軟體授權
  • 產品訂單狀態
  • 零件

關於是德科技

  • 新聞中心
  • 投資者關係
  • 企業社會責任
  • 多樣性、公平性和包容性
  • 供應鏈透明度
  • 招賢納士

  • Facebook:與是德連線 LinkedIn:與是德連線 Twitter:與是德連線 YouTube:與是德連線 WeChat:與是德科技互聯
  • © Keysight Technologies 2000–2022
  • 隱私聲明
  • 使用條款
  • 網站意見