Keysight EEsuf EDA
Getting Started with Advanced Design System (ADS)

Demo Guide
Getting Started with ADS

This tutorial will introduce the basic structure of ADS workspaces, libraries and cells. This includes design capture, simulation, and displaying simulation results.

Note: Workspaces in ADS 2011 and later replace projects from earlier ADS versions.

Figure below shows how ADS organizes each workspace.

![Workspace-Library Hierarchy](image)

Note: Understanding these concepts is the key to using ADS 2011 and later effectively:

- **Workspaces**: Different than a project, a workspace give you access to libraries that contain cells, where the cells contain designs.
- **Libraries**: In a workspace, libraries are a collection of cells. But libraries can also be Process Design Kit (PDKs) or separate folders outside of the workspace.
- **Cells**: Cells are folders that replace design files in the old networks directory. Cells are in libraries and usually contain different views of a design- this means layouts, schematics and a symbol.
- **Symbols**: The symbol represents all views in the cell. Usually one symbol is all you need for a cell.
Step 1 - Create a New Workspace

1. Launch ADS and from the ADS main window select File > New > Workspace. Or click on this icon.

Enter workspace name as desired, please note that the workspace name and path to the workspace location should not contain any spaces. Click Next.

Figure 1.
2. Select the libraries to be included in the workspace. ADS natively provides the Analog/RF and DSP components libraries and it can be selected as needed in actual design work under the workspace.

![New Workspace Wizard](image)

Figure 2.

Note: ADS Process Design Kits (PDKs) come directly from the foundry and configure the ADS environment for a given manufacturing process. Multiple PDKs can be associated to a single workspace. The PDK can be easily associated to a library and cell using easy-to-use interface.

Note: Component libraries provided in ADS can be added by clicking the link Add User Favorite Library/PDK.

Note: All vendor component libraries are provided in zipped format under:

```
/hpeesof/oalibs/componentLib/folder
```

Note: `<ADS_install_directory>` is called `/hpeesof`.

Note: All vendor component libraries are provided in zipped format.
3. Provide the library name under which you would like to organize the work. Default library name will be the same as the Workspace, unless you change the name. This library is not to be confused with component vendor or the third party libraries. This is a new way in which ADS organizes the design schematics/ layouts in a workspace and every workspace can contain multiple libraries in which we can organize our work consisting of multiple technologies e.g. GaAs, GaN, InP, SiGe etc. While we keep one library for each technology ADS provides the capability to use these designs under a single main design to perform Multi-Technology designs. It may be noted that in ADS, schematic and layout units are also considered in different technologies and it is recommended not to mix the units which we use in design. i.e. mil, mm, um etc. Click Next.

Figure 3.
4. Select the preferred units to be used during the design. In the present example, select 0.0001 mil layout resolution.

5. Click Next and see the summary of the workspace and click Finish and a blank workspace as shown below will appear. We are ready to create our schematic or layout designs in the newly created workspace.
Step 2 - Creating Schematic Design

Usually circuit design will start from schematic entry. To start the schematic design we can begin from File > New > Schematic or by clicking on the Schematic icon on the main window toolbar.

1. Enter the desired cell name (e.g. Discrete LPF) and select the Schematic Design Template as ads_templates: S_Params (for S-Parameter simulation). Selecting a template is an optional step but it is good feature to have because it saves the effort of setting up the design for simulation. Click OK.

Figure 6.
2. A new schematic page with two 50-ohm terminations and an S-parameter controller placed on it with default frequency settings should be visible. If a template was not selected during new schematic creation then we can place required components for SP simulations by going to the appropriate Simulation category e.g. Simulation-S_Param, Simulation-HB etc.

![S-Parameters schematic](image)

Figure 7.

3. Now let’s start creating a circuit, go to Palette menu as shown here and select Lumped-With-Artwork, place L_Pad and C_Pad components on the schematic to form a Low Pass Filter Topology as shown in the Figure 9. L_Pad and C_Pad are normal inductor and capacitors but they also include footprint information and designers can enter desired width, spacing and length of the component as per the component that might be used for actual PCB design.

![Circuit schematic](image)

Figure 8.

Note: Ground icon is located in the ADS schematic main menu toolbar as it is shown in the figure.
4. Double-click the S-Parameter controller and set the parameter as follows:
 - Start = 0.01 GHz
 - Stop = 1 GHz
 - Num. of points = 101 (step size will be automatically calculated) Click OK.
5. Click the **Simulate** icon (or press F7) to start the simulation.
6. Once done, a data display shows the simulation results, as shown below.

S-Parameters vs. Frequency

![S-Parameters vs. Frequency](image)

Figure 11.
7. Save the design to save all the work and inspect the main window to notice the schematic cell and data display (\texttt{<filename>.dds}).

Figure 12.

Congratulations! You have completed Getting Started with Keysight Advanced Design System (ADS). Check out more examples.

www.Keysight.com/find/eosof-ads-rfmw-examples
Download your next insight

Keysight software is downloadable expertise. From first simulation through first customer shipment, we deliver the tools your team needs to accelerate from data to information to actionable insight.

- Electronic design automation (EDA) software
- Application software
- Programming environments
- Productivity software

Learn more at www.keysight.com/find/software
Start with a 30-day free trial. www.keysight.com/find/free_trials

Evolving

Our unique combination of hardware, software, support, and people can help you reach your next breakthrough. We are unlocking the future of technology.

From Hewlett-Packard to Agilent to Keysight

myKeysight

myKeysight
www.keysight.com/find/mykeysight
A personalized view into the information most relevant to you.

For more information on Keysight Technologies’ products, applications or services, please contact your local Keysight office. The complete list is available at:
www.keysight.com/find/contactus

America
Canada (877) 894 4414
Brazil 55 11 3351 7010
Mexico 001 800 254 2440
United States (800) 829 4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 11 2626
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Other AP Countries (65) 6375 8100

Europe & Middle East
Austria 0800 001122
Belgium 0800 58580
Finland 0800 523252
France 0805 980333
Germany 0800 6270999
Ireland 1800 832700
Israel 1 809 343051
Italy 800 599100
Luxembourg +32 800 58580
Netherlands 0800 0233200
Russia 8800 5099286
Spain 800 000154
Sweden 0200 882255
Switzerland 0800 805363
Opt. 1 (DE)
Opt. 2 (FR)
Opt. 3 (IT)
United Kingdom 0800 0260637

For other unlisted countries:
www.keysight.com/find/contactus

(BP-06-08-16)