81100 Family of Pulse Pattern/Generators Radar Distance Test to Airborne Planes
Introduction

Keysight Technologies, Inc. pulse generators are used for testing radar communication systems in the military industry, and as demonstrated in this technical overview, the aviation industry.

A trigger pulse train of double pulses is sent from the control tower’s radar system to an airborne plane. The plane responds with a standard signature signal which is sent back to the control tower. This occurs up to 450 times per second. The control tower receives the signal, recognizes its signature, and then analyzes the delay to determine the distance between the tower and the airborne plane.

To test a radar system on a regular basis, an 81150A is used to simulate the signature signal. Varying the delay from the external trigger to the start of the output signal, various distances from the control tower can be simulated. This delay can be up to 2 ms. Therefore, it has to be created by leading zeroes added to the signature signal.

Due to the legal safety requirements, it is critical to have very accurate edge placement of the pulses. The 81150A has a frequency accuracy of ± 50 ppm.

Figure 1. Setup of a Keysight pulse generator and a Keysight Infiniium oscilloscope.

Figure 2. Simulated signature signal.

Required equipment for lab 1:
- 1 x 81150A pulse pattern generator (or 81160A)
- 1 x Infiniium oscilloscope
- 2 x BNC cables
What do we need to simulate the response signal of an airborne plane?

We need:
- Externally triggered pulses
- At 0.6 MHz frequency (Figure 3)
- A programmable bit pattern
- And highest possible frequency accuracy (Figure 4)

Now let's set up the instruments as shown in the screen shots.

First, reset the instrument by selecting “store/recall” and by selecting “set to defaults.”

Second, select “cont” and select “pulse”.

Go to the TIMING menu and set the pulse period and width, in accordance with what is specified in the timing diagram. Switch on output 1.

Note: If you need faster rise times, please refer to the Pulse Pattern Generators Selection Guide www.keysight.com/find/ppg-selection-guide.

Figure 3

Figure 4

Figure 5
In order to get the 2.0 ms delay, add leading zeros to the 36 bit pattern (the 81150A will not allow a delay of more than 750 ns). Because we have NRZ pulses, use two bits per period, set at a rate of 1.45 µs. 1,379 leading zeros are needed to create an 1,999.55 µs delay.

To get these leading zeros, go to the pattern setup, choose Edit Pattern and create a new one (Figure 6).

The number of bits is 1,415 (1,379 + 36). Starting at the reference point of 1380, set the bit pattern of the radar signal to 36 (Figures 7 and 8).

Note: The pattern from reference point 1380 to 1415 is 010101010101010101010101000010.

Start with setting the last bit to 1415.

Switch on output 1 by pressing “Out1.”

Figure 6. Edit user pattern.

Figure 7. Create new pattern.

Figure 8. Set bits.
Finally, view the last 36 bits of the pattern on an MSO9404 Infinium oscilloscope.

Figure 9. Keysight MSO9404 Infinium oscilloscope showing the last 36 bits.

Related Literature

- Keysight 81100 Family of Pulse/Pattern Generators – Brochure 5890-0489E
- Keysight 81130A Pulse-/Pattern Generator – Data Sheet 5967-6237E
- Keysight 81150A and 81160A – Data Sheet 5967-5984E
- Radar Distance Test to Airborne Planes – Application Note 5968-5843E
- The Dual Clock Gbit Chip Test – Application Note 5968-5844E
- Magneto-Optical Disk Drive Research – Application Note 5968-5845E
- Simulation of Jittering Synchronization Signals for Video Interfaces – Application Note 5968-5846E

For more information visit us at www.keysight.com/find/pulse_generator

Learn more at: www.keysight.com

For more information on Keysight Technologies’ products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus