
PathWave Test Sync Executive 2022
User Manual

This User Manual describes the PathWave Test Sync Executive programming envir-
onment, which is based on Keysight's Hard Virtual Instrument (HVI) technology.
HVI enables you to develop and execute synchronous, real-time operations across
multiple instruments. The real-time sequencing and synchronization capabilities of
PathWave Test Sync Executive make it a powerful tool for Multi-Input Multi-Output
(MIMO) applications that require tight synchronization and real-time control and
feedback.

USERMANUAL

Notices

Copyright Notice

© Keysight Technologies 2020-2022

No part of this manual may be reproduced in

any form or by any means (including elec-

tronic storage and retrieval or translation

into a foreign language) without prior agree-

ment and written consent from Keysight

Technologies, Inc. as governed by United

States and international copyright laws.

Manual Part Number

KS2201-90000

Published By

Keysight Technologies

1400 Fountaingrove Parkway

Santa Rosa,

CA 95403-1738

Edition

Edition 2022_U0_00, June, 2022

Keysight Technologies, USA

Regulatory Compliance

This product has been designed and tested

in accordance with accepted industry stand-

ards, and has been supplied in a safe con-

dition. To review the Declaration of

Conformity, go to http://www.key-

sight.com/go/conformity.

Warranty

THE MATERIAL CONTAINED IN THIS

DOCUMENT IS PROVIDED “AS IS,” AND IS

SUBJECT TO BEING CHANGED, WITHOUT

NOTICE, IN FUTURE EDITIONS. FURTHER,

TO THE MAXIMUM EXTENT PERMITTED BY

APPLICABLE LAW, KEYSIGHT DISCLAIMS

ALL WARRANTIES, EITHER EXPRESS OR

IMPLIED, WITH REGARD TO THIS MANUAL

AND ANY INFORMATION CONTAINED

HEREIN, INCLUDING BUT NOT LIMITED TO

THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE. KEYSIGHT SHALL

NOT BE LIABLE FOR ERRORS OR FOR

INCIDENTAL OR CONSEQUENTIAL

DAMAGES IN CONNECTION WITH THE

FURNISHING, USE, OR PERFORMANCE OF

THIS DOCUMENT OR OF ANY

INFORMATION CONTAINED HEREIN.

SHOULD KEYSIGHT AND THE USER HAVE A

SEPARATE WRITTEN AGREEMENT WITH

WARRANTY TERMS COVERING THE

MATERIAL IN THIS DOCUMENT THAT

CONFLICT WITH THESE TERMS, THE

WARRANTY TERMS IN THE SEPARATE

AGREEMENT SHALL CONTROL.

KEYSIGHT TECHNOLOGIES DOES NOT

WARRANT THIRD-PARTY SYSTEM-LEVEL

(COMBINATION OF CHASSIS,

CONTROLLERS, MODULES, ETC.)

PERFORMANCE, SAFETY, OR REGULATORY

COMPLIANCE, UNLESS SPECIFICALLY

STATED.

Technology Licenses

The hardware and/or software described in

this document are furnished under a license

and may be used or copied only in accord-

ance with the terms of such license.

U.S. Government Rights

The Software is “commercial computer soft-

ware,” as defined by Federal Acquisition

Regulation (“FAR”) 2.101. Pursuant to FAR

12.212 and 27.405-3 and Department of

Defense FAR Supplement (“DFARS”)

227.7202, the U.S. government acquires

commercial computer software under the

same terms by which the software is cus-

tomarily provided to the public. Accordingly,

Keysight provides the Software to U.S. gov-

ernment customers under its standard com-

mercial license, which is embodied in its End

User License Agreement (EULA), a copy of

which can be found at http://www.key-

sight.com/find/sweula. The license set forth in

the EULA represents the exclusive authority

by which the U.S. government may use,

modify, distribute, or disclose the Software.

The EULA and the license set forth therein,

does not require or permit, among other

things, that Keysight: (1) Furnish technical

information related to commercial computer

software or commercial computer software

documentation that is not customarily

provided to the public; or (2) Relinquish to,

or otherwise provide, the government rights

in excess of these rights customarily

provided to the public to use, modify, repro-

duce, release, perform, display, or disclose

commercial computer software or com-

mercial computer software documentation.

No additional government requirements bey-

ond those set forth in the EULA shall apply,

except to the extent that those terms, rights,

or licenses are explicitly required from all pro-

viders of commercial computer software pur-

suant to the FAR and the DFARS and are set

forth specifically in writing elsewhere in the

EULA. Keysight shall be under no obligation

to update, revise or otherwise modify the

Software. With respect to any technical data

as defined by FAR 2.101, pursuant to FAR

12.211 and 27.404.2 and DFARS 227.7102,

the U.S. government acquires no greater

than Limited Rights as defined in FAR 27.401

or DFAR 227.7103-5 (c), as applicable in any

technical data.

Safety Notices

A CAUTION notice denotes a hazard. It calls

attention to an operating procedure, practice,

or the like that, if not correctly performed or

adhered to, could result in damage to the

product or loss of important data. Do not pro-

ceed beyond a CAUTION notice until the

indicated conditions are fully understood and

met.

Page iii

http://www.keysight.com/go/conformity
http://www.keysight.com/go/conformity
http://www.keysight.com/find/sweula
http://www.keysight.com/find/sweula

A WARNING notice denotes a hazard. It calls

attention to an operating procedure, prac-

tice, or the like that, if not correctly per-

formed or adhered to, could result in

personal injury or death. Do not proceed bey-

ond a WARNING notice until the indicated

conditions are fully understood and met.

The following safety precautions should be

observed before using this product and any

associated instrumentation.

This product is intended for use by qualified

personnel who recognize shock hazards and

are familiar with the safety precautions

required to avoid possible injury. Read and

follow all installation, operation, and main-

tenance information carefully before using

the product.

If this product is not used as specified, the

protection provided by the equipment could

be impaired. This product must be used in a

normal condition (in which all means for pro-

tection are intact) only.

The types of product users are:

l Responsible body is the individual or
group responsible for the use and main-
tenance of equipment, for ensuring that
the equipment is operated within its spe-
cifications and operating limits, and for
ensuring operators are adequately
trained.

l Operators use the product for its inten-
ded function. They must be trained in
electrical safety procedures and proper
use of the instrument. They must be pro-
tected from electric shock and contact
with hazardous live circuits.

l Maintenance personnel perform routine
procedures on the product to keep it
operating properly (for example, setting
the line voltage or replacing consumable
materials). Maintenance procedures are

described in the user documentation.
The procedures explicitly state if the
operator may perform them. Otherwise,
they should be performed only by ser-
vice personnel.

l Service personnel are trained to work on
live circuits, perform safe installations,
and repair products. Only properly
trained service personnel may perform
installation and service procedures.

Operator is responsible to maintain safe

operating conditions. To ensure safe oper-

ating conditions, modules should not be

operated beyond the full temperature range

specified in the Environmental and physical

specification. Exceeding safe operating con-

ditions can result in shorter lifespans,

improper module performance and user

safety issues. When the modules are in use

and operation within the specified full tem-

perature range is not maintained, module

surface temperatures may exceed safe hand-

ling conditions which can cause discomfort

or burns if touched. In the event of a module

exceeding the full temperature range,

always allow the module to cool before

touching or removing modules from chassis.

Keysight products are designed for use with

electrical signals that are rated Meas-

urement Category I and Measurement Cat-

egory II, as described in the International

Electrotechnical Commission (IEC) Standard

IEC 60664. Most measurement, control, and

data I/O signals are Measurement Category

I and must not be directly connected to

mains voltage or to voltage sources with

high transient over-voltages. Measurement

Category II connections require protection

for high transient over-voltages often asso-

ciated with local AC mains connections.

Assume all measurement, control, and data

I/O connections are for connection to

Category I sources unless otherwise marked

or described in the user documentation.

Exercise extreme caution when a shock haz-

ard is present. Lethal voltage may be present

on cable connector jacks or test fixtures. The

American National Standards Institute

(ANSI) states that a shock hazard exists

when voltage levels greater than 30V RMS,

42.4V peak, or 60VDC are present. A good

safety practice is to expect that hazardous

voltage is present in any unknown circuit

before measuring.

Operators of this product must be protected

from electric shock at all times. The respons-

ible body must ensure that operators are pre-

vented access and/or insulated from every

connection point. In some cases, con-

nections must be exposed to potential

human contact. Product operators in these

circumstances must be trained to protect

themselves from the risk of electric shock. If

the circuit is capable of operating at or above

1000V, no conductive part of the circuit may

be exposed.

Do not connect switching cards directly to

unlimited power circuits. They are intended

to be used with impedance-limited sources.

NEVER connect switching cards directly to

AC mains. When connecting sources to

switching cards, install protective devices to

limit fault current and voltage to the card.

Before operating an instrument, ensure that

the line cord is connected to a properly-

grounded power receptacle. Inspect the con-

necting cables, test leads, and jumpers for

possible wear, cracks, or breaks before each

use.

When installing equipment where access to

the main power cord is restricted, such as

rack mounting, a separate main input power

disconnect device must be provided in close

proximity to the equipment and within easy

reach of the operator.

Page iv

For maximum safety, do not touch the

product, test cables, or any other instru-

ments while power is applied to the circuit

under test. ALWAYS remove power from the

entire test system and discharge any capa-

citors before: connecting or disconnecting

cables or jumpers, installing or removing

switching cards, or making internal changes,

such as installing or removing jumpers.

Do not touch any object that could provide a

current path to the common side of the cir-

cuit under test or power line (earth) ground.

Always make measurements with dry hands

while standing on a dry, insulated surface

capable of withstanding the voltage being

measured.

The instrument and accessories must be

used in accordance with its specifications

and operating instructions, or the safety of

the equipment may be impaired.

Do not exceed the maximum signal levels of

the instruments and accessories, as defined

in the specifications and operating inform-

ation, and as shown on the instrument or

test fixture panels, or switching card.

When fuses are used in a product, replace

with the same type and rating for continued

protection against fire hazard.

Chassis connections must only be used as

shield connections for measuring circuits,

NOT as safety earth ground connections.

If you are using a test fixture, keep the lid

closed while power is applied to the device

under test. Safe operation requires the use of

a lid interlock.

Instrumentation and accessories shall not be

connected to humans.

Before performing any maintenance, dis-

connect the line cord and all test cables.

To maintain protection from electric shock

and fire, replacement components in mains

circuits – including the power transformer,

test leads, and input jacks – must be pur-

chased from Keysight. Standard fuses with

applicable national safety approvals may be

used if the rating and type are the same.

Other components that are not safety-

related may be purchased from other sup-

pliers as long as they are equivalent to the

original component (note that selected parts

should be purchased only through Keysight

to maintain accuracy and functionality of the

product). If you are unsure about the applic-

ability of a replacement component, call an

Keysight office for information.

No operator serviceable parts inside. Refer

servicing to qualified personnel. To prevent

electrical shock do not remove covers. For

continued protection against fire hazard,

replace fuse with same type and rating.

PRODUCT MARKINGS:

The CE mark is a registered trademark of the

European Community.

Australian Communication and Media

Authority mark to indicate regulatory com-

pliance as a registered supplier.

This symbol indicates product compliance

with the Canadian Interference-Causing

Equipment Standard (ICES-001). It also iden-

tifies the product is an Industrial Scientific

and Medical Group 1 Class A product (CISPR

11, Clause 4).

South Korean Class A EMC Declaration. This

equipment is Class A suitable for pro-

fessional use and is for use in elec-

tromagnetic environments outside of the

home. A급기기 (업무용방송통신기자재)

이기기는업무용 (A급)전자파적합기기로

서판매자또는사용자는이점을주의하시

기바라며 ,가정외의지역에서사용하는것

을목적으로합니다.

This product complies with the WEEE Dir-

ective marketing requirement. The affixed

product label (above) indicates that you

must not discard this electrical/electronic

product in domestic household waste.

Product Category: With reference to the

equipment types in the WEEE directive

Annex 1, this product is classified as “Mon-

itoring and Control instrumentation”

product. Do not dispose in domestic house-

hold waste. To return unwanted products,

contact your local Keysight office.

Page v

This symbol indicates the instrument is sens-

itive to electrostatic discharge (ESD). ESD

can damage the highly sensitive components

in your instrument. ESD damage is most

likely to occur as the module is being

installed or when cables are connected or

disconnected. Protect the circuits from ESD

damage by wearing a grounding strap that

provides a high resistance path to ground.

Alternatively, ground yourself to discharge

any built-up static charge by touching the

outer shell of any grounded instrument

chassis before touching the port connectors.

This symbol on an instrument means cau-

tion, risk of danger. You should refer to the

operating instructions located in the user

documentation in all cases where the symbol

is marked on the instrument.

This symbol indicates the time period during

which no hazardous or toxic substance ele-

ments are expected to leak or deteriorate

during normal use. Forty years is the expec-

ted useful life of the product.

Page vi

Contents
Chapter 1: Introduction 11

Chapter 2: Install PathWave Test Sync Executive 13

System Requirements 14

Install Main Components 16

Install Additional Components 22

Chapter 3: Installing Licenses 25

PathWave Test Sync Executive License Requirements 26

Supported Licensing Modes 29

The Licensing Process 30

Installing Licenses with PathWave License Manager 31

Chapter 4: HVI Elements 33

About Instruments 34

About PathWave Test Sync Executive 35

HVI API Language Support 36

HVI API Use Model 37

HVI Engines 39

HVI Resources 40

HVI Sequences and Statements 42

HVI Sequences 43

HVI Statements 45

HVI Diagrams 52

HVI Timing 56

Chapter 5: HVI integration with PathWaveFPGA 66

PathWave FPGA and HVI Overview 67

Using FPGA-Sandbox Resources with HVI 73

HVI Memory Maps and Register Banks in FPGA Sandbox 75

Actions, Events and Triggers in an FPGA Sandbox 79

FPGA Fast Data Sharing 81

FPGA-Instruction 83

HVI Statements for using FPGAs 86

Chapter 6: Multi-Chassis Systems and System Synchronization Modules 88

System Synchronization Modules 89

Page 7

Configuring a System with SSMs and System Sync Connectivity 95

Clocking 99

Configuring the Reference Clock 104

Chapter 7: The HVI API 118

HVI API Main Classes and Use Model 119

HVI API Functionality 122

SystemDefinition 125

HVI Engines and their Resources 127

Chassis, Interconnects and SyncModules Classes 133

Synchronization Resources and Clocks 137

User-defined trigger routing 143

Clocking API 145

Multi-process support 150

System Initialization 154

Sequencer 164

About the Sequencer Class 165

HVI SyncSequence and Sequence 168

HVI API Statements 170

InstructionSet 171

FPGA Sandbox View 175

HVI Registers and Scopes 178

HVI Time API 182

HVI Compilation 183

Sequence Visualization 185

HVI Component Versions 193

The Hvi Object 195

EngineRuntime Components 197

Load to Hardware and Run 201

Real-time Hardware Execution Error Handling 202

The HVI Logger 204

HVI API Sync Statements 208

HVI API Local Statements 216

Chapter 8: Building an Application with the HVI API 230

Planning an HVI with the HVI Use Model 231

Page 8

1 Create the System Definition 235

2. Program HVI Sequences 245

3. Compile Your Sequences 255

4. Load To Hardware 256

5. Modify Initial Register Values (Optional) 257

6. Execute Sequences 258

7. Release All Resources 260

Chapter 9: HVI Time Management and Latency 261

About Time Management and Latency Concepts 262

Duration Property of Statements 269

Synchronization Clocks, Signals, and Modes 272

Sync Statement Timing 277

Local Flow-Control Statement Timing 301

Local Instruction Timing 307

Minimum Start Delay Calculation for Flow-Control and Sync Statement 321

Sync Statement Timing Tables 332

Local Flow-Control Statement Timing Tables 343

Local Instruction Statement Timing Tables 353

Appendix A: Supported Instruments 359

Appendix B: Additional Documentation and Examples 361

Page 9

KS2201A - PathWave Test Sync Executive User Manual
This User Manual describes the PathWave Test Sync Executive programming environment, which is
based on Keysight's Hard Virtual Instrument (HVI) technology. HVI enables you to develop and
execute synchronous, real-time operations across multiple instruments. The real-time sequencing
and synchronization capabilities of PathWave Test Sync Executive make it a powerful tool for Multi-
Input Multi-Output (MIMO) applications that require tight synchronization and real-time control and
feedback.

NOTE PathWave Test Sync Executive (KS2201A) is not compatible with the older
M3601A. You cannot use them together and they cannot run the same Sequences.

Find us at www.keysight.com Page 10

Chapter 1: Introduction
This chapter introduces Keysight KS2201A, PathWave Test Sync Executive and HVI technology.

Keysight PathWave Test Sync Executive Overview
PathWave Test Sync Executive is a programming environment based on Keysight's Hard Virtual
Instrument (HVI) technology, that enables you to develop and execute synchronous real-time oper-
ations across multiple instruments.

The real-time sequencing and synchronization capabilities of PathWave Test Sync Executive make it
a powerful tool for Multi-Input Multi-Output (MIMO) applications that require tight synchronization
and real-time control and feedback. For example:

l Radar.

l Bit error testing.

l Communication systems.

l Massive-scale quantum physics experiments.

PathWave Test Sync Executive supports:

l Multi-chassis configuration.

l HVI sequence design using an Application Programming Interface (API) for Python.

l Programming of multiple instruments.

l Execution of time-deterministic sequences of operations.

l Precision synchronization and execution.

About HVI Technology
HVI technology enables you to program one or more instruments to execute time-deterministic
sequences of operations with precise synchronization. It achieves this by deploying a code executable
onto the hardware of each instrument. This executes on an HVI Engine, which is an IP block that is
integrated into the instrument. The code executes on these Engines in parallel, across multiple
instruments.

The user-defined hardware operation of a group of instruments is called a Hard Virtual Instrument or
just HVI. The sequences of operations or instructions executed by the HVI engines are called HVI
Sequences. The operations and instructions that make up sequences are known as HVI Statements.

When creating an HVI, you can include any instrument that has HVI support. For example, the
Keysight M3xxxA family of PXI instruments is one product family with HVI support, the M5302A
instrument also has HVI support. This User Manual includes code examples of the HVI Instrument-
specific API that complement the code examples that explain the functionality of the HVI-native API.

Find us at www.keysight.com Page 11

Chapter 1: Introduction

HVI Application Programming Interface
The HVI API is the set of programming classes and methods that enable you to create and program
an HVI instance. HVI API 2022 supports the Python and C# languages. Unless otherwise noted, this
document refers to the Python API in explanations.

Python Help
A complete description of the HVI Python API is provided in the help file provided with the PathWave
Test Sync Executive installer. It is found inside the installation directory for PathWave Test Sync
Executive inside the api\python\Help subdirectory, by default this is:

C:\Program Files\Keysight\PathWave Test Sync Executive 2022\api\python\Help

Alternatively, you can enter Python API Help into the Windows Search.

C# Help
The HVI API documentation for C# is located at:

C:\Program Files\Keysight\PathWave Test Sync Executive 2022\api\dotNet\Help

API Use Model: The HVI-native API and the HVI Instrument Specific API
Each instrument extends the HVI API functionality with an instrument specific API. The HVI API is com-
mon to all products and only the instrument specific HVI API is different, depending on the instru-
ment. It is important to differentiate between the HVI-native API features and the instrument-specific
extensions. The extensions enable a heterogeneous array of instruments and resources to coexist in a
common framework.

The HVI-native API exposes all HVI functions and is a common API for all products. It defines the base
interfaces and classes that are used to create an HVI, control the hardware execution flow, and oper-
ate with data, triggers, events and actions, but it alone does not include the ability to control instru-
ment-specific operations. The HVI API defines the hard virtual instrumentation framework, and it is
the job of the instrument-specific HVI API extensions to enable instrument functions in an HVI. These
functions are exposed by the instrument-specific add-on definitions. This is done by an
HVI instrument add-on API provided by each instrument that describes the instrument-specific
resources and operations that can be executed or used within HVI sequences:

HVI instrument-specific definitions are listed in your Instrument documentation. For a list of sup-
ported instruments see Appendix A: Supported Instruments.

Find us at www.keysight.com Page 12

Chapter 1: Introduction

Chapter 2: Install PathWave Test Sync Executive
This chapter explains how to install PathWave Test Sync Executive and related required components.

It contains the following sections:

l System Requirements

l Install Main Components

l Install Additional Components

Find us at www.keysight.com Page 13

Chapter 2: Install PathWave Test Sync Executive

System Requirements
This section describes the system requirements for PathWave Test Sync Executive.

PathWave Test Sync Executive Installation Requirements
To install PathWave Test Sync Executive you require the following:

l Python 3.7.x or higher, 64-bit.

l Keysight PathWave Test Sync Executive installer.

To install these, see Install Main Components.

Additional Components Required
To run PathWave Test Sync Executive with hardware, you require:

l One or more PXIe chassis.

l One or more PXIe instruments.

l Associated software, libraries, drivers, and firmware.

Find us at www.keysight.com Page 14

Chapter 2: Install PathWave Test Sync Executive

Chassis
PathWave Test Sync Executive is compatible with any PXIe chassis, however Keysight recommends
the following Keysight chassis so you can make use of their capabilities and multi-instrument and
multi-chassis scalability:

l M9019A.

l M9018B.

l M9010A.

l M9046A.

These chassis include an enhanced PXI trigger bridge that provides the capabilities required by
PathWave Test Sync Executive to provide support for multi-segment/chassis operation. You can use
other chassis without limitation for single segment operation, and you can also use other chassis for
multi-segment/multi-chassis operations, but these impose limitations on the complexity of the HVI
sequences that you can execute.

For most chassis, the enhanced PXI trigger bridge functionality is delivered by a firmware update, see
your chassis user manual for details. The PathWave Test Sync Executive programming
examples show how to verify the correct firmware version for specific chassis. The programming
examples are described in Appendix B: Additional Documentation and Examples .

NOTE The Programming Examples are often updated so ensure you check for the latest
versions.

Instruments
PathWave Test Sync Executive works with a number of PXIe instruments.

For more information see the PathWave Test Sync Executive Release Notes and Appendix A:
Supported Instruments.

Older versions of HVI technology
PathWave Test Sync Executive (KS2201A) and the previous version M3601A, are not compatible. You
cannot use them together.

If you use M3601A, the additional components required by HVI use different versions, so they must be
reinstalled every time you change between running M3601 and KS2201A.

Find us at www.keysight.com Page 15

Chapter 2: Install PathWave Test Sync Executive

Install Main Components
This section explains how to install the main components of PathWave Test Sync Executive, it
contains the following sections:

1. Install Python 3.7.x, 64-bit.

2. Install PathWave Test Sync Executive.

3. Manual Installation of Python APIs.

NOTE PathWave License Manager must not be running when you install PathWave Test
Sync Executive.

If PathWave License Manager is running, you must close it before installing the
main components.

1: Install Python
PathWave Test Sync Executive requires 64-bit Python. Versions 3.7, 3.8, 3.9, and 3.10 are supported
along with their sub-versions. Multiple versions can also be supported.

1. Download the Python installer from the Python web site: python.org.

2. Run the installer.

a. Add Python 3.x to the PATH system Variable. To do this, ensure the check box Add python 3.x to PATH is
checked. This is shown in the following screenshot:

Find us at www.keysight.com Page 16

Chapter 2: Install PathWave Test Sync Executive

http://www.python.org/

2: Install PathWave Test Sync Executive
Use the following procedure to install PathWave Test Sync Executive:

NOTE You must install Python 64-bit before installing PathWave Test Sync Executive.

If PathWave License Manager is running, you must close it before installing
PathWave Test Sync Executive.

Execute the installer file:

The Setup screen is shown:

Find us at www.keysight.com Page 17

Chapter 2: Install PathWave Test Sync Executive

The next screen is the License Agreement screen. You must accept the license to continue:

You can change the installation directory on the Installation Directory screen.

By default, PathWave Test Sync Executive is installed to:

C:\Program Files\Keysight\PathWave Test Sync Executive 2022

Find us at www.keysight.com Page 18

Chapter 2: Install PathWave Test Sync Executive

The Select HVI APIs screen enables you to select the Python API versions you want to install.

If a Python version component is marked with an asterisk and selected, the installer will install the
Python package.

If the Python version component is not marked with an asterisk, but is selected with a check mark, an
additional step is required; see Manual Installation of Python APIs below.

Required components are selected by default and you cannot de-select them.

When you have selected the components, the next screen is Ready to Install. Select Next to install
PathWave Test Sync Executive.

Find us at www.keysight.com Page 19

Chapter 2: Install PathWave Test Sync Executive

The Installer first installs the License manager. It then installs PathWave Test Sync Executive:

The following screen is shown when the installer has completed installing: Select Finish to close the
installer.

Find us at www.keysight.com Page 20

Chapter 2: Install PathWave Test Sync Executive

Manual Installation of Python APIs
If you selected Python APIs when installing PathWave Test Sync Executive that were not
automatically installed, you can complete the installation process with the pip command.

For example, to install Python APIs for Python 3.9, type the following command at a command
prompt:

py -3.9 -m pip install "C:\Program Files\Keysight\PathWave Test Sync Executive

2022\api\Python\Python39"

Find us at www.keysight.com Page 21

Chapter 2: Install PathWave Test Sync Executive

Install Additional Components
To use PathWave Test Sync Executive, you require both hardware and software.

To work with PathWave Test Sync Executive, instruments and chassis require minimum specific soft-
ware and firmware versions. These are listed on line at: Instrument and Chassis Software and Firm-
ware Requirements for KS2201A .

Ensure you have all the following components and they are all up to date:

l Keysight IO Libraries.

l Keysight Instrument Drivers, Libraries, and Software Front Panel.

l Keysight Instrument FPGA Firmware.

l Keysight Chassis Family Driver.

l Keysight Chassis Driver and Firmware.

Install Keysight IO Libraries
Install the IO Libraries. These are available at Keysight IO Libraries Suite.

Install Keysight Instrument Drivers, Libraries, and Software Front Panel
To install the instrument drivers and libraries, install the software for your instruments:

l For the M5302A instrument see: M5302A Software.

l For the M3xxxA instruments see: Keysight SD1 Software.

NOTE Ensure you check the driver release notes, so that your drivers that are compatible
with the version of PathWave Test Sync Executive you have installed.

Update Keysight Instrument FPGA Firmware
You can update the FPGA firmware of your PXI instruments from your Software Front Panel. For
information about how to install SW and FPGA firmware for Keysight instruments, see the instrument
documentation:

These are available at Keysight PXI Products.

NOTE Ensure you check the firmware release notes, so that you install firmware that is
compatible with the version of PathWave Test Sync Executive you have installed.

Install Keysight Chassis Family Driver
Install the Chassis Family Driver, which is available at Keysight PXI Chassis. When you install the
Keysight Chassis Family Driver, PXIe Chassis Software Front Panel software is automatically installed.

Find us at www.keysight.com Page 22

Chapter 2: Install PathWave Test Sync Executive

http://www.keysight.com/find/ks2201a-firmware-version-requirements
http://www.keysight.com/find/ks2201a-firmware-version-requirements
http://www.keysight.com/find/iolibraries
http://www.keysight.com/find/M5302A-Driver
http://www.keysight.com/es/en/lib/software-detail/instrument-firmware-software/sd1-3x-software-3120392.html
http://www.keysight.com/find/pxi
http://www.keysight.com/find/pxi-chassis

Update Keysight Chassis Firmware
In PXIe Chassis Software Front Panel, you can:

l Check the chassis firmware version in the help window.

l Update the chassis firmware with the Utilities window of PXIe Chassis SFP.

You can use the Utilities window of PXIe Chassis SFP to update the chassis firmware. For more
information about updating Chassis firmware, see
PXIeChassisFirmwareUpdateGuide.pdf at Keysight PXI Chassis.

NOTE Ensure you check the firmware release notes, so that you install firmware that is
compatible with the version of PathWave Test Sync Executive you have installed.

The following screenshot shows an example of the chassis firmware version shown in the help window
of the PXIe Chassis SFP. In this case the chassis is a Keysight Chassis model M9019A.

Find us at www.keysight.com Page 23

Chapter 2: Install PathWave Test Sync Executive

http://www.keysight.com/find/pxi-chassis

The following screenshot shows a breakdown of components of different versions of the M9019A
chassis firmware:

Find us at www.keysight.com Page 24

Chapter 2: Install PathWave Test Sync Executive

Chapter 3: Installing Licenses
This chapter provides a brief introduction to PathWave Test Sync Executive licensing. It contains the
following sections:

l PathWave Test Sync Executive License Requirements

l Supported Licensing Modes

l The Licensing Process

l Installing Licenses with PathWave License Manager

Find us at www.keysight.com Page 25

Chapter 3: Installing Licenses

PathWave Test Sync Executive License Requirements
Each instrument used in your HVI implementation must be licensed to be used with PathWave Test
Sync Executive.

There are 2 types of licensing for instruments:

1. For instruments with no -HVx option installed, you require 1 license for each instrument (including Sync
Modules)

2. For instruments with the -HVx option (-HV1 or -HV2) installed, a single license covers all of the instruments
with the -HVx option in the same chassis.

The following table shows an example of the number of licenses required for a single chassis system:

Chassis

Number of
Instruments

without -HVx
option

Number of
Instruments

with -HVx
option

Licenses required

A 1 4

2

l 1 license for the instrument without the -HVx option.

l 1 license for the 4 instruments with the -HVx option.

Find us at www.keysight.com Page 26

Chapter 3: Installing Licenses

The following table shows an example of the number of licenses required for a 3 chassis system:

Chassis

Number of
Instruments

without -HVx
option

Number of
Instruments

with -HVx
option

Licenses required

A 1 4

2

l 1 license for the instrument without the -HVx option.

l 1 license for the 4 instruments with the -HVx option.

B 4 0

4

l 1 license each for the 4 instruments without the -HVx
option.

C 2 4

3

l 1 license each for the 2 instruments without the -HVx
option.

l 1 license for all the instruments with the -HVx option.

Total licenses required 9

NOTE The -HVx option was previously required to be purchased for an instrument to be
used with PathWave Test Sync Executive.

The -HVx option is now deprecated, but existing instruments with the -HVx option
are still supported.

l Keysight M3xxxA PXI Instruments used the -HV1 option.

l Keysight M5302A Digital I/O instruments previously used the -HV2 option.

l Keysight M9415A VXT Vector Transceiver uses the -HV2 option.

Find us at www.keysight.com Page 27

Chapter 3: Installing Licenses

Licenses and Processes
All HVI instances running in the same process share the same licenses, but HVI instances running in
different processes require different licenses.

For example, if you have 3 HVI instances running in a single process, the licenses are reused.

The following table shows the number of licenses required for scenarios where these are 1 or 3
processes:

Description HVI instance 1 HVI instance 2 HVI instance 3 Licenses required

3 HVI instances in the same process 3 6 10 10

3 HVI instances in 3 different processes 3 6 10 19

Find us at www.keysight.com Page 28

Chapter 3: Installing Licenses

Supported Licensing Modes
The following types of licenses are supported:

Commercial licenses:

l Node-Locked, perpetual and 6, 12, 24, and 36 months, subscription.

l USB Portable, perpetual and 6, 12, 24, and 36 months, subscription.

l Floating/Networked, perpetual and 6, 12, 24, and 36 months, subscription.

l Transportable, perpetual and 6, 12, 24, and 36 months, subscription.

Trial licenses:

l 30 days Node-locked.

NOTE l To obtain a trial or commercial license, see the product download page.

l As part of the licensing process you will require a Host ID (probably a Mac address) for
your workstation. The product license manager might display this, if not, the help or
documentation for the license manager shall tell you how to obtain a Host ID.

Transportable Licenses
If you want to reconfigure your systems so a different number of chassis are used, you can use a
transportable license . These enable you to move your licenses between systems without any need to
contact Keysight, so you don't have to keep buying new licenses.

For example, say you have two systems: one with three chassis and a second system with two
chassis. If you want to move the third chassis from the first system to the second, the second system
will require a third license. The first system has three licenses, but it shall no longer require all three.
A transportable license enables you to move the third license from the first system to the second
system. You can then use the new configuration without having to buy a new license.

Find us at www.keysight.com Page 29

Chapter 3: Installing Licenses

The Licensing Process
The Keysight licensing process uses the following steps:

1. Purchase and fulfillment

For most Keysight licensed product options, your entitlement certificate is sent to you as a PDF
attachment via email immediately after your purchase. In some cases, you receive a paper copy
of your certificate with your purchased product. The licensed product options may be software
products or upgraded features of an instrument.

2. Getting a license

Using the entitlement certificate you received when you ordered, you can request your licenses
on the Keysight Software Manager web site. To do this, you'll need to choose a host instrument
or PC, and provide its identifying information (the Host ID) when you request your licenses. Once
you begin the process, Keysight Software Manager will guide you step by step through
requesting your licenses and you will receive the license files via email.

You might need to create a myKeysight login when you first go to the Keysight Software Manager
site, and you will need to log in anytime you go to the site.

3. Installing your license

To enable the licensed software, after you receive a license file from Keysight Software Manager,
you must install it on your instrument or computer or on a central licensing server accessible
from your instrument or computer. If you are installing node-locked or transportable licenses on
the same local PC where you execute KS2201A, ensure you place your license files in a public
folder, for example, C:\Users\public\folder_name.

To install the license:

1. Install PathWave Test Sync Executive.

2. Use PathWave License Manager to install your license. The installation process is
described in the email that comes with your license.

Find us at www.keysight.com Page 30

Chapter 3: Installing Licenses

http://www.keysight.com/find/softwaremanager

Installing Licenses with PathWave License Manager
You can install licenses from the PathWave License Manager. This is installed when you
install Keysight PathWave Test Sync Executive. You can use a local license on your computer or a
floating license from a license server.

Full details describing how to install licenses are provided by email when you purchase a license.

If you are upgrading without purchasing a new license, have a more complex setup, or did not get a
licensing email, see the Licensing Quick Start Guide, this provides comprehensive information about
the licensing process and how to solve problems.

NOTE If you are upgrading from a previous version of PathWave Test Sync Executive that
used a different license manager, Keysight recommends that you keep the old
license manager installed.

Find us at www.keysight.com Page 31

Chapter 3: Installing Licenses

http://www.keysight.com/find/licensingquickstart

Potential Conflicts Between License Managers of Different HVI Software
Some previous versions of KS2201A software used a different license manager. Specifically:

l KS2201A Pathwave Test Sync Executive 2021 Release and later use PathWave License Manager (PLM).

l KS2201A Pathwave Test Sync Executive 2020 Update 1 Release uses PathWave License Manager (PLM).

l KS2201A PathWave Test Sync Executive 2020 Release uses Keysight License Manager 6.

The license managers described above are compatible with each other and they can detect and show
the licenses installed using the other license managers. For node-locked or transportable licenses,
conflicts can arise if any licenses were not installed in a a public folder, for example,
C:\Users\public\folder_name . In this case, the license must be reinstalled from scratch using the
license manager of the product the license belongs to.

If you are moving from one HVI software to another version that uses a different license manager, to
update the floating license installation on your license server see the instructions provided.

NOTE l If you need to uninstall any PathWave Test Sync Executive software, always use
the provided software uninstaller. Manually uninstalling a license manager can
cause corruption to other license managers.

l If you have licenses located in user-specific locations (such as
C:\Users\fred\Desktop), these licenses may not be accessible to the license
service created by PathWave License Manager. Using the license manager
provided with the appropriate product, remove and reinstall such licenses in a
generally accessible location, such as C:\Users\public

Troubleshooting the License Installation
If you have difficulties with installing or using your licenses see Licensing Quick Start Guide. If the
problem persists, please contact Keysight Tech Support and share the log files.

Log files are saved by PathWave License Manager in:

C:\ProgramData\Keysight\Licensing\Log

Find us at www.keysight.com Page 32

Chapter 3: Installing Licenses

http://www.keysight.com/find/licensingquickstart

Chapter 4: HVI Elements
This chapter describes the elements that make up an HVI.

It contains the following sections:

l About Instruments

l About PathWave Test Sync Executive

l HVI API Language Support

l HVI API Use Model

l HVI Engines

l HVI Resources

l HVI Sequences and Statements

HVI Sequences

HVI Statements

l HVI Diagrams

l HVI Timing

Find us at www.keysight.com Page 33

Chapter 4: HVI Elements

About Instruments
Instruments are modules or cards that can capture or generate various kinds of electronic signals.
Many kinds of instruments are available with different kinds of functions.

Different kinds of instruments can perform various functions with electronic signals:

l Measure signals.

l Record signals.

l Perform signal analysis.

l Perform signal conditioning.

Some types of instruments can generate different kinds of outputs:

l Signals.

l Voltages.

l Pulses.

l Arbitrary waveforms.

l Digital outputs.

Instruments can be supplied as modules or cards that fit into a chassis. The chassis enables you to fit
multiple modules together. The instruments in a chassis are synchronized to a common digital
clock reference that is shared by all the instruments. The chassis also offers shared triggering and
communication resources.

For this User Manual, the specific instruments referred to are PXI modular instruments that are inser-
ted into a PXI chassis.

For a full list of Keysight instruments, see Keysight.com.

Find us at www.keysight.com Page 34

Chapter 4: HVI Elements

http://keysight.com/

About PathWave Test Sync Executive
PathWave Test Sync Executive enables you to program multiple instruments together. They
operate together, tightly orchestrated with other instruments, so they behave like a single instrument.

PathWave Test Sync Executive enhances individual instruments by enabling them to:

l Execute real-time sequences of operations with full time determinism.

l Precisely synchronize instrument operations.

l Fast, real-time hardware exchange of information and decisions between instruments.

You define a new virtual instrument made up of a combination of instruments. This is known as a Hard
Virtual Instrument (HVI). Once the HVI resources are defined, you can program multiple instruments
to work together as if they were a single instrument.

To program the HVI, you write an application using the HVI API. When you run your application, it gen-
erates the HVI instance and the binary code that is executed by the hardware in the instruments.

When creating an HVI, you can include any instrument that supports PathWave Test Sync Executive,
such as Keysight's M3xxxA family of PXI instruments.

Each instrument that supports PathWave Test Sync Executive has specific instructions that enable
you to use its functionalities within HVI. These instructions are documented in the instrument doc-
umentation.

Find us at www.keysight.com Page 35

Chapter 4: HVI Elements

HVI API Language Support
The HVI API is the set of programming classes and methods that enable you to create and program
an HVI instance. PathWave Test Sync Executive 2021 and above supports the Python and C# lan-
guages.

The C# API is similar to the Python API except for the following differences:

l Class names are in camel case, that is, the beginning of individual words are capitalized.

l Variable names are also in camel case, except the first letter of the first word is not capitalized.

l There are no spaces, underscores, or dashes between words in class names.

l The first letter of methods and functions is capitalized.

The following table shows examples in Python and C#:

Type Python C#

Type names SystemDefinition SystemDefinition

Variables multi_seq_block_1 multiSeqBlock1

Methods add_sync_multi_sequence_block() AddSyncMultiSequenceBlock()

The following blocks of Python and C# code are equivalent:

Python code:

Add a sync multi-sequence block:
multi_seq_block_1 = sync_while.sync_sequence.add_sync_multi_sequence_block("multi_seq_block_1",
210)

C# code:

// Add a sync multi-sequence block
var multiSeqBlock1 = syncWhile.SyncSequence.AddSyncMultiSequenceBlock("multiSeqBlock1", 210);

A complete description of the HVI Python API is provided in the help file installed with the PathWave
Test Sync Executive installer.
It is found inside the installation directory for PathWave Test Sync Executive inside the api\py-
thon\Help subdirectory, by default this is:

C:\Program Files\Keysight\PathWave Test Sync Executive 2022\api\python\Help

Alternatively, you can enter Python API Help into the Windows Search.

The HVI API documentation for C# is located at:

C:\Program Files\Keysight\PathWave Test Sync Executive 2022\api\dotNet\Help

Find us at www.keysight.com Page 36

Chapter 4: HVI Elements

HVI API Use Model
This section describes the HVI API use model, and the steps it involves.

HVI uses a program-within-a-program model, that is, HVI can be seen as a real-time hardware pro-
gram that runs within a software program.

HVI Use Model Steps
To use the HVI API, your application must follow a series of steps to define and run an HVI
instance. These steps are broadly defined by three different classes within the HVI API:

1. SystemDefinition.

2. Sequencer.

3. Hvi.

1 SystemDefinition
You use this class to define all the instrument and platform resources that are required to set up the
HVI.

You use this class to define:

l Chassis.

l Interconnects.

l Clocks.

l Synchronous signals.

l Trigger routing.

You also use this class to define the resources that are available on the instruments:

l Engines - IP blocks in the FPGA or instrument hardware that executes HVI sequences.

l Actions - these initiate instrument-specific operations.

l Events - these indicate instrument-specific operations have occurred.

l Triggers - signals used to communicate between instruments.

When you have defined these resources, you must register them within the relevant collections.
Collections are special classes that associate resources with individual Engines, so that you can use
the resources on those Engines.

Find us at www.keysight.com Page 37

Chapter 4: HVI Elements

2 Sequencer
You use the Sequencer class to program and compile your sequences:

l You add instructions and operations known as statements to sequences. These can be synchronized across
instruments or local to a specific instrument.

l You also add and use HVI registers within this class. Registers are small, fast memories on the HVI engines
that you can use as program Variables.

l Once you have defined all the Sequences that define your HVI, you must compile it. The compilation process
returns a instance of the Hvi class.

3 Hvi
Hvi is the runtime or executable object. With this object, you load the HVI sequences into the relevant
engines and execute them.
This object also enables you to interact with the hardware resources assigned to the HVI and initialize
all resources before the actual execution happens.

Execution Flow of the HVI
When you run your application, the HVI instance is generated, compiled, and downloaded into the
instruments and infrastructure. It is executed across all the instruments and the infrastructure
resources, and then the HVI instance takes control of the individual instruments and platform
components. The HVI configures the required resources and downloads the hardware programs that,
when executed, run on the instruments and platform hardware synchronously.

An application can create multiple HVI instances, but if the resources are shared, only one can be
downloaded and executed in hardware at a time. If the HVI instances do not share any resources,
they can be executed in parallel.

Find us at www.keysight.com Page 38

Chapter 4: HVI Elements

HVI Engines
For HVI to control an instrument, the instrument requires one or more HVI Engines. An HVI Engine is
an Intellectual Property (IP) block that controls the functions of the instrument and the timing of
operations. The HVI Engine is included directly in the instrument hardware or it can be programmed
into the Field Programmable Gate Array (FPGA) in the instrument.

HVI works by deploying a binary executable to each hardware instrument to be executed by the HVI
Engine. Different binaries execute on the different HVI Engines in parallel, across multiple
instruments.

When you write an application that includes an HVI, you create HVI sequences. These are sequences
of HVI statements, these are operations that control the instrument. The HVI sequences are compiled
into the binary executables that the HVI Engine executes.

About Instrument FPGAs
An FPGA is an electronic component on the Instrument. The FPGA in an instrument might include
pre-programmed IP for the instrument's functionality and this can include HVI IP components and
regions you can configure.

In addition to any existing IP and HVI engines, instrument FPGAs include an FPGA sandbox, this is a
user-configurable region in the instrument FPGA. You can configure the FPGA Sandbox to imple-
ment your own specific functionality. This can include custom logic and memory. To take advantage
of this feature, you must use PathWave-FPGA to create your design in the FPGA sandbox. For more
information see Chapter 5: HVI integration with PathWaveFPGA.

Find us at www.keysight.com Page 39

Chapter 4: HVI Elements

HVI Resources
The HVI Engine executes Sequences that are made up of Statements. These statements or instruc-
tions can operate on different resources in real-time. HVI can operate on the following resources:

l HVI Actions.

l HVI Events.

l HVI Triggers.

l Clock signals.

l HVI registers.

l FPGA sandbox registers and memory maps.

Actions, Events and Triggers are concepts within HVI. They are used to initiate operations, wait for
operations, send signals, and receive signals.

Actions

HVI actions are digital electronic pulsed or level signals that are sent from the HVI engine to
control instrument operations outside of the HVI Engine.

You use actions in HVI sequences to initiate operations. Typically, actions initiate instrument-
specific operations. For example, in a digitizer instrument, a StartAcquisition action sends a
digital pulse to start an acquisition operation.

Events

HVI events are digital electronic pulsed or level signals that are sent to the HVI Engine and used
as notifications when instrument operations have occurred outside of the HVI Engine.

You use HVI Events in HVI sequences as notification events that the execution has to wait for.
Typically, events indicate instrument-specific operations have occurred. For example, in an AWG,
the AWG will send a digital pulse through the WaveformDone event when a waveform execution has
been completed.

Triggers

HVI Triggers are electronic signals that the HVI engines can send or receive.

HVI Triggers are used to send signals and share data between instruments. You can use these to
initiate operations, communicate states, or share information. There are multiple types of
triggers depending on how they are connected, for example: front panel triggers (usually a SMA
connector on the module's front panel), PXIe triggers (connected to the PXIe backplane of the
chassis), and general purpose digital IO (LVDS connector in the module's front panel).

Find us at www.keysight.com Page 40

Chapter 4: HVI Elements

HVI Registers

HVI registers are similar to Variables in a programming language. They hold values that can be
modified at runtime and can be used as parameters for instructions and statements. Physically,
HVI registers are small hardware memories located in HVI engines. Their contents can be shared
between HVI Engines by using specific instructions.

FPGA Sandbox registers and Memory maps

Some instrument FPGAs provide a user-configurable region in the instrument FPGA known as an
FPGA sandbox. This enables you to program the instrument with logic that implements your own
custom functionality. HVI Registers and Memory Blocks are components in the FPGA sandbox
that you can use as resources in your HVI sequences. For more information see Chapter 5: HVI
integration with PathWaveFPGA.

For the instruments that support an FPGA sandbox, HVI can support the sharing of data between
the sandbox and the HVI engine in an instrument or between the sandboxes of different
instruments. This functionality depends of the availability of specific interfaces inside the FPGA
Sandbox. To take advantage of these features, you must use PathWave-FPGA to create your
design in the sandbox.

NOTE The exact resources available and how they are configured is instrument
dependent. Each instrument defines the actions and events available, how it uses
triggers and the number and type of registers available. For the specific definitions
and availability of resources in each instrument, see your instrument
documentation.

Find us at www.keysight.com Page 41

Chapter 4: HVI Elements

http://www.keysight.com/find/pathwave-fpga

HVI Sequences and Statements
You control instruments with HVI Statements. Statements operate on resources such as Actions,
Events, and Triggers. There are different types of statements that perform different types of
operations. HVI Statements are the building blocks of HVI Sequences. These sequences are compiled
in your application and are executed in real-time on the HVI engines.

The following sections describe the different types of sequences and statements.

l HVI Sequences

l HVI Statements

Find us at www.keysight.com Page 42

Chapter 4: HVI Elements

HVI Sequences
An HVI instance consists of HVI sequences, which are the foundations of HVI technology. An HVI
sequence is an ordered list of HVI statements with associated timing information. A sequence is
executed in a time-deterministic manner by the HVI hardware engine located within an instrument.
An HVI instance is made up of one or more sequences that run in parallel and synchronously.

There are two types of sequences:

l Sync sequence.

l Local sequences.

HVI sequences are organized in a hierarchy with Sync sequences at the top.

Sync sequences
A synchronized sequence (called a Sync sequence) contains commands known as Sync statements
that execute across multiple instruments:

Find us at www.keysight.com Page 43

Chapter 4: HVI Elements

Local sequences
The Local sequences are executed by each individual HVI engine in an instrument.

Local sequences are contained within Sync Multi-Sequence Blocks. A Sync multi-sequence block is
a type of Sync statement that is contained in a Sync sequence.

The following diagram shows the relationship between a Sync sequence, Sync multi-sequence block,
and Local sequences:

Find us at www.keysight.com Page 44

Chapter 4: HVI Elements

HVI Statements
HVI statements are the commands or operations that make up an HVI sequence. HVI sequences are
the ordered lists of HVI statements that are executed with precise timing. If you think of an HVI
sequence as a poem, the HVI statements are the possible words you can use to write the poem and
the HVI API is the language you use to write it. HVI statements are FPGA-level operations that are
executed by the HVI engines.

HVI statements are broadly divided into two groups:

HVI Sync statements

Synchronized (Sync) statements are used to execute operations or control the flow of execution
across all HVI hardware engines. Sync statements are executed synchronously among all HVI
engines.

HVI Local statements

These are the commands or operations you put in the Local sequences to be executed on a spe-
cific HVI engine that is in a specific hardware instrument.

Find us at www.keysight.com Page 45

Chapter 4: HVI Elements

The following diagram shows the different kinds of statements and how they relate to Sync
sequences and Local sequences:

Find us at www.keysight.com Page 46

Chapter 4: HVI Elements

HVI Sync statements
These are used to execute operations or control the flow of execution across all HVI hardware
engines. Sync statements are executed synchronously among all HVI engines.

HVI Sync statements are contained in a Sync sequence. HVI Sync statements execute across all
instruments.

The Sync sequence enables multiple engines to execute statements in lockstep.

The following HVI Sync statements are available:

l Sync while

l Sync register-sharing

l Sync FPGA data-sharing

l Sync multi-sequence block

Sync while
Enables a while loop to execute synchronously on all engines.

The Sync while flow-control enables you to execute a Sync sequence in a loop while a condition is
met. The condition is evaluated each time before starting the Sync sequence execution. When the
condition is false and the Sync sequence reaches the end, the Sync while jumps out of the loop and
the Sync sequence containing the Sync while continues execution with the next Sync statement.

Sync register-sharing
The Sync register-sharing statement enables you to share data from a source register to a destination
register in any other HVI Engine.

It enables you to share the contents of N adjacent bits from a source register and write it to a
destination register in another HVI Engine in your HVI.

Sync FPGA data-sharing
Enables you to share data from one FPGA Sandbox to one or more other FPGA Sandboxes in different
instruments. The data-sharing is orchestrated by the HVI engines of the different instruments.

Data can be shared between instruments in a single chassis or across instruments in multiple
chassis. Sync FPGA data-sharing utilizes the Fast Data Sharing (FDS) functionality to enable the low-
latency transfer of data.

Data is sent 4 bits at a time and can be sent from one to one, or from one to many FPGA Sandboxes.

Find us at www.keysight.com Page 47

Chapter 4: HVI Elements

Sync multi-sequence block
Enables the execution of multiple, simultaneous, engine-specific sequences.

Sync multi-sequence blocks are a type of Sync statement that contain a set of Local sequences. The
Local sequences execute on individual HVI Engines within the instruments. All Local sequences
contained in a Sync multi-sequence block start and end at the same time.

The Sync multi-sequence block enables you to run different sequences on each engine concurrently.
It ensures that the execution of all the Local sequences starts exactly at the same time and that the
Sync sequence remains synchronous afterwards. It serves as a boundary between sections and a
container where each engine operates individually.

All HVI Local Sequences operate within HVI Sync statements. The HVI Sync statements determine
global or synchronized operations, or synchronization points.

The following diagram shows how the HVI Sync statements fit in the Sync sequence:

Find us at www.keysight.com Page 48

Chapter 4: HVI Elements

HVI Local statements
HVI Local statements are the commands or operations that make up Local sequences. These are the
commands or operations you put in the Local sequences to be executed on a specific HVI engine in a
specific hardware instrument. There are two types of Local statements:

l Local instruction statements.

l Local flow-control statements.

Local instruction statements
These are operations that are executed by the HVI engine in the instrument hardware and do not
impact the execution flow.

There are two types of Local instruction statements:

HVI-native instructions

HVI-native instructions are instrument independent, general-purpose instructions present on all
instruments, for example, math operations, writing triggers and executing actions. HVI-
native instructions are defined by the HVI API.

Instrument-specific instructions

These are instructions that are specific to instruments. You can use these when you program an
HVI with those specific instruments.

These instructions can change instrument settings such as amplitude and frequency. They can
also trigger instrument functions such as queuing waveforms for playback, outputting a
waveform, or triggering a data acquisition.

Instrument-specific instructions are defined by the HVI instrument add-on API and are exposed
in each instrument driver as instrument-specific HVI definitions.

NOTE The User Guides for the M320xA PXI AWGs and M310xA PXI Digitizers describe all
the HVI instructions available for each of the M3xxxA PXI instruments.

Find us at www.keysight.com Page 49

Chapter 4: HVI Elements

Local flow-control statements
Local flow-control statements are used to control the execution flow within each Local
sequence. These statements are depicted with yellow boxes in the HVI diagrams displayed in this
User Manual.

These are used to control the execution flow of a specific HVI engine. They are divided into two types:

Wait statements:
Local Wait-for-Event

Waits for a condition that can be determined by an HVI Event, an HVI Trigger, or any logical
combination of any of these types of conditions.

Local Wait-for-Time

Waits for an amount of time specified in a register.

Local Delay

Delays a sequence for a time you specify.

Conditional flow-control statements:
Local If

This acts as an If-Elseif-Else, local If executes one of a set of possible Local sequences
depending on the value of a defined condition.

Local While

Executes while a condition is true.

Find us at www.keysight.com Page 50

Chapter 4: HVI Elements

The following diagram shows the different types of Local statements and their relationship to
the Local sequences:

Find us at www.keysight.com Page 51

Chapter 4: HVI Elements

HVI Diagrams
This section shows HVI diagrams. These are used to illustrate HVI sequences.

In the HVI diagrams, the following colors are used to indicate different kinds of statements:

The following diagram shows a single Sync statement with flow and time for the block:

Find us at www.keysight.com Page 52

Chapter 4: HVI Elements

The diagrams can show nesting of statements within statements. For example, the following diagram
shows a Sync statement that is within another Sync statement:

Local sequences are placed within their HVI engines in Sync multi-sequence blocks. The following
diagram shows a pair of Local sequences with an instruction each inside a Sync multi-sequence
block:

Find us at www.keysight.com Page 53

Chapter 4: HVI Elements

A dotted line indicates that execution time is not known at compile time. This is often the case with
flow-control statements. In this case the Wait-for-event statement shall not release until the event
occurs. It is not known at compile time when this is, so the time cannot be calculated at compile
time.

The following diagram shows a Local flow-control statement that encloses a pair of Local instruction
statements. The color Yellow indicates a Local flow-control statement.

The circular symbol is a loop indicator that shows that the block iterates.

Find us at www.keysight.com Page 54

Chapter 4: HVI Elements

The following diagram shows a more complex example. The Sync multi-sequence block contains two
Local sequences, one per HVI engine. The Local sequences execute operations on
their associated HVI engines in parallel.

Find us at www.keysight.com Page 55

Chapter 4: HVI Elements

HVI Timing
This section introduces the basic HVI timing concepts, including:

l HVI Statement Timing Definitions.

l Timing description for different statement types.

l Time Matching of Sequences in Sync Multi-Sequence Blocks.

HVI timing is a complex topic that involves you understanding how to calculate the timing between
statements. The calculations required and parameters involved are described in detail in Chapter 9:
HVI Time Management and Latency.

HVI Statement Timing Definitions
When you are programming an HVI, you have precise control over the timing of HVI
statement execution. To do this correctly, you must understand the following time definitions:

l Start time.

l End time.

l Fetch time.

l Execution time.

l Start delay.

Start time

This is the instant of time when the HVI starts the execution of a statement. You set the Start time
when you are programming your sequence by setting a parameter called Start delay. HVI either
meets the specified time exactly, or it generates an error if it is not possible.

End time

This is the instant of time when:

l The execution of a statement is completed, and the result is available.

l An operation is completed, such as a register update or a trigger value change.

For operations that have a long execution time, the End time indicates when the first result is
available, or the operation is complete.

Fetch time

This is the time interval required by the HVI engine hardware to fetch and dispatch a statement
for processing. Depending on their characteristics, some statements can take several HVI engine
cycles to complete the fetch before the processing can start.

Find us at www.keysight.com Page 56

Chapter 4: HVI Elements

Execution time

This is the time interval from the Start time to the End time of the statement. This interval is
determined by instrument constraints and inherent limits such as propagation delays and
resource availability. The Execution time includes the Fetch time.

Start delay

The Start delay defines the period between the execution of consecutive statements. The Start
delay enables you to have full control of the timing of operations and ensures there is enough
time for correct execution. If the Start delay is not accounted for properly, the HVI sequences
shall not behave correctly. Start delay is a parameter that you set in the add_statement
() methods.

NOTE If you do not specify a valid Start delay, the compiler generates an error and
indicates the minimum valid minimum value. For more information, see Chapter 9:
HVI Time Management and Latency.

The following diagram shows the HVI statement timing definitions:

Find us at www.keysight.com Page 57

Chapter 4: HVI Elements

Timing Descriptions for Different Statement Types
This section describes statement timing and provides a set of examples. It contains the following
subsections:

l Start delay operation for different types of statements.

l Local instruction timing.

l Local flow-control timing.

l Sync statement timing.

Start delay operation for different types of statements
Start delay is always specified between statements, from the previous statement to the current
statement.

You define a start delay in one of 2 different ways:

l From the beginning of the previous statement.

l From the end of the previous statement.

The way you define the start delay depends on the type of the previous statement. For example, say
you have 2 statements: A followed by B. The Start delay for statement A is already specified and you
want to specify the start delay for statement B.

The current statement is statement B, so the start delay of statement B depends on the type of the
previous statement A:

Instruction statements

If statement A is a Local instruction statement, the start delay of statement B starts at, and is
measured from, the Start time of the statement A.

Sync statements and Local flow control statements

If statement A is a Sync statement or a Local flow-control statement, the start delay of statement
B starts at, and is measured from, the End time of statement A.

Find us at www.keysight.com Page 58

Chapter 4: HVI Elements

The following diagram shows the different start delay definitions:

Find us at www.keysight.com Page 59

Chapter 4: HVI Elements

Local instruction timing
The following diagram shows the timing of Local instructions.

For local instructions, the Start delay of the following instruction is measured from the start of the
previous instruction. This is possible because once the instruction fetch cycles are completed, the
HVI engine is free to fetch and execute another instruction.

It is important to highlight that the Start delay must be greater than or equal to the fetch time of the
previous instruction.

The following diagram shows two Local instructions and their timing:

Find us at www.keysight.com Page 60

Chapter 4: HVI Elements

Local flow-control timing
For Local flow-control statements, the Start delay of the next statement is measured from the end of
the previous Local flow-control statement. This is because the HVI engine is busy during the
execution of the flow-control statement and the execution of a flow-control statements cannot be
overlapped with any following statements.

For the Local flow-control statement after instruction A, the Start delay (Start delay C) is measured
from the start of the previous instruction (instruction A).

For instruction B, that follows the Local flow-control statement, the Start delay (Start delay D) is
measured from the end of the flow-control block.

The execution time of local flow-control statements can be known at compile time, or might be
unknown, the dotted line in the diagram below indicates that the execution time of the Local flow-
control block T1 is not known at compile time.

The following diagram shows the difference between measuring timing of Local instructions and
Local flow-control statements.

Find us at www.keysight.com Page 61

Chapter 4: HVI Elements

Sync statement timing
For Sync statements, the Start delay is measured from the end of one Sync statement to the start of
the following Sync statement.

The following diagram shows two Sync statements, A and B. Sync statement B is a container for two
further Sync statements, B-1 and B-2. The times indicated are Start Delay A, Start Delay B, Start
Delay C, T1, and T2.

The time between the end of Sync statement A and the start of Sync statement B-1 is Start Delay A +
Start Delay B. The time between the end of Sync statement B-1 and the start of Sync statement B-2
is Start Delay C.

The execution time of Sync Statements can be known at compile time, as shown below with a solid
line.

The following diagram shows the timing between Sync statements:

Find us at www.keysight.com Page 62

Chapter 4: HVI Elements

Time Matching of Sequences in Sync Multi-Sequence Blocks
Sync multi-sequence blocks can contain multiple Local sequences, each running on a different
engine.

At the start of the Sync multi-sequence block, the Local sequences are synchronized so that they all
start simultaneously.

At the end of the Sync multi-sequence block, the sequences are all synchronized to end
simultaneously. The individual sequences can have different execution times, so HVI
automatically adjusts the timing of each individual sequence to ensure that they all end
simultaneously.

The HVI ensures the sequences end at the same time in one of the following ways:

l The end times of the sequences are set to match the longest sequence (minimum execution time).

l The end times of the sequences are set to match a specific execution time that you define.

l The end times of the sequences are set to match at runtime, dynamically. This occurs if any of the sequences
includes statements with an execution time that is unknown at compile time.

Find us at www.keysight.com Page 63

Chapter 4: HVI Elements

End times of sequences set to match the longest sequence (minimum
execution time)
If the execution time of the instructions and flow-control statements in the sequences are known at
compile time, then HVI adjusts the final times so that all the sequences in the Sync multi-sequence
block end at the same time.

In the following diagram, the time of the Sync multi-sequence block is not specified. In this case the
compiler adjusts the total execution time of all sequences to match the longest one. The execution
times of the instructions and the delays between them are known, so the timing between them
and the timing of the entire sequences can be calculated during the HVI sequence compilation. The
Sync multi-sequence block execution time is set to the minimum possible time given by the longest
sequence. The different HVI Engine clocking constraints are also taken into consideration.

The total time for Engine A is 400 ns. The HVI calculates the additional times required for the other
engines so that they finish at the same time. For Engine B the additional time is 390 ns, for Engine
K the additional time is 90 ns.

The following diagram shows a Sync multi-sequence block with minimum execution time:

Find us at www.keysight.com Page 64

Chapter 4: HVI Elements

End times of sequences set to match a specific execution time
You can specify a time for the Sync multi-sequence block using the duration property. If the execution
time of the instructions and flow-control statements in the sequences are known at compile time, HVI
adjusts the final times so that all of the sequences in the Sync multi-sequence block end at the time
you specified.

In the following diagram the Sync Multi-Sequence Block duration time is specified at 750 ns. The
timing of the instructions and the delays between them are known at compile time, so the execution
time for each sequence can be calculated. HVI calculates the additional times required for all the
engines to finish at the specified time. For Engine A this is 350 ns, For Engine B this is 740 ns, for
Engine K this is 440 ns.

The following diagram shows a Sync multi-sequence block with an execution time specified as 750
ns:

Find us at www.keysight.com Page 65

Chapter 4: HVI Elements

Chapter 5: HVI integration with PathWaveFPGA
This chapter describes PathWave Test Sync Executive integration with PathWave FPGA. It contains
the following sections:

l PathWave FPGA and HVI Overview

l Using FPGA-Sandbox Resources with HVI

l HVI Memory Maps and Register Banks in FPGA Sandbox

l Actions, Events and Triggers in an FPGA Sandbox

l FPGA Fast Data Sharing

l FPGA-Instruction

l HVI Statements for using FPGAs

Find us at www.keysight.com Page 66

Chapter 5: HVI integration with PathWaveFPGA

PathWave FPGA and HVI Overview

What is an FPGA?
A Field programmable Gate Array (FPGA) is a digital electronic component on many Keysight instru-
ments, whose behavior can be modified for different use cases.

Keysight instruments use FPGAs to implement complex functionality and data processing. Some
instruments also make a region in the FPGA available to enable the addition of custom logic and real-
time processing into the instruments. You can customize the FPGA with PathWave FPGA software.

PathWave FPGA
PathWave FPGA is a graphical software tool that enables you to rapidly customize logic in the Sand-
box section of the FPGA in supported Keysight instruments. By doing this you can modify or enhance
the default behavior of these instruments.

Instruments that support both PathWave FPGA and PathWave Test Sync Executive enable you to
combine your customized logic with the real-time capabilities of PathWave Test Sync Executive. For
example, you can have DSP processing in the FPGA Sandbox, triggered in real time by an HVI
sequence.

FPGA Sandbox
In addition to any existing Intellectual Property (IP) and HVI Engines, a Keysight instrument FPGA can
include one or more FPGA Sandboxes. An FPGA Sandbox is the region in the FPGA that you can con-
figure using PathWave FPGA.

You can configure the FPGA Sandbox to implement your own custom IP, signal processing and other
functionality. This can include custom logic, registers and memory interfaces. HVI can interact with
this custom logic using HVI-specific interfaces.

PathWave FPGA includes an Intellectual Property (IP) library that includes Logic/Math, Memory, and
DSP blocks that you can place in the FPGA Sandbox. The Real-time HVI design interface catalog
enables you to add memories and registers, and also contains specific HVI interfaces for HVI Actions,
HVI Events, HVI Triggers, and FPGA-Instruction statements.

.k7z files
When you have completed your design, PathWave FPGA enables you to easily build a .K7z file for the
FPGA from your schematic.

The .k7z file contains the bitfile that is used to program the FPGA-Sandbox design into the FPGA. The
.k7z file also contains all the information about the FPGA-Sandbox design, such as names, addresses,
ranges of the registers, and memory-mapped locations, etc, including resources that are connected
to the HVI Engine.

Find us at www.keysight.com Page 67

Chapter 5: HVI integration with PathWaveFPGA

http://www.keysight.com/find/pathwave-fpga
http://www.keysight.com/find/pathwave-fpga

You add the .k7z into your HVI instance in the SystemDefinition. This file is used by the HVI to get all
the definitions required so you can utilize your customizations.

HVI Resources in the FPGA Sandbox
PathWave FPGA enables you to add HVI to your logic design in the FPGA Sandbox. These resources
enable your HVI to interact with the logic in the sandbox.

You can add the following types of components and access them from your HVI sequences:

l HVI Sandbox registers.

l HVI Memory maps.

l HviAction interfaces.

l HviEvent interfaces.

l HviTrigger interfaces.

l FPGA Fast Data Sharing (FDS) ports.

l FPGA-Instruction (HviFPGAInstructions).

NOTE The exact resources you can add depends on the capabilities of the instrument you
are using. For example, FDS ports are only available on instruments that support
them.

Find us at www.keysight.com Page 68

Chapter 5: HVI integration with PathWaveFPGA

The following diagram shows a screenshot of PathWave FPGA with some example resources:

Find us at www.keysight.com Page 69

Chapter 5: HVI integration with PathWaveFPGA

The following image is a screenshot of from PathWave FPGA taken from Programming Example 3.
The image shows a set of FPGA blocks, a number of HVI resources, and the connections between
them in an FPGA Sandbox. For more information about Programming Example 3 see: Appendix B:
Additional Documentation and Examples. For information about how to use PathWave FPGA see the
documentation at PathWave FPGA.

PathWave Test Sync Executive includes a number of HVI instructions that enable your HVI sequences
to interact with the IP blocks in the FPGA sandbox. The instructions include access to registers or
memory maps, and send data or commands into the FPGA sandbox.

If you want to send an action into the sandbox, you must add an HviAction interface to the sandbox,
you just add this to the design and connect them to your customized logic. In a sequence you are able
to interact with the logic using the relevant instructions. Actions in the sandbox are accessed from
sequences in the same way you use any other HVI actions, no special instructions are required.
HviEvents and HviTriggers work the same way.

Find us at www.keysight.com Page 70

Chapter 5: HVI integration with PathWaveFPGA

http://www.keysight.com/find/pathwave-fpga

HVI Sequences and Sandbox resource interaction
When you run your HVI, the HVI engine reads and executes the individual commands within your HVI
sequences. When the HVI engine executes an HVI statement that involves interaction with a resource
in the FPGA sandbox, the HVI engine communicates with the FPGA Sandbox.

The following diagram shows an FPGA Sandbox that contains custom IP blocks with connections to
an HVI engine and the instrument physical interfaces:

Find us at www.keysight.com Page 71

Chapter 5: HVI integration with PathWaveFPGA

Using PathWave FPGA with PathWave Test Sync Executive
The full flow to customize the logic in an FPGA Sandbox and then use these customizations in HVI
sequences is:

In PathWave FPGA:

l Open the instrument Board Support Package (BSP) using PathWave FPGA.

l Customize the logic by adding logic blocks.

l Add any registers and memories required.

l Add HVI interfaces so HVI can interact with your logic (Actions, Events, Triggers).

l Connect your customized logic to the relevant I/O signals in the HVI interfaces.

l Generate the .k7z file.

Once you have configured the FPGA with PathWave FPGA, added the relevant HVI interfaces as
required, and generated a .k7z file, you must load the definitions into PathWave Test Sync
Executive:

l Load the .k7z file into your SystemDefinition.

l Write your HVI sequences and use the FPGA resources.

l Load your HVI instance to Hardware (this step loads the .k7z as required).

You can use the HVI resources in the FPGA in the same way as you use any other HVI resources.

Find us at www.keysight.com Page 72

Chapter 5: HVI integration with PathWaveFPGA

Using FPGA-Sandbox Resources with HVI
This section describes what to do in the different HVI programming stages, so you can use the FPGA
customizations you made in PathWave FPGA in your HVI sequences.

Load the k7z file in SystemDefintition
When you have completed and built a design, PathWave FPGA generates a .k7z file.

Before you can use any FPGA sandbox resources with HVI, you must first load the .k7z into your HVI
System Definition.

The .k7z file contains a bitfile, that is used to load the design into the FPGA Sandbox. The .k7z file
also contains information about the resources in the design, such as names of ports and interfaces,
addresses, ranges of the registers, memory-mapped locations, etc. The .k7z file is used to program
your customizations into the FPGA and it is also used by HVI to get all the definitions required so you
can utilize your customizations.

The following code shows how to load the .k7z file:

This must be the name that the instrument has defined for the target sandbox
sandbox_name = "InstrumentSandbox1"# Get Engine Sandbox
sandbox = system_definition.engines[engine_name].fpga_sandboxes[sandbox_name]
Load the k7z file to HVI
sandbox.load_from_k7z(k7z_file_path)

Using FPGA Sandbox resources in an HVI Sequence
When you load the .k7z , file into a specific Sandbox, HVI is able to access the resources defined in
PathWave FPGA for that specific sandbox, allowing you to use them in your HVI sequences or at
runtime.

The following example shows how to get and write to a memory map inside a sequence:

Get Memory map object by name, as this is defined in the PathWave FPGA design
hvi_memory_map = sandbox.hvi_memory_maps["memory_map_name"]
#
Write Memory Map
engine_sequence = multi_sequence_block_statement.sequences[engine_name]
fpga_array_write_instruction = engine_sequence.instruction_set.fpga_array_write
write_mem_map_instruction_statement = engine_sequence.add_instruction("Write FPGA Memory Map",
10, fpga_array_write_instruction.id)
write_mem_map_instruction_statement.set_parameter(fpga_array_write_instruction.fpga_memory_
map.id, hvi_memory_map)
write_mem_map_instruction_statement.set_parameter(fpga_array_write_instruction.fpga_memory_map_
offset.id, 0)
write_mem_map_instruction_statement.set_parameter(fpga_array_write_instruction.value.id, 10)

Actions, Events, and Triggers are treated in a different way.

Find us at www.keysight.com Page 73

Chapter 5: HVI integration with PathWaveFPGA

The Actions, Events, and Triggers available in the Sandbox are provided by the Instrument the FPGA
is located in.

You define and use these the same way as you do other instrument Actions, Events and Triggers. For
more information, see your instrument documentation.

The following code shows how to use an action-execute instruction to execute an action:

First, the action that goes to the Sandbox must be added to the Engine:
#
Get the action ID using the instrument's API, e.g.:
action_id = instrument.hvi.actions.user_sandbox3
#
Specify a name for the action to be used in the context of your HVI program
action_name = "MySandboxAction"#
Add the action to the Engine of the instrument
action = system_definition.engines[engine_name].actions.add(action_id, action_name)
#
Then, use the action in your sequence
engine_sequence = multi_sequence_block_statement.sequences[engine_name]
action_execute_instruction = engine_sequence.instruction_set.action_execute
action = engine_sequence.engine.actions[action_name]
instruction = sequence.add_instruction("Execute Action", 10, action_execute_instruction.id)
instruction.set_parameter(action_execute_instruction.action.id, action)

NOTE When you write HVI sequences, you must use the same names you used in the
PathWave FPGA project to access the HVI FPGA resources memory-maps, registers
and FDS ports.

Load to Hardware
The .k7z internal bitfile is automatically loaded into the hardware at this stage if it is not already
loaded. Once it has been loaded, in addition to running the HVI sequence to control FPGA resources
in real-time, you can also access some of the HVI FPGA resources from software, for instance writing
to the FPGA memory map:

Load or Deploy Hvi instance to hardware. At this step the k7z is loaded, if it is not already
loaded
hvi_instance.load_to_hw()
#
Write to memory map, in this example 0 is the offset and 1 is the data.
sandbox.fpga_memory_maps["memory_map_name"].write(0 , 1)
#
Run the Hvi Sequence to use/control FPGA Sandbox resources in real-time as described in the
Sequence
hvi_instance.Run()

Find us at www.keysight.com Page 74

Chapter 5: HVI integration with PathWaveFPGA

HVI Memory Maps and Register Banks in FPGA Sandbox
This section describes the HVI Registers and HVI Memory maps that you can add to FPGA Sandboxes
in PathWave FPGA.

HVI Registers
HVI registers are user-defined hardware registers that are similar to Variables in a programming
language. Physically, registers are small hardware memories located in the sandbox in the FPGA.
These registers can be accessed and modified by both HVI instructions in real-time during sequence
execution, and can be written in HVI software calls.

These registers can be used as destinations or sources of data. The source of the data to be written is
a literal or an HVI Register. The destination for the read data is always an HVI Register.

Registers can be treated as signed or unsigned. The register size is 32 bits and numerical values
must be within the signed or unsigned range. Registers are not required to be used for numerical val-
ues, you can use the 32 bits however you wish. You can add multiple registers at once as a register
bank.

The following image shows a register bank in PathWave FPGA:

In the image, Din_v and Dout_v indicate signals.

Din_v is used to specify when a value is valid, so the bank will update the internal value of the register
for when it is being read.

Dout_v indicates when the Dout value is valid, so it can be used by your custom logic.

Find us at www.keysight.com Page 75

Chapter 5: HVI integration with PathWaveFPGA

Register read example

The instruction fpga_register_read is an HVI-native instruction that enables you to read from an HVI
register in an FPGA sandbox, the destination must be an HVI Register.

The following code example shows an fpga_register_read instruction

Read FPGA Register into an HVI Register
#
fpga_register = hvi.sync_sequence.engines["engine_name"].fpga_sandboxes["sandbox_name"].hvi_
registers["sandbox_register"]
readFpgaReg0 = sequence.add_instruction("Read FPGA Register_Bank_HviAction4Cnt", 10,
sequence.instruction_set.fpga_register_read.id)
readFpgaReg0.set_parameter(sequence.instruction_set.fpga_register_read.destination.id, hvi_
register)
readFpgaReg0.set_parameter(sequence.instruction_set.fpga_register_read.fpga_register.id, fpga_
register)

Register write example

The instruction fpga_register_write is an HVI-native instruction that enables you to write to an HVI
register in an FPGA sandbox. The value to be written to the register is taken from an HVI register or
from a literal.

The following code example shows an fpga_register_write instruction:

Write to an HVI Register from an HVI Register used in an HVI sequence
#
writeFpgaReg0 = seq.add_instruction("Write FPGA Register_Bank_HviPxiTrigOut", 50,
hvi.instruction_set.fpga_register_write.id)
writeFpgaReg0.set_parameter(seq.instruction_set.fpga_register_write.fpga_register.id, fpga_
register)
writeFpgaReg0.set_parameter(seq.instruction_set.fpga_register_write.value.id, hvi_register)

Find us at www.keysight.com Page 76

Chapter 5: HVI integration with PathWaveFPGA

HVI Memory maps
An HVI Memory map is an interface you add to an FPGA sandbox that enables you to to connect HVI
sequences to a memory in the FPGA sandbox, or to custom logic that includes a memory block. The
interface specifies a location and size that you define. The memories are always accessed 32 bits at a
time.

To use the interface in HVI sequences, you must use the same name that you used in PathWave
FPGA, otherwise you will not be able to access the memory.

The following image shows a Memory map in PathWave FPGA:

HVI Memory map read example

The following code example shows an HVI Memory map this is read with an fpga_array_read

instruction. The destination is always an HVI register:

Read Memory Map
#
readMemoryMap = sync_block_1.sequences["engine_name"].add_instruction("Read FPGA Memory Map",
20, hvi.instruction_set.fpga_array_read.id)
readMemoryMap.set_parameter(seq.instruction_set.fpga_array_read.fpga_memory_map.id, hvi_memory_
map)
readMemoryMap.set_parameter(seq.instruction_set.fpga_array_read.destination.id, register)
readMemoryMap.set_parameter(seq.instruction_set.fpga_array_read.fpga_memory_map_offset.id, 0)

Find us at www.keysight.com Page 77

Chapter 5: HVI integration with PathWaveFPGA

HVI Memory map write example

The following code example shows an HVI Memory map that is written by a fpga_array_write

instruction. The source can be a literal or an HVI register:

Write Memory Map
#
writeMemoryMap = sync_block_1.sequences["engine_name"].add_instruction("Write FPGA Memory Map",
10, seq.instruction_set.fpga_array_write.id)
writeMemoryMap.set_parameter(seq.instruction_set.fpga_array_write.fpga_memory_map.id, hvi_
memory_map)
writeMemoryMap.set_parameter(seq.instruction_set.fpga_array_write.value.id, register)
writeMemoryMap.set_parameter(seq.instruction_set.fpga_array_write.fpga_memory_map_offset.id, 0)

For more information, see HVI API Local Statements.

Find us at www.keysight.com Page 78

Chapter 5: HVI integration with PathWaveFPGA

Actions, Events and Triggers in an FPGA Sandbox
A number of interfaces for Actions, Events, and Triggers are available in PathWave FPGA that you can
add to an FPGA Sandbox. These are are provided by the instrument that the FPGA is located in.

The following image shows HviAction, HviEvent, and HviTriggerIoIn interfaces:

Actions
You add Actions to enable you to send signals into the FPGA Sandbox from your HVI sequences.

For example, you can use an action to tell the logic in an FPGA Sandbox to send a signal.

Events
You add Events to inform your HVI sequences of events in the FPGA sandbox.

For example, you can use an event to get the FPGA to inform your HVI that an external signal has
been received in the sandbox, or a signal has been generated in the sandbox.

You use the Wait-for-event statement to command your HVI to wait until an event occurs. A signal in
the sandbox can initiate the event.

Triggers
You can add Triggers that go into or out of the sandbox.

For example, a trigger going into the sandbox can initiate an event in the sandbox.

Find us at www.keysight.com Page 79

Chapter 5: HVI integration with PathWaveFPGA

You can also use an action to initiate the logic in the sandbox to send a trigger out of the sandbox, or
you can use an event that is initiated when a trigger has arrived.

Depending on the Instrument, there may be a number of different trigger types available, for example:

l HviTriggerIoIn.

l HviTriggerIoOut.

l HviTriggerIoT.

l HviTriggerOutToLvds.

l LvdsToHviTriggerIn.

For a list of Actions, Events and triggers available for an instrument, see your instrument doc-
umentation.

Using FPGA Sandbox Actions, Events and Triggers in HVI Sequences
You can use the Actions, Events and Triggers that you added to an FPGA Sandbox in your HVI
sequences. For Actions, Events and Triggers this is the same as you use any other instrument
Actions, Events and Triggers, except for Triggers and Events where you must set the source to be
fpga_sandbox.

For example, for actions:

l Use the ActionDefinition class to define the action.

l Add the definition to the ActionDefinitionCollection.

l Add the action to an HVI engine with the add method of the ActionCollection.

l In your sequence, add an action with InstructionsActionExecute.

Find us at www.keysight.com Page 80

Chapter 5: HVI integration with PathWaveFPGA

FPGA Fast Data Sharing
HVI enables FPGAs on instruments to communicate with each other using Fast Data Sharing (FDS)
technology.

Fast Data Sharing (FDS) is a technology that enables you to share data between FPGA sandboxes
with a known fixed low latency. You can share data during the execution of sequences between sand-
boxes in different instruments in the same, or different chassis. The data sharing is performed
using Sync FPGA data-sharing statements.

To take advantage of this FDS, you must use PathWave-FPGA to create a design in an FPGA sandbox
that includes FDS ports.

Communication with Fast Data Sharing
FDS enables you to move data such as register values, or values of items such as qubit states. The
data can travel between instruments on System Sync cables or on the PXIe DSTARB/C lines inside a
chassis. FDS requires System Synchronization Modules (SSM) and PXIe instruments that support
FDS technology. An advantage of FDS is that it does not use up additional triggers beyond those
PathWave Test Sync Executive requires, so you are not required to reserve any additional triggers to
use FDS.

HVI supports the following kinds of FDS transfers:

l Sharing FPGA Sandbox data with SyncFpgaDataSharing statements.

For FDS enabled instruments, Pathwave-FPGA provides the interfaces to use FDS. Timing and rout-
ing information is provided by the instruments.

HVI guarantees that the data is sent in the correct order, and that the communication timing and rout-
ing is computed automatically by HVI. HVI also automatically calculates the optimal communication
timing to avoid collisions when data is transferred.

Accessing FPGA FDS Ports
When a PathWave FPGA project (.k7z file) is loaded, the memory maps, registers, and FDS ports are
populated under the sandbox object.

You can access the list of FDS Port locations (FdsPort objects) defined in the FPGA sandbox by using
an FPGA Sandbox Definition object that is loaded from the .k7z file.

The FdsPort object enables you to use the FDS port instances placed in the sandbox of a loaded
PathWave FPGA project. An FdsPort has one property which is the name of the port.

The FdsPort can be set as a parameter in a SyncFpgaDataSharing Statement.

Find us at www.keysight.com Page 81

Chapter 5: HVI integration with PathWaveFPGA

http://www.keysight.com/find/pathwave-fpga
http://www.keysight.com/find/pathwave-fpga

The following example shows how to use and program the FDS transactions in the Syn-

cFpgaDataSharing statement.

The FdsPortAddress object enables you to specify both the source and the destination for each FDS
transaction. This is done by specifying the name of the FDS port connected in PathWave FPGA to the
block transmitting/receiving the data over FDS. The address where the data is read/written is also
specified. Once the source and destinations are specified, each transaction can be added to the Syn-

cFpgaDataSharing statement by specifying how many bits are shared in each transaction.

Python example:

SyncFpgaDataSharing definition with 3 transactions
#
Retrieve ports
instrument1_fds_ports = sequencer.sync_sequence.engines[instrument1_engine_name].fpga_sandboxes
[0].fds_ports
instrument2_fds_ports = sequencer.sync_sequence.engines[instrument2_engine_name].fpga_sandboxes
[0].fds_ports
instrument3_fds_ports = sequencer.sync_sequence.engines[instrument3_engine_name].fpga_sandboxes
[0].fds_ports
#
Sources
instrument1_tx = kthvi.FdsPortAddress(instrument1_fds_ports[instrument1_tx_port_name], src1_
address)
instrument2_tx = kthvi.FdsPortAddress(instrument2_fds_ports[instrument2_tx_port_name], src2_
address)
#
Destinations
instrument2_rx = kthvi.FdsPortAddress(instrument2_fds_ports[instrument2_rx_port_name], dst2_
address)
instrument3_rx = kthvi.FdsPortAddress(instrument3_fds_ports[instrument3_rx_port_name], dst3_
address)
#
Adding Sync FPGA Data Sharing statement
fpga_data_sharing = sequencer.sync_sequence.add_sync_fpga_data_sharing("my statement", start_
delay)
Transaction 1
fpga_data_sharing.transactions.add(instrument1_tx, instrument2_rx, num_bits_to_share)
#
Transaction 2
fpga_data_sharing.transactions.add(instrument2_tx, instrument3_rx, num_bits_to_share)
#
Transaction 3
fpga_data_sharing.transactions.add(instrument1_tx, instrument3_rx, num_bits_to_share)

Find us at www.keysight.com Page 82

Chapter 5: HVI integration with PathWaveFPGA

FPGA-Instruction
The FPGA-instruction enables you to issue custom commands into an FPGA sandbox to utilize cus-
tomized logic.

You can customize logic in an FPGA sandbox using PathWave FPGA to create different functions.
When you do this, adding an HVI_Instr interface enables you to interface with your logic from HVI
sequences.

You use the FPGA-instruction statement in your sequences to issue the commands into the FPGA
sandbox to utilize the different functionality. This means you can setup custom commands with dif-
ferent functions in the FPGA sandbox and utilize them in HVI sequences.

When an HVI Engine executes an FpgaInstruction, it also reads the parameters and the instruction
ID and passes this data to the HVI_Instr interface in the sandbox, this interfaces an instruction
parser and your logic.

This flow is shown in the following diagram:

Find us at www.keysight.com Page 83

Chapter 5: HVI integration with PathWaveFPGA

Integrating the Fpga-instruction Statement with FPGA sandbox Logic
If you want to issue commands to your logic with the FpgaInstruction statement, you must add an HVI
instruction interface to the FPGA sandbox. Your logic must receive the parameters provided and then
decode and execute the commands. How this is done depends on the instrument you are using, see
your instrument documentation for more information.

The following image shows the HVI instruction interface as it appears in PathWave FPGA:

The signals are:

apply:

A flag that is typically used to apply stored configuration data in a multi-step setup process.

cmdId:

Command identifier. This is useful when more than one command is supported by the custom
logic.

dataA:

General purpose data, 40 bits wide.

valid:

A flag used to identify when the data on the other ports is valid.

Find us at www.keysight.com Page 84

Chapter 5: HVI integration with PathWaveFPGA

The following example shows an FPGA-instruction statement:

Set up local sequence
fpga_inst = local_sequence.instruction_set.fpga_instruction
instruction = local_sequence.add_instruction('fpgaInstruction', 10, fpga_inst.id)
#
port_number = 2
data_a = 1234
command_id = 5
apply = 1
#
instruction.set_parameter(fpga_inst.port_number.id, port_number)
instruction.set_parameter(fpga_inst.data_a.id, data_a)
instruction.set_parameter(fpga_inst.command_id.id, command_id)
instruction.set_parameter(fpga_inst.apply.id, apply)

For more information see HVI API Local Statements.

Find us at www.keysight.com Page 85

Chapter 5: HVI integration with PathWaveFPGA

HVI Statements for using FPGAs
PathWave Test Sync Executive includes a number of FPGA-specific HVI statements you can use to
interact with the FPGA on an instrument:

Local statements
FPGA register read

The instruction fpga_register_read is an HVI-native instruction that enables you read from an
HVI FPGA register to a destination HVI register.

FPGA register write

The instruction fpga_register_write is an HVI-native instruction that enables you to write an HVI
FPGA register placed in an FPGA sandbox. The value to be written to the HVI FPGA register is
taken from an HVI register or from a literal.

FPGA memory map write

The instruction fpga_array_write is an HVI-native instruction that enables you to write to an HVI
FPGA memory map that is located in an FPGA sandbox. The value to be written to the HVI FPGA
memory map is taken from an HVI register or from a literal.

FPGA memory map read

The instruction fpga_array_read is an HVI-native instruction that enables you to read from an HVI
FPGA memory map. The value read from the HVI FPGA memory map is written to a destination
HVI register.

FPGA-instruction statement

The fpgaInstruction statement enables you to issue commands to your custom FPGA Sandbox
logic from within HVI sequences. This is an HVI-native instruction, but it can only be used
successfully on instruments that support it.

For more information, see HVI API Local Statements.

Find us at www.keysight.com Page 86

Chapter 5: HVI integration with PathWaveFPGA

Sync statements
Sync FPGA data-sharing statement

The Sync FPGA data-sharing statement enables you to transfer data between FPGA sandboxes.

For more information, see HVI API Sync Statements.

Find us at www.keysight.com Page 87

Chapter 5: HVI integration with PathWaveFPGA

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules
This chapter describes how you use System Synchronization Modules to synchronize a Multi-Chassis
System. It contains the following sections:

l System Synchronization Modules

l Configuring a System with SSMs and System Sync Connectivity

l Clocking

l Configuring the Reference Clock

For information about troubleshooting a multi-chassis system, see the System Setup Guide.

Find us at www.keysight.com Page 88

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

System Synchronization Modules
This section describes System Synchronization Modules.

KS2201A 2022 release introduces new multi-chassis topologies that use the Keysight
M9032A/M9033A PXIe System Synchronization Modules (SSMs). The previous means of inter-
connecting multiple PXI chassis using M9031A modules is discontinued starting from the KS2201A
2022 release. Compared to the discontinued M9031A module, the SSM has a much wider range of
functions including:

l Distribution of a precise reference clock.

l Management of Fast Data Sharing (FDS).

l Chassis interconnectivity.

l Synchronization of all the PXI instruments in the multi-chassis.

M9032A and M9033A PXIe SSM Overview
The M9032A/M9033A are PXIe System Synchronization Modules (SSM). These include an onboard
high-quality 10MHz Oven Controlled Crystal Oscillator (OCXO) to achieve a very precise syn-
chronization among various measurement instruments distributed across different chassis. The
M9032A/M9033A System Synchronization Module functionalities can only be successfully deployed
on chassis compliant with the PXI-Express (PXIe) standard. The SSM must be inserted in the timing
slot of the PXIe chassis.

Keysight PXIe System Synchronization Module is available in two form factors, which only differ in
their connectivity capabilities:

l M9032A is a one-slot PXIe System Synchronization Module with 1 System Sync Upstream and 1 System
Sync Downstream ports.

l M9033A is a two-slot PXIe System Synchronization Module with 1 System Sync Upstream and 4 System
Sync Downstream ports.

For further information about these SSMs including detailed performance specifications, see the
M9032A/M9033A User's Guide, available at Keysight PXI Products.

Find us at www.keysight.com Page 89

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

http://www.keysight.com/find/pxi

The following image shows the physical M9032A and M9033A SSMs:

Find us at www.keysight.com Page 90

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

System Sync Module Connectivity

Front Panel
The M9032A and M9033A Front Panel contains various connectors that can be used for both multi-
chassis interconnection and configuration of the reference clock source.

Front Panel SMP IOs

FP (Front Panel) SMP (Sub Miniature Push-on) connectors are:

SClk/Ref Out:

Outputs a copy of the system clock or a reference clock signal.

STrig/Trig IO:

Receives an arbitrary trigger signal.

SClk/Ref In:

Receives the reference clock signal.

PPS/Time Ref:

Receives a Pulse Per Second (PPS) signal.

The front panel SMP connectors can be used to share input and output reference clocks.

Find us at www.keysight.com Page 91

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

System Sync ports
System Sync ports use PCIe Optical Copper Link (OCuLink) connectors. System Sync ports are used
for chassis interconnection and synchronization in the multi-chassis system. The signals in the
System Sync include:

l Clocking (System Sync only).

l Triggering.

l Data.

The different SSM models have the following front panel System Sync ports:

The M9032A has 2 System Sync ports:

l 1 System Sync Upstream.

l 1 System Sync Downstream.

The M9033A has 5 System Sync ports:

l 1 System Sync Upstream.

l 4 System Sync Downstream.

Each System Sync Downstream port can connect to the System Sync Upstream port of another SSM
placed in a different chassis. For more information, see the section below about Inter/Intra-chassis
Connectivity.

PXIe Backplane DSTAR Connectivity
The M9032A and M9033A are placed in the Timing Slot of a PXIe chassis which enables them to
support the DSTAR connectivity built-in the chassis.

DSTARA/B/C are multi-instrument point to point connections inside a chassis. DSTARA is used to
carry the clock signal. DSTARB and DSTARC carry trigger or data signals.

Find us at www.keysight.com Page 92

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

Inter/Intra-chassis connectivity, Synchronization and Data-Sharing
Functionality
An SSM can enable both multi-chassis and multi-instrument interconnections. With these
connections, SSMs enable synchronization and data sharing across all the instruments in a multi-
chassis system.

l Multi-chassis interconnections are made with System Sync connections using their capability to
interconnect two SSMs together through their System Sync Downstream/Upstream ports.

l Intra-chassis, multi-instrument interconnections are made with PXIe DSTARA/B/C connections. The SSM
can share the precise reference clock over the DSTARA signal.

The following diagram shows a 3 chassis system connected with System Sync cables and
DSTARA/B/C signals in each chassis:

Data can be shared across System Sync and DSTAR connections in several different ways:

l The reference clock can be shared between two interconnected SSMs using the System Sync connection
between System Sync Downstream/Upstream ports.

Find us at www.keysight.com Page 93

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

l The System Sync connection can share the signals sent over the PXI_TRIG[0:7] trigger buses, from one SSM
to the next. This enables the SSMs to share PXI sync resources used by PathWave Test Sync Executive for
the Hard Virtual Instrument (HVI) across the different chassis.

l System Sync connections can route data shared using Fast Data Sharing (FDS) between PXIe instruments.

l The SSM can send the data between two modules located in the same chassis using the DSTARB/C signals.

l Data can be sent through the System Sync connections to route it to instruments located in a different
chassis.

Find us at www.keysight.com Page 94

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

Configuring a System with SSMs and System Sync Connectivity
This section describes how you use System Synchronization Modules to synchronize a Multi-Chassis
System.

In a multi-chassis system connected with Keysight PXIe System Synchronization Modules, you must
include one SSM in each chassis that is part of the system. Each SSM must be inserted in the timing
slot of your chassis. This is typically slot 10 in Keysight 18-slot chassis, but it can be a different slot
number in different chassis models. The SSMs are connected to each other with System Sync cables.

One SSM is automatically chosen as a leader and it is used to synchronize all the instruments in the
multi-chassis system. The SSM chosen as leader is the SSM that has no incoming connection to its
System Sync Upstream port. The leader SSM distributes a replica of the reference clock signal to the
SSMs located in the other chassis. It does this through point-to-point connections between System
Sync Downstream/Upstream ports. In the example multi-chassis system shown in the following dia-
gram, the leader SSM is in Chassis 1.

A multi-chassis PXIe system may be configured to use many different reference options. For a list of
those options and descriptions of how to configure them, see the section Clocking in this document.
For one of those reference options, an SSM is chosen as a leader and uses its internal Oven Con-
trolled Crystal Oscillator (OCXO) clock to synchronize all the instruments included in the multi-
chassis system.

NOTE A Multi-chassis system based on the older M9031A modules required an external
reference clock generator to distribute the precise common 10 MHz reference clock
signal across different chassis. In the new multi-chassis topology delivered by
PathWave Test Sync Executive 2022, the SSM assumes the function of the
reference clock signal generator/distributor, by sharing a reference clock generated
by an internal PLL. This PLL can be fed by different sources (as explained later in
this document) including the OCXO inside the SSM, which generates a 10 MHz sine
wave. An external 10 or 100 MHz reference signal can still be connected to the SSM
SClk / Ref Input port, to sync it together with other clusters.

Find us at www.keysight.com Page 95

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

The following diagram shows an example of a 6 chassis system connected with SSMs. In this system
an M9033A SSM in chassis 1 distributes the reference clock to four M9032A SSMs located in each of
the other chassis. The SSM in chassis 5 also forwards the clock to a sixth chassis.

Find us at www.keysight.com Page 96

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

This following code shows how to use the HVI Python API to define and use the SSMs in the multi-
chassis system shown in the diagram. Each System Sync Downstream port connects to the System
Sync Upstream port of another System Sync Module in a different chassis.

The first step is to define the SSMs placed in each of the chassis during the system definition phase.

Create system definition object
my_system = kthvi.SystemDefinition("MySystem")
#
Define System Sync Modules
resource_id_ssm_1 = 'PXI0::CHASSIS1::SLOT10::INSTR'
resource_id_ssm_2 = 'PXI0::CHASSIS2::SLOT10::INSTR'
resource_id_ssm_3 = 'PXI0::CHASSIS3::SLOT10::INSTR'
resource_id_ssm_4 = 'PXI0::CHASSIS4::SLOT10::INSTR'
resource_id_ssm_5 = 'PXI0::CHASSIS5::SLOT10::INSTR'
resource_id_ssm_6 = 'PXI0::CHASSIS6::SLOT10::INSTR'
#
In the options, SSMs are set to be simulated with Simulate=true and there are a number of
parameters.
For the hardware SSM instruments, set options to an empty string.
options1 = "Simulate=true,DriverSetup=Model=M9033A"
options2 = "Simulate=true,DriverSetup=Model=M9032A"
options3 = "Simulate=true,DriverSetup=Model=M9032A"
options4 = "Simulate=true,DriverSetup=Model=M9032A"
options5 = "Simulate=true,DriverSetup=Model=M9032A"
options6 = "Simulate=true,DriverSetup=Model=M9032A"
#
sync_module_1 = my_system.interconnects.add_sync_module(resource_id_ssm_1, options1)
sync_module_2 = my_system.interconnects.add_sync_module(resource_id_ssm_2, options2)
sync_module_3 = my_system.interconnects.add_sync_module(resource_id_ssm_3, options3)
sync_module_4 = my_system.interconnects.add_sync_module(resource_id_ssm_4, options4)
sync_module_5 = my_system.interconnects.add_sync_module(resource_id_ssm_5, options5)
sync_module_6 = my_system.interconnects.add_sync_module(resource_id_ssm_6, options6)

NOTE In the HVI System Definition phase, the SSMs are added to the interconnects
collection by using their resource ID and options. Same as for the chassis, it is not
necessary to open objects representing the System Sync Modules (SSMs) that are
included in the multi-chassis system.

Find us at www.keysight.com Page 97

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

The next step is to define the interconnections among the System Sync Downstream/Upstream ports
of each pair of SSMs. The SSM System Sync ports can only be connected Downstream to Upstream.

Define connections among System Sync connectors of the SSMs
#
Connect SSM 1 to SSM 2
ssm1_downstream_sync1 = sync_module_1.connectivity.systemsync_downstream[0]
ssm2_upstream_sync = sync_module_2.connectivity.systemsync_upstream[0]
ssm1_downstream_sync1.set_connection(ssm2_upstream_sync)
#
Connect SSM 1 to SSM 3
ssm1_downstream_sync2 = sync_module_1.connectivity.systemsync_downstream[1]
ssm3_upstream_sync = sync_module_3.connectivity.systemsync_upstream[0]
ssm1_downstream_sync2.set_connection(ssm3_upstream_sync)
#
Connect SSM 1 to SSM 4
ssm1_downstream_sync3 = sync_module_1.connectivity.systemsync_downstream[2]
ssm4_upstream_sync = sync_module_4.connectivity.systemsync_upstream[0]
ssm1_downstream_sync3.set_connection(ssm4_upstream_sync)
#
Connect SSM 1 to SSM 5
ssm1_downstream_sync4 = sync_module_1.connectivity.systemsync_downstream[3]
ssm5_upstream_sync = sync_module_5.connectivity.systemsync_upstream[0]
ssm1_downstream_sync4.set_connection(ssm5_upstream_sync)
#
Connect SSM 5 to SSM 6
ssm5_downstream_sync = sync_module_5.connectivity.systemsync_downstream[0]
ssm6_upstream_sync = sync_module_6.connectivity.systemsync_upstream[0]
ssm5_downstream_sync.set_connection(ssm6_upstream_sync)

Chassis Supported for Multi-Chassis Systems
The following Keysight chassis models are supported:

l M9018B

l M9019A

l M9046A

Software and firmware version requirements are listed on-line here: Chassis Software and Firmware
Requirements for KS2201A .

NOTE If you mix different chassis models in your multi-chassis setup, you may observe
some skew across the different chassis and different performance depending on the
different chassis characteristics.

Non Keysight chassis are not supported for multi-chassis systems.

Find us at www.keysight.com Page 98

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

https://www.keysight.com/find/ks2201a-firmware-version-requirements
https://www.keysight.com/find/ks2201a-firmware-version-requirements

Clocking
This section describes Clocking:

Types of Clock

Clock Types
In a single or multi-chassis system there are 4 types of clocks used for synchronization and instru-
ment-related tasks:

l Reference clock.

l System clocks.

l Analog clocks.

l Sample clocks.

All these clocks are synchronous with one another, but are used for different purposes and can be
configured in different ways trading off performance and complexity/cost.

Reference Clock
The Reference clock determines the absolute frequency and lowest-frequency offset phase noise per-
formance of the analog instrumentation’s inputs and outputs. That is because all of the other clocks
are phase-locked to the Reference Clock. A PXIe system can either use its own internal reference
clock or phase-lock to an external reference clock. It can also provide external reference clock out-
puts for other instrumentation to phase-lock to.

System Clocks
The System clocks synchronize all the digital operation of all instruments and the PXIe platform.
These clocks are derived from the Reference Clock and are used by, for example, the PathWave
FPGAs Sandbox logic, the HVI Engine core clock, Fast Data Sharing and other digital capabilities in
the instruments. Basically, a system clock is clock that is neither the reference clock nor an analog
clock.

Analog Clocks
The Analog Clocks are intermediate frequency clocks from which the instrument's Sample Clocks are
derived. Like the Sample clocks, the Analog Clocks affect the overall phase noise performance and
skew drift of the instrument analog inputs and outputs. In the simplest clock configurations, each peri-
pheral module generates it's own independent Analog Clock. In the highest fidelity clock con-
figuration, a single common Analog clock is generated by the High Performance Reference Clock
Source (HPRCS) and is distributed to all the individual peripheral modules though external cables
and power dividers.

Find us at www.keysight.com Page 99

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

Sample Clocks
The instrument's ADCs and DACs that digitize analog input signals and generate analog output sig-
nals are clocked by their own internal Sample Clocks. The various types of peripheral modules use dif-
ferent sample clock frequencies even though they are ultimately derived from the same Reference
clock. These sample clocks determine the overall phase noise performance and skew drift of the ana-
log inputs and outputs because they directly clock the instrument's ADCs and DACs.

System Clock Distribution using SSM and System Sync connectivity
In a multi-chassis system based on the Keysight PXIe SSMs and chassis, the SSM with no other SSM
connected to its System Sync Upstream port acts as the leader. This leader SSM forwards a copy of
the system clock to other SSMs using System Sync cables. In turn, each SSM shares the forwarded
system clock with the instruments located in their respective chassis using the PXIe DSTARA back-
plane signal.

NOTE You are not required to set the the leader in the HVI API. The leader SSM is
determined by the hardware connections. That is, the leader role is automatically
taken by the SSM that has no System Sync cable connected to its System Sync
Upstream port.

Overview of Supported Clocking Schemes
There are several possible different clocking configurations, the one you should use depends on the
hardware and the application requirements. Some of the key aspects to consider when selecting a
clocking scheme are:

1. System and Analog clock sources. The source for the System and intermediate-frequency analog clocks is a
critical element that determines the system synchronization, phase noise and drift performance. The clock
sources covered in this section include:
a. PXIe chassis.

b. System Sync Module.

c. PXIe Chassis with High Performance Reference Clock Source (HPRCS). This is only available on Keysight
PXIe chassis models M904xA.

2. Internal/external Reference clock. The clock that serves as reference for the System/Analog clocks can be
generated internally by the selected source, or externally provided by the user, generated by a clock source
external to the PXIe system. In systems that include the High Performance Reference Clock Source
(HPRCS), and other external instrumentation that you wish to share a common Reference Clock, the best
overall jitter performance will usually be achieved by phase-locking the other external instrumentation to
the HPRCS Reference Clock instead of the other way around. If the overall system needs to be phase-locked
to a GPS or atomic standard reference, you should phase-lock the HPRCS to the GPS or atomic standard
and phase-lock all the other instrumentation to the HPRCS Reference Clock.

3. Instruments internal/external Analog Clock. Most instruments can either use an external Analog Clock or
generate their own Analog Clock internally for convenience, however, using a common external Analog

Find us at www.keysight.com Page 100

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

Clock will always provide the best performance because all peripheral module sample clocks will jitter and
drift together.

The following table shows the different supported/recommended clocking schemes:

Clocking Scheme
Reference

Clock
Source

Reference
Clock Mode

Description Performance

A.1
Single-chassis,

no SSM.

Chassis
Internal
10MHz

An OCXO inside the chassis generates a 10
MHz reference clock. Independent Analog
clocks are generated in each peripheral
module.

See the chassis
datasheet for exact
phase noise
performance.
See the M5xxx PXIe
instrument
documentation for
exact performance
of channel to
channel skew, jitter,
and drift.

External
External
10MHz

The external reference clock must have a
frequency of 10 MHz. As an example, it can
come from a Device Under Test (DUT),
another instrument that is part of the setup,
etc. Independent Analog clocks are
generated in each peripheral module.

-

A.2
Single/multiple
chassis with at

least one M904x,
Analog clocks,

SSMs.

Chassis
Internal
10MHz

An OCXO inside the chassis generates a 10
MHz reference clock. A common Analog
clock is externally distributed to each
peripheral module.

See the chassis
datasheet for exact
phase noise
performance.
See the M5xxx PXIe
instrument
documentation for
exact performance
of channel to
channel skew, jitter,
and drift.

External
External
10MHz

The external reference clock must have a
frequency of 10 MHz. As an example, it can
come from a DUT, another instrument that
is part of the setup, etc. A common Analog
clock is externally distributed to each
peripheral module.

-

Find us at www.keysight.com Page 101

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

Clocking
Scheme

Reference
Clock
Source

Reference
Clock Mode

Description Performance

B
No

external
Analog
clocks,
SSMs.

SSM
Internal
10MHz

An OCXO inside the SSM generates a 10
MHz reference clock. Independent Analog
clocks are generated in each peripheral
module.

See the SSM datasheet for
exact phase noise
performance.
See the M5xxx PXIe
instrument documentation for
exact performance of channel
to channel skew, jitter, and
drift.

External
External
10/100MHz

The external reference clock can have a 10
or 100 MHz frequency. As an example, it
can come from a DUT, from another
instrument that is part of the setup, etc.
Independent Analog clocks are generated
in each peripheral module.

-

C
external
Analog
clocks,
SSMs,
HPRCS.

HPRCS
Internal
10MHz

The HPRCS generates a 2.4 GHz sine wave
that gets divided in frequency to generate
a 100 MHz reference clock signal. A
common Analog clock is externally
distributed to each peripheral module.

This option provides the best
performance in terms of
phase noise. For more
information, see the Keysight
PXIe Chassis M9046A
Datasheet, available at
Keysight PXI chassis.

External
External
10/100MHz

The external reference clock for the
HPRCS can have a 10 or 100 MHz
frequency. As an example, it can come
from a DUT or another instrument that is
part of the setup, etc. A common Analog
clock is externally distributed to each
peripheral module.

-

Depending on the chosen clocking scheme, additional connections to the SSM may be required:

l A.1 or B Internal: No extra connections are required.

l B External: Attach the external reference clock source to the SSM SClk / Ref In input.

l A.2 or C Internal: The chassis Ref1 output must be connected to the SSM SClk / Ref In input.

l A.2 or C External: The chassis Ref1 clock output must be connected to the SSM SClk / Ref In input. The
external reference clock must be connected to the chassis external Ref In input.

The precise connections are described in the configuration sections later in this guide.

Find us at www.keysight.com Page 102

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

http://www.keysight.com/find/pxi-chassis

You may also phase-lock external instrumentation to the PXI system using either 10 MHz or 100 MHz
external reference clock outputs.

Some instruments also require an analog clock. For more information see the later section titled Con-
figuring Analog Clock Source for Instruments.

Find us at www.keysight.com Page 103

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

Configuring the Reference Clock
This section describes configuring the reference clock:

Configuring Clocking Scheme A.1
(Single-chassis, no SSM, no external analog clocks)

This is the simplest configuration and is the default if you have not specified another.

The chassis is the clock source. For the reference clock, there are two options:

1. Internal (default): This is the 10MHz clock built into the chassis (VCXO for the M9019A or OCXO for the
M904xA).

2. External: A 10MHz signal connected to the 10MHz Ref BNC input located on the chassis rear panel.

The following diagram shows a chassis with an internal clock source (chassis clock) or an external
clock source (blue):

All chassis have on their rear panel a 10MHz reference BNC input and a 10MHz reference BNC out-
put. In the case of the M904x chassis, there are two Reference clock SMA outputs on the front panel.

This clocking scheme is rather constrained in terms of features because it only allows for a single
chassis and, given that there is no SSM, advanced features like Fast Data Sharing are not available.

Find us at www.keysight.com Page 104

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

The following snippet shows how to configure the chassis as the clock source:

Create system definition object
my_system = kthvi.SystemDefinition("MySystem")
#
Define chassis
chassis = my_system.add_chassis(1)
#
Select the chassis as ref. clock source
clockSource = chassis.clock_source
#
Set the chassis as clock source
systemDefinition.clocking.reference_source = clockSource
#
Explicitly set the clock source to use the internal OCXO as the reference clock (this is the
default)
clockSource.set_mode(keysight_hvi.ClockingReferenceMode.INTERNAL)
#
Alternatively you can configure the chassis to use the external clock reference with the 10Mhz
frequency value in Hz
clockSource.set_mode(keysight_hvi.ClockingReferenceMode.EXTERNAL, 10e6)

Find us at www.keysight.com Page 105

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

Configuring Clocking Scheme B
(Single/multi-chassis system with SSM as clock source and no external analog clocks)

Each SSM is equipped with an onboard high-quality 10MHz Oven Controlled Crystal Oscillator
(OCXO) that can be used as the reference clock.

Alternatively, the chassis backplane reference clock output (Scheme A.2) or the optional High
Performance Reference Clock Source (HPRCS) output (Scheme C) can be used as reference clock.
The HPRCS option requires a Keysight PXIe Chassis model M9046A. Clocking scheme B assumes the
external reference clock is neither output by the chassis nor by the HPRCS because otherwise further
configurations would be required for proper operation.

The reference clock can be chosen from two options:

1. Internal: This is the default mode. The internal OCXO of the leader SSM is used as the reference clock.

2. External: An 10 MHz or 100 MHz external reference clock is connected to the SSM's front-panel SClk/Ref In
SMP input.

The reference clock gets propagated to all the PXIe instruments within the same chassis through the
DSTARA signal path. It gets propagated to the next SSM through the System Sync cable from the
downstream connection on leader SSM to the upstream connection on the follower.

The following diagram shows the operation of the Clocking Scheme B. The clock is generated in the
SSM in chassis 1 and is passed to the other instruments in the chassis via the DSTARA signal path in
the backplane (red arrows). It is also passed to the next chassis via the System Sync cable (in black)
where it propagates via the SSM in that chassis. The internal reference is the SSM's OCXO, and the
external reference is shown in blue:

Find us at www.keysight.com Page 106

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

Find us at www.keysight.com Page 107

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

Configuring the SSM as the System Clock source
By default, if you do not specify anything, PathWave Test Sync Executive configures the leader SSM
as the reference clock source using its internal OCXO clock. The leader SSM is defined by the
hardware connections. In the HVI API, no additional definition other than the connections between
SSM is required to identify the leader SSM. You must ensure the connections you define in software
match the physical hardware connections between SSMs.

The following code shows how to configure a pair of chassis with SSMs where the OCXO clock is the
reference clock source, options is set to an empty string:

Create system definition object
my_system = kthvi.SystemDefinition("MySystem")
#
Define all necessary follower SSMs depending the number of chassis
leader_ssm = my_system.interconnects.add_sync_module(SSM_1, options)
my_system.interconnects.add_sync_module(SSM_2, options)
#
Define chassis
my_system.add_chassis(1)
my_system.add_chassis(2)
#
Select the leader SSM as ref. clock source
clockSource = interconnects[0].clock_source
#
Set the SSM clock source
systemDefinition.clocking.reference_source = clockSource
#
Explicitly set the clock source to use the internal OCXO as the reference clock (this is the
default)
clockSource.set_mode(keysight_hvi.ClockingReferenceMode.INTERNAL)

Configuring the SSM to explicitly use internal OCXO or external reference clock
The SSM leading the synchronization by default with its internal reference clock, can optionally be
connected to an external reference clock. The external reference can come from, for example, a DUT
or another source such as a PXIe frequency reference.

To use an external reference clock, you must:

l Connect the external reference source to the SSM's SClk / Ref in port.

l In the HVI API you must set the SSM to synchronize to an external reference clock. To do this, set the mode
to EXTERNAL and set the frequency in Hz.

To use the external reference, change the final line in the previous code snippet to:

Set clock mode to EXTERNAL and set frequency to 10MHz
clockSource.set_mode(keysight_hvi.ClockingReferenceMode.EXTERNAL, 10e6)

Find us at www.keysight.com Page 108

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

Configuring Clocking Schemes A.2 and C
(Single/multi-chassis with Keysight M904xA chassis, external Analog clocks and chassis or HPRCS as
clock source)

Some instruments such as the analog ones in the Keysight M5xxx PXIe family derive their Sample
Clocks from an Analog Clock source and perform best when configured to use an externally
distributed Analog Clock. This section explains how to distribute the analog clocks to these and
similar instruments.

The analog clock can be generated from either the M9546A HPRCS or from the M9046A chassis
backplane board. The preferred choice for the analog clock source is the M9546A HPRCS inside a
Keysight M9046A PXIe chassis because of it's superior phase noise. The HPRCS can generate a sine
wave with frequencies of 2.4, 4.8, 9.6, or 19.2 GHz. In this section we assume the analog clock source
being set to generate 2.4 GHz, because this is the frequency required by the Keysight M5xxx PXIe
family. The frequency can be configured at purchase by choosing the corresponding option for the
Keysight M9046A PXIe chassis. For more information, see the Keysight PXIe Chassis M9046A User
Manual available at Keysight PXI chassis.

Analog clock configuration options
the following table lists the options available:

Source
Analog clock, locked to the

reference clock
Performance

M9046A chassis with M9546A
HPRCS

2.4, 4.8, 9.6, or 19.2
GHz

Best

M9046A chassis without M9546A
HPRCS

2.4 GHz Medium

M9046A Front Panel Clocking IO overview
The following diagrams show the M9046A chassis front panels and how they are connected in
different configurations. The type and number of front panel connectors depend on the purchased
hardware option for splitters and HPRCS: (-QS0, -QS1/3, -QS2). In the diagrams a frequency of 2.4
GHz is assumed to have been selected for the analog clock. The analog clock frequency is also
chosen as hardware option at purchase time. More info in the Keysight PXIe Chassis M9046A User
Manual, available at Keysight PXI chassis.

Find us at www.keysight.com Page 109

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

http://www.keysight.com/find/pxi-chassis
http://www.keysight.com/find/pxi-chassis

M9046A -QS0 Chassis (no HPRCS)
The following diagram shows the front panel of an M9046A -QS0 chassis.

M9046A -QS2 Chassis with Analog clock splitters
The following diagram shows the front panel of a M9046A chassis with -QS2 option including the
front panel analog clock splitters to ease the distribution of the analog clocks to all modules.

M9046A -QS1/3 Chassis with Analog clock splitters and HPRCS
The following diagram shows the front panel of an M9046A -QS1/3 chassis with analog clock splitters
and Ref In, Cal In and Cal Out for the M9546A HPRCS.

Find us at www.keysight.com Page 110

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

Using the M9046A analog clock source
(Clocking Scheme A.2)

This configuration is for single or multiple chassis with SSMs. This configuration is compatible with
PXIe Chassis model M9046A with hardware options -QS0, -QS1/3 or -QS2. The internal chassis clock
is used as the clock source and this configuration must be defined in the HVI API. The chassis clock
must be taken out from the Ref 1 Out port on the PXIe M9046 Chassis front panel and must be
connected to the SClk / Ref In port of the PXIe SSM (see diagram below).

You can use the chassis as the reference clock source with its reference clock set to:

1. Internal: Use the chassis internal OCXO.

2. External: Using an external reference clock connected to the chassis rear panel 10MHz Ref BNC input.

The following diagram depicts the SSM using the chassis clock (indicated in red) as the clock source.
The chassis external reference is indicated by the dotted blue arrow:

Find us at www.keysight.com Page 111

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

Configuring the M9046A as the system and analog clock source
To use the internal chassis clock, you must:

l Connect the Chassis Ref 1 Out output to the SSM's SClk / Ref In located in the same chassis.

l In the HVI API you must instruct the SSM to use the chassis clock.

By default, and if it is not specified otherwise, the chassis clock circuitry uses its internal OCXO as the
reference clock.

The following code shows how to configure a pair of chassis with SSMs using the chassis clock as the
reference clock, options is set to an empty string:

Create system definition object
ktHvi.SystemDefinition definition("Name")
#
You must add all necessary follower SSMs depending on the number of chassis
syncModuleLeader = definition.interconnects.add_sync_module(SSM_1, options)
syncModuleFollower = definition.interconnects.add_sync_module(SSM_2, options)
#
Add chassis
chassis1 = definition.add_chassis(1)
definition.add_chassis(2)
#
Get the chassis clock
clock_source = chassis1.clock_source
#
Set as reference
definition.clocking.reference_source = clockSource
#
Enable the chassis analog clock
clock_output_2_4GHz = ref_chassis.clock_outputs["FP2.4GHzOut"]
clock_output_2_4GHz.set_enabled(True)

Configuring the M9046A to use the external reference clock
To use the chassis clock with an external reference clock, you must:

l Connect the external reference clock to the Chassis rear panel's 10 MHz Ref BNC input.

l Connect the Chassis Ref 1 Out to the SSM SClk / Ref In of the SSM in the same chassis.

l In the HVI API you must instruct the chassis to use the external reference clock and set the frequency in Hz.

The following code shows how to set the external reference:

Set the reference mode to use an external reference
Set clock mode to EXTERNAL and set frequency to 10MHz
clockSource.set_mode(keysight_hvi.ClockingReferenceMode.EXTERNAL, 10e6)

Find us at www.keysight.com Page 112

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

Using the M9046A's M9546A High Performance Reference Clock Source
(Clocking Scheme C)

This configuration is for single or multiple chassis with SSMs. For this clocking scheme to be used,
the first SSM must be in a Keysight M9046A chassis containing an M9546A High Performance
Reference Clock Source (HPRCS).

The HPRCS is used as the clock source and this configuration must be specified in the HVI API.

We can use the HPRCS as a clock source with its reference clock set to:

l Internal: Use the HPRCS internal OCXO.

l External: Use an external reference clock connected to the chassis front panel Ref In input.

The following diagram shows the leader SSM using the M9546A HPRCS (indicated in red) as the
clock source in chassis 1 M9046A -QS1/3. The HPRCS external reference is indicated by the blue
arrow. The distribution of the 2.4 GHz analog clock to up to 4 chassis is also shown. The connection
topology and cables used are critical to achieving the optimal channel skew drift performance. For
information about how to connect the analog clock to more than 4 chassis, see Keysight PXIe Chassis
M9046A User Manual available at Keysight PXI chassis.

Find us at www.keysight.com Page 113

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

http://www.keysight.com/find/pxi-chassis

Configuring the M9046A + HPRCS as the system and analog clock source
To use the HPRCS as clock source, you must:

l Connect the chassis Ref 1 Out output to the SClk / Ref In of the SSM located in this chassis

l In the HVI API you must:

Add the M9046A -QS1/3 chassis with HPRCS to the system definition.

Set the HPRCS to be the clock source.

When no external reference clock for the HPRCS is specified, its internal OCXO is used.

The following code shows how to configure a pair of chassis with SSMs using the HPRCS as clock
source, options is set to an empty string:

Create system definition object
my_system = kthvi.SystemDefinition("MySystem")
#
Define all necessary SSMs depending on the number of chassis
my_system.interconnects.add_sync_module(SSM_1, options)
my_system.interconnects.add_sync_module(SSM_2, options)
#
Define chassis
hprcs_chassis = my_system.add_chassis(1)
my_system.add_chassis(2)
#
Create HPRCS object
clockSource = hprcs_chassis.high_performance_clock_source
#
Set the HPRCS as the reference clock
my_system.clocking.reference_source = clockSource
#
Enable the chassis analog clock
clock_output_2_4GHz = ref_chassis.clock_outputs["FP2.4GHzOut"]
clock_output_2_4GHz.set_enabled(True)

Configuring the M9046A + HPRCS to use an external reference clock
To use the HPRCS with an external reference clock, you must:

l Connect the external reference clock to the chassis' front panel Ref In input.

l Connect the chassis' front panel Ref 1 Out output to the SClk / Ref In input of the SSM located in this
chassis.

l In the HVI API you must:

Add the M9046A -QS1/3 chassis to the system definition.

Set the HPRCS to be the clock source.

Instruct the HPRCS to use an external reference clock and the desired frequency in Hz.

Find us at www.keysight.com Page 114

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

To use the external reference, set the reference clock mode in the previous code snippet to (defaults
to internal):

Set the reference clock mode. Set the HPRCS to use an external reference @10Mhz
clockSource.set_mode(keysight_hvi.ClockingReferenceMode.EXTERNAL, 10e6)

Enabling Chassis Clock Outputs
If you are using a clock output from a chassis you can enable it in the HVI API.

The chassis clock outputs are available in the chassis and you can access them by their name as fol-
lows:

Get the Clock configuration for the Rear Panel 10MHz output port from the Chassis
ktHvi.SystemDefinition definition("Name")
#
chassis = definition.add_chassis(1)
#
clockOutputRp10Mhz = chassis.clock_outputs["RP10MHzOut"]
clockOutputRP10Mhz.set_enabled(true/false)

Some clock outputs support one single frequency and others support multiple frequencies. For the
outputs supporting only one frequency, no frequency must be provided when enabling/disabling
them. If the clock outputs do support multiple frequencies, you must specify what frequency (in Hz)
you want to enable.

When you disable the clock, the frequency argument is ignored.

The following code shows some examples and error cases:

clockOutputRp10Mhz = chassis.clock_outputs["RP10MHzOut"]
clockOutputRP10Mhz.set_enabled(true) # Ok
#
clockOutputFpRef2Out = chassis.clock_outputs["FPRef2Out"]
clockOutputFpRef2Out.set_enabled(true, 10e6) # Ok

Enabling the chassis Analog clock
If you are using an analog clock output from a chassis you must enable it.

The following code shows how to enable a 2.4GHz analog clock output from an M9046A chassis.

clock_output_2_4GHz = ref_chassis.clock_outputs["FP2.4GHzOut"]
clock_output_2_4GHz.set_enabled(True)

Configuring the Analog Clock Source in Instruments
For instruments that require an analog clock, you must set the source and frequency of the analog
clock in your system definition.

You can set parameters for the analog clock:

Find us at www.keysight.com Page 115

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

l The source as internal or external.

l The frequencies of the sources, in Hz.

For external sources, the source selected depends on the analog clock frequencies that the instru-
ment supports.

l If you indicate multiple frequencies, the first external frequency supported by the instrument is selected.

l If none of the external frequencies are supported, and the instrument has an internal clock, the internal clock
is selected.

l If none of the external frequencies are supported, and the instrument does not have an internal clock, an
error is generated.

The code is:

my_system.clocking.enable_external_analog_clocks(frequencies)

For example, if you are using a M9046A chassis with a M9546A HPRCS with the analog clock set to
2.4GHz (Clocking Scheme C), add the following line:

my_system.clocking.enable_external_analog_clocks([2400e6])

Instruments that support an external analog clock are set to use this clock. Instruments that do not
support this external frequency are set to use an internal clock. If the instrument does not support
the frequency and does not have an internal clock, an error is generated.

Selecting the best analog clock source for instruments
While it is often convenient for instruments to use their own internally generated analog clocks, the
best jitter and drift performance is achieved by using a single common analog clock source generated
within the Leader chassis (with or without the HPRCS) and distributing it using the chassis amplified
power splitters in a balanced star configuration. This ensures that any low-frequency jitter skew drift
is common across the system, minimizing the inter-channel jitter and drift.

In some cases with high channel count configurations, there may not be enough individual copies of
the the Analog Clock available from a full balanced star distribution to connect to every instrument. In
those cases, a single daisy-chain connection of the Analog Clock between instrument pairs can be
used. Noting that the downstream instrument of the daisy-chained pair will have slightly higher skew
drift than the non-daisy-chained instrument. Daisy-chained instruments shall have slightly higher
skew drift, so these instruments should be the ones in the system which have the lowest bandwidth.
For example, in systems which employ the M5201A Downconverter and the M5200 Digitizer, which
are typically used in pairs, it is best practice to route the Analog Clock to the downconverter first and
then daisy-chain the downconverter's Analog Clock output to the digitizer's Analog Clock input. This
is because the 2 GHz digitizer is less sensitive to the same amount of channel skew than the 16 GHz
downconverter.

Find us at www.keysight.com Page 116

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

The Keysight MCX cables are made of a special material that minimizes their propagation delay
change with temperature. Matching the total propagation delay from their common clock source to
each instrument causes the propagation delay drifts of the clocks to cancel out between instruments.

The balanced-star configuration of external Analog clocks uses custom 4:1 amplified power dividers
built into some chassis. These power dividers are designed specifically for minimizing phase noise,
temperature drift, and to maintain the Analog clocks amplitude as it is divided many times. Sub-
stituting other power dividers to distribute the Analog clocks will degrade jitter and drift performance,
so this is not recommended.

Small spurious oscillations can occur within the amplified power divider when any of the outputs are
loaded with certain reflective loads. For this reason, terminating unused outputs with 50 ohm loads is
recommended. It is only necessary to terminate unused outputs of power dividers that are currently
being used to distribute the Analog clocks.

NOTE If you are using a single M9046A chassis, and you are using an instrument as a
synchronization source, ensure this instrument is in the middle segment.

Find us at www.keysight.com Page 117

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

Chapter 7: The HVI API
This chapter describes the HVI API. It describes the main classes required to understand the key pro-
gramming concepts you must understand when you define your own HVI implementation.

The HVI API is a class-based API. It is a combination of the HVI-native API and the HVI instrument
add-on API:

l The HVI-native API is the common API used by all instruments that support HVI.

l The HVI Instrument add-on API is an instrument-specific API that complements the HVI-native API.

NOTE The HVI-native API functions alone are not sufficient to fully execute HVI sequences
on an instrument. To successfully run an HVI, you must use both APIs.

This chapter contains the following sections:

l HVI API Main Classes and Use Model

l HVI API Functionality

l SystemDefinition

l Sequencer

l The Hvi Object

l HVI API Sync Statements

l HVI API Local Statements

Find us at www.keysight.com Page 118

Chapter 7: The HVI API

HVI API Main Classes and Use Model
PathWave Test Sync Executive has three main classes. You use them in this order:

1. SystemDefinition.

2. Sequencer.

3. Hvi.

Each of the stages in creating an HVI creates an object instance which is then passed to the next
stage. The following diagram shows the stages:

NOTE Once an instance of SystemDefinition, Sequencer, or Hvi classes is created, you
cannot modify it in the next HVI step. If you attempt to modify one of these
instances at a later stage, the modifications will not apply. That is:

l You cannot modify the SystemDefinition instance at the "Program HVI Sequences" or
"Execute HVI" stage.

l You also cannot modify the SystemDefinition or Sequencer instances at the "Execute
HVI" stage.

Find us at www.keysight.com Page 119

Chapter 7: The HVI API

SystemDefinition
You first define the hardware resources in the SystemDefinition class. This is the first step of building
an HVI. You use the SystemDefinition class to define the hardware components, configuration and the
resources available in your system. You do this by adding each of the resources to the relevant
collection.

SystemDefinition contains classes for:

l Chassis.

l Interconnects.

l HVI system clocks.

l Non-HVI core clocks.

l Engines.

l FpgaSandboxes.

l Sync resources.

Once you have added the resources, you can initialize the system. Ensure you initialize the system
after adding the resources.

NOTE The default initialization that happens when the Sequencer object is created,
initializes all the HVI Engines included in the SystemDefinition object. If you initialize
the system using the initialize() API method, ensure that all the HVI Engines are
added to the SystemDefinition instance before you call initialize().

Sequencer
Once the SystemDefinition object is defined and configured, you define and program HVI Sequences
with a Sequencer object.

In the Sequencer object, the hardware collections you defined for the SystemDefinition are available as
view collections. View collections enable you to use the hardware resources for Sequence
programming, but you cannot modify them.

The Sequencer object contains classes for:

l SyncSequences and Sequences.

l Compilation.

The SyncSequences object in turn contains collections of Scope and Register objects. Local sequence
can be programmed using the InstructionSet class.

After you have programmed your sequences, you use the compilation classes to compile the Hvi
object.

Find us at www.keysight.com Page 120

Chapter 7: The HVI API

Hvi
The Hvi object is the actual HVI instance that you load to hardware and execute.

Hvi contains runtime versions of the objects that you set up with
the SystemDefinition and Sequencer classes. You use the runtime objects for executing the
sequences on the hardware, but you cannot modify them.

Hvi contains the classes:

l SyncSequenceRuntime

l EngineRuntimeCollection

l ScopesRuntimeCollection

Further Explanations
Detailed explanations of all the main classes and their functions are provided in the help file provided
with the KS2201A PathWave Test Sync Executive installer. This is located at:

C:\Program Files\Keysight\PathWave Test Sync Executive 2022\api\python\Help

Find us at www.keysight.com Page 121

Chapter 7: The HVI API

HVI API Functionality
This section describes the functionality that is common across the HVI API. It contains the following
sections:

l HVI API capabilities.

l HVI Collections.

l HVI API Error Management.

HVI API Capabilities
The HVI API provides many capabilities, including:

l Chassis/PXI backplane resource configuration.

l Interconnect configuration, for example, with System Synchronization Modules (SSMs).

l Access to HVI memory resources in the FPGA user Sandbox.

l Real-time sequencing:

Synchronized flow-control statements such as While loops.

Synchronized multi-sequence block statements that provide access to local instructions and flow control.

Local Instructions and operations. These include HVI-native and instrument-specific instructions.

Local flow-control such as While loops and If statements.

Find us at www.keysight.com Page 122

Chapter 7: The HVI API

HVI Collections
Resources in HVI are grouped into Collections. Collections contain items of the same type, such as:

l Engines.

l Triggers.

l Actions.

l Events.

l Registers.

l FpgaSandboxes.

The concept of collections is fundamental in the HVI API use model because every component used
within the HVI must be registered with a collection.

When you are defining an HVI instance, you define resources and add them to the corresponding
collections. To register a component, add it to the corresponding collection of items of that type, for
example, you must add a trigger to a trigger collection. Once registered, you can then use them
inside HVI sequences.

Collections are particularly useful because the member instances can be accessed by index or string.
Collections are located within the sequence hierarchy with their corresponding Sync or Local
functions.

NOTE If a component is not registered with a collection, it cannot be used. You cannot
use the engines, actions, triggers, events, or registers before they are defined and
added to their corresponding collections.

Enhanced access properties of collections
Collections have additional access properties beyond those of vectors or lists.

Adding a new collection item
For example, you add new collection items by calling the add() method. This takes a name as its first
parameter and returns the new item. The following code declares a new register, adds it to a registers
collection, and returns the new register with the name my_register_A:

regA = instrument.registers.add('my_register_A', RegisterSize.SHORT)

NOTE Each name in a specific collection must be unique in that collection.

Find us at www.keysight.com Page 123

Chapter 7: The HVI API

Random access by string or by numerical index
You access collection items with the [] operator. You can index items with their name, or by a number
that indicates their location inside the collection.

You define the name when you add the item to the collection. For example, the following code returns
an Engine object named myEngine:

instrument.engines["myEngine"]

To find the number of items in a collection, use either count or the built-in len() function. For
example, the following code returns the number of Engines the instrument has:

len(instrument.engines)

Managing objects in a collection
The collection is a grouping of members, but it has no knowledge of the parameters or attributes of
its members.

Definition and management of the instances within a collection are managed in their own classes, not
in the collection class. For instance, you manage an Engine with the Engine class, not
the EngineCollection class. Once an instance is defined, you then add it to the collection using the
methods shown previously.

HVI API Error Management
Error handling in the HVI API is based on exceptions. If an error occurs during an HVI execution, the
code execution is stopped, and a message is returned that includes an error code and a relevant error
message. Error management is done through the Error class that is part of the HVI API.

Find us at www.keysight.com Page 124

Chapter 7: The HVI API

SystemDefinition
This section describes the SystemDefinition class, it contains the following sections:

l HVI Engines and their Resources

l Chassis, Interconnects and SyncModules Classes

l Synchronization Resources and Clocks

l User-defined trigger routing

l Clocking API

l Multi-process support

l System Initialization

You use SystemDefinition to configure the physical hardware resources available to the HVI. This
class has interfaces to the Engines, Chassis, interconnects, and SyncModules.

Find us at www.keysight.com Page 125

Chapter 7: The HVI API

The following diagram shows the classes:

Find us at www.keysight.com Page 126

Chapter 7: The HVI API

HVI Engines and their Resources
The Engine class provides access to the HVI Engines in the instruments.

You create instrument objects, where each object represents a physical PXIe instrument placed into a
specific chassis and slot. You can the obtain the Engine object from the instrument object using the
instrument-specific API and then add it to the list of HVI engines in the HVI engine collection. This col-
lection is managed by the SystemDefinition object.

When a SystemDefinition object instance is created, an HVI engine collection is automatically cre-
ated as well. This is managed through the EngineCollection class. You add HVI Engines to the col-
lection by using the API method add() that is common to all collection classes. Each HVI engine
manages its own Trigger, Action, Event, and FpgaSandbox collections.

Find us at www.keysight.com Page 127

Chapter 7: The HVI API

The following diagram shows the classes:

Find us at www.keysight.com Page 128

Chapter 7: The HVI API

Trigger definition
The TriggerDefinitionCollection class is used to add and manage all the trigger signal lines that are
used by each HVI engine for triggering. When a trigger is added or queried from the
TriggerDefinitionCollection, a TriggerDefinition object is returned. There are multiple types of triggers
depending on their physical representation, for example, front panel triggers (usually a SMA
connector on the module's front panel), PXIe triggers (connected to the PXIe backplane of the
chassis), general purpose digital IO (LVDS connector in the module's front panel), and any other
trigger lines enabled within the instrument.

The TriggerDefinition provides an interface to query trigger properties like Id, Name (user name),
Hardware Name and type, and the TriggerConfig interface to configure the behavior of the trigger.

The TriggerConfig holds all the parameters to configure the trigger behavior. It holds the current
configuration of the trigger hardware and enables you to query and define the required trigger
behavior. The default configuration is included in the table below. The trigger configuration includes
the following parameters:

Parameter Description Possible values Default value

direction
Get or set the
direction of the
trigger

Direction enum: INPUT,

OUTPUT
INPUT

polarity
Get or set the
polarity of the
output trigger

TriggerPolarity enum:

ACTIVE_HIGH, ACTIVE_LOW
ACTIVE_HIGH

trigger_mode
Get or set the
trigger mode

TriggerMode enum: LEVEL,

PULSE
LEVEL

sync_mode

Get or set the
synchronization
mode of the
trigger

SyncMode enum:

IMMEDIATE, SYNC, SYNC_

BASE

IMMEDIATE

hw_routing_

delay

Get or set the
delay of the trigger
in nanoseconds

Int 0

pulse_length

Get or set the
pulse length of the
trigger in
nanoseconds

Int 100ns

Find us at www.keysight.com Page 129

Chapter 7: The HVI API

Action definition
Use the ActionDefinition class to define Actions in the HVI API. Before an action can be used you
must register it to the ActionDefinitionCollection class that is within the Engine class. The
registration locks the resource to the HVI instance for its use, when it is loaded to hardware.

Actions are used in sequences with action-execute instructions.

Event definition
The EventDefinition class is used to define Events in the HVI API. Before an event can be set up or
used, it must be registered in the EventDefinitionCollection class within the Engine class that shall
use this event. Registration locks the resource to the HVI instance for its use, when it is loaded to
hardware.

FPGA sandbox definition
An FPGA sandbox is a user-configurable region in the FPGA. An HVI interface is provided to the
sandbox for the instruments that support it. Through this interface, HVI can access read/write HVI
registers and memory inside the sandbox.

To take configure the FPGA, you must use PathWave-FPGA to create your design in the sandbox.
When the design is completed and built, PathWave FPGA generates a k7z file. This file is then used by
HVI to get all the information needed about the names, addresses, ranges of the registers and
memory-mapped locations that are connected to the HVI interface.

FPGA sandbox definition class
For the instruments that support user-configurable sandboxes, the sandboxes can be found in the
engine's collection property fpga_sandboxes, where each sandbox can be accessed by its name. This
returns an FPGA Sandbox Definition object that you then use to load the k7z file that was exported
from PathWave FPGA. The HVI uses the k7z file to load the information related to this sandbox. Once
the sandbox project is loaded, you can access the contents of the FPGA sandbox, that is, the register
and memory map definitions.

SANDBOX_0_NAME = "sandbox0"

sandbox = engine.fpga_sandboxes[SANDBOX_0_NAME]

project_file = "c:/fpga/Hvi2SandboxTest.k7z"
sandbox.load_from_k7z(project_file)

Find us at www.keysight.com Page 130

Chapter 7: The HVI API

http://www.keysight.com/find/pathwave-fpga

FPGA register definition class
Using an FPGA sandbox definition object that has already loaded a k7z file, you can access the list of
HVI registers (FpgaRegisterDefinition objects) defined in the
sandbox. The FpgaRegisterDefinition objects have one property, the name of the register.

FpgaRegisterDefinition can be set as a parameter in InstructionFpgaRegisterRead.fpga_
register and InstructionFpgaRegisterWrite.fpga_register.

fpga_register = engine.fpga_sandboxes[SANDBOX_0_NAME].fpga_registers[0]
fpga_register.name

FPGA memory map definition class
Using an FPGA Sandbox Definition object that has already loaded a k7z file, you can access the list of
memory-mapped locations (FpgaMemoryMapDefinition objects) defined in the
sandbox. The FpgaMemoryMapDefinition objects has two properties, the name and the size of the
memory-mapped location.

FpgaMemoryMapDefinition can be set as a parameter in InstructionFpgaArrayRead.fpga_memory_
map and InstructionFpgaArrayWrite.fpga_memory_map.

fpga_memory_map = engine.fpga_sandboxes[SANDBOX_0_NAME].fpga_memory_maps[0]

Find us at www.keysight.com Page 131

Chapter 7: The HVI API

FPGA FDS Port definition class
Using an FPGA Sandbox Definition object that has already loaded a k7z file, you can access the list of
FDS Port locations (FdsPort objects) defined in the sandbox.

When a PathWave FPGA project is loaded to an engine’s sandbox, the memory maps, registers, and
Fast Data Sharing (FDS) ports are populated under the sandbox object.

The FdsPort class enables you to use the FDS port instances placed in the sandbox of a loaded
PathWave FPGA project. An FdsPort has one property which is the name of the port.

FdsPort can be set as a parameter in SyncFpgaDataSharingStatement.

The following code shows how to get FDS ports from the FDS port collections in engines.

get FDS Ports for each engine
source_port_name = 'fds_tx_output_1'
dst_port_name = 'fds_rx_input_1'
#
module_1_fds_ports = sequencer.sync_sequence.engines["Module_1"].fpga_sandboxes[0].fds_ports
module_2_fds_ports = sequencer.sync_sequence.engines["Module_2"].fpga_sandboxes[0].fds_ports
#
source_address = 10
source_port = module_1_fds_ports[source_port_name]
source = keysight_hvi.FdsPortAddress(source_port, source_address)
#
dst1_address = 20
dst1_port = module_2_fds_ports[dst_port_name]
dst1 = keysight_hvi.FdsPortAddress(dst1_port, dst1_address)

Find us at www.keysight.com Page 132

Chapter 7: The HVI API

Chassis, Interconnects and SyncModules Classes
This section describes the Chassis, Interconnect and SyncModule classes, and how to use them. It
contains the following sections:

l Classes

l Opening Real or Simulated Devices

Classes
The following classes are supported:

Chassis class
The Chassis class represents a chassis inside your hardware platform topology, it enables you to
query basic information such as which slots are available, the chassis model, and chassis vendor.

A Chassis has the following properties:

Property Description

number The chassis number

first_slot The first slot number in the chassis

last_slot The last slot number in the chassis

model The chassis model

vendor The chassis vendor

triggering The triggering object of the chassis

Interconnects class
This class represents physical hardware boards that are inserted in slots of different chassis to
connect them together.

The Interconnects class has the following properties:

Property Description

chassis The chassis number where the interconnect is located

slot The slot number where the interconnect is located

Find us at www.keysight.com Page 133

Chapter 7: The HVI API

SyncModule class
Class representing a System Synchronization Module (SSM). The SSM is a PXIe instrument that can
be used for connecting multiple chassis together, synchronizing the multiple chassis and the
instruments within, sharing an high performance clock reference across the multi-chassis
system, and managing fast data sharing between PXIe instruments.

Property Description

chassis The chassis number where the SSM is located

connectivity

This describes the connectivity capabilities of the
SSM and must be used to specify connections in
software that reflect what is connected in your
hardware setup.

slot The slot number where the SSM is located

SyncModule sub-classes

SyncConnectivity

This class describes the connectivity capabilities of an SSM.

Find us at www.keysight.com Page 134

Chapter 7: The HVI API

Opening Real or Simulated Devices
You can use PathWave Test Sync Executive with real or simulated hardware. The simulation
mode enables you to test your sequences before running them on real hardware.

When you are opening a device such as a SSM or a Chassis, you can specify an options string. This is
a string that contains a list of comma separated options. The options you specify are specific to the
device you are opening and change depending on if you are opening real device or using a simulation.

NOTE In some cases a generic simulation built-in to HVI is provided, this is to enable you
to get things up and running. A driver based simulation provides a more accurate
simulation of the real hardware, so it is better for testing.

Options for opening SSMs
Real SSM
If you are using real SSM hardware, the options sting is typically empty. If you want to specify
hardware options when using the SSM, see the SSM user manual for available options.

Add SSM to Interconnects Collection

interconnects.add_sync_module(resource_id,"")

Simulated SSM
You can simulate a specific SSM with the driver for that SSM.

When simulating several options should be specified:

Set Simulate=True.

The following option must go after DriverSetup=

l Model specifies the model of SSM you want to simulate.

You can add a simulated SSM in the following way:

interconnects.add_sync_module(resource_id, 'Simulate=true,DriverSetup=Model=M9033A')

Find us at www.keysight.com Page 135

Chapter 7: The HVI API

Options for opening a Chassis
Real Chassis
To add a real chassis do the following:

Add chassis with number

my_system.chassis.add(chassis_number)

You can also use add_with_options(chassis_number, options), but currently, the only options
supported are the ones described in Simulated Chassis part below. Any other options you provide are
ignored.

Simulated Chassis
You can simulate a chassis using a generic chassis simulation that is built in to HVI.

To enable chassis simulation, use the method: add_with_options(chassis_number, options) .

l chassis_number is the number of the chassis you want to simulate.

l options is a string that contains a list of comma separated options. You use these options to
enable simulation mode and the chassis simulation, any other options are ignored.

The following code shows how to add a chassis in simulation mode using the built-in generic chassis
simulation:

sys_def.chassis.add_with_options(chassis_

number, 'Simulate=True,DriverSetup=Model=GenericPxieChassis')

The GenericPxieChassis also simulates the the High Performance Reference Cock Source (HPRCS) if
required.

Find us at www.keysight.com Page 136

Chapter 7: The HVI API

Synchronization Resources and Clocks
HVI provides transparent multi-instrument synchronization and synchronized conditional execution,
for example, the Sync while statement does synchronized conditional execution. To use these cap-
abilities, for a Device Under Test (DUT) or instruments that do not integrate HVI technology, you must
assign HVI synchronization resources and specify clock frequencies.

HVI synchronization resources
When you set up your system, you must allocate sufficient synchronization resources for your system
and sequences to work correctly. Sync resources in the PXIe platform consist of the PXI Trigger lines.
These are a limited resource, so you must be careful when you are allocating them.

The sync resources are used internally by the HVI to implement the following cross-instrument
operations, transparently to the user:

l Alignment and Synchronization initialization.

l Real-time Sequencing multi-instrument operations, such as:

Sync while.

Sync register-sharing.

Triggered synchronization in a SyncMultiSequenceBlock.

The HVI optimizes the use of sync resources as much as possible and reuses the same sync resources
when possible for different operations, providing they are executed with sufficient time separation.
You can estimate the number of sync resources you require by working out how many are required at
the different stages of your application.

The sync resources consist of PXI triggers and are defined by the enumeration keysight_

hvi.TriggerResourceId. The resources must be specified in the SyncResources property of the
SystemDefintion object. For example:

Add sync resources
sys_def.sync_resources = [keysight_hvi.TriggerResourceId.PXI_TRIGGER0,

keysight_hvi.TriggerResourceId.PXI_TRIGGER1,
keysight_hvi.TriggerResourceId.PXI_TRIGGER2]

Find us at www.keysight.com Page 137

Chapter 7: The HVI API

Where Sync Resources are used
There are 3 areas where you require Sync resources, these are the same 3 stages you set up your HVI
in:

System Initialization
Initialization (SystemDefinition.initialize() call) requires one Sync resource for instrument
synchronization. At this step the Sync resources is configured in HW and used to synchronize all
hardware in the SystemDefinition, it is important that at this point the Sync resource is available and
not in use by any other HVI instance or application. This Sync resource is reused later for the
sequence execution, for example, if you use PXI Trigger 0 for synchronization, it will be reused
later for the sequence execution.

Sequence Compilation
The HVI sequence requires Sync resources to execute specific multi-instrument real-time operations.
Some operations that require Sync resources include:

l Sync while.

l Sync register-sharing.

l Triggered synchronization in a SyncMultiSequenceBlock.

During the sequence compilation, HVI allocates the Sync resources assigned in the SystemDefinition
as required. So it is important that sufficient Sync resources are assigned for the sequence to
compile, if this is not the case, a compilation error will be generated. At the compile stage, Sync
resources are not used in hardware, they are just allocated to specific real-time operations in the
code resulting of the sequence compilation. These resources will be configured and used in hardware
when the HVI instance is loaded to hardware.

Sequencer Creation
Your sequence shall require sync resources to operate, but it can reuse the sync resources previously
used in the SystemDefinition for initialization.

If you have not called initialize or it is otherwise required, the initialization still occurs at the beginning
of the sequence. Sync resources are required for this, however these resource are reused by the
sequence.

The numbers of sync resources required in a sequence depends on:

l The use of certain sync statements such as SyncWhile require 1 sync resource.

l The use of Sync register-sharing statements requires 1 sync resource per bit.

l Triggered synchronization requires 1 additional sync resource.

l The arrangement of your system also affects the number of sync resources required.

Find us at www.keysight.com Page 138

Chapter 7: The HVI API

HVI Load to Hardware
The Sync resources required to initialize the system (synchronize all hardware) and those allocated to
the HVI sequence during compilation, are configured into hardware at this step (Hvi.load_to_hw()
call). The same Sync resources used to initialize the system are also used to run the HVI sequence. It
is important that at the time of the Hvi.load_to_hw() call, to ensure the allocated Sync resources are
not already in use in hardware by any other HVI instance or application.

Find us at www.keysight.com Page 139

Chapter 7: The HVI API

Calculating the number of Sync Resources required
Different functionalities require different amounts of Sync resources, this can also depend on the
system configuration, in particular if it is a small setup such as a single PXIe-chassis & single
segment, or a large system with multiple chassis.

Sync resource usage per functionality
The following table summarizes the Sync resources required by the different functionalities.

Functionality

Sync resources required

(for recommended Keysight
chassis)

Description
Single PXIe chassis

& Segment
Others

1 SystemDefinition::Initialize() and sequence start in Hvi::Run() 1

2 Sync Flow-Control While statement 1

3
Sync Multi-Sequence blocks with Triggered-Sync (those with unknown
execution time during compilation)

1 2

4 Sync Register sharing of N bits N

For information about recommended chassis, see Configuring a System with SSMs and System Sync
Connectivity.

Sync resource reuse across functionalities
HVI reuses the same Sync resources for different functionalities and also for the same functionality if
executed multiple times. The criteria to reuse Sync resources is:

l Functionalities #1, #2 and #3 reuse the Sync resources.

l Functionality #4 (Sync Register Sharing) reuse Sync resources ONLY when sender module are in the same
Chassis and Segment

Calculating the total Sync resources required
To calculate the total amount of Sync Resources required, use the following formula:

l Total Sync Resources = Max(#1, #2, #3) + Sum(Max(#4 for each segment)).

l If a functionality is not used, use 0 in the equation above.

Find us at www.keysight.com Page 140

Chapter 7: The HVI API

The following table shows examples with the number of sync resources required:

Scenario Description
Functionality Sync Resource

Total#1 #2 #3 #4

System initialization only, SystemDefinition::Initialize() (any
number of chassis)

1 - - - 1

SyncSequence (1x chassis, 1x segment)

No Triggered-Sync SyncMultiSequenceBlocks

+ Sync-While

1 1 - - 1

 SyncSequence (1x chassis, 1x segment)

+ Triggered-Sync SyncMultiSequenceBlocks

No Sync-While

+ RegSharing (chassis1, segment 1) (n bits)

1 - 1 n n + 1

SyncSequence (2+ chassis)

+ Triggered-Sync SyncMultiSequenceBlocks

No Sync-While

+ RegSharing (chassis1, segment 1) (n bits)

1 - 2 n n + 2

SyncSequence (2+ chassis)

+ Triggered-Sync SyncMultiSequenceBlocks

+ Sync-While

+ RegSharing (chassis 1, segment 2) (n bits)

+ RegSharing (chassis 1, segment 2) (m bits)

1 1 2
Max
(n,m)

Max(n,m) + 2

SyncSequence (2+ chassis)

+ Triggered-Sync SyncMultiSequenceBlocks

+ Sync-While

+ RegSharing (chassis 1, segment 1) (n bits)

+ RegSharing (chassis 2, segment 3) (m bits)

1 1 2 n + m n + m + 2

Find us at www.keysight.com Page 141

Chapter 7: The HVI API

HVI synchronization signals and modes
HVI uses different periodic digital signals for synchronization purposes. The definition of those digital
signals depends on platform and instruments signals. Platform signals are the CLK100 and CLK10
signals in a PXI platform such as a PXI chassis. Instruments have different clock signals inside that are
classified as core clocks or system clocks. Platform and instrument clock signals contribute to define
the following HVI synchronization signals:

l Sync

l Sync_Base

Synchronization modes
You can configure the synchronization mode. This is used, for example, for generating a trigger value
or waiting for an event.

The following modes are supported:

IMMEDIATE

The trigger or action is issued immediately, with no need to wait for any common synchronization
clock. For the Wait-For-Event, the HVI execution continues immediately, as soon as the event is
received.

SYNC

The trigger or action is issued at the first edge of the SYNC signal. For the Wait-For-Event, the
HVI execution continues at the first edge of the SYNC signal, following the event arrival time.

SYNC_BASE

The trigger or action is issued at the first edge of the SYNC_BASE signal. For the Wait-For-Event,
the HVI execution continues at the first edge of the SYNC_BASE signal, following the event
arrival time.

For more information about synchronization, see Synchronization and Timing.

Find us at www.keysight.com Page 142

Chapter 7: The HVI API

User-defined trigger routing

About Triggering
HVI uses triggers to communicate between engines in different slots of a PXI chassis, and in different
PXI chassis through a SystemSync connection using SSM. HVI includes API methods that enable you
to configure custom trigger routings across different instruments and chassis.

The following types of routing are supported:

l One source trigger, this must be a PXI trigger.

l One or more destination triggers, these must have the same PXI trigger number as the source, but in dif-
ferent slots and chassis.

For example, you can route:

From:

PXI trigger 3 in slot 2 of chassis 1

To:

PXI trigger 3 in slot 10 of chassis 1

and

PXI trigger 3 in slot 2 of chassis 2.

Trigger routing in the HVI API
The HVI API classes that you can use to get triggers and configure trigger routings are described in
this section.

Types of trigger
The HVI API supports the following types of trigger:

Trigger

This is a standard HVI trigger, you use these for instruments with an HVI Engine. You get triggers
from HVI Engines when you setup your system definition, see HVI Engines and their Resources.

You cannot use triggers that have already been added to sync resources.

PlatformTrigger

This type of trigger is used with instruments that does not contain an HVI engine. This can be any
PXI instrument that uses triggers.

Find us at www.keysight.com Page 143

Chapter 7: The HVI API

The triggering property of Chassis returns a triggering object of type
ChassisTriggering. ChassisTriggering provides an interface to get a PlatformTrigger from a
chassis.

Routing triggers
You configure the trigger routing through the triggering property of SystemDefinition.

A trigger can be a routing source or destination.

A PlatformTrigger can be a routing source or destination.

SystemDefinition provides a triggering property that returns a triggering object of type Sys-

temTriggering. You use this to configure trigger routings.

System Triggering

SystemTriggering provides an interface to configure the routings.

Routing collection

Represents a collection of Routings.

Routing

Represents a route from one or more source TriggeringSignal to one or more destination Trig-
geringSignals.

TriggerSignal

Represents the signal that is routed between instruments.

Example of using the API to configure trigger routing
The following example shows how to get a PlatformTrigger, a trigger and then configure a route from
one to the other:

Create PlatformTrigger through the Chassis object
slot = 11
platform_trigger = system_definition.chassis[1].triggering.get_platform_trigger(keysight_
hvi.TriggerResourceId.PXI_TRIGGER0, slot)
#
Create Trigger object through the Engine object
engine = system_definition.engines[0]
hvi_trigger = engine.triggers.add(moduleInSlot2.hvi.triggers.PxiTrigger0, "Destination")
#
Add a user routing with the Platform trigger as the source, and the Trigger as the destination
routing = system_definition.triggering.routings.add(platform_trigger, [hvi_trigger])

Find us at www.keysight.com Page 144

Chapter 7: The HVI API

Clocking API
In a hardware system, there are a number of different options for the system wide clock reference.

A clocking interface in the SystemDefinition class enables you to define the source of the system wide
clocking reference along with a mode and frequency.

Setting the Source of the Reference Clock
You can set a System Sync Module (SSM) as a reference clock source.

Select the SSM as the source
clockSource = interconnects[0].clock_source
#
Set the SSM clock source
systemDefinition.clocking.reference_source = clockSource

Alternatively, you set the chassis as a reference clock source with the following code:

Select the chassis as the source
clockSource = chassis.clock_source
#
Set the clock reference source
systemDefinition.clocking.reference_source = clockSource

Setting the Mode and Frequency
You can set the mode as INTERNAL or EXTERNAL.

INTERNAL

The reference clock source is internal. This is the default value.

Do not set the frequency, this raises an error.

EXTERNAL

The reference clock source is synchronized to an external clock.

You must set the frequency (in Hz) of the external sources.

Find us at www.keysight.com Page 145

Chapter 7: The HVI API

To set the High Performance Reference Clock Source (HPRCS) as the reference clock do the
following:

This will be added only in the main chassis with the leader SSM.
ktHvi.SystemDefinition definition("Name")
#
chassis = definition.add_chassis(1)
clockSource = chassis.high_performance_clock_source
#
Configuring HPRCS to use its internal clock
clockSource.set_mode(keysight_hvi.ClockingReferenceMode.INTERNAL)
#
Configuring HPRCS to use an external reference @10Mhz
clockSource.set_mode(keysight_hvi.ClockingReferenceMode.EXTERNAL, 10e6)

As SSM is required because the HPRCS output is connected to REF_IN input of the SSM.
syncModule = definition.interconnects.add_sync_module(resourceIdStm1, options)
#
definition.clocking.reference_source = clockSource

In some cases you may want to use the clock source device (Chassis, SSM or HPRCS) internal clock.
This also enables you to use an external clock source to drive it, such as an atomic clock or a device
under test. The following code shows how to configure the chassis as the clock source and take the
clock reference from an external 10MHz source:

clockSource = chassis.clock_source
#
Set clock mode to EXTERNAL and set frequency to 10MHz
clockSource.set_mode(keysight_hvi.ClockingReferenceMode.EXTERNAL, 10e6)
#
systemDefinition.clocking.reference_source = clockSource

However, if you want to explicitly configure the clock source to use the chassis internal OCXO clock
source:

clockSource = chassis.clock_source
#
Set clock mode to INTERNAL
clockSource.set_mode(keysight_hvi.ClockingReferenceMode.INTERNAL)
#
systemDefinition.clocking.reference_source = clockSource

Getting the Mode and Frequency
If you did not set the mode or frequency, you can get the mode and frequency of the clocking
reference with the following code:

Get mode and frequency (in Hz)
#
mode = clockSource.mode
frequency = clockSource.frequency

Find us at www.keysight.com Page 146

Chapter 7: The HVI API

Chassis Clock Outputs
The chassis have internal clocks and outputs for them. For instance, the clock output on the rear
panel of an M9019A or the clock outputs on the front panel of an M9046A. These clock outputs can
be use as a reference clock for instruments in the system and for devices external to the system. The
HVI API enables you to enable or disable the chassis clocks.

For the clock options and outputs available on your chassis, see your chassis documentation.

NOTE Chassis Clock Outputs do not have any default behavior. If the user does not specify
any configuration for a clock output (see below) the clock output is left untouched.

Enabling chassis clock outputs
The chassis clock outputs are available in the chassis and you can access them by their name as fol-
lows:

Get the Clock configuration for the Rear Panel 10MHz output port from the Chassis
ktHvi.SystemDefinition definition("Name")
#
chassis = definition.add_chassis(1)
#
clockOutputRp10Mhz = chassis.clock_outputs["RP10MHzOut"]
clockOutputRP10Mhz.set_enabled(true/false)

Some clock outputs support one single frequency and others support multiple frequencies. For the
outputs supporting only one frequency, no frequency must be provided when enabling/disabling
them. If the clock outputs do support multiple frequencies, you must specify what frequency (in Hz)
you want to enable.

When you disable the clock, the frequency argument is ignored.

The following code shows some examples and error cases:

clockOutputRp10Mhz = chassis.clock_outputs["RP10MHzOut"]
clockOutputRP10Mhz.set_enabled(true) # Ok
clockOutputRP10Mhz.set_enabled(true, 10e6) # Throws error, no frequency expected
clockOutputRP10Mhz.set_enabled(false, 10e6) # Ok, frequency is ignored
#
clockOutputFpRef2Out = chassis.clock_outputs["FPRef2Out"]
clockOutputFpRef2Out.set_enabled(true) # Throws error, frequency expected
clockOutputFpRef2Out.set_enabled(true, 10e6) # Ok
clockOutputFpRef2Out.set_enabled(false, 10e6) # Ok, frequency is ignored

Enabling the chassis Analog Clock Output
If you are using an analog clock output from a chassis you must enable it manually.

The following code shows how to enable a 2.4GHz analog clock output from an M9046A chassis.

Find us at www.keysight.com Page 147

Chapter 7: The HVI API

clock_output_2_4GHz = ref_chassis.clock_outputs["FP2.4GHzOut"]
clock_output_2_4GHz.set_enabled(True)

Automatic clock output enable
If the you defines the HPRCS clock from the M9046A chassis as the clock source, you must connect
the Front panel Ref 1 Out port (FPRef1Out) from the leader M9046A to the REF_IN of the leader SSM.
HVI automatically enables the Ref 1 Out clock output port from the leader chassis to let the leader
SSM take the clock reference from it.

The following code shows an example:

This is only added in the main chassis with the leader SSM.
ktHvi.SystemDefinition definition("Name")
#
chassis = definition.add_chassis(1)
clockSource = chassis.high_performance_clock_source
#
Configure the HPRCS to use its internal clock
clockSource.set_mode(keysight_hvi.ClockingReferenceMode.INTERNAL)

As SSM is required because the HPRCS output is connected to REF_IN input of the SSM.
syncModule = definition.interconnects.add_sync_module(resourceIdStm1, options)
#
definition.clocking.reference_source = clockSource
#
The following lines are not required, HVI does this automatically
#clockOutputFpRef1Out = chassis.clock_outputs["FPRef1Out"]
#clockOutputFpRef1Out.set_enabled(true)

Enabling the Analog Clock Source in Instruments
For instruments that require an analog clock, you must set the source and frequency of the analog
clock in your system definition.

You can set parameters for the analog clock:

l The source as internal or external.

l The frequencies of the sources, in Hz.

For external sources, the source selected depends on the analog clock frequencies that the instru-
ment supports.

l If you indicate multiple frequencies, the first external frequency supported by the instrument is selected.

l If none of the external frequencies are supported, and the instrument has an internal clock, the internal clock
is selected.

l If none of the external frequencies are supported, and the instrument does not have an internal clock, an
error is generated.

Find us at www.keysight.com Page 148

Chapter 7: The HVI API

my_system.clocking.enable_external_analog_clocks(frequencies)

If the instrument does not support the frequency and does not have an internal clock, an error is
generated.

Find us at www.keysight.com Page 149

Chapter 7: The HVI API

Multi-process support

About multi-process
The multi-process feature is a communications infrastructure that enables the future expansion of
HVI operation to larger systems. Keysight Distributed Infrastructure (KDI) is the underlying service
that supports this feature. On top of KDI, PathWave Test Sync Executive will use the same existing
programming paradigm, enabling an easy transition for existing users.

In this release the multi-process feature enables you to open multiple instruments in a process or con-
nect to a single instrument from multiple processes.

How to use multi-process
The programming model of a multi-process system is much the same as for a single system. You
describe the whole HVI environment (engines, sync resources, sequences, etc.) in a single script as
before. Under the hood, the real software objects are created where they have direct access to the
hardware resources they control. You do not have to deal with the internals of this mechanism, but
internally the remote object concept is introduced to manage a different execution process.

To keep the existing programming interface for multi-process operations, the creation of a remote
object is defined the same way as it was for an existing one, except for adding the location to its
description as a URL address.

For example:

#MyHviEngine@PXI0::CHASSIS1::SLOT2::INSTR

is transformed to:

#MyHviEngine@PXI0::CHASSIS1::SLOT2::INSTR<<HVITCP:[::1]:34960>>

This creates a remote engine on the local host using a connection through port number 34960. After
this, the engine name MyHviEngine is used in the script the same way as always.

HVIServer port options
In multi-process operation, you connect to individual instruments remotely via an HVIServer
port. Since each instrument is run in its own process, a different HVIServer port must be defined for
each instrument.

These are specified with for example, HVITCP:127.0.0.1::2000 where 2000 is the port number, or
HVITCP:[::1]:0 where 0 specifies a dynamic port.

NOTE Keysight recommends you use dynamic ports whenever possible as it avoids port
collisions in a multi-instrument environment.

The following table provides some examples:

Find us at www.keysight.com Page 150

Chapter 7: The HVI API

Configuration
Option
Name

Option Value Option Value Example Description

KSF-IPC HviServer
HVITCP:<ipv4>:<port>
HVITCP:<ipv6>:<port>

HVITCP:127.0.0.1::2000

HVITCP:[::1]:2000

Address for
opening a server
with a port
number.

HVITCP:[::1]

HVITCP:[::1]:0 (dynamic
port)

If no port is set, or the
number 0 is specified, a
dynamic port number is
used.

Connections to multiple instruments
Multiple instruments can be opened and used remotely within a process.

The following python code shows how to instantiate 2 remote instruments through KDI, that you can
later use in a sequence.

For ports, Keysight recommends you use dynamic ports. You do this by setting port number 0 in the
URL portion of the options and leave the operating system to find out an available port. It is also pos-
sible to manually set the TCP ports but this is not recommended because you have to set a unique
port manually for each instrument, and this process can be error prone.

leader_module = KtM5300x("kdi://localhost/PXI0::CHASSIS1::SLOT2::INDEX0::INSTR", False, False,
'Simulate=1, DriverSetup=, HviServer=HVITCP:[::1]:0')
follower_module = KtM5300x("kdi://localhost/PXI0::CHASSIS1::SLOT3::INDEX0::INSTR", False, False,
'Simulate=1, DriverSetup=, HviServer=HVITCP:[::1]:0')
#
The engines are added to the system definition the same way:
my_leader_module_main_engine = my_system.engines.add(leader_module.hvi.engines.main_engine,
"LeaderModuleEngine")
my_follower_module_main_engine = my_system.engines.add(follower_module.hvi.engines.main_engine,
"FollowerModuleEngine")

The following python code shows how to instantiate 2 remote instruments by manually setting the
TCP ports.

In this case since each instrument is run in its own process, a different HVIServer port must be
defined for each instrument, these are specified with HviServer=HVITCP:[::1]:7890 and HviServer-
r=HVITCP:[::1]:7891. Other ports can be used as long they're not being used by another process.
Manually managing ports is error prone as it is up to the user to assign an unique TCP port for every
instrument.

Find us at www.keysight.com Page 151

Chapter 7: The HVI API

leader_module = KtM5300x("kdi://localhost/PXI0::CHASSIS1::SLOT2::INDEX0::INSTR", False, False,
'Simulate=1, DriverSetup=, HviServer=HVITCP:[::1]:7890')
follower_module = KtM5300x("kdi://localhost/PXI0::CHASSIS1::SLOT3::INDEX0::INSTR", False, False,
'Simulate=1, DriverSetup=, HviServer=HVITCP:[::1]:7891')
#
The engines are added to the system definition the same way:
my_leader_module_main_engine = my_system.engines.add(leader_module.hvi.engines.main_engine,
"LeaderModuleEngine")
my_follower_module_main_engine = my_system.engines.add(follower_module.hvi.engines.main_engine,
"FollowerModuleEngine")

Multiple connections to a single instrument
You can make multiple connections to a single instrument if all connections have declared with
AllowMultipleClientAttach=1.

Process 1

The following code for process 1 shows how to instantiate the remote instrument through KDI, the
remote instrument uses HviServer=HVITCP:[::1]:0 :

leader_module = KtM5300x("kdi://localhost/PXI0::CHASSIS1::SLOT2::INDEX0::INSTR", False, False,
'Simulate=1, DriverSetup=, AllowMultipleClientAttach=1,HviServer=HVITCP:[::1]:0')
#
unique_id = leader_module.hvi.engines.main_engine
#
print(unique_id) ### The following is printed in the console ->
#M5300xHviEngine@PXI0::CHASSIS1::SLOT2::INSTR<<HVITCP:[::1]:60248>>
#
The engine is added to the system definition the same way.
my_remote_instrument_main_engine = my_system.engines.add(leader_module.hvi.engines.main_engine,
"RemoteInstrumentEngine")

Process 2

In this case, since the instrument previously created in a different process is being accessed, it is
optional to specify the HviServer option because the instrument is already open.

Keysight recommends you always specify the HviServer option in case of a scenario where the order
of launching the processes is unknown and the HVIServer might not be opened.

Process 2 assigned to the same port number because it takes the settings of the first process:

leader_module_in_a_different_process = KtM5300x
("kdi://localhost/PXI0::CHASSIS1::SLOT2::INDEX0::INSTR", False, False, 'Simulate=1,
DriverSetup=, AllowMultipleClientAttach=1')
#
unique_id = leader_module_in_a_different_process.hvi.engines.main_engine
#

Find us at www.keysight.com Page 152

Chapter 7: The HVI API

print(unique_id) ### The following is printed in the console ->
#M5300xHviEngine@PXI0::CHASSIS1::SLOT2::INSTR<<HVITCP:[::1]:60248>>
#
The engine is added to the system definition the same way.
my_remote_instrument_main_engine = my_system.engines.add(leader_module_in_a_different_
process.hvi.engines.main_engine, "RemoteInstrumentEngine")

Find us at www.keysight.com Page 153

Chapter 7: The HVI API

System Initialization
In HVI technology, System Initialization is a process that includes the configuration and alignment of
the different systems clocks, including the clocking for each instrument specified as part of the HVI
System Definition. This procedure includes the generation and alignment of the instrument
internal Sync and SyncBase signals described in Chapter 9: HVI Time Management and Latency. Ini-
tialization also includes the alignment of clocks controlling the Fast Data Sharing (FDS) functionality
for cases where your HVI definition includes instruments that support this functionality, such as instru-
ments from the Keysight PXIe M5xxx instrument family.

A complete system initialization can be a complex procedure that can take some time. It must be per-
formed when the system is first assembled and powered on, but you are not required to perform this
level of initialization every time. However, a basic level of initialization is required every time to ensure
that the system is synchronized and the clocks are in alignment.

A number of initialization options are provided to ensure correct setup and minimize initialization time
when you want to run operations. You can use the basic options after the system has been fully ini-
tialized for the first time, however if you change the hardware setup (instruments, cables, etc.) or
clocks (reference clock source, clock connection cables, etc.) you must perform a complete ini-
tialization again.

The SystemDefintion class includes an initialize() method that initializes the hardware included in
the System Definition, and performs synchronization and clock alignment. There are 3 cases where
system initialization and clock alignment can occur:

l Manually calling initialize() in the System Definition.

l When the Sequencer object is created.

l When calling Load to Hardware.

NOTE The initialization process requires access and control of all of the hardware
resources, so it is important that these resources are not already in use by another
application or HVI instance already loaded to hardware. An exception is thrown if
any of the hardware resources are already in use.

The SystemDefinition initialize()
The systemDefinition.initialize(...) method enables you to explicitly trigger a system initialization
and alignment. You might want to explicitly control when the initialization process is executed
because the initialization process can take some considerable time depending on the parameters and
system state.

You can also specific specific alignment modes when calling the initialize() method:

Find us at www.keysight.com Page 154

Chapter 7: The HVI API

Mode Description

Default

Calling initialize() without parameters performs
the default, or minimal-possible initialization.
This is the mode intended to be used in normal
system operation.

keysight_hvi.AlignmentModes.Full Forces a full system, complete system
initialization and alignment.

keysight_hvi.AlignmentModes.ResetCalibration
Performs system initialization and alignment
resetting and regenerating the stored calibration
data.

keysight_hvi.AlignmentModes.PreCalibration

Performs system initialization and alignment,
ignoring any missing calibration data. This mode
is intended for system warm-up or other
instances when the use of precise alignment
calibration data is not available yet or not
required.

You can combine modes using a bitwise-OR operator, for example:

systemDefinition.initialize(AlignmentModes::Full | AlignmentModes::PreCalibration);

The API call above will combine the Full and PreCalibration alignment modes as follows:

The software forces a complete system initialization and clock alignment (Full mode). While
doing this, if the software detects that any of the instruments included in the HVI Sys-
temDefinition object requires calibration data and this data is missing, it shall allow the system
initialization procedure to continue and finalize, instead of throwing an error
(PreCalibration mode).

systemDefinition.initialize(AlignmentModes::PreCalibration);

The API call above will perform a default system initialization and clock alignment. While doing
this, if the software detects that any of the instruments included in the HVI SystemDefinition
object requires calibration data and this is missing, it will allow to the system initialization pro-
cedure to continue and finalize, instead of throwing an error.

NOTE When using the default mode, in order to minimize the initialization time, PathWave
Test Sync Executive relies on storing the initialization state of each instrument to
decide what initialization steps are required. If hardware or cabling changes have
been made in your system, you must make sure the correct initialization modes, Full
/ PreCalibration / ResetCalibration, is executed as required by your setup. For
information about the initialization requirements for cabling or hardware changes,
see your instrument documentation.

Find us at www.keysight.com Page 155

Chapter 7: The HVI API

Default Initialization
This is the mode intended to be used in normal system operation. When calling sys-
temDefinition.initialize()without parameters, it performs the default, or minimal-possible ini-
tialization. The default initialization tries to minimize the necessary operations to obtain the fastest
initialization and synchronization time. The default initialization is automatically executed when a
sequencer object is created from a System Definition, and also when the LoadToHw() method is called
on the HVI instance.

If you have a system that has been power-cycled, the first call to systemDefinition.initialize() with
no arguments will actually execute a full initialization and complete clock alignment because the sys-
tem has not been aligned yet. The full initialization procedure can take several minutes depending on
on the size and structure of your system, including the number of chassis and instruments, see
the Full Mode description. Subsequent calls to systemDefinition .initialize() after the first call, are
very fast.

Some instruments require stored calibration data to initialize correctly, in these cases this calibration
data must be available for all instruments in the System Definition for the default initialization to
work. If the calibration data is not available, an error is generated. See ResetCalibration and PreCal-
ibration modes to understand the details on how to manage calibration data. For example, the Key-
sight PXIe M3xxx family does not require any calibration data, whereas in the Keysight PXIe M5xxx
family, the M5300 RF AWG and M5201 Frequency Converter do require calibration data. For inform-
ation about the calibration requirements, see your instrument documentation.

Full Mode
You can force a full clock alignment by calling: systemDefinition .initialize(keysight_

hvi.AlignmentModes.Full). The full initialization procedure can take several minutes depending on on
the size and structure of your system, including the number of chassis and instruments.

NOTE This mode in general is only needed when some cabling change is done on the
system without shutting it down or in cases when we want to force from software a
complete reset of the initialization or alignment to recover from an undesired state.

ResetCalibration Mode
You can force the update of alignment calibration data by calling: systemDefinition .initialize
(keysight_hvi.AlignmentModes.ResetCalibration)

Find us at www.keysight.com Page 156

Chapter 7: The HVI API

This mode erases any existing system calibration data and forces the instruments to re-calculate and
store new calibration data. Use this mode if there is no system calibration data available for the
current hardware configuration and operating temperature, or if the existing calibration requires
recalculation.

This operation must be performed when one or more of the following occur:

l A system setup containing any instrument that requires calibration data is used for the 1st time.

l The hardware in the system has been changed. This includes adding any instrument that requires calibration
data, changing the cable connections between System Sync Modules, or changing any of the cables
connections (clock, in/out, etc.) of any instrument requiring calibration data.

l The clock configuration has been changed. This includes changing the reference clock source, or any of the
cable connections from it to any of the instruments that require calibration data.

NOTE Ensure you perform a full initialization with ResetCalibration when your system is
fully warmed up. For information about the warm-up and temperature stabilization
requirements for best performance, see your instrument documentation.

PreCalibration Mode
Calling systemDefinition.initialize(keysight_hvi.AlignmentModes.PreCalibration)configures the
system without the need of having calibration data already stored for the specific temperature
condition. Typical use of this mode is for system warm-up to prepare the system for a default
initialization or a ResetCalibration initialization. Other instances include when calibration data is not
available but precise calibration is not required.

NOTE When using instruments that require precise calibration data, always us this mode
to warm-up the system before use. For information about the warm-up and
temperature stabilization requirements for best performance, see your instrument
documentation.

Find us at www.keysight.com Page 157

Chapter 7: The HVI API

Initialization during Sequencer Creation
Behind the code used to create a Sequencer object, a system initialization is implicitly executed only
if the System Definition contains instruments that include FDS functionality. If the instruments do not
include FDS, these operations are skipped. For example, the initialize() of a System Definition that
only includes M3xxx instruments is not performed at the Sequencer creation because these
instruments do not support FDS. If an M5xxx instrument is included in a System Definition, system
initialization and clock alignment is performed when creating the Sequencer, unless the initialize()
had already been explicitly called.

At the Sequencer creation, if the system initialization is performed, it corresponds to a call of sys_
def.initialize() without parameters. This only performs a minimal update to the initialization and
clock alignment.

Initialization during Load To Hardware
The Load To Hardware operation also contains an implicit default system initialization. In Load to
Hardware such system initialization is always performed and it is equivalent to the explicit call sys_
def.initialize()executed without parameters. This only performs a minimal update to the
initialization and clock alignment.

Find us at www.keysight.com Page 158

Chapter 7: The HVI API

Example of System Initialization
To use the HVI API to initialize and run real-time operation in your system, there are two main
procedures that you must follow:

1. System Warm-up and Calibration

2. Normal Operation

There are also a number of use cases that are variations on these main procedures. The following text
describes these procedures along with the use case variations.

NOTE The initialization process requires access and control of all of the hardware
resources, so it is important that these resources are not already in use by another
application or HVI instance already loaded to hardware. An exception is thrown if
any of the hardware resources are already in use.

System Warm-up and Calibration
The system warm-up must be performed every time the system is turned on or the hardware
configuration is changed. This is to enable all of the components to reach a stable and repeatable
operating temperature. Once the system is warmed-up, the system can be initialized using the stored
System Calibration data.

The System Calibration must performed in these cases:

1. The very first time that the system is put together and powered-on.

2. When relevant hardware changes are made that require a new system calibration. These hardware changes
include:
a. Adding/removing a chassis in your SystemDefinition object.

b. Adding/removing any instrument that requires clock alignment calibration data, such as an M5300 or
M5201, or changes the operating temperature of the system.

c. Changing the cable connections between System Synchronization Modules, even replacing a cable with
a similar one with a different serial number.

d. Changing any of the external System Clock or Analog Clock cable connections, even replacing a cable
with a similar one with a different serial number.

e. Making any change to the clock configuration, even if it is only from the HVI API. This is because this
triggers the usage of different clock sources or signal paths.

3. Other situations where the system calibration should be updated.

4. On rare occasions, a component in the system can move into an invalid state and a reset of the calibration
might be required. For more information, see System Troubleshooting in the System Setup Guide .

NOTE Warning : Resetting the system calibration shall in turn require you to recalculate
the User Calibration for some instruments. Observe extreme caution when doing
this to avoid costly time-consuming recalibration.

Find us at www.keysight.com Page 159

Chapter 7: The HVI API

Procedure steps:

Procedure steps:

1. Power-on the system
a. Power-on all of the chassis. After this is complete, if you are using an external chassis controller, power

it on.

2. Connect to all the instruments
a. For example: instrument = ktm5300.KtM5300x(resource_id, query, reset, options)

3. Create a System Definition using the HVI API and the instrument drivers:
a. Create a SystemDefinition object that we refer to here as my_system. Use the my_system object to

define all the hardware resources in your system: chassis, SSMs, instruments, clocking configuration,
reference clock source, etc.
For example: my_system.chassis.add(1), my_system.clocking.reference_source = chassis.clock_
source

b. Add the HVI Engines of each instrument to the SystemDefinition object.
For example: my_system.engines.add(instrument.hvi.engines.main_engine, "MyEngine")

4. System Initialization for Warm-Up
a. Execute my_system .initialize(keysight_hvi.AlignmentModes.FULL | keysight_

hvi.AlignmentModes.PRE_CALIBRATION). The PRE_CALIBRATION flag indicates there is no need to apply
any previously stored system calibration values because the system is warming-up. This enables the
system to execute code without calibration related errors. After this step, instruments may present
channel skew errors which are compensated by the next steps.

5. Wait for System Warm-Up
a. Wait for the required warm-up time, this can range from a few minutes to about 30 minutes. The actual

time typically depends on the type and number of instruments in the system, clocking configuration, etc.

b. For detailed warm-up time information, see your instrument documentation, for example: M5300 RF
AWG User's Manual .

6. System initialization to perform System Calibration
a. Using the SystemDefintion created in step 3, run my_system.initialize(keysight_

hvi.AlignmentModes.FULL | keysight_hvi.AlignmentModes.RESET_CALIBRATION) to generate internal
system calibration data. At first system turn-on, no previous calibration data is expected to be available.

7. Calculate User Calibration or channel deskew (Optional)
a. This operation is optional and consists of correcting analog channel skews introduced by cable and

signal path delays. Note that in some instruments, the User Calibration must be re-calculated when a
System Calibration is executed. For information about how to do this, see your instrument
documentation.

8. Ready for Normal Operation

Find us at www.keysight.com Page 160

Chapter 7: The HVI API

Use Cases:

Use Case
Scenario

Description

First system
start-up and
calibration

The very first time that the system is put together and powered-on, you must
execute a full warm-up and calibration procedure to achieve the best system
performance and repeatability:

l Execute all steps #1 to #7 above.

System start-
up using
existing
calibration

If the system has already been calibrated for the current hardware configuration,
then, to reuse the existing calibration to configure the system, wait for the system
temperature to stabilize then apply the existing calibration:

l Execute steps #1 to #5 above.

l Skip steps #6 and #7 System initialization to perform System Calibration and
Calculate user calibration or channel deskew , and run my_system.initialize
(keysight_hvi.AlignmentModes.FULL).

Simplified
uncalibrated
system start-
up

If you want to use the system for test development, or you can tolerate analog
channel drift of up to 50ps across reboots/power-cycles:

l Execute steps #1 to #4 above.

l Skip steps #5 to #7 Wait for SystemWarm-Up , System initialization to perform
System Calibration and Calculate user calibration or channel deskew .

NOTE System hot boot-up: If the system is already warmed-up to the calibration
operating conditions, for example after a system restart, you can skip the steps #4
and #5 System Initialization for Warm Up and Wait for SystemWarm-Up .

Find us at www.keysight.com Page 161

Chapter 7: The HVI API

Normal Operation
Once the system is warmed-up and the system calibration has been done, users can use the the HVI
API to execute real-time operations:

NOTE Note that if it is the first system start-up or you have introduced any of the HW
changes that require new System/User Calibration you must execute the First
system start-up and calibration use case described in the SystemWarm-up and
Calibration procedure.

Procedure steps:

1. Connect to all the instruments, if not already connected.
a. For example: instrument = ktm5300.KtM5300x(resource_id, query, reset, options)

2. Apply user calibration to instruments, You only need to do this if it is required, the user calibration data is
available, and it has not been applied already.
a. The user calibration is calculated during the SystemWarm-up and Calibration process. For information

about how to apply existing calibration, see your instrument documentation, for example: M5300 RF
AWG User's Manual .

3. Create a SystemDefinition object, or reuse an existing one.

4. Initialize the SystemDefinition object (Optional)
a. Run my_system.initialize(). This call executes the minimal or default initialization, provided a Full

Initialization has been executed already as described in the SystemWarm-up and Calibration
procedure. If the full initialization has not been executed, this step requires calibration data. If the
calibration data is not available this operation will fail. To run the system initialization without calibration
you can specify the PRE_CALIBRATION flag: my_system.initialize(keysight_hvi.AlignmentModes.PRE_
CALIBRATION)

b. Note that you can skip the call to my_system.i nitialize() because the minimal or default initialization
happens implicitly in steps #5 and #7 described below.

5. Create a Sequencer object
a. For example: sequencer = keysight_hviy.Sequencer("MySequencer", my_system)

b. Note that the sequencer creation operation implicitly executes a default initialization, this is equivalent
to calling SystemDefinition:Initialize().

6. Create an HVI object
a. For example: hvi = sequencer.compile()

b. The HVI object is created by compiling the Sequencer object after all the HVI sequences have been
programmed.

7. Load HVI to HW
a. For example: hvi.load_to_hw()

b. Note that the load_to_hw() operation implicitly executes a default initialization, this is equivalent to
calling SystemDefinition:Initialize().

Find us at www.keysight.com Page 162

Chapter 7: The HVI API

8. Run HVI
a. For example: hvi.run(hvi.no_timeout)

9. Release HW
a. For example: hvi.release_hw()

NOTE Forcing a full initialization. You can optionally force a full initialization. Forcing the
full initialization can be useful to unblock a system if it is in a bad state, when some
temporary hardware changes in the system are done such as reconnecting cabling
using the same cables, or in general when it is useful to ensure the system is fully
initialized to discard any previous state. To force the full initialization run:

1. my_system.initialize(keysight_hvi.AlignmentModes.FULL).

2. Or if you are using the system without calibration, add the PRE_CALIBRATION flag: my_
system.initialize(keysight_hvi.AlignmentModes.FULL | keysight_
hvi.AlignmentModes.PRE_CALIBRATION)

NOTE User Calibration not required or already applied: If user calibration is not required or
has already been applied to the instruments, you can skip step #2 Apply user
calibration to instruments. For more information on how to handle User Calibration
in instruments, see your instrument documentation.

Find us at www.keysight.com Page 163

Chapter 7: The HVI API

Sequencer
This section describes the Sequencer class, it contains the following sections:

l About the Sequencer Class

l HVI SyncSequence and Sequence

l HVI API Statements

l InstructionSet

l FPGA Sandbox View

l HVI Registers and Scopes

l HVI Time API

l HVI Compilation

l Sequence Visualization

l HVI Component Versions

Find us at www.keysight.com Page 164

Chapter 7: The HVI API

About the Sequencer Class
You use the Sequencer class to program and compile your HVI sequences.

The Sequencer object defines a top level Global Sync Sequence. Within this:

l You add Sync Statements to Sync Sequences with the SyncSequence class.

l You can add Sync Sequences within the Global Sync Sequence.

l Within the SyncMultiSequenceBlockStatement you add Local Sequences for individual engines using the
Sequence class.

l You add Local Statements to Local Sequences with the Sequence class.

The sequences and statements you add can access the resources you previously added via the
EngineCollectionView class. The view classes enable you to see the definitions you have set up, but
you cannot modify them.

NOTE WARNING: Once a Sequencer instance is created, any change to the System
Definition will not affect the Sequencer object or any objects or definitions inside
the Sequencer (engines, triggers, actions, events,...). All API calls on the Sequencer
object must use the objects in the Sequencer. Do not use objects from the System
Definition or other Sequencer instances under any circumstances.

Once you have defined all the Sequences that define your HVI, you must compile it. The HVI instance
Hvi, is generated when you compile the sequencer object.

Find us at www.keysight.com Page 165

Chapter 7: The HVI API

The following diagram shows the hierarchy of sequences and statements:

Find us at www.keysight.com Page 166

Chapter 7: The HVI API

The following diagram shows the Sequencer classes:

Find us at www.keysight.com Page 167

Chapter 7: The HVI API

HVI SyncSequence and Sequence
There are two types of HVI sequence classes that enable HVI sequence programming and usage:

l SyncSequence.

l Sequence.

HVI uses the SyncStatement class to manage all of the engine sequences simultaneously. The class
exposes the add statement methods such as SyncSequence.add_sync_while(). All of the statements
added are collected in the SyncStatement class.

Synchronization and timing information are added within each Sync statement so that all sequences
across the HVI are coordinated precisely. The SyncMultiSequenceBlockStatement exposes local flow con-
trol and instruction statements that are sent by the Sequence object. The other Sync statements are all
synchronized across all the sequences in the HVI.

An HVI sequence contains the list of HVI Local statements and instructions to be executed by the HVI
engine.

The Sequence class exposes the add statement methods such as add_while(). You add Local flow con-
trol statements such as If or While directly into the sequence. All Local instructions are added using
add_instruction(). The list of available statements for the add_instruction() statement is shown in
HVI API Local Statements.

The sequence stores a collection of all the statements added to it, along with the scope Variables and
registers needed for this sequence. These are sent to a SyncMultiSequenceBlockStatement. This class
exposes access and execution of Local statements.

Find us at www.keysight.com Page 168

Chapter 7: The HVI API

The following diagram shows the SyncMultiSequenceBlockStatement class:

Find us at www.keysight.com Page 169

Chapter 7: The HVI API

HVI API Statements
HVI API statements are divided into two types:

Sync statements
Sync statements are the building blocks used to program Sync sequences. The following types of
Sync statement are available:

l Sync while.

l Sync multi-sequence block.

l Sync register-sharing.

l Sync FPGA data-sharing.

For a description of each Sync statement with examples and a description of the statement execution,
see HVI API Sync Statements.

Local statements
Local statements are programmed on engines in individual instruments. They are always pro-
grammed within a Sync statement.

Local statements are in the form of Instrument-specific HVI instructions or HVI-native instructions.
See your instrument documentation for instrument-specific HVI instructions. The following types
of HVI-native instructions are available:

l Action Execute: AWG trigger, DAQ trigger.

l FPGA register read.

l FPGA register write.

l FPGA memory map write.

l FPGA memory map read.

l Register increment.

l Front panel trigger ON/OFF.

l Register assign.

l Local if statement.

l Local while statement.

l Local wait-for-event statement.

l Local wait-for-time statement.

l Local delay statement.

For a description of each HVI-native instruction with examples and a description of the statement exe-
cution, see HVI API Local Statements.

For instrument-specific HVI instructions, see your instrument documentation

Find us at www.keysight.com Page 170

Chapter 7: The HVI API

InstructionSet
HVI instructions can be one of two types, HVI-native instructions or instrument-specific instructions:

l HVI-native instructions are part of the InstructionSet class.

l Instrument-specific instructions are documented in instrument user guides.

The InstructionSet class contains the set of available HVI-native instructions that can be executed
within an HVI statement. These include instructions for:

l Register arithmetic.

l Reading and writing I/O trigger ports.

l Executing actions.

l Communicating with the instrument sandbox using an HVI Host Interface, previously called an HVI Port.

HVI-native instructions are executed within an instruction execute statement, this is, the same way
the instrument-specific HVI Instructions are executed.

The following diagram shows the InstructionSet classes:

Find us at www.keysight.com Page 171

Chapter 7: The HVI API

Using the instruction set
You program HVI instructions into local sequences with the add_instruction() API method. You can
set instruction parameters with the set_parameter() API method and set each parameter with its
parameter.id property. Some instruction parameters must be set to literal values or to an HVI register,
for example, the source and destination parameters in the InstructionAssign from the native
InstructionSet.

You can set other instruction parameters such as the SyncModeand TriggerValue of the TriggerWrite

instruction to one value of a pre-defined set of possible values. In this case, the possible values
available are stored in properties contained within the parameter object.

Pseudo-code explaining the HVI instruction programming concept
hvi_instr = sequence.instruction_set.hvi_instruction_X
instr = sequence.add_instruction("My HVI Instruction", 10, hvi_instr.id)
instr.set_parameter(hvi_instr.parameter_A.id, hvi_instr.parameter_A.VALUE_1)
instr.set_parameter(hvi_instr.parameter_B.id, hvi_instr.parameter_B.VALUE_XY)

Find us at www.keysight.com Page 172

Chapter 7: The HVI API

Trigger write instruction example
The following example shows an example of the HVI-native instruction trigger_write. For the
meaning of each parameter value, see the HVI API help that is installed with PathWave Test Sync
Executive. It is located at:

C:\Program Files\Keysight\PathWave Test Sync Executive 2022\api\python\Help

C:\Program Files\Keysight\PathWave Test Sync Executive 2022\api\dotNet\Help

The following table show the parameters for the HVI-native instruction: trigger_write

Parameter ID Parameter Values

trigger.id
Trigger object taken from the
TriggerCollection class from the
engine in the sequence.

sync_
mode.id

sync_mode.immediate

sync_mode.sync

value.id
value.on

value.off

The following example code shows a trigger_write instruction.:

Write FP Trigger to ON value
fp_trigger = sequence.engine.triggers["FP Trigger"]
trigger_write_instr = sequence.instruction_set.trigger_write
instr_trigger_ON = sequence.add_instruction("FP Trigger ON", 10, trigger_write_instr.id)
instr_trigger_ON.set_parameter(trigger_write_instr.trigger.id, fp_trigger)
instr_trigger_ON.set_parameter(trigger_write_instr.sync_mode.id, trigger_write_instr.sync_
mode.IMMEDIATE)
instr_trigger_ON.set_parameter(trigger_write_instr.value.id, trigger_write_instr.value.ON)

NOTE Warning: You must take the Trigger from the engine inside the Sequence. Taking
the Trigger from the engine via System Definition raises an error when set_
parameter(trigger_write_instr.trigger.id, fp_trigger) is called.

This also applies to Actions.

Find us at www.keysight.com Page 173

Chapter 7: The HVI API

Instrument-specific HVI instructions
You program instrument-specific instructions into your HVI sequences using the same methods as
HVI-native instructions, that is, you add Instrument-specific instructions to local sequences with the
add_instruction() API method. Parameters of instrument-specific instructions are also set with the
set_parameter() API method. For documentation on instrument-specific instructions and their
parameters, see your instrument documentation. For M3xxxA PXI instruments, the information is
located in the SD1 3.x Software for M320xA / M330xA Arbitrary Waveform Generators User's Guide
available at M3201A PXIe Arbitrary Waveform Generator.

Find us at www.keysight.com Page 174

Chapter 7: The HVI API

http://www.keysight.com/find/m3201a

FPGA Sandbox View
This section describes the FPGA Sandbox View.

The following diagram shows the FPGASandboxCollectionView classes:

Find us at www.keysight.com Page 175

Chapter 7: The HVI API

FPGA sandbox and memory maps
The FpgaSandboxView object provides access to FPGA memory maps by providing handles to FPGA
registers and memory maps that are defined in the FPGA memory. You can use FpgaRegisterView and
FpgaMemoryMapView as parameters for HVI instructions for reading or writing FPGA memory. You must
load the PathWaveFPGA project as part of the system definition and then you can use the
FpgaSandboxView object in the sequencer.

FpgaRegisterView
Once the sandbox project is loaded, you can access the contents of the FPGA sandbox and use them
as parameters for HVI instructions. The FPGA write operation can accept registers and literal values
as parameters. The following example shows writing FPGA registers:

Retrieve FPGA register object from FPGA registers collection
All sandbox object collections are populated when loading a bit file generated by PathWave
FPGA
fpga_register_view = sequencer.sync_sequence.engines[0].fpga_sandboxes[SANDBOX_0_NAME].fpga_
registers[FGPA_REGISTER_NAME]
Write FPGA register
fpga_regw_instruction = sequence.instruction_set.fpga_register_write
fpga_register_write = sequence.add_instruction("my_fpga_register_write", 10, fpga_regw_
instruction.id)
fpga_register_write.set_parameter(fpga_regw_instruction.fpga_register.id, fpga_register_view)
fpga_register_write.set_parameter(fpga_regw_instruction.value.id, value_register)

FpgaMemoryMapView
Like FPGA registers, the FpgaMemoryMapView can be used after the PathWaveFPGA project has
been loaded. The destination of FPGA read operation must be a register. The following example
shows how you use it to read from an FPGA memory map:

Retrieve memory map object from memory maps collection
All sandbox object collections are populated when loading a bit file generated by PathWave
FPGA
memory_map = sequencer.sync_sequence.engines[0].fpga_sandboxes[SANDBOX_0_NAME].fpga_memory_maps
[FGPA_MEMORY_MAP_NAME]
Read Memory Map
fpga_arrayr_instr = sequence.instruction_set.fpga_array_read
fpga_array_read = sequence.add_instruction("my_fpga_array_read", time_ns, fpga_arrayr_instr.id)
fpga_array_read.set_parameter(fpga_arrayr_instr.fpga_memory_map.id, memory_map)
fpga_array_read.set_parameter(fpga_arrayr_instr.fpga_memory_map_offset.id, 1)
fpga_array_read.set_parameter(fpga_arrayr_instr.value.id, value_register))

Find us at www.keysight.com Page 176

Chapter 7: The HVI API

FdsPort
FdsPort Enables you to access the FDS ports you defined in the System Definition. FdsPort is a class
which provides the name of a sandbox FDS port, it enables you to use an FDS port instance that you
placed in the sandbox of a loaded PathWave FPGA project.

As with the other FPGA software definitions, FdsPort can only be used after the PathWaveFPGA
project has been loaded.

Find us at www.keysight.com Page 177

Chapter 7: The HVI API

HVI Registers and Scopes

HVI registers
HVI registers are similar to Variables in a programming language. They hold values that can be mod-
ified at runtime and can be used as parameters for instructions and statements. Physically, HVI
registers are small hardware memories located in HVI engines. The number of registers available
depends on the instrument (see the HVI engine settings HviRegCount).

Registers are specific to individual HVI engines and cannot be accessed by other HVI engines. To
transfer data between registers you must use register sharing instructions.

You define HVI registers by adding them to the HVI register collection that is bound to an HVI scope.

HVI scope
HVI Sync sequences and HVI Local sequences both include the concept of the scope of registers, this
is similar to the concept of the scope of Variables in programming languages. The scope defines what
registers or memory resources can be used within each HVI Sequence, and when they can be used.

Each scope is associated with a specific sequence and HVI engine. Registers can only be defined
within the Global Sync sequence scope, but they can be retrieved from any child sequence scope
providing it is on the same engine. Registers are always defined with a clear connection to a specific
engine and their visibility only propagates to child sequences that execute on the same engine. HVI
engines do not have visibility of, and cannot access registers that are in the scopes of other engines.

NOTE Registers can only be added to the HVI top Sync sequence scopes. This means that
you can only add global registers that are visible in all child sequences.

NOTE Registers are created using the sequencer class, but to read/write registers during
HVI execution, you must use the RegisterRunTime class within the Hvi class. For
more information, see The Hvi Object.

Find us at www.keysight.com Page 178

Chapter 7: The HVI API

The following diagram shows the scope concepts. The registers available are shown in the sequences
and child sequences.

In the Global Sync sequence a scope is defined for each of Engine A and Engine B.

l Engine A scope contains Register A and Register B.

l Engine B scope contains Register X.

The Global Sync sequence contains Sync statements including a Sync while and a Sync multi-
sequence block. These are expanded as HVI diagrams. The Sync multi-sequence block contains
sequences for both engines. These are shown with the registers available in blue for Engine A, red for
Engine B.. The sequence for engine B contains a Local while. This is expanded below with the
available Register X shown in red.

The Sync while in the Global Sync sequence is also shown, it contains another Sync multi-sequence
block which is shown expanded.

Find us at www.keysight.com Page 179

Chapter 7: The HVI API

Scope class and ScopeCollection
The scopes of HVI sequences are managed through the Scope class. Each Local sequence is an
instance of the Sequence class, it is associated to a specific HVI engine and has its own Scope
object. SyncSequences are associated to multiple HVI engines and consequently have an HVI Scope
collection that contains a Scope object for each associated HVI Engine.

The HVI Scope collection is an instance of the ScopeCollection class, it contains objects that are
instances of the Scope class. There is one Scope object for each HVI Engine.

Each HVI Scope object can be accessed from the Scope collection using the same name as the
corresponding HVI engine. HVI Scope objects are used to define the registers within a sequence.

To use registers in HVI sequences, you must define them beforehand in the register collection within
the scope of the corresponding HVI sequence. You can do this using the RegisterCollection class that
is within the Scope object corresponding to each sequence.

Find us at www.keysight.com Page 180

Chapter 7: The HVI API

The following diagram shows the Scope classes and their relationship to the Sequence and
SyncSequence classes:

Find us at www.keysight.com Page 181

Chapter 7: The HVI API

HVI Time API
This section describes the API related to the Time inside HVI.

The main time class is the Duration which is located in the namespace Time. The Duration class rep-
resents a time interval.

You can create a Duration object in one of these ways:

l By only providing a single floating point value. In this case, the value is treated as time in nanoseconds.

l By providing a floating point value and the unit of time you want the value to represent.

The signature of the class is:

Duration(double valueInNanoseconds);
Duration(double value, Time::Unit unit);

This class is also the base for a subclass called the Minimum. The minimum represents the minimum
time interval possible.

The signature for this class is:

Minimum();

The class to define the unit of the duration is called the Unit. The supported units are the following:

enum class Unit
{

Seconds,
Milliseconds,
Microseconds,
Nanoseconds,
Picoseconds

};

The following is an example of usage:

from keysight_hvi import time
a_duration = time.Duration(35.0)
assert a_duration.type == time.Type.FIXED_DURATION
assert a_duration.value == 35.0
assert a_duration.unit == time.Unit.NANOSECONDS
another_duration = time.Duration(35.78, time.Unit.MICROSECONDS)
assert another_duration.type == time.Type.FIXED_DURATION
assert another_duration.value == 35.78
assert another_duration.unit == time.Unit.MICROSECONDS
a_minimum_duration = time.Minimum()
assert a_minimum_duration.type == time.Type.MINIMUM_DURATION
assert a_minimum_duration.value == 0.0
assert a_minimum_duration.unit == time.Unit.NANOSECONDS

Find us at www.keysight.com Page 182

Chapter 7: The HVI API

HVI Compilation
Once you have programmed all of your HVI Sequences, the next step is to compile them. The com-
pilation process returns the Hvi object that is used to run the created sequences on hardware.

Call the compile() method in the Sequencer object to perform the compilation operation. If successful,
this method returns an Hvi object, if the compilation fails, it throws an exception.

The compilation process translates the programmed sequence into binary instructions to be loaded
into the hardware. During this process, the compiler applies the compilation rules, evaluates the spe-
cified constraints, and determines if the number of resources required (PXI triggers, actions, events,
HVI registers) is available in hardware and can be acquired. The compiler returns an error if any of the
HVI statements was not programmed properly inside the HVI sequence or if any of the HVI resources
are missing or not registered properly.

NOTE At this point you can no longer modify sequences, actions, events or triggers.

Information returned
The value returned from the compilation procedure is an Hvi object. This object can be used to:

l Load and execute the binary instructions by each engine.

l Retrieve the CompileStatus object.

Errors returned
If the compilation fails, the object keysight_hvi.CompilationFailed is thrown. This contains the Com-
pileStatus object.

In the following Python snippet, the CompileStatus object is retrieved from the exception object
thrown:

try:
hvi = sequencer.compile()
print('Compilation completed successfully!')

except kthvi.CompilationFailed as err:
print('Compilation failed!')
compile_status = err.compile_status
print(compile_status.to_string()) # This line will print all the errors and warnings

collected during compilation raise err

Find us at www.keysight.com Page 183

Chapter 7: The HVI API

Compile status
The CompileStatus object contains the following information:

l The warning and error messages generated by the compilation.

l Information about the PXI sync resources that must be reserved.

l The elapsed time of the compilation process.

The following diagram shows the CompileStatus classes and the information they contain:

Find us at www.keysight.com Page 184

Chapter 7: The HVI API

Sequence Visualization
PathWave Test Sync Executive enables you to troubleshoot your sequences with sequence
visualization.

The sequence visualization displays statements, timing values, and statement parameters. The out-
put is designed so you can read it and see what your sequences are doing.

NOTE This is only available for Sync sequences in this release.

Using sequence visualization
To activate the output, In Python use the sequence method to_string():

output = sequencer.sync_sequence.to_string(kthvi.OutputFormat.DEBUG)
print(output)

If you are programming with C#, use the method ToString:

var output = GlobalSequence.ToString(OutputFormat.Debug);
System.Console.WriteLine(output);

Find us at www.keysight.com Page 185

Chapter 7: The HVI API

Format of the sequence visualization output
Sequence visualization has a basic structure with variations for different types of statements.

The visualization out format has one statement per line and uses curly braces to begin and end any
inner or Local statements.

The basic format is:

Time-related information => "User-assigned Label" : Statement Name(Parameter List) {

Optional statements

}

For example:

+10ns => "FP Trigger ON": TriggerWrite(Trigger = [trigger"TriggerIO"], Mode = IMMEDIATE, Value =
ON)

For Arithmetic-like and FPGA statements the format is:

Time-related information => "User-assigned Name" : ASSIGNEE = EXPRESSION

where:

l ASSIGNEE is a named reference, such as event, trigger, action, reg, or fpgaReg followed by the label
in quotes.

l EXPRESSION is a mathematical expression with binary operators, such as addition, subtraction, and
assignment.

For example:

+10ns => "Increment counter register": reg"LeaderEngine.Loop Counter" = reg"LeaderEngine.Loop
Counter" + 1

Time related information
The time information section of the visualization output is in the following format:

+Start_delay <Duration> Absolute_time =>

NOTE There are a number of limitations in this release:

l Duration is shown as Min or ?.

l Absolute time is not shown in this release.

Find us at www.keysight.com Page 186

Chapter 7: The HVI API

Indicators
The visualization output uses the following characters to indicate different pieces of information:

Category Indicators Description

Timing-
related
information

+ Appears at the start, the number with this indicates the Start delay.

<>
Encloses a Duration if it is set. If the Duration is not set, this defaults to min, which is the
minimum time possible.

Absolute time (not supported in this release).

Separator =>
Separator. The time information for the statement is on the left of this
and information about the statement is on the right.

Command
label and
name

" " Encloses labels

: Divides the label and the command description.

Blocks and
parameters

{ ...

}

Encloses blocks of statements:

l Sync multi-sequence block.

l Engine instructions.

l Sync flow-control.

l Local flow-control.

(...

)

Enclose parameters. These can be optional.

[...

]
Enclose lists. For example [element, ...], or for named element lists [name"username", ...]

Register
indicators

reg Indicates a register.

fpgaReg Indicates an FPGA register

Find us at www.keysight.com Page 187

Chapter 7: The HVI API

Code blocks
Code blocks are indented and shown within curly braces. Code blocks include code in Sync multi-
sequence blocks, Engines, and flow-control statements.

The following example from Programming Example 1 shows a Sync multi-sequence block
TriggerAWGs that contains a pair of engines AwgEngine0 and AwgEngine1 .

+30ns<Min> => "TriggerAWGs": SyncMultiSequenceBlock {
Engine "AwgEngine0" {

+10ns => "FP Trigger ON": TriggerWrite(Trigger = [trigger"TriggerIO"], Mode = IMMEDIATE,
Value = ON)

+100ns => "FP Trigger OFF": TriggerWrite(Trigger = [trigger"TriggerIO"], Mode =
IMMEDIATE, Value = OFF)

+10ns => "AWG trigger": ActionExecute([action"GenMarker1", action"GenMarker2"])
}
Engine "AwgEngine1" {

+10ns => "FP Trigger ON": TriggerWrite(Trigger = [trigger"TriggerIO"], Mode = IMMEDIATE,
Value = ON)

+100ns => "FP Trigger OFF": TriggerWrite(Trigger = [trigger"TriggerIO"], Mode =
IMMEDIATE, Value = OFF)

+10ns => "AWG trigger": ActionExecute([action"GenMarker1", action"GenMarker2"])
}

}

If an engine does not execute any statements, the engine is shown with empty braces. For example, in
the previous example, if the EngineAwgEngine1 didn't have any instructions, it would be shown as:

Engine "AwgEngine1" {}

Find us at www.keysight.com Page 188

Chapter 7: The HVI API

Format variations
There are variations of the sequence visualization output format for different types of statement.

Sync statements
The following example shows a Sync register-sharing command that copies the contents of the
Steps register in the Digitizer Engine to the Wavefrom ID register in the AWG Engine:

+190ns<Min> => "Share steps->wfm_id": SyncRegisterSharing {
reg"Digitizer Engine.Steps"[1:0] => [reg"AWG Engine.Waveform ID"]

}

Sync multi-sequence blocks
The output for a Sync multi-sequence block indicates any engines it contains. The sequences and the
statements they contain are shown within each engine.

The following example shows the output for a Sync multi-sequence block that contains 2 engines.
The first engine is labelled Digitizer Engine and contains a sequence with a pair of local statements. A
second engine labelled AWG Engine does not contain any sequences. This is indicated with empty
braces.

Visualization output for a Sync multi-sequence block:

+260ns<Min> => "Loop Delay": SyncMultiSequenceBlock {
Engine "Digitizer Engine" {

+10ns => "loops++": reg"Digitizer Engine.Loops" = reg"Digitizer Engine.Loops" + 1
+30ns<?> => "WaitTime: loop_delay": WaitTime(reg"Digitizer Engine.Loop Delay")

}
Engine "AWG Engine" {}

}

Find us at www.keysight.com Page 189

Chapter 7: The HVI API

Sync flow-control and Local flow-control statements
Flow control statements show the flow-control condition and the statements executed if the
condition is met.

The following example shows a Local If. The condition is indicated along with the matching branches
parameter and the statement executed is also shown inside braces.

Visualization output for a Local If statement:

+70ns<?> => "Check wfm_id": If(condition = (reg"AWG Engine.Waveform ID" > = 1), MatchingBranches
= TRUE) {

+30ns => "wfm_id = 0": reg"AWG Engine.Waveform ID" = 0
}

If a flow control instruction contains multiple branches, these are also listed.

The following example contains a Local If with a condition and an Else branch that is executed when
the If condition is not met.

+70ns<?> => "Queue Wfm AWG": If(condition = (reg"AWG Engine0.Queue Reg" == 0), MatchingBranches
= TRUE) {

+100ns => "Queue Waveform A CH1": M30xxA.AwgQueue(Channel = 1, WaveformId = reg"AWG
Engine0.Wfm A", Cycles = 3, StartDelay = 0, Prescaler = 0, TriggerMode = AUTOTRIG)
}
Else {

+100ns => "Queue Waveform B CH1": M30xxA.AwgQueue(Channel = 1, WaveformId = reg"AWG
Engine0.Wfm B", Cycles = 2, StartDelay = 0, Prescaler = 0, TriggerMode = AUTOTRIG)
}

Local instructions
Local Instruction statements show the Start delay, the label, instruction and any parameters. For
example:

+10ns => "Increment counter register": reg"LeaderEngine.Loop Counter" = reg"LeaderEngine.Loop
Counter" + 1

Custom instructions
Custom instructions indicate the product family before the instruction in the form:

ProductFamily.CustomInstructionName

In the following example, the product family KtM30xxA is indicated before the custom instruction
QueueWaveform:

+100ns => "QueueWaveform(CH1, wfm_id)": M30xxA.AwgQueue(Channel = 1, WaveformId = reg"AWG
Engine.Waveform ID", Cycles = 1, StartDelay = 0, Prescaler = 0, TriggerMode = AUTOTRIG)

Find us at www.keysight.com Page 190

Chapter 7: The HVI API

Examples
The following example is an excerpt from Programming Example 1. It shows the Python code for
setting up the TriggerWrite and ActionExecute instructions and the resulting sequence visualization
output that is generated.

Python Code:

Write FP Trigger ON to all instruments
fp_trigger = sequence.engine.triggers[config.fp_trigger_name]
trigger_write = sequence.instruction_set.trigger_write
instr_trigger_ON = sequence.add_instruction("FP Trigger ON", 10, trigger_write.id)
instr_trigger_ON.set_parameter(trigger_write.trigger.id, fp_trigger)
instr_trigger_ON.set_parameter(trigger_write.sync_mode.id, trigger_write.sync_mode.immediate)
instr_trigger_ON.set_parameter(trigger_write.value.id, trigger_write.value.on)
Write FP Trigger OFF to all instruments
instr_trigger_OFF = sequence.add_instruction("FP Trigger OFF", 100, trigger_write.id)
instr_trigger_OFF.set_parameter(trigger_write.trigger.id, fp_trigger)
instr_trigger_OFF.set_parameter(trigger_write.sync_mode.id, trigger_write.sync_mode.immediate)
instr_trigger_OFF.set_parameter(trigger_write.value.id, trigger_write.value.Off)
Execute AWG trigger from the HVI sequence of each module
"Action Execute" instruction executes the AWG trigger from HVI
action_list = sequence.engine.actions
instruction1 = sequence.add_instruction("AWG trigger", 10, sequence.instruction_set.action_
execute.id)
instruction1.set_parameter(sequence.instruction_set.action_execute.action.id, action_list)

The Sequence visualization output from the previous code:

+10ns => "FP Trigger ON": TriggerWrite(Trigger = [trigger"TriggerIO"], Mode = IMMEDIATE, Value =
ON)
+100ns => "FP Trigger OFF": TriggerWrite(Trigger = [trigger"TriggerIO"], Mode = IMMEDIATE, Value
= OFF)
+10ns => "AWG trigger": ActionExecute([action"GenMarker1", action"GenMarker2"])

Find us at www.keysight.com Page 191

Chapter 7: The HVI API

Sequence Visualization Error Messages
The sequence visualization system can detect and report errors.

Errors can be part of an assignment expression, destination, or parameter value.

For example, if a parameter has not been set in an instruction. In the case of register parameters this
can result in values completely missing from the output or exceptions being thrown.

Error formats
Errors are indicated in the following formats:

Errors with a message

An error in indicated in the following manner, the messages provided do not contain @ symbols:

@ERROR: <message>@

Errors with no message

In some cases, an error is be indicated without a message:

@ERROR@

The following example output shows some example errors:

+90ns<Min> => "Sync MIMO Trigger": SyncWhile(reg"AwgEngine0.Loops" < 3) {
+250ns<Min> => "TriggerAWGs":SyncMultiSequenceBlock {

Engine "AwgEngine0" {
+10ns => "assign":@ERROR: register is not set@ = @ERROR@

+100ns => "QueueWaveform(CH1, wfm_id)": M30xxA.AwgQueue(Channel = @ERROR@,
WaveformId = @ERROR: invalid id@, Cycles = 1, StartDelay = 0, Prescaler = 0, TriggerMode =
AUTOTRIG)

}
}

}

Find us at www.keysight.com Page 192

Chapter 7: The HVI API

HVI Component Versions
You can obtain the following HVI component versions:

l HVI Core Version

l HVI Software Version

l HVI Firmware Version

Python Class Description

keysight_
hvi.SystemDefinition.hvi_core_
version

SystemDefinition

The version of the HVI core
component that gets installed by
PathWave Test Sync Executive
software to deliver the HVI API.

Engine.software_version

EngineView.software_version

EngineRuntime.software_version

EngineDefinition

EngineRuntime

EngineView

The version of the HVI software
component used by the instrument
associated with this engine object.

Engine.firmware_version

EngineView.firmware_version

EngineRuntime.firmware_version

EngineDefinition
EngineRuntime

EngineView

The version of the HVI Engine FPGA
IP that is programmed into the
FPGA of the instrument associated
with this engine object.

hvi_core_version

This version is a property of the SystemDefinition.

This is the version of the HVI core component that gets installed by PathWave Test Sync Executive
software. This provides the HVI API.

Find us at www.keysight.com Page 193

Chapter 7: The HVI API

software_version

This is a property of each Engine. It can be obtained from the EngineDefintion, EngineRuntime and
EngineView classss.

This is the version of the HVI core component consumed by the instrument corresponding to this
engine object. This version does not need to be the same as the HVI core installed by PathWave Test
Sync Executive software for the system to work, but a matching version is necessary to be able to
deploy all the latest features. This software version depends on the version of the instrument drivers
provided by the instrument Software Front Panel software.

firmware_version

This is a property of each Engine. It can be obtained from the EngineDefintion, EngineRuntime and
EngineView classss.

This is the version of the HVI Engine FPGA IP that is programmed in the FPGA of the instrument
corresponding to this engine object. The HVI Engine IP version changes with each version of the
instrument FPGA firmware. You can program the firmware into the FPGA using the instrument
Software Front Panel software.

NOTE If the software_versionand hvi_core_versionare different, the HVI core component
that gets installed in your system is the newest of the one provided by the
instrument and the one delivered by PathWave Test Sync Executive software,
regardless of the installation order.

Major, minor and revisions

The version has the sub-versions: major, minor and revision.

The following code shows an example of how to get the versions:

HVI Software and Firmware Versions

logging.info("HVI Core : {}".format(sys_def.hvi_core_version.to_string()))
for engine in sys_def.engines:

logging.info("Firmware Version : {}.{}.{}".format(engine.firmware_version.major,
engine.firmware_version.minor, engine.firmware_version.revision))

logging.info("Software Version : {}.{}.{}".format(engine.software_version.major,
engine.software_version.minor, engine.software_version.revision))

Find us at www.keysight.com Page 194

Chapter 7: The HVI API

The Hvi Object
This section describes the Hvi object, it contains the following sections:

l EngineRuntime Components

l Load to Hardware and Run

l Real-time Hardware Execution Error Handling

l The HVI Logger

The Hvi object is the actual HVI instance. This is ready to be loaded to hardware and executed. It con-
tains the runtime versions of the objects you set up with the SystemDefinition and Sequencer

classes. The runtime objects are the instances of the objects that operate while the HVI is
running. You cannot modify these objects at runtime, but you can access resources such as HVI
registers or an FPGA memory map.

NOTE The Hvi object is the runtime object. once you have compiled it, you can no longer
change resources or sequences.

Find us at www.keysight.com Page 195

Chapter 7: The HVI API

The following diagram shows the classes:

Find us at www.keysight.com Page 196

Chapter 7: The HVI API

EngineRuntime Components
A number of runtime components are under the EngineRuntime.

The following diagram shows the EngineRuntime and classes:

Find us at www.keysight.com Page 197

Chapter 7: The HVI API

ActionRuntime
Represents an action which can be passed to InstructionStatement.set_parameter as an input
parameter.

TriggerRuntime
Trigger provides an interface control and configure the hardware trigger controlled by HVI. This
Instance can be passed to InstructionStatement.set_parameter as input.

EventRuntime
The EventRuntime class is used to represent hardware events which are defined by an instrument and
can be used by HVI, for example, to activate TriggerRuntime.

RegisterRuntime
Represents instrument-defined hardware registers that can be used like Variables in HVI sequences
as parameters for statements.
These registers can be accessed and modified by both HVI instructions in real-time during the
sequence execution and HVI software calls.
Registers can be treated as signed or unsigned.
The range of the value of a register depends on the register size and must be within the signed or
unsigned range.

Find us at www.keysight.com Page 198

Chapter 7: The HVI API

FpgaSandboxRuntime
This section describes the FPGA sandbox runtime.

FPGASandboxRuntime contains all the FPGA registers and memory maps available at runtime. The
following diagram shows the classes:

The FPGASandboxRuntime object can be obtained from the Hvi object:

SANDBOX_0_NAME = "sandbox0" sandbox = hvi.sync_sequence.engines[0].fpga_sandboxes[SANDBOX_0_
NAME]

NOTE Hvi resources can only be read or written loaded, that is, between the load_to_hw
() and release_hw() calls. Any attempt to read or write resources without having the
instrument loaded to hardware results in an exception being thrown.

Find us at www.keysight.com Page 199

Chapter 7: The HVI API

FPGA registers
Once the Sequencer has been compiled and the HVI has been loaded to hardware, the register can
be read and written. If the HVI is not loaded, an exception is thrown.

fpga_register = hvi.sync_sequence.engines[0].fpga_sandboxes[SANDBOX_0_NAME].fpga_registers[0]
hvi.load_to_hw()
fpga_register.write(1) # ok
hvi.release_hw()
fpga_register.write(1) # exception is thrown

FPGA memory maps
As with registers, FPGA Memory maps can be used after HVI has been loaded to hardware. They can
only be accessed, read, or written while the HVI is loaded to hardware.

fpga_memory_map = hvi.sync_sequence.engines[0].fpga_sandboxes[SANDBOX_0_NAME].fpga_memory_maps
[0]
hvi.load_to_hw()
fpga_memory_map.write(0x10, 0x1245) # ok
hvi.release_hw()
fpga_memory_map.write(0x10, 0x1245) # exception is thrown

FDS Ports
As with registers, FPGA Memory maps can only be accessed after HVI has been loaded to hardware.

Find us at www.keysight.com Page 200

Chapter 7: The HVI API

Load to Hardware and Run
After the Hvi object is compiled, you retrieve it from the compilation output. To execute it, you must
load it to hardware and run it.

These operations are performed using the following API methods that are within the Hvi API object.

To load the HVI to hardware call the method hvi.load_to_hw().

The hvi.load_to_hw() method deploys HVI to hardware and does all of the resource configuration
including:

l Synchronization resources.

l Trigger resources.

l Clocks.

The hvi.load_to_hw() method also loads the binaries containing information to execute the HVI
sequences, to the relevant HVI engines.

Once the HVI has been loaded to hardware, you can execute your sequences by calling hvi.run(). The
HVI execution in Hardware finishes when the HVI sequence reaches the end. The Stop()method can
be used to stop or cancel the HVI execution.

When the HVI has finished execution and it is not needed to run the HVI again, call the
method ReleaseHw() to release or free all resources used by the HVI.

Find us at www.keysight.com Page 201

Chapter 7: The HVI API

Real-time Hardware Execution Error Handling
This section describes real-time hardware error handling during the HVI execution.

If a hardware error is detected while a sequence is running, it is possible the execution results are
invalid or unreliable. HVI captures some critical hardware errors and reports them to the user. Errors
are indicated in a different way, depending on if you are running your HVI sequence in blocking mode
or non-blocking mode:

Errors in an HVI Sequence Running in Blocking Mode
If an error occurs when the HVI is executed in blocking mode, the sequence execution is halted, an
exception is thrown, and a list of the errors can be queried.

The error reporting sequence goes in the following order:

1. Call loadtoHw()

2. Call run(). When an error event occurs while the HVI is running in hardware:
a. The HVI sequence is halted.

b. The error list is updated.

c. An exception is thrown.

3. Call getExecutionErrors() to obtain details of the errors that has occurred during the execution.

Errors in an HVI Sequence Running in Non-Blocking Mode
If an error occurs when the HVI is in non-blocking mode, sequence execution is not halted auto-
matically and no exception is thrown, since in non-blocking mode the run() method returns imme-
diately as soon as the sequence execution starts. In order to query the status of the HVI execution you
must call getExecutionStatus(). This method returns the enum ExecutionStatus with values for:

l Not started.

l Running.

l Sequence completed successfully.

l Sequence stopped due to timeout.

l Sequence stopped due to error.

l Sequence stopped by user.

Find us at www.keysight.com Page 202

Chapter 7: The HVI API

Retrieving the Errors List
If a sequence stops because of an error, a list is populated with all the errors detected during
execution.

To retrieve the errors call the method getExecutionErrors(), it returns a list of any errors that
occurred during the last run.

If you call getExecutionErrors()more than once, it returns the same list. Calling run(), loadToHw() or
ReleaseHw() clears the list.

The ExecutionError class provides the following information:

l A complete string-based representation for easy printing.

l The name of the HVI engine that reported the error.

l The product code, this is an integer defined by the instrument that identifies the specific error.

l The product message, this is a string provided by the instrument with any relevant details.

For instrument specific errors, see your instrument documentation for a description of the errors a
specific instrument returns.

Find us at www.keysight.com Page 203

Chapter 7: The HVI API

The HVI Logger
PathWave Test Sync Executive comes with an integrated logger that you can use for troubleshooting.

The logger has the following features:

l The level of logging is configurable.

l You can force flush messages.

l The output can be configured to go to the console or to an output file.

l You can configure the logger from environment Variables or in a .env configuration file.

l You can instruct some instruments to produce logs.

The logger can produce the following levels of logging information, where each level also includes all
the information in the levels below it:

Logger level Description

Trace Produces trace information that is useful to support engineers

Debug Produces debug information that is useful to support engineers

Info Produces generally useful information

Warning Logs anything that can potentially cause application oddities, but are automatically recovered.

Error Logs any errors that are fatal to an operation, but not the service or application

Fatal Logs any errors that forces a shutdown of the application.

Off Does not log anything

Logger Configuration
The logger is configured with environment Variables. The following table describes the Variables:

Find us at www.keysight.com Page 204

Chapter 7: The HVI API

Environment
Variable

Values Description

HVI_LOGGER_

LEVEL

l Trace

l Debug

l Info

l Warning

l Error

l Fatal

l Off

This value indicates the level of information printed to the log.

The information printed out contains the information for the
level specified and all of the levels below it. For example, if the
level is set to Debug, all messages except Trace are printed to
the log.

By default, the level is set to Error, so only Error and Fatal are
printed.

HVI_LOGGER_

OUTPUT_PATH

Any existing
valid path in
your system,
For example:
C:\tmp

This Variable disables console output and tells the logger to
save the log to a file at the specified location.

The file with the log messages is called: HVILog_[num].txt

HVI_LOGGER_

FORCE_FLUSH
1 or 0

This Variable forces the log messages to be flushed to the
output every time a message is logged. Enable this if you want
to troubleshoot a program that is crashing, so that all messages
before the crash shall be written. Do not enable this option in
any other cases, because it impacts the performance of the
execution.

HVI_LOGGER_
EXTENDED

"*", "ALL", or
a comma
separated
list.

For example:

M9032,M9546

This Variable enables the logging output of instruments
managed by HVI.

An output file for each instrument is generated in the path
specified with HVI_LOGGER_OUTPUT_PATH .

The file is saved as:

{MODEL}_{Chassis Slot for M903x}_{date}.log

See the section Logger Extended mode Supported Instruments
for a list of supported instruments.

Find us at www.keysight.com Page 205

Chapter 7: The HVI API

NOTE By default the configuration for the logger is:

l Logging level: Error.

l Output: console.

l Force flush: disabled.

l Logger Extended: disabled.

.env Configuration File
The logger configuration can be also configured from a .env file. The configuration values are stored
in the file as KEY=VALUE pairs and you can use # for comments.

The .env file must be located in the same folder as the HVI script to be executed. HVI parses the .env

file and sets all the environment Variables found for that script.

The following shows an example .env file:

.env

The hvi logger level: Trace, Debug, Info, Warning, Error, Fatal, Off.
HVI_LOGGER_LEVEL=Fatal
#
Set this parameter to write the logs to a file instead of being printed to the console
HVI_LOGGER_OUTPUT_PATH=C:\tmp\hviLogs
#
Set this parameter to force flush the log every new line instead of doing it at the end.
This helps you to identify the line of code before a crash.
HVI_LOGGER_FORCE_FLUSH=0
#
Activates the Logger for all HVI controlled instruments. The supported models are the
System Synchronization Modules (M9032,M9033), the High Performance Reference Clock Source,
(M9546)
or "ALL"HVI_LOGGER_EXTENDED=ALL

Logger Extended mode Supported Instruments
PathWave Test Sync Executive can control a number of different instruments. The environment Vari-
able HVI_LOGGER_EXTENDED activates logging output from the instruments that support it. The way the
logs are produced depends on the instruments, some instruments produce individual log files
whereas other instruments combine log files together into a single file.

The supported models for release 2022 are:

Model Description

M9546x High Performance Reference Clock Source

M9032, M9033 System Synchronization Modules

Find us at www.keysight.com Page 206

Chapter 7: The HVI API

Recommended Logger settings for contacting support
If you require support for PathWave Test Sync Executive, a log file will help the support team to rap-
idly diagnose any problems.

If you want to contact support, first generate a log with the following settings:

l HVI_LOGGER_LEVEL=Trace

l HVI_LOGGER_FORCE_FLUSH=1

l HVI_LOGGER_OUTPUT_PATH=C:\Logs or another path1

1 The path must be an existing valid path.

Find us at www.keysight.com Page 207

Chapter 7: The HVI API

HVI API Sync Statements
This section describes the HVI Statements in the HVI API that you use to program HVI Sequences.
The functions of each statement are explained in detail along with a corresponding HVI diagram.
Python code examples are provided showing how to program the statements with the HVI Python
API.

Sync statements
Sync statements are the building blocks used to program Sync sequences. The following types of
Sync statement are available:

l Sync while.

l Sync multi-sequence block.

l Sync register-sharing.

l Sync FPGA data-sharing.

Find us at www.keysight.com Page 208

Chapter 7: The HVI API

Sync while
The Sync while statement is a type of Sync statement that is defined by the API class
SyncWhileStatement. A Sync while enables you to synchronously execute multiple local sequences
while a condition you specify is met. The Sync while condition is evaluated each time at the beginning
of the statement execution. If the condition is true, an iteration of the Sync while statement is
executed. If the condition is false, the HVI execution jumps to the statement following the Sync while.

You can add other Sync statements inside a Sync while. To define local sequences within the Sync
while, you must use a Sync multi-sequence block.

A Sync while that contains a pair of Sync statements is shown in the following diagram:

If you are using a Sync while statement across multiple engines, during its execution, one of the
engines is set to the role of Leader and the remaining engines have the role of Follower:

Leader

The condition of the Sync while statement is evaluated in this engine and the result is
propagated to the other engines through hardware resources, for example, PXI triggers in a
PXI platform.

Follower

A Follower engine monitors the result of the condition and acts on it, following the Leader.

The condition expression assigned to the Sync while must use resources that belong to the same HVI
engine. The Leader engine of the Sync while is selected automatically by the HVI compiler from the
condition expression.

The following code example shows how to add a Sync while statement and access the Sync sequence
in the Sync while.

Find us at www.keysight.com Page 209

Chapter 7: The HVI API

Configure Sync While Condition
sync_while_condition = keysight_hvi.Condition.register_comparison(reg, keysight_
hvi.ComparisonOperator.GREATER_THAN, 10)
#
Add Sync While to a sync-sequence
sync_while = my_sync_seq.add_sync_while("sync_while", 10, sync_while_condition)
#
Access the sync sequence in the Sync-While and add Sync-Statements inside
sync_block = sync_while.sync_sequence.add_sync_multi_sequence_block("exec_block",10)

Find us at www.keysight.com Page 210

Chapter 7: The HVI API

Sync multi-sequence block
Sync Multi-Sequence Blocks are a type of Sync statement that contains a set of local sequences. It
serves as a container and boundary between sections, where each local sequence executes on an
individual engine within a specific instrument.

The Sync multi-sequence block enables you to program each engine to do specific operations and
run them on each engine concurrently. The Sync multi-sequence block synchronizes all the engines
so that all of the contained Local sequences start at exactly the same time, and the sync sequence
remains synchronous afterwards. You can define which Local statements each engine is going to
execute, and the exact time each Local statement starts to execute compared to the previous one.

The following diagram shows a Sync multi-sequence block that contains three Local sequences:

The following code snippet shows a Sync multi-sequence block being added with the call add_sync_
multi_sequence_block(), a Local sequence is then obtained and an instruction added to it:

Add Sync Multi-Sequence Block
sync_block = keysight_hvi.sync_sequence.add_sync_multi_sequence_block("TriggerAWGs")
#
Add instruction to a local sequence in the block
sequence = sync_block.sequences["Main Engine"]
inst = sequence.add_instruction("Add Instruction", 10, seq.instruction_set.add_instruction.id)

Find us at www.keysight.com Page 211

Chapter 7: The HVI API

Sync register-sharing
Sync register-sharing enables you to share data from a source register to a destination register in any
engine in your HVI. Specifically, you share the contents of N adjacent bits from a source register to a
destination register.

Sync register-sharing is defined in and programmed using the class SyncRegisterSharingStatement.

In the following code example, Sync register-sharing is used to share the content of the digitizer
register feedback and write into the AWG register wfm_id :

Digitizer registers
feedback = keysight_hvi.sync_sequence.scopes["Dig Engine"].registers.add("Feedback Reg",
keysight_hvi.RegisterSize.SHORT)
feedback.initial_value = 0
#
AWG registers
wfm_id = keysight_hvi.sync_sequence.scopes["AWG Engine"].registers.add("Wfm ID", keysight_
hvi.RegisterSize.SHORT)
wfm_id.initial_value = 0
#
Add sync register sharing
bits_to_share = 3
sync_while_2.sync_sequence.add_sync_register_sharing("Share feedback->wfm_id", 10, steps, wfm_
id, bits_to_share)

Find us at www.keysight.com Page 212

Chapter 7: The HVI API

Sync FPGA data-sharing
This statement enables you to share data between FPGA sandboxes in different instruments. It uses
Fast Data Sharing technology to share data.

The transfer is preformed with an FpgaDataSharingTransaction. An FPGA data sharing transaction
enables sharing of a specified number of bits. The number of bits to be shared must be a multiple of
4.

The start and the end of the statement are time synchronized. The SyncFPGADataSharing statement
blocks the execution in all instruments until the last instrument has received the last 4 bits of data.

Related classes:

New Classes Description

FpgaDataSharingTransaction

An FPGA data sharing transaction enables you to share
a specified number of bits from one FPGA sandbox to
one or more FPGA sandboxes in different instruments.
You add a transaction to a
SyncFpgaDataSharingStatement using one of
the FpgaDataSharingTransactionCollection.add
() methods.

FpgaDataSharingTransactionCollection A list of FPGA data sharing transactions.

FdsPortAddress

Represents the source or destination address of a Fast
Data Sharing transaction. It consists of the FDS port of
an instrument that shall be used to transmit or receive
data, as well as the address of the IP connected to that
FDS port, where the data will be read from / written to.

Use the following method to add a SyncFpgaDataSharingStatement statement into a sequence:

New Method Description

SyncSequence.add_sync_fpga_data_sharing
Adds a SyncFpgaDataSharingStatement

Find us at www.keysight.com Page 213

Chapter 7: The HVI API

The following code snippet shows examples of SyncFpgaDataSharingStatement statements:

The name for each sandbox provided below should match exactly the name that each instrument
has given to each sandbox
For simplicity, we assume that all instrument use the same name for their sandboxes
instrument_1_sandbox_name = "SampleSandbox"instrument_2_sandbox_name =
"SampleSandbox"instrument_3_sandbox_name = "SampleSandbox"instrument_4_sandbox_name =
"SampleSandbox"# The name for each FDS port provided below should match exactly the name that
was given by each user to the FDS port in the sandbox
For simplicity, we assume that all Tx ports share a common name
source_port_name = 'fds_tx_output'
For simplicity, we assume that all Rx ports share a common name
dst_port_name = 'fds_rx_input'
instrument_1_fds_ports = sequencer.sync_sequence.engines["instrument_1"].fpga_sandboxes
[instrument_1_sandbox_name].fds_ports
instrument_2_fds_ports = sequencer.sync_sequence.engines["instrument_2"].fpga_sandboxes
[instrument_2_sandbox_name].fds_ports
instrument_3_fds_ports = sequencer.sync_sequence.engines["instrument_3"].fpga_sandboxes
[instrument_3_sandbox_name].fds_ports
instrument_4_fds_ports = sequencer.sync_sequence.engines["instrument_4"].fpga_sandboxes
[instrument_4_sandbox_name].fds_ports
Add an FPGA Data Sharing Statement
name = 'FPGA Data Sharing 1'
start_delay = 40
fpga_data_sharing_st = sequencer.sync_sequence.add_sync_fpga_data_sharing(name, start_delay)
Add transaction 1: single destination
source_address = 10
source_port = instrument_1_fds_ports[source_port_name]
source = keysight_hvi.FdsPortAddress(source_port, source_address)
dst1_address = 20
dst1_port = instrument_2_fds_ports[dst_port_name]
dst1 = keysight_hvi.FdsPortAddress(dst1_port, dst1_address)
num_bits_to_share = 32
fpga_data_sharing_st.transactions.add(source, dst1, num_bits_to_share)
Add transaction 2: multiple destinations
dst2 = keysight_hvi.FdsPortAddress(instrument_3_fds_ports[dst_port_name], 30)
dst3 = keysight_hvi.FdsPortAddress(instrument_4_fds_ports[dst_port_name], 40)
dests = [dst1, dst2, dst3]
num_bits_to_share = 64
fpga_data_sharing_st.transactions.add(source, dests, num_bits_to_share)
Add another FPGA Data Sharing Statement
name = 'FPGA Data Sharing 2'
start_delay = 80
fpga_data_sharing_st = sequencer.sync_sequence.add_sync_fpga_data_sharing(name, start_delay)
source = keysight_hvi.FdsPortAddress(instrument_3_fds_ports[source_port_name], 100)
dst1 = keysight_hvi.FdsPortAddress(instrument_2_fds_ports[dst_port_name], 60)
dst2 = keysight_hvi.FdsPortAddress(instrument_4_fds_ports[dst_port_name], 50)
dests = [dst1, dst2]
num_bits_to_share = 8
fpga_data_sharing_st.transactions.add(source, dests, num_bits_to_share)

The following diagram shows SyncFpgaDataSharing statements as a result of the previous script:

Find us at www.keysight.com Page 214

Chapter 7: The HVI API

Sync FPGA data-sharing Errors

The SyncFpgaDataSharing statement uses FDS for transfers. It has the following error conditions:

1. The number of bits to share is not a positive multiple of 4.

2. A transaction has multiple FDS ports from the same engine.

3. A transaction contains a singular FDS port more than once. The same FDS port cannot be a source and a
destination in the same transaction.

Find us at www.keysight.com Page 215

Chapter 7: The HVI API

HVI API Local Statements
This section describes the HVI Local Statements in the HVI API that you use to program HVI
Sequences.

The functions of each statement are explained in detail together with Python code examples showing
how to program the statements with the HVI Python API.

Programming local sequences
You program local sequences within a Sync multi-sequence block or a Local flow-control statement
(Local while or Local If). The following code shows an example of a Local sequence programmed
within a Sync multi-sequence block.

Add statements to each local sequence within the Sync multi-sequence block
HVI Local sequence collection is automatically created form the
user-defined HVI Engine Collection
Each HVI Local sequence can be retrieved using the name of the corresponding HVI Engine
sequence = sync_block.sequences[engine_name]
#
Add FP Trigger ON to all instruments
instr_trigger_write = sequence.instruction_set.trigger_write
instr_trigger_ON = sequence.add_instruction("FP Trigger ON", 10, instr_trigger_write.id)
instr_trigger_ON.set_parameter(instr_trigger_write.trigger, fp_trigger)
instr_trigger_ON.set_parameter(instr_trigger_write.sync_mode.id, instr_trigger_write.sync_
mode.immediate)
instr_trigger_ON.set_parameter(instr_trigger_write.value.id, instr_trigger_write.value.on)

Find us at www.keysight.com Page 216

Chapter 7: The HVI API

Instruction statements
Instruction statements are operations that can be executed by the instrument hardware within an HVI
sequence. There are two types of instruction statements:

l Instrument-specific HVI instructions.

l HVI-native instructions.

Instrument-specific HVI instructions
Instrument-specific HVI instructions are specific to individual instruments. They are defined by the
instrument add-on API and exposed in each instrument driver as instrument specific HVI definitions.
Instrument-specific HVI instructions can change instrument settings such as amplitude, frequency, or
trigger an instrument function such as output a waveform or trigger a data acquisition. For example,
the M3xxxA documentation describes all the HVI instructions available for each of the M3xxxA PXI
instruments.

The following code is an example of using the awgQueueWaveform custom instruction that is part of the
HVI instruction set of the Keysight M320xA AWG instrument. This example shows how to add an
instrument specific HVI instruction to a Local sequence using the add_instruction() API method and
also how to set the instruction parameters using the set_parameter() API method:

Retrieve engine sequence:
seq = sync_block.sequences["engine_0"]
#
Add and program AWG Queue Waveform instruction:
instr_queue_wfm = instrument.hvi.instruction_set.queue_waveform
instruction0 = seq.add_instruction("awgQueueWaveform", 10, .id)
#
Set instruction parameters:
instruction0.set_parameter(instr_queue_wfm.waveform_number.id, seq.registers
[waveformNumberRegisterName])
instruction0.set_parameter(instr_queue_wfm.channel.id, nAWG)
instruction0.set_parameter(instr_queue_wfm.trigger_mode.id, keysightSD1.SD_
TriggerModes.SWHVITRIG)
instruction0.set_parameter(instr_queue_wfm.start_delay.id, startDelay)
instruction0.set_parameter(instr_queue_wfm.cycles.id, nCycles)
instruction0.set_parameter(instr_queue_wfm.prescaler.id, prescaler)

Find us at www.keysight.com Page 217

Chapter 7: The HVI API

HVI-native instructions
HVI-native instructions are available on all Keysight instruments. They are general purpose and
instrument independent. They include Local instructions and Local flow-control statements. The HVI-
native instructions and parameters are defined in the interface hvi.instruction_set.

The set of HVI-native instructions include:

l Action Execute: AWG trigger, DAQ trigger.

l FPGA register read.

l FPGA register write.

l FPGA memory map write.

l FPGA memory map read.

l Register increment.

l Front panel trigger ON/OFF.

l Register assign.

Action Execute: AWG trigger, DAQ trigger
To add actions to an HVI sequence, you must add them to the instrument's HVI engine with the
API add() method of the ActionCollection class.

Once the required actions are added to the list of the HVI engine actions for the instruments, an
instruction to execute them can be added to the instrument's sequence using the HVI API
class InstructionsActionExecute. One or multiple actions can be executed at the same time within the
same Action Execute instruction.

The following code example shows an Action Execute instruction being used to initiate an AWG
trigger:

Previously defined actions to be executed within the experiment
awg_trigger_12 = [hvi.sync_sequence.engines["engine_name"].actions["previously_defined_action_
1"], hvi.sync_sequence.engines["engine_name"].actions["previously_defined_action_2"]]
#
AWG trigger CH1, CH2 - Generates first pulse
sequence = sync_block_2.sequences["engine_name"]
inst_awg_trigger = sequence.add_instruction("AwgTrigger(CH1, CH2)", 10, sequence.instruction_
set.action_execute.id)
inst_awg_trigger.set_parameter(hvi.instruction_set.action_execute.action.id, awg_trigger_12)

Find us at www.keysight.com Page 218

Chapter 7: The HVI API

Register increment
You can implement a register increment within a sequence with the class InstructionsAdd. The same
instruction can be used to add registers and constant values (operands) and put the result in another
register (result). To increment the register, it must have been added previously to the scope of the
corresponding HVI Engine.

The following code shows an example of a register increment:

Previously defined
counter = sync_sequence.scopes["AWG Engine"].registers.add("Counter Reg", keysight_
hvi.RegisterSize.SHORT)
#
Increment counter register
instruction = awg_sequence.add_instruction("Increment counter", 10, awg_sequence.instruction_
set.add.id)
instruction.set_parameter(awg_sequence.instruction_set.add.destination.id, counter)
instruction.set_parameter(awg_sequence.instruction_set.add.left_operand.id, counter)
instruction.set_parameter(awg_sequence.instruction_set.add.right_operand.id, 1)

Front panel trigger ON/OFF
The following code example shows a front panel trigger ON/OFF instruction. The instruction is added
to the sequence with the method add_instruction(). Instruction parameters are set using the API
method set_parameter(). All HVI-native instructions and parameters are defined in the
hvi.InstructionSet interface.

Add FP Trigger ON to all instruments
sequence = sync_block.sequences[engine_name]
instr_trigger_write = sequence.instruction_set.trigger_write
instr_trigger_ON = sequence.add_instruction("FP Trigger ON", 10, instr_trigger_write.id)
instr_trigger_ON.set_parameter(instr_trigger_write.trigger, fp_trigger)
instr_trigger_ON.set_parameter(instr_trigger_write.sync_mode.id, instr_trigger_write.sync_
mode.immediate)
instr_trigger_ON.set_parameter(instr_trigger_write.value.id, instr_trigger_write.value.on)

Find us at www.keysight.com Page 219

Chapter 7: The HVI API

Register assign
A register assign statement can be used to initialize a register to an initial value using the instruction
class InstructionsAssign from the Python HVI API. The same instruction can be used to assign a
register value (source) to another register (destination). Each register can also be initialized outside
an HVI sequence, before its execution, by using the API property Register.initial_value.

The following code shows an example of Register Assign:

Previously defined registers
wfm_id = hvi.sync_sequence.scopes["AWG Engine"].registers.add("Wfm ID", keysight_
hvi.RegisterSize.SHORT)
#
Initialize Waveform ID
seq = sync_block_1.sequences["AWG Engine"]
instruction = seq.add_instruction("Initialize Wfm ID", 10, seq.instruction_set.assign.id)
instruction.set_parameter(seq.instruction_set.assign.destination.id, wfm_id)
instruction.set_parameter(seq.instruction_set.assign.source.id, 0)

HVI-native FPGA instructions

FPGA register read
The instruction fpga_register_read is an HVI-native instruction that enables you read from an HVI
FPGA register. The value read from the HVI FPGA register is written to a destination HVI register.

The following code example shows an FPGA register read instruction:

Read FPGA Register into an HVI Register used in the HVI sequence
sequence = sync_block_1.sequences["engine_name"]
hvi_register = hvi.sync_sequence.scopes["engine_name"].registers["my_register"]
fpga_register = hvi.sync_sequence.engines["engine_name"].fpga_sandboxes["sandbox_name"].hvi_
registers["sandbox_register"]
readFpgaReg0 = sequence.add_instruction("Read FPGA Register_Bank_HviAction4Cnt", 10,
sequence.instruction_set.fpga_register_read.id)
readFpgaReg0.set_parameter(sequence.instruction_set.fpga_register_read.destination.id, hvi_
register)
readFpgaReg0.set_parameter(sequence.instruction_set.fpga_register_read.fpga_register.id, fpga_
register)

FPGA register write
The instruction fpga_register_write is an HVI-native instruction that enables you to write an HVI
FPGA register placed in an FPGA sandbox. The value to be written to the HVI FPGA register is taken
from an HVI register or from a literal.

The following code example shows an FPGA register write instruction:

Find us at www.keysight.com Page 220

Chapter 7: The HVI API

Write FPGA Register from an an HVI Register used in the HVI sequence
hvi_register = hvi.sync_sequence.scopes["engine_name"].registers["my_register"]
fpga_register = hvi.sync_sequence.engines["engine_name"].fpga_sandboxes["sandbox_name"].hvi_
registers["sandbox_register"]
seq = sync_block_1.sequences["engine_name"]
writeFpgaReg0 = seq.add_instruction("Write FPGA Register_Bank_HviPxiTrigOut", 50,
hvi.instruction_set.fpga_register_write.id)
writeFpgaReg0.set_parameter(seq.instruction_set.fpga_register_write.fpga_register.id, fpga_
register)
writeFpgaReg0.set_parameter(seq.instruction_set.fpga_register_write.value.id, hvi_register)

FPGA memory map read
The instruction fpga_array_read is an HVI-native instruction that enables you to read from an HVI
FPGA memory map. The value read from the HVI FPGA memory map is written to a destination HVI
register.

The following code example shows an FPGA memory map read instruction:

Register, Memory map objects
register = sync_sequence.scopes["engine_name"].registers["my_register"]
hvi_memory_map = sync_sequence.engines["engine_name"].fpga_sandboxes["sandbox_name"].hvi_memory_
maps["memory_map_name"]
Read Memory Map
seq = sync_block_1.sequences["engine_name"]
readMemoryMap = sync_block_1.sequences["engine_name"].add_instruction("Read FPGA Memory Map",
20, hvi.instruction_set.fpga_array_read.id)
readMemoryMap.set_parameter(seq.instruction_set.fpga_array_read.fpga_memory_map.id, hvi_memory_
map)
readMemoryMap.set_parameter(seq.instruction_set.fpga_array_read.destination.id, register)
readMemoryMap.set_parameter(seq.instruction_set.fpga_array_read.fpga_memory_map_offset.id, 0)

FPGA memory map write
The instruction fpga_array_write is an HVI-native instruction that enables you to write to an HVI
FPGA memory map that is located in an FPGA sandbox. The value to be written to the HVI FPGA
memory map is taken from an HVI register or from a literal.

The following code example shows an FPGA memory map write instruction:

Find us at www.keysight.com Page 221

Chapter 7: The HVI API

Register, Memory map objects
register = sync_sequence.scopes["engine_name"].registers["my_register"]
hvi_memory_map = sync_sequence.engines["engine_name"].fpga_sandboxes["sandbox_name"].hvi_memory_
maps["memory_map_name"]
Write Memory Map
seq = sync_block_1.sequences["engine_name"]
writeMemoryMap = sync_block_1.sequences["engine_name"].add_instruction("Write FPGA Memory Map",
10, seq.instruction_set.fpga_array_write.id)
writeMemoryMap.set_parameter(seq.instruction_set.fpga_array_write.fpga_memory_map.id, hvi_
memory_map)
writeMemoryMap.set_parameter(seq.instruction_set.fpga_array_write.value.id, register)
writeMemoryMap.set_parameter(seq.instruction_set.fpga_array_write.fpga_memory_map_offset.id, 0)

FPGA-instruction statement
The FpgaInstruction statement enables you to issue commands to custom FPGA Sandbox logic from
within HVI sequences.

You can add the FpgaInstruction statement in an HVI sequence. When the HVI sequence is running,
the HVI Engine executes the FpgaInstruction statement and sends the command and data
parameters to a parser and your logic in the FPGA sandbox. Your logic reads the parameter data and
executes the command as indicated.

This instruction can only be used successfully on instruments that support it. For more information,
see your instrument documentation.

FPGA-instruction Statement Parameters

The FpgaInstruction statement has the following parameters:

Find us at www.keysight.com Page 222

Chapter 7: The HVI API

Parameter Description Size Notes

Port Number Selects the port in the FPGA sandbox -
Number of available ports defined by the
instrument

Command ID
An identifier for a command you have implemented in
custom logic

16 bits

Data A The data to send to the IP in the sandbox 40 bits

Supports registers

l If the source register is a short
(32 bits), the top 8 (most
significant) bits are set to 0.

l If the source register is a long
(48 bits), the top 8 (most
significant) bits are truncated.

Apply 1

A 1 bit field which determines if the
command is applied immediately or is set
up for later execution

1 bit

l 0 = Set up now, apply the
instruction later.

l 1 = Apply instruction
immediately (this is the default).

1 To apply the instruction after setup, you initiate it with the next instruction with Apply set to 1. You
can set a number of instructions each with Apply = 0, then the next instruction with Apply = 1 shall
trigger all of them.

The Apply=0 followed by an Apply=1 provides a set up now, and apply later option. This enables you
to set up the command and then delay the execution so it happens at a specifically timed interval.
This also enables you to set up a number of commands and then have them execute simultaneously.

The following code shows an example of an FPGA-instruction:

Set up local sequence
fpga_inst = local_sequence.instruction_set.fpga_instruction
instruction = local_sequence.add_instruction('fpgaInstruction', 10, fpga_inst.id)
#
port_number = 2
data_a = 1234
command_id = 5
apply = 1
#
instruction.set_parameter(fpga_inst.port_number.id, port_number)
instruction.set_parameter(fpga_inst.data_a.id, data_a)
instruction.set_parameter(fpga_inst.command_id.id, command_id)
instruction.set_parameter(fpga_inst.apply.id, apply)

Find us at www.keysight.com Page 223

Chapter 7: The HVI API

Local flow-control statements
Local flow-control statements execute within Local sequences. These include wait statements, loops
such as while, and conditional execution like If. Local flow-control statements are depicted with a
yellow box in the HVI diagrams in this User Manual.

Local flow-control statements include:

Local wait-for-time

Causes the sequence to wait for a certain time specified in an HVI register. Once the time
has elapsed, the sequence will continue.

Local wait-for-event

Causes the sequence to stop and wait for a condition to evaluate true. Once the condition is
true, for example, when the selected event occurs, the next instruction is executed. In future
releases, this will be extended to more complex conditions.

Local while

Executes the same sequence in a loop while the condition is met.

Local delay

Delays the sequence for a time you specify. The delay is specified in nanoseconds.

Local if (if-elseif-else)

Selects and executes a different possible Local sequence according to the value of a defined
condition.

All Local flow-control statements except wait statements, include one or more Local sequences. For
instance, Local while statements have a single sequence and the Local If statement can have multiple
sequences. These statements have the following common characteristics:

l Sequences in Local flow-control statements can contain any Local statement including Local flow-
control statements.

l Only Local statements can be added inside Local sequences and consequently inside Local flow-
control statements. You cannot add Sync statements inside Local flow-control statements.

Find us at www.keysight.com Page 224

Chapter 7: The HVI API

Local if statement
The Local flow-control statement If conditionally executes one of a set of different possible Local
sequences (if/ elseif / else) depending on the value of predefined conditions.

The conditions are evaluated in the order they are inserted. The possible sequences are:

l At least one sequence that is conditionally executed. This is the main If branch.

l Optional conditional sequences where their conditions are evaluated in order. The first sequence with a true
condition is executed if the conditions in previous branches evaluated false. These are the Elseif branches.

l If more then one Elseif condition evaluates to true, only the first is executed.

l One optional Else sequence, which is executed if all above previous conditions evaluate to false. This is the
Else branch.

The following diagram shows a Local If flow-control statement:

The class IfStatement enables you to add an If-Elseif-Else construct within the main HVI sequence of
any HVI engine. The Local If statement contains one If branch, zero or more Elseif branches and one
Else branch. The instructions and statements contained in each If or Else branch are executed if the
condition of each branch is met.

Find us at www.keysight.com Page 225

Chapter 7: The HVI API

You can program the branch sequences with the same API methods and classes used to program the
main HVI sequence, using the classes IfBranch and ElseBranch, and you define the condition of each
branch with the API class ConditionalExpression. The conditions are stored in registers.

The following code is an example of a Local If statement:

Configure IF condition
if_condition = keysight_hvi.Condition.register_comparison(reg, keysight_
hvi.ComparisonOperator.SMALLER_THAN, 10);
#
Set flag that enables to match the execution time of all the IF branches
enable_matching_branches = True
if_statement = my_sync_multi_seq_block.add_if("MyIfBlock", 10, if_condition, enable_matching_
branches)
#
Program IF branch
if_sequence = if_statement.if_branch.sequence
#
Add statements in if-sequence
instruction = ifSequence.add_instruction("ExecuteAction0", 10, if_sequence.instruction_
set.action_execute.id)
instruction.set_parameter(...) ...
#
Program Else-If branches
Else-If Condition
else_if_condition_1 = keysight_hvi.Condition.register_comparison(reg, keysight_
hvi.ComparisonOperator.SMALLER_THAN, 15)
else_if_branch_1 = if_statement.else_if_branches.add(else_if_condition_1)
#
Program Else-If branch
else_if_sequence_1 = else_if_branch_1.sequence
#
Add statements in Else-If-sequence
instruction = else_if_sequence_1.add_instruction("SetFrequency", 10, module.HVI.instruction_
set.set_frequency.id)
instruction.set_parameter(...) ...
#
Eventually add more Else-If-branches
else_if_condition_2 = ... else_if_branch_1 =
#
Else-branch
Program Else branch
else_sequence = else_branch.sequence
#
Add statements in Else-sequence
instruction = else_sequence.add_instruction(...) ...

Find us at www.keysight.com Page 226

Chapter 7: The HVI API

Local while statement
The Local while flow-control statement executes a same sequence in a loop while a condition is
met. The value for the condition is stored in a register.

The following diagram shows a Local while:

The following code is an example of a Local while statement:

Configure while condition
while_condition = keysight_hvi.Condition.register_comparison(reg, keysight_
hvi.ComparisonOperator.NOT_EQUAL, 1)
#
Add WHILE sequence within the sequence of "engine_0"seq = sync_block.sequences["engine_0"]
while_loop = seq.add_while("While Loop", 10, while_condition)
#
Program local while sequence
instruction = while_loop.sequence.add_instruction("Initialize Pulse Counter", 10,
seq.instruction_set.assign.id)
instruction.set_parameter(seq.instruction_set.add.destination.id, pulse_counter)
instruction.set_parameter(seq.instruction_set.add.source.id, 0)

Find us at www.keysight.com Page 227

Chapter 7: The HVI API

Local wait-for-event statement
The Local wait-for-event statement causes the HVI sequence to stop and wait for a condition to
evaluate true. Once the condition is true, for example the selected event occurs, the next instruction
is executed.

The Local wait statement is implemented with the API class WaitStatement. This sequence
block statement sets an instrument to wait for a condition. The condition can be defined by a trigger,
an event, or a combination of them using logical operators. You can only use one event in the
condition.

In the following example, the Local wait is used to set a digitizer instrument to wait for an external
front panel trigger. The wait statement is set to wait for a trigger falling edge using the .wait mode
keysight_hvi.WaitMode.TRANSITION combined with a trigger configuration as ACTIVE_LOW. The sync
mode keysight_hvi.SyncMode.IMMEDIATE sets the wait event to let the execution continue immediately,
that is, as soon as the trigger event is received:

Trigger resource to be used as a wait condition
fp_trigger_id = module_list[0].hvi.triggers.front_panel_1
fp_trigger = sync_sequence.engines[digitizer_engine_name].triggers.add(fp_trigger_id, "FP
Trigger")
#
Trigger configuration
NOTE: Trigger to be used as WaitEvent conditions must be configured
as keysight_hvi.Direction.INPUT
fp_trigger.configuration.direction = keysight_hvi.Direction.INPUT
fp_trigger.configuration.drive_mode = keysight_hvi.DriveMode.PUSH_PULL
fp_trigger.configuration.polarity = keysight_hvi.TriggerPolarity.ACTIVE_LOW
fp_trigger.configuration.hw_routing_delay = 0
fp_trigger.configuration.trigger_mode = keysight_hvi.TriggerMode.LEVEL
#
Define the condition for the wait statement
wait_condition = keysight_hvi.Condition.trigger(hvi.sync_sequence.engines[digitizer_engine_
name].triggers["FP Trigger"])
#
Add a Wait For Event
wait_event = sync_block_1.sequences[digitizer_engine_name].add_wait("Wait for FP Trigger", 100,
wait_condition)
wait_event.set_mode(keysight_hvi.WaitMode.TRANSITION, keysight_hvi.SyncMode.IMMEDIATE)

For information about timing implications for wait for event statements, Synchronization Points and
Sync Sequence Start in Chapter 9: HVI Time Management and Latency.

Find us at www.keysight.com Page 228

Chapter 7: The HVI API

Local wait-for-time statement
The wait-for-time statement causes the sequence to wait for a certain time specified in an HVI
register. Once the time is elapsed, the sequence continues.

The following code is an example of a wait-for-time statement:

Wait Time makes the HVI sequence wait for an amount of time specified by
a register (register 'tau' in this example)
#
waitTau = sync_block.sequences["digitizer_engine"].add_wait_time("WaitTau", 10, tau)

Local delay statement
The Local delay statement delays the execution of a local sequence for a time you specify. The default
unit is nanoseconds but the delay is specified in any unit of seconds. The delay is fixed and cannot be
changed during HVI execution, so the delay value must be known at the time of creating the HVI
sequence.

The delay statement works in a similar way as the start delay statement parameter. The difference is
that the start delay can only be specified before the other statements in a sequence. The delay
statement enables you to place a fixed delay at the end of Sync multi-sequence block or a flow
control statement.

If you require a Variable delay that can be changed during HVI execution, use the Local wait-for-time
statement.

The following code shows an example of a Local delay statement:

Delay makes the HVI sequence wait for an amount of time specified by a constant
#
wait = sync_block.sequences["digitizer_engine"].add_delay("Delay", 30)

Find us at www.keysight.com Page 229

Chapter 7: The HVI API

Chapter 8: Building an Application with the HVI API
This chapter describes the steps you must follow to use the HVI API. If you do not follow these steps
your application shall not work correctly.

HVI uses program-within-a-program model. That is, the HVI enables you to define a program that
runs on the instrument's hardware while the software programs run in parallel and can interact with
the instruments. HVI is also responsible for all the setup, compilation, and hardware execution
management. When you run your application, it generates an HVI instance and the sequences within
it are executed on the instruments.

This chapter contains the following sections:

l Planning an HVI with the HVI Use Model

l 1 Create the System Definition

l 2. Program HVI Sequences

l 3. Compile Your Sequences

l 4. Load To Hardware

l 5. Modify Initial Register Values (Optional)

l 6. Execute Sequences

l 7. Release All Resources

NOTE The code examples provided in this chapter are in both Python and C#.

Find us at www.keysight.com Page 230

Chapter 8: Building an Application with the HVI API

Planning an HVI with the HVI Use Model
Programming and executing an HVI requires you to follow a precise use model. You must write your
code in the correct order and be aware of the requirements of each stage, or your application shall
not work correctly.

The HVI Use Model consists of 3 broad stages:

1. System Definition
You must define hardware resources before you can use them in HVI. The resources you can use
depends on your hardware set up, what instruments you have, what capabilities they have, and how
they are arranged. You set these up first and then you can use their functionalities in your HVI
sequences. This operation is called System Definition and it can be done by using an instance of the
SystemDefinition class.

The initialization of the system you have defined is also important to understand. By default, the
defined system is initialized at the code line that is creating the Sequencer object from the Sys-

temDefinition object. If you use the default initialization, this ensures that the complete system is cor-
rectly initialized.

There are some use cases when you might need to use the initialize() API method to perform a cus-
tom initialization, for example, a full realignment of the HVI Engine clocks. For more information, see
the description of AlignmentMode list in System Initialization and the Python API Help. In this case it
is important to make sure that the SystemDefinition object is not modified after calling the initialize
() API method.

NOTE Ensure you initialize your system after all the resources have been added and
defined. If you call the initialize() API method before the system is fully defined,
the system shall not be initialized properly. Consequences of an improper
initialization might be that some instruments included in the HVI might be out of
sync or that their HVI sequence execution will misbehave by for example, missing a
trigger or not playing a waveform.

For example, in the following code initialize() is called incorrectly before all the engines are added
to the SystemDefinition.

call initialize()
#
sys_def.initialize()
#
Incorrect usage, Engines added after the initialize() call are not initialized.
sys_def.engines.add(...)

Find us at www.keysight.com Page 231

Chapter 8: Building an Application with the HVI API

2. Program HVI Sequences
As a next step, the SystemDefinition object is passed into the Sequencer object at the sequencer
creation.

Once the Sequencer object is created, the SystemDefinition instance is fixed. All resources added and
defined using the SystemDefinition object must be modified before this step. You cannot make
any changes to the SystemDefinition instance after this. Any changes made in the SystemDefinition

after this point are not passed into the Sequencer object and therefore are not included in the HVI.

Once the hardware is set up and resources assigned, you can write your sequences and set
initialization values. You create Sync sequences for globally synchronized operations, and you create
Local sequences for operations in the HVI engines in individual instruments.

3. Execute the HVI
When you have programmed your sequences, you call the compile software method to create an
instance of the Hvi class from the Sequencer object instance containing the information about the
programmed sequences.

After a successful sequencer compilation, t he sequencer configuration is passed into the Hvi object
when it is created. Once the Hvi object is created, the Sequencer instance is fixed. You cannot make
any changes to the Sequencer or SystemDefinition instances after this point.

The compilation generates binary files that can be loaded to hardware and execute your HVI. Before
running the HVI, you can redefine the initial values of some of the resources that are included in the
HVI, such as HVI registers for different engines.

Find us at www.keysight.com Page 232

Chapter 8: Building an Application with the HVI API

Object Instances in the HVI Use Model
The following diagram shows the stages and highlights how each of the stages in the HVI use model
creates and uses an object instance which is then passed to the next stage:

NOTE Once an instance of SystemDefinition, Sequencer, or Hvi classes is created and
configured, you cannot modify it in the next HVI step. If you attempt to modify one
of these instances at a later stage, the modifications will not apply to your HVI. That
is:

l You shall not modify the SystemDefinition object at the "Program HVI Sequences" or
"Execute HVI" stage.

l You also shall not modify the SystemDefinition or Sequencer instances at the "Execute
HVI" stage.

Correct Example

In the following example the value non_hvi_core_clocks in SystemDefintion is set.

This is set before the Sequencer is created so this is the correct place to do this.

Define System Definition
my_system = kthvi.SystemDefinition("MySystem");
#
Set value of non_hvi_core_clocks (in Hz)
sys_def.non_hvi_core_clocks = [10e6]
#
Create the sequencer
sequencer = kthvi.Sequencer("MySequencer", my_system);
#
Get the Hvi
hvi = sequencer.compile().

Find us at www.keysight.com Page 233

Chapter 8: Building an Application with the HVI API

Incorrect Example

In the following example the value non_hvi_core_clocks in SystemDefintion is set. In this case the value
is set after the Sequencer is defined.

This example will not work because you cannot change a value in SystemDefintion after you have
created the sequencer.

Define System Definition
my_system = kthvi.SystemDefinition("MySystem");
#
Create the sequencer
sequencer = kthvi.Sequencer("MySequencer", my_system);
#
Set value of non_hvi_core_clocks (in Hz)
sys_def.non_hvi_core_clocks =[10e6] # THIS FAILS
#
Get the Hvi
hvi = sequencer.compile().

NOTE If you need to make a change to SystemDefintion object after creating the
sequencer, you must create a new Sequencer for the change to have an effect.

Find us at www.keysight.com Page 234

Chapter 8: Building an Application with the HVI API

1 Create the System Definition
Setting up the HVI requires several steps:

l Include the HVI library in your application.

l Define the hardware in your HVI.

l Define and configure HVI resources.

l Define FPGA sandbox resources.

Include the HVI Library in your Application
Include the HVI library in your application:

Python code:

import keysight_hvi as kthvi

C# code:

using Keysight.Hvi;

You must first create an instance of a SystemDefinition object.

Python code:

Create SystemDefinition instance
my_system = keysight_hvi.SystemDefinition("Multi-chassis Setup")

C# code:

// Create SystemDefinition instance
var sysDef = new SystemDefinition("My System");

When you have done this, specify the hardware and hardware resources that you require in your HVI:

l Define the hardware in your HVI.

l Define the HVI resources.

l Register the resources with relevant collections.

l Initialize HVI hardware resources for the HVI.

Find us at www.keysight.com Page 235

Chapter 8: Building an Application with the HVI API

Define the Hardware in your HVI
Add the hardware resources in your system to the SystemDefinition object, including:

l Chassis.

l Chassis interconnections.

l PXI trigger synchronization resources.

l Synchronization clocks.

Define the chassis
Python code:

Add chassis with number or options
my_system.chassis.add(chassis_number)
my_system.chassis.add_with_options(chassis_number, "DriverSetup=model=GenericPxieChassis")

C# code:

// Add chassis with number or options
sysDef.Chassis.Add(1);
sysDef.Chassis.AddWithOptions(1, "Simulate=True,DriverSetup=model=GenericPxieChassis");

Find us at www.keysight.com Page 236

Chapter 8: Building an Application with the HVI API

Define the chassis interconnects
You must first define the SystemSync modules. The options specify a number of parameters about
each module:

Python code:

Define SystemSync Modules
ssm_m9032_resource_id_ssm_1 = 'PXI0::CHASSIS1::SLOT10::INSTR'
ssm_m9033_resource_id_ssm_2 = 'PXI0::CHASSIS2::SLOT10::INSTR'
ssm_m9032_options = "Simulate=true,DriverSetup=Model=M9032A, HviEngineIpVersion=1.1.0,
HviGatewareFeatureVersion=2,model=M9032"ssm_m9033_
options = "Simulate=true,DriverSetup=Model=M9033A, HviEngineIpVersion=1.1.0,
HviGatewareFeatureVersion=2,model=M9033"system_sync_modules_descriptors =
[SystemSyncModuleDescriptor('PXI0::CHASSIS1::SLOT10::INDEX0::INSTR', ssm_options)]

C# code:

// Define SystemSync Modules
public static string Ssm9032Options { get; set; } = "Simulate=true,DriverSetup=Model=M9032A,
HviEngineIpVersion=1.1.0, HviGatewareFeatureVersion=2,model=M9032"public static string
Ssm9033Options { get; set; } = "Simulate=true,DriverSetup=Model=M9033A,
HviEngineIpVersion=1.1.0, HviGatewareFeatureVersion=2,model=M9033"public
List<SystemSyncModuleDescriptor> SystemSyncModulesDescriptors { get; set; } = new
List<SystemSyncModuleDescriptor>
{

new SystemSyncModuleDescriptor("PXI0::CHASSIS1::SLOT10::INDEX0::INSTR", Ssm9032Options),
new SystemSyncModuleDescriptor("PXI0::CHASSIS2::SLOT10::INDEX0::INSTR", Ssm9033Options),

};

You must add the modules to the interconnects collection within the system definition:

Python code:

Add SystemSync Modules to chassis
ssm_m9032 = my_system.interconnects.add_sync_module(ssm_m9032_resource_id, ssm_m9032_options)
ssm_m9033 = my_system.interconnects.add_sync_module(ssm_m9033_resource_id, ssm_m9033_options)

C# code:

// Add SystemSync Modules to chassis
ssmList.Add(interconnects.AddSyncModule(descriptor.ResourceId, descriptor.Options));

Find us at www.keysight.com Page 237

Chapter 8: Building an Application with the HVI API

Once done, get the interface objects for each of the SSM connectors:

NOTE The items in the collection systemsync_downstream are indexed from 0.

Python code:

Get the 8x SystemSync downstream connector on first SSM
ssm_m9032_down = ssm_m9032.connectivity.systemsync_downstream[0]

Get the 8x SystemSync upstream connector on second SSM
ssm_m9033_up = ssm_m9033.connectivity.systemsync_upstream[0]

C# code:

// Get the 8x SystemSync downstream connector on first SSM
ssm1Down = ssm1.Connectivity.SystemsyncDownstream[0]

// Get the 8x SystemSync upstream connector on second SSM
ssm2Up = ssm2.Connectivity.SystemsyncUpstream[0]

Set the connection between the connectors. This tells the HVI that these connections are connected
together.

Python code:

Set the connection
ssm_m9032_down.set_connection(ssm_m9033_up)

C# code:

// Set the connection.
ssm1.Connectivity.SystemSyncDownstream[0].SetConnection(ssm2.Connectivity.SystemSyncUpstream
[0]);

Find us at www.keysight.com Page 238

Chapter 8: Building an Application with the HVI API

Define the synchronization resources
Python code:

Define sync resources
my_system.sync_resources = [keysight_hvi.TriggerResourceId.PXI_TRIGGER0,

keysight_hvi.TriggerResourceId.PXI_TRIGGER1,
keysight_hvi.TriggerResourceId.PXI_TRIGGER2]

C# code:

// Define sync resources
TriggerResourceId[] resources = {

TriggerResourceId.PxiTrigger0,
TriggerResourceId.PxiTrigger1,
TriggerResourceId.PxiTrigger2};

Define the clocks
In simple setups this is only required when dealing with instruments that do not support HVI
technology, or Devices Under Test that have specific clocking requirements.

For more complex setups see the System Setup Guide.

Python code:

clocks configuration
my_system.non_hvi_core_clocks = [100MHz]
my_system.non_hvi_system_clocks = [500MHz]

C# code:

// clocks configuration
sysDef.NonHviCoreClocks = {100};
sysDef.NonHviCoreClocks = {500};

Find us at www.keysight.com Page 239

Chapter 8: Building an Application with the HVI API

Define and Configure HVI Resources
Triggers, Actions, and Events are all HVI resources that can be used by the HVI engine and the HVI
sequence to interact with the outside world, that is, with other instruments, the instrument sandbox,
or any other external entities.

You must define the resources you are going to use and register them with collections for the engines
you want to use them with. You must do this for the following types of resources:

l HVI Engines.

l Actions.

l Events.

l Triggers.

l FPGA Sandbox resources.

Find us at www.keysight.com Page 240

Chapter 8: Building an Application with the HVI API

Define HVI Engines
First, you must define the engines you want to use and add them to an engine collection. The
method add_engine() returns an engine.

Python code:

Add engines
engine0 = my_system.engines.add(module.hvi.engines.main_engine, "Receiver")
engine1 = my_system.engines.add(module.hvi.engines.main_engine, "Transmitter")

C# code:

// Add Engines
sysDef.Engines.Add(module.Hvi.Engines.MainEngine, "Receiver");
sysDef.Engines.Add(module.Hvi.Engines.MainEngine, "Transmitter");

The procedure for defining and registering the other HVI resources follows the same pattern. As a first
step, the resource must be added to the corresponding collection using the method add() within
the classes TriggerCollection , ActionColletion , EventCollection , etc.

For example, to define and register an event, do the following:

There is an event collection for each engine. Get the event collection with the property engine.events
. This returns the EventCollection object. Add the events you want to use to the event collection with
the add() method of EventCollection . To add each event you must specify both an event id and an
event name:

Python code:

my_event = engine.events.add(module.hvi.events.PXI0, "My Event")

C# code:

myEvent = Engine.Events.Add(module.Hvi.Events.Pxi0, "My Event")

Actions, Triggers, and FpgaSandboxes all require their own collection classes, for
example ActionCollection is for Actions.

Use the same procedure to get collections and add Actions, Triggers, and FpgaSandboxes to their
respective collections. The ID of engines, actions, events, and triggers related to a specific instrument
are defined by the instrument API, typically within the instrument.hvi interface of an instrument

object.

Find us at www.keysight.com Page 241

Chapter 8: Building an Application with the HVI API

Define HVI actions
The following code example defines all HVI actions necessary to perform AWG (Arbitrary Waveform
Generator) trigger operations. The AWG trigger actions for each AWG channel is defined and
registered into the ActionCollection of the AWG engine that needs to execute them in its local
sequence.

Python code:

Define AWG trigger actions for all AWG channels
for ch_index in range(1, num_channels + 1):
Actions need to be added to the engine's action list so that they can be executed
action_name = "AWG Trigger CH" + str(ch_index) # arbitrary user-defined name
instrument_action = "awg{}_trigger".format(ch_index) # name decided by instrument API
action_id = getattr(instrument.hvi.Actions, instrument_action)
my_system.engines[awg_engine_name].actions.add(action_id, action_name)

C# code:

// Define AWG trigger actions for 4 AWG channels
// Actions must be added to the engine's action list so that they can be executed
//
mySystem.Engines[engineName].Actions.Add(module.Hvi.Actions.Awg0Trigger, "awg0trigger")
mySystem.Engines[engineName].Actions.Add(module.Hvi.Actions.Awg1Trigger, "awg1trigger")
mySystem.Engines[engineName].Actions.Add(module.Hvi.Actions.Awg2Trigger, "awg2trigger")
mySystem.Engines[engineName].Actions.Add(module.Hvi.Actions.Awg3Trigger, "awg3trigger")

Define HVI events
The code example below adds the AWG CH1 Waveform Start event to the event collection of an
M320xA AWG's HVI engine object called awg_engine. For further information on M320xA events see
SD1 3.x Software for M320xA / M330xA Arbitrary Waveform Generators User’s Guide available
at M3201A PXIe Arbitrary Waveform Generator.

Python code:

wfm_start_event = awg_engine.events.add(instrument.hvi.events.awg1_waveform_start, "AWG CH1 Wfm
Start Event")

C# code:

// adding wait for trigger event
wfmStartEvent = awgEngine.Events.Add(instrument.Hvi.Events.Awg1WaveformStart, "AWG CH1 Wfm Start
Event")

Find us at www.keysight.com Page 242

Chapter 8: Building an Application with the HVI API

http://www.keysight.com/find/m3201a

Define HVI triggers
The code example below defines a Front Panel (FP) trigger to be used by a digitizer instrument. The
TriggerCollection is accessed through the dig_engine.triggers interface, where dig_engine is an HVI
Engine object.

Python code:

Defines the FP trigger to be used as a wait condition by the digitizer
Add to the HVI Trigger Collection of each HVI Engine the FP Trigger object of that same
instrument
#
fp_trigger_id = instrument.hvi.triggers.front_panel_1
fp_trigger = dig_engine.triggers.add(fp_trigger_id, "FP Trigger")
#
Trigger configuration
NOTE: Trigger to be used as WaitEvent conditions must be configured as kthvi.Direction.INPUT
DriveMode (e.g. PushPull/OpenDrain) is defined by the instrument and cannot be changed by the
user
fp_trigger.config.direction = kthvi.Direction.INPUT
fp_trigger.config.polarity = kthvi.Polarity.ACTIVE_HIGH
fp_trigger.config.hw_routing_delay = 0
fp_trigger.config.trigger_mode = kthvi.TriggerMode.LEVEL

C# code:

// Defines the FP trigger to be used as a wait condition by the digitizer
// Add to the HVI Trigger Collection of each HVI Engine the FP Trigger object of that same
instrument
//
fpTriggerId = instrument.Hvi.Triggers.frontPanel1;
fpTrigger = digEngine.Triggers.Add(fpTriggerId, "FP Trigger");
//
// Trigger configuration
// NOTE: Trigger to be used as WaitEvent conditions must be configured as Direction.Input
// DriveMode (e.g. PushPull/OpenDrain) is defined by the instrument and cannot be changed by the
user
fpTrigger.Config.Direction = Direction.Input;
fpTrigger.Config.Polarity = Polarity.ActiveHigh;
fpTrigger.Config.HwRoutingDelay = 0;
fpTrigger.Config.TriggerMode = TriggerMode.Level;

Find us at www.keysight.com Page 243

Chapter 8: Building an Application with the HVI API

Define FPGA sandbox resources
The SandboxCollection is accessible through the engine.fpga_sandboxes interface of an engine object.
Unlike other HVI collections, this collection is already populated by a number of sandboxes where the
number of sandboxes depends on the instrument being used. Most instruments have a single
sandbox region in their FPGA, but some instruments might have multiple sandbox regions. Sandbox
objects do not need to be added to the collection, you only need to access them.

Python code:

NOTE: The M3xxxA_sandbox name is not arbitrary and cannot be changed.
The sandbox name is defined by each instrument. See SD1 3.x M3xxxA documentation for further
info
sandbox_name = 'sandbox0'
awg_sandbox = awg_engine.fpga_sandboxes[sandbox_name]

C# code:

// NOTE: The M3xxxA_sandbox name is not arbitrary and cannot be changed.
// The sandbox name is defined by each instrument. See SD1 3.x M3xxxA documentation for further
info
sandboxName = "sandbox0";
awgSandbox = AwgEngine.FpgaSandboxes[sandboxName];

Find us at www.keysight.com Page 244

Chapter 8: Building an Application with the HVI API

2. Program HVI Sequences
Programming HVI sequences requires a number of steps:

l Create a Sequencer object

l Define HVI Registers and initialize register values

l Start with the global SyncSequence

l Adding Sync Statements and Sync Sequences

l Adding Local Statements

l Adding HVI instructions

l Adding Instrument Specific Instructions

l Using Triggers, Actions, and Events

l Using FPGA Sandbox Resources

Create a Sequencer Object
Before you can begin writing sequences, you must create a Sequencer object and pass the
SystemDefinition to the Sequencer object:

Python code:

sequencer = keysight_hvi.Sequencer("sequencer", my_system)

C# code:

Sequencer seq = new Sequencer("sequencer", sysDef);

Find us at www.keysight.com Page 245

Chapter 8: Building an Application with the HVI API

Define HVI Registers and Initialize Register Values
Define the HVI registers resource you require in each engine and use the add() method to add them
to the register collection for that engine. Then define their initial values:

Python code:

loop_register = sequencer.sync_sequence.scopes["Engine 1"].registers.add("Loop Register",
keysight_hvi.RegisterSize.SHORT)
loop_register.initial_value = 0

C# code:

var loopRegister = sequencer.SyncSequence.Scopes["Engine 1"].Registers.Add("Loop Register",
RegisterSize.SHORT);
loopRegister.InitialValue = 0;

The registers that you to use in the HVI sequences must be defined beforehand in the register
collection within the scope of the corresponding HVI Sequence. This can be done using the
RegisterCollection class that is within the Scope object corresponding to each sequence. HVI
registers belong to a specific HVI engine because they refer to hardware registers of that specific
instrument. Registers from one HVI engine cannot be used by other engines or outside of their
scope. Registers can only be added to the HVI top Sync sequence scopes. This means that you can
only add global registers that are visible in all child sequences. The number and size of registers is
defined by each instrument.

To reserve a register resource:

1. Get the register collection from the engine you want to reserve the register on.

2. Add the registers you require. Use the add() method to the register collection for that engine

NOTE Register size is defined by the following:

l SHORT = 32 bit

l LONG = 48 bit

Find us at www.keysight.com Page 246

Chapter 8: Building an Application with the HVI API

Create Sequences
After you have got the Sequencer object and set up the registers you require, you can write the
program the HVI executes, this is composed of:

l Sequences.

l Statements.

l Instructions.

l Time restrictions.

To define your program, you must:

l Create sequences.

l Add statements and instructions.

Start with the Global SyncSequence
When HVI starts execution, it starts in a global sequence SyncSequence, this is defined by
the Sequencer object. This is used in the previous example when the registers were reserved:

Python code:

engine_1_registers = sequencer.sync_sequence.scopes["Engine 1"].registers

C# code:

var engine1Registers = seq.SyncSequence.Scopes[engine1Name].Registers;

Find us at www.keysight.com Page 247

Chapter 8: Building an Application with the HVI API

Adding Sync Statements and Sync Sequences
You add Sync statements to the SyncSequence class with add_statement methods such as
SyncSequence.add_sync_while():

Python code:

Create Sync While statement (loop_register < SYNC_WHILE_LOOP_ITERATIONS):
SYNC_WHILE_LOOP_ITERATIONS = 5
sync_while_condition = keysight_hvi.Condition.register_comparison(engine_1_registers["loop_
register"], keysight_hvi.ComparisonOperator.LESS_THAN, SYNC_WHILE_LOOP_ITERATIONS)
sync_while = sequencer.sync_sequence.add_sync_while("sync_while", 100, sync_while_condition)

C# code:

// create Sync While statement (loop_register < SYNC_WHILE_LOOP_ITERATIONS)
var syncWhileCondition = Condition.RegisterComparison(
engine1Registers["loop_register"], ComparisonOperator.LessThan, SYNC_WHILE_LOOP_ITERATIONS);
var syncWhile = seq.SyncSequence.AddSyncWhile("sync_while", 100, syncWhileCondition);

You can also add Sync sequences within the global Sync sequence and add Sync statements within
the Sync sequences.

Adding Local Statements
To add local instructions or local flow-control operations, you must add them within a Sync multi-
sequence block. You must add this Sync multi-sequence block within a Sync Sequence by using the
add_sync_multi_sequence_block() method:

Python code:

Add a sync multi-sequence block:
multi_seq_block_1 = sync_while.sync_sequence.add_sync_multi_sequence_block("multi_seq_block_1",
210)

C# code:

// Add a sync multi-sequence block
var multiSeqBlock1 = syncWhile.SyncSequence.AddSyncMultiSequenceBlock("multiSeqBlock1", 220);

To add the local statements, you must get a Sequence object for each engine in the Sync multi-
sequence block and add them using the corresponding add_XXX() method. Local instructions can be
added to a Sync multi-sequence block using the add_instruction() method. For each instruction
parameter, use the set_parameter() method to set it.

By adding Local statements to the sequences, you define the Local sequence that each local engine
executes in parallel with the other engines.

Find us at www.keysight.com Page 248

Chapter 8: Building an Application with the HVI API

Adding HVI Instructions
There are two types of HVI instructions:

l HVI-native instructions.

l Instrument specific instructions.

HVI-native instructions
The InstructionSet class contains the set of native instructions that can be executed within an HVI
statement, including:

l Register arithmetic.

Add / Subtract.

Assign.

l Read/write I/O trigger ports.

l Communications operations with the instrument sandbox using an HVI Host Interface.

FPGA register read/write.

FPGA array read/write.

l Action execute.

l Trigger write.

To use the HVI-native instructions, you must use the InstructionSet class. You get this from the
local Sequence class:

Python code:

Initialize loop_register
loop_reg = multi_seq_block.scope.registers["loop_register"]
awg_sequence = multi_seq_block.sequences["AWG Engine"]
instruction_a = multi_seq_block.add_instruction("loop_register = 0", 10, awg_
sequence.instruction_set.assign.id)
instruction_a.set_parameter(awg_sequence.instruction_set.assign.destination.id, loop_reg)
instruction_a.set_parameter(awg_sequence.instruction_set.assign.source.id, 0)
#
Increment pulse_counter
pulse_counter = multi_seq_block_1.scope.registers["pulse_counter"]
instruction = multi_seq_block_1.add_instruction("Increment Pulse Counter", 10, awg_
sequence.instruction_set.add.id)
instruction.set_parameter(awg_sequence.instruction_set.add.destination.id, pulse_counter)
instruction.set_parameter(awg_sequence.instruction_set.add.left_operand.id, pulse_counter)
instruction.set_parameter(awg_sequence.instruction_set.add.right_operand.id, 1)

C# code:

// Initialize loop_register
var reg = sequence.Scope.Registers[registerName];

Find us at www.keysight.com Page 249

Chapter 8: Building an Application with the HVI API

var instructionA = sequence.AddInstruction(registerName + "_assign", startDelay,
sequence.InstructionSet.Assign.Id);
instructionA.SetParameter(sequence.InstructionSet.Assign.Value.Id, value);
instructionA.SetParameter(sequence.InstructionSet.Assign.Destination.Id, reg);
//
// Increment register by 1
private void incrementRegisterBy1(ISequence sequence, string registerName, int startDelay)
{

var reg = sequence.Scope.Registers[registerName];
var instructionA = sequence.AddInstruction("Increment Pulse Counter",
startDelay, sequence.InstructionSet.Add.Id);
instructionA.SetParameter(sequence.InstructionSet.Add.LeftOperand.Id, reg);
instructionA.SetParameter(sequence.InstructionSet.Add.RightOperand.Id, 1);
instructionA.SetParameter(sequence.InstructionSet.Add.Destination.Id, reg);

}

Instrument specific instructions
Instrument specific instructions are described in the documentation for the instrument. For example,
the following code shows how to set a channel amplitude value:

Python code:

Set CH1 amplitude to 1.0 V:
instruction = multi_seq_block_1.add_instruction("Set CH1 amplitude to 1.0 V", 10,
instrument.hvi.instruction_set.set_amplitude.id)
instruction.set_parameter(instrument.hvi.instruction_set.set_amplitude.channel.id, ch1)
instruction.set_parameter(instrument.hvi.instruction_set.set_amplitude.value.id, 1.0)

C# code:

// Set CH1 amplitude to 1.0 V
instruction = multiSeqBlock1.AddInstruction("Set CH1 amplitude to 1.0 V", 10,
instrument.Hvi.InstructionSet.SetAmplitude.id);
instruction.SetParameter(instrument.Hvi.InstructionSet.SetAmplitude.Channel.id, ch1);
instruction.SetParameter(instrument.Hvi.InstructionSet.SetAmplitude.Value.id, 1.0);

Find us at www.keysight.com Page 250

Chapter 8: Building an Application with the HVI API

Using Triggers, Actions, and Events
The examples below provide an overview of how to use triggers, actions and events within an HVI
sequence.

Using Triggers
There are two typical use cases of trigger objects (previously defined by the user during system
definition). The first one is the usage of the trigger object as a wait condition inside a Wait statement:

Python code:

Add a wait statement that has a FP trigger as a condition
fp_trigger = awg_engine.triggers["fp_trigger"]
wait_condition = keysight_hvi.Condition.trigger(fp_trigger)
wait_event = awg_sequence.add_wait("wait for fp trigger", 10, wait_condition)
wait_event.set_mode(kthvi.WaitMode.TRANSITION, kthvi.SyncMode.IMMEDIATE)

C# code:

// Add a wait statement that has a FP trigger as a condition
fpTrigger = awgEngine.Triggers["fpTrigger"];
waitCondition = Condition.Trigger(fpTrigger);
waitEvent = awgSequence.AddWait("wait for trigger", 10, waitCondition);
waitEvent.SetMode(WaitMode.Transition, SyncMode.Immediate);

The second use case involves the TriggerWrite HVI Native instruction, where the trigger object can be
used to specify which electrical trigger line can be written from the HVI sequence:

Python code:

Write FP Trigger to ON value
fp_trigger = awg_engine.triggers["fp_trigger"]
trigger_write_instr = sequence.instruction_set.trigger_write
instr_trigger_ON = sequence.add_instruction("FP Trigger ON", 10, trigger_write_instr.id)
instr_trigger_ON.set_parameter(trigger_write_instr.sync_mode.id, trigger_write_instr.sync_
mode.immediate)
instr_trigger_ON.set_parameter(trigger_write_instr.trigger.id, fp_trigger)
instr_trigger_ON.set_parameter(trigger_write_instr.value.id, trigger_write_instr.value.on)

C# code:

// Write FP Trigger to ON value
var tw = sequence.InstructionSet.TriggerWrite;
var instOn = sequence.AddInstruction("Trigger On", 20, tw.Id);
instOn.SetParameter(tw.Trigger.Id, trigger);
instOn.SetParameter(tw.SyncMode.Id, tw.SyncMode.Immediate);
instOn.SetParameter(tw.Value.Id, tw.Value.On);

Find us at www.keysight.com Page 251

Chapter 8: Building an Application with the HVI API

Using Actions
User-defined actions can be executed using the HVI native instruction ActionExecute. A list of actions
action_list, can be executed simultaneously within the same instruction. The action_list object
must have been be previously defined.

Python code:

"Action Execute" instruction executes the AWG trigger from HVI
instruction = sequence.add_instruction("AWG trigger", 10, sequence.instruction_set.action_
execute.id)
instruction.set_parameter(sequence.instruction_set.action_execute.action.id, action_list)

C# code:

// "ActionExecute" instruction executes the AWG trigger from HVI
var actionArray = sequence.Engine.Actions.ToArray();
instruction = sequence.AddInstruction("AWG trigger", 10,
sequence.InstructionSet.ActionExecute.id);
instruction.SetParameter(sequence.InstructionSet.ActionExecute.Action.id, actionArray);

Using Events
The typical use case of events within HVI sequences is as a condition for a Wait Statement:

Python code:

Add a wait statement that waits for AWG CH1 queue to be empty
awg_queue_empty = awg_engine.events["Awg1QueueIsEmpty"]
wait_condition = keysight_hvi.Condition.event(awg_queue_empty)
wait_event = awg_sequence.add_wait("Wait for AWG Queue to be Empty", 10, wait_condition)
wait_event.set_mode(kthvi.WaitMode.TRANSITION, kthvi.SyncMode.IMMEDIATE)

C# code:

// adding wait for trigger
var waitTrigger = sequence.Engine.Triggers["wait_trigger"];
var waitEvent = sequence.AddWait("wait for trigger", 10, Condition.Trigger(waitTrigger));
waitEvent.SetMode(WaitMode.Transition, SyncMode.Immediate);

Find us at www.keysight.com Page 252

Chapter 8: Building an Application with the HVI API

Using FPGA Sandbox Resources
To use FPGA Resources, the sandbox must be loaded using the load_from_k7z() method specifying
the path containing the .k7z file produced compiling a project designed using PathWave FPGA. For
more information see the PathWave FPGA User Manual at PathWave FPGA . Once the sandbox is
loaded, all the HVI registers and memory maps that were inserted in the specified PathWave FPGA
project file can be accessed to be used in the FPGA sequence. Please note that the same names used
in the PathWave FPGA project must be used to access the FPGA resources. In the following example,
the register name Register_Bank_MyCounter is not arbitrary but assumed to be taken from the
PathWave FPGA project that generated the file MySandboxProject.k7z :

Python code:

sandbox = engine.fpga_sandboxes["sandbox0"]
sandbox.load_from_k7z("MySandboxProject.k7z")
counter_register = sandbox.fpga_registers["Register_Bank_MyCounter"]

C# code:

sandbox = Engine.FpgaSandboxes["sandbox0"];
sandbox.LoadFromk7z("MySandboxProject.k7z");
counterRegister = sandbox.FpgaRegisters["registerBankMyCounter"];

Find us at www.keysight.com Page 253

Chapter 8: Building an Application with the HVI API

http://www.keysight.com/find/pathwave-fpga

Write to FPGA resources
The following example shows how to write to an FPGA register and read an FPGA array. The process
in both cases is very similar:

Python code:

Write FPGA register
fpga_register = engine.fpga_sandboxes[sandbox_name].fpga_registers[register_name]
fpga_regw_instruction = sequence.instruction_set.fpga_register_write
fpga_register_write = sequence.add_instruction("my_fpga_register_write", 10, fpga_regw_
instruction.id)
fpga_register_write.set_parameter(fpga_regw_instruction.fpga_register.id, fpga_register)
fpga_register_write.set_parameter(fpga_regw_instruction.value.id, value_register)
#
Read FPGA array
memory_map = engine.fpga_sandboxes[sandbox_name].fpga_memory_maps[0]
fpga_arrayr_instr = sequence.instruction_set.fpga_array_read
fpga_array_read = sequence.add_instruction("my_fpga_array_read", time_ns, fpga_arrayr_instr.id)
fpga_array_read.set_parameter(fpga_arrayr_instr.fpga_memory_map.id, memory_map)
fpga_array_read.set_parameter(fpga_arrayr_instr.fpga_memory_map_offset.id, loop_reg)
fpga_array_read.set_parameter(fpga_arrayr_instr.value.id, value_register))

C# code:

// Write FPGA register
fpga_register = engine.fpga_sandboxes[sandbox_name].fpga_registers[register_name];
fpga_regw_instruction = sequence.instruction_set.fpga_register_write;
fpga_register_write = sequence.add_instruction("my_fpga_register_write", 10, fpga_regw_
instruction.id);
fpga_register_write.set_parameter(fpga_regw_instruction.fpga_register.id, fpga_register);
fpga_register_write.set_parameter(fpga_regw_instruction.value.id, value_register);
//
// Read FPGA array
memoryMap = Engine.fpgaSandboxes[sandbox_name].fpgaMemoryMaps[0];
fpgaArrayrInstr = sequence.InstructionSet.FpgaArrayRead;
fpgaArrayRead = sequence.AddInstruction("myFpgaArrayRead", timeNs, fpgaArrayrInstr.id);
fpgaArrayRead.SetParameter(fpgaArrayrInstr.FpgaMemoryMap.id, memoryMap);
fpgaArrayRead.SetParameter(fpgaArrayrInstr.FpgaMemoryMapOffset.id, loopReg);
fpgaArrayRead.SetParameter(fpgaArrayrInstr.Value.id, valueRegister));

Find us at www.keysight.com Page 254

Chapter 8: Building an Application with the HVI API

3. Compile Your Sequences
After writing the Sequences, you must add the command that compiles the HVI. Call the compile()
method in the Sequencer object to perform the compilation operation. The compile() method returns
the HVI instance Hvi.

Python code:

Compile HVI sequences:
try:

hvi = sequencer.compile()
print('HVI Compiled')

except keysight_hvi.CompilationFailed as err:
print(err.compile_status.to_string())
raise err

C# code:

// Compile HVI sequences:
try
{

hvi = sequencer.Compile();
Console.WriteLine("compile DONE");

}
catch (CompilationFailed err)
{

Console.WriteLine(err.CompileStatus.ToString());
throw err;

}

NOTE At this point you can no longer modify sequences, actions, events or triggers.

The property hvi.sync_resources provides information about the PXI sync resources you must reserve.

Python code:

print("This needs to reserve {} PXI trigger resources to execute".format(len(hvi.sync_
resources)))

C# code:

Console.WriteLine("This needs to reserve {} PXI trigger resources to execute".Format(len
(Hvi.SyncResources)));

If the compilation fails, the object keysight_hvi.CompilationFailed is thrown. This contains com-
pilation error messages that you can print.

Find us at www.keysight.com Page 255

Chapter 8: Building an Application with the HVI API

4. Load To Hardware
Before your compiled sequences can be executed, they must be uploaded into the HVI engines in the
instrument hardware. To upload the compiled sequences, you must use the Hvi method load_to_hw
().

Python code:

Load HVI to hardware:
Hvi.load_to_hw()
print("HVI Loaded to hardware")

C# code:

// Load HVI to hardware:
Hvi.LoadToHw();
Console.WriteLine("load DONE");

Find us at www.keysight.com Page 256

Chapter 8: Building an Application with the HVI API

5. Modify Initial Register Values (Optional)
The HVI execution can be parameterized using registers, the initial values of all registers are updated
when the run() method in Hvi is called. To modify the initial value of the registers in the HVI object,
use:

Python code:

Modify register initial value
value = 10
register_runtime = hvi.sync_sequence.scopes[0].registers[loop_register.name]
register_runtime.initial_value = value

C# code:

// Modify register initial value
var value = 10;
registerRuntime = Hvi.SyncSequence.Scopes[0].registers[loopRegister.name];
registerRuntime.initialValue = value;

Once the instrument has been loaded to hardware, you can write to the FPGA memory map.

Python code:

memory_map.write(0, 1)
memory_map.write(1, 2)
memory_map.write(2, 3)

C# code:

memoryMap.Write(0, 1);
memoryMap.Write(1, 2);
memoryMap.Write(2, 3);

Find us at www.keysight.com Page 257

Chapter 8: Building an Application with the HVI API

6. Execute Sequences
To execute the binaries, call the run() method in Hvi. The HVI can be run in a blocking or non-block-
ing mode:

Blocking mode
In blocking mode, the execution is blocked at the HVI execution code line for a fixed amount of time
specified by the timeout input parameter. If timeout = hvi.no_timeout is used as an input parameter,
the execution can be blocked until the HVI sequences finish their execution.

Python code:

hvi.run(hvi.no_timeout)

C# code:

hvi.Run(System.TimeSpan.FromSeconds(10));

Non-blocking mode
In non-blocking mode, the execution is not blocked. This enables you to initiate a second HVI
instance to run in parallel.

Python code:

Execute HVI in non-blocking mode
This mode allows SW execution to interact with HVI execution:
hvi.run(hvi.no_wait)
print("HVI Running...")

C# code:

// Execute HVI in non-blocking mode
// This mode allows SW execution to interact with HVI execution:
hvi.Run(IHvi.no_wait);
Console.WriteLine("HVI Running...");

Find us at www.keysight.com Page 258

Chapter 8: Building an Application with the HVI API

While and after execution is finished, you can read or write registers and execute the binaries again.

Python code:

Modify register initial value
value = 20
register_runtime = hvi.sync_sequence.scopes[0].registers[loop_register.name]
register_runtime.initial_value = value
hvi.run(hvi.no_timeout)

C# code:

// Modify register initial value
ver value = 20;
registerRuntime = hvi.SyncSequence.Scopes[0].Registers[loopRegister.name];
registerRuntime.initialValue = value;
hvi.Run(IHvi.NoTimeout);

Find us at www.keysight.com Page 259

Chapter 8: Building an Application with the HVI API

7. Release All Resources
To release all HVI resources and enable other applications or HVI instances to use the hardware, you
must release the hardware. Your application cannot perform any operation with the hardware
resources in the HVI after this point.

Python code:

Unlock and release hardware resources:
hvi.release_hw()
print("Releasing Hardware...")

C# code:

// Unlock and release hardware resources:
hvi.ReleaseHw();
Console.WriteLine("Releasing Hardware...");

Find us at www.keysight.com Page 260

Chapter 8: Building an Application with the HVI API

Chapter 9: HVI Time Management and Latency
This chapter describes HVI time management and latency. It introduces the concepts involved and
describes the timing and latencies of statement execution, how they impact the overall execution tim-
ing of sequences, and the constraints on the start delay and duration of statements. It also provides
latency information for the different statements and instructions.
This chapter contains the following sections:

l About Time Management and Latency Concepts

l Duration Property of Statements

l Synchronization Clocks, Signals, and Modes

l Sync Statement Timing

l Local Flow-Control Statement Timing

l Local Instruction Timing

l Minimum Start Delay Calculation for Flow-Control and Sync Statement

l Sync Statement Timing Tables

l Local Flow-Control Statement Timing Tables

l Local Instruction Statement Timing Tables

Find us at www.keysight.com Page 261

Chapter 9: HVI Time Management and Latency

About Time Management and Latency Concepts
This section introduces the main concepts, and additional parameters and values involved in HVI time
management. It includes the following sections:

l Timing Concepts Overview.

l Additional Timing Concepts and Limitations.

Timing Concepts Overview
The following list describes the main concepts that apply to all statement types:

HVI Engine Clock

This is the clock at which an HVI engine is running on.

HVI Engine Cycle

An engine cycle is the timeframe in which the HVI engine can fetch, dispatch or execute
instructions. One engine cycle is equal to the period of the engine clock. For example, for an
engine that runs at 100 MHz, the duration of an engine cycle will be equal to 10 ns.

HVI Common Clock

This is not a real clock, it is a definition to calculate timing for Sync Statements within HVI
sequences. It can be seen as a clock that has its rising edge aligned with all HVI Engines clocks
rising edges.

Therefore, its frequency is equal to the GCD of the frequencies of all the HVI Engine clocks:

HVI_Common_ClockFrequency = GCD{HVI_Engine_Clock_1Frequency, HVI_Engine_Clock_2Frequency,

..., HVI_Engine_Clock_NFrequency}, where N is the number of engines added to HVI.

The period can be calculated in two ways:

l as the LCM of HVI Engine Cycles (the periods of all the HVI Engine clocks):

HVI_Common_ClockPeriod = LCM{HVI_Engine_Clock_1Period, HVI_Engine_Clock_2Period, ...,

HVI_Engine_Clock_NPeriod}, where N is the number of engines added to HVI

l or, just the inverse of the HVI Common Clock frequency:

HVI_Common_ClockPeriod = 1/ HVI_Common_ClockPeriod

For example, if the engines added to HVI have the following HVI Engine Clock frequencies
{100MHz, 187.5MHz, 300MHz}, the HVI Common Clock frequency/period will be:

HVI_Common_ClockFrequency = GCD{100MHz, 187.5MHz, 300MHz} = 12.5MHz,

Find us at www.keysight.com Page 262

Chapter 9: HVI Time Management and Latency

HVI_Common_ClockPeriod = 1/ HVI_Common_ClockFrequency = 80ns

When calculating Sync Statement timing, the HVI Common Clock period is used to round some
timing magnitudes to the next HVI Common Clock period (below ncc stands for next common
clock):

roundncc(TimeValue) = ceil(TimeValue / HVI_Common_ClockPeriod) * HVI_Common_ClockPeriod

NOTE When working with fractional or periodic time values or periods to avoid problems
with the numerical precision it may be better to use the frequency value instead
following this simple equation:

HVI_Common_ClockFrequency = 1/ HVI_Common_ClockPeriod

Start Time of HVI execution

This is the time 0 for the HVI execution. It always matches the rising edge of the Sync signal (in
PXIe systems aligned with the PXIe-SYNC100 signal).

Start Time of statement execution

The relative time in nanoseconds from the HVI Execution Start Time to the start of the execution of
a statement.

Fetch time

This is the time interval required by the HVI engine to fetch and dispatch a statement for pro-
cessing. The Fetch time consumes HVI engine execution cycles. A statement may take several
HVI engine cycles to complete the fetch before processing can start. The number of cycles a
fetch takes depends on the statement or instruction characteristics, for instance, the number of
parameters.

Start Delay

This is the user-defined delay value from the Start Time of the previous statement to the Start
Time of the current statement. This value can be expressed in seconds or one of its fractions,
down to picoseconds. Generally, the valid range is from 0 to +infinity, however the exact range
and granularity of this value is defined by the following:

The acceptable values are multiples either of the HVI Engine Clock period (in local statements) or, of the
HVI Common Clock period (in sync statements).
o For example, for a local statement for an HVI Engine with Clock frequency of 100MHz, the clock period

is 10 ns, so the acceptable values are the multiples: 0 ns, 10 ns, 20 ns, etc.

Find us at www.keysight.com Page 263

Chapter 9: HVI Time Management and Latency

o As another example, for a sync statement, if there are three engines added to HVI with the frequencies
{100MHz, 187.5MHz, 300MHz}, the HVI Common Clock frequency will be 12.5MHz and the period is
80 ns, so the acceptable values are the multiples: 0 ns, 80 ns, 160 ns, etc.

o The acceptable margin of the value is defined in the Error and Warning Margins section below.

The minimum possible value is affected by the Start-Latency of the current statement and the End-
Latency of the previous statement. Formulas to calculate the minimum values are provided in the Timing
Tables.

The maximum possible value is only limited by the actual representation of the value in hardware and soft-
ware. While this limit in hardware is instrument-dependent, in software it is defined as: The maximum
value that can be represented in a signed 64-bit integer value.

The following sections explain how to calculate the Start Delay. When compiling the sequence,
the compiler will report any timing violation and suggest a closer correct value.

Execution Time

This is the time interval from the Start time until the End time of the statement. This interval is
determined by constraints and inherent limits of the instrument, such as propagation delays and
resource availability. Sync and Flow-control statement execution cannot overlap with other
statements, so in these cases the execution time must be added to the timing calculation. The
Start delay of the next statement from a flow-control or Sync statement is measured from the
end-time of the statement.

Sequence Time

Sequence Time is the sum of all the Start Delay of all the statements in a sequence, plus
the Execution time values for any flow-control or Sync statements.

Internal Sequences

Some Sync and all Local flow-control statements are broken into internal sequences for exe-
cution in HVI engines.

Duration Property

The Sync statements and Local flow-control statements If and While include a duration property
that you can set. The duration property enables you to specify the time interval that a statement
takes to execute.

Find us at www.keysight.com Page 264

Chapter 9: HVI Time Management and Latency

The following diagram shows these concepts in an HVI diagram:

Find us at www.keysight.com Page 265

Chapter 9: HVI Time Management and Latency

Additional Timing Concepts and Limitations
There are several additional concepts and parameters you must be aware of to calculate timing,
especially for specifying Start delays and the Duration of statements.

Even though the knowledge of these concepts can assist you to understand HVI timing and
accurately specify proper values for these timing properties, it is not mandatory to use them at
development time. This is because all limitations are checked by HVI at the time of compilation and
any violation is reported with information provided about how it can be resolved. This enables you to
focus on its sequence creation without worrying about complex timing calculations.

Latency Parameters
The latency parameters are defined for all Sync and flow-control statements. They impose a minimum
value to the Start delays of the statements used in a sequence:

Start-Latency

This is the minimum number of clock cycles a Sync or flow-control statement requires to
start execution.

Entry-Latency

This is the minimum number of clock cycles a flow-control statement requires to start the
execution of the internal sequence. This imposes a minimum value on the Start delay of the
first statement of the internal sequence.

End-Latency

This is the minimum number of clock cycles a statement requires to exit its execution, before
another statement can be executed.

Iteration Latency (loop statements)

For loop statements only, this is the minimum number of cycles a loop statement requires to
start another execution of the internal sequence after one iteration is completed. This
imposes a minimum value on the start delay of the first statement of the internal sequence.

The exact definitions of Start latency, Entry latency and End latency depend on the type of statement.
Latency values are used in Sync Statement Timing and Local Instruction Timing . The Latency
values are listed in Sync Statement Timing Tables , Local Flow-Control Statement Timing Tables and
Local Instruction Statement Timing Tables .

Find us at www.keysight.com Page 266

Chapter 9: HVI Time Management and Latency

The following diagram shows the Start, Entry and End Latencies and how they relate to Start delays:

Error and Warning Margins Related to Timing Resolution
PathWave Test Sync Executive implements a policy for error and warning margins when you specify
the timing for a Start delay or a duration.

The following table shows example values for an instrument with a 300MHz clock (3.3ns clock
period):

Range Type Range Example Description

No Error or
Warning

±10ps 3.323ns to 3.343ns
If you set a value with ±10ps error from the exact clock
period multiplier value, no error or warning is generated.

Warning ±100ps
3.233ns to 3.323ns, or
3.343ns to 3.433ns

If you set a value between ±10ps and ±100ps of the exact
clock period multiplier value, a warning is generated.

Error >100ps
0.000ns to 3.233ns, or
3.433ns to 6.566ns

If you set a value with more than ±100ps error from the exact
clock period multiplier value, an error is generated.

The following diagram shows an example where the exact clock period multiplier value is 3. 3 ns, this
is the same as the example in the table.

Find us at www.keysight.com Page 267

Chapter 9: HVI Time Management and Latency

To calculate the margins for other period multiplier values, warnings are +-10ps from the exact value
and errors are +-100ps away from the exact value.

Find us at www.keysight.com Page 268

Chapter 9: HVI Time Management and Latency

Duration Property of Statements
The Sync statements and Local flow-control statements If and While include a duration property that
you can set. The duration property enables you to specify the time interval that a statement takes to
execute.

This value can be expressed in seconds or one of its fractions, down to picoseconds. Generally, the
valid range is from 0 to +infinity, however the exact range and granularity of this value is defined by
the following:

The acceptable values are multiples either of the HVI Engine Clock period (in local statements) or, of the
HVI Common Clock period (in sync statements).
o For example, for a local statement for an HVI Engine with Clock frequency of 100MHz, the clock period

is 10 ns, so the acceptable values are the multiples: 0 ns, 10 ns, 20 ns, etc.
o As another example, for a sync statement, if there are three engines added to HVI with the frequencies

{100MHz, 187.5MHz, 300MHz}, the HVI Common Clock frequency will be 12.5MHz and the period is
80 ns, so the acceptable values are the multiples: 0 ns, 80 ns, 160 ns, etc.

o The acceptable margin of the value is defined in the Error and Warning Margins section below.

The minimum possible value is affected by internal operations of the statement. For statements that con-
tain internal sequences, the minimum is affected also by the Start-Delay and the Duration of the internal
statements. Formulas to calculate the minimum values are provided in the Timing Tables.

The maximum possible value is only limited by the actual representation of the value in hardware and soft-
ware. While this limit in hardware is instrument-dependent, in software it is defined as: The maximum
value that can be represented in a signed 64-bit integer value.

NOTE For the loop statements Local while and Sync while, the duration property specifies
the execution time of 1 iteration. This means that the overall execution time of a
while statement depends on the number of iterations that are executed. The total
execution time is duration multiplied by the number of iterations.

If the duration is set to a fixed-time interval, then the execution time of the statement shall match the
value specified in the duration property. If this time cannot be matched an error is generated. For
example, this can happen with an if-statement when more time is required to complete the state-
ments inside a branch than the duration specified.

The duration property cannot be set to fixed value if there is a flow control statement inside that has
an unknown duration.

If the duration is set to a minimum-time interval, then the execution time of the statement is the min-
imum possible given by the statements inside.

NOTE By default, if not specified, duration property is set to minimum-time.

Find us at www.keysight.com Page 269

Chapter 9: HVI Time Management and Latency

The following diagram shows how the duration property is applied to a Sync multi-sequence block:

Python code for the preceding diagram:

fixed_duration_A = time.Duration(xxx)
mse1 = sequencer.sync_sequence.add_sync_multi_sequence_block('mse1', start_delay_A)
mse1.duration = fixed_duration_A
sequence = mse1.sequences['Engine1']
instructionA = sequence.add_instruction("instructionA", start_delay_B, sequence.instruction_
set.action_execute.id)
instructionB = sequence.add_instruction("instructionB", start_delay_C, sequence.instruction_
set.action_execute.id)

NOTE It is not allowed to set the duration property of a Statement A to a fixed-time if the
Statement A contains a flow control statement with an unknown duration (e.g.
WaitEvent, WaitTime, While, etc.). Doing so will result into an error at compilation.

Find us at www.keysight.com Page 270

Chapter 9: HVI Time Management and Latency

As an example, the following diagram shows a while loop that generates an error if the user would try
to set to a fixed-value the duration of the SyncMultiSequenceBlock that contains a local While
statement:

Find us at www.keysight.com Page 271

Chapter 9: HVI Time Management and Latency

Synchronization Clocks, Signals, and Modes
To correctly manage timing without jitter, the HVI needs information about all of the clocks in each
instrument. For instruments that support HVI technology and are included in the HVI, the clocking
information is already available and handled transparently. For instruments that do not support HVI
technology, you must specify the instrument clocking constraints.

HVI Clocks
HVI supports the definition of the following types of clocks:

Non-HVI system clocks

Instrument system clocks are those clocks used by the instrument that do not directly impact the
operation of the specific feature that the HVI must trigger. System clocks are used by the HVI to
determine the Sync_Base period.

Non-HVI core clocks

Core clocks are instrument clocks that directly impact the operation of the specific feature that
the HVI must trigger. Core clocks are used by the HVI to determine both the Sync and the Sync_
Base period.

Sync and Sync_Base Signals
HVI uses different periodic digital signals for synchronization purposes. The definition of those digital
signals depends on platform and instruments signals. Platform signals are the CLK100 and CLK10 sig-
nals in a PXI platform such as a PXI chassis. Instruments have different clock signals inside that are
classified as core clocks or system clocks.

Platform and instrument clock signals contribute to define the HVI Sync signals according to the fol-
lowing definitions.

The period (and inversely, also the frequency) of the Sync signal is defined as:

Sync_Period = N x LCM(all instrument core clocks), N such that NxLCM(.) ≥ Phys-

icalPropagationDelay

The period (and inversely also the frequency) of the Sync_Base signal is defined as:

Sync_Base_Period = LCM(CLK10, Sync_Period, all instrument system clocks)

where, in the above formulas, LCM(.) stands for the Least Common Multiple operation.

Both Sync and Sync_Base periods must be equal to or greater than the Physical Propagation Delay
value for the relevant multi-chassis topology, these are given in the following table. If the LCM(all
instrument core clocks) is smaller than that, then you must take the next multiple after the LCM(.)
that is equal to or greater than the Physical Propagation Delay. The next multiple is the actual Sync
Period value for your system. Once that Sync Period value is obtained, you can use it in the Sync_

Find us at www.keysight.com Page 272

Chapter 9: HVI Time Management and Latency

Base LCM formula to estimate the Sync_Base Period, which is automatically also greater than the
Physical Propagation Delay.

Physical Propagation Delay
The Physical Propagation Delay corresponds to the amount of time (expressed in nanoseconds) that a
PXIe trigger needs to cover the path between any given pair of segments in a topology. This value is
used when running Sync statements because it provides information about how long the execution
signaling between modules takes.

The topology is defined by the number of chassis in your system and how they are connected to each
other with the System Sync cabling.

The System Sync cabling distributes clocks, triggers, and data from the Leader SSM to the followers,
possibly going through intermediate followers. The number of System Sync hops between the Leader
SSM and each Follower determines what is known as the SSM level. The Leader is SSM level 1, all
SSMs connected with 1 hop to the Leader SSM are Level 2 SSMs, those with 3 hops are Level 3
SSMs, and so on.

In the case of the M9033A SSM, there can be up to 4 followers connected to a single SSM, so there
can be up to 5 chassis in system with 2 SSM levels. If you connect additional SSMs to the level-2
SSMs, this creates a 3rd level. In this arrangement you can add one additional chassis, this is because
the PathWave Test Sync Executive 2022 release supports up to 6 chassis.

Find us at www.keysight.com Page 273

Chapter 9: HVI Time Management and Latency

The following diagram shows a 6 chassis system with 3 SSM levels:

The following tables shows the Physical Propagation Delay values for different numbers of chassis
and SSM levels:

Number of
Chassis

Number of SSM
levels

Physical
Propagation delay

1,2 (ns)
Notes

1 chassis - 100

2 chassis - 200

3 chassis - 300

>3 chassis 2 SSM levels 300 Maximum 5 chassis

>3 chassis 3 SSM levels 400
Maximum 6 chassis with PathWave
Test Sync Executive 2022

Find us at www.keysight.com Page 274

Chapter 9: HVI Time Management and Latency

1 Upper bound on the time it takes for a PXIe trigger to travel from the furthest most segments

2 Ensure your M904x chassis has version 5 or higher firmware revision for the Left and Right Trig-
ger Bridges. See the hardware revision in your chassis Software Front Panel (SFP).

Sync Period Calculation
The Sync Period must always be greater than or equal to the Physical Propagation Delay. To obtain
the actual Sync Period value, you first calculate the Least Common Multiple (LCM) of all HVI and
non-HVI core clock periods added to the System Definition. Secondly, you compare the LCM with the
Physical Propagation Delay and take the next multiple of the LCM that is greater than or equal to
the Physical Propagation Delay. This is what was also conveyed by the previous Sync Period formula.

The base unit of time measurement on an HVI engine is the period of its own HVI Engine Clock, but
the Physical Propagation Delay is expressed in nanoseconds. To be able to use it, each engine must
express it in Clock cycles, so a conversion is required:

Propagation_delay_cycles = Round(Physical_Propagation_Delay/Hvi_Engine_Clock_period)

For example. to calculate the Sync frequency for instruments A and B use the formula:

Sync = LCM(all instrument core clocks)

Instrument A Core clock = 100 MHz, period = 10 ns

Instrument B Core clock = 300 MHz, period = 3.333 ns.

Since 10ns is a multiple of 3.333 ns, the LCM is 10ns. If your instruments are all in 1 chassis, the Phys-
ical Propagation Delay constrained by the propagation delay is 100 ns (per the values in the previous
table). Therefore, you need to take the next multiple of the LCM = 10 ns which is also equal or greater
than 100 ns. This gives the final value of the Sync Period as 100 ns and the Sync signal frequency is
10MHz.

NOTE You can find the instrument System and Core clocks in the documentation of each
instrument.

Find us at www.keysight.com Page 275

Chapter 9: HVI Time Management and Latency

Synchronization Modes
You can configure the synchronization mode. This is used, for example, for generating a trigger value
or waiting for an event.

The following modes are supported:

IMMEDIATE

The trigger or action is issued immediately, with no need to wait for any common synchronization
clock. For the Wait-For-Event, the HVI execution continues immediately, as soon as the event is
received.

SYNC

The trigger or action is issued at the first edge of the Sync signal. For the Wait-For-Event, the
HVI execution continues at the first edge of the Sync signal, following the event arrival time.

SYNC_BASE

The trigger or action is issued at the first edge of the Sync_Base signal. For the Wait-For-Event,
the HVI execution continues at the first edge of the Sync_Base signal, following the event arrival
time.

Find us at www.keysight.com Page 276

Chapter 9: HVI Time Management and Latency

Sync Statement Timing
This section describes Sync statement timing. It contains the following sections:

l Global Sync Sequence Start

l About Sync Statement Timing.

l Sync Multi-Sequence Block Timing.

l Sync While Timing.

l Sync Register-Sharing.

l Sync FPGA Data-Sharing.

Find us at www.keysight.com Page 277

Chapter 9: HVI Time Management and Latency

Global Sync Sequence Start
The Global Sync Sequence start is the timing point when the HVI sequence will start executing, at the
same time, in all the engines added in the SystemDefinition. This timing point is aligned with the
arrival of the Sync signal.

About Sync Statement Timing
Sync statements consume HVI engine execution time and cannot overlap their execution with other
statements. Their start and end is synchronized and happens at the same HVI Common Clock cycle
across all the engines participating in the system. The Start delay of a Sync statement is measured
from the end of previous Sync statement to the start of the current one.

The following diagram shows the timing between a number of Sync Statements including a Sync
register-sharing statement and Sync multi-sequence block statement.

The diagram shows two Sync Statements A and B. Sync Statement B is a container for two further
Sync Statements: Sync register-sharing and Sync multi-sequence block. The times indicated
are Start Delay A, Start Delay B, Start Delay C, T1, and T2.

The time between the end of Sync Statement A and the start of Sync register-sharing is Start Delay A
+ Start Delay B .

The time between the end of Sync register-sharing and the start of Sync multi-sequence
block is Start Delay C.

Find us at www.keysight.com Page 278

Chapter 9: HVI Time Management and Latency

Sync register-sharing and Sync multi-sequence block timing:

Sync Multi-Sequence Block Timing
In a synchronized multi-sequence block, you can define the statements that the HVI engines execute
in parallel with other engines.

Local sequences start and end their execution within the Sync multi-sequence block synchronously.

Find us at www.keysight.com Page 279

Chapter 9: HVI Time Management and Latency

HVI automatically calculates the execution time of each local sequence and adjusts the execution of
all local sequences within the Sync multi-sequence block. This is so that all the sequences within the
Sync multi-sequence block can end together deterministically. The final time is calculated
automatically.

There are two cases for the Sync-Point that are treated in different ways by HVI:

l Timed-Sync: When the execution time is known at HVI compilation time for all Local sequences
within the Sync multi-sequence block.

l Triggered-Sync: When the execution time is unknown at HVI compilation time for one or more
Local sequences within the Sync multi-sequence block.

Timed-Sync (Sync multi-sequence block containing Local sequences with
known total execution time)
For Sync multi-sequence blocks that contain instructions or flow-control statements with execution
times that are known at HVI compilation time, the HVI compiler accounts for the different sequence
execution times during compilation and then adjusts the final times. This ensures all of the Local
sequences reach the end of the Sync multi-sequence block at the same time.

When the execution time (duration property) of the Sync multi-sequence block is not specified, the
compiler adjusts the total execution time to be the minimum possible to allow the execution of the
longest Local sequence. Note that in the case that the Engines participating in the system do not

Find us at www.keysight.com Page 280

Chapter 9: HVI Time Management and Latency

share the same frequency, HVI will automatically adjust the duration (or execution time) of the Sync
Multi-Sequence Block statement to a multiple of the HVI Common Clock.

For the example in the diagram below, the total time for Engine A is 400 ns. HVI calculates the times
required for the other engines to finish at the same time. For Engine B this is 390 ns, for Engine K this
is 90 ns.

Using the previous example but assuming that the Engine A runs at 200 MHz, while the rest engines
run at 100 MHz, the common clock cycle will happen at multiples of 10 ns. In the following diagram
we can notice two things:

l The duration of the longest sequence (Engine A) is 395 ns, which is not a multiple of a common clock cycle.
Therefore, HVI will adjust the end of the Sync Multi-Sequence Block to the next Common Clock Cycle at 400
ns and then make sure the sequences of all the Engines match this time.

l The start of the end-latency of the statement will not start from the start time (395ns from the beginning of
the Sync Multi-Sequence Block statement) of the last statement of the longest sequence (Engine A) because
it is not at a common clock cycle. Rather, it will start from the next Common Clock Cycle, at 400 ns.

Sync multi-sequence block with a specific execution time (duration property)
When the execution time (duration property) of the Sync multi-sequence block is specified, the
compiler verifies that the specified execution time is enough to allow the execution of the longest

Find us at www.keysight.com Page 281

Chapter 9: HVI Time Management and Latency

Local sequence, if not an error is generated. Note that in the case that the Engines participating in
the system do not share the same frequency, the specified execution time (duration property) must be
a multiple of the HVI Common Clock.

In the following diagram, the times of the instructions and the delays between them are known, so the
timing between them and for the entire block can be calculated. In this case the total time is specified
at 750 ns. The HVI calculates the times required for all the other engines to finish at the same
time. For Engine A this is 350 ns, for Engine B this is 740 ns, for Engine K this is 440 ns.

Triggered-Sync (Sync multi-sequence block containing Local sequences with
unknown execution times)
In some cases, one or more of the local sequences within the Sync multi-sequence block include a
local flow-control statement that has an execution time that is unknown at HVI compilation time. At
the point in the Local sequence where the unknown execution time is encountered, the Local
sequence becomes de-synchronized and an active triggering process is required at the end of the
Sync multi-sequence block to re-synchronize the execution of all HVI engines. This guarantees that
all the HVI engines then continue execution at exactly the same point after the Triggered-Sync point.
The execution resumes in all HVI engines at the same time, aligned with a sub-sequent Sync pulse,
which forces the execution to be aligned to a multiple of the Sync period of the main Sync signal.
Triggered-sync points require the use of trigger resources assigned in the SyncResources property in
the SystemDefinition instance and the main Sync signal.

Possible cases of the unknown execution time is when one of the Local sequences contain:

l A Wait-for-time statement with a register defining the wait time at runtime.

l A Wait-for-event statement.

l A While statement.

l An If statement with unmatched branches, that take different execution times.

NOTE Note that specifying the execution time (duration property) in this scenario is not
allowed and will lead to a compilation error.

Find us at www.keysight.com Page 282

Chapter 9: HVI Time Management and Latency

Triggered-Sync delay
A triggered-sync point adds a delay to the sequence timing that has four parts. Two of them are
constant and the other two vary depending on the last statement and its position compared to the
Sync pulse time. The formula to calculate the delay is:

triggered_sync_delay = end_latency + sync_overhead + edge_offset + sync_period

where:

l end_latency is the End-latency of the last statement before the resync. If the last statement is a local
instruction, this is equal to its Fetch time.

l sync_overhead is constant per instrument. Its value is 3 cycles.

l edge_offset is the time interval from the end of the sync_overhead to the sync-pulse edge. This time can
vary depending on the position of the last statement compared to the Sync pulse time.

l sync_period is constant per configuration and is calculated by the equation defined previously.

Example of timing management with Triggered-Sync point
The following diagram shows an example with a simple sequence where the triggered-sync point is
marked in red. The triggered-sync point is at the end of the Sync multi-sequence block and it is
required because there is a WaitTime statement and the time for this cannot be determined at
compile time.

The following table shows the Variables and their execution times:

Find us at www.keysight.com Page 283

Chapter 9: HVI Time Management and Latency

Variable Value Description

Ta 120 ns Start delay of Sync-while statement

Tb 270 ns Start delay of Sync multi-sequence block

Tc 50 ns Start delay of Action A instruction

Td 30 ns Start delay of Wait-for-time statement

Reg0 4 The register used for the Wait-for-time

TWAIT 40 ns The total wait time based on the value on the value of Reg0

TEND 10 ns End-latency of Wait-for-time statement

Tsync_period 100 ns Sync period for 1 chassis

Tsync_overhead 30 ns Sync overhead

The following diagrams shows the execution timeline for the first 3 iterations of the sequence shown
in the previous diagram, it is important to note that the first triggered-sync aligns the execution with
the Sync pulse and consequently the duration (or execution time) for the following cycles will be
different, this effect is in some cases seen as a skew (or jitter) in the 1st cycle. A way to eliminate the
first cycle variation is to adjust the sync while start time.

Find us at www.keysight.com Page 284

Chapter 9: HVI Time Management and Latency

Jitter when waiting for external events or triggers
The triggered-sync is controlled by the Sync signal. This means that repeated executions, for
example, inside a Sync While loop of an Sync multi-sequence block that contains a WaitEvent, may
show jitter of the Sync multi-sequence block actions with respect to the event that is in the WaitEvent
condition. In these cases, the maximum skew variation (or jitter) is the maximum time difference
between Trigger events and the Sync Period. The Variable skew (or jitter) value can be:

l 0 => when the trigger events have the same time delay with respect to the Sync signal.

l Sync period => When the trigger events are asynchronous and at a rate that is not multiple of the Sync
period.

l If more than one synchronization signal is used (Sync, Sync_Base, etc.), the largest will dominate:

A Sync multi-sequence block always aligns its start to the Sync signal, so at least the jitter for an
asynchronous event will be equal to the Sync period.

For example, if you also re-sync the Wait-For-Event with the Sync_Base (by using the SYNC_BASE
SyncMode), and the trigger is asynchronous to the Sync_Base, then the jitter will be equal to Sync_Base.

l The Sync and Sync_Base periods depend on any Non-Hvi clocks (core/system) added to the
systemDefinition using the HVI API.

Find us at www.keysight.com Page 285

Chapter 9: HVI Time Management and Latency

Sync While Timing
For the Sync flow-control Statement Sync while, the timing is different compared to other Sync
statements. The Sync while statement continues operation while a condition is met. It stops
executing when the condition is no longer met.

The following diagram shows a Sync while statement with other Sync statements. The time for an
iteration of Sync while is T2 x N, where T2 is the time per iteration and N is the number of iterations.
The time cannot be indicated exactly on a diagram or in code because the number of iterations is not
known until runtime.

The time for the containing statement Sync statement A cannot be indicated because it contains a
flow-control statement. This is indicated by the dotted line and the time indicated as T min.

Find us at www.keysight.com Page 286

Chapter 9: HVI Time Management and Latency

Sync Register-Sharing
The Sync register-sharing statement execution time must be accounted for when calculating the
Sync sequence timing.

The following diagram shows Sync register-sharing statement followed by a Sync multi-sequence
block.

For the execution time see Sync Statement Timing Tables.

Find us at www.keysight.com Page 287

Chapter 9: HVI Time Management and Latency

Sync FPGA Data-Sharing
The Sync FPGA data-sharing statement enables you to share data between the FPGA Sandboxes on
different instruments in the same or different chassis.

Estimating the execution time of a Sync FPGA Data-Sharing Statement
Sync FPGA data-sharing execution time depends on several factors:

l Instrument specific delay characteristics.

l The topology of the system, for instance, the number of chassis and the System Sync connectivity topology
across chassis.

l Location of the source and destination instruments, such as if the data transfer happens in a single chassis or
through multiple chassis.

l The amount of data be transferred.

l The scheduling of multiple transactions.

In order to assist you estimate of the execution time, the following examples are provided that
abstract some of the complexities, these should enable you to make good estimates of execution
time.

Find us at www.keysight.com Page 288

Chapter 9: HVI Time Management and Latency

Latency Equations
To estimate the Sync FPGA data-sharing statement execution time, a number of equations are
provided below.

The following image shows the example topology used in the examples:

The formula to calculate the time it takes to send a single nibble (4-bits) of data from Instrument 1 to
Instrument 2 (in the same chassis) is:

Tsingle_chassis = Ttx_latency + Tlink_latency+ Tssm_latency + Tlink_latency + Trx_latency = Ttx_latency +

2*Tlink_latency + Tssm_latency + Trx_latency

The formula to calculate the time it takes to send a single nibble of data from Instrument 1 to
Instrument 3 (in a different chassis) is:

Ttwo_chassis = Ttx_latency + Tlink_latency + Tssm_latency + Tlink_latency + Tssm_latency + Tlink_latency + Trx_

latency = Ttx_latency + 3*Tlink_latency + 2*Tssm_latency + Trx_latency

To generalize this to N number of SSMs hops, the formula is:

TN_chassis = Ttx_latency + (NSSM+1)*Tlink_latency + NSSM*Tssm_latency + Trx_latency

Since the previous equations are for sending only one nibble of data, if you want a transaction with
more bits, this will be split into multiple of 4-bit transactions happening one after the other on
consecutive clock cycles. For N number of data bits (which must always be multiple of 4-bits), the
equation is:

Ttransaction_duration = Ttx_latency + (NSSM+1)*Tlink_latency + N_SSM*Tssm_latency + Trx_latency + Nnum_bits/4

Find us at www.keysight.com Page 289

Chapter 9: HVI Time Management and Latency

Constants Estimation
In the formulas above, the constants of the different latency equations are instrument-specific. See
your instrument or System Synchronization Module (SSM) documentation for the exact latency
values. The following values are are reference values for the product-specific latencies:

Variable
Reference Value

(Clock Cycles)

Ttx_latency 4

Trx_latency 3

TSSM_latency 4

In addition to the instrument/SSM specific latency the calculations must account for the link latency
that depends on the link characteristic (PXIe backplane or System Sync/Link cable length) and
receiving instrument implementation. See your instrument or SSM documentation for the exact
latency values. The following is a reference value for the link latencies:

Variable
Reference Value

(Clock Cycles)

Tlink_latency 12

Example Scenarios
As described above, a Sync FPGA data-sharing statement can contain multiple transactions. A
transaction can go to one or multiple destinations, that is, deliver the same data to multiple Rx
endpoints, but independently of the number of destinations, a transaction has only one transmission
point and operation. PathWave Test Sync Executive optimizes the Sync FPGA data-sharing statement
timing by parallelizing as much as possible the execution of different transactions. Depending on the
number of transactions, the system topology and the overlap in terms of sources and destinations of
the different transactions, the level of parallelization can vary. In the following examples we show
some typical use cases.

Find us at www.keysight.com Page 290

Chapter 9: HVI Time Management and Latency

Example 1: Single transaction with multiple destinations
The simplest use case for Sync FPGA data-sharing statement consists of a single data sharing
transaction. A transaction can go to one or more destinations, that is, deliver data to multiple Rx
endpoints, but independently of the number of destinations, a transaction has only 1 Tx endpoint and
operation. The execution time for a single-transaction Sync FPGA data-sharing statement is given by
the time required to complete the final Rx operation, where tr1 is the transaction, rx1, rx2 ...rxN are
the Rx endpoints:

Texecution = max(Ttr1_rx1_end, Ttr1_rx2_end,, Ttr1_rxn_end)

The following example shows how to calculate the Sync FPGA data-sharing statement execution time
for a single-transaction (tr1) with 2 destinations (rx1 and rx2):

The following code snippet shows a Sync FPGA data-sharing statement sharing to two destinations:

SyncFpgaDataSharing definition with a single transaction to 2 destinations (Rx)
#
Transaction 1 (tr1)
instrument1_tx = keysight_hvi.FdsPortAddress(source_port, source_address)
instrument2_rx1 = keysight_hvi.FdsPortAddress(dst1_port, dst1_address)
instrument3_rx2 = keysight_hvi.FdsPortAddress(dst2_port, dst2_address)
fpga_data_sharing_st.transactions.add(instrument1_tx, [instrument2_rx1 , instrument3_rx2], num_
bits_to_share)

The following diagram shows the timing (execution starts at end of cycle 0).

tr1_tx refers to the transmission of the data from the transmission port.

tr1_rx1 and tr1_rx2 refer to reception of the data at the two receive ports.

Find us at www.keysight.com Page 291

Chapter 9: HVI Time Management and Latency

tr1_rx1_duration is the total time from the beginning of transmission tr1_tx to the end of reception of
the data at receive point 1 (tr1_rx1_end).

tr1_rx2_duration is the total time from the beginning of transmission tr1_tx to the end of reception of
the data at receive point 2 (tr1_rx2_end).

Single Tx operation start:

Ttr1_tx_start = Texecution_start = 0 cycles

Ttr1_tx_end = Ttr1_tx_start + Nnum_bits/4 = 32/4 = 8 cycles

Timing for tr1_rx1:

Ttr1_rx1_duration = Ttx_latency + (NSSM+1)*Tlink_latency + NSSM*Tssm_latency + Trx_latency + Nnum_

bits/4 = 4 + (1+1)*12+1*4+3+32/4 = 43 cycles

Ttr1_rx1_end = Ttr1_tx_start + Ttr1_rx1_duration = 0 + 43 = 43 cycles

Timing for tr1_rx2:

Ttr1_rx2_duration = Ttx_latency + (NSSM+1)*Tlink_latency + NSSM*Tssm_latency + Trx_latency + Nnum_

bits/4 = 4 + (2+1)*12+2*4+3+32/4 = 59 cycles

Ttr1_rx2_end = Ttr1_tx_start + Ttr1_rx2_duration = 0 + 59 = 59 cycles

The execution time of the Sync FPGA data-sharing statement is:

Texecution = max(Ttr1_rx1_end, Ttr1_rx2_end) = max(43,59) = 59 cycles

NOTE Note that if only one destination is used, for instance only Instrument 2, then
Texecution = Ttr1_rx1_end = 43 cycles

Find us at www.keysight.com Page 292

Chapter 9: HVI Time Management and Latency

Example 2: Multiple simultaneous transactions
When sending data from the same transmitter, the transactions are executed in series. This means
that the next transaction starts transmission as soon as the last nibble of the previous transaction is
transmitted. Therefore, to estimate the execution time of the Sync FPGA Data-Sharing statement,
you must delay the individual transactions accordingly, then compare their end times and you pick
the highest one.

In this example there are two different transactions originating from the same Tx port in Instrument 1.
In the first transaction (tr1), 32 bits is sent from Instrument1 to instrument2 and in the second
transaction (tr2), a different data packet of 32 bits is sent from Instrument1 to Instrument3. At the
same time as the first transaction, Instrument2 does a separate transaction3 (tr3), sending 32 bits of
data to Instrument1. Unlike example 1, these are all different transactions that send different data
packets.

The following code snippet shows the transactions:

SyncFpgaDataSharing definition with 3 transactions to 3 destinations
#
Sources
instrument1_tx = keysight_hvi.FdsPortAddress(source1_port, source1_address)
instrument2_tx = keysight_hvi.FdsPortAddress(source2_port, source2_address)
Destinations
instrument1_rx = keysight_hvi.FdsPortAddress(dst1_port, dst1_address)
instrument2_rx = keysight_hvi.FdsPortAddress(dst2_port, dst2_address)
instrument3_rx = keysight_hvi.FdsPortAddress(dst3_port, dst3_address)
#
Transaction 1
fpga_data_sharing_st.transactions.add(instrument1_tx, [instrument2_rx], num_bits_to_share)
#
Transaction 2
fpga_data_sharing_st.transactions.add(instrument1_tx, [instrument3_rx], num_bits_to_share)
#
Transaction 3
fpga_data_sharing_st.transactions.add(instrument2_tx, [instrument1_rx], num_bits_to_share)

The following diagram shows the execution time of the Sync FPGA Data-Sharing statement as well as
the timings of each individual transaction:

Find us at www.keysight.com Page 293

Chapter 9: HVI Time Management and Latency

tr1_tx, tr2_tx, and tr3_tx, refers to the transmission of the data from the transmit ports.

tr1_rx, tr2_rx, and tr3_rx, refer to reception of the data at the receive ports.

tr1_duration is the total time from the beginning of transmission (tr1_tx) to the end of reception of the
data at receive point 1 (tr1_rx_end).

tr2_duration and tr3_duration are the total times for tr2 and tr3 respectively.

The timing for Transaction1 (tr1) is the same as tr1_rx1 in example 1:

Ttr1_end = Ttr1_start + Ttr1_duration = 0 + 43 = 43 cycles

For Transaction2 (tr2), Instrument1 sends data to Instrument 3.

tr2 can start the data transmission as soon as the transmission of Transaction1 has ended. The
duration for t2 is 59 cycles, the same as tr1_rx2 in example 1.

Therefore, the timing for Transaction2 is:

Ttr2_start = Ttr2_tx_start = Ttr1_tx_end = 8 cycles

Ttr2_end = Ttr2_start + Ttr2_duration = 8 + 59 = 67 cycles

Transaction3 (tr3) sends data from Instrument 2 to instrument 1. This is sent and received at the same
time as tr1, the duration is the same as tr1_rx1 in example 1.

Ttr3_end = Ttr3_start + Ttr3_duration = 0 + 43 = 43 cycles

The execution time of the Sync FPGA Data-Sharing statement is:

Texecution_end = max(Ttr1_end, Ttr2_end, Ttr3_end) = max(43,67,43) = 67 cycles

Find us at www.keysight.com Page 294

Chapter 9: HVI Time Management and Latency

Example 3: Optimizing the timing of multiple simultaneous transactions by reordering transactions

Changing the order of the transactions can affect the execution time of the statement. If example 2 is
modified so tr2 is sent before tr1, some time is saved.

SyncFpgaDataSharing definition with a 3 transactions to 3 destinations
transaction 1 and 2 are reversed
#
Sources
instrument1_tx = keysight_hvi.FdsPortAddress(source1_port, source1_address)
instrument2_tx = keysight_hvi.FdsPortAddress(source2_port, source2_address)
Destinations
instrument1_rx = keysight_hvi.FdsPortAddress(dst1_port, dst1_address)
instrument2_rx = keysight_hvi.FdsPortAddress(dst2_port, dst2_address)
instrument3_rx = keysight_hvi.FdsPortAddress(dst3_port, dst3_address)
#
Transaction 2
fpga_data_sharing_st.transactions.add(instrument1_tx, [instrument3_rx], num_bits_to_share)
#
Transaction 1
fpga_data_sharing_st.transactions.add(instrument1_tx, [instrument2_rx], num_bits_to_share)
#
Transaction 3
fpga_data_sharing_st.transactions.add(instrument2_tx, [instrument1_rx], num_bits_to_share)

tr1_tx, tr2_tx, and tr3_tx, refers to the transmission of the data from the transmit ports.

tr1_rx, tr2_rx, and tr3_rx, refer to reception of the data at the receive ports.

tr1_duration is the total time from the beginning of transmission (tr1_tx) to the end of reception of the
data at receive point 1 (tr1_rx_end).

Find us at www.keysight.com Page 295

Chapter 9: HVI Time Management and Latency

tr2_duration and tr3_duration are the total times for tr2 and tr3 respectively.

In this case Transaction2 starts first, The duration for t2 is 59 cycles, same as tr1_rx2 in example 1:

Ttransaction2_start = Ttransaction2_transmission_start = Texecution_start = 0 cycles

This time transaction2 starts at 0:

Ttr2_tx_end = Nnum_bits/4 = 8 cycles

Ttr2_end = Ttr2_start + Ttr2_duration = 0 + 59 = 59 cycles

Transaction1 starts as soon as Transaction2 finishes transmission. The duration for tr1 remains at 43
cycles (same duration as tr1_rx1 in example 1), however it starts 8 cycles later and the timing
becomes:

Ttr1_start = Ttr1_tx_start = Ttr2_tx_end = 8 cycles

Ttr1_end = Ttr1_start + Ttr1_duration = 8 + 43 = 51 cycles

Transaction 3 (tr3) is the same as tr3 in example 2. The duration is 43 cycles, same as tr1_rx1 in
example 1. The timing is:

Ttr3_end = Ttr3_start + Ttr3_duration = 0 + 43 = 43 cycles

The execution time of the Sync FPGA data-sharing statement is:

Texecution_end = max(Ttr2_end, Ttr1_end, Ttr3_end) = max(59,51,43) = 59 cycles

In this case, by starting Transaction2 first, you can save 8 cycles compared to example 2.

Tdifference = Texample3_end - Texample2_end = 67 - 59 = 8 cycles

Find us at www.keysight.com Page 296

Chapter 9: HVI Time Management and Latency

Example 4: Multiple simultaneous transactions with a resource conflict
Transactions are sent across different types of link between instruments. These can be DSTARB/C
links between SSMs and instruments that are in the same chassis or point-to-point SystemSync links
between two SSMs located on different chassis. The difference is that DSTARB/C links allow only a
single data path, whereas the SystemSync connections have multiple data paths. The multiple data
paths in SystemSync connections allow the SSMs to route multiple transactions simultaneously. On
the contrary, DSTARB/C links can only send one transaction at a time. Different data packets cannot
use the same link simultaneously and must be queued instead. Therefore, DSTARB/C links are much
more prone to transaction conflicts.

In principle, when all the transactions being sent are from different Tx ports, HVI tries to execute them
in parallel. If this is possible, the execution time of the Sync FPGA data-sharing statement is just the
maximum of the duration of the individual transactions. However, this is not always possible because
in some case there is a conflict if two or more transactions try to use the same path at the same time,
for example, if they both arrive at the same Rx port at the same time. In these cases, the HVI delays
some of the transactions to avoid the conflict, where any delay added is kept as small as possible.

The following example is similar to example 3, except for transaction 3 which in this case, goes from
instrument 2 to instrument 3.

Transaction 2 (tr2) and transaction 3(tr3) both start at the same time and send data to SSM1. This is
possible because both transactions are sent to different ports on SSM1.

SSM1 then sends this data to SSM2, the SSMs have multiple paths for data between them so both
transactions can be sent at the same time.

SSM2 then sends the data for tr2 and tr3 to instrument 3, but there is a conflict at this point because
the data from both transactions cannot be sent at the same time to the same DSTARB port.
DSTARB/C links have only one data path and the packets cannot cross it simultaneously, as
explained before. To resolve this conflict, the HVI delays transaction3 at compilation time. This is
shown as Transaction 3b (tr3b) in the diagram. The delay enables the transaction to be sent to
instrument 3 with no conflicts.

SyncFpgaDataSharing definition with a 3 transactions to 2 destinations
transaction 1 and 2 are reversed
transaction 3 goes to instrument 3
#
Sources
instrument1_tx = keysight_hvi.FdsPortAddress(source1_port, source1_address)
instrument2_tx = keysight_hvi.FdsPortAddress(source2_port, source2_address)
Destinations
instrument1_rx = keysight_hvi.FdsPortAddress(dst1_port, dst1_address)
instrument2_rx = keysight_hvi.FdsPortAddress(dst2_port, dst2_address)
instrument3_rx = keysight_hvi.FdsPortAddress(dst3_port, dst3_address)

Find us at www.keysight.com Page 297

Chapter 9: HVI Time Management and Latency

#
Transaction 2
fpga_data_sharing_st.transactions.add(instrument1_tx, [instrument3_rx], num_bits_to_share)
#
Transaction 1
fpga_data_sharing_st.transactions.add(instrument1_tx, [instrument2_rx], num_bits_to_share)
#
Transaction 3 - This will be delayed
fpga_data_sharing_st.transactions.add(instrument2_tx, [instrument3_rx], num_bits_to_share)

tr1_tx, tr2_tx, tr3_tx, and tr3b_tx, refers to the transmission of the data from the transmit ports.

tr1_rx, tr2_rx, and tr3b_rx, refer to reception of the data at the receive ports.

Find us at www.keysight.com Page 298

Chapter 9: HVI Time Management and Latency

tr1_duration is the total time from the beginning of transmission (tr1_tx) to the end of reception of the
data at receive point 1 (tr1_rx_end).

tr2_duration and tr3b_duration are the total times for tr2 and tr3b respectively.

SSM1 and SSM2 indicate the System Synchronization Modules. In the boxes, these indicate when
data is transmitted from the SSM.

In this example, first 32 bits of data from Instrument1 to Instrument3 (transaction2, tr2), and then 32
bits of data from Instrument2 to Instrument3 (transaction3, tr3). By checking the topology in the
system diagram, you can see that both transactions pass through SSM1 and then SSM2 before they
reach Instrument3.

To see if there is going to be a collision, calculate the time when each transaction is at the exit of
SSM2, if it started at time 0.

For Transaction2, this is:

Ttr2_at_SSM2_start = Ttx_instrument_latency + Tlink_latency + Tssm_latency + Tlink_latency + Tssm_latency = 4

+ 12 + 4 + 12 + 4 = 36 cycles

Ttr2_at_SSM2_end = Ttr2_at_SSM1_start + Nnum_bits/4 = 36 + 32/4 = 44 cycles

For Transaction3 the numbers are the same, so there is an overlap from clock cycle 36 to 44. To
resolve this, you must delay the second transaction, tr3, to start at SSM2 when tr2 ends. That is, you
must delay tr3 by:

Ttr3_delay = Ttr2_at_SSM2_end - Ttr3_at_SSM2_start = 44 - 36 = 8 cycles

In the diagram the delayed transaction3 is shown as transaction3b (tr3b). Given this delay, you can
now calculate the timing for both transactions:

For Transaction2, you don't need to change anything, so the timing is the same as in example 3:

Ttr2_end = Ttr2_start + Ttr2_duration = 0 + 59 = 59 cycles

As soon as Transaction2 finishes transmission, Transaction3b starts.

Transaction3b starts 8 cycles after tr2 and sends its data to SSM1 and then onto SSM2. SSM2 can
then pass the data Instrument3. The duration remains at 59 cycles, so the timing is:

Ttr3b_start = Ttr2_start + 8 = 0 + 8 = 8 cycles

Ttr3b_end = Ttr3b_start + Ttr3b_duration = 8 + 59 = 67 cycles

Transaction1 (tr1) goes through SS1, at time=8 which is also when tr3b goes through SSM1.
However, these transactions go in different direction and use different ports so there is no conflict,
therefore tr1 and tr3b can go ahead.

For Transaction1, the timing is the same as in example 3:

Find us at www.keysight.com Page 299

Chapter 9: HVI Time Management and Latency

Ttr1_end = Ttr1_start + Ttr1_duration = 8 + 43 = 51 cycles

The execution time of the Sync FPGA data-sharing statement is:

Texecution_end = max(Ttr1_end, Ttr2_end, Ttr3b_end) = max(51,59,67) = 67 cycles

Find us at www.keysight.com Page 300

Chapter 9: HVI Time Management and Latency

Local Flow-Control Statement Timing
Local flow-control statements and Sync statements consume HVI engine execution time and do not
overlap their execution. When you are calculating the timing of a sequence, you must consider the
execution time of these statements.

The following diagram shows the timing for a Sync Multi-sequence block that contains a pair of Local
instruction statements and a Local while:

Local while
The Local while statement continues execution while a condition is met and finishes the execution
when the condition is no longer met. This has the same timing as Sync while statements.

The following diagram shows a Local while statement with other instructions.

The total execution time for a Local while is T1 x N, where T1 is the iteration time and N is the number
of times it iterates. The time cannot be indicated exactly on a diagram or in code because the number
of iterations is not known until runtime.

For statements coming after a Local while statement, the Start delay is measured from the end of the
Local while statement. In the following diagram, Start delay D is measured from the end of the Local
while statement.

Find us at www.keysight.com Page 301

Chapter 9: HVI Time Management and Latency

The dotted line indicates that the execution time of the Local while block T1 is not known at compile
time.

Local if
For Local if statements (if-elseif-else), the following Start delay is measured from the end of the Local
if statement. The time taken is only known at runtime, so it is not possible to indicate them on a dia-
gram or in code. This is the same as while statements.

This following diagram shows the timing of Local if statements. The Start delay D is measured from
the end of the Local if statement.

The Local If has two branching options with times T1 and T2. These times can be different. Since the
choice of branch is not known at compile time, the time for the Local If block cannot be known.

The line for the Local if block is dotted. This indicates that the execution time of the Local If block Tx is
unknown. The time of the containing block is also therefore unknown, and it is also dotted. The time
of the Sync multi-sequence block is indicated as T min.

Find us at www.keysight.com Page 302

Chapter 9: HVI Time Management and Latency

Local If with matched branches
Unlike other flow-control options, the Local if statements can have different execution paths, each
with different times. The matched branches option enables you to control how the HVI deals with
them.

Enabling matched branches ensures the HVI synchronizes the times of the branches, so they are the
same. The shorter branches get an additional delay added when they are finished so that the dur-
ations of all the branches are equal. If the matched branches option is not enabled, the branches can
end at different times, that is, they are de-synchronized.

In the following diagram the branches in the If and else branches are matched. This ensures the Local
if ends at the same time irrespective of the branch taken.

The total branch time is marked with the time TM, this represents the matched time. The choice of
branch is not known at compile time, but since the times are matched the time TM is known.

The times are known at compile time so the timelines of the local If block and the Sync multi-
sequence block that contains it are both solid.

Find us at www.keysight.com Page 303

Chapter 9: HVI Time Management and Latency

Local wait (event or time in register)
For Local wait statements, the following Start delay is measured from the end of the Local wait
statement. As with Sync while statements, the time taken is only known at runtime, so it is not pos-
sible to indicate them on a diagram or in code.

The following diagram shows the timing of a Local wait statement. The following Start delay D is
measured from the end of the Local wait statement.

The execution time of the Local wait statement T1 is not known at compile time, this is indicated by
the dotted line.

The time of the Sync multi-sequence block is indicated as T min. The dotted line indicates an
unknown time.

Find us at www.keysight.com Page 304

Chapter 9: HVI Time Management and Latency

Local delay statement
The Local delay statement delays the execution of a local sequence for a time you specify. The default
unit is nanoseconds but the delay is specified in any unit of seconds. The delay is fixed and cannot be
changed during HVI execution, so the delay value must be known at the time of creating the HVI
sequence.

The delay statement works in a similar way as the start delay statement parameter, however the dif-
ference is that the Start delay can only be specified before the other statements in a sequence. The
delay statement enables you to place a fixed delay at the end of Sync multi-sequence block or a flow
control statement.

Unlike a wait-for-time statement, the delay statement does not introduce a de-synchronization and
therefore does not trigger a resynchronization. This therefore avoids the timing overhead introduced
by the triggered re-synchronization point.

The following diagram shows the timing of a delay statement Delay Z:

Find us at www.keysight.com Page 305

Chapter 9: HVI Time Management and Latency

Find us at www.keysight.com Page 306

Chapter 9: HVI Time Management and Latency

Local Instruction Timing
The following section explains with diagrams Local instruction timing.

For Local instructions, the Start delay of the next instruction is measured from the start of the current
instruction. The following diagram shows two instructions and their timing:

The processing of Local instructions can be overlapped, that is, instructions can be processed in parallel inside
the HVI Engine. Under specific conditions, instructions can be fetched, dispatched, and executed at the same
time. This is because of the intrinsic parallel execution capability of the HVI Engine. This capability offers better
performance and increased flexibility for instruction sequencing. The following diagram shows an example of
overlapping instructions. Instruction B has an overlap in its fetching cycles with instruction C and an overlap
during its processing with instruction D. It also shows that an instruction can start and finish while another
instruction is already executing.

Find us at www.keysight.com Page 307

Chapter 9: HVI Time Management and Latency

Find us at www.keysight.com Page 308

Chapter 9: HVI Time Management and Latency

Instruction position
This section provides a high-level description of the concept of instruction position.

NOTE This is provided for your information, you are not typically required to program an
HVI at this level of performance.

Instructions are broken into internal-instructions that the compiler maps onto the HVI engine
hardware. During one HVI engine cycle, the HVI engine can fetch, dispatch and execute multiple
instructions in parallel.

Instructions can be scheduled for execution together, however, depending on the Instructions
involved, this is not always possible because of the inner structure of the HVI engine. To understand
why, you must understand the concept of instruction position.

An HVI engine is a processor with a set of execution pipelines, each of which has a numbered
position. The individual internal-instructions are mapped across the different pipeline positions for
execution.

For parallel instruction fetching to be possible, the internal-instructions must use different positions
inside the instruction register of the HVI Engine. If two internal-instructions are using overlapping
positions, then they cannot be fetched in parallel. The positions where each internal-instruction is to
be mapped depends on the instruction. This means the hardware can only execute certain internal-
instruction in specific positions. The internal-instructions are mapped by the compiler. This process is
not user programmable.

A table with the per-instruction mapping is provided in the documentation for each instrument.
See Local Instruction Statement Timing Tables for the table for HVI-native instructions.

The following diagram provides an example table.

Position

Instruction 1 2 3 4 5 6 7 8 9 10
n

(n > 10)

A 5 - 7

B 1 - 4

C 8 - 9

D 5 - 7 8 - 10

E 1 - 7

Find us at www.keysight.com Page 309

Chapter 9: HVI Time Management and Latency

From the table, you can see that:

l Instruction A can be mapped, one at a time, to positions 5 to 7.

l Instruction B can be mapped, one at a time, to positions 1 to 4.

l Instruction C can be mapped, one at a time, to positions 8 to 10.

l Instruction D can be mapped, two at a time, to positions 5 to 7, positions 8 to 10, or both.

l Instruction E can be mapped, one at a time, to positions 1 to 7.

At compile time, HVI maps the instructions to be executed to their respective supported positions. If
an instruction cannot be mapped to its supported position because another instruction is already
mapped there, HVI generates an error and informs the user. For example:

l If an instruction is A is followed by a second instruction A at the same time, HVI assigns the first instruction A
to positions 5-7, but generates an error with the second instruction A because positions 5-7 are already
used.

l If an instruction D is followed by another instruction D at the same time, HVI will assign the first instruction D
to positions 5-7 and will then assign the second instruction D to positions 8-10. However, if there is a third
instruction D to be fetched at the same time, HVI generates an error because neither possible position for D
are available for the third instruction.

l If there are instructions A, B and C at the same time, HVI assigns them to positions 5-7, 1-4 and 8-10,
respectively, without any issue.

l If there are instructions A, B and D at the same time, HVI assigns them to positions 5-7, 1-4 and 8-
10, respectively, without any issue. If, however, the order was B, D and A, then HVI assigns B to
positions 1-4, D to positions 5-7 and, then, HVI generates an error because positions 5-7 are not
be available for instruction A.

l If there is an instruction E, then if it is fetched at the same time with any of the instructions A, B or
E, then HVI generates an error. However, if it is fetched in parallel with C or D, then there will be no
issue.

NOTE When there is no fetching in parallel, An HVI engine is capable of executing
instructions in parallel irrespective of their instruction position.

Find us at www.keysight.com Page 310

Chapter 9: HVI Time Management and Latency

Overlapping instruction execution
The following diagram shows Instruction B and Instruction E are executed in parallel, even though
they are using the conflicting positions in the instruction register (positions 1-4 are overlapping as
seen in the table earlier). This is possible, as long as the Start delay T3 for instruction E is such that its
fetch cycle does not coincide with the fetch cycles of instruction B. The green dotted line indicates
the minimum extent that T3 should have.

Find us at www.keysight.com Page 311

Chapter 9: HVI Time Management and Latency

Overlapping instruction fetching
An HVI engine is capable of fetching and executing multiple instructions in parallel, providing their
instruction positions are not overlapping. Most instructions have only 1 fetch cycle, but it is possible
for instructions to require multiple fetch cycles. Refer to the instructions timing tables for details on
the fetch cycles of the different instructions.

The following figures show examples of instruction fetching in parallel. For the instruction positions
that are being used by each instruction, the values are from the previously defined example table.

Example A. In this example it is assumed that:

l Start delay T1 > 0 cycles.

l T2 = 0 cycles.

l T3 = 1 cycle.

l T4 > 3 cycles.

At real-time execution, after the T1 delay has passed, Instruction A and Instruction B are fetched at
the same time, since the Start delay T2 for instruction B is equal to 0. Then, after one cycle, that is,
the Start delay T3, instruction C is fetched before the fetching of Instructions A and B is completed.
Finally, after delay T4 from the beginning of instruction C, instruction D is fetched.

As shown in the diagram, instructions A and B are fetched in parallel for 2 engine cycles and
instructions A, B and C are fetched in parallel for 1 engine cycle. Looking at the table, instructions A,
B and C can be fetched in parallel as they are not using the same positions. Instruction D is fetched
later, so there is no conflict in the available positions.

Example B. In this example start delay T1 > 0 cycles, T2 = 0 cycles, T3 = 1 cycle, and T4 = 0 cycles.

Find us at www.keysight.com Page 312

Chapter 9: HVI Time Management and Latency

At real-time execution, after the T1 delay has passed, instructions A and Instruction B are fetched at
the same time because the Start delay T2 for instruction B is equal to 0.

Then, after one cycle, that is the Start delay T3, instruction C is being fetched and at the same time
(T4 = 0) instruction D is fetched.

Compared to the previous example, in this case, instruction D cannot be placed to either positions 5-
7 (assigned to instruction A) or positions 8-10 (assigned to instruction C), so it is not possible to fetch
instruction D at the same time. as A and C. This example generates an error during the HVI
compilation.

One way to fix the issue is to increase the Start delay T4 of instruction D so that it is not fetched at the
same time as instruction A and C. This can be done by increasing T4 by at least 1 cycle. This is shown
in the following figure:

Find us at www.keysight.com Page 313

Chapter 9: HVI Time Management and Latency

Overlapping instruction execution with result dependencies
HVI is capable of processing instructions in parallel. This is a powerful capability, but it can lead to
unexpected results when there are dependencies between the instructions, that is, when one
instruction depends on the result of the other. For example, an instruction might update the value of
an HVI register and the following instruction might need to use that updated register value. To avoid
unexpected results, the user needs to ensure that the delay between the independent and the
dependent instructions is big enough so that the processing of the independent (Instr1) is completed
before or when the processing of the dependent instruction (Instr2) start. The minimum delay to
achieve this can be expressed with the following formula:

MinDelay_Instr1_to_Instr2 = Instr1_ExecutionTime - Instr2_FetchTime

The following diagram shows an example with two local instruction statements and the timing when
executed by the HVI engine. Assuming that instruction B is using the result of instruction A, you must
ensure that the value of StartDelayB is greater or equal to the Processing Time of instruction A, minus
the Fetch Time of instruction B. This way, the processing of instruction B will start after the end of
processing of instruction A.

NOTE It is important to consider the effects of overlapping instructions with dependencies,
because HVI does not track dependencies. This is because in some cases it is
desirable to implement pipelines of operations and exploit the fact that the next
instruction uses the previous value of a register, before the previous operation is
completed. It is your responsibility to ensure you have specified sufficient Start
delay between instructions with dependencies.

Find us at www.keysight.com Page 314

Chapter 9: HVI Time Management and Latency

Overlapping instruction execution with Sync or Flow-Control statement with
result dependencies
For the case that the result of an instruction is used from a sync or a flow-control statement (e.g.
register used in the condition of a While or a Sync While), the RegisterEvaluationLatency of that
statement need to be taken into account. Therefore, the formula is updated to:

MinDelay_Instr_to_Statement = Instr_ExecutionTime + Statement_RegisterEvaluationLatency

NOTE If the flow-control (or sync) statement comes right after the instruction from which
it needs the result, this imposes a minimum value for the StartDelay of that
statement. The final StartDelay to be used should be the maximum between the
MinDelay calculated with the previous formula and the MinStartDelay applicable
(see Minimum Start Delay Calculation for Flow-Control and Sync Statement)

If there are more statements/instructions between the flow-control (or sync)
statement and the instruction from which it needs the result, then the MinDelay
imposes a minimum to the sum of the StartDelays of all the intermediate
statements/instructions and the flow-control (or sync) statement.

Find us at www.keysight.com Page 315

Chapter 9: HVI Time Management and Latency

Example cases with instruction result dependencies
The following examples show how to calculate the minimum delay required when the result of Local
instructions is used by Flow-Control statements. The latency information is provided in the Timing
Tables and in the instrument documentation.

Example 1: Instruction "ADD" followed by a Local if statement
In this example an Add instruction writes to a register and the new value of the register is used for the
if condition.

1. Reg1 = RegN + 10 (Add).

2. If(Reg1 > 10) (the if uses the result of the previous Add instruction).

In this case, the minimal delay between the If and the previous Add using the fetch and execution
timing is calculated with this equation:

MinDelay_If = Add_ExecutionTime + If_RegisterEvaluationLatency = 8 + 3 = 11 cycles

Example 2: Instruction "ADD" inside a While Statement
In this example there is an Add instruction that writes to a register and the new value of the register is
used by the while condition.

1. Reg1 = 0

2. While(Reg1 < 1) (the While uses the result of the internal Add instruction).

3. Reg1 = Reg1 + 1 (Add).

In this case, the minimal delay between the Add inside the While and the condition check for executing
one more iteration is calculated with the following equation.

MinDelay_While = Add_ExecutionTime + While_RegisterEvaluationLatency = 8 - 3 = 5 cycles

To add this extra time at the end of the internal while sequence a Delay statement can be added. The
Delay Statement will need at least 4 cycles of delay which with the EndLatency of the Delay
statement, will give the total the added delay of 5 cycles.

Examples of Local instruction Timing Calculation across Sync and Local Flow-Control
Statements
This chapter shows basic examples of Local instruction across within Sync and Local Flow-Control
statements and how the timing is calculated.

Find us at www.keysight.com Page 316

Chapter 9: HVI Time Management and Latency

Local instruction timing across Sync Multi-Sequence Blocks example
This example shows a pair of Sync Multi-sequence blocks each with a Local instruction each. A
diagram and the code and timing calculations are shown.

The following is a diagram of the example:

The code for the example:

mse1 = sequencer.sync_sequence.add_sync_multi_sequence_block("mse1", 50)
seq = mse1.sequences['EngineA']
instA = seq.add_instruction("instA", 20, seq.instruction_set.trigger_write.id)
#
mse2 = sequencer.sync_sequence.add_sync_multi_sequence_block("mse2", 20)
seq = mse2.sequences['EngineA']
instB = seq.add_instruction("instB", 10, seq.instruction_set.trigger_write.id)

The timing calculations for the example:

InstA Execution Start time from HVI-Start (InstA_start):

InstA_start = start_delay(mse1) + start_delay(instA) = 50ns + 20ns = 70ns

Time from InstA to InstB (T_InstA_InstB) :

T_InstA_InstB = start_delay(mse2) + start_delay(instB) = 20ns + 10ns = 30ns

Find us at www.keysight.com Page 317

Chapter 9: HVI Time Management and Latency

Local instruction timing across Sync Multi-Sequence Blocks and Local if
example
This example shows cascaded Local if statements within a Sync multi-sequence block followed by a
Local instruction in a Sync multi-sequence block. The code and timing calculations are also shown:

The following is a diagram of the example:

The code for the example:

mse1 = sequencer.sync_sequence.add_sync_multi_sequence_block("mse1", 50)
seq = mse1.sequences['EngineA']
if1 = seq.add_if('if1', 70, if1_cond, True)
if1_branch_seq = if1.if_branch.sequence
if2 = if1_branch_seq.add_if('if2', 80, if2_cond, True)
if2_branch_seq = if2.if_branch.sequence
instA = if2_branch_seq.add_instruction("instA", 20, seq.instruction_set.trigger_write.id)
#
mse2 = sequencer.sync_sequence.add_sync_multi_sequence_block("mse2", 20)
seq = mse2.sequences['EngineA']
instB = seq.add_instruction("instB", 10, seq.instruction_set.trigger_write.id)

Find us at www.keysight.com Page 318

Chapter 9: HVI Time Management and Latency

The timing calculations for the example:

The formula to calculate the InstA execution start time from HVI-Start, InstA_start is:

InstA_start = start_delay(mse1) + start_delay(if1) + start_delay(if2) + start_delay(instA) =

50ns + 70ns + 80ns + 20ns = 220ns

The formula to calculate time from InstA to InstB, T_InstA_InstB is:

T_InstA_InstB = start_delay(mse2) + start_delay(instB) = 20ns + 10ns = 30ns

NOTE The end_latency(mse1) is accounted for in the start_delay(mse2), this imposes a minimum
value.

Local instruction timing across Sync While and Sync Multi-Sequence Blocks
example
This example shows how time is calculated for a Sync while statement that contains a Sync multi-
sequence block and a single instruction:

The following diagram shows the example:

The following block shows the example code:

sync_while = sequencer.sync_sequence.add_sync_while('sync_while', 170, sync_while_condition)
mse1_sequence = sync_while.sync_sequence.add_sync_multi_sequence_block("mse1", 250).sequences
['EngineA']
instA = mse1_sequence.add_instruction("InstA", 20, seq.instruction_set.assign.id)

Find us at www.keysight.com Page 319

Chapter 9: HVI Time Management and Latency

#
mse2_sequence = sequencer.sync_sequence.add_sync_multi_sequence_block("mse2", 230).sequences
['EngineA']
instB = mse2_sequence.add_instruction("InstB", 50, seq.instruction_set.assign.id)

The following are the equations used to calculate the timing in the example:

InstA Execution Start time from HVI-Start, InstA_start:

InstA_start = start_delay(sync_while) + start_delay(mse1) + start_delay(instA) = 170ns +

250ns + 20ns = 440ns

Sync multi-sequence block Execution time, Tmse1:

Tmse1 = SequenceTime = 20ns

Sync while Execution time for 1 loop when looping, Twhile_loop:

Twhile_loop = Twhile = {start_delay(mse1) + Tmse1} = {250ns + 20ns} = 270ns

Time from InstA to InstA in consecutive repetitions, Tloop_InstA:

Tloop_InstA = Twhile_loop

Time from InstA to InstB (the last Sync while execution), T_InstA_InstB:

T_InstA_InstB = start_delay(mse2) + start_delay(instB) = 230ns + 50ns = 280ns

NOTE The end_latency(sync_while) is accounted for in the start_delay(mse2). This
imposes a minimum value.

Find us at www.keysight.com Page 320

Chapter 9: HVI Time Management and Latency

Minimum Start Delay Calculation for Flow-Control and Sync State-
ment
To calculate the minimum valid start delay for a given flow-control or sync statement, the general
rule is to add the End-Latency of the previous statement with the Start-Latency of the current state-
ment:

Statement_MinStartDelayEngineX = PreviousStatement_EndLatencyEngineX + Statement_

StartLatencyEngineX

From this general rule, we can distinguish 2 subcases:

n First statement of the global HVI sequence: Use the End-Latency of the HVI Start.

n First statement of a sub sequence: Instead of the End-Latency use the Entry-Latency of the parent state-
ment.

The values for each latency can be found in the Timing tables for Local Flow-Control Statements and
Sync Statements.

Find us at www.keysight.com Page 321

Chapter 9: HVI Time Management and Latency

Minimum start delay for Local Flow-Control Statements
The local flow-control statements are following the general rule described above to calculate the min-
imum start delay.

Minimum start delay after Local instructions
As explained earlier, to find out the minimum Start-Delay of a statement, it is important to know the
end-latency of the previous statement. If the previous statement of a flow-control statement is one or
more local instructions, the end-latency is calculated as the remaining fetch-cycles of all the local
instructions starting from the beginning of the last instruction.

This can be seen in the following figure. Starting from the beginning of Instruction C (last Local
instruction), we calculate the remaining fetch cycles of all the instructions executed before Statement
D. From the picture we see that there is one fetch cycle where instructions A, B, C are executed
together and then, one more fetch cycle for instruction B. So, in total, there are 2 remaining fetch
cycles, therefore, the end-latency is 2 cycles.

End-Latency of Local flow-control statements with internal sequence (If and
While)
The End-Latency of Local flow-control statements with internal sequence, like If and While state-
ments, depend on the End-Latency of the last statement of their internal sequences. When the last
statement of the internal sequence is one or more local instructions, for the calculation of the End-
Latency, the same principle applies as described in the previous section, i.e. the end-latency is cal-

Find us at www.keysight.com Page 322

Chapter 9: HVI Time Management and Latency

culated as the remaining fetch-cycles of all the local instructions starting from the beginning of the
last instruction.

Minimum start delay for Sync Statements
For the Sync Statements, the minimum start delay is the maximum of all the minimum start delays cal-
culated for each HVI engine rounded to the next multiple of the HVI Common Clock period:

Statement_MinStartDelay = roundncc(max{Statement_MinStartDelayEngine1, Statement_

MinStartDelayEngine2,..., Statement_MinStartDelayEngineN})

In the following diagram, we show graphically the minimum start delay calculation process between
two sync statements in a system that has two engines with different frequencies, EngineA and
EngineB:

Find us at www.keysight.com Page 323

Chapter 9: HVI Time Management and Latency

Example: Minimum Start delay from HVI Start to Sync While
In this example we show how to calculate the minimum start delay value acceptable for a Sync While
statement that is placed as the first statement of the HVI root SyncSequence.

Create system definition object
system_definition = keysight_hvi.SystemDefinition("MySystemDefinition")
system_definition.engines.add(instrument_1.hvi.engines.leader, "HVI_Engine_1")
system_definition.engines.add(instrument_1.hvi.engines.leader, "HVI_Engine_2")
...
Create sequencer object
sequencer = keysight_hvi.Sequencer("MySequencer", system_definition)
Iteration counter register for "HVI_Engine_2"iteration_counter = sequencer.sync_
sequence.scopes["HVI_Engine_2"].registers.add("MyRegister", keysight_hvi.RegisterSize.SHORT)
iteration_counter.initial_value = 0
Define sync while condition
num_loops = 5
sync_while_condition = keysight_hvi.Condition.register_comparison(iteration_counter, keysight_
hvi.ComparisonOperator.LESS_THAN, num_loops)
SyncWhile_MinStartDelay = ... # The calculation for the minimum is explained below
sequencer.sync_sequence.add_sync_while("MySyncWhileStatement", SyncWhile_MinStartDelay, sync_
while_condition)

We assume the following values to be used in the calculations:

Variable Value Description

#Register_
Conditions

1 In the example above, we used only one register condition for the Sync While

Engine1Period 5 ns We assume HVI Engine 1 to run at frequency of 200 MHz which results in a 5 ns period

Engine2Period
3.333
ns

We assume HVI Engine 2 to run at frequency of 300 MHz which results in a 3.333 ns period

HVI_Leader_
Engine_
ClockPeriod

3.333
ns

The leader engine for the Sync While in the example is HVI Engine 2, since the register used in
the condition of the Sync While belongs to that engine. So, the frequency of the leader engine
is that of engine 2

HVI_Common_
ClockPeriod

10 ns This is the result of the GCD of the engines included in HVI: LCM
{Engine1Period,Engine2Period}

Find us at www.keysight.com Page 324

Chapter 9: HVI Time Management and Latency

Engine 1:

Using the timing table of HVI Start, we calculate the End Latency for this engine:

HVI Start

Parameter Time (cycles) Result (n s)

HviStart_EndLatencyEngine1 2 10

Using the timing table of the Sync While statement, we calculate the Start Latency for this engine:

Sync While

Parameter Time (cycles) Result (n s)

SyncWhile_StartLatencyEngine1 Follower Engine: 2 10

Therefore, the minimum for this engine is:

SyncWhile_MinStartDelayEngine1 = HviStart_EndLatencyEngine1 + SyncWhile_StartLatencyEngine1 = 20 ns

Engine 2:

Using the timing table of HVI Start, we calculate the End Latency for this engine:

HVI Start

Parameter Time (cycles) Result (n s)

HviStart_EndLatencyEngine2 2 6.666

Using the timing table of the Sync While statement, we calculate the Start Latency for this engine:

Sync While

Parameter Time (cycles) Result (n s)

SyncWhile_StartLatencyEngine1
Leader Engine: 6 +

#Register_Conditions
23.333

Find us at www.keysight.com Page 325

Chapter 9: HVI Time Management and Latency

Therefore, the minimum start delay for this engine is:

SyncWhile_MinStartDelayEngine2 = HviStart_EndLatencyEngine2 + SyncWhile_StartLatencyEngine2 = 30 ns

Minimum Start Delay:

SyncWhile_MinStartDelay = roundncc(max{SyncWhile_MinStartDelayEngine1, SyncWhile_

MinStartDelayEngine2}) = 30 ns

Find us at www.keysight.com Page 326

Chapter 9: HVI Time Management and Latency

Example: Minimum Start delay for the first statement inside a Sync While
Continuing from the previous example, in this example we show how to calculate the minimum start
delay value acceptable for a Sync Multi-Sequence statement that is placed as the first statement of a
Sync While internal SyncSequence.

#...
SyncWhile_MinStartDelay = 30 # As calculated earlier
sync_while_statement = sequencer.sync_sequence.add_sync_while("MySyncWhileStatement",
SyncWhile_MinStartDelay, sync_while_condition)
SyncMultiSequence_MinStartDelay = ... # The calculation for the minimum is explained below
sync_while_statement.sync_sequence.add_sync_multi_sequence_block("empty_multisequence",
SyncMultiSequence_MinStartDelay)

In addition to the Variables provided in the previous example, we assume the following values to be
used in the following calculations:

Variable Value Description

Instrument_
SyncResources_
Latency

0 cy This is an instrument dependent value. We assume it to be 0 for this example.

Propagation_
delayCycles

30 cy
Assuming that we use only 1 chassis in this example, the Propagation delay would be
100 ns. Translating it to cycles of the leader engine of the Sync While, that gives us 30
cycles.

End-LatencyLast-
statement

0 cy
The last statement is an empty Sync Multi-Sequence Block which, according to the
timing tables, will have 0 cycles of end-latency.

Find us at www.keysight.com Page 327

Chapter 9: HVI Time Management and Latency

Engine 1:

Using the timing table of the Sync While statement, we calculate the End Latency for this engine:

HVI Start

Parameter Time (cycles) Result (n s)

SyncWhile_
EntryLatencyEngine1

match{LatencyAEngine1, LatencyAEngine2_inEngine1Cycles}

+ 2 + End-LatencyLast-statement
160*

*Calculation:

LatencyAEngine1 = 2 cy (Engine1 cycles)

LatencyAEngine2 = 12 + #Register_Conditions + Instrument_SyncResources_Latency + Propagation_

delayCycles = 43 cy (Engine2 cycles)

LatencyAEngine2_inEngine1Cycles = ceil(43 * Engine2Period / Engine1Period) = 29 cy (Engine1 cycles)

SyncWhile_EntryLatencyEngine1 = (match{2,29} + 2 + 0) * Engine1Period = (roundncc(29) + 2) * 5 =

160 ns

Using the timing table of the Sync Multi-Sequence statement, we calculate the Start Latency for this
engine:

Sync While

Parameter Time (cycles) Result (n s)

SyncMultiSequence_
StartLatencyEngine1

1 5

Therefore, the minimum for this engine is:

SyncMultiSequence_MinStartDelayEngine1 = SyncWhile_EntryLatencyEngine1 + SyncMultiSequence_

StartLatencyEngine1 = 165 ns

Engine 2:

Using the timing table of the Sync While statement, we calculate the End Latency for this engine:

Find us at www.keysight.com Page 328

Chapter 9: HVI Time Management and Latency

HVI Start

Parameter Time (cycles) Result (n s)

SyncWhile_
EntryLatencyEngine2

match{LatencyAEngine1_inEngine2Cycles, LatencyAEngine2} +

2 + End-LatencyLast-statement
156.666

*

*Calculation:

LatencyAEngine1_inEngine2Cycles = ceil(LatencyAEngine1 * Engine1Period / Engine2Period) = 3 cy (Engine2

cycles)

LatencyAEngine2 = 43 cy (Engine2 cycles)

SyncWhile_EntryLatencyEngine2 = (match{3,43} + 2 + 0) * Engine2Period = (roundncc(43) + 2) * 3.333

= 156.666 ns

Using the timing table of the Sync Multi-Sequence statement, we calculate the Start Latency for this
engine:

Sync While

Parameter Time (cycles) Result (n s)

SyncMultiSequence_
StartLatencyEngine2

1 3.333

Therefore, the minimum Start Delay for this engine is:

SyncMultiSequence_MinStartDelayEngine2 = SyncWhile_EntryLatencyEngine2 + SyncMultiSequence_

StartLatencyEngine2 = 160 ns

Minimum Start Delay:

SyncMultiSequence_MinStartDelay = roundncc(max{SyncMultiSequence_MinStartDelayEngine1,

SyncMultiSequence_MinStartDelayEngine2}) = 170 ns

Find us at www.keysight.com Page 329

Chapter 9: HVI Time Management and Latency

Errors when setting start delays and how to deal with them
The previous section explains how to calculate the Start delay for each type of statement. Depending
on the type of statements as well as the number of engines with different frequencies, this can be a
complex and error-prone procedure.

In the case of an error, the HVI compiler will validate the provided values and generate a message
with the minimum Start delay applicable.

Example: How to fix your Start Delay by using the compiler message
In the following example code snippet, a Sync Multi-Sequence Block is added as the first statement
to an HVI Sync Sequence. To get an error for the minimum Start delay that can be used to add the
Sync multi-sequence block, you can set the Start delay to 0 as shown in the following example code
snippet.

Create system definition object
my_system = kthvi.SystemDefinition("MySystem")
...
Create sequencer object
sequencer = kthvi.Sequencer("MySequencer", my_system)
Add a Sync Multi-Sequence Block (SMSB) with a 0 ns start delay
sync_block = sequencer.sync_sequence.add_sync_multi_sequence_block("TriggerAWGs", 0)

When the sequencer object is compiled, the compiler detects that 0 ns does not comply with the
minimum latency for the Sync multi-sequence block in the HVI sequence. It returns an error message
stating that the specified start delay shall be at least 30 ns. See the following image for an example of
the returned error message.

The reason why a minimum latency of 30 ns is required is explained in this chapter in the section Sync
Statement Timing Tables. In a similar way, you can set any Start delay to 0 ns and let the compiler
error messages provide the minimum latency required for each of those Start delays. The reasons
behind the specific minimum values advised by the compiler are explained in the rest of this chapter.

Find us at www.keysight.com Page 330

Chapter 9: HVI Time Management and Latency

NOTE Limitations:

The compiler provides an indication of the minimum start delay for each engine. If
you are using different instruments these can be different values. That is because
the clock cycle duration is different in each instrument. For example, a minimum
latency of 3 cycles lasts 30 ns on M3xxxA instruments and 10 ns on M5xxxA
instruments. In case the compiler error messages suggest different values, pick the
highest value of those indicated and round it to the next HVI Common Clock cycle
to set a start delay value that can accommodate the requirements for all the
different instruments that are included in the HVI.

Find us at www.keysight.com Page 331

Chapter 9: HVI Time Management and Latency

Sync Statement Timing Tables
This section provides timing values for Sync statements and Sync flow-control statements, it contains
the following sections:

l HVI Start

l Sync While

l Sync Register-Sharing

l Sync FPGA Data-Sharing

l Sync Multi-Sequence Block

How to use the Timing Tables for Sync Statements
All the timings provided in the tables below are expressed in HVI Engine Clock cycles.

Leader Engine
In some of the Sync Statements, one of the engines that leads the statement operation. For example,
in a Sync While statement, the engine that leads is the one where the condition is evaluated. For the
context of Timing Latency calculation, we are going to call this engine the Leader Engine.

Rounding Delays
When a latency value needs to be applied to multiple engines, we must round the Engine cycles to
the next HVI Common Clock cycle. We do this using the following formula (below ncc stands for n
ext c ommon c lock):

roundncc_cycles(TimeValueEngineCycles) = ceil(TimeValueEngineCycles * HVI_Engine_ClockPeriod / HVI_Com-

mon_ClockPeriod) * HVI_Common_ClockPeriod / HVI_Engine_ClockPeriod

In the case that all the engines are running at the same frequency, the HVI Engine Clock cycles and
the HVI Common Clock cycles will have the same value for all the engines. Therefore, you can skip the
rounding calculation because it has no effect:

roundncc_cycles(TimeValueEngineCycles) == TimeValueEngineCycles

Matching Delays
Some parts of the latency may need to be aligned between engines. In order to achieve this, we use
the following formula:

match{TimeValueEngine1Cycles, TimeValueEngine2Cycles,..., TimeValueEngineNCycles} = roundncc_cycles(max

{TimeValueEngine1Cycles, TimeValueEngine2Cycles,..., TimeValueEngineNCycles})

In the previous formula, all the TimeValues have to first be converted to the EngineCycles of the target
engine so that the max can be applied among similar quantities. This can be done using this formula:

Find us at www.keysight.com Page 332

Chapter 9: HVI Time Management and Latency

TimeValueTargetEngineCycles = ceil(TimeValueOtherEngineCycles * HVI_OtherEngine_ClockPeriod / HVI_Tar-

getEngine_ClockPeriod)

In the case that all the engines are running in the same frequency, the calculation of the match
formula is just the time value of the Leader Engine:

match{TimeValueEngine1Cycles, TimeValueEngine2Cycles,..., TimeValueEngineNCycles} ==

TimeValueLeaderEngineCycles

Propagation Delay
The Propagation Delay corresponds to the amount of time (expressed in nanoseconds) that a PXIe
trigger needs, to cover the path between any given pair of segments in a topology. This value is used
when running sync statements because it provides information about how long the execution sig-
naling between modules takes.

The Propagation Delay is expressed in nanoseconds and its value depends on the topology. A table
with the values is defined on the page Sync Sequences and Synchronization Points.

In the context of the Timing Tables, the value is expressed in cycles of the HVI Engine, as it is shown in
the next tables. To be able to use it, a conversion is required:

Propagation_delayEngineCycles = Round(Propagation_DelaySeconds /HVI_Engine_ClockPeriod)

Find us at www.keysight.com Page 333

Chapter 9: HVI Time Management and Latency

https://confluence.it.keysight.com/display/HAUD/Sync_Sequences_and_Synchronization_Points

HVI Start
This is the time 0 for the HVI execution. It always matches the rising edge of the Sync signal (in PXIe
systems aligned with the PXIe-SYNC100 signal).

HVI start basic timing value:

Parameter Time (cycles)

End-Latency 2

Sync Multi-Sequence Block
Timing value for Sync multi-sequence blocks:

Execution time (cycles) (1)

roundncc_cycles (sumfor_all_internal_statements(StartDelayCycles) + sumfor_all_internal_flow_control_

statements(DurationCycles)) (2)

The following tables shows latency values for Sync Multi-Sequence Blocks:

Find us at www.keysight.com Page 334

Chapter 9: HVI Time Management and Latency

Parameter Description Time(cycles)

Start-
Latency

Minimum start-delay for
statement

1

Entry-
latency

Minimum start-delay for
first statement inside any of
the contained sequences

1

End-
Latency

Minimum
start-delay
for the next
statement

timed-sync
(5)

Minimum
Duration

roundncc_cycles(End-LatencyLast-statement-of-longest-

branch(3) - 1)

* if the last statement of the longest branch is not
starting from a common clock cycle (see section Sync
Multi-Sequence Block Timing and Time Matching in
Sync Statement Timing), the formula is updated to:

roundncc_cycles(End-LatencyLast-statement-of-longest-

branch(3) - 1 - DistanceToNextCommonClock)

where:

- DistanceToNextCommonClock is the number of Engine
Cycles from the start of the last statement to the
following common clock cycle.

timed-sync
(5)

Fixed
Duration

0

triggered-
sync (5) 0

Find us at www.keysight.com Page 335

Chapter 9: HVI Time Management and Latency

Fixed-
Duration

Minimum fixed-duration for
statement

roundncc_cycles([maxfor_all_Sequences[Sequence-

Duration]])(4),

where Sequence-Duration is calculated as follows:

sumfor_all_internal_statements(Start-Delay) + sumfor_

all_internal_flow_control_statements(Duration) + End-

LatencyLast-statement - 1

(1) The values provided here apply if the duration property of the statement is set to Minimum
(default). If a fixed-duration has been set, then the Execution time is equal to that value.

(2) The values are only calculated for the branch that is being executed, if there are multiple
branches available.

(3) If the sequence is empty, the value is 0.

(4) If the sequence is empty, then the duration is 0.

(5) Triggered-sync is required if any of the sequences in a Sync multi-sequence block contains a
statement that has unknown execution time at compile time. See section Synchronization Points
and Sync Sequence Start in Sync Statement Timing.

Find us at www.keysight.com Page 336

Chapter 9: HVI Time Management and Latency

Sync While
Timing value for Sync while statement:

Execution time (cycles) (1)

roundncc_cycles (#Iterations * [sumfor_all_internal_statements(StartDelayCycles) + sumfor_all_

internal_flow_control_statements(DurationCycles)])

The following tables shows latency values for the Sync while statement:

Find us at www.keysight.com Page 337

Chapter 9: HVI Time Management and Latency

Parameter Description Time (cycles)

Start-Latency Minimum start-delay for statement

l Leader Engine: 6 + #Register_Conditions

l Follower Engine(s): 2

Entry/Iteration
latency

Minimum start-
delay for first
statement inside
the while loop

Minimum
Duration

match{LatencyALeaderEngine,

LatencyAFollowerEngine1, ...} + 2 + End-

LatencyLast-statement(2)

where LatencyA is :

l Leader Engine(3): 12 + #Register_
Conditions + Instrument_SyncResources_
Latency (4) + Propagation_delayCycles

l Follower Engine(s): 2

Fixed Duration

match{LatencyBLeaderEngine,

LatencyBFollowerEngine1, ...} + 2

where :

n LatencyB = LatencyA - 1

n LatencyA as defined above

Find us at www.keysight.com Page 338

Chapter 9: HVI Time Management and Latency

Parameter Description Time (cycles)

End-Latency

Minimum start-
delay for next
statement outside
the while loop

Minimum
Duration

match{LatencyALeaderEngine,

LatencyAFollowerEngine1, ...} + match

{LatencyCLeaderEngine, LatencyCFollowerEngine1,

...} + End-LatencyLast-statement(2),

where:

n LatencyA as defined above

n LatencyC is 2 for each Engine.

Fixed Duration

match{LatencyBLeaderEngine,

LatencyBFollowerEngine1, ...} + match

{LatencyCLeaderEngine, LatencyCFollowerEngine1,

...},

where:

n LatencyB as defined above

n LatencyC as defined above

Fixed-Duration
Minimum fixed-
duration for
statement

Sync-While
Branch with at
least one
statement
inside

roundncc_cycles(sumfor_all_internal_statements
(StartDelayCycles) + sumfor_all_internal_flow_

control_statements(DurationCycles) + 1 + End-

LatencyLast-statement)

Empty Sync-
While Branch

match{LatencyBLeaderEngine,

LatencyBFollowerEngine1, ...} + match

{LatencyCLeaderEngine, LatencyCFollowerEngine1,

...} + 1,

where:

l LatencyB as defined above

l LatencyC as defined above

Find us at www.keysight.com Page 339

Chapter 9: HVI Time Management and Latency

Parameter Description Time (cycles)

Register
Evaluation Latency

Time to evaluate the register condition

Leader Engine (Only):

l From start: 2

l For each iteration: -(3 + #Register_
Conditions)

(1) This value applies if the duration property of the statement is set to Minimum (default). If a
fixed-duration has been set, then the Execution time is equal to that value.

(2) If the sequence is empty, the value of End-LatencyLast-statement is 0.

(3) In the context of this statement, Leader is the engine that contains the register or registers
used in the while condition.

(4) Instrument_SyncResources_Latency is an instrument specific value. For more information
see the instrument documentation.

Find us at www.keysight.com Page 340

Chapter 9: HVI Time Management and Latency

Sync Register-Sharing
Sync register-sharing latency does not depend on the number of bits shared. For more information
on this functionality, see HVI Statements and HVI API Sync Statements.

Timing value for Sync register-sharing statement:

Execution time (cycles) (1)

roundncc_cycles(5 + Propagation_delayCycles)(2)

Latency values for Sync register-sharing statement:

Parameter Description Time (cycles)

Start-Latency Minimum start-delay for statement
1

End-Latency Minimum start-delay for the next statement
0

Fixed-Duration Minimum fixed-duration for statement

roundncc_cycles(5 + Propagation_delayCycles)
(2)

Register
Evaluation
Latency

Time to evaluate the register condition -1

(1) The value provided here applies if the duration property of the statement is set to
Minimum (default). If a fixed-duration has been set, then the Execution Time is equal to that
value.

(2) This latency needs to be calculated only on the Leader Engine. In the context of this
statement, Leader is the engine that contains the register(s) used as source.

Find us at www.keysight.com Page 341

Chapter 9: HVI Time Management and Latency

Sync FPGA Data-Sharing
Calculating execution times for Sync FPGA data-sharing can be a complex process. This is
because Sync FPGA data-sharing execution time depends on a number of factors:

l Instrument specific delay characteristics.

l The topology of your system.

l The amount of data be transferred.

l If the transfer of data is in a single chassis or if it is between different chassis.

l The scheduling of multiple transactions.

For information about how to calculate timing for a Sync FPGA data sharing statement see Sync
Statement Timing.

Latency values for Sync FPGA data-sharing statement:

Parameter Description Time (cycles)

Start-Latency Minimum start-delay for statement
1

End-Latency Minimum start-delay for the next statement
0

Find us at www.keysight.com Page 342

Chapter 9: HVI Time Management and Latency

Local Flow-Control Statement Timing Tables
This section provides timing values for Local Flow-control statements, it contains the following sec-
tions:

l Local Flow-Control Statement Parameters

l Local Wait-For-Time Statement

l Local Wait-For-Event Statement

l Local Delay Statement

l Local If Statement

l Local While Statement

Local Flow-Control Statement Parameters
Some Local flow-control statements have a parameters and properties you must be aware of for
calculating timing:

Branch matching
Branch matching is a concept used in Local If statements. Branches with different instructions can
take different times. Match branches enables you to ensure the branches all take the same time
irrespective of which one is taken.

NOTE In the following tables, whenever the end-latency of the last-statement contained
in a flow-control statement is required and that last statement is a Local instruction,
the end-latency is calculated as the fetch-cycles of that instruction.

Find us at www.keysight.com Page 343

Chapter 9: HVI Time Management and Latency

Local Wait-For-Time Statement
A Wait-for-time statement blocks HVI execution in a Local sequence until a specific amount of time
passes. This amount of time is defined in a register that is specified as an argument in the Wait-for-
time statement. The value of the register specifies the number of cycles to wait.

Local Wait-for-time statement timing value:

Execution time (cycles)

RegisterValue

Local Wait-for-time statement latency values:

Parameter Time (cycles)

Start-Latency 1

End-Latency 1

Register Evaluation Latency 1

Find us at www.keysight.com Page 344

Chapter 9: HVI Time Management and Latency

Local Wait-For-Event Statement
A Local Wait-for-event statement blocks HVI execution in a Local sequence until an event
occurs. Events sources can be the Trigger IOs, or internal to the instrument (including FPGA User
Sandbox Events).

Local Wait-for-event statement timing values:

Event
type

Execution time (cycles)
Fetch time

(cycles)

Internal
Event

MAX(Event_Arrival_Time(1) + Instrument_Event_Latency(2) + 1, Fetch_
Time) + 1 3

Trigger IO
MAX(Event_Arrival_Time(1) + Instrument_Event_Latency(2) +
Instrument_Event_Condition_Latency(3), Fetch_Time) + 1

1 + Instrument_
Event_Condition_

Latency

(1) Event_arrival_time is:

l Internal Events

Event_Arrival_Time = Internal_Event_Generation_Time - WaitForEvent_Start_Time

l External Events

Event_Arrival_Time = Event_At_Module_Connector_Time – WaitForEvent_Start_Time

The event time can be measured at the front panel or PXIe backplane connector depending on the event.

(2) Instrument_Event_Latency is the delay from the event source until the event state is available
inside the HVI Engine. Events sources can be the Trigger IOs, or internal to the product (including
FPGA User Sandbox Events). It is an instrument and event specific value. Refer to the instrument
documentation for more information.

(3) Instrument_Event_Condition_Latency is the time needed for the condition evaluation to be
executed once the event has settled inside the HVI Engine. It is an instrument specific value. Refer to
the instrument documentation for more information.

NOTE The Event_Arrival_Time can be a negative value if the event enters the module
before the Wait-For-Event instruction Start Time. A number of scenarios are shown
in the diagrams below.

Find us at www.keysight.com Page 345

Chapter 9: HVI Time Management and Latency

Local Wait-for-event latency values:

Parameter Time (cycles)

Start-Latency 0

End-Latency 1

The following diagrams shows scenarios where the execution time of a Wait-For-Event statement can
vary:

Find us at www.keysight.com Page 346

Chapter 9: HVI Time Management and Latency

Local Delay Statement
A Delay statement delays HVI execution in a Local sequence until a specific amount of time passes.
This amount of time is specified in a parameter in the statement.

Local Delay statement timing value:

Execution time (cycles)

Delay Specified

Local Delay latency values:

Parameter Time (cycles)

Start-Latency 0

End-Latency 1

Find us at www.keysight.com Page 347

Chapter 9: HVI Time Management and Latency

Local If Statement
For if statements with multiple If / Else-If / Else branches, the Entry delays are the same for all
branches.

If the match-branches attribute is enabled, the HVI ensures that the execution of all of the branches
have the same overall delay. If match-branches is not enabled, some branches might take less time
than others.

The If statement latency depends on the number or register-conditions used: #Register_Conditions.

Local If timing value:

Execution time (cycles) (1) (2)

sumfor_all_internal_statements(Start-Delay) + sumfor_all_internal_flow_control_statements(Duration) (3)

(1) The value provided here applies if the duration property of the statement is set to Minimum
(default). If a fixed-duration has been set, then the Execution time is equal to that value.

(2) This value is only calculated for the branch that is executed, if there are multiple branches
available.

(3) If the branch is empty, the execution time becomes Entry-Latencybranch - 1 .

The following table shows Local If latency values:

Find us at www.keysight.com Page 348

Chapter 9: HVI Time Management and Latency

Parameter Description Minimum time (cycles)

Start-
Latency

Contributes to the minimum-
possible start-delay for the
statement

5 + #Register_Conditions_IfBranch

Entry-
latency

Contributes to the minimum-possible
start-delay for first statement in
branch #

l If-Branch: 3

l Else-If-Branch:

F or each else-if branch, we need to add:
o 6 + #Register_Conditions_Else-If-Branch

o For the 1st else-if branch we will have:
o 2 + #Register_Conditions_IfBranch +

7 + #Register_Conditions_Else-If-
Branch1

o For the 2nd else-if branch we will
have:

o 2 + #Register_Conditions_IfBranch +
7 + #Register_Conditions_Else-If-
Branch1 + 7 + #Register_Conditions_
Else-If-Branch2

o and so on, so forth...

l Else-Branch: Equal to last Else-If-Branch value

End-
Latency

Contributes to
the minimum-
possible start-
delay of the
next
statement
outside the if
statement

Matching
Branches

disabled
3 + maxfor_all_Branches[End-LatencyLast-statement] (1)

Matching
Branches

enabled

3 + End-LatencyLast-statement-of-longest-branch (2)

Where longest branch means the branch with longer
execution time.

Fixed-Duration 1

Find us at www.keysight.com Page 349

Chapter 9: HVI Time Management and Latency

Fixed-
Duration

Minimum fixed-duration for
statement

2 + maxfor_all_Branches[Branch-Duration](3)

Where Branch-Duration is calculated as follows:

[sumfor_all_internal_statements(Start-Delay) + sumfor_

all_internal_flow_control_statements(Duration) + End-

LatencyLast-statement]
(4)

Register
Evaluation
Latency

Time to evaluate the register
condition

3

Then, for registers used in the condition of any else-
if branch, we need to substract:

6 + #Register_Conditions_Else-If-Branch

Therefore, for the 1st else-if branch we will have:

3 - (6 + #Register_Conditions_Else-If-
Branch1)

For the 2nd else-if branch we will have:

3 - (6 + #Register_Conditions_Else-If-
Branch1) - (6 + #Register_Conditions_Else-If-
Branch2)

and so on, so forth...

(1) If the maximum end latency used in this equation corresponds to the if-branch, and the
calculated latency is greater than 4, then the End-latency is the calculated value minus 1.

(2) If the longest branch is the if-branch, then the End-latency is the calculated value minus 1.

(3) If the maximum branch duration used in the equation corresponds to the if-branch, then the
duration is the calculated value minus 1.

(4) If a branch is empty, then the branch duration is equal to the Entry-latency of the branch.

Find us at www.keysight.com Page 350

Chapter 9: HVI Time Management and Latency

Local While Statement
Local While timing value:

Execution time (cycles) (1)

#Iterations * [sumfor_all_internal_statements(Start-Delay) + sumfor_all_internal_flow_control_

statements(Duration)]

(1) This value applies if duration property of the statement is set to Minimum (default). If a fixed-
duration has been set, then this is the Execution time is equal to that value.

Find us at www.keysight.com Page 351

Chapter 9: HVI Time Management and Latency

Local While latency values:

Parameter Description Time (cycles)

Start-Latency
Minimum start-delay for the
statement

5 + #Register_Conditions

Entry/Iteration
latency

Minimum
start-delay
for first
statement
inside the
while loop

Minimum
Duration

8 + #Register_Conditions + End-LatencyLast-statement

Fixed
Duration

8 + #Register_Conditions

End-Latency

Minimum
start-delay
for the next
instruction
outside the
while loop

Minimum
Duration

8 + #Register_Conditions + End-LatencyLast-statement

Fixed
Duration

8 + #Register_Conditions

Fixed-Duration
Minimum fixed-duration for
statement

[sumfor_all_internal_statements(Start-Delay) + sumfor_

all_internal_flow_control_statements(Duration) + End-

LatencyLast-statement](1)

Register Evaluation
Latency

Time to evaluate the
register condition

l From start: 3

l For each iteration: -(2 + #Register_Conditions)

(1) If the branch is empty, then the duration is equal to the Entry-Latency of the branch.

Find us at www.keysight.com Page 352

Chapter 9: HVI Time Management and Latency

Local Instruction Statement Timing Tables
The following sections list the fetch and execution latency for HVI-native Local instruction state-
ments. Unless stated otherwise, all times are in HVI engine clock cycles. The HVI engine clock fre-
quency is instrument specific. For information about the HVI engine clock frequency and instrument-
specific instruction latencies, See your instrument documentation.

This section contains the following sections:

l Local Instruction Statement Parameters

l Trigger Write

l Action Execute

l Arithmetic Logic Unit Instructions

l FPGA User Sandbox Instructions

l FPGA-Instruction Statement

l Instrument-Specific Local Instruction Statement Timing Values

Local Instruction Statement Parameters
Local instruction statements have a number of parameters and properties you must be aware of for
calculating timing:

TriggerIO groups and Action groups
The following additional parameters are used for calculating timing for some Local instruction
statements.

Triggers and actions are organized into groups and the timing can change depending on these:

TriggerIO groups

Trigger Inputs / Outputs are organized together in groups of 16 called TriggerIO groups. Any
number of TriggerIO groups can be written at the same time.

Action groups

HVI actions are organized together in groups of up to 16 called Action groups. Any number of
Action groups can be executed synchronously.

Find us at www.keysight.com Page 353

Chapter 9: HVI Time Management and Latency

Trigger Write
Trigger Inputs / Outputs are organized together in groups of 16 called TriggerIOs. Each value can be
ON or OFF.

Any number of TriggerIOs can be written at the same time.

l #TriggerIOGroupsON is the number of TriggerIOGroups that contain values set to ON.

l #TriggerIOGroupsOFF is the number of TriggerIOGroups that contain values set to OFF.

The Fetch time of the instruction depends on the number of different TriggerIO groups included in the
instruction for the two possible values (#TriggerIOGroupsON or #TriggerIOGroupsOFF).

The following table provides some examples.

Triggers ON
Triggers

OFF
#TriggerIOGroupsON #TriggerIOGroupsOFF

Execution time
(cycles)

Fetch time
(cycles)

1, 2 1 0 2 1

1, 2, 17, 18 2 0 2 1

1, 2 3, 4 1 1 2 1

1, 2, 17, 18 3, 4 2 1 3 2

1, 2, 17, 18 3, 4, 19, 20 2 2 3 2

See your instrument documentation for information about instrument specific TriggerIO definitions.

NOTE Trigger execution time is instrument specific. For trigger execution timing
information, see your instrument documentation.

Example Trigger write basic timing values:

Instruction Execution time (cycles) Fetch time (cycles)

TriggerWrite Instrument_Trigger_Execution + (#TriggerWriteGroups - 1) #TriggerWriteGroups

#TriggerWriteGroups = ceil[(TriggerIOGroupsON + TriggerIOGroupsOFF)/2], where

l #TriggerIOGroupsON is the number of TriggerIOGroups that contain values set to ON.

l #TriggerIOGroupsOFF is the number of TriggerIOGroups that contain values set to OFF.

Find us at www.keysight.com Page 354

Chapter 9: HVI Time Management and Latency

Action Execute
The action-execute HVI instruction synchronously executes a list of HVI actions defined by the user.
HVI actions are organized in groups called ActionGroups that can contain up to 16 actions. Each
instrument defines its own groups of actions. See the instrument documentation for information
about instrument action definitions and the way they are grouped. Any number of HVI actions can be
executed synchronously, regardless of the group that each action user belongs to.

However, the number of action groups included in the action-execute instruction (#ActionGroups)
affects both the Fetch time and the Execution time of the instruction, as shown by the equations in
the following table.

NOTE Action execution timing is instrument specific. For action execution timing
information, see your instrument documentation.

Example Action execute basic timing values:

Instruction Execution time (cycles) Fetch time (cycles)

ActionExecute Instrument_Action_Execution + INT[(#ActionGroups-1) / 2] 1 + INT[(#ActionGroups -1) / 2]

Where INT is the integer part of a decimal number, for instance INT(1.0)=INT(1.5)=1.

Arithmetic Logic Unit Instructions
Arithmetic Logic Unit (ALU) instructions are the register add, subtract or assign operations that are
available in the HVI-native instruction set.

ALU instructions basic timing values:

Instruction Execution time (cycles) Fetch time (cycles)

Add 8 1

Subtract 8 1

Assign 5 1

Find us at www.keysight.com Page 355

Chapter 9: HVI Time Management and Latency

FPGA User Sandbox Instructions
The access latency of the FPGA registers and memory map from HVI depends on the implementation
of the specific instrument. The following table summarizes the latency for all FPGA read/write
instructions. For the specific value of Instrument_HVI_FPGA_Latency, see
your instrument documentation.

NOTE FPGA user sandbox timing is instrument specific. For FPGA user sandbox timing
information, see your instrument documentation.

Example FPGA user sandbox operations basic timing values:

Instruction Execution time (cycles)
Fetch time

(cycles)

FpgaArrayRead 2 * Instrument_HVI_FPGA_Latency + 4 1

FpgaArrayRead
(Address from
HviRegister)

2 * Instrument_HVI_FPGA_Latency + 6 1

FpgaArrayWrite Instrument_HVI_FPGA_Latency + 2 1

FpgaArrayWrite
(Address or data from
HviRegister)

Instrument_HVI_FPGA_Latency + 4 1

FpgaRegisterRead 2 * Instrument_HVI_FPGA_Latency + 4 1

FpgaRegisterWrite Instrument_HVI_FPGA_Latency + 2 1

FpgaRegisterWrite
(Address or data from
HviRegister)

Instrument_HVI_FPGA_Latency + 4 1

NOTE l Consecutive FPGA read instructions must be issued with at least 1 cycle of delay between
them.

l If an FPGA instruction that uses an HVI register is issued before an FPGA instruction that
does not use an HVI register, the delay between both instructions must be at least 3
cycles.

Find us at www.keysight.com Page 356

Chapter 9: HVI Time Management and Latency

Local Instruction Position Mapping
The following table show the instruction positions (see Local Instruction Timing) that each HVI-native
Local instruction uses during fetch time. For instrument custom instructions, see your instrument
documentation:

Positions

HVI Native Instruction 1 2 3 4 5 ...

ActionExecute Y - -

Add Y - -

Assign Y - -

Fpga Array-Read Y - -

Fpga Array-Write Y - -

Fpga Register-Read Y - -

Fpga Register-Write Y - -

Subtract Y - -

TriggerWrite Y - -

FPGA-Instruction Statement
FPGA-Instruction statement latency depends on a number of factors:

l Instruction fetch time.

l Time to fetch data from any HVI registers it uses.

l Instrument specific delays.

Apart from fetch time and the first two execution cycles spent inside the HVI engine, the rest of the
latency is defined by the instrument, this is condensed into the single parameter Instrument_FpgaIn-
struction_Latency. See your instrument documentation for information about the HVI engine clock
frequency and FPGA-instruction timing information.

 Timing values:

Find us at www.keysight.com Page 357

Chapter 9: HVI Time Management and Latency

Instruction Execution Time (cycles)
Fetch Time

(cycles)

FPGA-
Instruction

Instrument_FpgaInstruction_Latency + 2 1

Instrument-Specific Local Instruction Statement Timing Values
Instrument-specific local instruction statement latency depends on a number of factors:

l Instruction fetch time.

l Time to fetch data from any HVI registers it uses.

l Instrument specific delays.

Apart from fetch time and the first two execution cycles spent inside the HVI engine, the rest of the
latency is defined by the instrument and condensed into the single parameter Instrument_LocalIn-
struction_Latency. See your instrument documentation for information about the HVI engine clock fre-
quency and instrument-specific instruction timing information.

 Timing values:

Instruction Execution Time (cycles)
Fetch Time

(cycles)

Instrument-
Specific Local
Instruction

Instrument_LocalInstruction_Latency + 2 1

Find us at www.keysight.com Page 358

Chapter 9: HVI Time Management and Latency

Appendix A: Supported Instruments
PathWave Test Sync Executive supports a number of instruments and PXIe chassis, these require spe-
cific minimum software and firmware versions to work with PathWave Test Sync Executive.

The software and firmware version requirements for the supported instruments and chassis are listed
on-line here: Instrument and Chassis Software and Firmware Requirements for KS2201A .

Product specific documentation
For product-specific information and documentation please refer to the product pages.

Firmware is available at Keysight PXI Products, on the Technical Support page for your specific
instruments, see the Drivers, Firmware & Software tab.

M3000 Series
The M3000 series (SD1) software provides drivers, programming libraries and software front panels
for the M3000 series.

Instruments are shipped with the latest versions of firmware and SD1 software. To use an older
instrument with PathWave Test Sync Executive, the firmware and SD1 software must be upgraded to
the versions recommended in the product page following the guidelines at the link above. SD1
software is available at Keysight SD1 Software.

Other Instruments
Instruments are provided with their own drivers, programming libraries, and software front panels,
and are shipped with the latest versions of firmware and software. To use an older instrument
with PathWave Test Sync Executive, the firmware and software must be upgraded to the versions
recommended in the product page following the guidelines at the link above.

PXIe Chassis
The Chassis software provides drivers, programming libraries and software front panels for the
Keysight chassis.

Chassis are shipped with the latest versions of firmware and software. To use an older chassis
with PathWave Test Sync Executive, the firmware and software must be upgraded to the versions
recommended in the product page following the guidelines at the link above.

Find us at www.keysight.com Page 359

Appendix A: Supported Instruments

https://www.keysight.com/find/ks2201a-firmware-version-requirements
http://www.keysight.com/find/pxi
http://www.keysight.com/es/en/lib/software-detail/instrument-firmware-software/sd1-3x-software-3120392.html

Compatibility with M3601A
M3601A is an older generation of HVI technology that is only programmable by the M3601A Hard
Virtual Instrument Design Environment. PathWave Test Sync Executive is a new generation and is not
backward compatible with the M3601A generation.

Both PathWave Test Sync Executive and M3601A work with the M3000 series of PXIe products.
However, PathWave Test Sync Executive requires newer firmware while M3601A requires older
firmware.

Find us at www.keysight.com Page 360

Appendix A: Supported Instruments

Appendix B: Additional Documentation and Examples
This appendix lists the PathWave Test Sync Executive Programming Examples and additional doc-
umentation that you can download from the KS2201A Programming Examples page.

NOTE The Programming Examples are often updated so ensure you check for the latest
versions.

Programming Example 1: Multi-Channel Sync Playback using M32xxA
Arbitrary Waveform Generators
In Programming Example 1, PathWave Test Sync Executive is used to program multiple M3xxxA
Arbitrary Waveform Generators (AWG)s. The AWGs synchronously output a front panel trigger pulse
followed by a previously queued waveform. All instruments run fully synchronized and actions across
the instruments can be controlled at the timing resolution of the M3xxxA AWGs, which is 10ns.

Programming Example 2: Synchronous Signal Generation and
Acquisition using M3xxxA PXI Instruments
In Programming Example 2, a M3102A
digitizer performs sequenced acquisition of heterogeneous signals generated by multiple M320xA
AWGs. The first AWG generates a train of RF pulses and the other AWGs output a
queued arbitrary waveform. By using PathWave Test Sync Executive, each cycle of the digitizer
measurements is precisely synchronized with the AWG output signals.

Programming Example 3: PathWave Test Sync Executive Integration with
PathWave FPGA
This Programming Example shows how to use Keysight PathWave Test Sync Executive together with
Keysight PathWave FPGA. A custom FPGA block is designed using Keysight PathWave FPGA and
loaded into the sandbox of two modular instruments. The two instruments execute HVI sequences
that can communicate with the custom FPGA blocks programmed into the sandbox of the module
FPGA. Using an HVI Port, the HVI sequence can read/write values in any HVI Port Register inserted
among the custom FPGA blocks. This example also shows how the HVI sequence and FPGA sandbox
of an instrument can communicate by using actions and events. The exchanged information can also
be written to PXI lines.

Find us at www.keysight.com Page 361

Appendix B: Additional Documentation and Examples

http://www.keysight.com/find/ks2201a-programming-examples

Programming Example 4: Real-Time Pulsed Characterization of a Device-
Under-Test
In this Programming Example, an M3202A AWG and an M3102A digitizer are used to perform a real-
time pulsed characterization experiment on a Device Under Test.

A pool of different waveforms is loaded to the AWG RAM. The digitizer uses the register-sharing
functionality to select a real-time the waveform to be played by the AWG at each iteration of the
experiment. The selected waveform is used by AWG CH1 and CH2 to play I-Q modulated pulses and
re-play them after a Variable delay. In the same iteration, AWG CH3 and CH4 play a second burst
of I-Q pulses after another Variable delay. The second burst pulse length can be increased after each
iteration. The experiment can be repeated for a user-defined number of loops, allowing you to choose
the delay between each loop and the delay necessary for example to let the DUT return to its
equilibrium state. Example use cases for this programming example include power amplifier
characterization for 5G mobile communications and quantum bit characterization experiments for
physics applications. In the physics case, the AWG generates the control and readout pulses
necessary for characterization of quantum bits.

Programming Example 5 - Synchronized Multi-Channel Mixed-Signal
Generation using M3xxA PXI Instruments
In this Programming Example, KS2201A PathWave Test Sync Executive is used to program multiple
M3xxx Arbitrary Waveform Generators to synchronously generate mixed signals. Each instrument can
be programmed to output either a front panel marker pulse or a previously queued waveform. All
signal channels run fully synchronized and actions across instruments can be controlled with the
timing resolution of the M3xxxA AWGs, which is 10ns.

Programming Example 6 - Synchronized MIMO Measurements using
M5302A Digital I-O and M3xxxA PXI Instruments
In this programming example, PathWave Test Sync Executive is used to program multiple M5302A
Digital I/O (DIO) and M3xxxA PXI instruments. By using HVI (Hard Virtual Instrument) capabilities, DIO
instruments can output a pulsed signal from any of their Front Panel (FP) SMB trigger ports and
M320xA AWGs can synchronously play a previously queued waveform. Multiple M3102A Digitizers
can also be included in the same HVI to synchronously capture all the generated analog and digital
signals. This way the example can showcase a Multiple-Input Multiple-Output (MIMO) measurement
setup having all his input and output channels fully synchronized.

Find us at www.keysight.com Page 362

Appendix B: Additional Documentation and Examples

Programming Example 7 - RF Sweeps using M320x AWGs M5300 RF
AWGs and M9046 Chassis
In this programming example, PathWave Test Sync Executive is used to define a real-time algorithm
to be executed by the FPGA (Field Programmable Gate Array) of Arbitrary Waveform Generators
(AWGs). This enables the AWG channels to be used to output pulsed signals that are swept in
amplitude and frequency, to perform a pulsed characterization of a Device-Under-Test.

System Setup Guide
This document describes the different ways you can set up a single or multi-chassis system, with
clocking and communications.

Transitioning from M3601A HVI Programming Environment to KS2201A
PathWave Test Sync Executive
This Transition Guide is intended for M3601A users and explains how to translate an M3601A project
into HVI API Python code programmed using Keysight KS2201A PathWave Test Sync Executive.

Find us at www.keysight.com Page 363

Appendix B: Additional Documentation and Examples

This information is subject to change

without notice.

© Keysight Technologies 2020-2022

Edition 2022_U0_00, June, 2022

Keysight Technologies, USA

KS2201-90000

www.keysight.com

http://www.keysight.com/

	Chapter 1: Introduction
	Chapter 2: Install PathWave Test Sync Executive
	System Requirements
	Install Main Components
	Install Additional Components

	Chapter 3: Installing Licenses
	PathWave Test Sync Executive License Requirements
	Supported Licensing Modes
	The Licensing Process
	Installing Licenses with PathWave License Manager

	Chapter 4: HVI Elements
	About Instruments
	About PathWave Test Sync Executive
	HVI API Language Support
	HVI API Use Model
	HVI Engines
	HVI Resources
	HVI Sequences and Statements
	HVI Sequences
	HVI Statements

	HVI Diagrams
	HVI Timing

	Chapter 5: HVI integration with PathWaveFPGA
	PathWave FPGA and HVI Overview
	Using FPGA-Sandbox Resources with HVI
	HVI Memory Maps and Register Banks in FPGA Sandbox
	Actions, Events and Triggers in an FPGA Sandbox
	FPGA Fast Data Sharing
	FPGA-Instruction
	HVI Statements for using FPGAs

	Chapter 6: Multi-Chassis Systems and System Synchronization Modules
	System Synchronization Modules
	Configuring a System with SSMs and System Sync Connectivity
	Clocking
	Configuring the Reference Clock

	Chapter 7: The HVI API
	HVI API Main Classes and Use Model
	HVI API Functionality
	SystemDefinition
	HVI Engines and their Resources
	Chassis, Interconnects and SyncModules Classes
	Synchronization Resources and Clocks
	User-defined trigger routing
	Clocking API
	Multi-process support
	System Initialization

	Sequencer
	About the Sequencer Class
	HVI SyncSequence and Sequence
	HVI API Statements
	InstructionSet
	FPGA Sandbox View
	HVI Registers and Scopes
	HVI Time API
	HVI Compilation
	Sequence Visualization
	HVI Component Versions

	The Hvi Object
	EngineRuntime Components
	Load to Hardware and Run
	Real-time Hardware Execution Error Handling
	The HVI Logger

	HVI API Sync Statements
	HVI API Local Statements

	Chapter 8: Building an Application with the HVI API
	Planning an HVI with the HVI Use Model
	1 Create the System Definition
	2. Program HVI Sequences
	3. Compile Your Sequences
	4. Load To Hardware
	5. Modify Initial Register Values (Optional)
	6. Execute Sequences
	7. Release All Resources

	Chapter 9: HVI Time Management and Latency
	About Time Management and Latency Concepts
	Duration Property of Statements
	Synchronization Clocks, Signals, and Modes
	Sync Statement Timing
	Local Flow-Control Statement Timing
	Local Instruction Timing
	Minimum Start Delay Calculation for Flow-Control and Sync Statement
	Sync Statement Timing Tables
	Local Flow-Control Statement Timing Tables
	Local Instruction Statement Timing Tables

	Appendix A: Supported Instruments
	Appendix B: Additional Documentation and Examples

