
Keysight i3070

In-Circuit Test System

Data Formats

8 Log Record Format

What are Log Records? 8-2

About Log Record Prefixes 8-3

Hierarchy of Log Records 8-6

Interpreting the Log Records 8-8

How Log Records are Formatted 8-11

Descriptions of the Log Records 8-13

This chapter describes the format of the standard log records generated by the test system for use by

Pushbutton Q-STATS. Although an in-depth understanding of log records is not necessary for

general users of the test system, it is essential for those who wish to integrate i3070 board test data

with non-Keysight (custom) applications.

Objectives

When you finish reading this chapter, you should be able to:

• Understand the structure and syntax of the log records

8-2 Data Formats

8 Log Record Format

What are Log Records?

Test data is stored in files as a series of formatted records called log records. Each record consists of

a character string which represents information. Because the records must be read and interpreted

by programs, the characters in each record are arranged in precise formats. You must be familiar with

these formats if you wish to interpret existing log records or generate your own from scratch.

Because log records are simply strings of ASCII characters, you can load a log record file into the

BT-Basic workspace and examine it. Or, if you are familiar with the shell, you can examine log

records with the more command or an editor such as vi. See Structure Of The Datalogging Files for

the location of the log files.

Log Record Format 8

Data Formats 8-3

About Log Record Prefixes

All standard log records generated by your test system contain a prefix that consists of the @ symbol

followed by several descriptive characters that uniquely identify the type of record. For example, prefix

@BLOCK indicates that the record describes a block, or group of tests. Although there can be any

number of @BLOCK log records generated, only one type of log record can begin with an @BLOCK

prefix.

The records are described in Table 8-1.

Table 8-1 Log record prefixes

Prefix Purpose Generated by

@A-CAP capacitor test results capacitor

@A-DIO diode test results diode

@A-FUS fuse test results fuse

@A-IND inductor test results inductor

@A-JUM jumper test results jumper

@A-MEA measurement results measure

@A-NFE N-channel FET test results nfetr

@A-NPN NPN transistor test results npn

@A-PFE P-channel FET test results pfetr

@A-PNP PNP transistor test results pnp

@A-POT potentiometer test results potentiometer

@A-RES resistor test results resistor

@A-SWI switch test results switch

@A-ZEN zener test results zener

@ALM identify a real-time alarm alarm program

@AID identify board causing an alarm alarm program

@ARRAY digitizer results analysis digitizer

report analog

@BATCH batch identifier log board

@BLOCK test block identifier test

test analog

@BS-CON describe boundary-scan test Boundary-Scan

@BS-O list of open pins (boundary-scan) Boundary-Scan

@BS-S list of shorted pins (boundary-scan) Boundary-Scan

@BTEST describe board test log board start

log board end

8-4 Data Formats

8 Log Record Format

@DPIN list failing pins for one device cont digital

probe

test

@D-PLD PLD programming results log is, log out, log failure, and other BT-Basic

logging functions

@D-T digital shorts test results test

@INDICT list potentially failing devices log level is indictments

@LIM2 analog test high/low limits current

diode

fuse

jumper

measure

nfetr

npn

pfetr

pnp

switch

@LIM3 analog test nominal and tolerance limits capacitor

inductor

potentiometer

resistor

zener

@NETV network verification record prsetup program

@NODE list of nodes probe

probe failures

@PCHK Polarity Check test results test

@PIN list of pins pinsfailed

@PF pins failure results test

@PRB probe failure results probe

@RETEST indicates log clear for retest log clear for retest

@RPT messages logged by report report

@TJET VTEP or TestJet results test

@TS shorts test results (destination) test shorts

Table 8-1 Log record prefixes (continued)

Prefix Purpose Generated by

Log Record Format 8

Data Formats 8-5

Note that several groups of prefixes exist. For example, records beginning with @A- are generated by

analog test statements, records beginning with @D- are generated by digital test statements, and so

on. If you are generating custom log records, you may want to create your own prefix groups.

@TS-D list of shorted nodes test shorts

@TS-O list of open nodes test shorts

@TS-P list of phantoms test shorts

@TS-S shorts test results (source) test shorts

To keep log records to a manageable size, avoid making custom prefixes

excessively long.

Table 8-1 Log record prefixes (continued)

Prefix Purpose Generated by

8-6 Data Formats

8 Log Record Format

Hierarchy of Log Records

This section shows how groups of log records are arranged to form log data files. To keep the

examples simple, each record is represented by its prefix and not by the actual data it contains. The

internal structure of each log record is explained later in Interpreting the Log Records on page 8-8.

Log records are arranged in a hierarchy of records and subrecords, where a subrecord is simply an

additional record which further describes whatever precedes it. For example, a group of log records

(presumably a log data file) might begin with an @BATCH record containing information to identify a

batch of boards that were tested:

@BATCH

And the @BATCH record might be followed by an @BTEST record to identify the testing of an individual

board:

@BATCH
@BTEST

Because the @BTEST record further describes the @BATCH record by identifying a unique board within

the batch, it is a subrecord of, or subordinate to, the @BATCH record. The @BATCH record by itself is

incomplete; it becomes complete only when followed by an @BTEST record.

Suppose the board described in the @BTEST subrecord had a resistor test performed on it (by a

resistor statement). The results of the resistor test appear in an @A-RES record (which is preceded

by an @BLOCK record to identify the beginning of a block of tests), like this:

@BATCH
@BTEST
@BLOCK
@A-RES

Thus, the @A-RES record appears as a subrecord of an @BLOCK record, which is a subrecord of an

@BTEST record, which is a subrecord of an @BATCH record.

To make the structure of records and subrecords more obvious, we will begin indenting the examples,

like this:

@BATCH
@BTEST

@BLOCK
@A-RES

This way of presenting examples clearly shows the hierarchy of records and subrecords. Note that

these indents are for illustration purposes only; they do not appear within actual log data files.

Suppose we test two more boards, each with one resistor test. The log data file now looks like this:

@BATCH
@BTEST

@BLOCK
@A-RES

@BTEST
@BLOCK

@A-RES
@BTEST

@BLOCK
@A-RES

Log Record Format 8

Data Formats 8-7

Completing the current batch of boards and beginning a new one gives us:

@BATCH
@BTEST

@BLOCK
@A-RES

@BTEST
@BLOCK

@A-RES
@BTEST

@BLOCK
@A-RES

@BATCH
@BTEST

@BLOCK
@A-RES

In a similar fashion, other records and subrecords can be assembled into files of log data describing

how boards were tested.

8-8 Data Formats

8 Log Record Format

Interpreting the Log Records

Up until now, all of the examples have shown only the record prefixes, and not the test data each

record contains. This section describes the format of data as it appears within log records and then

expands upon the preceding section by showing how actual log records are grouped into log data

files.

Each log record is enclosed in braces. The record begins with { immediately followed by the prefix,

and ends with }. For example, the @A-CAP record, which describes a capacitor test, looks like this

when simplified:

{@A-CAP. . . data fields . . .}

The prefix is followed by one or more variable length data fields containing descriptive information. A

vertical bar, |, is used as a separator between fields. Adding the names of the fields to the example

above gives us:

{@A-CAP|test status|measured value|subtest designator}

If we replace the names of the fields with typical data, an @A-CAP record might look like this:

{@A-CAP|1|1.246700E+01|C1}

If a field is optional, the separator character must still appear as a place holder. For example, if the

@A-CAP record above had no value assigned to the measured value field, it would look like this:

{@A-CAP|1||C1}

Notice that the vertical bars still reserve a space between the contents of the test status and

subtest designator fields for the empty measured value field.

Each field must contain a certain type of information. The log record descriptions denote these

beneath TYPE as shown in Table 8-2.

If left empty, most fields default to some predefined value. The log record descriptions denote these

beneath DEFAULT as:

• 0, 1, etc. a default numeric value

Although the following examples illustrate the structure of actual log records, the samples shown

are not necessarily complete. Refer to the descriptions of the individual log records for complete

details.

Look in the descriptions of the individual log records for the names of the

fields associated with each log record.

Table 8-2 Log record types

Type Description

bool a boolean, which can have either a true value (1 or Y) or a false value (0 or N)

fp floating point number, which is an integer optionally followed by a decimal point and any

number of consecutive digits, all optionally followed by the letter E (upper- or lowercase)

and an integer

int integer number, which is an optional sign character (+ or -) followed by one or more

consecutive digits

str string value, which is any number of characters of any type (unless otherwise noted)

Log Record Format 8

Data Formats 8-9

• "" a null string

Fields for which a default value would be meaningless - that is, fields in which a reported value is

mandatory - have a question mark (?) beneath DEFAULT.

Some log records contain a data list. In this case, the initial separator character (to indicate that a list

follows) is a backslash, \, and individual items within the list are separated by a vertical bar. For

example, the @NODE log record contains a list of node identifiers:

{@NODE\node list|item 1|item 2| . . etc.}

Substituting values in place of the field names gives us:

{@NODE\2|Node53|+5Volts}

The first entry in a list tells how many items appear in the list. Thus, the 2 following the \ indicates

there are two items in the list: Node53 and +5Volts.

Some log records are followed by one or more subrecords containing additional information. For

example, the @PF record can be followed by an @PIN record which contains a list of pins:

{@PF|2
{@PIN\2|11434|22216}

}

In other words, the @PF record is further described by the @PIN record that follows it.

Notice the hierarchy of braces - the @PIN record has its own pair of beginning and ending braces ({

and }) within the @PF record's overall pair of braces. Also notice that the closing brace for the @PF

record was dropped onto a new line, and the @PIN record was indented, to make the structure of the

overall record more obvious. Indents and new lines are shown here for illustration purposes only; they

do not necessarily appear within actual log data files.

If you examine actual log data produced by the i3070 In-Circuit Test System, you will see that in some

cases subrecords appear on the same line as the records with which they are associated, and in other

cases they do not. The important thing to keep in mind is that log records must appear in the correct

order and that they must be accurately defined by braces.

Without the indents and new lines, the actual log record looks like this:

{@PF|2{@PIN\2|11434|22216}}

This same hierarchy of braces and indents also applies to more complex, nested groups of log records.

Consider the following example:

{@TS|1|2|1|1|
{@TS-S|2|0|Node12

{@TS-D|Node25|1.678850E+00}
{@TS-D|Node26|2.543211E+00}

}
{@TS-O|Node43|Node14|-1.500000E+00}
{@TS-S|0|1|Node38

{@TS-P|-1.243853E+02}
}

}

In this case an overall @TS log record contains three subrecords, one each to report shorts, opens, and

phantoms associated with the shorts test reported by the entire @TS log record. Two of the @TS

record's subrecords contain subrecords which further describe them. Notice the pairing of braces; for

each opening brace, there is a closing brace.

So far we have mentioned four special characters which can appear in log records: {, }, |, and \. But

suppose that one or more of these characters must appear within a data field and not be interpreted

as data field delimiters. Another special character, the tilde (~), is used to identify a data field that

should be interpreted literally, that is, a literal field. Unlike a normal field, which is variable length, this

literal field must have its length precisely defined. For example:

8-10 Data Formats

8 Log Record Format

~12|!$%(test)|!|

The actual data in this field is !$%(test)|!|. The ~ identifies the field as a special case, the 12

denotes the field's length as twelve characters, and the | immediately following the 12 delimits the

length specification from the data.

If this field appeared in a log record, it might look like this:

{@RPT~12|!$%(test)|!|}

Notice that the ~ at the beginning of the literal field replaces the usual | delimiter; do not use both

delimiters.

If you generate custom log records containing the line feed character, an ASCII 10 (CTRL-J), you must

put the line feed character in a literal field; if you do not, it will be misinterpreted as an optional

delimiter between a record and a subrecord.

If you need to manipulate log records with BT-Basic, you should use free-field formatting to input a

record's individual fields into variables.

A Note About Truncated Records

If you are using custom datalogging routines, be aware that the presence of a truncation character,

an ASCII 4 (CTRL-D), in the data will be interpreted to mean that the log data was unexpectedly

interrupted and that the current log record has ended.

The data preceding the truncation character is considered to be valid, and any subsequent log records

will be considered normal provided they do not contain the truncation character.

A Note About Process Steps

In addition to type and serial number, boards can be identified by a process step. The process step is

simply at which step in the manufacturing process - for example, in-circuit or functional - the board

is being tested. The @BATCH log record contains a process step data field in which you can place a

brief code to identify at which step in the test process a board was tested.

Note that Pushbutton Q-STATS does not make use of process steps. However, if you are generating

custom log records and ever expect to use the optional Q-STATS II quality management software

(which does use process steps), you may want to begin acquiring process step information now.

A Note About User-Defined Log Records

The log and log using statements allow you to create user-defined log records in free-field and

imaged formats, respectively. User-defined log records can emulate existing log records, or they can

be created from scratch for custom applications (which require custom routines to process the

non-standard log records).

The exception to this is that the truncation character can appear in a literal field denoted with a

tilde (~); this does not indicate a truncated record.

Log Record Format 8

Data Formats 8-11

How Log Records are Formatted

The next two topics summarize how log records are formatted. This information will be useful if you

are creating your own custom log records.

• Special Characters

• Rules of Formatting

Special Characters

The characters shown in Table 8-3 have special significance - that is, they are interpreted to mean

something other than their normal ASCII value - when they appear in a log record.

If you use custom log records or custom datalogging routines, be sure that none of these characters

appear in normal data unless they are within a literal field.

Table 8-3 Special characters

Character Description

{ Begins a log record

} Ends a log record

| Begins a normal data field

~ Begins a literal field

\ Begins a list of fields

ASCII 4 (CTRL-D) Identifies a truncated (incomplete) log record

ASCII 10 (CTRL-J) Line feed character (new line). Denotes the end of the data fields for the current

record, and should only be followed by an end of record character (}) or beginning of

a new record or subrecord ({).

8-12 Data Formats

8 Log Record Format

Rules of Formatting

The following list contains the formatting rules used to build log records (or subrecords).

• Each log record begins with { followed by a series of printable characters that uniquely identify

the log record type. The convention for log record types supplied by Keysight is that they begin

with @. No other log records should begin with this character.

• The record type is followed by one or more data fields.

• Each data field begins with one of the following characters:

| - Begins a normal data field, which must not contain special characters unless they appear

within a literal field. A normal data field is ended by the appearance of the next special character.

If you are creating custom log records: Since a special character ends a data field, every data field

should be followed by some special character to terminate it.

\ - Begins a data field that contains a list, which must not contain any special characters unless

they appear within a literal field. This character is followed by:

• A number showing how many items are in the list

• The items (data) in the list. Each item is itself a data field, and usually begins with |.

~ - Begins a literal field, which is the only way to include special characters inside a log record

and not have them interpreted as special. This character is followed by:

• A number showing how many characters are in the field

• A single |

• The characters which are to be interpreted literally

• Each log record ends with }

• Some record types can contain nested subrecords. A record becomes a subrecord when it occurs

after the preceding record's data fields but before the final } for the preceding record.

Log Record Format 8

Data Formats 8-13

Descriptions of the Log Records

This section describes the log records.

Record @A-CAP: capacitor

This record describes a capacitor test. When limits are being logged, it is followed by a subrecord

containing additional information.

• Generated by: capacitor statement

• Subrecords: @LIM3 is generated when logging limits information. Contains nominal value and

high/low limits for test.

Example 8-1

{@A-CAP|1|1.246700E+01}

Table 8-4 @A-CAP

 Format: {@A-CAP|test status|measured value|subtest designator}

Field Type Defaul t Comments

test status int 0 0 = passed

1 = failed

2 = failed (compliance limit)

3 = failed (detector timeout)

11 = aborted by operator

measured value fp 0 The actual value measured.

subtest designator str "" Comes from the optional designator parameter of

the capacitor statement.

8-14 Data Formats

8 Log Record Format

Record @A-DIO: diode

This record describes a diode test. When limits are being logged, it is followed by a subrecord

containing additional information.

• Generated by: diode statement

• Subrecords: @LIM2 is generated when logging limits information. Contains high/low limits for

test.

Example 8-2

{@A-DIO|1|1.246700E+01}

Table 8-5 @A-DIO

 Format: {@A-DIO|test status|measured value|subtest designator}

Field Type Defaul t Comments

test status int 0 0 = passed

1 = failed

2 = failed (compliance limit)

3 = failed (detector timeout)

11 = aborted by operator

measured value fp 0 The actual value measured.

subtest designator str "" Comes from the optional designator parameter of

the diode statement.

Log Record Format 8

Data Formats 8-15

Record @A-FUS: fuse

This record describes a fuse test. When limits are being logged, it is followed by a subrecord

containing additional information.

• Subrecords: @LIM2 is generated when logging limits information. Contains high/low limits for

test.

Example 8-3

{@A-FUS|1|1.246700E+01}

Table 8-6 @A-FUS

Format: {@A-FUS|test status|measured value|subtest designator}

Field Type Defaul t Comments

test status int 0 0 = passed

1 = failed

2 = failed (compliance limit)

3 = failed (detector timeout)

11 = aborted by operator

measured value fp 0 The actual value measured.

subtest designator str "" Comes from the optional designator parameter

of the fuse statement.

8-16 Data Formats

8 Log Record Format

Record @A-IND: inductor

This record describes an inductor test. When limits are being logged, it is followed by a subrecord

containing additional information.

• Generated by: inductor statement

• Subrecords: @LIM3 is generated when logging limits information. Contains nominal value and

high/low limits for test.

Example 8-4

{@A-IND|1|1.246700E+01}

Table 8-7 @A-IND

Format: {@A-IND|test status|measured value|subtest designator}

Field Type Defaul t Comments

test status int 0 0 = passed

1 = failed

2 = failed (compliance limit)

3 = failed (detector timeout)

11 = aborted by operator

measured value fp 0 The actual value measured.

subtest designator str "" Comes from the optional designator parameter

of the inductor statement.

Log Record Format 8

Data Formats 8-17

Record @A-JUM: jumper

This record describes a jumper test. When limits are being logged, it is followed by a subrecord

containing additional information.

• Generated by: jumper statement

• Subrecords: @LIM2 is generated when logging limits information. Contains high/low limits for

test.

Example 8-5

{@A-JUM|1|1.246700E+01}

Table 8-8 @A-JUM

Format: {@A-JUM|test status|measured value|subtest designator}

Field Type Defaul t Comments

test status int 0 0 = passed

1 = failed

2 = failed (compliance limit)

3 = failed (detector timeout)

11 = aborted by operator

measured value fp 0 The actual value measured.

subtest designator str "" Comes from the optional designator parameter

of the jumper statement.

8-18 Data Formats

8 Log Record Format

Record @A-MEA: measure

This record describes a measurement. When limits are being logged, it is followed by a subrecord

containing additional information.

• Generated by: measure statement

• Subrecords: @LIM2 is generated when logging limits information. Contains high/low limits for

test.

Example 8-6

@A-MEA|7|-3.654285E-05|N-FET_ON_OFF{@LIM2|+5.000000E+00|-5.000000E-01}

Table 8-9 @A-MEA

Format: {@A-MEA|test status|measured value|subtest designator}

Field Type Defaul t Comments

test status int 0 0 = passed

1 = failed

2 = failed (compliance limit)

3 = failed (detector timeout)

7 = failed

11 = aborted by operator

measured value fp 0 The actual value measured.

subtest designator str "" Comes from the name of the subtest block in which

the measurement occurred.

Log Record Format 8

Data Formats 8-19

Record @A-NFE: nfetr

This record describes an N-channel FET test. When limits are being logged, it is followed by a

subrecord containing additional information.

• Generated by: nfetr statement

• Subrecords: @LIM2 is generated when logging limits information. Contains high/low limits for

test.

Example 8-7

{@A-NFE|1|1.246700E+01}

Table 8-10 @A-NFE

Format: {@A-NFE|test status|measured value|subtest designator}

Field Type Defaul t Comments

test status int 0 0 = passed

1 = failed

2 = failed (compliance limit)

3 = failed (detector timeout)

11 = aborted by operator

measured value fp 0 The actual value measured.

subtest designator str "" Comes from the optional designator parameter

of the nfetr statement.

8-20 Data Formats

8 Log Record Format

Record @A-NPN: npn

This record describes an NPN transistor test. When limits are being logged, it is followed by a

subrecord containing additional information.

• Generated by: npn statement

• Subrecords: @LIM2 is generated when logging limits information. Contains high/low limits for

test.

Example 8-8

{@A-NPN|1|1.246700E+01}

Table 8-11 @A-NPN

Format: {@A-NPN|test status|measured value|subtest designator}

Field Type Defaul t Comments

test status int 0 0 = passed

1 = failed

2 = failed (compliance limit)

3 = failed (detector timeout)

11 = aborted by operator

measured value fp 0 The actual value measured.

subtest designator str "" Comes from the optional designator parameter

of the npn statement.

Log Record Format 8

Data Formats 8-21

Record @A-PFE: pfetr

This record describes a P-channel FET test. When limits are being logged, it is followed by a subrecord

containing additional information.

• Generated by: pfetr statement

• Subrecords: @LIM2 is generated when logging limits information. Contains high/low limits for

test.

Example 8-9

{@A-PFE|1|1.246700E+01}

Table 8-12 @A-PFE

Format: {@A-PFE|test status|measured value|subtest designator}

Field Type Defaul t Comments

test status int 0 0 = passed

1 = failed

2 = failed (compliance limit)

3 = failed (detector timeout)

11 = aborted by operator

measured value fp 0 The actual value measured.

subtest designator str "" Comes from the optional designator parameter

of the pfetr statement.

8-22 Data Formats

8 Log Record Format

Record @A-PNP: pnp

This record describes a PNP transistor test. When limits are being logged, it is followed by a subrecord

containing additional information.

• Generated by: pnp statement

• Subrecords: @LIM2 is generated when logging limits information. Contains high/low limits for

test.

Example 8-10

{@A-PNP|1|1.246700E+01}

Table 8-13 @A-PNP

Format: {@A-PNP|test status|measured value|subtest designator}

Field Type Defaul t Comments

test status int 0 0 = passed

1 = failed

2 = failed (compliance limit)

3 = failed (detector timeout)

11 = aborted by operator

measured value fp 0 The actual value measured.

subtest designator str "" Comes from the optional designator parameter

of the pnp statement.

Log Record Format 8

Data Formats 8-23

Record @A-POT: potentiometer

This record describes a potentiometer test. When limits are being logged, it is followed by a subrecord

containing additional information.

• Generated by: potentiometer statement

• Subrecords: @LIM3 is generated when logging limits information. Contains nominal value and

high/low limits for test.

Example 8-11

{@A-POT|1|1.246700E+01}

Table 8-14 @A-POT

Format: {@A-POT|test status|measured value|subtest designator}

Field Type Defaul t Comments

test status int 0 0 = passed

1 = failed

2 = failed (compliance limit)

3 = failed (detector timeout)

11 = aborted by operator

measured value fp 0 The actual value measured.

subtest designator str "" Comes from the optional designator parameter of

the potentiometer statement.

8-24 Data Formats

8 Log Record Format

Record @A-RES: resistor

This record describes a resistor test. When limits are being logged, it is followed by a subrecord

containing additional information.

• Generated by: resistor statement

• Subrecords: @LIM3 is generated when logging limits information. Contains nominal value and

high/low limits for test.

Example 8-12

{@A-RES|1|1.246700E+01}

Table 8-15 @A-RES

Format: {@A-RES|test status|measured value|subtest designator}

Field Type Defaul t Comments

test status int 0 0 = passed

1 = failed

2 = failed (compliance limit)

3 = failed (detector timeout)

11 = aborted by operator

measured value fp 0 The actual value measured.

subtest designator str "" Comes from the optional designator parameter

of the resistor statement.

Log Record Format 8

Data Formats 8-25

Record @A-SWI: switch

This record describes a switch test. When limits are being logged, it is followed by a subrecord

containing additional information.

• Generated by: switch statement

• Subrecords: @LIM2 is generated when logging limits information. Contains high/low limits for

test.

Example 8-13

{@A-SWI|1|1.246700E+01}

Table 8-16 @A-SWI

Format: {@A-SWI|test status|measured value|subtest designator}

Field Type Defaul t Comments

test status int 0 0 = passed

1 = failed

2 = failed (compliance limit)

3 = failed (detector timeout)

11 = aborted by operator

measured value fp 0 The actual value measured.

subtest designator str "" Comes from the optional designator parameter

of the switch statement.

8-26 Data Formats

8 Log Record Format

Record @A-ZEN: zener

This record describes a Zener diode test. When limits are being logged, it is followed by a subrecord

containing additional information.

• Generated by: zener statement

• Subrecords: @LIM3 is generated when logging limits information. Contains nominal value and

high/low limits for test.

Example 8-14

{@A-ZEN|1|1.246700E+01}

Table 8-17 @A-ZEN

Format: {@A-ZEN|test status|measured value|subtest designator}

Field Type Defaul t Comments

test status int 0 0 = passed

1 = failed

2 = failed (compliance limit)

3 = failed (detector timeout)

11 = aborted by operator

measured value fp 0 The actual value measured.

subtest designator str "" Comes from the optional designator parameter

of the zener statement.

Log Record Format 8

Data Formats 8-27

Record @AID: identify board causing real-time alarm

This record appears as a subrecord of the @ALM record; it identifies the board that caused the

real-time alarm described in the @ALM record.

• Generated by: alarm program

Example 8-15

{@AID|890615094418|12306743}

Table 8-18 @AID

Format: {@AID|time detected|serial number}

Field Type Defaul t Comments

datetime detected str "" Date and time of alarm in YYMMDDHHMMSS format

(datetime$).

subtest designator str "" The unique serial number of the board that caused the

real-time alarm.

8-28 Data Formats

8 Log Record Format

Record @ALM: identify real-time alarm

This record describes a specific real-time alarm. It is followed by an @AID subrecord that identifies

which board caused the real-time alarm.

• Generated by: alarm program

• Subrecords: @AID Logged for any real-time alarm that is detected; identifies the board that

caused the real-time alarm.

Example 8-16

{@ALM|1|1|890516145512|proc_bd|2|10|15|alpha|1}

Table 8-19 @ALM

Format: {@ALM|alarm type|alarm status|time detected|board type|board type rev|alarm l imit|detected

value|controller|testhead number}

Field Type Defaul t Comments

alarm type int 1 1 = consecutive failure; 2 = sample yield; 3 = overall

yield

alarm status bool 0 0 = off, 1 = on

datetime detected str "" Date and time of alarm in YYMMDDHHMMSS format

(datetime$).

board type str "" The board type associated with the alarm.

board type rev str "" The revision of the board type associated with the

alarm.

alarm l imit int ? The alarm limit (threshold) that was exceeded.

detected value int ? The detected value that exceeded the alarm limit.

controller str "" Which controller the alarm occurred on.

testhead number int 1 (th$) a positive integer.

Log Record Format 8

Data Formats 8-29

Record @ARRAY: digitizer results analysis

This record describes the results of a measure statement for the digitizer or the results of an

array-format report analog statement.

• Generated by: digitizer, report analog statement

Example 8-17

{@ARRAY|""|1|5|1024}

Table 8-20 @ARRAY

Format: {@ARRAY|subtest designator|status|failure count|samples}

Field Type Defaul t Comments

subtest designator str "" Comes from the digitizer or from the optional

designator parameter of the report analog

statement.

status int 0 0 = pass

1 = fail

7 = error occurred

failure count int 0 The number of failures.

samples int 1024 The number of samples tested.

8-30 Data Formats

8 Log Record Format

Record @BATCH: identify a batch of boards

This record identifies a unique batch of boards; that is, a number of boards which are treated as a

group for test purposes.

• Generated by: log board statement

• Subrecords:

• @BTEST Generated for each board within a batch. When one log data file is generated per

board tested, the file has only one @BATCH record which in turn has only one @BTEST

subrecord.

• other The log and log using statements can be used to generate other subrecords.

Example 8-18 Example of @BATCH log record

{@BATCH|998457-146|0|2550|1||btest|891131172938|pete|achilles|MaxWellBT|7|A_panel|2}

Table 8-21 @BATCH

Format: {@BATCH|UUT type|UUT type rev|fixture id|testhead number|testhead type|process step|batch id|operator id|controller|testplan

id|testplan rev|parent panel type|parent panel type rev}

Field Type Defaul t Comments

UUT type str "" The type of unit under test, not including the revision. This can be a board

type or a panel type.

UUT type rev str "" The board type revision or panel type revision.

fixture id int 0 The decimal autofile code.

testhead number int 1 (th$) a positive integer.

testhead type str "" Which type of testhead. (This is currently not used.)

process step str "" Which step in the manufacturing process.

batch id str "" ID of current batch of boards.

operator id str "" Which operator.

controller str "" Which controller.

testplan id str "" Name of testplan.

testplan rev str "" Revision of testplan.

parent panel type str "" Type of the panel that contains this board.

parent panel type rev str "" Revision of the type of panel that contains this board.

version label str "" Multiple Board version.

Log Record Format 8

Data Formats 8-31

Record @BLOCK: identify a test block

This record identifies a named block of analog, digital, or mixed test statements.

• Generated by: test, test analog statements

• Subrecords: Subrecords are shown in Table 8-23.

Example 8-19

{@BLOCK|R12|1
{@A-RES||1|1.006789E+01}

}

Table 8-22 @BLOCK

Format: {@BLOCK|block designator|block status}

Field Type Defaul t Comments

block designator str "" Name of this test block.

block status int 0 0 = all statements passed. If a statement failed, the

status of the failing test is shown.

Table 8-23 BLOCK subrecords

Subrecord Generated by Subrecord Generated by

@A-CAP capacitor statement @A-PNP pnp statement

@A-DIO diode statement @A-POT potentiometer statement

@A-FUS fuse statement @A-RES resistor statement

@A-IND inductor statement @A-SWI switch statement

@A-JUM jumper statement @A-ZEN zener statement

@A-MEA measure statement @D-T test statement

@A-NFE nfetr statement @S-PROC test statement

@A-NPN npn statement @TJET test statement

@A-PFE pfetr statement

8-32 Data Formats

8 Log Record Format

Record @BS-CON: boundary-scan test

This record describes a boundary-scan test.

• Generated by: Boundary-Scan Software

• Subrecords:

• @BS-O is generated when opens count is greater than zero and the log level is not set to

without pins.

• @BS-S is generated when shorts count is greater than zero and the log level is not set to

without pins.

Example 8-20

{@BS-CON|9c_connect|1|0|2
{@BS-O|9C|43}
{@BS-O|9C|41|9C|58}

}
{@BS-CON|27c_connect|1|0|1

{@BS-S|S{@NODE\2|179|112}}
}

Table 8-24 @BS-CON

Format: {@BS-CON|test designator|status|shorts count|opens count}

Field Type Defaul t Comments

test designator str "" Designator for a boundary-scan connect or interconnect

test.

status int 0 0 = pass

1 = fail

7 = chain failure

shorts count int 0 How many shorts occurred during the boundary-scan

test.

opens count int 0 How many opens occurred during the boundary-scan

test.

Log Record Format 8

Data Formats 8-33

Record @BS-O: list of open pins

This subrecord follows a @BS-CON log record and further describes that record by listing open pins

that were found during a failing boundary-scan test.

• Generated by: Boundary-Scan Software

Example 8-21

{@BS-O|9C|43}
{@BS-O|9C|41|9C|58}

Record @BS-S: list of shorted pins

This subrecord follows an @BS-CON log record and further describes that record by listing a shorted

pin that was found during a failing boundary-scan test.

• Generated by: Boundary-Scan Software

Example 8-22

{@BS-S|S{@NODE\2|179|112}}

Table 8-25 @BS-O

Format: {@BS-O|first device|first pin|second device|second pin}

Field Type Defaul t Comments

first device name str "" Name of the first device.

first device pin int 1 Number of open pin on the first device.

second device name str "" (optional) Name of the second device.

second device pin int 1 (optional) Number of open pin on the second

device.

Table 8-26 @BS-S

Format: {@BS-S|cause|node l ist}

Field Type Defaul t Comments

cause str S S = known short

U = unknown short

0 = stuck at 0

1 = stuck at

node l ist str "" A list of indicted nodes.

8-34 Data Formats

8 Log Record Format

Record @BTEST: describe a board test

This record describes the overall testing of a single board. It is followed by subrecords which report

the results of individual tests performed on the board.

Table 8-27 @BTEST

Format: {@BTEST|board id|test status|start datetime|duration|mul tiple test|log level|log set|learning|known good|end datetime|status

qual ifier|board number|parent panel id}

Field Type Defaul t Comments

board id str "" Serial number of this board.

test status int 0 0 = passed

1 = uncategorized failure

2 = failed pin test

3 = failed in learn mode

4 = failed shorts test

5 = (reserved)

6 = failed analog test

7 = failed power supply test

8 = failed digital or boundary scan test

9 = failed functional test

10 = failed pre-shorts test

11 = failed in board handler

12 = failed barcode

13 = X’d out (board on panel not tested or missing) : maintained, but not logged.

14 = failed in VTEP or TestJet

15 = failed in polarity check

16 = failed in ConnectCheck (Mux system only)

17 = failed in analog cluster test

18-79 = reserved

80 = runtime error

81 = aborted (STOP)

82 = aborted (BREAK)

83-89 = reserved

90-99 = user-definable

start datetime int 0 Start of board test in YYMMDDHHMMSS format (datetime$).

duration int 0 Test duration in seconds.

multiple test bool 0 Is this the same as the previous board? 0 = NO, 1 = YES

log level str "" Current value of lli$.

log set int 0 Current default logging set. (This is not currently used.)

learning bool 0 Is learning on? N = NO, Y = YES

known good bool 0 Is this a known good board? N = NO, Y = YES

end datetime int 0 End of board test in YYMMDDHHMMSS format (datetime$).

status qual ifier str "" Comment string from log board end.

Log Record Format 8

Data Formats 8-35

• Generated by:

• log board start statement begins this record.

• log board end statement ends this record.

Pushbutton Q-STATS and Q-STATS II interpret a test status of 1 through 10 as a failing board, while

values 11 through 99 are considered bogus; that is, they are neither passing nor failing.

Example 8-23

{@BTEST|99538-135|8|891131172855|43|0|failures||n|n|891131172938|4|99538-130
. . .

{test results subrecords}
. . .

}

board number int 1 The number of the board being tested, as determined by a board number is

statement. When not using multiple log buffers (board number is *), this value is

reported as 1 even though it is actually zero.

parent panel id str "" Value derived from the optional <ParentPanelId> parameter of a log board

start statement.

The test status constants (above) are defined in the test plan, and are used by statistical analysis

and quality control programs such as PushButton QStats and other packages. These tools respond

primarily to the category of PASS/FAIL/BOGUS, though they do sometimes recognize that the

value 2 is special. Pins test failure can be a bad board, or a problem with the fixture.

Table 8-27 @BTEST (continued)

Format: {@BTEST|board id|test status|start datetime|duration|mul tiple test|log level|log set|learning|known good|end datetime|status

qual ifier|board number|parent panel id}

Field Type Defaul t Comments

Table 8-28 BTEST subrecords

Subrecord Generated by

@BLOCK test and test analog statements

@BLINE Baseline status information (see Version Tracking with Enhanced Log Records).

@BS-CON Boundary-Scan connect and interconnect tests

@D-LOG log digital statement

@D-T test statement

@PF pinsfailed function

@PRB probe or probe failures statements

@RETEST log clear for retest statement

@RPT any of the report statements: report (ANALOG), report (BT-Basic),

or report (SHORTS)

8-36 Data Formats

8 Log Record Format

Record @CCHK: Connect Check Test

This record that describes the results of Connect Check tests on a Mux system.

• Generated by: test statement

• Subrecords: @DPIN is generated when logging pins to list the failing device pins.

Example 8-24

{@CCHK|01|0008|u34}

@TS test shorts statement

other The log and log using statements can be used to generate other subrecords

Table 8-29 @CCHK

Format: {@CCHK|test status|pin count|test designator}

Field Type Defaul t Comments

test status int 00 00 = pass

01 = fail

07 = fatal error

pin count int 0000 number of failing pins

device designator str ""

Table 8-28 BTEST subrecords (continued)

Subrecord Generated by

Log Record Format 8

Data Formats 8-37

Record @DPIN: list of device pins for a single device

This record contains a list of device pins for a single device.

• Generated by:

• test statement

Tests for digital devices produce an @DPIN record as a subrecord for @D-T (digital powered

test) and for @TJET (VTEP or TestJet test) whenever pins are being logged.

• probe statement, probe failures statement

These statements may produce @DPIN records, but as subrecords of the @PRB record when

logging pins.

Example 8-25

{@DPIN|U12\4|Node17|8|GND|3} ! No DriveThru
Node {@DPIN|U6809\6|TCLK|18|U6809-12|12|BDRV|18}

! With DriveThru Node

Table 8-30 @DPIN

Format: {@DPIN|device name|node pin l ist} or {@DPIN|device name|node pin l ist|thru devnode l ist} with

DriveThru

Field Type Defaul t Comments

device name str "" Name of device, or test designator when device name is not

available.

node pin l ist str or int ""/0 List of items. Items alternate to give two separate items of

information about each pin.

• The odd items are the node id strings.

• Even items are the optional device pin strings to

indicate which pins of this device are connected to the

node id’s. Device pins should be included whenever

possible.

The number of list items will always be even, that is, twice the

number of device pins.

thru devnode l ist str or int "" List of DriveThru devices and nodes, ordered in pairs. Two

items alternate information about each driven through device

and node.

• The odd items are the node id strings.

• Even items are the device id strings to indicate which

device is connected to the node id's.

The number of list items will always be even, that is, twice the

number of nodes driven through.

8-38 Data Formats

8 Log Record Format

Record @D-PLD: results of PLD programming - success or failure

Data logging for PLD ISP is supported and controlled similarly to that of other test data types. Log

record control is enabled via the BT-Basic logging functions, such as “log is”, “log out”, and “log

failure”.

Log records produced for a PLD ISP test type are grouped into a digital test block record (@BLOCK).

Every play statement in the digital test generates a sub-record within the block that describes

information and the outcome of the action performed. Each block record also contains a digital

sub-record describing the outcome of the digital test portion of the test. Each D-PLD record may

contain NOTE and EXPRT sub-records.

A record is produced for a successful run with log level all or a failing execution with log level

is failures. Otherwise no log is produced with the possible exception of using the log devices

mechanism.

D-PLD may have one or more @EXPRT subrecords, a shown in Table 8-32. These are Generated by

the use of STAPL export commands in the programming file.

D-PLD may also have one or more @NOTE subrecords as shown in Table 8-33. This record is

generated by the use of note header commands within the STAPL source file.

Table 8-31 @D-PLD

Format: {@D-PLD|<Filename> | <Action> | <Action return code> | <Resul t message string> | <Player program

counter> | }

Field Type Defaul t Comments

Filename str “ “ Identifies the name of the compiled program file used by the

test.

Action str “ “ Identifies the STAPL source action taken by the play

statement. SVF and Jam files use a default name because

procedural actions are not supported in these file types.

Action return code int 0 Specifies the return code as a result of running the action. A

zero (or empty parameter) designates a passing condition.

Resul t message

string

str “ “ Describes the error condition code.

Player program

counter

int 0 Indicates the JBC opcode index where the failure occurred.

Table 8-32 @EXPRT

Format: {@EXPRT | <Key> | <Field> }

Field Type Defaul t Comments

Key str “ “ Value that identifies the name of the variable exported.

Field int 0 Represents the value of the variable when exported.

Log Record Format 8

Data Formats 8-39

• Generated by: play statement

• Subrecords: @EXPRT and @NOTE

The following example shows a record produced from a STAPL read ID code test program:

Example 8-26

{@BLOCK|d3_18v04|00
{@D-PLD|digital/idtest.jam.jbc|read_idcode||||

{@EXPRT|Expected is: |1BBBB44444444445555555AAAA4321}
{@EXPRT|Got >> nd : |01BBB44444444445555555AAAA4321}
{@NOTE|CREATOR|Altera Chain Interrogation Version 2.02--Debug pipe mode}
{@NOTE|DATE|2001/04/30}
{@NOTE|ALG_VERSION|1}
{@NOTE|STAPL_VERSION|JESD71}
{@NOTE|MAX_FREQ|10000000}

}
{@D-T|0|384||0|d3_18v04}

}

Table 8-33 @NOTE

Format: {@NOTE | <Note name> | <Note string> }

Field Type Defaul t Comments

Note name str “ “ Identifies a keyword name for the note field returned.

Note string str “ “ Represents the contents of the note field returned.

8-40 Data Formats

8 Log Record Format

Record @D-T: test digital

This record describes the results of a digital test. When pin logging is in effect, it is followed by a

subrecord containing additional information.

• Generated by: test statement

• Subrecords: @DPIN is generated when logging pins to list the failing device pins.

Example 8-27

{@D-T|1|1|39|3|U18}

Table 8-34 @D-T

Format: {@D-T|test status|test substatus|fail ing vector number|pin count|test designator}

Field Type Defaul t Comments

test status int 0 0 = passed

1 = failed (see test substatus for reason)

5 =CRC related failure

7 = fatal error (test did not complete)

8 = pre or post chain integrity failure. This happens when the failing cell

cannot be found in the map (.X) file information. The map file contains the

information for the cells that are used in the test and will point to a device,

pin, and node when that cell is failing.

test substatus int 0 Decimal equivalent of a 6-bit binary value; a bit is set to 1 if the event

occurred; to 0 if it did not occur. The bit meanings (lsb to msb) are:

• bit 0 fail

• bit 1 SAFEGUARD timeout

• bit 2 hardware error

• bit 3 pause

• bit 4 halt

• bit 5 overvoltage

fail ing vector number int 0 Which vector failed.

pin count int 0 How many pins failed.

test designator str "" Designator (name) of test.

Flash ISP tests are logged like a normal digital test.

Log Record Format 8

Data Formats 8-41

Record @INDICT: indict record

This record is used with DriveThru. This record contains a list of devices indicted by the respective test

as either a potential failure or a known failure, and is generated when the log level is statement

is set to indictments (or some higher level). When using DriveThru, this record is nested as a

subrecord of CPROBE (@TJET).

• Generated by: test statement

Example 8-28

{@INDICT|DT\1|r12}
{@INDICT|DT\3|rp6:r2|c412|r22}

Table 8-35 @INDICT

Format: {@INDICT|technique\device l ist|est resistance|est capacitance|est induct|est model}

Field Type Defaul t Comments

technique str "" DT to indicate DriveThru.

device l ist str The device list shows the reference designators for the

indicted devices.The record can contain multiple device

names (separated by a colon). For more information see

the examples below, and refer to Interpreting the Log

Records on page 8-8.

est resistance fp Not used for DriveThru.

est capacitance fp Not used for DriveThru.

est inductance fp Not used for DriveThru.

est model str "" Not used for DriveThru.

8-42 Data Formats

8 Log Record Format

Record @LIM2: high & low limits of analog test

This record contains the high and low limits for an analog test. When limits are being logged, it is

followed by a subrecord containing additional information.

• Generated by:

• diode statement

• fuse statement

• jumper statement

• measure statement

• nfetr statement

• npn statement

• pfetr statement

• pnp statement

• switch statement

Example 8-29

{@LIM2|8.666667E+01|2.000000E+00}

Table 8-36 @LIM2

Format: {@LIM2|high l imit|low l imit}

Field Type Defaul t Comments

high l imit fp 0 Upper limit for allowable range.

low l imit fp 0 Lower limit for allowable range.

Log Record Format 8

Data Formats 8-43

Record @LIM3: nominal high/low

This record is logged by statements which optionally log a component's nominal value and its high

and low value limits. The limits are calculated from the nominal value, the plus and minus tolerance

limits, and any margin in effect from a tolerance margin statement. The record is not generated if

the log level was specified as without nhls.

• Generated by:

• capacitor statement

• inductor statement

• potentiometer statement

• resistor statement

• zener statement

Example 8-30

{@LIM3|22|1.500000E+00|2.000000E+00}

Record @NETV: network verification record

This record is used to verify the integrity of the network link to whichever system is specified.

• Generated by: prsetup program

Example 8-31

{@NETV|890530102019|alpha|beta|1}

Table 8-37 @LIM3

Format: {@LIM3|nominal value|high l imit|minus tolerance}

Field Type Defaul t Comments

nominal value fp 0 The nominal value.

high l imit fp 0 Upper limit: The sum of the nominal value plus the allowed

positive deviation from the nominal value.

low l imit fp 0 Lower limit: The sum of the nominal value plus the allowed

negative deviation from the nominal value.

Table 8-38 @NETV

Format: {@NETV|datetime|test system|repair system|source}

Field Type Defaul t Comments

datetime str 0 Date and time of verification request in YYMMDDHHMMSS

format (datetime$).

test system str "" Identifier of test system.

repair system str "" Identifier of repair system.

source bool 0 This field contains 0 when generated by prsetup, and

changes to a 1 when the record is processed by alarm.

8-44 Data Formats

8 Log Record Format

Record @NODE: list of nodes

This record contains a list of nodes. It appears as a subrecord to further describe whichever record

precedes it.

• Generated by:

• probe statement

• probe failures statement

Example 8-32

{@NODE\2|Node53|+5Volts}

Record @PCHK: Polarity Check Test

This record describes the results of a test made by an Polarity Check test.

• Generated by: test statement

Example 8-33

{@PCHK|01|c34}

Table 8-39 @NODE

Format: {@NODE\node l ist}

Field Type Defaul t Comments

node l ist str "" Each item in the list specifies a node by its node id.

Table 8-40 @PCHK

Format: {@PCHK|test status|test designator}

Field Type Defaul t Comments

test status int 00 00 passed

01 failed

07 fatal error (test did not complete)

test designator str ""

Log Record Format 8

Data Formats 8-45

Record @PF: pinsfailed

This record contains the results of a test statement. It is followed by a one or more subrecords

containing a list of pins.

• Generated by: test statement

• Subrecords: @PIN: Contains a list of pins acquired in test mode

Example 8-34

{@PF||1|4
{@PIN\4|10472|12235|21612|11302}

}

Record @PIN: list of pins

This record contains a list of pins. It appears as a subrecord to further describe to whichever record

precedes it.

• Generated by: pinsfailed statement

Example 8-35

{@PIN\5|11571|20314|12065|20508|11443}

Table 8-41 @PF

Format: {@PF|designator|test status|total pins}

Field Type Defaul t Comments

designator str "" An optional designator that identifies the file containing the source

code for the pins test. This comes from the <file id> parameter in the

test statement.

test status int 0 0 = testing passed

1 = testing failed

total pins int 0 Total number of failing pins.

Table 8-42 @PIN

Format: {@PIN\pin l ist}

Field Type Defaul t Comments

pin l ist str "" Each item in the list specifies a pin in BRRCC format.

8-46 Data Formats

8 Log Record Format

Record @PRB: (partial) results of probing (failures)

This record contains the results of the probe and probe failures statements. It can be followed

by subrecords containing a list of failing pins.

• Generated by:

• probe statement

• probe failures statement

• Subrecords: @DPIN is generated when logging pins to list failing device pins

Example 8-36

{@PRB|1|2|U23
{@DPIN|\2|Node63||Node22|}

}

Record @RETEST: indicate a log clear for retest

The presence of this record indicates that a log clear for retest occurred. A log clear for

retest removes data which was logged and later found to be bogus by a pinsfailed function being

true.

• Generated by: log clear for retest statement

Example 8-37

{@RETEST|890819184413}

Table 8-43 @PRB

Format: {@PRB|test status|pin count|test designator}

Field Type Defaul t Comments

test status int 0 0 = passed; 1 = failed

pin count int 0 How many pins failed.

test designator str "" The test designator (name of failing device).

One probe record is generated for each device tested. Each probe failures statement

generates subrecords to report all of the failing nodes.

Table 8-44 @RETEST

Format: {@RETEST|datetime}

Field Type Defaul t Comments

datetime str "" Date and time of a log clear for retest in

YYMMDDHHMMSS format (datetime$).

Log Record Format 8

Data Formats 8-47

Record @RPT: messages logged by report

This record contains the text string produced by executing any of the report statements: report

(ANALOG), report (BT-Basic), or report (SHORTS) - whenever the report level is log or all.

• Generated by: report statements

The location at which this record is nested inside @BLOCK records may vary; for example, an @RPT

record associated with a specific test may appear nested inside the @BLOCK record associated

with a different test. This causes no problem for the standard software packages that use log

data, such as Pushbutton Q-STATS.

Example 8-38

{@RPT|U91 failed}

Record @TJET: TestJet Test

This record contains the results of either VTEP or TestJet tests.

• Generated by: test statement

• Subrecords: @DPIN is generated when logging pins to list the failing device pins.

Example 8-39

{@TJET|01|0008|u34}

Table 8-45 @RPT

Format: {@RPT|message}

Field Type Defaul t Comments

message str "" The string given in a report statement.

Table 8-46 @TJET

Format: {@TJET|test status|pin count|test designator}

Field Type Defaul t Comments

test status int 00 00 = pass

01 = fail

07 = fatal error

pin count int 0000 number of failing pins

test designator str ""

8-48 Data Formats

8 Log Record Format

Record @TS: test shorts

This record describes a shorts test.

• Generated by: test shorts statement

• Subrecords:

• @TS-O is generated for each unexpectedly open node pair.

• @TS-S is generated for each unexpectedly shorted short-source node. Contains @TS-D

subrecords to identify which destination node(s) the source node was shorted to, or @TS-P

subrecords to identify phantom shorts.

Example 8-40

{@TS|1|2|1|1|
{@TS-S|2|0|Node12

{@TS-D|Node25|1.678853E+00}
{@TS-D|Node26|2.543216E+00}

}
{@TS-O|Node43|Node14|-1.500000E+00}
{@TS-S|0|1|Node38

{@TS-P|-1.243853E+02}
}

}

Table 8-47 @TS

Format: {@TS|test status|shorts count|opens count|phantoms count|designator}

Field Type Defaul t Comments

test status int 0 0 passed; 1 failed; 20 learning passed

shorts count int 0 How many nodes were unexpectedly shorted to some

short-source node.

opens count int 0 How many nodes were unexpectedly open.

phantoms count int 0 How many phantoms were encountered.

designator str "" (optional) Designator that identifies the file containing the

source code for the shorts test. This comes from the <file

id> parameter in the test shorts statement.

Log Record Format 8

Data Formats 8-49

Record @TS-D: destination nodes shorted to source node

This record describes destination nodes which are shorted to a source node.

• Generated by: test shorts statement

Example 8-41

{@TS-D\4|Node7|1.398537E+02|Node15|4.138792E+01}

Record @TS-O: opens found while shorts testing

This record describes open found while shorts testing.

• Generated by: test shorts statement

Example 8-42

{@TS-O|Node85|Node14|-1.510000E+00}

Table 8-48 @TS-D

Format: {@TS-D\destination l ist}

Field Type Defaul t Comments

destination l ist str/fp ""/0 A list of items which are paired into two fields for

each destination node, as follows:

• node id the id of this destination node.

• deviation the difference M - T, where M is this

destination node's measured value and T is the

threshold.

Table 8-49 @TS-O

Format: {@TS-O|source node|destination node|deviation}

Field Type Defaul t Comments

source node str "" The open-source node id.

destination node str "" The open-destination node id.

deviation fp 0 The difference M - T, where M is the measured value

and T is the threshold.

8-50 Data Formats

8 Log Record Format

Record @TS-P: phantoms found while shorts testing

This record describes phantoms found while shorts testing.

• Generated by: test shorts statement

Example 8-43

{@TS-P|-1.243853E+02}

Record @TS-S: results of shorts testing from a source node

This record describes a shorts test from a source node.

• Generated by: test shorts statement

• Subrecords:

• @TS-D is generated for each destination that is unexpectedly shorted.

• @TS-P is generated for each phantom encountered.

Example 8-44

{@TS-S|2||Node43
{@TS-D|Node14|1.678859E+00}
{@TS-D|Node32|6.182541E+01}

}

Table 8-50 @TS-P

Format: {@TS-P|deviation}

Field Type Defaul t Comments

deviation fp 0 The difference M - T, where M is the measured value and T is

the threshold.

Table 8-51 @TS-S

Format: {@TS-S|shorts count|phantoms count|source node}

Field Type Defaul t Comments

shorts count int 0 How many destination nodes were unexpectedly shorted to

the source node.

phantoms count int 0 How many phantoms were encountered from the source

node.

source node str "" The source node id. If the source is actually a set of

siamese nodes, then the node id given is representative of

the set - probably just the first one in the list.

	8 Log Record Format
	What are Log Records?
	About Log Record Prefixes
	Hierarchy of Log Records
	Interpreting the Log Records
	A Note About Truncated Records
	A Note About Process Steps
	A Note About User-Defined Log Records

	How Log Records are Formatted
	Special Characters
	Rules of Formatting

	Descriptions of the Log Records
	Record @A-CAP: capacitor
	Record @A-DIO: diode
	Record @A-FUS: fuse
	Record @A-IND: inductor
	Record @A-JUM: jumper
	Record @A-MEA: measure
	Record @A-NFE: nfetr
	Record @A-NPN: npn
	Record @A-PFE: pfetr
	Record @A-PNP: pnp
	Record @A-POT: potentiometer
	Record @A-RES: resistor
	Record @A-SWI: switch
	Record @A-ZEN: zener
	Record @AID: identify board causing real-time alarm
	Record @ALM: identify real-time alarm
	Record @ARRAY: digitizer results analysis
	Record @BATCH: identify a batch of boards
	Record @BLOCK: identify a test block
	Record @BS-CON: boundary-scan test
	Record @BS-O: list of open pins
	Record @BS-S: list of shorted pins
	Record @BTEST: describe a board test
	Record @CCHK: Connect Check Test
	Record @DPIN: list of device pins for a single device
	Record @D-PLD: results of PLD programming - success or failure
	Record @D-T: test digital
	Record @INDICT: indict record
	Record @LIM2: high & low limits of analog test
	Record @LIM3: nominal high/low
	Record @NETV: network verification record
	Record @NODE: list of nodes
	Record @PCHK: Polarity Check Test
	Record @PF: pinsfailed
	Record @PIN: list of pins
	Record @PRB: (partial) results of probing (failures)
	Record @RETEST: indicate a log clear for retest
	Record @RPT: messages logged by report
	Record @TJET: TestJet Test
	Record @TS: test shorts
	Record @TS-D: destination nodes shorted to source node
	Record @TS-O: opens found while shorts testing
	Record @TS-P: phantoms found while shorts testing
	Record @TS-S: results of shorts testing from a source node

