Keysight 86100A/B/C/D
Wide-Bandwidth Oscilloscope

(for programming the legacy instrument GUI. To program
the FlexDCA GUI, refer to the 86100D help.)

KEYSIGHT Programmer’s
EEEEEEEEEEEE Guide

Notices

© Keysight Technologies, Inc. 2000-2014

No part of this manual may be reproduced in
any form or by any means (including elec-
tronic storage and retrieval or translation
into a foreign language) without prior agree-
ment and written consent from Keysight
Technologies, Inc. as governed by United
States and international copyright laws.

Manual Part Number
86100-90131

Edition
Eleventh edition, April 2015
Printed in USA

Published by:

Keysight Technologies, Inc.
1400 Fountaingrove Parkway
Santa Rosa, CA 95403

Warranty

The material contained in this docu-
ment is provided “as is,” and is subject
to being changed, without notice, in
future editions. Further, to the maxi-
mum extent permitted by applicable
law, Keysight disclaims all warranties,
either express or implied, with regard
to this manual and any information
contained herein, including but not
limited to the implied warranties of
merchantability and fitness for a par-
ticular purpose. Keysight shall not be
liable for errors or for incidental or
consequential damages in connection
with the furnishing, use, or perfor-
mance of this document or of any infor-
mation contained herein. Should
Keysight and the user have a separate
written agreement with warranty terms
covering the material in this document
that conflict with these terms, the war-
ranty terms in the separate agreement
shall control.

Technology Licenses

The hardware and/or software described in
this document are furnished under a license
and may be used or copied only in accor-
dance with the terms of such license.

Restricted Rights Legend

If software is for use in the performance of a
U.S. Government prime contract or subcon-
tract, Software is delivered and licensed as
“Commercial computer software” as defined
in DFAR 252.227-7014 (June 1995), oras a
“commercial item” as defined in FAR

2.101(a) or as “Restricted computer soft-
ware” as defined in FAR 52.227-19 (June
1987) or any equivalent agency regulation or
contract clause. Use, duplication or disclo-
sure of Software is subject to Keysight Tech-
nologies’ standard commercial license
terms, and non-DOD Departments and
Agencies of the U.S. Government will receive
no greater than Restricted Rights as defined
in FAR 52.227-19(c)(1-2) (June 1987). U.S.
Government users will receive no greater
than Limited Rights as defined in FAR
52.227-14 (June 1987) or DFAR
252.227-7015 (b)(2) (November 1995), as
applicable in any technical data.

Safety Notices

A CAUTION notice denotes a hazard.
It calls attention to an operating
procedure, practice, or the like that,
if not correctly performed or
adhered to, could result in damage
to the product or loss of important
data. Do not proceed beyond a CAU-
TION notice until the indicated con-
ditions are fully understood and
met.

A WARNING notice denotes a haz-
ard. It calls attention to an operat-
ing proced ure, practice, or the like
that, if not correctly performed or
adhered to, could result in personal
injury or death. Do not proceed
beyond a WARNING notice until the
indicated conditions are fully
understood and met.

Contents

1 Introduction / 7

Who Should Use This Book / 7
Supported Firmware Versions / 8
|EEE 488.2 (SCPI) / 8

SICL/LAN Support / 9

The Command Tree / 13
Command Syntax / 14

Queries / 17

Starting a Program / 19
Multiple Databases / 21

Files / 23

Status Reporting / 26

Interface Functions / 37
Commands Unavailable in Jitter Mode / 39
Error Messages / 41

Language Compatibility / 49

2 Programming Examples / 55

Listings of the C sample programs in this section include: / 56
BASIC Programming Examples / 78

3 Common Commands / 89

Introduction / 90
Commands / 91

4 Root Level Commands / 103

5 System Commands / 117

6 Acquire Commands / 123

7 Calibration Commands / 131

8 Channel Commands / 141

9 Clock Recovery Commands / 151

10 Disk Commands / 165

(N

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Display Commands / 175
Function Commands / 187
Hardcopy Commands / 195
Histogram Commands / 199
Limit Test Commands / 203
Marker Commands / 213
Mask Test Commands / 219

Measure Commands / 235

Introduction / 239
Commands / 241

S-Parameter Commands (Rev. A.08.00 and Above) / 287

Introduction / 288
Commands / 290

S-Parameter Commands (Rev. A.07.00 and Below) / 297

Introduction / 298
Commands / 299

Signal Processing Commands / 303

Introduction / 304
Commands / 305

TDR/TDT Commands (Rev. A.06.00 and Above)

Introduction / 309
Commands / 312

TDR/TDT Commands (Rev. A.05.00 and Below)
Timebase Commands / 329
Trigger Commands / 335

Waveform Commands / 341

Introduction / 342
Commands / 344

/309

/319

27 Waveform Memory Commands / 355

]

Keysight 86100A/B/C/D Wide-Bandwidth Oscilloscope
Programmer’s Guide

Introduction

SICL/LAN Support 9

The Command Tree 13
Command Syntax 14
Queries 17
Starting a Program 19
Multiple Databases 21
Files 23

Status Reporting 26
Interface Functions 37
Commands Unavailable in Jitter Mode 39
Error Messages 41
Language Compatibility 49

Who Should Use This Book

KEYSIGHT

TECHNOLOGIES

Use this book if you are programming an 86100D that is running the instrument’s legacy GUI. To
program an 86100D that is running the FlexDCA GUI, do not use the commands in this book. Instead,
with the 86100D FlexDCA GUI displayed click Help > Contents. Then, click the “Programming” link to
learn about the programming commands for FlexDCA.

Table 1 86100D GUIs

86100D Running Legacy GUI 86100D Running FlexDCA GUI

[De o Smp e Citse s g b0) 9@ 9 -] =
eliin ek

i

i 011

E
=
-
-
e
-
o=
=

o

U | QTR | | PR | Se)

If you are using FlexDCA on a PC to control the 86100D with the legacy GUI, do not use this book. Instead send
FlexDCA programming commands to FlexDCA and let FlexDCA control the 86100D. Use the commands
documented in FlexDCA's help system.

1 Introduction

Supported Firmware Versions

NOTE

This edition of this book documents remote control of the instruments shown in the following table.

Table 2 Supported Instruments

Instrument Firmware Vision

86100D A.13.00 and below
86100C A.10.80 and below
861008 A.05.00 and below
86100A A.05.00 and below

Starting with firmware version A.12.00, the information in this book applies to an 86100D that is running in Legacy
configuration. The instrument can also be operated in Standard configuration, in which case you must use the
remote commands that are documented in the 86100D online help. Refer to the online help for information on the
different 86100D configurations.

|EEE 488.2 (SCPI)

The programming syntax documented in this book conforms to the IEEE 488.2 Standard Digital
Interface for Programmable Instrumentation and to the Standard Commands for Programmable
Instruments (SCPI). For a listing of commands that are new or revised, refer to “New and Revised
Commands” on page 9. If you are unfamiliar with programming instruments using the SCPI standard,
refer to “Command Syntax” on page 16. For more detailed information regarding the GPIB, the IEEE
488.2 standard, or the SCPI standard, refer to the following books:

International Institute of Electrical and Electronics Engineers. |[EEE Standard 488.1-1987, IEEE
Standard Digital Interface for Programmable Instrumentation. New York, NY, 1987.

International Institute of Electrical and Electronics Engineers. IEEE Standard 488.2-1987, IEEE
Standard Codes, Formats, Protocols and Common commands For Use with ANSI/IEEE Std
488.1-1987. New York, NY, 1987.

You can configure the instrument and transfer data between the instrument and a computer using
GPIB (General Purpose Interface Bus) connection or SICL/LAN connection (firmware revision A08.00
and above).

Programmer’s Guide

Introduction 1

SICL/LAN Support

The ability to control the instrument over SICL/LAN is a new feature introduced with revision A.08.00.
For SICL/LAN support, use the Keysight |0 Libraries Suite which is shipped on a disc with the
instrument. This software includes the Keysight Connection Expert, which facilitates the sending of
remote commands to the instrument by using a LAN device address. If you can not establish a LAN
connection on the instrument, install the Keysight 10 Libraries LAN patch. This patch is located on
the instrument at C:\Infiniiuminstaller\AgtinstloLanPatch.msi.

An IP address can be substituted instead of using domain names.

To create the device address within the Keysight Connection Expert,

1 Locate the instrument device address, which should look similar to the following examples:
TCPIPO::10.0.0.5::inst0::INSTR
TCPIPO::Yourlnstrument.YourDomain::instO::INSTR

2 Right-click the instrument device address to view the shortcut menu and select Change
Properties.

3 Inthe Advanced section, change the remote instrument name to gpib0,7. The device address
should now be:

TCPIP0::10.0.0.5::gpib0,7::INSTR

After configuring the Keysight Connection Expert with the above steps, sending commands to the
instrument changes the instrument from local mode into remote mode, which is similar to GPIB
control. If, however, the device address instO is used instead of gpib0,7 the instrument will not
change from local to the remote mode and some dialog boxes may be presented during the
SICL/LAN session that requires front-panel operation.

SICL/LAN support requires that two programs be unblocked by the instrument’s firewall. If you
upgraded the instrument firmware versions A.07.00 and below to revision A.08.00 and above, you
might be prompted by a firewall application to block the Keysight Remote I/0 Port Mapper Utility
and the Keysight Remote 1/0 Server. If you decide to allow the features to be blocked, then remote
control of the DCA over SICL/LAN will not be possible. We recommend that you select Unblock on
these features. However, if you block these features, you can always reconfigure the firewall at a later
time to allow SICL/LAN.

Some firewall applications might block an echo request (ping) from the Keysight Connection Expert
version 15.0 and above. If a ping is blocked the "Instrument I/0O on this PC" auto-detect function will
not find the instrument even though it has been added and tested correctly under the Change
Properties dialog box. To resolve this on the Microsoft Windows Firewall, refer to “To configure the
firewall” on page 12.

For more information on communicating with the instrument using the Keysight's 10 Libraries Suite,
refer to the book /0 Libraries Suite Connectivity Guide with Getting Started.

To upgrade instrument software

Programmer’s Guide

After you have obtained the software upgrade file for your instrument, perform the following steps to
install the upgrade.

1 Copy the software upgrade file to a USB Flash Drive, external USB CD-RW drive, LAN folder, or
other device so that the file will be available to copy to the instrument.

2 On the instrument’s File menu, click Exit and then click Yes to exit the application.
3 Onthe Windows Start menu, click My Computer.

4 Select the D: drive and create a new folder. Give the new folder a meaningful name. For example,
Software Upgrade.

5 Copy the upgrade file (.exe file extension) from an external memory device to your new folder.

1 Introduction

6 Select the upgrade file to begin the installation. Click Next twice for the installation wizard to
automatically uninstall the current version and install the newer version.

7 If you are prompted by a firewall application to block the Keysight Remote I/0 Port Mapper Utility
and the Keysight Remote I/0 Server, select Unblock as shown in Figure 1 on page 10. See the
introduction to this section for more information.

8 On the Windows desktop, double click the program icon to start the instrument. |
%2 Windows Security Alert g %2 Windows Security Alert g]
."“ To help protect your computer, Windows Firewall has blocked .‘ﬁ Y To help protect your computer, Windows Firewall has blocked
some features of this program. some features of this program.
Do you want to keep blocking this program? Do you want to keep blocking this program?
1
D Mame: Agilent Remote 170 Port Mapper Utility I;.Ei Mame: Agilent Remote 1/0 Server
Publisher. &gilent Technologies =t Publisher: Agilent Technologies
[
3
KeepBlocking | [Unblock | [askMelLater | KeepBlocking | [Unblock | [askMelLater |]
PP —— R ———— e P e 3 ey Y
Agilent Remote 1/0O Port Mapper Utility Agilent Remote I/O Server
Figure 1 Example Windows Firewall Security Alerts

To configure the firewall

This procedure applies to instrument software revision A.08.00 and above. Although it describes the
settings for the Windows Firewall, settings using a different firewall will be similar. These settings
allow control of the instrument over SICL/LAN and allow the Keysight Connection Expert to locate
the instrument.

1 Ontheinstrument, click Help > About 86100C/D and confirm that software revision A.08.00 or
above is installed.

Minimize the 86100C/D application to view the Windows desktop.
On the Start menu, click Control Panel.

If Category View is set, click Switch to Classic View.

Open Windows Firewall.

o o1l A WDN

On the Exceptions tab, clear or select to unblock (allow) the Keysight Remote 1/0 Port Mapper
Utility and the Keysight Remote I/0O Server. These programs allow control of the instrument over
SICL/LAN. If these utilities are not listed, click Add Program in the dialog box and add them using
the following paths:

Keysight Remoate I/0 Port Mapper Utility found at C:\Program Files\Keysight\IO Libraries Suite\bin\
portmap.exe

Keysight Remote 1/0 Server found at C:\Program Files\Keysight\IO Libraries Suite\bin\siclland.exe

10 Programmer’s Guide

Examples

Measurement Process

Programmer’s Guide

Introduction 1

*= Windows Firewall

General | Exceptions | Advanced 3

Windows Firewall iz blocking incoming network, connections, except for the
programs and services selected below. Adding exceptions allows some programs "
to work, better but might increase wour security risk.

Programs and Services:

Mame]
Agilent Remote 1/0 Port Mapper Utility
Agilent Remate 1/0 Server

[File and Printer Sharing

S gy W] T ¥ 1) I S P

Figure 2 86100C/D SICL/LAN Programs

7 On the Windows Firewall, click the Advanced tab.
8 Click ICMP to open the ICMP Settings dialog box.

9 Clear or select Allow incoming echo request. Selecting this feature allows the Keysight
Connection Expert’s (version 15.0 and above) Instrument /0 on this PC to automatically find the
instrument.

ICMP Settings

Internet Control Meszage Pratocol [ICHP] allows the computers on
a network to share emor and status information. Select the requests
for infarmation fram the Intermet that this computer will regpond to:

Allow incoming echo request A
[Allows incoming timestamp request =
[Allows incoming mask request

. _‘_Igfllow incgrﬂigg router [ew

A B e ol o gl et

Figure 3 Allow Incoming Echo Request

Throughout this book, BASIC and ANSI C are used in the examples of individual commands. If you are
using other languages, you will need to find the equivalents of BASIC commands like OUTPUT,
ENTER, and CLEAR, to convert the examples. The instrument’s GPIB address is configured at the
factory to a value of 7. You must set the output and input functions of your programming language to
send the commands to this address. You can change the GPIB address from the instrument’s front
panel.

Figure 4 is a instrument block diagram that shows where the measurements are made on the
acquired data and when the post-signal processing is applied to the data. The diagram is laid out
serially for a visual perception of how the data is affected by the instrument.

1

1

12

Introduction

> Averaging

A Waveform
Memories

\

Sample | Channel A
Data Memory
Measurements Connect Dots .
‘ ™ (Optional) (Optional) Display
Math
Functions
54800001
Figure 4 Sample Data Processing

The sample data is stored in the channel memory for further processing before being displayed. The
time it takes for the sample data to be displayed depends on the number of post processes you have
selected. Averaging your sampled data helps remove any unwanted noise from your waveform.

You can store your sample data in the instrument’s waveform memories for use as one of the sources
in Math functions or to visually compare against a waveform that is captured at a future time. The
Math functions allow you to apply mathematical operations on your sampled data. You can use these
functions to duplicate many of the mathematical operations that your circuit may be performing to
verify that your circuit is operating correctly. The measurements section performs any of the
automated measurements that are available in the instrument. The measurements that you have
selected appear at the bottom of the display. The Connect Dots section draws a straight line
between sample data points, giving an analog look to the waveform. This is sometimes called linear
interpolation.

Programmer’s Guide

Introduction 1

The Command Tree

Programmer’s Guide

The command tree refers to the relationship of the commands to each other. The IEEE 488.2 common
commands do not affect the position of the parser within the tree. A leading colon or a program
message terminator (<NL> or EQIl true on the last byte) places the parser at the root of the command
tree. A leading colon is a colon that is the first character of a program header. Executing a subsystem
command places you in that subsystem until a leading colon or a program message terminator is
found. The commands in this instrument can be placed into three types: common commands, root
level commands, and subsystem commands.

Common commands (defined by IEEE 488.2) control functions that are common to all IEEE 488.2
instruments. These commands are independent of the tree and do not affect the position of the
parser within the tree. *RST is an example of a common command.

Root level commands control many of the basic functions of the instrument. These commands
reside at the root of the command tree. They can always be parsed if they occur at the beginning
of a program message or are preceded by a colon. Unlike common commands, root level
commands place the parser back at the root of the command tree. AUTOSCALE is an example of
a root level command.

Subsystem commands are grouped together under a common node of the command tree, such
as the TIMEBASE commands. Only one subsystem may be selected at a given time. When the
instrument is initially turned on, the command parser is set to the root of the command tree and
no subsystem is selected.

Command headers are created by traversing down the command tree. A legal command header from
the command tree would be :TIMEBASE:RANGE. It consists of the subsystem followed by a
command separated by colons. The compound header contains no spaces.

In the command tree, use the last mnemonic in the compound header as a reference point (for

example, RANGE). Then find the last colon above that mnemonic (TIMEBASE:). That is the point
where the parser resides. Any command below this point can be sent within the current program
message without sending the mnemonics which appear above them (for example, REFERENCE).

Use a colon to separate two commands in the same subsystem.

QUTPUT 707;":CHANNELI1:RANGE 0.5;0FFSET 0"

The colon between CHANNELT and RANGE is necessary because CHANNELT:RANGE specifies a
command in a subsystem. The semicolon between the RANGE command and the OFFSET command
is required to separate the two commands. The OFFSET command does not need CHANNEL1
preceding it because the CHANNELT:RANGE command sets the parser to the CHANNEL1 node in
the tree.

13

1 Introduction

Command Syntax

Sending a Command

Short or Long Forms

14

In accordance with IEEE 488.2, the instrument’s commands are grouped into “subsystems.”
Commands in each subsystem perform similar tasks. Starting with Chapter 5, “System Commands"
each chapter covers a separate subsystem.

It's easy to send a command to the instrument. Simply create a command string from the commands
listed in this book, and place the string in your program language’s output statement. For commands
other than common commands, include a colon before the subsystem name. For example, the
following string places the cursor on the peak laser line and returns the power level of this peak:

OUTPUT 720;”:MEAS:SCAL:POW? MAX”

Commands can be sent using any combination of uppercase or lowercase ASCII characters.
Instrument responses, however, are always returned in uppercase.

The program instructions within a data message are executed after the program message terminator
is received. The terminator may be either a NL (new line) character, an EQI (End-Or-Identify) asserted
in the GPIB interface, or a combination of the two. Asserting the EOI sets the EOI control line low on
the last byte of the data message. The NL character is an ASCII linefeed (decimal 10). The NL (New

Line) terminator has the same function as an EOS (End Of String) and EOT (End Of Text) terminator.

Commands and queries may be sent in either long form (complete spelling) or short form
(abbreviated spelling). The description of each command in this manual shows both versions; the
extra characters for the long form are shown in lowercase. However, commands can be sent using
any combination of uppercase or lowercase ASCII characters. Instrument responses, however, are
always returned in uppercase. Programs written in long form are easily read and are almost
self-documenting. Using short form commands conserves the amount of controller memory needed
for program storage and reduces the amount of 1/0 activity.

The short form is the first four characters of the keyword, unless the fourth character is a vowel. Then
the mnemonic is the first three characters of the keyword. If the length of the keyword is four
characters or less, this rule does not apply, and the short form is the same as the long form.

For example:

:TIMEBASE:DELAY 1E-6 is the long form.
:TIM:DEL 1E-6 is the short form.

Table 3 Long and Short Command Forms

Long Form Short Form How the Rule is Applied

RANGE RANG Short form is the first four characters of the keyword.

PATTERN PATT Short form is the first four characters of the keyword.

DISK DISK Short form is the same as the long form.

DELAY DEL Fourth character is a vowel, short form is the first three
characters.

Programmer’s Guide

White Space

Combining Commands

Introduction 1

White space is defined to be one or more characters from the ASCII set of O through 32 decimal,
excluding 10 (NL). White space is usually optional, and can be used to increase the readability of a
program.

You can combine commands from the same subsystem provided that they are both on the same level
in the subsystem’s hierarchy. Simply separate the commands with a semi-colon (;). If you have
selected a subsystem, and a common command is received by the instrument, the instrument
remains in the selected subsystem. For example, the following commands turn averaging on, then
clears the status information without leaving the selected subsystem.

":ACQUIRE:AVERAGE ON;*CLS;COUNT 1024"

You can send commands and program queries from different subsystems on the same line. Simply
precede the new subsystem by a semicolon followed by a colon. Multiple commands may be any
combination of compound and simple commands. For example:

:CHANNELI :RANGE 0.4;:TIMEBASE:RANGE 1

Adding parameters to a command

String Arguments

Numbers

Programmer’s Guide

Many commands have parameters that specify an option. Use a space character to separate the
parameter from the command as shown in the following line:

OQUTPUT 72037 :INIT:CONT ON™

Separate multiple parameters with a comma (,). Spaces can be added around the commas to
improve readability.

OUTPUT 720;”:MEAS:SCAL:POW:FREQ? 1300, MAX”

Strings contain groups of alphanumeric characters which are treated as a unit of data by the
instrument. You may delimit embedded strings with either single (') or double (") quotation marks.
These strings are case-sensitive, and spaces act as legal characters just like any other character. For
example, this command writes the line string argument to the instrument’s advisory line:
:SYSTEM:DSP ""This is a message.""

Some commands require number arguments. All numbers are expected to be strings of ASCII
characters. You can use exponential notation or suffix multipliers to indicate the numeric value. The
following numbers are all equal:

28 = 0.28E2 = 280E-1 = 28000m = 0.028K = 28E-3K

When a syntax definition specifies that a number is an integer, any fractional part is ignored and
truncated. Using "mV" or "V" following the numeric voltage value in some commands will cause
Error 138-Suffix not allowed. Instead, use the convention for the suffix multiplier.

Table 4 <suffix mult>

alue Mnemonic Value Mnemonic
1E18 EX 1E-3 m
1E15 PE 1E-6 u
1E12 T 1E-9 n
1E9 G 1E-12 p

15

1 Introduction

Table 4 <suffix mult>

alue Mnemonic Value Mnemonic
1E6 MA 1E-15 f
1E3 K 1E-18 a

Table 5 <suffix unit>

Suffix Referenced Unit

v Volt

S Second
W Watt
BIT Bits

dB Decibel
% Percent
Hz Hertz

Infinity Representation

The representation for infinity for this instrument is 9.99999E+37. This is also the value returned when
a measurement cannot be made.

Sequential and Overlapped Commands

IEEE 488.2 makes a distinction between sequential and overlapped commands. Sequential
commands finish their task before the execution of the next command starts. Overlapped commands
run concurrently. Commands following an overlapped command may be started before the
overlapped command is completed. The common commands *WAI and *OPC may be used to ensure
that commands are completely processed before subsequent commands are executed.

16 Programmer’s Guide

Queries

Introduction 1

Command headers immediately followed by a question mark (?) are queries. After receiving a query,
the instrument interrogates the requested subsystem and places the answer in its output queue. The
answer remains in the output queue until it is read or until another command is issued. When read,
the answer is transmitted across the bus to the designated listener (typically a computer). For
example, the query:

: TIMEBASE: RANGE?
places the current time base setting in the output queue. In BASIC, the computer input statement:

ENTER < device address >;Range

passes the value across the bus to the computer and places it in the variable Range. You can use
guery commands to find out how the instrument is currently configured. They are also used to get
results of measurements made by the instrument. For example, the command:

:MEASURE:RISETIME?

tells the instrument to measure the rise time of your waveform and place the result in the output
gueue. The output queue must be read before the next program message is sent. For example, when
you send the query :MEASURE:RISETIME? you must follow it with an input statement. In BASIC, this
is usually done with an ENTER statement immediately followed by a variable name. This statement
reads the result of the query and places the result in a specified variable. If you send another
command or query before reading the result of a query, the output buffer is cleared and the current
response is lost. This also generates a query-interrupted error in the error queue. If you execute an
input statement before you send a query, it will cause the computer to wait indefinitely.

If a measurement cannot be made because of the lack of data, because the source signal is not
displayed, the requested measurement is not possible (for example, a period measurement on an FFT
waveform), or for some other reason, 9.99999E+37 is returned as the measurement result. In TDR
mode with ohms specified, the returned value is 838 MW.

You can send multiple queries to the instrument within a single program message, but you must also
read them back within a single program message. This can be accomplished by either reading them
back into a string variable or into multiple numeric variables. For example, you could read the result
of the query :TIMEBASE:RANGE?;DELAY? into the string variable Results$ with the command: ENTER
707;Results$

When you read the result of multiple queries into string variables, each response is separated by a
semicolon. For example, the response of the query :TIMEBASE:RANGE?;DELAY? would be:

<range_value>;<delay_value>

Use the following program message to read the query :TIMEBASE:RANGE?;DELAY? into multiple
numeric variables:

ENTER 707;Resultl,Result?

Definite-Length Block Response Data

Programmer’s Guide

Definite-length block response data allows any type of device-dependent data to be transmitted over
the system interface as a series of 8-bit binary data bytes. This is particularly useful for sending large
quantities of data or 8-bit extended ASCII codes. The syntax is a pound sign (#) followed by a
non-zero digit representing the number of digits in the decimal integer. After the non-zero digit is the
decimal integer that states the number of 8-bit data bytes being sent. This is followed by the actual
data. For example, for transmitting 4000 bytes of data, the syntax would be:

#44000 <4000 bytes of data> <terminator>

17

1

18

Introduction

The leftmost “4” represents the number of digits in the number of bytes, and “4000” represents the
number of bytes to be transmitted.

Byte order can affect the ability of your programs to correctly interpret block data.

The byte order, or endianness, of returned block data differs between the Waveform and Measure
subsystems. By default, the Waveform subsystem queries return block data in MSB (Most Significant
Byte) first format. If needed, you can change the order to LSB (Least Significant Byte) first using the
command “BYTeorder" on page 9.

The following Measure sybsystem queries return block data in LSB first format:

:MEASure:AMPLitutde:ISIVshit?

:MEASure:AMPLitutde:ISIVsbit:BITS?

:MEASure:JITTer:DDJVsbit?

:MEASure:JITTer:DDJVsbit:BITS?

:MEASure:JITTer:EBITs?

:MEASure:JITTer:PATTern?

:MEASure:SINTegrity:PATTern?
Be aware that the Keysight 10 Libraries Suite, by default, interprets received block data as MSB first
format and there is no Measure subsystem command to change the byte order to LSB. When using
these Measure subsystem queries, you must change the byte order received from MSB to LSB. For
example, you could do one of the following:

Open Keysight VEE’s Advanced Instrument Properties dialog box, select the General tab, and
change the byte order setting. However, using this method results in incorrect Waveform queries.

Write a function to change the byte order in your program.

Use a function already available in your authoring tool such as provided in Microsoft Excel.

Programmer’s Guide

Introduction 1

Starting a Program

Programmer’s Guide

The commands and syntax for initializing the instrument are listed in Chapter 3, “Common
Commands". Refer to your GPIB manual and programming language reference manual for
information on initializing the interface. To make sure the bus and all appropriate interfaces are in a
known state, begin every program with an initialization statement. For example, BASIC provides a
CLEAR command which clears the interface buffer. When you are using GPIB, CLEAR also resets the
instrument's parser. After clearing the interface, initialize the instrument to a preset state using the
*RST command.

The AUTOSCALE command is very useful on unknown waveforms. It automatically sets up the
vertical channel, time base, and trigger level of the instrument.

A typical instrument setup configures the vertical range and offset voltage, the horizontal range,
delay time, delay reference, trigger mode, trigger level, and slope. An example of the commands sent
to the instrument are:

:CHANNEL1:RANGE 16;0FFSET 1.00<terminator>
:SYSTEM:HEADER OFF<terminator>
:TIMEBASE:RANGE 1E-3;DELAY 100E-6<terminator>

This example sets the time base at 1 ms full-scale (100 ms/div), with delay of 100 ms. Vertical is set
to 16V full-scale (2 V/div), with center of screen at 1V, and probe attenuation of 10.

The following program demonstrates the basic command structure used to program the instrument.

10 CLEAR 707 ! Initialize instrument interface

20 QUTPUT 707;"*RST" !Initialize instrument to preset state

30 OUTPUT 707;":TIMEBASE:RANGE 5E-4"! Time base to 500 us full scale

40 QUTPUT 707;":TIMEBASE:DELAY 25E-9"! Delay to 25 ns

50 OUTPUT 707;":TIMEBASE:REFERENCE CENTER"! Display reference at center
60 OUTPUT 707;":CHANNELL:RANGE .16"! Vertical range to 160 mV full scale
70 OUTPUT 707;":CHANNEL1:0FFSET -.04"! Offset to -40 mV

80 OUTPUT 707;":TRIGGER:LEVEL,-.4"! Trigger level to -0.4

90 OUTPUT 707;":TRIGGER:SLOPE POSITIVE"! Trigger on positive slope
1000UTPUT 707;":SYSTEM:HEADER OFF"<terminator>

1100UTPUT 707;":DISPLAY:GRATICULE FRAME"! Grid off

120END

Line 10 initializes the instrument interface to a known state and Line 20 initializes the instrument
to a preset state.

Lines 30 through 50 set the time base, the horizontal time at 500 ms full scale, and 25 ns of delay
referenced at the center of the graticule.

Lines 60 through 70 set the vertical range to 160 mV full scale and the center screen at -40 mV.
Lines 80 through 90 configure the instrument to trigger at -0.4 volts with normal triggering.
Line 100 turns system headers off.

Line 110 turns the grid off.

The DIGITIZE command is a macro that captures data using the acquisition (ACQUIRE) subsystem.
When the digitize process is complete, the acquisition is stopped. The captured data can then be
measured by the instrument or transferred to the computer for further analysis. The captured data
consists of two parts: the preamble and the waveform data record. After changing the instrument
configuration, the waveform buffers are cleared. Before doing a measurement, the DIGITIZE
command should be sent to ensure new data has been collected. You can send the DIGITIZE
command with no parameters for a higher throughput. Refer to the DIGITIZE command in Chapter 4,
“Root Level Commands" for details. When the DIGITIZE command is sent to an instrument, the
specified channel’s waveform is digitized with the current ACQUIRE parameters. Before sending the

19

1

20

Introduction

‘WAVEFORM:DATA? query to get waveform data, specify the WAVEFORM parameters. The number of
data points comprising a waveform varies according to the number requested in the ACQUIRE
subsystem. The ACQUIRE subsystem determines the number of data paints, type of acquisition, and
number of averages used by the DIGITIZE command. This allows you to specify exactly what the
digitized information contains. The following program example shows a typical setup:

QUTPUT 707;":SYSTEM:HEADER OFF"<terminator>

QUTPUT 707;":WAVEFORM:SOURCE CHANNEL1"<terminator>

OUTPUT 707;":WAVEFORM: FORMAT BYTE"<terminator>

QUTPUT 707;":ACQUIRE:COUNT 8"<terminator>

QUTPUT 707;":ACQUIRE:POINTS 500"<terminator>

QUTPUT 707;":DIGITIZE CHANNEL1"<terminator>

OUTPUT 707;":WAVEFORM:DATA?"<terminator>

This setup places the instrument to acquire eight averages. This means that when the DIGITIZE
command is received, the command will execute until the waveform has been averaged at least eight
times. After receiving the :WAVEFORM:DATA? query, the instrument will start passing the waveform
information when queried. Digitized waveforms are passed from the instrument to the computer by
sending a numerical representation of each digitized point. The format of the numerical
representation is controlled with the :\WAVEFORM:FORMAT command and may be selected as BYTE,
WORD, or ASCII. The easiest method of entering a digitized waveform depends on data structures,
available formatting, and I/0 capabilities. You must scale the integers to determine the voltage value
of each point. These integers are passed starting with the leftmost point on the instrument's display.
For more information, refer to Chapter 26, “Waveform Commands". When using GPIB, a digitize
operation may be aborted by sending a Device Clear over the bus (for example, CLEAR 707).

The execution of the DIGITIZE command is subordinate to the status of ongoing limit tests. (See commands
ACQuire:RUNTIl on page 126, MTEST:RUNTIl on page 225, and LTEST:RUNTIl on page 205.) The DIGITIZE
command will not capture data if the stop condition for a limit test has been met.

Programmer’s Guide

Introduction 1

Multiple Databases

Eye/Mask measurements are based on statistical data that is acquired and stored in the color
grade/gray scale database. The color grade/gray scale database consists of all data samples
displayed on the display graticule. The measurement algorithms are dependent upon histograms
derived from the database. This database is internal to the instrument’s applications. The color
grade/gray scale database cannot be imported into an external database application.

If you want to perform an eye measurement, it is necessary that you first produce an eye diagram by
triggering the instrument with a synchronous clock signal. Measurements made on a pulse waveform
while in Eye/Mask mode will fail.

Firmware revision A.03.00 and later allows for multiple color grade/gray scale databases to be
acquired and displayed simultaneously, including

all four instrument channels
all four math functions
one saved color grade/gray scale file
The ability to use multiple databases allows for the comparison of
channels to each other
channels to a saved color grade/gray scale file
functions to the channel data on which it is based

The advantage of acquiring and displaying channels and functions simultaneously is test times are
greatly reduced. For example, the time taken to acquire two channels in parallel is approximately the
same time taken to acquire a single channel.

Using Multiple Databases in Remote Programs

Most commands that control histograms, mask tests, or color grade data have additional optional
parameters that were not available in firmware revisions prior to A.03.00. You can use the commands
to control a single channel or add the argument APPend to enable more than one channel. The
following example illustrates two uses of the CHANnel<n>:DISPlay command.

SYSTem:MODE EYE

CHANnel1:DISPTay ON

CHANnel2:DISPTay ON

The result using the above set of commands, is Channel 1 cleared and disabled while Channel 2 is
enabled and displayed. However, by adding the argument APPend to the last command of the set,
both Channels 1 and 2 will be enabled and displayed .

SYSTem:MODE EYE
CHANnel1:DISPTay ON
CHANnel2:DISPlay ON,APPend

For a example of using multiple databases, refer to “Multi-Database Example” on page 21.

Downloading a Database

Programmer’s Guide

The general process for downloading a color grade/gray scale database is as follows:

1 Send the command :WAVEFORM:SOURCE CGRADE. This will select the color grade/gray scale
database as the waveform source.

2 Issue :WAVeform:FORMat WORD. Database downloads only support word formatted data (16-bit
integers).

3 Send the query :WAVeform:DATA? The data will be sent by means of a block data transfer as a
two-dimensional array, 451 words wide by 321 words high (refer to “Definite-Length Block

21

1 Introduction

Auto Skew

22

Response Data” on page 21). The data is transferred starting with the upper left pixel of the
display graticule, column by column, until the lower right pixel is transferred.

Send the command :WAVeform:XORigin to obtain the time of the left column.
5 Send the command :WAVeform:XINC to obtain the time increment of each column.

Send the command :WAVeform:YORIgin to obtain the voltage or power of the vertical center of
the database.

7 Send the command :WAVeform:YORIgin to obtain the voltage or power of the incremental row.

The information from steps 4 through 7 can also be obtained with the command
‘WAVeform:PREamble.

Another multiple database feature is the auto skew. You can use the auto skew feature to set the
horizontal skew of multiple, active channels with the same bit rate, so that the waveform crossings
align with each other. This can be very convenient when viewing multiple eye diagrams
simultaneously. Slight differences between channels and test devices may cause a phase difference
between channels. Auto skew ensures that each eye is properly aligned, so that measurements and
mask tests can be properly executed.

In addition, auto skew optimizes the instrument trigger level. Prior to auto skew, at least one channel
must display a complete eye diagram in order to make the initial bit rate measurement. Auto skew
requires more data to be sampled; therefore, acquisition time during auto skew is slightly longer than
acquisition time during measurements.

Programmer’s Guide

Files

Programmer’s Guide

Introduction 1

When specifying a file name in a remote command, enclose the name in double quotation marks,
such as "filename". If you specify a path, the path should be included in the quotation marks. All files
stored using remote commands have file name extensions as listed in Table 6. You can use the full
path name, a relative path name, or no path.

If you do not specify an extension when storing a file, or specify an incorrect extension, it will be
corrected automatically according to the following rules:

No extension specified: add the extension for the file type.

Extension does not match file type: retain the filename, (including the current extension) and add
the appropriate extension.

You do not need to use an extension when loading a file if you use the optional destination
parameter. For example, :DISK:LOAD "STM1_0C3",SMASK automatically adds .msk to the file name.
ASCII waveform files can be loaded only if the file name explicitly includes the .txt extension. Table 7
on page 24 shows the rules used when loading a specified file.

If you don’t specify a directory when storing a file, the location of the file will be based on the file
type. Table 8 on page 24 shows the default locations for storing files. On 86100C/D instruments, files
are stored on the D: drive. On 86100A/B instruments, files are stored on the C: drive.

When loading a file, you can specify the full path name, a relative path name, or no path name.
Table 9 on page 25 lists the rules for locating files, based on the path specified. Standard masks
loaded from D:\Scope\masks. Files may be stored to or loaded from any path external drive or on any
mapped network drive.

23

1 Introduction

Table 6 File Name Extensions

File Type File Name Extension Command

Waveform - internal format wfm “STORe" on page 19

Waveform - text format (Verbose, XY Verbose, or Y .txt “STORe" on page 19

values)

Pattern Waveform .Csv “PWAVeform:SAVE" on page 14
Setup set “STORe" on page 19

Color grade - Gray Scale .cgs “STORe" on page 19

Jitter Memory jd “STORe" on page 19

Screen image * .bmp, .eps, .gif, .pcx, .ps, .jpg, -tif “SIMage" on page 15

Mask .msk, .pcm “SAVE" on page 17

TDR/TDT dr “STORe" on page 19

MATLAB script .m “MATLab:SCRipt" on page 13
S-Parameter (Touchstone format) S1p, .s2p, .s4p “SPARameter:SAVE" on page 17
S-Parameter (text format) ixt “SPARameter:SAVE" on page 17

*For .gif and if file formats, this instrument uses LZW compression/decompression licensed under U.S. patent No 4,558,302 and foreign
counterparts. End user should not modify, copy, or distribute LZW compression/decompression capability. For .jpg file format, this instrument
uses the .jpg software written by the Independent JPEG Group.

Table 7 Rules for Loading Files

File Name Extension Destination ‘Rule

No extension Not specified Default to internal waveform format; add .wfm extension

Extension does not match file type Not specified Default to internal waveform format; add .wfm extension

Extension matches file type Not specified Use file name with no alterations; destination is based on extension file
type

No extension Specified Add extension for destination type; default for waveforms is internal
format (.wfm)

Extension does not match destination file Specified Retain file name; add extension for destination type. Default for waveforms

type is internal format (.wfm)

Extension matches destination file type Specified Retain file name; destination is as specified

Table 8 Default File Locations

File Type Default Location

Waveform - internal format, text format (Verbose, XY Verbose, or Y values), D:\User Files\waveforms

Pattern Waveforms D:\User Files\waveforms

24 Programmer’s Guide

Table 8 Default File Locations (continued)

Introduction 1

File Type Default Location

Setup

Color Grade - Gray Scale
Jitter Memory

Screen Image

Mask

TDR/TDT calibration data (software revision A.05.00 and below)
TDR/TDT calibration data (software revision A.06.00 and above)
MATLAB script

S-Parameters

D:\User Files\setups

D:\User Files\colorgrade-grayscale
D:\User Files\jitter data

D:\User Files\screen images

C:\Scope\masks (standard masks)
D:\User Files\masks (user-defined masks)

D:\User Files\TDR normalization
D:\User Files\TDR calibration
D:\User Files\MATLAB scripts

D:\User Files\S-parameter data

Table 9 File Locations (Loading Files)

File Name Rule

Full path name Use file name and path specified

Relative path name Full path name is formed relative to the present working directory, set with the command :DISK:CDIR. The present

working directory can be read with the query :DISK:PWD?

File name with no Add the file name to the default path (D:\User Files) based on the file type. (C drive on 86100A/B instruments.)

preceding path

Programmer’s Guide

1 Introduction

Status Reporting

Status Byte Register

26

Almost every program that you write will need to monitor the instrument for its operating status. This
includes querying execution or command errors and determining whether or not measurements have
been completed. Several status registers and queues are provided to accomplish these tasks. In this
section, you'll learn how to enable and read these registers.

Refer to Figure 5 on page 27 for an overall status reporting decision chart.

See Figure 6 and Figure 7 to learn the instrument's status reporting structure which allows you to
monitor specific events in the instrument.

Table 10 on page 32 lists the bit definitions for each bit in the status reporting data structure.

The Status Byte Register, the Standard Event Status Register group, and the Output Queue are
defined as the Standard Status Data Structure Model in IEEE 488.2-1987. IEEE 488.2 defines data
structures, commands, and common bit definitions for status reporting. There are also
instrument-defined structures and bits.

To monitor an event, first clear the event, then enable the event. All of the events are cleared when
you initialize the instrument. To generate a service request (SRQ) interrupt to an external computer,
enable at least one bit in the Status Byte Register. To make it possible for any of the Standard Event
Status Register bits to generate a summary bit, the corresponding bits must be enabled. These bits
are enabled by using the *ESE common command to set the corresponding bit in the Standard Event
Status Enable Register. To generate a service request (SRQ) interrupt to the computer, at least one
bit in the Status Byte Register must be enabled. These bits are enabled by using the *SRE common
command to set the corresponding bit in the Service Request Enable Register. These enabled bits
can then set RQS and MSS (bit 6) in the Status Byte Register. For more information about common
commands, see Chapter 3, “Common Commands".

The Status Byte Register is the summary-level register in the status reporting structure. It contains
summary bits that monitor activity in the other status registers and queues. The Status Byte Register
is a live register. That is, its summary bits are set and cleared by the presence and absence of a
summary bit from other event registers or queues. If the Status Byte Register is to be used with the
Service Request Enable Register to set bit 6 (RQS/MSS) and to generate an SRQ, at least one of the
summary bits must be enabled, then set. Also, event bits in all other status registers must be
specifically enabled to generate the summary bit that sets the associated summary bit in the Status
Byte Register.

The Status Byte Register can be read using either the *STB? common command query or the GPIB
serial poll command. Both commands return the decimal-weighted sum of all set bits in the register.
The difference between the two methods is that the serial poll command reads bit 6 as the Request
Service (RQS) bit and clears the bit which clears the SRQ interrupt. The *STB? query reads bit 6 as
the Master Summary Status (MSS) and does not clear the bit or have any affect on the SRQ interrupt.
The value returned is the total bit weights of all of the bits that are set at the present time.

Programmer’s Guide

Do you want
to do status
reporting?

Reset the instrument
and clear the stotus
registers.

QUTPUT 7@7;"+RST"
OUTPUT 707;"+CLS"

Do you want to
send a Service Request

Introduction

(SRQ) interrupt to the
controller?

Do you want to
report events monitored by
the Standard Event Stotus
Register?

Use the +ESE common command
to enable the bits you want to
use to generate o summary bit
to the Status Byte Register.

ot

Y

Use the »ESE common command to
enable the bits you want to
generate the RAS/MSS bit to set
bit 6 in the Stotus Byte Register
and send an SRQ to the computer.
If events are monitored by the
Standard event Status Register
also Enable ESB with *SRE command,

Y

v

1

Use the following to
reod the Stondard

Event Status Register:

QUTPUT 7@7;"+ESR?
ENTER 7@7;<variable>
PRINT <variable>

Activate the instrument function
that you want to monitor.

!

When an interrupt occurs, read
the Status Byte Register. Use the
following: P=SPOLL(707)

PRINT P

/

!

To read the Status Byte Register
use the following:

OUTPUT 707;"sSTB?"

ENTER 707;<variable>

PRINT <variable>

This reads the decimal value of
the Status Byte Register.

Use the following to
see if an operation
is complete:

QUTPUT 7@7;"+0PC?
ENTER 7@7:<variable>
PRINT <variable>

!

Determine which bits in the
Status Byte Register are set.

Use the following to
read the contents of
the status byte:
OUTPUT 707;"+STB?
ENTER 7@7;:<variable>
PRINT <variable>

= END)

Programmer’s Guide

Figure 5

Status Reporting Decision Chart

TAN—/

The use of bit 6 can be confusing. This bit was defined to cover all possible computer interfaces,
including a computer that could not do a serial poll. The important point to remember is that, if you
are using an SRQ interrupt to an external computer, the serial poll command clears bit 6. Clearing bit
6 allows the instrument to generate another SRQ interrupt when another enabled event occurs. The
only other bit in the Status Byte Register affected by the *STB? query is the Message Available bit (bit
4). If there are no other messages in the Output Queue, bit 4 (MAV) can be cleared as a result of

reading the response to the *STB? query.

54700008

27

1

28

Introduction

If bit 4 (weight = 16) and bit 5 (weight = 32) are set, a program would print the sum of the two
weights. Since these bits were not enabled to generate an SRQ, bit 6 (weight = 64) is not set.

s-:*

Request (SRO)

(Mask)
User
> I:U:U Event -
. . nt = Enable
R%-Q1St%r‘ F?e-g1ster‘ Register
Acquisition
Event
Register
| 2
Register
- (Mask)
> Operation
Operation Status
™1 Status - Enable -
B Register Register
8] | -
Limit | '.,'Hutput !
Test Queue
25t
Event (Mask)
Register
. Standard
Standard Event
vent. »| Status -
. 2 l:U =) Enable
—p] Register Register
LI'I' 1l
Queue -

Figure 6 Status Reporting Overview

Interrupt
to Controller

shtover

Programmer’s Guide

Introduction
Acquisition P T T T 2 | 5 | 2 | L] 0] Read by:
Event ALER?
Register - - eme | o | ez | o fcowe
I I I I I I I I
Acquisition Set by: AEEN
Event Enable Read by: AEEN?
Register
7 6 5 4 3 2 1 0
Limit Test
Mask Event o) e - - - ean oo | Read by
Test Event |ttt S L 2 L LY O NRead by: Register LTER?
Register I T U R I MTER? T I I I I I I T
FAILJCOMP Limit Test Set by:
MaskTest I I I I I I I Event Enable Read by:
askles Set by: MTEE Register
Event Enable Read by: MTEE?
Register ea Y :
Precision
Timebase 7 6 5 4 3 2 1 0
Event
; [U (U RN IR RN Read by:
Register LosS PTER?
I I I I I I I Clock
Precision Recovery 7 6 5 4 3 2 1 0
iepase | | | | | | | | | Event Read by
Evemt.Emable Register === | FIN |SPR2 INSPRZJSPR1 JNSPRY LOCK| UNLK CRER?
Register I I I I I I I I
Clock
Set by: PTEE Recovery Set by:
Read by: PTEE? Event
Enable
Register
Jitter
Event
Register.
Read by 7 6 5 4 3 2 1 0
JER?
EECN IEEEN IEERN IEEEN ICEEN Y] AINGEES (7341
. I I I I I I I
Jitter
Event Emablel | | | | | | | |
Register.
Set by
JEE.
Read hy
JEE?
Operation 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0 Readvby:
Status IR U I I I D D T D N OPER
Register PTIMEuTEST| ACQ JLTEST|CLCK
I I I I I I I I I I I I I I I I Set by:
Operation OPEE
Status Enable Read by:
Register OPEE?
To Bit 7 of
Status Byte Register
Figure 7 Status Reporting Data Structures

Programmer’s Guide

LTEE
LTEE?

CREE

Read by:CREE?

29

30

Introduction

Read by: LER?
Local
Event LOCAL|
Register REG
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Read by: UER?
User
Event - - - - - - - - - - -— - - - - LCL
Register
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Set b UEE
User et by:
Event Enable Read by: UEE?
Register

7 6 5 4 3 2 1 0 EE%‘é?by:
Standard
Event Status PON URQ CME EXE DDE QYE | ROL 0PC
Register
1 1 1 1 1 1 1 1
Standard Set by: *ESE <NRf>
Event Status Enable Read by: *ESE?
Register
Read by:
Read by: TER?
:SYST: DSP? Trigger
MSG Evant | TR
Event Register REG
Register
From Operation
Status Register Output
Queue
~a—— Read by: SERIAL POLL
7] 6] 51 4] 5] ¢ L] o] fead bv:
Status ROS
Byte OPER ESB MAY == MSG | USR TRG
A MSS
Register
X 1 1 1 1 1 1 1
service Set by: *SRE<NRF=
Request Enable Read by:*SRE?
Register

* Messages sent to the display via :SYST:DIS
will not set this bit. The bit is set only
SRQ by internal messages.

statdata2

Status Reporting Data Structures (continued)

This BASIC example uses the *STB? query to read the contents of the instrument’s Status Byte
Register when none of the register's summary bits are enabled to generate an SRQ interrupt.

10 OUTPUT 707;":SYSTEM:HEADER OFF;*STB?"!Turn headers off

20 ENTER 707;Result!Place result in a numeric variable

30 PRINT Result!Print the result

40 End

The next program prints 132 and clears bit 6 (RQS) of the Status Byte Register. The difference in the
decimal value between this example and the previous one is the value of bit 6 (weight = 64). Bit 6 is
set when the first enabled summary bit is set, and is cleared when the Status Byte Register is read by
the serial poll command.

Programmer’s Guide

Introduction 1

This example uses the BASIC serial poll (SPOLL) command to read the contents of the instrument’s
Status Byte Register.

10 Result = SPOLL(707)

20 PRINT Result

30 END

Use Serial Polling to Read the Status Byte Register. Serial polling is the preferred method to read the
contents of the Status Byte Register because it resets bit 6 and allows the next enabled event that
occurs to generate a new SRQ interrupt.

Service Request Enable Register

Setting the Service Request Enable Register bits enables corresponding bits in the Status Byte
Register. These enabled bits can then set RQS and MSS (bit 6) in the Status Byte Register. Bits are
set in the Service Request Enable Register using the *SRE command, and the bits that are set are
read with the *SRE? query. Bit 6 always returns O. Refer to the Status Reporting Data Structures
shown in Figure 7 on page 29. This example sets bit 4 (MAV) and bit 5 (ESB) in the Service Request
Enable Register.

OUTPUT 707;"*SRE 48"

This example uses the parameter “48” to allow the instrument to generate an SRQ interrupt under
the following conditions:

When one or more bytes in the Output Queue set bit 4 (MAV).

When an enabled event in the Standard Event Status Register generates a summary bit that sets
bit 5 (ESB).

Trigger Event Register (TRG)

Programmer’s Guide

This register sets the TRG bit in the status byte when a trigger event occurs. The TRG event register
stays set until it is cleared by reading the register or using the *CLS (clear status) command. If your

application needs to detect multiple triggers, the TRG event register must be cleared after each one.
If you are using the Service Request to interrupt a computer operation when the trigger bit is set, you
must clear the event register after each time it is set.

31

1 Introduction

Table 10 Status Reporting Bit Definition (Sheet 1 of 2)
Bit Description Definition
ACQ Acquisition Indicates that acquisition test has completed in the Acquisition Register.
AREQD Autoscale Required Indicates that a parameter change in Jitter Mode has made an autoscale necessary.
CLCK CloCk Indicates that one of the enabled conditions in the Clock Recovery Register has occurred.
CME Command Error Indicates if the parser detected an error.
COMP Complete Indicates the specified test has completed.
DDE Device Dependent Error Indicates if the device was unable to complete an operation for device dependent reasons.
EFAIL Edge Characterization Fail Indicates that the characterizing of edges in Jitter Mode has failed.
ESB Event Status Bit Indicates if any of the enabled conditions in the Standard Event Status Register have
occurred.
EXE Execution Error Indicates if a parameter was out of range or was inconsistent with the current settings.
FAIL Fail Indicates the specified test has failed.
FIN Finished Indicates that a clock recovery relock operation has completed.
JLOSS Pattern Synchronization Indicates that the pattern synchronization is lost in Jitter Mode.
Loss
LCL Local Indicates if a remote-to-local transition occurs.
LOCK LOCKed Indicates that a locked or trigger capture condition has occurred in the Clock Recovery
Module.
LOSS Time Reference Loss Indicates the Precision Timebase (provided by the Keysight 86107A module) has detected a
time reference loss due to a change in the reference clock signal.
LTEST Limit Test Indicates that one of the enabled conditions in the Limit Test Register has occurred.
MAV Message Available Indicates if there is a response in the output queue.
MSG Message Indicates if an advisory has been displayed.
MSS Master Summary Status Indicates if a device has a reason for requesting service.
MTEST Mask Test Indicates that one of the enabled conditions in the Mask Test Register has occurred.
NSPR1 No Signal Present Receiver Indicates that the Clock Recovery Module has detected the loss of an optical signal on
1 receiver one.
NSPR2 No Signal Present Receiver Indicates that the Clock Recovery Module has detected the loss of an optical signal on
2 receiver two.
0PC Operation Complete Indicates if the device has completed all pending operations.
OPER Operation Status Register Indicates if any of the enabled conditions in the Operation Status Register have occurred.
PON Power On Indicates power is turned on.
PTIME Precision Timebase Indicates that one of the enabled conditions in the Precision Timebase Register has occurred.
QYE Query Error Indicates if the protocol for queries has been violated.
RQL Request Control Indicates if the device is requesting control.
32 Programmer’s Guide

Introduction 1

Table 10 Status Reporting Bit Definition (Sheet 2 of 2)

Bit Description Definition

RQS Request Service Indicates that the device is requesting service.

SPR1 Signal Present Receiver 1 Indicates that the Clock Recovery Module has detected an optical signal on receiver one.

SPR2 Signal Present Receiver 2 Indicates that the Clock Recovery Module has detected an optical signal on receiver two.

TRG Trigger Indicates if a trigger has been received.

UNLK UNLoCKed Indicates that an unlocked or trigger loss condition has occurred in the Clock Recovery
Module.

URQ Not used. Permanently set to zero.

USR User Event Register Indicates if any of the enabled conditions have occurred in the User Event Register.

Standard Event Status Register

The Standard Event Status Register (SESR) monitors the following instrument status events:
PON - Power On
CME - Command Error
EXE - Execution Error
DDE - Device Dependent Error
QYE - Query Error
RQC - Request Control
OPC - Operation Complete

When one of these events occurs, the corresponding bit is set in the register. If the corresponding bit
is also enabled in the Standard Event Status Enable Register, a summary bit (ESB) in the Status Byte
Register is set. The contents of the Standard Event Status Register can be read and the register
cleared by sending the *ESR? query. The value returned is the total bit weights of all of the bits set at
the present time. If bit 4 (weight = 16) and bit 5 (weight = 32) are set, the program prints the sum of
the two weights. This example uses the *ESR? query to read the contents of the Standard Event
Status Register.

10 QUTPUT 707;":SYSTEM:HEADER OFF"!Turn headers off

20 OUTPUT 707;"*ESR?"

30 ENTER 707;Result!Place result in a numeric variable
40 PRINT Result!Print the result

50 End

Standard Event Status Enable Register

For any of the Standard Event Status Register (SESR) bits to generate a summary bit, you must first
enable the bit. Use the *ESE (Event Status Enable) common command to set the corresponding bit in
the Standard Event Status Enable Register. Set bits are read with the *ESE? query. Suppose your
application requires an interrupt whenever any type of error occurs. The error status bits in the
Standard Event Status Register are bits 2 through 5. The sum of the decimal weights of these bits is
60. Therefore, you can enable any of these bits to generate the summary bit by sending:

OUTPUT 707;"*ESE 60"

Whenever an error occurs, the instrument sets one of these bits in the Standard Event Status
Register. Because the bits are all enabled, a summary bit is generated to set bit 5 (ESB) in the Status
Byte Register. If bit 5 (ESB) in the Status Byte Register is enabled (via the *SRE command), a service
request interrupt (SRQ) is sent to the external computer.

Programmer’s Guide 33

1

Introduction

Disabled SESR Bits Respond, but Do Not Generate a Summary Bit. Standard Event Status Register bits that are not
enabled still respond to their corresponding conditions (that is, they are set if the corresponding event occurs).
However, because they are not enabled, they do not generate a summary bit in the Status Byte Register.

User Event Register (UER)

This register hosts the LCL bit (bit 0) from the Local Events Register. The other 15 bits are reserved.
You can read and clear this register using the UER? query. This register is enabled with the UEE
command. For example, if you want to enable the LCL bit, you send a mask value of 1 with the UEE
command; otherwise, send a mask value of O.

Local Event Register (LCL)

This register sets the LCL bit in the User Event Register and the USR bit (bit 1) in the Status byte. It
indicates a remote-to-local transition has occurred. The LER? query is used to read and to clear this
register.

Operation Status Register (OPR)

This register hosts the CLCK bit (bit 7), the LTEST bit (bit 8), the ACQ bit (bit 9) and the MTEST bit (bit
10). The CLCK bit is set when any of the enabled conditions in the Clock Recovery Event Register
have occurred. The LTEST bit is set when a limit test fails or is completed and sets the corresponding
FAIL or COMP bit in the Limit Test Events Register. The ACQ bit is set when the COMP bit is set in the
Acquisition Event Register, indicating that the data acquisition has satisfied the specified completion
criteria. The MTEST bit is set when the Mask Test either fails specified conditions or satisfies its
completion criteria, setting the corresponding FAIl or COMP bits in the Mask Test Events Register.
The PTIME bit is set when there is a loss of the precision timebase reference occurs setting a bit in the
Precision Timebase Events Register. The JIT bit is set in Jitter Mode when a bit is set in the Jitter
Events Register. This occurs when there is a failure or an autoscale is needed. If any of these bits are
set, the OPER bit (bit 7) of the Status Byte register is set. The Operation Status Register is read and
cleared with the OPER? query. The register output is enabled or disabled using the mask value
supplied with the OPEE command.

Acquisition Event Register (AER)

Bit 0 (COMP) of the Acquisition Event Register is set when the acquisition limits complete. The
Acquisition completion criteria are set by the ACQuire:RUNtil command. Refer to “RUNTIl” on

page 13. The Acquisition Event Register is read and cleared with the ALER? query. Refer to “ALER?”
on page 9.

Clock Recovery Event Register (CRER)

34

This register hosts the UNLK bit (bit 0), LOCK bit (bit 1), NSPR1 bit (bit 2), SPR1 bit (bit 3), NSPR2 bit
(bit 4) and SPR2 (bit 5). Bit 0 (UNLK) of the Clock Recovery Event Register is set when an
83491/2/3/4/5/6A clock recovery module becomes unlocked or trigger loss has occurred. Bit 1
(LOCK) of the Clock Recovery Event Register is set when a clock recovery module becomes locked or
a trigger capture has occurred. If an 83496A module is locked, sending the CRECovery:RELock
command does not set UNLK bit (bit 0) or LOCK bit (bit 1). To determine if the RELock command has
completed, use the CRECovery:LOCKed? query. Refer to “RELock" on page 23.

Bits 2 through 5 are valid only for modules that support the :SPResent command (refer to Table 28
on page 152 and “SPResent?" on page 24), which includes the 83491/2/3/4A and 86108A/B
modules. Since these bits provide information on optical signals they are not effected by 83495/6A
modules. Bit 2 (NSPR1) of the Clock Recovery Event Register is set when an clock recovery module
transitions to no longer detecting an optical signal on receiver one. Bit 3 (SPR1) of the Clock
Recovery Event Register is set when an clock recovery module transitions to detecting an optical
signal on receiver one. Bit 4 (NSPR2) of the Clock Recovery Event Register is set when an clock
recovery module transitions to no longer detecting an optical signal on receiver two. Bit 5 (SPR2) of

Programmer’s Guide

Introduction 1

the Clock Recovery Event Register is set when an clock recovery module transitions to detecting an
optical signal on receiver two. The Clock Recovery Event Register is read and cleared with the CRER?
query. Refer to “CRER?” on page 13. When either of the UNLK, LOCK, NSPR1, SPR1, NSPR2 or
SPR2 bits are set, they in turn set CLCK bit (bit 7) of the Operation Status Register. Results from the
Clock Recovery Event Register can be masked by using the CREE command to set the Clock
Recovery Event Enable Register. Refer to Refer to “CREE” on page 12 for enable and mask value
definitions.

Limit Test Event Register (LTER)

Bit 0 (COMP) of the Limit Test Event Register is set when the Limit Test completes. The Limit Test
completion criteria are set by the LTESt:RUN command. Refer to “RUNTIl” on page 10. Bit 1 (FAIL) of
the Limit Test Event Register is set when the Limit Test fails. Failure criteria for the Limit Test are
defined by the LTESt:FAIL command. Refer to “FAIL” on page 7. The Limit Test Event Register is read
and cleared with the LTER? query. Refer to “LTER?” on page 17. When either the COMP or FAIL bits
are set, they in turn set the LTEST bit (bit 8) of the Operation Status Register. You can mask the
COMP and FAIL bits, thus preventing them from setting the LTEST bit, by defining a mask using the
LTEE command. Refer to “LTEE” on page 16. When the COMP bit is set, it in turn sets the ACQ bit (bit
9) of the Operation Status Register. Results from the Acquisition Register can be masked by using
the AEEN command to set the Acquisition Event Enable Register to the value 0. You enable the
COMP bit by setting the mask value to 1.

Jitter Event Register (JIT)

Bit O (EFAIL) of the Jitter Event Register is set when characterizing edges in Jitter Mode fails. Bit 1
(JLOSS) of the register is set when pattern synchronization is lost in Jitter Mode. Bit 2 (AREQD) of the
register is set when a parameter change in Jitter Mode has made autoscale necessary. Bit 12 of the
Operation Status Register (JIT) indicates that one of the enabled conditions in the Jitter Event
Register has occurred. You can mask the EFAIL, JLOSS, and AREQD bits, thus preventing them from
setting the JIT bit, by setting corresponding bits to zero using the JEE command. Refer to “JEE” on
page 15.

Mask Test Event Register (MTER)

Bit 0 (COMP) of the Mask Test Event Register is set when the Mask Test completes. The Mask Test
completion criteria are set by the MTESt:RUNTIl command. Refer to “RUNTIl” on page 16. Bit 1
(FAIL) of the Mask Test Event Register is set when the Mask Test fails. This will occur whenever any
sample is recorded within any region defined in the mask. The Mask Test Event Register is read and
cleared with the MTER? query. Refer to “MTER?” on page 19. When either the COMP or FAIL bits are
set, they in turn set the MTEST bit (bit 10) of the Operation Status Register. You can mask the COMP
and FAIL bits, thus preventing them from setting the MTEST bit, by setting corresponding bits to zero
using the MTEE command. Refer to “MTEE” on page 18.

Precision Timebase Event Register (PTER)

Error Queue

Programmer’s Guide

The Precision Timebase feature requires the installation of the Keysight 86107A Precision Timebase
Module. Bit O (LOSS) of the Precision Timebase Event Register is set when loss of the time reference
occurs. Time reference is lost when a change in the amplitude or frequency of the reference clock
signal is detected. The Precision Timebase Event Register is read and cleared with the PTER? query.
Refer to “PTER?” on page 20. When the LOSS bit is set, it in turn sets the PTIME bit (bit 11) of the
Operation Status Register. Results from the Precision Timebase Register can be masked by using the
PTEE command to set the Precision Timebase Event Enable Register to the value 0. You enable the
LOSS bit by setting the mask value to 1. Refer to “PTEE” on page 20.

As errors are detected, they are placed in an error queue. This queue is first in, first out. If the error
gueue overflows, the last error in the queue is replaced with error -350, “Queue overflow”. Any time
the queue overflows, the oldest errors remain in the queue, and the most recent error is discarded.

35

1 Introduction

Output Queue

Message Queue

The length of the instrument's error queue is 30 (29 positions for the error messages, and 1 position
for the “Queue overflow” message). The error queue is read with the SYSTEM:ERROR? query.
Executing this query reads and removes the oldest error from the head of the queue, which opens a
position at the tail of the queue for a new error. When all the errors have been read from the queue,
subsequent error queries return 0, “No error.” The error queue is cleared when any of the following
occurs:

When the instrument is powered up.
When the instrument receives the *CLS common command.
When the last item is read from the error queue.

For more information on reading the error queue, refer to the SYSTEM:ERROR? query in Chapter 5,
“DATE 117". For a complete list of error messages, refer to “Error Messages" on page 46.

The output queue stores the instrument-to-computer responses that are generated by certain
instrument commands and queries. The output queue generates the Message Available summary bit
when the output queue contains one or more bytes. This summary bit sets the MAV bit (bit 4) in the
Status Byte Register. The output queue may be read with the BASIC ENTER statement.

The message gueue contains the text of the last message written to the advisory line on the screen of
the instrument. The queue is read with the SYSTEM:DSP? query. Note that messages sent with the
SYSTem:DSP command do not set the MSG status bit in the Status Byte Register.

Clearing Registers and Queues

36

The *CLS common command clears all event registers and all queues except the output queue. If
*CLS is sent immediately following a program message terminator, the output queue is also cleared.

Programmer’s Guide

Introduction 1

Interface Functions

The interface functions deal with general bus management issues, as well as messages that can be
sent over the bus as bus commands. In general, these functions are defined by IEEE 488.1. The
instrument is equipped with a GPIB interface connector on the rear panel. This allows direct
connection to a GPIB equipped computer. You can connect an external GPIB compatible device to
the instrument by installing a GPIB cable between the two units. Finger tighten the captive screws on
both ends of the GPIB cable to avoid accidentally disconnecting the cable during operation. A
maximum of fifteen GPIB compatible instruments (including a computer) can be interconnected in a
system by stacking connectors. This allows the instruments to be connected in virtually any
configuration, as long as there is a path from the computer to every device operating on the bus. The
interface capabilities of this instrument, as defined by IEEE 488.1, are listed in the Table 11 on

page 38.

Avoid stacking more than three or four cables on any one connector. Multiple connectors produce leverage that
can damage a connector mounting.

GPIB Default Startup Conditions

The following default GPIB conditions are established during power-up: 1) The Request Service
(RQS) bit in the status byte register is set to zero. 2) All of the event registers, the Standard Event
Status Enable Register, Service Request Enable Register, and the Status Byte Register are cleared.

Command and Data Concepts

The GPIB has two modes of operation, command mode and data mode. The bus is in the command
mode when the Attention (ATN) control line is true. The command mode is used to send talk and
listen addresses and various bus commands such as group execute trigger (GET). The bus is in the
data mode when the ATN line is false. The data mode is used to convey device-dependent messages
across the bus. The device-dependent messages include all of the instrument specific commands,
queries, and responses found in this manual, including instrument status information.

Communicating Over the Bus

Device addresses are sent by the computer in the command mode to specify who talks and who
listens. Because GPIB can address multiple devices through the same interface card, the device
address passed with the program message must include the correct interface select code and the
correct instrument address.

Device Address = (Interface Select Code * 100) + (Instrument Address)

The examples in this manual assume that the instrument is at device address 707. Each interface
card has a unique interface select code. This code is used by the computer to direct commands and
communications to the proper interface. The default is typically “7” for GPIB interface cards. Each
instrument on the GPIB must have a unique instrument address between decimal 0 and 30. This
instrument address is used by the computer to direct commands and communications to the proper
instrument on an interface. The default is typically “7” for this instrument. You can change the
instrument address in the Utilities, Remote Interface dialog box.

Do Not Use Address 21 for an Instrument Address. Address 21 is usually reserved for the Computer interface
Talk/Listen address and should not be used as an instrument address.

Programmer’s Guide 37

1 Introduction

Bus Commands

The following commands are IEEE 488.1 bus commands (ATN true). IEEE 488.2 defines many of the
actions that are taken when these commands are received by the instrument. The device clear (DCL)
and selected device clear (SDC) commands clear the input buffer and output queue, reset the parser,
and clear any pending commands. If either of these commands is sent during a digitize operation,
the digitize operation is aborted. The group execute trigger (GET) command arms the trigger. This is
the same action produced by sending the RUN command. The interface clear (IFC) command halts
all bus activity. This includes unaddressing all listeners and the talker, disabling serial poll on all
devices, and returning control to the system computer.

Table 11 Interface Capabilities

Code Interface Function Capability

SH1 Source Handshake Full Capability

AH1 Acceptor Handshake Full Capability

T5 Talker Basic Talker/Serial Poll/Talk Only Mode/. Unaddress if Listen Address (MLA)
L4 Listener Basic Listener/Unaddresses if Talk Address (MTA)
SR1 Service Request Full Capability

RL1 Remote Local Complete Capability

PP1 Parallel Poll Remote Configuration

DC1 Device Clear Full Capability

DT1 Device Trigger Full Capability

co Computer No Capability

E2 Driver Electronics Tri State (1 MB/SEC MAX)

38 Programmer’s Guide

Introduction 1

Commands Unavailable in Jitter Mode

This section describes the commands that can generate errors when controlling the instrument in
Jitter mode. This can be due to the command or one of its arguments that are not allowed in Jitter
mode. Refer to the individual command reference for detailed information.

Measure Commands
MATLab 270
MATLab<N>:SCRipt 270
MATLab<N>:ETENable 270
MATLab<N>:ETEXt? 270

Waveform Files

Waveform and Color Grade/Gray Scale files cannot be saved or loaded in Jitter mode. The
commands listed below produce a "Settings conflict" error when executed in Jitter Mode.

STORe 173

When used with sources other than SETup and JDMemory.
STORe:WAVeform 114

ACQuire:SWAVeform 128

LTESt:SWAVeform 209

MTESt:SWAVeform 231

Waveform Queries

Only jitter database waveforms may be set or queried in Jitter mode. Using the following command
produces the error, "Signal or trigger source selection is not available".

‘WAVeform:DATA 345

Waveform Memory Load/Store

Waveforms cannot be saved into waveform memories in Jitter mode. All waveform memories are
turned off when entering Jitter mode. The commands listed below produce a "Settings conflict" error
when executed in Jitter mode.

WMEMory<N>:LOAD 355
WMEMory<N>:SAVE 356
DISK:LOAD 167

When used with sources other than SETup and JDMemory.

WAveform Memory Display

Waveform memories cannot be turned on in Jitter mode. The following command produces a
"Settings conflict" error when executed in Jitter mode.

WMEMory<N>:DISPlay 355

Waveform and Color Grade-Gray Scale Memory

The Waveform and Color Grade/Gray Scale memories cannot be turned on in Jitter mode. The
following command produces an "lllegal parameter value" error when executed in Jitter mode.

VIEW 115

Programmer’s Guide 39

1 Introduction

When used with arguments other than JDMemory.

Timebase Scale And Delay

Scale and position controls on the Horizontal setup dialog are disabled in Jitter Mode. The following
commands produce a "Settings conflict" error when executed in Jitter Mode:

TIMebase:RANGe 332
TIMebase:SCALe 333
TIMebase:POSition 330

Channel Scale And Offset

Channel scale and offset controls are disabled in Jitter mode. The following commands produce a
"Settings conflict" error when executed in Jitter Mode.

CHANnNel<N>:OFFSet 144
CHANnNel<N>:RANGe 146
CHANnel<N>:SCALe 147

Acquisition Settings

Acquisition (Averaging) controls are disabled in Jitter mode. The following commands produce a
"Settings conflict" error when executed in Jitter mode.

ACQuire:AVERage 123
ACQuire:BEST 124
ACQuire:POINts 125

Histograms

Histograms are turned off when entering Jitter mode. The following commands produce a "Control is
set to default" error.

HISTogram:MODE 200
VIEW 115

Software Skewing of Channels

All skew adjustments are disabled in jitter mode. The following commands produce a "Settings
conflict" error when executed in Jitter mode.

CALibrate:SKEW 139
CAlLibrate:SKEW:AUTO 139

40 Programmer’s Guide

Introduction 1

Error Messages

Error Queue

Error Numbers

Command Error

Programmer’s Guide

This chapter describes the error messages and how they are generated. Use the command
“ERRor?" on page 9 to return an error number and message. The possible causes for the generation
of the error messages are also listed in Table 12 on page 42.

As errors are detected, they are placed in an error queue. This queue is first in, first out. If the error
gueue overflows, the last error in the queue is replaced with error -350, “Queue overflow.” Anytime
the error queue overflows, the oldest errors remain in the queue, and the most recent error is
discarded. The length of the instrument's error queue is 30 (29 positions for the error messages, and
1 position for the “Queue overflow” message). Reading an error from the head of the queue removes
that error from the queue, and opens a position at the tail of the queue for a new error. When all
errors have been read from the queue, subsequent error queries return 0, “No error.”

The error queue is cleared when any of the following occur:
the instrument is powered up,
a *CLS command is sent,
the last item from the queue is read, or
the instrument is switched from talk only to addressed mode on the front panel.

The error numbers are grouped according to the type of error that is detected.
+0 indicates no errors were detected.
-100 to =199 indicates a command error was detected.
-200 to =299 indicates an execution error was detected.
-300 to -399 indicates a device-specific error was detected.
-400 to -499 indicates a query error was detected.
+1 to +32767 indicates an instrument-specific error has been detected.

Refer to the Keysight 86100A/B/C online Help for instrument specific errors.

An error number in the range -100 to -199 indicates that an IEEE 488.2 syntax error has been
detected by the instrument's parser. The occurrence of any error in this class sets the command error
bit (bit 5) in the event status register and indicates that one of the following events occurred:

An IEEE 488.2 syntax error was detected by the parser. That is, a controller-to-instrument
message was received that is in violation of the IEEE 488.2 standard. This may be a data element
that violates the instrument's listening formats, or a data type that is unacceptable to the
instrument.

An unrecognized header was received. Unrecognized headers include incorrect
instrument-specific headers and incorrect or unimplemented IEEE 488.2 common commands.

A Group Execute Trigger (GET) was entered into the input buffer inside of an IEEE 488.2 program
message.

Events that generate command errors do not generate execution errors, instrument-specific errors,
or query errors.

47

1 Introduction

Execution Error

An error number in the range -200 to -299 indicates that an error was detected by the instrument's
execution control block. The occurrence of any error in this class causes the execution error bit (bit 4)
in the event status register to be set. It also indicates that one of the following events occurred:

The program data following a header is outside the legal input range or is inconsistent with the
instrument's capabilities.

A valid program message could not be properly executed due to some instrument condition.

Execution errors are reported by the instrument after expressions are evaluated and rounding
operations are completed. For example, rounding a numeric data element will not be reported as an
execution error. Events that generate execution errors do not generate command errors, instrument
specific errors, or query errors.

Device- or Instrument-Specific Error

Query Error

An error number in the range of -300 to -399 or +1 to +32767 indicates that the instrument has
detected an error caused by an instrument operation that did not properly complete. This may be
due to an abnormal hardware or firmware condition. For example, this error may be generated by a
self-test response error, or a full error queue. The occurrence of any error in this class causes the
instrument-specific error bit (bit 3) in the event status register to be set.

An error number in the range -400 to -499 indicates that the output queue control of the instrument
has detected a problem with the message exchange protocol. An occurrence of any error in this class
causes the query error bit (bit 2) in the event status register to be set. An occurrence of an error also
means one of the following is true:

An attempt is being made to read data from the output queue when no output is either present or
pending.

Data in the output queue has been lost.

Table 12 Error Messages Returned by Instrument Parser (Sheet 1 of 7)

Error Returned String

Description

208 Incident Wave not Subtracted Incident wave not subtracted. Turn response ___ off and then on to restore. The blank space (

___) represents a TDR/TDT response waveform (response 1 through response 4).0ne of the
following settings changed after performing a TDR/TDT calibration: record length, timebase, or
channel bandwidth. The incident waveform can no longer be subtracted until original settings
have been restored.

191 Response Turned Off Response ___turned off: Time base, record length or bandwidth changed. The blank space (___

) represents a TDR/TDT response waveform (response 1 through response 4). Timescale or
bandwidth no longer match because there has been a change in either timebase, record length,
or bandwidth. The TDR/TDT response waveform has been turned off because of this mismatch.

190 Execution not Possible Execution not possible: Calibration is required. The operation requires the calibration of the

TDR/TDT waveform. For example, TDR calibration parameters cannot be saved to a file before
the calibration procedure is performed.

178 Measured RN is invalid The current measured RN is invalid or questionable. To apply RN stabilization in Jitter Mode,

you must first have a valid RN measurement. Pressing the Get Measured RN button in the
Advanced Jitter tab while a questionable RN measurement is displayed results in this error
message.

177 Defined lead/lag for one/zero Defined lead/lag (%n: %n) for one/zero level not found in pattern. Using closest (%n: %n).
level not found in pattern

42

Programmer’s Guide

Introduction 1

Table 12 Error Messages Returned by Instrument Parser (Sheet 2 of 7)

Error Returned String

172 Automatic tap calculation
failed

164 No Time Reference Set

163 Execution not Possible

162 Execution not Possible

151 Unable to connect to MATLAB
147 Printer Error

141 Turn on Source for Specified
Measurement

140 Exceeded Maximum ASCII List
Length

139 Unable to normalize the
equalizer tap values

135 Jitter Exceeds Measurable
Range

133 Unable to characterize edges:
<string>

131 Error Saving Mask

130 Error Loading Mask

127 All Labels are in Use

125 Header Information not Valid

120 Execution not possible:
Calibration does not match
mainframe.

117 You must start the mask test

116 Too Many Points Sent

Description

Automatic tap calculation failed: error message

No time reference set: Reference clock not present or amplitude too small . The instrument fails
to set the time reference when the reference clock amplitude is too small or not present.

Execution not possible: No valid ___ destination available. A valid TDR/TDT destination is not
specified.

Execution not possible: Select TDR/TDT destination. . No TDR/TDT destination has been
specified.

Unable to connect to MATLAB. Improper or corrupted MATLAB installation.

Printer error: Install and select a default printer. The instrument was unable to locate the
default printer.

Turnon ___forthe ___ measurement. The first blank space (___) represents the source that is
required for the specific measurement (for example, an optical channel). The second blank
space (___) is replaced with the name of the measurement (for example, jitter).

Exceeded maximum ASCII list length. An attempt was made to load a waveform in ASCII format
into waveform memory. Waveform size exceeded ASCII record limit of 128K. Contents of the file
may be corrupted; the waveform file can not be loaded.

Unable to normalize the equalizer tap values: __. During normalization, the tap values are
adjusted so that the DC gain (the sum of the tap values) is one while preserving the relative
magnitudes of the tap values.

Jitter exceeds measurable range for this signal. Reduce jitter or retard edge speeds.. The jitter
analysis provided in Jitter Mode cannot accurately measure jitter if the combined RJ and PJ
(0-0) exceeds the rise or fall time of the signal.

Sampling level is not in the valid range. In Jitter Mode, the jitter sampling level determines the
active sample area for the measurements. The default is a value that is 50% of the logic highs
and lows values. If you change this setting above or below the acceptable limits, this message
appears. Enter a units value for the Jitter Sampling Level that is inside the minimum and
maximum values shown on the message line.

Error saving mask: only parametric custom masks can be saved. A remote command was
executed attempting to save a standard mask.

Error loading mask, ____. The custom mask cannot be loaded due to illegal values, structure, or
commands contained in the mask file.

All 32 labels are in use, delete an old label before adding a new one. A maximum of 32 labels
can be used.

Header information is not valid. Error when loading a waveform from text (ASCII) data.

Execution not possible: Calibration does not match mainframe. The instrument attempted to
load mainframe timebase calibration data that does not match the current mainframe model
number or serial number.

You must start the mask test prior to calculating auto margin. Without a running mask test, the
instrument can not determine the auto margins.

Too many points sent

Programmer’s Guide

43

1 Introduction

Table 12 Error Messages Returned by Instrument Parser (Sheet 3 of 7)

Error Returned String Description
115 Network Path not Found The network path was not found. The network path may be unavailable or unmapped. For
example, if you attempt to load or save a file to an unmapped or non-existent network path.
112 Unknown File Type Unknown file type. The contents of the file do not match the expected format. The file may be
corrupted or may not be the correct type.
85 Incompatible Setup Incompatible setup. A previously saved setup is incompatible, possibly due to an instrument
software change.
79 Probe Attenuation (or Gain) Probe attenuation (or gain) exceeds calibration limits. If the probe is broken or if the probe
Exceeds Limits connections are not securely fastened, the probe calibration process fails.
78 No Significant Asynchronous No significant asynchronous components present. When using the Enhanced Jitter Analysis
Components Present Software (Option 200), scanning for asynchronous PJ components can only be done if there are

significant PJ frequencies detected in the aliased jitter spectrum. If there are no components, or
if the components are too small to be accurately identified, scanning will not take place.

74 Mainframe Calibration Execution is not possible: Mainframe calibration is required. The mainframe calibration is
Required required when a change in the temperature of the mainframe exceeds 15C compared to the
temperature of the last mainframe timebase calibration (AT > 15°C).
72 Could not Save Calibration Could not save calibration factors: Service is required. Possible errors during calibration.
Factors
69 Calibration in Progress Execution not possible while calibration is in progress. Unable to execute some remote

commands during calibration.

68 Service Mainframe Timebase Service mainframe timebase is uncalibrated.
Uncalibrated

67 Right Module Uncalibrated Right module is uncalibrated Calibration is recommended.

66 Left Module Uncalibrated Left module is uncalibrated. Calibration is recommended.

65 Module Memory Contents Module memory contents obsolete: reinitialize ___module. The blank spaces (___) represent
Obsolete the module model number. An error due to a recent software upgrade may have occurred.

64 Module not Supported The __module is not supported. The blank spaces (___) represent the module model number.

An error due to a recent software upgrade may have occurred.

62 Unable to Communicate Unable to communicate with __ module: remove and reinsert firmly. The instrument can not
recognize the module. The blank space (___) indicates which module has the error (left or
right).

61 Memory Error Occurred Memory error occurred in ___ module: Try reinstalling module. The plug-in module memory is
incorrect. The blank space (__) indicates which module has the error (left or right).

59 Action cannot be performed on Action cannot be performed on Jitter Data Memory. When Jitter Data Memory is viewed, the

Jitter Data Memory Run, Stop Single, Clear Display, or Auto Scale functions are unavailable.

52 Disconnect Probe from Module Probe must be disconnected from module. During a module calibration, the probe must be
disconnected from the module. This ensures an accurate calibration.

48 No Measurements for Limit No measurements are on for limit test. Unable to perform a measurement limit test through

Test GPIB when there are no active measurements.
47 No Mask Loaded No mask loaded. Unable to perform a mask test when a mask is not selected.
46 No Valid Mask Test Sources No valid mask test sources turned on. Unable to perform a mask test from a remote command

when a valid source is not available.

4, Programmer’s Guide

Introduction

Table12 Error Messages Returned by Instrument Parser (Sheet 4 of 7)

Error Returned String

41 Waveform Data is Not Valid

40 Command Execution not
Possible

39 Function Cannot be Performed

38 Measurement Cannot be
Performed

36 Autoscale not Completed

15 Execution not Possible

14 System Software Error

12 Source not Available

11 Date and Time Incorrect

7 Mask Test Align Failed

6 Unrecognizable Waveform
Format

2 Uninstalled Option

0 No error

-100 Command error
-101 Invalid character
-102 Syntax error
-103 Invalid separator

-104 Data type error

-105 GET not allowed
-108 Parameter not allowed
-109 Missing parameter

-112 Program mnemonic too long

Description

Waveform data is not valid. Remote command error occurred when the instrument attempted
to save a waveform to disk or read the waveform over GPIB.

Command execution is not possible on the selected waveform. Unable to perform remote
command.

Function cannot be performed on the selected waveform. The function is not defined for this
waveform type; therefore it cannot be performed.

Measurement cannot be performed on the selected waveform. The measurement is not defined
for this waveform type, and cannot be made.

Autoscale not completed. Unable to perform a complete autoscale.

Execution is not possible. This message occurs when a remote command is sent to a value on a
channel that does not have the feature. For example, this message will occur when you try to set
the channel wavelength on an electrical channel.

Fatal system software error occurred: Please cycle power. The instrument is still operable.
Normally, the address (defect diagnostic) where the error occurred is also displayed. Record
this address to help in servicing the instrument.

Signal source is not available. Signal source may be currently unavailable. For example, if you
activate markers using remote commands without having a signal source activated.

System date and time are incorrect. This error occurs when loading a waveform file with an
invalid date or time stamp.

Mask test align failed. The mask test align algorithm was not able to detect a signal compatible
with the installed mask. This can occur when there are not enough points on an edge or when
the required edges are not present.

The file format is incompatible with the file open operation.

The ___option is not installed. The instrument was unable to execute a feature that requires an
upgrade option that is not installed in the instrument.

The error queue is empty. Every error in the queue has been read (SYSTEM:ERROR? query) or
the queue was cleared by power-up or *CLS.

This is the generic syntax error used if the instrument cannot detect more specific errors.
A syntactic element contains a character that is invalid for that type.

An unrecognized command or data type was encountered.

The parser was expecting a separator and encountered an illegal character.

The parser recognized a data element different than one allowed. For example, numeric or
string data was expected but block data was received.

A Group Execute Trigger was received within a program message.
More parameters were received than expected for the header.
Fewer parameters were received than required for the header.

The header or character data element contains more than twelve characters.

1

Programmer’s Guide

45

1 Introduction

Table 12 Error Messages Returned by Instrument Parser (Sheet 5 of 7)

Error Returned String Description

-113 Undefined header The header is syntactically correct, but it is undefined for the instrument. For example, *XYZ is
not defined for the instrument.

-121 Invalid character in number An invalid character for the data type being parsed was encountered. For example, a “9” in octal
data.

-123 Exponent too large Number is too large or too small to be represented internally.

-124 Too many digits The mantissa of a decimal numeric data element contained more than 255 digits excluding

leading zeros.

-128 Numeric data not allowed A legal numeric data element was received, but the instrument does not accept one in this
position for the header.

-131 Invalid suffix The suffix does not follow the syntax described in IEEE 488.2 or the suffix is inappropriate for
the instrument.

-138 Suffix not allowed A suffix was encountered after a numeric element that does not allow suffixes.

-141 Invalid character data Either the character data element contains an invalid character or the particular element

received is not valid for the header.
-144 Character data too long
-148 Character data not allowed A legal character data element was encountered where prohibited by the instrument.

-150 String data error This error can be generated when parsing a string data element. This particular error message
is used if the instrument cannot detect a more specific error.

-151 Invalid string data A string data element was expected, but was invalid for some reason. For example, an END
message was received before the terminal quote character.

-158 String data not allowed A string data element was encountered but was not allowed by the instrument at this point in
parsing.
-160 Block data error This error can be generated when parsing a block data element. This particular error message is

used if the instrument cannot detect a more specific error.

-161 Invalid block data

-168 Block data not allowed A legal block data element was encountered but was not allowed by the instrument at this point
in parsing.
-170 Expression error This error can be generated when parsing an expression data element. It is used if the

instrument cannot detect a more specific error.

-17 Invalid expression

-178 Expression data not allowed Expression data was encountered but was not allowed by the instrument at this point in parsing.

-200 Execution error This is a generic syntax error which is used if the instrument cannot detect more specific errors.

-220 Parameter error Indicates that a program data element related error occurred.

-221 Settings conflict Indicates that a legal program data element was parsed but could not be executed due to the
current device state.

-222 Data out of range Indicates that a legal program data element was parsed but could not be executed because the

interpreted value is outside the legal range defined by the instrument.

46 Programmer’s Guide

Introduction 1

Table 12 Error Messages Returned by Instrument Parser (Sheet 6 of 7)

Error Returned String Description

-223 Too much data Indicates that a legal program data element of block, expression, or string type was received
that contained more data than the instrument could handle due to memory or related
instrument-specific requirements.

-224 Illegal parameter value Used where exact value, from a list of possibles, was expected.

-225 Out of memory The device has insufficient memory to perform the requested operation.

-231 Data questionable Indicates that measurement accuracy is suspect.

-240 Hard ware error Indicates that a legal program command or query could not be executed because of a hardware

problem in the device.

-241 Hard ware missing Indicates that a legal program command or query could not be executed because of missing
device hardware; for example, an option was not installed, or current module does not have
hardware to support command or query. Definition of what constitutes missing hardware is
completely device-specific or module specific.

-250 Mass storage error Indicates that a mass storage error occurred.

-251 Missing mass storage Indicates that a legal program command or query could not be executed because of missing
mass storage; for example, an option that was not installed.

-252 Missing media Indicates that a legal program command or query could not be executed because of a missing
media; for example, no disk.

-253 Corrupt media Indicates that a legal program command or query could not be executed because of corrupt
media; for example, bad disk or wrong format.

-254 Media full Indicates that a legal program command or query could not be executed because the media
was full; for example, there is no room on the disk.

-255 Directory full Indicates that a legal program command or query could not be executed because the media
directory was full.

-256 File name not found Indicates that a legal program command or query could not be executed because the file name
on the device media was not found; for example, an attempt was made to read or copy a
nonexistent file.

-257 File name error Indicates that a legal program command or query could not be executed because the file name
on the device media was in error; for example, an attempt was made to copy to a duplicate file
name.

-258 Media protected Indicates that a legal program command or query could not be executed because the media

was protected; for example, the write-protect tab on a disk was present.

-300 Service specific error

-310 System error Indicates that a system error occurred.

-340 Calibration failed Indicates that a calibration has failed.

-350 Queue overflow Indicates that there is no room in the error queue and an error occurred but was not recorded.
-400 Query error This is the generic query error.

-410 Query INTERRUPTED
-420 Query UNTERMINATED
-430 Query DEADLOCKED

Programmer’s Guide 47

1 Introduction

Table12 Error Messages Returned by Instrument Parser (Sheet 7 of 7)

Error Returned String Description

-440 Query UNTERMINATED
after indefinite response

48 Programmer’s Guide

Language Compatibility

Introduction 1

This section lists Keysight 83480A commands that are not used in the 86100A/B/C/D.

Table 13 Keysight 83480A/54750A Commands Not Used in the Instrument (Sheet 1 of 6)

Programming Commands/Queries

Common Commands
*LRN

Root Level Commands
:AER?
:ERASe
:HEEN
:MENU
:MERGe
:STORe:PMEMory1
‘TEER

System Commands :SYSTem
:SYSTem:KEY

Calibration Commands :CALibrate
:CALibrate:FRAMe:CANCel
:CALibrate:FRAMe:CONTinue
:CALibrate:FRAMe:DATA
:CALibrate:FRAMe:DONE?
:CALibrate:FRAMe:MEMory?
:CALibrate:PLUGin:ACCuracy
:CALibrate:PLUGin:CANCel
:CALibrate:PLUGin:CONTinue
:CALibrate:PLUGin:DONE?
:CALibrate:PLUGin:MEMory?
:CALibrate:PLUGin:OFFSet
:CALibrate:PLUGin:0POWer
:CALibrate:PLUGIin:OPTical
:CALibrate:PLUGin:0WAVelength
:CALibrate:PLUGIn:TIME?
:CALibrate:PLUGIn:VERTical

Programmer’s Guide

Replacement Commands/Queries

SYSTEM:SETUP

No replacement
No replacement
:AEEN

No replacement
No replacement
No replacement

No replacement

No replacement

:CALibrate:CANcel
:CALibrate:CONTinue

No replacement
:CALibrate:STATus?

No replacement
:CALibrate:MODule:STATus
:CALibrate:CANcel
:CALibrate:CONTinue
:CALibrate:STATus?

No replacement
:CALibrate:MODule:OFFSet
:CALibrate:MODule:OPOWer
:CALibrate:MODule:OPTical
:CALibrate:MODule:0WAVelength
:CALibrate:MODule:TIME?
:CALibrate:MODule:VERtical

49

1 Introduction

Table 13 Keysight 83480A/54750A Commands Not Used in the Instrument (Sheet 2 of 6)

:CALibrate:PROBe

Channel Commands :CHANnel
:CHANnel<N>:AUTOscale
:CHANnel<N>:SKEW

Disk Commands :DISK
:DISK:DATA?
:DISK:FORMat

Display Commands :DISPlay
:DISPlay:ASSign
:DISPlay:CGRade
:DISPlay:CGRade?
:DISPlay:COLumn
:DISPlay:DATA
:DISPlay:DWAVeform
:DISPlay:FORMat
:DISPlay:INVerse
:DISPlay:LINE
:DISPlay:MASK
:DISPlay:ROW
:DISPlay:SOURce
:DISPlay:STRing
:DISPlay:TEXT

FFT Commands :FFT

Function Commands :FUNCtion
:FUNCtion<N>:ADD
:FUNCtion<N>:BWLimit
:FUNCtion<N>:DIFFerentiate
:FUNCtion<N>:DIVide
:FUNCtion<N>:FFT
:FUNCtion<N>:INTegrate
:FUNCtion<N>:MULTiply
:FUNCtion<N>:ONLY

50

FFT is not available in the 86100A/B.

:CALibrate:PROBe CHANnel<N>

:AUToscale
:CALibrate:SKEW

No replacement

No replacement

No replacement
:SYSTem:MODE EYE
:SYSTem:MODE?
:DISPlay:LABel
:WAVeform:DATA
No replacement

No replacement
:DISPlay:LABel
:DISPlay:LABel

No replacement
:DISPlay:LABel

No replacement
:DISPlay:LABel
:DISPlay:LABel:DALL

No replacement
No replacement
No replacement
No replacement
No replacement, FFT not available
No replacement
No replacement

:FUNCtion<N>:MAGNify

Programmer’s Guide

Table 13 Keysight 83480A/54750A Commands Not Used in the Instrument (Sheet 3 of 6)

Hardcopy Commands :HARDcopy
:HARDcopy:ADDRess
:HARDcopy:BACKground
:HARDcopy:BACKground?
:HARDcopy:DESTination
:HARDcopy:DEVice
:HARDcopy:FFEed
:HARDcopy:FILename
:HARDcopy:LENGth
:HARDcopy:MEDia
Histogram Commands :HISTogram
:HISTogram:RRATe
:HISTogram:RUNTIl
:HISTogram:SCALe
:HISTogram:SCALe:OFFSet
:HISTogram:SCALe:RANGe
:HISTogram:SCALe:SCALe
:HISTogram:SCALe:TYPE
Limit Test Commands :LTESt

:LTESt:SSCReen:DDISk:MEDia
:LTESt:SSCReen:DDISk:PFORmat

:LTESt:SSCReen:DPRinter:MEDia
:LTESt:SSCReen:DPRinter:PORT
:LTESt:SSUMmary:ADDRess
:LTESt:SSUMmary:MEDia
:LTESt:SSUMmary:PFORmat
:LTESt:SSUMmary:PORT

Marker Commands :MARKer
:MARKer:CURSor?
:MARKer:MEASurement:READout

Programmer’s Guide

:LTESt:SSCReen:DDISk:BACKground

:LTESt:SSCReen:DPRinter:ADDRess
:LTESt:SSCReen:DPRinter:BACKground

:HARDcopy:DPRinte

:HARDcopy:IMAGe INVert

No replacement
No replacement
No replacement
No replacement
No replacement
No replacement

No replacement

:DISPlay:RRATe
:ACQuire:RUNTIl

:HISTogram:SCALe:SIZE

:HISTogram:SCALe:SIZE

:HISTogram:SCALe:SIZE

:HISTogram:SCALe:SIZE

:HISTogram:SCALe:SIZE

:LTESt:SSCReen
No replacement
No replacement
No replacement
No replacement
No replacement
No replacement
No replacement
No replacement
No replacement

No replacement

No replacement

No replacement

:IMAGe

. Use individual queries.

Introduction

1

51

1

Table 13

52

Introduction

:MARKer:MODE
:MARKer:MODE?
:MARKer:TDELta?
:MARKer:TSTArt
:MARKer:TSTOp
:MARKer:VDELta
:MARKer:VSTArt
:MARKer:VSTOp

Mask Test Commands :MTESt

:MTESt:AMASk:CReate
:MTESt:AMASk:SOURce
:MTESt:AMASk:UNITs
:MTESt:AMASk:XDELta
:MTESt:AMASk:YDELta
:MTESt:AMODe
:MTESt:COUNt:FWAVeforms?
:MTESt:FENable
:MTESt:MASK:DEFine
:MTESt:POLYgon:DEFine
:MTESt:POLYgon:DELete
:MTESt:POLYgon:MOVE
:MTESt:RECall
:MTESt:SAVE

:MTESt:SSCReen:DDISk:BACKground

:MTESt:SSCReen:DDISk:MEDia

:MTESt:SSCReen:DDISk:PFORmat

:MTESt:SSCReen:DPRinter

:MTESt:SSCReen:DPRinter:ADDRess
:MTESt:SSCReen:DPRinter:BACKground
:MTESt:SSCReen:DPRinter:MEDia
:MTESt:SSCReen:DPRinter:PFORmat
:MTESt:SSCReen:DPRinter:PORT

:MTESt:SSUMmary:ADDRess

Keysight 83480A/54750A Commands Not Used in the Instrument (Sheet 4 of 6)

:MARKer:STATe
No replacement

:MARKer:XDELta?

:MARKer:X1Position
:MARKer:X2Position

:MARKer:YDELta

:MARKer:Y1Position
:MARKer:Y2Position

No replacement
No replacement
No replacement
No replacement
No replacement

No replacement

MTESt:COUNt:HITS? TOTal

No replacement
No replacement 2
No replacement 2
No replacement 2
No replacement 2
:MTESt:LOAD

No replacement

:MTESt:SSCReen:IMAGe

No replacement
No replacement
No replacement
No replacement
No replacement
No replacement
No replacement
No replacement

No replacement

Programmer’s Guide

Introduction

Table 13 Keysight 83480A/54750A Commands Not Used in the Instrument (Sheet 5 of 6)

:MTESt:SSUMmary:BACKground No replacement
:MTESt:SSUMmary:MEDia No replacement
:MTESt:SSUMmary:PFORmat No replacement
:MTESt:SSUMmary:PORT No replacement

Measure Commands :MEASure

:MEASure:CGRade:ERCalibrate

:MEASure:CGRade:ERFactor
:MEASure:CGRade:QFACtor
:MEASure:FFT
:MEASure:HISTogram:HITS
:MEASure:HISTogram:MEAN
:MEASure:HISTogram:MEDian
:MEASure:HISTogram:M1S
:MEASure:HISTogram:M2S

:MEASure:HISTogram:0FFSET?

:MEASure:HISTogram:PEAK
:MEASure:HISTogram:PP
:MEASure:PREShoot
:MEASure:STATistics
:MEASure:TEDGe
:MEASure:VLOWer
:MEASure:VMIDdle
:MEASure:VTIMe
:MEASure:VUPPer

Timebase Commands :TIMebase

‘TIMebase:DELay
:TIMebase:VIEW
:TIMebase:WINDow:DELay
:TIMebase:WINDow:PQOSition
:TIMebase:WINDow:RANGe
:TIMebase:WINDow:SCALe
:TIMebase:WINDow:SOURce

Trigger Commands :TRIGger

Programmer’s Guide

:CALibrate:ERATio:STARt CHANnel<N>
No replacement
:MEASure:CGRade:ESN

No replacement. FFT not available.
Query only

Query only

Query only

Query only

Query only

No replacement

Query only

Query only

No replacement

No replacement. Statistics always on.
Query only

No replacement

No replacement

Query only

No replacement

:TIMebase:POSition
No replacement
No replacement
No replacement
No replacement
No replacement

No replacement

53

1 Introduction

Table 13 Keysight 83480A/54750A Commands Not Used in the Instrument (Sheet 6 of 6)

:TRIGger:SWEep :TRIGger:SOURce FRUN
‘TRIGger:SWEep? ‘TRIGger:SOURce?
TRIGger<N>:BWLimit ‘TRIGger:BWLimit and :TRIGger:GATed
‘TRIGger<N>:PROBe ‘TRIGger:ATTenuation

Waveform Commands :WAVeform
‘WAVeform:COMPlete No replacement
:‘WAVeform:COUPling No replacement
‘WAVeform:VIEW? No replacement

2 Refer to the Infiniium DCA Online Help to view information about defining custom masks.

b4

Programmer’s Guide

Keysight 86100A/B/C/D Wide-Bandwidth Oscilloscope
Programmer’s Guide

2 Programming Examples

Programming Examples 55
BASIC Programming Examples 78

KEYSIGHT

TECHNOLOGIES

bb

2 Programming Examples

Listings of the C sample programs in this section include:

General Measurement Example 56
Service Request Example 61

SRQ From GPIB Device Example 63
Learn String Example 65

SICL1/0 Example 67

National I/0 Example 70
Multi-Database Example 73

GPIB Header File 76

General Measurement Example

In this example, the main function inclues a call to init_IO() which initializes the instrument and
interface so that the instrument can capture data and perform measurements on the data. At the
start of the program, global symbols are defined which will be used to store and convert the digitized
data to time and voltage values. In the transfer_data function, the header string (header_str)
resembles the following string when the information is stripped off: #510225. The left-most "5"
defines the number of digits that follow (10225). The example number "10225" is the number of
points in the waveform. The information is stripped off of the header to get the number of data bytes
that need to be read from the instrument. In the convert_data function, the data values are returned
as digitized samples (sometimes called quantization levels or g-levels). These data values must be
converted into voltage and time values. In the store_csv function, the time and voltage information of
the waveform is stored in integer format, with the time stored first, followed by a comma, and the
voltage stored second.

File: init.c
/* init. ¢ */

/*

* Command Order Example. This program demonstrates the order of commands
suggested for operation of the Agilent 86100 analyzer via GPIB.

This program initializes the scope, acquires data, performs

automatic measurements, and transfers and stores the data on the

PC as time/voltage pairs in a comma-separated file format useful

for spreadsheet applications. It assumes a SICL INTERFACE exists

as 'gpib7' and an Agilent 86100 analyzer at address 7.

It also requires the cal signal attached to Channel 1.

ok ok kR ok %k ok o

See the README file on the demo disk for development and Tinking information.
/

#Finclude <stdio.h> /* location of: printf () */
jfinclude <stdlib.h> /* location of: atof(), atoi () */
j#include "hpibdecl.h" /* prototypes, global declarations, constants */

void initialize (); /* initialize the scope */

void acquire_data (); /* digitize signal */

void auto_measurements ();/* perform built-in automatic measurements */

void transfer_data (); /* transfers waveform data from scope to PC */

void convert_data (); /* converts data to time/voltage values */

void store_csv (); /* stores time/voltage pairs to comma-separated variable file format */

/* GLOBALS */

int count;

double xorg,xref,xinc; /* values necessary for conversion of data */
double yorg,yref,yinc;

int Acquired_length;

char data [MAX_LENGTH]; /* data buffer */

double time_value [MAX_LENGTH];/* time value of data */

double volts [MAX_LENGTH];/* voltage value of data */

void main(void)

b6 Programmer’s Guide

Programming Examples 2

/* initialize interface and device sessions */
/* note: routine found in sicl_I0.c or natl_I0.c */
init_I0 ();

initialize (); /* initialize the scope and interface and set up SRQ */
acquire_data ();/* capture the data */
auto_measurements ();/* perform automated measurements on acquired data */
transfer_data ();/* transfer waveform data to the PC from scope */
convert_data ();/* convert data to time/voltage pairs */
store_csv (); /* store the time/voltage pairs as csv file */
close_I0 (); /* close interface and device sessions */
/* note: routine found in sicl_I0.c or natl_I0.c */
}o/* end main () */

*

Function name: initialize

Parameters: none

Return value: none

Description: This routine initializes the analyzer for proper
acquisition of data. The instrument is reset to a known state and the
interface is cleared. System headers are turned off to allow faster
throughput and immediate access to the data values requested by queries.
The analyzer time base, channel, and trigger subsystems are then
configured. Finally, the acquisition subsystem is initialized.

ok ok ok kb b b ok

~

void initialize ()
{

write_I0 ("*RST"); /* reset scope - initialize to known state */
write_I0 ("*CLS"); /* clear status registers and output queue */

write_I0 (":SYSTem:HEADer OFF"); /* turn off system headers */

/* init}a]ize time base parameters to center reference, 2 ms full-scale (200 us/div), and 20 us

delay *
write_I0 (":TIMebase:REFerence CENTer;RANGe 2e-3;P0Sition 20e-6");

/* initialize Channell 1.6V full-scale (200 mv/div); offset -400mv */
write_I0 (":CHANnell:RANGe 1.6;0FFSet -400e-3");

/* initialize trigger info: channell signal on positive slope at 300mv */
write_I0 (":TRIGger:SOURce FPANel;SLOPe POSitive");
write_I0 (":TRIGger:LEVel-0.40");

/* initialize acquisition subsystem */
/* Real time acquisition - no averaging; record length 4096 */
write_I0 (":ACQuire:AVERage OFF;POINts 4096");

} o /* end initialize () */

/~k
* Function name: acquire_data
* Parameters: none

* Return value: none

* Description: This routine acquires data according to the current instrument settings.
void acquire_data ()

{

/*

* The root level :DIGitize command is recommended for acquisition of new

* data. It will initialize data buffers, acquire new data, and ensure that

* acquisition criteria are met before acquisition of data is stopped.

* The captured data is then available for measurements, storage, or transfer
* to a PC. Note that the display is automatically turned off by the

*/ :DIGitize command and must be turned on to view the captured data.

*

write_I0 (":DIGitize CHANnell");
write_I0 (":CHANnell:DISPTay ON");/* turn on channel 1 display which is turned off by the
:DIGitize command */

} /* end acquire_data() */

/*

* Function name: auto_measurements

* Parameters: none

* Return value: none

* Description: This routine performs automatic measurements of volts
* peak-to-peak and period on the acquired data. It also demonstrates
*/ two methods of error detection when using automatic measurements.

*

Programmer’s Guide 57

2 Programming Examples

void auto_measurements ()
{

float period, vpp;

unsigned char vpp_str[16];
unsigned char period_str[16];
int bytes_read;

*

Error checking on automatic measurements can be done using one of two methods.
The first method requires that you turn on results in the Measurements
subsystem using the command :MEASure:SEND ON. When this is on, the analyzer
will return the measurement and a result indicator. The result flag is zero

if the measurement was successfully completed, otherwise a non-zero value is
returned which indicates why the measurement failed. See the Programmer's Manual
for descriptions of result indicators.

koo ok b o o

The second method simply requires that you check the return value of the
measurement. Any measurement not made successfully will return with the value
+9.999E37. This could indicate that either the measurement was unable to be
performed, or that insufficient waveform data was available to make the
measurement.

ok ok kK

* METHOD ONE - turn on results to indicate whether the measurement completed
* successfully. Note that this requires transmission of extra data from the scope.
*/

write_I0 (":MEASure:SEND ON"); /* turn results on */
/* query -- volts peak-to-peak channel 1%/

write_I0 (":MEASure:VPP? CHANnell");
bytes_read = read_IO (vpp_str,16L);/* read in value and result flag */

if (vpp_strlbytes_read-2] != '0")
printf ("Automated vpp measurement error with result %c\n", vpp_strlbytes_read-21);
else

printf ("VPP is %Zf\n", (float)atof (vpp_str));
write_I0 (":MEASure:PERiod? CHANnell");/* period channel 1 */
bytes_read = read_IO (period_str,16L);/* read in value and result flag */

if (period_str[bytes_read-2] != '0")
printf ("Automated period measurement error with result %c\n", period_str [bytes_read-21);
else

printf ("Period is %f\n", (float) atof (period_str));

/* METHOD TWO - perform automated measurements and error checking with :MEAS:SEND OFF */

period = (float) 0;
vpp = (float) 0;

/* turn off results */
write_I0 (":MEASure:SEND OFF");

write_I10 (":MEASure:PERiod? CHANnell");/* period channel 1 */
bytes_read = read_I0 (period_str,16L);/* read in value and result flag */

period = (float) atof (period_str);

if (period > 9.99e37)
printf ("\nPeriod could not be measured.\n");
else
printf ("\nThe period of channel 1 is %f seconds.\n", period);

write_I0 (":MEASure:VPP? CHANnell");
bytes_read = read_I0 (vpp_str,16L);

vpp = (float) atof (vpp_str);
if (vpp > 9.99e37)
printf ("Peak-to-peak voltage could not be measured.\n");
e]sgrintf ("The voltage peak-to-peak is %f volts.\n", vpp);
} /* end auto_measurements () */
/*

* Function name: transfer_data
* Parameters: none

b8 Programmer’s Guide

Programming Examples

* Return value: none

2

* Description: This routine transfers the waveform conversion factors and waveform data to the PC.
*/

void transfer_data ()

int header_Tlength;
char header_str[81;
char term;

char xinc_str[32],xorg_str[32],xref_str[32];
char yinc_str[32],yref_str[(32],yorg_str[32];

int bytes_read;

/* waveform data source channel 1 */
write_I0 (":WAVeform:SOURce CHANnell");
/* setup transfer format */
write_I0 (":WAVeform:FORMat BYTE");
/* request values to allow interpretation of raw data */
write_I0 (":WAVeform:XINCrement?");
bytes_read = read_I0 (xinc_str,32L);
xinc = atof (xinc_str);

write_I0 (":WAVeform:XORigin?");
bytes_read = read_IO (xorg_str,32L);
xorg = atof (xorg_str);

write_I0 (":WAVeform:XREFerence?");
bytes_read = read_I0 (xref_str,32L);
xref = atof (xref_str);

write_I0 (":WAVeform:YINCrement?");
bytes_read = read_I0 (yinc_str,32L);
yinc = atof (yinc_str);

write_I0 (":WAVeform:YORigin?");
bytes_read = read_I0 (yorg_str,32L);
yorg = atof (yorg_str)

write_I0 (":WAVeform:YREFerence?");
bytes_read = read_I0 (yref_str,32L);
yref = atof (yref_str);

write_I0 (":WAVeform:DATA?");/* request waveform data */
bytes_read = read_IO (data,l1L); /* ignore leading # */
bytes_read = read_IO0 (header_str,1L);/* input byte counter */
header_length = atoi (header_str);

/* read number of points - value in bytes */
bytes_read = read_I0 (header_str,(long)header_length);

Acquired_Tlength = atoi (header_str);/* number of bytes */

bytes_read = read_I0 (data,Acquired_length); /* input waveform data */
bytes_read = read_IO0 (&term,1L);/* input termination character */

} /* end transfer_data () */

/*

* Function name: convert_data

* Parameters: none

* Return value: none

* Description: This routine converts the waveform data to time/voltage

* dnformation using the values that describe the waveform. These values are
*/ stored in global arrays for use by other routines.

*

void convert_data ()
! int 1;
for (i = 0; i < Acquired_length; i++)
! time_valuel[i] = ((i - xref) * xinc) + xorg; /* calculate time info */
volts[i] = ((datal[i] - yref) * yinc) + yorg; /* calculate volt info */

} /* end convert_data () */

Programmer’s Guide

59

2

*

ok o b o o X

~

Programming Examples

Function name: store_csv

Parameters: none

Return value: none

Description: This routine stores the time and voltage information about
%he waveform as time/voltage pairs in a comma-separated variable file
ormat.

void store_csv ()
{

60

FILE *fp;
int 1;
fp = fopen ("pairs.csv","wb"); /* open file in binary mode - clear file if already exists */
if (fp != NULL)
{
for (i = 0; i < Acquired_length; i++)
{
/* write time,volt pairs to file */
fprintf (fp,"%e,%1f\n",time_valuelil,volts[il);

}
fclose (fp) /* close file */

else
printf ("Unable to open file 'pairs.csv'\n");

/* end store_csv () */

Programmer’s Guide

Service Request Examp

/* gen_srqg.c */

Programming Examples 2

le

The sample C program, gen_srg.c, shows how to initialize the interface and instrument and generate
a service request. The init_IO() function initial