Choose a country or area to see content specific to your location

    Enable browser cookies for improved site capabilities and performance.
    Keysight Technologies
    Toggle Menu
    Chat Live
    Contact Us
    Welcome

    Welcome

    • My Profile
    • Logout
    • Login
    • Register
    Quote
    Danmark

    Confirm Your Country or Area

    Danmark

    • 中国
    • 日本
    • 繁體中文
    • 한국
    • Россия
    • Brasil
    • Canada
    • Deutschland
    • France
    • India
    • Malaysia
    • United Kingdom
    • United States
    • Australia
    • Austria
    • Belgium
    • Denmark
    • Finland
    • Hong Kong, China
    • Ireland
    • Israel
    • Italy
    • Mexico
    • Netherlands
    • Singapore
    • Spain
    • Sweden
    • Switzerland (German)
    • Thailand
    • more...

    Please Confirm

    Confirm your country to access relevant pricing, special offers, events, and contact information.

    • Products + Services
      • Oscilloscopes + Analyzers
        • Oscilloscopes
        • Spectrum Analyzers (Signal Analyzers)
        • Network Analyzers
        • Logic Analyzers
        • Protocol Analyzers and Exercisers
        • Bit Error Ratio Testers
        • Noise Figure Analyzers and Noise Sources
        • High-Speed Digitizers and Multichannel DAQ Solutions
        • AC Power Analyzers
        • DC Power Analyzers
        • Materials Test Equipment
        • Device Current Waveform Analyzers
        • Parameter and Device Analyzers, Curve Tracers
      • Meters
        • Digital Multimeters
        • Phase Noise Measurement
        • Power Meters and Power Sensors
        • Counters
        • LCR Meters and Impedance Measurement Products
        • Picoammeters & Electrometers
      • Generators, Sources + Power
        • Signal Generators (Signal Sources)
        • Waveform and Function Generators
        • Arbitrary Waveform Generators
        • Pulse Generator Products
        • HEV/EV/Grid Emulators and Test Systems
        • DC Power Supplies
        • Source Measure Units
        • DC Electronic Load
        • AC Power Sources
      • Software
        • Application Software
        • Application Software Testing
        • PathWave Design Software
        • PathWave Test Software
        • Instrument Control and Connectivity Software
        • Software Enterprise Agreement
        • All Design + Test Software  
      • Wireless
        • Wireless Network Emulators
        • Channel Emulators
        • Nemo Wireless Network Solutions
        • 5G OTA Chambers
        • Wireless Analyzers
        • IoT Regulatory Compliance Solutions
      • Modular Instruments
        • PXI Products
        • AXIe Products
        • Data Acquisition – DAQ
        • USB Products
        • VXI Products
        • Reference Solutions
        • All Modular Instruments  
      • Network Test + Security
        • Protocol and Load Test
        • Network Test Hardware
        • Cloud Test
        • Performance Monitoring
        • 5G NR Base Station Test
        • Radio Access and Core Network Test
        • Network Security
        • Cyber Training Simulator
        • Network Modeling
        • Application and Threat Intelligence
        • All Network Test  
      • Network Visibility
        • Network Packet Brokers
        • Cloud Visibility
        • Network Taps
        • Bypass Switches
        • Clock Synchronization
        • All Network Visibility  
      • Additional Products
        • In-circuit Test Systems
        • Application-Specific Test Systems And Components
        • Parametric Test Solutions
        • Photonic Test & Measurement Products
        • Laser Interferometers and Calibration Systems
        • Monolithic Laser Combiners & Precision Optics
        • MMIC Millimeter-Wave and Microwave Devices
      • Services
        • KeysightCare Service and Support
        • KeysightAccess Service
        • Calibration Services
        • Repair Services
        • Technology Refresh Services
        • Test as a Service (TaaS)
        • Network/Security Services
        • Consulting Services
        • Financial Services
        • Education Services
        • Keysight Support Portal
        • Used Equipment
        • All Services  
      • All Products, Software, Services  
    • Solutions
      • 5G
      • Cloud
      • Connected Car
      • Data Center Infrastructure
      • Design + Automation
      • Emerging Technologies
      • Energy Ecosystem
      • High-Speed Digital System Design
      • Internet of Things
      • Manufacturing Test
      • Measurement Fundamentals
      • Network Security
      • Network Test
      • Network Visibility
      • SDN, NFV, Virtualization
      • Software Test Automation
      • All Solutions  
    • Industries
      • Aerospace + Defense
      • Automotive + Energy
      • Communications
      • Education
      • Enterprise
      • Government
      • Semiconductor
      • Service Providers
      • All Industries + Technologies  
    • Insights
      • Discover Insights
      • Success Stories
      • Blog
      • Keysight University
    • Resources
    • Support
      • Keysight Product Support
      • Ixia Product Support
    No product matches found - System Exception
    Techniques for Time Domain Measurements Using FieldFox Handheld Analyzers
    Application Notes

    Techniques for Time Domain Measurements Using FieldFox Handheld Analyzers

    Show Description

    Introduction

    Components and subsystems of communication or radar systems need to achieve a certain level of specified electrical performance across the operating frequency range to pass testing and qualification. These specifications include, but are not limited to, voltage standing wave ratio (VSWR), return loss (RL), and insertion loss (IL). These specifications make it clear when the device under test (DUT) passes or fails its performance requirements as a function of frequency.

    While a frequency measurement provides useful information, the sweeping frequency may not provide enough information to determine the root cause of a problem. When a system fails to meet specifications, troubleshooting is challenging due to component swapping until performance meets the specified requirements. Fortunately, there is another measurement technique that provides details into the location and magnitude of any such challenges.

    This technique relies on measurements in the time domain — FieldFox can easily display the time domain characteristics of one and two-port components and systems.

    Table of Content

    • Time Domain Measurement Basics
    • Gating and Frequency Response
    • Masking in Coaxial Lines
    • Relationship Between Frequency Span and Pulse Width
    • Relationship Between Frequency Span and Time Span
    • Configuring Bandpass and Lowpass Time Domain Options

    Time Domain Measurement Basics

    A time-domain analysis is very useful to observe the effects of mismatch along with a transmission line system. When an RF or microwave signal propagates along a transmission line, a portion of the signal reflects back from any discontinuities encountered along the path. Using time-domain analysis, the location of each discontinuity displays as a function of time along the x-axis — the amplitude of the reflected signal, or S11 plots along the y-axis.

    Knowing the propagation velocity along the transmission line allows the FieldFox to scale the time measurement to physical distance. It is also possible to examine the time domain response of a transmitted signal or S21. However, this measurement requires a two-port connection. Due to distance constraints, field engineers cannot usually access two ports of a system. Because of that limitation, this application note primarily focuses on the time domain response of reflection measurements using one port.

    The FieldFox can represent the measurement from any one-port or two-port device in the time domain and the frequency domain. If a measurement occurs in one domain, then the FieldFox calculates the other domain using a well-known mathematical technique called the Fourier Transform (FT). This transform provides a universal problem-solving method that allows you to examine a particular measurement from an entirely different viewpoint. If you record a measurement using a time-domain method, then an FT calculation results in a frequency domain representation of the data.

    Alternatively, if you initially capture frequency domain data, then an Inverse FT (IFT) results in a time-domain representation of the data. Simultaneously displaying the same data in time and frequency creates a powerful analysis and problem-solving tool. Fortunately, modern test instrumentation, such as an NA, includes this mathematical transformation as part of the firmware. This feature allows users to display either time-domain data or frequency domain data or both.

    Instruments with time-domain capabilities

    There are two basic instruments capable of displaying the time domain response of individual discontinuities along with a transmission system — the time domain reflectometer (TDR) and the NA. A TDR uses a traditional method of launching an impulse or a step waveform into the test device and directly measures the response as a function of time. A fast edge launches into the transmission line when using a step generator and broadband oscilloscope. The broadband oscilloscope monitors the incident and reflected voltage waves and displays the position of each discontinuity as a function of time.

    An NA, such as the FieldFox NA mode, is primarily a frequency domain instrument with the capability of measuring the reflected and transmission characteristics of one- and two-port devices. Using error-corrected data measured in the frequency domain, the FieldFox calculates the response of a network to an impulse or step function using the IFT. It then displays the response as a function of time. As the NA uses narrowband measurement receivers, the dynamic range is higher than oscilloscope-based TDR systems. Also, an NA includes time-domain capabilities for measuring band-limited devices, called bandpass mode, which we will discuss later in this application note. Lastly, there is a configuration of the FieldFox, known as cable and antenna (CAT) mode, which performs the same frequency-to-time domain transformation but scales the time measurements to an equivalent physical distance. This measurement aids the user in quickly locating faults in RF and microwave transmission lines in the field.

    Measurement example using a horn antenna

    Figure 3 shows a test configuration for an examination of the frequency domain and time domain responses of an over-the-air measurement. It uses an X-band waveguide horn antenna and a separate metal plate placed near the antenna. The high-gain horn antenna connects to a short length of WR-90 waveguide transmission line, and the transmission line attaches to a wave- guide-to-coaxial adapter for connection to the NA. Calibrate the NA for S11 at the plane where the adapter connects to the instrument port.

    Change email?
    Required field

    Required field

    Required field

    Required field

    Required field

    Required field

    Required field

    Required field

    Required field

    Required field

    Required field

    Required field

    Required field

    Required field

    Required field

    By clicking the button, you are providing Keysight with your personal data. For information on how we use this data, see the Keysight Privacy Statement.

    Thank you!
    Download

    Discover

    • Products + Services
    • Solutions
    • Industries
    • Events
    • Keysight University

    Insights

    • Discover Insights
    • Success Stories
    • Resources
    • Blog
    • Community

    Partners

    Support

    • Keysight Product Support
    • Ixia Product Support
    • Manage Software Licenses
    • Product Order Status
    • Parts

    About Keysight

    • Newsroom
    • Investor Relations
    • Corporate Social Responsibility
    • Diversity, Equity, and Inclusion
    • Modern Slavery Act Transparency Statement
    • Careers

    • Facebook: Connect with Keysight LinkedIn: Connect with Keysight Twitter: Connect with Keysight YouTube: Connect with Keysight WeChat:Connect with Keysight
    • © Keysight Technologies 2000–2022
    • Privacy
    • Terms
    • Feedback