Application Notes
Table of Contents
Introduction
Achieving the highest possible network analyzer dynamic range is extremely important when characterizing many types of microwave devices, and in some cases, is the key factor in determining measurement performance. To achieve the greatest dynamic, range from a network measurement system, it is important to understand the essence of dynamic range and the methods that can be employed to increase it. Armed with this knowledge, the designer can choose the method that achieves the best results with the least impact on other instrument parameters such as measurement speed.
Dynamic range defined
Network analyzer dynamic range is essentially the range of power that the system can measure, specifically:
The two common definitions for dynamic range are:
Achievable dynamic range depends upon the measurement application.
Noise floor defined
The receiver's noise floor is an important network analyzer specification that helps determine its dynamic range. Unfortunately, “noise floor” is not a well-defined term and it has been defined in several ways over the years.
The results of an experiment to compare some common noise floor definitions are shown in Figure 2. In this experiment, Gaussian random noise with a noise power of –100 dBm was simulated, and the noise floor was calculated using four definitions:
Keysight Technologies’ vector network analyzers (VNAs), such as the PNA or ENA series, use the RMS value to define the receiver noise floor. This is a commonly used definition and is easy to understand because it is the receiver's equivalent input noise power.
What are you looking for?