
TTworkbench User‘s Guide

©
 T

es
ti

n
g

 T
ec

h
n

o
lo

g
ie

s
2

0
0

9
 •

 T
Tw

o
rk

b
en

ch
 U

se
r‘

s
G

u
id

e

Testing Tech TTworkbench User's Guide: User's Guide

This document is subject to change without notice.

Testing Technologies IST GmbH

Michaelkirchstrasse 17/18

10179 Berlin

Germany

phone +49 30 726 19 19 0

fax +49 30 726 19 19 20

internet www.testingtech.com

Note

Individual copies of the present document can be downloaded from www.testingtech.com .

The present document may be made available in more than one electronic version or in print. In any
case of existing or perceived difference in contents between such versions, the reference version is the
HTML Format.

Users of the present document should be aware that the document might be subject to revision without
notice. If you find errors in the present document, please use the ticket system at support.testingtech.com
and report it.

A Portable Document Format (PDF) version of this manual can be found here (if you're reading the

Eclipse online help version of this manual): TTworkbench_UserGuide.pdf.

Published Published on 2009-04-07
Copyright © 2004-2009 Testing Technologies IST GmbH

Testing Technologies, the Testing Technologies logo, and TTworkbench are trademarks or registered trademarks of Testing Technologies IST
GmbH in Germany and possibly in other countries. All other names are used for identification purpose and are trademarks or registered trademarks
of their respective company.

Testing Technologies TTworkbench is powered by Eclipse technology and includes Eclipse plug-ins that can be installed and used with other
Eclipse 3.4-based offerings.

It includes software developed by the Apache Software Foundation (http://www.apache.org/), ANTLR (http://www.antlr.org/), Tigris.org (http://
gef.tigris.org/), and L2FProd.com (http://www.L2FProd.com/).

http://www.testingtech.com
http://www.testingtech.com
http://support.testingtech.com

iii

Table of Contents
1. Introduction ... 1

How this Manual is Organized .. 1
Related Documentation .. 1

2. Installation ... 3
Requirements ... 3

Eclipse and Java ... 3
License Management .. 3

Installer Distribution ... 3
Perform the Installation ... 3
Installed Files .. 4
Uninstall TTworkbench ... 4

Update Site Distribution .. 4
Requirements ... 4
Perform the Installation ... 5
Uninstall TTworkbench Features ... 5

License to Enable TTworkbench ... 6
Workspace, Temporal Data and Preferences ... 6

3. Global TTCN-3 Preferences .. 7
TTCN-3 Preferences Page .. 7
TTplugins .. 8

4. TTCN-3 Project .. 9
Creating a TTCN-3 Project .. 9
Project Properties .. 12

General ... 12
TTCN-3 Sources ... 12
Output .. 15
Logging .. 15
Environment .. 16
Compiler Settings ... 17
TT3 Plugins ... 19

5. Using TTworkbench CL Editor ... 20
Properties .. 20
Development Perspective ... 21

Overview ... 21
TTCN-3 Projects Navigator View ... 21

Editing a Test Suite .. 26
Introduction ... 26
Using Core Language Viewer (CLViewer) .. 27
Outline of Test Suite Structure .. 28
Quick Outline .. 30
TTCN-3 Search .. 31
Find References in Workspace .. 32
Highlighting of Keywords .. 33
Comparing TTCN-3 Files ... 34
Mark Occurrences ... 34
Validation of Syntax ... 34
Formatting of Text .. 36
Open Declaration .. 36
Completion Assistance ... 37
Progress Information ... 38
Code Folding ... 38

Testing Tech TTwork-
bench User's Guide

iv

Refactoring Support .. 39
Quick Fix .. 42
Showing Single Element or Whole TTCN-3 File .. 43
Task Tags Inside TTCN-3 Comments ... 44
Template Wizard .. 44
Module Dependencies View ... 48
Extract TTCN-3 Wizard ... 52
TTCN-3 Declarations View .. 57
T3Doc View .. 58

Preferences .. 58
CL Editor General Settings ... 58
Content Assist Preferences ... 59
Formatter Preferences .. 61
Syntax Preferences .. 61
Task Tags Preferences ... 62
Template Preferences ... 63
Typing Preferences .. 64

6. Using TTworkbench GFT Editor .. 66
GFT Basics .. 66

Language Concepts ... 66
Mapping between GFT and TTCN-3 Core Language ... 66
Module Structure .. 67

GFT Editor UI and Workflow ... 68
About the GFT Editor Working Environment ... 68
Editing Symbol Attributes .. 70
Using Context Menus .. 72
Showing/Hiding Optional Symbol Attributes .. 72
Go to/Import Referenced Diagram ... 73
Undoing and Repeating Multiple Actions .. 73
To Do Support ... 73
Importing Definitions .. 74
Importing TTCN-3 Core Language .. 77
Exporting TTCN-3 Core Language .. 78
Exporting GIF .. 78
Opening and Saving a GFT File .. 78

GFT Diagrams ... 78
Overview ... 78
Control Diagram ... 81
Test Case Diagram .. 81
Function Diagram ... 82
Altstep Diagram ... 84

GFT Symbols ... 85
Instances ... 85
Actions ... 88
Comments ... 89
Execute Test Cases ... 90
References ... 91
Labels and Goto ... 91
Inline Expressions ... 92
Defaults ... 103
Creates .. 103
Start Components .. 104
Conditions ... 104
Messages ... 109

Testing Tech TTwork-
bench User's Guide

v

Timers ... 115
Text Symbols ... 118

GFT Example ... 119
Control Diagram ... 120
Invoking Functions .. 122
Main Test Case ... 125
Functions and Altsteps ... 130
Save TTCN-3 and GIF ... 133

7. Using TTworkbench TTthree ... 134
Language Features ... 134

Known Limitations ... 135
Checked Non-Standard Language Extensions .. 135
Other Non-Standard Language Extensions .. 136

Preferences ... 137
General Settings .. 137
Code Generation ... 138
Java Compiler .. 139

Perform the Compilation .. 140
Command-line Mode ... 143

Batch Compiler ... 143
Advanced Batch-Compiler for Linux .. 149

TTthree Server .. 150
Starting .. 150
Command-line Options ... 151

TTCN-3 Documentation Generation (T3Doc) ... 151
Generate HTML Documentation .. 151
The Text of a Documentation Comment .. 152
General Description ... 152
Tagged Paragraphs .. 152

8. Using TTworkbench TTman ... 159
Overview ... 159
Using TTman ... 161

Test Campaign .. 161
Management View .. 179
Meta Campaign View .. 190
Parameters View ... 191
Properties View .. 193
Textual Logging View .. 193
Graphical Logging View ... 196
Data View ... 199
Dump View ... 200

Preferences ... 203
TTman Main Preferences ... 204
Logging ... 204
Report ... 207
E-mailing ... 208

Command-line Mode ... 210
9. Using TTworkbench TTdebug ... 213

Overview ... 213
How to Start Debugging a Test Suite .. 214
Breakpoints .. 215

Setting Breakpoints ... 215
Temporarily Disabling Breakpoints .. 216
Setting a Breakpoint Hit Count .. 216

Testing Tech TTwork-
bench User's Guide

vi

Debugging TTCN-3 ... 217
Debug Perspective ... 217
Debug View ... 218
Breakpoints View .. 220
Variables View ... 220
Timers View .. 223
Port Queue View .. 223
Debugging Multiple Components ... 224
Automatic Perspective Switch ... 224

Debugging Java .. 225
Handling the SUT ... 225
Preferences ... 225

10. Additional Runtime Plugins ... 226
11. Frequently Asked Questions .. 227
12. What's New .. 233
13. Contacting Technical Support .. 234

Testing Technologies Technical Support Contact Information .. 234
Index .. 235

vii

List of Figures
3.1. TTCN-3 main preferences .. 7
3.2. TTplugins preferences: extensions of the TTCN-3 compiler .. 8
4.1. Creating a new TTCN-3 project .. 9
4.2. Java properties of new TTCN-3 project .. 10
4.3. TTCN-3 properties of new TTCN-3 project ... 11
4.4. Adding TTCN-3 compiler nature ... 11
4.5. General settings page .. 12
4.6. TTCN-3 Sources settings page .. 13
4.7. TTCN-3 Sources menu actions in the TTCN-3 Projects navigator view 14
4.8. Output folder setting page .. 15
4.9. Logging Properties Page .. 16
4.10. Environment variables setting page .. 17
4.11. Compiler settings page ... 18
4.12. Project specific TT3 Plugins page .. 19
5.1. TTworkbench CL Editor ... 20
5.2. Switching layout mode in the TTCN-3 Projects Navigator View ... 22
5.3. Flat layout mode of the TTCN-3 Projects Navigator View ... 23
5.4. Combined layout mode of the TTCN-3 Projects Navigator View .. 24
5.5. Hierarchical layout mode of the TTCN-3 Projects Navigator View 25
5.6. New module wizard .. 26
5.7. New module in editor .. 27
5.8. Editable and non-editable generated TTCN-3 files in the navigator 28
5.9. Outline showing definitions as found in module .. 29
5.10. Outline with definitions grouped by category .. 30
5.11. Quick outline ... 31
5.12. TTCN-3 search ... 32
5.13. Find references in workspace .. 33
5.14. Comparing a local TTCN-3 file with a revision from source code management 34
5.15. Validate command .. 35
5.16. Error reporting .. 36
5.17. Open declaration ... 37
5.18. Completion assistance .. 38
5.19. Code folding .. 39
5.20. Parameters Page for the Rename Refactoring Command .. 40
5.21. Quick Fix .. 43
5.22. Show Source of Selected Element Only .. 43
5.23. Template in Core Language .. 44
5.24. Edit page of the Template wizard ... 45
5.25. Preview page of the Template wizard .. 46
5.26. Content Assist for From Type in the Template wizard ... 47
5.27. Open wizard ... 49
5.28. Search action .. 50
5.29. Double click action ... 50
5.30. Imported modules ... 51
5.31. Smart path ... 51
5.32. All Paths ... 52
5.33. Shortest Path .. 52
5.34. Extract TTCN-3 Wizard ... 53
5.35. Export Path Page .. 54
5.36. Select Declaration ... 55
5.37. Filter Test Cases ... 56

Testing Tech TTwork-
bench User's Guide

viii

5.38. Select Non TTCN-3 Files ... 57
5.39. TTCN-3 Declarations View .. 58
5.40. T3Doc View .. 58
5.41. Mark Occurrences preference .. 59
5.42. Content Assist preferences .. 60
5.43. Advanced Content Assist preferences .. 60
5.44. CL Editor Formatter preference page ... 61
5.45. CL Editor Syntax preference page ... 62
5.46. CL Editor Task Tags preference page .. 63
5.47. CL Editor Template preference page ... 64
5.48. CL Editor Typing preference page .. 65
6.1. Relation between TTCN-3 Core Language and GFT ... 67
6.2. TTCN-3 Module Tree Structure in GFT Editor .. 68
6.3. Core Language Tab ... 69
6.4. Tools Palette .. 70
6.5. Tool Tips on Symbol Attributes .. 70
6.6. List of Attributes .. 71
6.7. Property Panel .. 71
6.8. Symbol's Context Menu ... 72
6.9. Show / Hide Optional Symbol Attributes ... 72
6.10. To Do Item Panel ... 73
6.11. Choosing Multiple TTCN-3 Module Files for Import. .. 74
6.12. Property Panel of an Import Statement .. 75
6.13. Choosing the Definitions to be Imported ... 76
6.14. Importing TTCN-3 Core Language in GFT Editor ... 77
6.15. Sequential Behavior ... 79
6.16. Diagram Type Selection ... 80
6.17. Target Group Selection .. 80
6.18. Control Diagram ... 81
6.19. Test Case Diagram .. 82
6.20. Function Diagram ... 83
6.21. Add a Return Symbol to a Function Component Instance ... 84
6.22. Altstep Diagram .. 85
6.23. Control Instance Symbol .. 86
6.24. Test Component Instance in Test Cases ... 87
6.25. Test Component Instance Symbol in Functions and Altsteps .. 87
6.26. Changing the Type of Test Components .. 88
6.27. Port Instance Symbol ... 88
6.28. Action Symbol ... 89
6.29. Event Comment Symbol ... 90
6.30. Text Symbol Comment .. 90
6.31. Comment in Property Panel .. 90
6.32. Execute Symbol .. 91
6.33. Function Reference .. 91
6.34. Label and Goto ... 92
6.35. Setting the Goto Type .. 92
6.36. Type Change of an Inline Expression ... 93
6.37. Change the Number of Alternatives .. 93
6.38. If .. 94
6.39. If-Else ... 94
6.40. For ... 94
6.41. While .. 95
6.42. Do-While ... 95
6.43. Alt .. 96

Testing Tech TTwork-
bench User's Guide

ix

6.44. Alt With Altstep Invocation .. 96
6.45. Selecting/Deselecting an Alt ... 97
6.46. Alt With Else Branch .. 98
6.47. Change Operation in Alternative .. 99
6.48. Associate a Return Statement with a Return Value .. 100
6.49. Stop Execution Operation ... 101
6.50. Interleave ... 102
6.51. Call ... 102
6.52. Activate ... 103
6.53. Deactivate .. 103
6.54. Create .. 103
6.55. Start .. 104
6.56. Modify the Condition Type ... 104
6.57. Disable/Enable an Alternative .. 105
6.58. Else Branch of an Alternative .. 105
6.59. Popup Menu for Verdict Setting ... 106
6.60. Popup Menu for Port Operation Setting ... 107
6.61. Done ... 109
6.62. Send Operation ... 111
6.63. Receive Operation ... 112
6.64. Receive Any Message Operation .. 112
6.65. Receive on Any Port .. 112
6.66. Connected Start Timer Stop/Timeout Timer Operation ... 116
6.67. Start Timer Operation .. 118
6.68. Stop Timer Operation ... 118
6.69. Timeout Timer Operation ... 118
6.70. Control .. 120
6.71. Control Instance .. 121
6.72. Declaration ... 121
6.73. Complete Control Diagram ... 122
6.74. Property Panel of a Function ... 123
6.75. Return Statement of an Instance ... 124
6.76. Function basicCapabilityTests .. 125
6.77. Test Component Instance and Port Instances .. 126
6.78. Property Panel of an Activation ... 127
6.79. Nested Inline Expressions ... 128
6.80. Message Value Assignment ... 128
6.81. Actions .. 129
6.82. If Inline Expressions .. 129
6.83. Add a Stop Symbol to a Component Instance ... 130
6.84. Procedure-based Communication .. 132
6.85. Altstep ... 133
7.1. TTworkbench TTthree ... 134
7.2. General preference page ... 138
7.3. Code generation preference page .. 139
7.4. Java compiler preferences ... 140
7.5. Compilation progress ... 141
7.6. Compilation successful ... 141
7.7. Generated jar file .. 142
7.8. Compilation failed ... 142
7.9. Problems found .. 143
8.1. Overview of TTman ... 159
8.2. Open the TTCN-3 execution management perspective ... 160
8.3. Open the TTCN-3 execution management perspective with right click 161

Testing Tech TTwork-
bench User's Guide

x

8.4. Generating the Default Campain .. 163
8.5. Starting the test campaign wizard ... 164
8.6. The test campaign wizard (first page) ... 165
8.7. Selecting test cases in the test campaign wizard ... 166
8.8. Setting test case properties in the test campaign wizard ... 167
8.9. Setting the test adapter in the test campaign wizard .. 168
8.10. Starting the meta campaign wizard ... 169
8.11. The meta campaign wizard (first page) .. 170
8.12. Selecting campaigns in the meta campaign wizard .. 171
8.13. Setting test campaign properties in the meta campaign wizard ... 172
8.14. Setting the test adapter in the Management View ... 173
8.15. Selecting the test adapter .. 174
8.16. Configuring the codec plugins ... 175
8.17. Configuring the external functions plugins .. 176
8.18. Configuring the port plugins .. 177
8.19. Configuring the test adapter parameters .. 178
8.20. Management view ... 179
8.21. Verdict Filter .. 180
8.22. Importing a test campaign ... 181
8.23. Start a test case from the menu bar ... 182
8.24. Start a test case from the context menu .. 182
8.25. Importing a Test Session .. 183
8.26. Selecting the data source for the Test Report ... 185
8.27. Setting test report type and destination ... 186
8.28. Setting filtering and sorting options .. 187
8.29. Tester Properties ... 188
8.30. Test Report Example .. 189
8.31. Meta Campaign view ... 190
8.32. Importing a meta campaign ... 191
8.33. Parameters view .. 192
8.34. Module Parameter Editor .. 192
8.35. Properties view ... 193
8.36. Logging View ... 194
8.37. View TTCN-3 Source .. 195
8.38. Text Filter .. 196
8.39. Graphical Logging View ... 196
8.40. Data View .. 199
8.41. The received message does not match the given template ... 200
8.42. Dump view interpreting the input as text ... 201
8.43. Dump view interpreting the input as hex .. 202
8.44. The Dump view interpreting the input as formatted XML with highlighting. 203
8.45. Complete test case execution is set by default .. 204
8.46. Online logging is supported by default ... 205
8.47. TTman preferences logging generation ... 206
8.48. Logging appearance settings .. 207
8.49. User and test dependent information for test reports .. 208
8.50. Mail Settings .. 209
8.51. Server and Account Settings .. 210
9.1. TTdebug .. 213
9.2. Debug button ... 214
9.3. Toggling a breakpoint by using the context menu of the vertical ruler 215
9.4. Disabling a breakpoint by using the context menu of the vertical ruler 216
9.5. Breakpoint Properties Page ... 217
9.6. Eclipse Debug Perspective .. 218

Testing Tech TTwork-
bench User's Guide

xi

9.7. Perspective bar ... 218
9.8. Debug View ... 219
9.9. Breakpoints View .. 220
9.10. Variables View ... 221
9.11. Open the column configuration .. 222
9.12. Editing a basic value in the Variables View ... 222
9.13. Timers View .. 223
9.14. Port Queue View ... 224
11.1. Update TTtools path .. 232

xii

List of Tables
7.1. T3Doc Tags ... 153

1

Chapter 1. Introduction
TTworkbench is the full-featured integrated test development and execution environment (IDE) for any
kind of test automation project. This technology-independent tool can be deployed for testing products and
services in a wide range of different industry sectors. It supports a broad spectrum of test development,
ranging from the specification to the compilation and the execution of tests.

The "Testing Tech TTworkbench User's Guide, User's Guide" supplies usage and reference information
for TTworkbench. This manual is designed for all users of TTworkbench.

To use TTworkbench efficiently, you should be familiar with TTCN-3 and with the Eclipse platform.

How this Manual is Organized
Installation Gives you detailed instructions how to install TTworkbench on

your system

Global TTCN-3 Preferences Explains how to customize your TTCN-3 environment

TTCN-3 Project Shows the creation of new TTCN-3 projects and setting of respec-
tive project properties

Using TTworkbench CL Editor Introduces the usage of CL Editor, the text-based test definition ed-
itor (including T3Doc)

Using TTworkbench GFT Editor Introduces the usage of GFT Editor, the graphical test specification
and documentation editor

Using TTworkbench TTthree Introduces the usage of TTthree, to compile TTCN-3 modules into
test executables

Using TTworkbench TTman Introduces the usage of TTman, to manage, execute and analyze
TTCN-3 compiled test suites

Using TTworkbench TTdebug Introduces the usage of TTdebug, the TTCN-3 source code level
debugger

Frequently Asked Questions Provides answers to some questions frequently asked by the cus-
tomers

Contacting Technical Support Collects contact information for the technical support

Related Documentation
After installation and before you begin using TTworkbench, please review any README files and Chap-
ter 12, What's New pages to ensure that you have the latest information about the product.

For additional resources on TTCN-3 and Eclipse, refer to the following publications:

• ES 201 873-1 TTCN-3 Core Language Version 3.4.1

• ES 201 873-5 TTCN-3 Runtime Interface Version 3.4.1

• ES 201 873-6 TTCN-3 Control Interface, Version 3.4.1

Introduction

2

• ETSI's official TTCN-3 home page: www.ttcn-3.org

• Eclipse home page: www.eclipse.org

http://www.ttcn-3.org
http://www.eclipse.org

3

Chapter 2. Installation
Requirements

Eclipse and Java
TTworkbench is based on the Eclipse 3.4.1 platform and runs on a machine with Windows Vista, Windows
XP, Windows 2000, Red Hat Linux at least version 7.1 (x86/GTK) or SuSE Linux at least version 9.1 (x86/
GTK) or higher with at least 1 GB RAM. The Eclipse Foundation claims: “Although untested, Eclipse
should work fine on other OSes that support the same window system.” This is also true for TTworkbench,
which may perform well on other platforms. However, Testing Technologies tests and supports running
TTworkbench only on platforms listed above.

A comprehensive list of the supported OS and Java environments can be
found in the Eclipse 3.4.1 ReadMe file at http://www.eclipse.org/eclipse/develop-
ment/readme_eclipse_3.3.1.1.html#TargetOperatingEnvironments

TTworkbench needs a Java Platform, Standard Edition (Java SE, formerly known as J2SE) version 5.0.
This version supersedes J2SE 1.4.2 and is also known as version 1.5.

Java comes in two flavors, as J2SE Runtime Environment (JRE 5.0) for executing Java applications and as
J2SE Development Kit (JDK 5.0) with tools for Java application development added. Java can be down-
loaded from http://java.sun.com or http://www.ibm.com/developerworks/java/jdk/.

TTworkbench is distributed as an installer downloadable from our website. Only the aforementioned JDK
or JRE is required to install TTworkbench on your machine. See the section called “Installer Distribution”.

Another way of obtaining TTworkbench is to download and install using Eclipse's built-in Update Man-
ager. See the section called “Update Site Distribution”.

License Management
TTworkbench uses the FLEXnet Publisher license management of Acresso, formerly Macrovision. It is
possible to download the lmgrd license daemon version 10.1 or higher from http://www.globes.com/
support/fnp_utilities_download.htm . An end user's guide can be found at http://www.globes.com/sup-
port/utilities/flexnet_licensing_end_user_guide.pdf.

Please contact Testing Technologies Sales Department to get a valid license file sales@testingtech.com.

Installer Distribution

Perform the Installation
After a JDK or JRE has been installed, run the TTworkbench installer. For Linux platforms it is distributed
as a java archive with a jar filename extension. Start it by executing java -jar TTworkbench(Express/
Basic/Professional)-v(version)-installer.jar on the command line. For MS Windows computers the in-
staller is distributed as an executable program file (name extension is exe).

Note

For updates of an existing TTworkbench installation

http://www.eclipse.org/eclipse/development/readme_eclipse_3.3.1.1.html#TargetOperatingEnvironments
http://www.eclipse.org/eclipse/development/readme_eclipse_3.3.1.1.html#TargetOperatingEnvironments
http://java.sun.com
http://www.ibm.com/developerworks/java/jdk/
http://www.globes.com/support/fnp_utilities_download.htm
http://www.globes.com/support/fnp_utilities_download.htm
http://www.globes.com/support/utilities/flexnet_licensing_end_user_guide.pdf
http://www.globes.com/support/utilities/flexnet_licensing_end_user_guide.pdf
mailto:sales@testingtech.com

Installation

4

it is recommended to uninstall the old version before installing the current.

You will be guided through the installation. Read the accompanying information texts and choose the
directory where TTworkbench shall be installed. TTworkbench should be installed into an empty folder
to avoid overwriting important files accidentally. The installation wizard offers to copy a license file you
select to TTworkbench's installation folder. You can skip this step at this point if you want to copy it there
after installation, see the section called “License to Enable TTworkbench”.

Note

Existing files in the destination folder will be overwritten!

Most subsequent updates of TTworkbench can be performed via the built-in Update Manager, described
in the section called “Perform the Installation” unless Testing Technologies recommends otherwise. When
after connecting Testing Technologies's update site the Update Manager requires newer Eclipse compo-
nents, the safest bet is to use the installer version of TTworkbench.

Installed Files
The installer places the TTworkbench application, an uninstaller program and licensing information into
the chosen directory. Nothing is changed, added or removed outside this location with the exception of
shortcuts.

A shortcut to TTworkbench is placed on the desktop and in the start menu (or K menu on Linux with the
KDE desktop environment). The start menu entry will also contain a shortcut to the uninstaller. On Linux
systems the installation directory contains a shell script to start up TTworkbench.

Uninstall TTworkbench
A shortcut to the uninstaller can be found in the start menu. This uninstaller removes all installed files, but
will not touch files and directories created after installation. It is an executable jar-file

Because Eclipse workbench stores configuration files inside its application directory, those files will re-
main after uninstallation. Usually you will not need them, so you can remove them too by enabling the
option Force the deletion of.... Please double check the directory before using this switch. If you would
like to uninstall TTworkbench without the uninstaller you can delete the installation directory and remove
created shortcuts.

If an installed TTworkbench has been moved after installation, the uninstaller will not work. To uninstall,
remove the installation directory manually. Additionally remove shortcuts on desktop and in start menu.

Do not just disable TTworkbench features from eclipse as described in the section called “Uninstall
TTworkbench Features”, because your TTworkbench installation would not start afterwards.

Update Site Distribution

Requirements
As a second option TTworkbench can be installed onto an existing Eclipse workbench via Testing Tech-
nologies' update site. So, first a JDK 5.0 and the Eclipse 3.4.1 platform have to be installed on your system.
Download Eclipse from eclipse.org at www.eclipse.org/downloads. TTworkbench requires Release Build
3.4.1. You should choose the complete Eclipse SDK. It contains the Eclipse Java Development Environ-
ment, which is needed to get the most out of TTworkbench.

http://www.eclipse.org/downloads

Installation

5

Additionally some Eclipse components have to be installed:

• EMF can be downloaded from its home site eclipse.org at download.eclipse.org/tools/emf/scripts/
downloads.php . Here, the package EMF and SDO RT is sufficient.

• GEF can be downloaded also from eclipse.org at download.eclipse.org/tools/gef/downloads/

• BIRT (downloadable from eclipse.org at http://www.eclipse.org/birt/phoenix/)

• WTP (downloadable from eclipse.org at http://www.eclipse.org/webtools/)

• DTP (downloadable from eclipse.org at http://www.eclipse.org/datatools/)

Perform the Installation
Open Eclipse Workbench and create an update-site entry with the URL which you obtained from Testing
Technologies. In order to do this, navigate menu Software Updates, Find and Install... in the Help menu.
In the dialog box appearing choose Search for new features to install , then Next.... Here you can add an
entry for the Testing Technologies update-site with New Remote Site... . Choose a name of your liking.

When accessing Testing Technologies' update-site a user name and a password is required. Enter those
values you've received from our customer support. Then you can search for the TTworkbench feature on
the newly created update-site. When a list of features to install is shown, select Testing Tech TTworkbench
and install it. Restart the workbench as requested. After installation, please enable TTworkbench with a
license: see the section called “License to Enable TTworkbench”.

Note

When after connecting Testing Technologies's update site the Update Manager requires new-
er Eclipse components, the safest bet is to use the installer version of TTworkbench.

Because the Update Manager does only update features and plugins an additional step is necessary.

Note

For the next step, please close TTworkbench or Eclipse respectively.

The directory (TTworkbench or Eclipse install loc)/plug-
ins/com.testingtech.ttworkbench.execpack_x.x.x/ contains zip files with updated
versions of the TTworkbench executable and scripts for command line mode. Use the latest version of this
directory, which should have been installed in the previous step. Please extract the zip file according to your
operating system (starter_linux_gtk.zip for Linux or starter_win32.zip for Windows)
into the installation directory of TTworkbench. Existing executables and scripts can safely be overwritten.

Uninstall TTworkbench Features
A feature in Eclipse can be disabled and uninstalled via the integrated configuration management system.
In the Help menu, navigate submenu Software Updates and choose Manage Configuration. A dialog la-
beled Product Configuration appears. Here, please select the TTworkbench feature and choose Disable or
Uninstall in the pane on the right side and restart the workbench.

This procedure must not be performed for the main feature of the running Eclipse workbench installation.
Eclipse would not start if the main (or branding) feature is disabled.

http://download.eclipse.org/tools/emf/scripts/downloads.php
http://download.eclipse.org/tools/emf/scripts/downloads.php
http://download.eclipse.org/tools/gef/downloads/
http://www.eclipse.org/birt/phoenix/
http://www.eclipse.org/webtools/
http://www.eclipse.org/datatools/

Installation

6

Note

In TTworkbench installed using the installer, the branding feature is one of TTwork-
bench-Basic, -Professional or -Enterprise. These must not be disabled - - the whole installa-
tion would cease to work otherwise.

To un-install TTworkbench simply delete the installed features, plugins, the license file and the temporal
data as denoted above.

License to Enable TTworkbench
After installation and before effectively using TTworkbench, be sure to have the license file
license.dat exactly in the directory, where the TTworkbench executable has been installed, e.g. C:
\Program Files\TTworkbench\ or /usr/local/TTworkbench/ or similar according to your
environment.

Without a valid license, Eclipse features from Testing Technologies refuse to start. The licensing mecha-
nism will shut down the workbench after a number of unsuccessful attempts to find a valid license.

Workspace, Temporal Data and Preferences
When starting up, TTworkbench asks for a place to store project data and preferences. This place is called
the workspace. Only one workspace can be active at a time, but you can switch workspaces to organize
your work. It is highly recommended to store your workspace(s) outside the TTworkbench installation
directory.

Besides files and projects you work with, TTworkbench creates temporal data in your workspace under
.metadata/.plugins/ in directories of the form com.testingtech.ttworkbench.*/ .

Preferences are stored compliant to the eclipse platform in your workspace under
.metadata/.plugins/org.eclipse.core.runtime/.settings/ in files of the form
com.testingtech.ttworkbench.*.prefs .

The TTCN-3 compiler TTthree uses disk space temporarily during compile runs. For this purpose it creates
a directory named TTthree-$USER/ in the current system's default temporal data directory.

7

Chapter 3. Global TTCN-3 Preferences

TTCN-3 Preferences Page
Choose Window > Preferences from the main menu to open the workspace preferences dialog. Select the
TTCN-3 preference page in the tree on left side.

Supported TTCN-3 edition

The section Supported TTCN-3 Edition as shown by Figure 3.1, “TTCN-3 main preferences” provides the
selection of supported TTCN-3 editions as defined in ETSI ES 201 873-1 documents. The editions 1, 2 and
3 are supported currently. They are also indicated by the language strings TTCN-3:2001, TTCN-3:2003,
TTCN-3:2005, TTCN-3:2008 and TTCN-3:2008 Amendment 1, respectively. The default TTCN-3 edition
in this TTworkbench is edition 3.4.1.

Please note, the language declaration in the current module, if present, determines always the final setting
for the TTCN-3 edition. For example, in spite of a global setting of TTCN-3 edition 3 (TTCN-3:2005),
a module with the declaration language "TTCN-3:2003" will always be treated as a TTCN-3 edition 2
(TTCN-3:2003) module. If the module language declaration is absent, the global setting will be applied.
Please refer to the description of TTworkbench features for specific options related to TTCN-3 editions.

Figure 3.1. TTCN-3 main preferences

Strict standard compliance

Non-standard language extensions provided by TTworkbench can be checked during compilation and they
can be treated as errors or warnings or can be ignored.

Global TTCN-3 Preferences

8

Problem or information reporting level

In this section the verbosity level for TTthree can be adjusted. Depending on the level, TTthree will produce
output in the Eclipse Console View during the compilation or execution process. The defined verbosity
levels are: info (most verbose), warning, and error (least verbose).

TTplugins
The active TTthree plugins, which are extensions of the TTCN-3 compiler (not Eclipse plugins) are shown
in the read-only TTplugins list page as shown in Figure 3.2, “TTplugins preferences: extensions of the
TTCN-3 compiler” . The second tab TTplugins paths allows for dynamic addition and removal of plugins
by managing their locations.

Figure 3.2. TTplugins preferences: extensions of the TTCN-3 compiler

9

Chapter 4. TTCN-3 Project

Creating a TTCN-3 Project
A new TTCN-3 project can be created by using the menu File > New > TTCN-3 Project .

Figure 4.1. Creating a new TTCN-3 project

Now the New TTCN-3 Project wizard appears. As usual, first choose a name and location for the new
project. A TTCN-3 project has the Java project nature too, because this is needed for developing test
adapters for instance. That's why on the second page of the wizard Java specific properties can be set. (
Figure 4.2, “Java properties of new TTCN-3 project”). The third a last page of the wizard is needed to
set TTCN-3 properties for this project (Figure 4.3, “TTCN-3 properties of new TTCN-3 project”). On
all pages it is recommend to use the default values. Click "Finish" to get back to the workspace with the
created project.

TTCN-3 Project

10

Figure 4.2. Java properties of new TTCN-3 project

TTCN-3 Project

11

Figure 4.3. TTCN-3 properties of new TTCN-3 project

An already existing non-TTCN-3 project can be changed into a TTCN-3 project by using the menu com-
mands Turn into TTCN-3 Project or Add TTCN-3 Compiler Nature . These commands can be found
in the context menu for projects in the Workspace Navigator or Java Package Explorer views. These com-
mands enable test execution and definition of a project's TTCN-3 properties.

Figure 4.4. Adding TTCN-3 compiler nature

TTCN-3 Project

12

Project Properties
A TTCN-3 project can be configured by setting its Project Properties. Please go to File > Properties >
TTCN-3 Settings . The properties are structured into several setting pages.

General

This page (Figure 4.5, “General settings page”) allows to set the name of the main module as specified
in the TTCN-3 test suite, i.e. without file extension, and the standard test adapter of the project.

Figure 4.5. General settings page

If the main module is specified, setting the Jar file that contains the test adapter and selecting the adapter
class enables the generation of a Default Campaign for this project.

TTCN-3 Sources

This page (Figure 4.6, “TTCN-3 Sources settings page”) specifies the search path for imported modules.
It is a list of so-called TTCN-3 source folders where module files should be located. The path is used by CL
Editor and by TTthree. The default path is the directory ttcn3 in the project root. Only folders from the
current project can be selected here. When mapping TTCN-3 module names to files, the compiler searches
through this list from top to bottom. It doesn't descend into subfolders, so any folder that is to be searched
has to be added to this list.

If modules from a different project need to be imported, those projects have to be selected in the property
page Project References . In the referenced projects the TTCN-3 Sources path has to be set accordingly.

TTCN-3 Project

13

Figure 4.6. TTCN-3 Sources settings page

For adding or removing folders from this list, the TTCN-3 Projects navigator view provides two shortcuts.
In the context menu appearing when you right-click on a folder inside a TTCN-3 project, you'll find the
actions TTCN-3 Sources > Use as Source Folder and TTCN-3 Sources > Remove from TTCN-3 Sources .
They change the current project's TTCN-3 Sources setting. This also works with a selected group of folders.

TTCN-3 Project

14

Figure 4.7. TTCN-3 Sources menu actions in the TTCN-3 Projects navigator view

TTCN-3 Project

15

Output

This page (Figure 4.8, “Output folder setting page”) defines the folder TTthree shall use as output folder
for the compiled test suite.

Figure 4.8. Output folder setting page

Logging

This page (Figure 4.9, “ Logging Properties Page”) contains the logging related properties of the project.
Here you can control automatical log storage after each run, along with the respective destination folder.

TTCN-3 Project

16

Figure 4.9. Logging Properties Page

Environment

For a test execution it may be required that particular environment variables have specific values. These
can be defined here. It is possible to re-define existing variables as well as to define new variables.

TTCN-3 Project

17

Figure 4.10. Environment variables setting page

Compiler Settings

This page (Figure 4.11, “Compiler settings page”) provides the possibility to configure project specific
compiler options.

TTCN-3 Project

18

Figure 4.11. Compiler settings page

Generate a Default Test Campaign

If this option is set, the compiler automatically generates a Default Campaign after a successful compila-
tion. The default test campaign is generated only after a compilation (build or rebuild), not after a valida-
tion. No output is generated in case the module that is compiled is not set as root module. To allow this to
work, a main module and a test adapter have to be set (see General TTCN-3 Project Properties).

Use Arbitrarily Large Integer Values

Activating the option "Use arbitrarily large integer values" allows using of integer values outside of the
domain -2 31 ..2 31 -1; the use of these values is restricted only to TTCN-3 source. They cannot be used as
module parameters, in external functions or codec, as such values cannot be handled by the standardized
TCI interfaces. Activation of this option may lead to loss of performance.

Generate Code for Debugging

Generate debug code for record initialization. If set, generated java classes will contain code which can be
used to monitor initialization of TTCN-3 record structures. By default no such code will be generated.

Compile all Java code at once

When compiling TTCN-3, the Java compiler can be invoked once per module (as soon as the Java code
for the module has been generated) or it can be delayed until Java code for all modules has been generated
and invoked together for all generated classes. If this option is chosen, then compilation in projects with
many modules should be faster as the overhead of multiple Java compiler invocation is reduced.

TTCN-3 Project

19

TT3 Plugins
Extensions to the TTCN-3 compiler, called TT3 Plugins, are usually defined on workspace level as de-
scribed in the section called “TTplugins” . For specific puposes it may be useful to define a TT3 Plugin
on project level. In this case it will only be used while compiling and executing test cases in this project.

To specify a TT3 Plugin, it must be located in the workspace. A folder in the current project is recom-
mended. Click the Add Folder... button and select the folder, where the TT3 Plugin's files can be found.

Figure 4.12. Project specific TT3 Plugins page

20

Chapter 5. Using TTworkbench CL
Editor

The CL Editor is a text editor that provides rich capabilities for editing TTCN-3 Core Language based test
suites. It relies on the Eclipse basic text editor framework. The layout and the functionality of the CL Editor
are in-line with other Eclipse based editors. The CL Editor, as shown in Figure 5.1, “TTworkbench CL
Editor ” , uses different views, for example to outline the test suite structure, to collect errors and warnings
found during syntax checking, or to print progress information. The functionality of the CL Editor can be
parameterized by dedicated preference pages. The remainder of this section describes the properties and
usage of the CL Editor in detail.

Figure 5.1. TTworkbench CL Editor

Properties
The CL Editor provides currently the following functions:

• Full support for TTCN-3 Edition 1 (TTCN-3:2001), 2 (TTCN-3:2003), 3 (TTCN-3:2005 and
TTCN-3:2008 and TTCN-3:2008 Amendment 1) - ETSI ES 201 873-1

• Standard text editor functions e.g. open/save, copy/paste, find/replace

• Syntax highlighting

• Syntax checking with navigation of errors/warnings

Using TTworkbench CL Editor

21

• Text formatting

• Bookmarks and tasks

• Preference page

• Extended context menu

• Outline of test suite structure

• Outline view components

• Find references in workspace

• Quick outline

• File association

• Search for declarations in the global context

• Wizard for creation of new TTCN-3 module

• Completion assistance

• A message building system, called template wizard

• Quick fix for certain problems and errors

• Comparisons of local files with each other or with a SCM repository

• TTCN-3 search

• Folding support for template fields

Known limitations:

• address type not supported

• variant attribute not supported

• Limited support for universal charstrings

Development Perspective

Overview

The TTCN-3 Development Perspective constructs the editing environment of CL Editor. Besides the
editor, the Development Perspective consists of an outline view, a problems view, a console view and

the TTCN-3 Projects Navigator View . The Development Perspective is launched automatically upon
first startup. It can be also explicitly started by Window > Open Perspective > TTCN-3 Development .

TTCN-3 Projects Navigator View
The TTCN-3 Projects Navigator View is based on Eclipses Resource Navigator view, part of the Resource
Perspective. It supports any kind of project in the workspace. Projects can be grouped into Working Sets.

PLUGINS_ROOT/org.eclipse.platform.doc.user/gettingStarted/qs-37-3b.htm
PLUGINS_ROOT/org.eclipse.platform.doc.user/gettingStarted/qs-37-2b.htm

Using TTworkbench CL Editor

22

In contrast to similar workspace views in the Eclipse environment, this view focuses on TTCN-3 related
aspects of projects. So it lists TTCN-3 modules, TTCN-3 source folders (as set in the project's preferences,
see the section called “TTCN-3 Sources”) and their parent folders first. The TTCN-3 Projects Navigator
View supports three layout modes for source folders, Flat, Hierarchical and Combined. The modes differ
in the way they present TTCN-3 source folders and their contents. Layout modes can be switched via the
local view menu.

Figure 5.2. Switching layout mode in the TTCN-3 Projects Navigator View

In Flat layout mode all TTCN-3 source folders are visible in the root of the project. Their hierarchical
structure is condensed (flattened) in order to ease navigation in projects with many or deeply structured
source folders.

Using TTworkbench CL Editor

23

Figure 5.3. Flat layout mode of the TTCN-3 Projects Navigator View

In Combined layout mode all TTCN-3 source folders get combined under a virtual folder called source

folders in the root of the project. Their hierarchical structure is like in Flat layout mode condensed
(flattened) in order to ease navigation in projects with many or deeply structured source folders.

Using TTworkbench CL Editor

24

Figure 5.4. Combined layout mode of the TTCN-3 Projects Navigator View

In Hierarchical layout mode source folders keep their file system structure. As said above they are listed
first in a project's tree structure regardless of their name.

Using TTworkbench CL Editor

25

Figure 5.5. Hierarchical layout mode of the TTCN-3 Projects Navigator View

The Main module of a project is depicted as . It can be set either by using the according option in
the project's properties (see General TTCN-3 Project Properties) or by using the context menu within the

TTCN-3 Projects navigator view: When you right-click on a TTCN-3 source file inside a TTCN-3

project, you'll find the action TTCN-3 Sources > Set as Main Module.

Using TTworkbench CL Editor

26

Editing a Test Suite

Introduction

A test suite may consist of one or more modules. For each module, a file with the extension ".ttcn3"
must be created. The file name shall be the same as the identifier of the module. For example, the file
ProtocolExample.ttcn3 describes the module ProtocolExample .

By default, the extension ".ttcn3" is associated with the CL Editor. This can be verified using Window
> Preferences > Workbench > File Associations .

To create ProtocolExample.ttcn3 in the project Demo , the New TTCN-3 Module wizard can be
used, which is accessible over File > New > TTCN-3 > Module . The source folder is in this case the
location of the project Demo , and the module name is ProtocolExample (see Figure 5.6, “New module
wizard”). The wizard will create the file ProtocolExample.ttcn3 and open it automatically.

Figure 5.6. New module wizard

Using TTworkbench CL Editor

27

Figure 5.7. New module in editor

To open an existing TTCN-3 source file with the CL Editor, double-click on the file if CL Editor is set for
the file association (default). Otherwise, an editor of the choice can be selected by right-click and Open
With . As CL Editor uses the Eclipse text editor framework, standard commands such as copy, paste,
save, revert are already available. In addition, CL Editor provides highlighting of keywords, validation
of syntax, formatting of text, navigation of declarations, completion assistance, etc., as introduced in the
following. The CL Editor actions such as Format, Validation, Open Declaration are integrated into the
standard editor menus. They are also available over the context menu.

Using Core Language Viewer (CLViewer)

Editing generated TTCN-3 source code may not be reasonable. So by default for *.ttcn3view files
which are generated for instance from ASN.1 inputs the CLViewer is used. It opens a file in read only

mode and shows this state in the title bar. Those files have the viewer icon () instead of the icon

used for editable files ().

Using TTworkbench CL Editor

28

Figure 5.8. Editable and non-editable generated TTCN-3 files in the navigator

Outline of Test Suite Structure

The structure of the module being edited is shown as a tree in the Outline view, which can be opened by
Window > Show View > Outline .

By default the definitions included in a TTCN-3 module are shown in the order of their appearance in

the file. Alphabetical sorting is available by clicking action icon . Regardless of sorting mode import
declarations are listed first for clarity.

Using TTworkbench CL Editor

29

Figure 5.9. Outline showing definitions as found in module

The outline view always synchronizes with the selection in the current TTCN-3 editor (CL Editor or CL
Viewer) and vice versa.

An alternative view mode can be enabled with the button Group by Category switch in the outline's
tool bar. Definitions of the same kind will be put in a (virtual) folder which shows the number of definitions
it contains.

Using TTworkbench CL Editor

30

Figure 5.10. Outline with definitions grouped by category

Quick Outline

To use the Quick Outline feature in the TTCN-3 Core Language Editor, perform one of the following
procedures:

• Press Ctrl+O.

• In the main window's menu bar, select Navigate > Quick Outline .

• In the TTCN-3 Editor, right-click and select Quick Outline .

After selecting an element either by clicking on it with the left mouse button or pressing enter after choosing
the right element with the arrow keys, the editor will jump to the element's declaration.

At the top of the Quick Outline window, there is a line editor. The Outline below gets filtered according
to what you type here.

To customize the size and position of the Quick Outline window, click the triangle in the upper right corner
and choose the appropriate option.

Using TTworkbench CL Editor

31

Figure 5.11. Quick outline

TTCN-3 Search
TTworkbench offers the possibility of searching for TTCN-3 elements. To open the TTCN-3 search dialog,
press Ctrl+H or in the main window's menu bar, choose Search > Search . In the now opening dialog,
open the TTCN-3 Search tab.

To specify your search, enter your search string in the text field at the top. For setting more detailed
contraints on the searched element or limiting the searched locations, there are three sections available
with the following options:

• Search for:

Type

Group

Module

Template

Module parameter

Using TTworkbench CL Editor

32

Constant

Field

• Limit to:

Declarations

References

All occurrences

• Scope:

Workingspace

Working set

Enclosing projetcts

Figure 5.12. TTCN-3 search

Find References in Workspace
Find references of an element in a TTCN-3 file.

Using TTworkbench CL Editor

33

To use this feature:

1. Open a TTCN-3 file

2. Place the cursor before the name of a testcase, type, template, function etc.

3. Press Shift+Ctrl+G , a Search view will open displaying:

• The project

• The file

• The module

• The number of occurrences of the selected element

Figure 5.13. Find references in workspace

Highlighting of Keywords

The highlighting of keywords supports all TTCN-3 terminals as defined in the supported TTCN-3 Core
Language standard, e.g. module , type , template , component , etc. In addition, the predefined functions
such as int2oct , setverdict are also highlighted. The color of highlighted syntax can be changed using the
editor preferences (see the section called “Syntax Preferences”).

Using TTworkbench CL Editor

34

Comparing TTCN-3 Files
TTCN-3 Core Language files can be compared with other files using Eclipse's standard text file comparison
facilities. See (Eclipse) Workbench User Guide, Tasks, Comparing Resources . When using the compare
editor the TTCN-3 syntax elements will be highlighted as in the CL Editor itself to maintain a consistent
user experience.

Figure 5.14. Comparing a local TTCN-3 file with a revision from source code
management

Mark Occurrences
You can find all occurrences of an identifier easily by using the Mark Occurrences feature. Just click on
an identifier, and all occurrences will be highlighted with a yellow background.

To toggle this feature, go to the Figure 5.41, “Mark Occurrences preference” in the CL Editor preferences.

Note

At this point, Mark Occurrences does not work for fields and extensions.

Validation of Syntax
The CL Editor provides comprehensive syntax checking according to the grammar of the TTCN-3 Core
Language. The validation of syntax is done automatically on opening or saving of the text file. A more

extensive validation which includes type checking can be initiated using the button in the window's
icon bar, the menu Source > Validation , or the context menu Validate (by right-click on the editor
window as shown in Figure 5.15, “Validate command”), or using the short-key Ctrl+Shift+V .

PLUGINS_ROOT/org.eclipse.platform.doc.user/tasks/tasks-68.htm

Using TTworkbench CL Editor

35

Figure 5.15. Validate command

The progress of syntax checking is illustrated on the progress bar. Errors or warnings found during the
validation are reported to the Problems view, and visualized using the text annotation, as shown by the
figure below. The items in the Problems view and the text annotations are useful to navigate through the
test specification.

Using TTworkbench CL Editor

36

Figure 5.16. Error reporting

Formatting of Text

Automatic formatting of text is available using the menu Source > Format , or the context menu Format
(by right-click on the editor window), or using the short-key Ctrl+Shift+F .

Open Declaration

Navigation of global declarations, e.g. data types, component types, templates, or test cases, is provided
by the open declaration action. Doing so, place the cursor on the identifier of interest, and select either
Navigate > Open Declaration , or the context menu Open Declaration (by right-click on the editor
window), or the short-key F3 . The cursor will be placed then at the position of the according declaration.

Using TTworkbench CL Editor

37

Figure 5.17. Open declaration

Completion Assistance

The completion assistance provides a context dependent selection of identifiers. For example, to declare a
variable in a component type as illustrated in Figure 5.18, “Completion assistance” , type var and blank,
and use Ctrl+Space to obtain a list of all defined data types or code templates for choice. Please refer to
the section called “Template Preferences” for availability of code templates.

Using TTworkbench CL Editor

38

Figure 5.18. Completion assistance

Progress Information

Progress information, log messages and debug information etc. that are produced by CL Editor facilities
are printed on the standard console. This console is opened automatically if the appropriate environment
is set. If not done so, the console can be explicitly opened by Window > Show View > Basic > Console .

Code Folding

More clarity in your code can be reached by using code folding: Syntactical units of TTCN-3 code are
foldable and expandable exactly like in the Eclipse Java editor.

If you put the mouse pointer onto the little '-' button on the left (see figure below), a line appears that
shows you the code area that is summarized into one syntactical unit, which's folding is controlled by that
particular button.

By pressing the button, the area is folded, which means that only it's first line remains visible and the '-'
button changes into a '+' button . By pressing this button again, the area is unfolded and becomes visible
again.

Using TTworkbench CL Editor

39

Figure 5.19. Code folding

Refactoring Support
The goal of TTCN-3 program refactoring is to make workspace-wide code changes without affecting the
behavior of the program. This tooling provides assistance in easily refactoring TTCN-3 code.

When performing a refactoring operation, you can optionally preview all of the changes resulting from
a refactoring action before you choose to carry them out. If you do not preview a refactoring operation,
the change will be made in its entirety and any resultant problems will be shown after compilation or
validation.

Refactoring commands are available from the context menu of the Core Language editor. Many "appar-
ently simple" commands, such as Rename, are actually refactoring operations, since renaming TTCN-3
elements often require changes in dependent files.

Note

Before performing any refactoring operation, it is recommended to save and validate all open
TTCN-3 files.

Refactoring Steps

Refactoring With/Without Preview

The following instructions will lead you through the refactoring process:

• Activate a refactoring command. For example, rename a template by clicking on it's name and choosing
Rename from the CL Editor's pop-up menu (or the Source menu).

• The Refactoring Parameters page prompts you for information necessary for the action. For example,
the Rename Refactoring dialog asks you for a new name for the selected template.

• Provide the necessary data on the parameters page, and

Using TTworkbench CL Editor

40

• click OK in order to start the refactoring process, or

• click Next in order to see a preview of the changes

Previewing Refactoring Changes

The Preview page shows the proposed effects of a refactoring action. You can use this page as follows.

• Select a node in the tree to examine a particular change.

• To examine a change inside a TTCN-3 module, expand a TTCN-3 module node in the tree and select
one of its children.

• When selecting nodes, the compare viewer is adjusted only to show a preview for the selected node.

• Clear the checkbox for a node to exclude it from the refactoring.

Note

Excluding a node can result in compile errors when performing the refactoring without fur-
ther warning.

Rename

You can rename a type by modifying its declaration in the TTCN-3 module in which it is declared. How-
ever, if you also want to update all references to it, do one of the following:

• In a CL Editor, select a reference.

• From the editor's pop-up menu, select Rename or use the Source > Rename action from the global menu
bar.

Parameters Page

Figure 5.20. Parameters Page for the Rename Refactoring Command

Using TTworkbench CL Editor

41

• In the Enter new name text field, type a new name for the identifier that you're renaming.

• If you do not want to update references to the renamed field, deselect the Update references to the
renamed element checkbox.

• Click OK to perform a quick refactoring, or click Preview to perform a controlled refactoring.

Note

References in comments and string literals are not updated.

Note

The rename operation is only allowed on elements of kind: altstep, constant, function, module
parameter, template, testcase, type and variable.

Analyze Interface Changes

The Interface Analyse refactoring wizard presents the possibility to keep track of and to react to interface
changes between two given projects. The "Analyze interface changes" action that triggers this feature is
listed on the toolbar and also inside the "Refactoring" menu.

In order to start using the feature two TTCN-3 projects are needed. The first contains the Test suite based on
the old version of the interface, where the second TTCN-3 project contains only the modules representing
the interface in their newest version. Lets call the first project OldProject and the second (containing the
new interfaces) NewProject . The changes will be applied to the first project (called here OldProject).

Note

Please note that the wizard is accepting as input only TTCN-3 Projects.

Starting the wizard by the menu action will show a first page where a previously saved analysis session
may be imported. The saved sessions are stored in a so called Interface Analysis Configuration file (*.iac)
which must reside inside the workspace. Storing the session will provide you the possibility to apply the
same rules to different TTCN-3 projects (as far as these rules apply to them).

Note

The wizard is automatically opened also by clicking on an Interface Analysis Configuration
file (*.iac) file.

The second page requires you to select the old interface project (here OldProject) and the new one (in our
example called NewProject). The next step is to select the files that are describing the interface from the two
given TTCN-3 projects. Only project local files are shown. Lets say that the project is having an interface
module specified in ASN.1 (also possible TTCN-3, WSDL, IDL, XSD, etc.), so the file selected here will
be "Types.asn1". The second TTCN-3 project contains a file describing the newer version of the Types
module (lets say "Types_v2.asn1"). The file names are saved project relative such that the configuration
may be easily applied to projects with similar file structure.

Note

All modules specified in TTCN-3, ASN.1, WSDL, IDL, XSD and all languages supported
by TTworkbench may be used as input for the wizard (also possible, e.g. to replace an ASN.1
interface with one specified with IDL).

Using TTworkbench CL Editor

42

By pressing next, the differences between the two sets of interface files are computed and presented on the
forth page. The difference tree is displayed on the left side. Filter possibilities and other actions are offered
at the top of the page. The columns will present the declaration's name, the change category, which action
should be executed for this entry, the declaration's type name, the field position (only for reorder) and the
value that will be assigned for newly added type fields (where appropriate). Currently, three categories of
changes are detected automatically : Added, Removed Reordered and Type changed, also identified by
icons. Added is generated when a new declaration was added to the new interface version. Removed is
created when a declaration was deleted from the old interface version. Reordered describes a declaration
field order change in the new interface version. Type change is generated when a declaration from the old
interface has received a new type in the new interface version. A Renamed change kind can be created
by combining one Added entry with a Removed entry. The inverse operation is also possible by selecting
Split from the context menu of a entry of change kind Renamed .

Note

Context menu actions are available by right click for single and multiple entry selection.

The next page provides the possibility to choose a file name to which the current session should be stored.
Please select here the destination folder and then choose an Interface Analysis Configuration file name
(*.iac).

The last page shows a preview of the changes that will be made to your first project (named here Old-
Project). Each change can be analysed and optionaly disabled. Entire files can also be excluded from the
refactoring action. The external language files (such as ASN.1, IDL, WSDL, etc.) will be excluded from
this preview (e.g. only TTCN-3 files are modified). Pressing finish will save the configuration and the
apply the changes to OldProject.

Note

Please note that all entries having the action type Ignore will not be taking into account in
generating the code changes.

Quick Fix

For certain problems or errors, CL Editor can offer corrections. This is indicated by the light bulb shown in
the editor marker bar to the left. If the Quick fix is concerned with an error, then the light bulb is overlayed
by the red error cross.

To see the correction proposals, use the Quick Fix action:

a) set the cursor inside the highlight range, and select Quick Fix from the Edit menu or the context menu,

b) set the cursor inside the highlight range, and press Ctrl+1 or

c) click on the light bulb .

Quick fix is also available on a Quick fixable problem entry in the Problem view. The Quick Fix action
will open a dialog to select the correction.

Using TTworkbench CL Editor

43

Figure 5.21. Quick Fix

Showing Single Element or Whole TTCN-3 File
• To display the selected TTCN-3 file in a single element view, click the Show Source of Selected Element

Only button in the workbench toolbar, so that it is pressed.

• To display the selected TTCN-3 file in a whole (non-segmented) view, click the Show Source of Selected
Element Only button in the workbench toolbar, so that it is not pressed.

Figure 5.22. Show Source of Selected Element Only

Note

This toolbar button is enabled only when a TTCN-3 editor is open.

Using TTworkbench CL Editor

44

Task Tags Inside TTCN-3 Comments
• Task tags can be configured on the TTCN-3 > CL Editor > Task Tags preference page. When the tag

list is not empty, the compiler will issue a task marker whenever it encounters one of the corresponding
tag inside any comment in Java source code. Generated task messages will include the tag, range until
the next line separator, comment ending or non-empty tag, and will be trimmed. If the same line of code
carries multiple tags, they will be reported separately.

• See the CL Editor preference page for information on how to enable task tags in your source code.

• See Tasks and Markers for details.

Note

This feature is activated only for TTCN-3 projects having the TTCN-3 Compiler Nature
enabled

Template Wizard

Purpose

To ease creation and modification of TTCN-3 templates a Template Wizard has been integrated into CL
Editor. It is a graphical interface for certain elements while editing TTCN-3 Core Language. It can be
accessed from the Edit menu, the editor context menu or via the shortcuts:

• F4 (Edit Template) or

• Shift+F4 (New Template).

Editing an Existing TTCN-3 Template

• Set the cursor inside the identifier of a template to be edited in the TTCN-3 source code.

Figure 5.23. Template in Core Language

• Choose Edit > Edit Template .

PLUGINS_ROOT/org.eclipse.platform.doc.user/gettingStarted/qs-37-2b.htm

Using TTworkbench CL Editor

45

Alternatively you can press F4 or use the context menu (Right-Click).

• In the Edit page of the Template Wizard appearing change and set values of the template.

In the left pane of this page the template's structure is shown. Select elements to be edited here. The
right hand side has the following areas: the parameters of the template, the value of the selected element,
and its type information. Within the the value area it is possible to edit a comment for the template by
clicking the button "Edit Comment".

Figure 5.24. Edit page of the Template wizard

• The Next button leads to the preview page, where the source code of the created template can be exam-
ined. Switch back for further editing.

Using TTworkbench CL Editor

46

Figure 5.25. Preview page of the Template wizard

• To save the template back into the source code click Finish on the preview page.

Creating a New Template Based on a Type in the Same Module

• Set the cursor inside the identifier of the type the new template should be created from.

• Choose Edit > New Template

Alternatively you can press Shift+F4 or use the context menu (Right-Click).

• The Template Generation Options page of the wizard appears. Here the name of the new template can
be defined. It is also possible to choose a different TTCN-3 type to derive the new template from.

Creating a New Template from a Type Defined Elsewhere

• Set the cursor to the position where the new template should be inserted.

• Choose Edit > New Template

Alternatively you can press Shift+F4 or use the context menu (Right-Click).

• The Template Generation Options page of the wizard appears. The Template Name and From Type
fields are empty and should be filled now in order to be able to go further.

Using TTworkbench CL Editor

47

In the From Type field there is content assist available. To choose from a list of all known types, hit
Ctrl+Space and select the desired one. Start typing the beginning of the desired type to eliminate im-
proper choices.

Figure 5.26. Content Assist for From Type in the Template wizard

Creating a New Template from a Hexadecimal Message

• Set the cursor to the position where the new template should be inserted.

• Choose Edit > New Template

Alternatively you can press Shift+F4 or use the context menu (Right-Click).

• The Template Generation Options page of the wizard appears. Please fill in the template and activate
the From Clipboard field.

in the From Clipboard field please insert your message in hexadecimal format.

After inserting of a valid hexadecimal string. Select a codec plugin to decode the message by clicking
on the Select... buttton.

In order to complete the template generation a TTCN-3 type must be chosen. In the Type field there is a
content assist available. To choose from a list of all known types, hit Ctrl+Space and select the desired
one. Start typing the beginning of the desired type to eliminate improper choices.

If the type match to the pasted hexadecimal message, the finish button is available and the template is
ready to create.

Checking of Range Constraints

For language elements of types in the following list, range constraints will be checked against the type's
definition:

• bitstring

• boolean

• charstring

• enumerated

Using TTworkbench CL Editor

48

• float

• hexstring

• integer

• octetstring

• verdicttype

For other types the user is responsible for observing range constraints when inserting values.

Known Limitations of Validation

The current implementation has certain limitations when validating values. Values of the TTCN-3 types
listed below cannot be validated. In these cases values should be inserted as they shall appear in Core
Language and should be marked as FreeText .

• address

• anytype

• objid

• universal charstring

Note

Values inserted as FreeText will not be validated by the wizard. In those cases the user has
to make sure valid values has been entered.

Module Dependencies View

Module Dependencies View displays the dependencies between the modules of a selected project. The
view is accessible via: Show View -> Other -> TTCN-3 Development -> Graph Module Dependencies .

Using TTworkbench CL Editor

49

Figure 5.27. Open wizard

To display the module dependencies graph of a project: right click in the view -> Select a TTCN-3 project
then select your project from the list. This step is activating the following options:

• Search field , which is highlighting all the items that are matching the search expression.

Using TTworkbench CL Editor

50

Figure 5.28. Search action

• Double click on a module or right click -> Focus on NameOf Selection , creates a new graph of
dependencies having as root the selection.

Figure 5.29. Double click action

• Returning to the previous state is possible by right clicking in the view window and then selecting
Back or Forward arrows.

• Taking screen shots or zooming the dependencies graph is possible by using the Take screenshot icon:

• from the menu bar of the view

• by right clicking in the view window

Using TTworkbench CL Editor

51

• To open the source file of a module right click on the desired module and select Show NameOfSelection
in file .

The Controls menu, placed in the right part of the view window, is offering the following features:

• Showing all the imported modules by the selection when Show Dependency Path is not selected.

Figure 5.30. Imported modules

• Showing the modules that are importing the selection when Show Dependency Path is selected, having
the following options:

• Smart Path , showing one of the way through which a module is importing the selection.

Figure 5.31. Smart path

• All Paths , presenting all the modules which are importing direct or indirect the selected module.

Using TTworkbench CL Editor

52

Figure 5.32. All Paths

• Shortest Path computing one of the shortest way of importing the selected module.

Figure 5.33. Shortest Path

Note

If the selected project contains built-in modules, they are marked with an library symbol.

Extract TTCN-3 Wizard
Extract TTCN-3 Wizard is a wizard meant to help you extracting declarations from modules belonging to
the selected TTCN-3 project.

The wizard is accessible from:

• Java Perspective via: Right Click on a TTCN-3 project from workspace -> Export -> TTCN-3-> Extract
TTCN-3 Wizard or Right Click on a TTCN-3 project from workspace -> New -> Other -> TTCN- 3-
> Extract TTCN-3 Wizard

Using TTworkbench CL Editor

53

• Development Perspective via: Right Click on a TTCN-3 project from workspace -> Export -> TTCN-3-
> Extract TTCN-3 Wizard or Right Click on a TTCN-3 project from workspace -> New ->Extract
TTCN-3 Wizard

Figure 5.34. Extract TTCN-3 Wizard

Export Path

Export Path , the first page of the wizard, offers the list of the TTCN-3 project from the workspace. If the
wizard is opened starting from a selected TTCN-3 project then the selection is highlighted, otherwise a
project must be selected from the provided list.

Using TTworkbench CL Editor

54

Figure 5.35. Export Path Page

The second part of the page is offering two options for exporting.

• Exporting into an archived file.

• Exporting into TTCN-3 project in workspace.

Note

Without mentioning an export path the the next pages of the wizard will not be available.

Using TTworkbench CL Editor

55

Select Declarations

Select Declarations page offers a list of all modules contained in the selected project, together with their
declarations.

Figure 5.36. Select Declaration

Using TTworkbench CL Editor

56

In order to see declarations of a specific type, select the type from the Select declaration type list. For a
further filtering upon the declaration's name see the filter bellow the Select declaration type list. On the
same level with this filter are the Select All and Deselect All buttons, which are meant to select and deselect
all the declarations from the current view.

Figure 5.37. Filter Test Cases

Using TTworkbench CL Editor

57

Note
If no declaration is selected the Next and Finish buttons are not active.

Select Non TTCN-3 Files

Select Non TTCN-3 Files is showing the project tree excluding the TTCN-3 and the settings files. When
pressing Finish the selected declarations and their dependencies together with the selected non TTCN-3
files will be extracted in an archived file at the mentioned location or in a TTCN-3 project in the workspace.

Figure 5.38. Select Non TTCN-3 Files

TTCN-3 Declarations View

TTCN-3 Declarations View (Window > Show View > Other... > TTCN-3 > TTCN-3 Declarations View)
shows the source of the element selected in the TTCN-3 editor or in a TTCN-3 view.

Using TTworkbench CL Editor

58

Figure 5.39. TTCN-3 Declarations View

T3Doc View

T3Doc View (or TTCN-3 Documentation View) (Window > Show View > Other... > TTCN-3 > T3Doc
View) shows the T3Doc of the element selected in the TTCN-3 editor or in a TTCN-3 view.

Figure 5.40. T3Doc View

Preferences

CL Editor General Settings

The general CL Editor preference page provides access to the following settings:

Using TTworkbench CL Editor

59

Figure 5.41. Mark Occurrences preference

• Folding capabilty of the editor

• Mark occurences allows you to set if the CL Editor will automatically highlight references of the cur-
rently selected element (see the section called “Mark Occurrences”). If "Keep marks when the selection
changes" is set, the reference marks will still be shown if the selection has been removed, but no other
element that would cause reference highlighting was selected instead.

• Organize Imports: controls the automatic management of TTCN-3 import statements

Content Assist Preferences

The content assist function can be activated by default with CTRL+SPACE . Automatic activation and
automatic insertion of guesses can be activated here.

Using TTworkbench CL Editor

60

Figure 5.42. Content Assist preferences

Figure 5.43. Advanced Content Assist preferences

Using TTworkbench CL Editor

61

Formatter Preferences

This page (Figure 5.44, “CL Editor Formatter preference page ”) allows to configure the automatic TTCN-3
source code formatter (see also the section called “Formatting of Text”).

Figure 5.44. CL Editor Formatter preference page

Syntax Preferences

The Syntax page is used to specify the foreground and background color for different types of text frag-
ments:

• Multi-line comment

• Single-line comment

• Keyword

• Keyword modifier

• Type keyword

• TTCN-3 functions

• String operation

• Constant

• String

• Default

Using TTworkbench CL Editor

62

Figure 5.45. CL Editor Syntax preference page

Task Tags Preferences

This page (Figure 5.46, “CL Editor Task Tags preference page ”) allows to define task tags like "TODO"
to be used in comments. These tags get highlighted differently than the rest of the comment.

Using TTworkbench CL Editor

63

Figure 5.46. CL Editor Task Tags preference page

Template Preferences

This page (Figure 5.47, “CL Editor Template preference page ”) provides the selection and deselection of
code templates used by completion assistance (see also the section called “Completion Assistance”).

Using TTworkbench CL Editor

64

Figure 5.47. CL Editor Template preference page

Typing Preferences

The Typing page allows to activate several mechanisms that assist you during typing TTCN-3
code.ingprovides the following selections for typing text:

Using TTworkbench CL Editor

65

Figure 5.48. CL Editor Typing preference page

66

Chapter 6. Using TTworkbench GFT
Editor

The GFT Editor is a graphical TTCN-3 editor for user-friendly graphical test specification and documen-
tation. This feature is included within TTworkbench Professional, but not in TTworkbench Basic.

GFT Basics

Language Concepts
GFT represents graphically the behavioral aspects of TTCN-3 like the behavior of a test case or a function.
This means a GFT diagram provides a graphical presentation of either:

• the control part of a TTCN-3 module

• a TTCN-3 test case

• a TTCN-3 function

• a TTCN-3 altstep

GFT does not provide graphics for data aspects like declaration of types and templates. TTCN-3 defini-
tions and declarations without a corresponding GFT presentation may be presented in the TTCN-3 core
language. TTCN-3 core language modules can be imported into GFT Editor. The referenced identifiers
can be used afterwards for editing GFTs.

No graphical representation is available for:

• import definitions

• type definitions

• signature declarations

• template declarations

• constant declarations

• external constant declarations

• external function declarations

GFT defines no graphical representation for the structure of a TTCN-3 module, but GFT Editor provides
respective means to define groups and group hierarchies.

Mapping between GFT and TTCN-3 Core Language

GFT provides graphical means for TTCN-3 behavior definitions. The control part and each function, altstep
and test case of a TTCN-3 core language module can be mapped onto a corresponding GFT diagram and
vice versa. This means:

Using TTworkbench GFT Editor

67

• the module control part can be mapped onto a control diagram and vice versa

• a test case can be mapped onto a test case diagram and vice versa

• a function in core language can be mapped onto a function diagram and vice versa

• an altstep can be mapped onto an altstep diagram and vice versa

Figure 6.1. Relation between TTCN-3 Core Language and GFT

Note

GFT provides no graphical presentations for definitions of module parameters, types, con-
stants, signatures, templates, external constants and external functions in the module defini-
tions part. These definitions may be presented directly in core language. Each declaration,
operation and statement in the module control and each test case, altstep or function can be
mapped onto a corresponding GFT representation and vice versa. The order of declarations,
operations and statements within a module control, test case, altstep or function definition
is identical to the order of the corresponding GFT representations within the related control,
test case, altstep or function diagram.

Note

The order of GFT constructs in a GFT diagram is defined by the order of the GFT constructs
in the diagram header (declarations only) and the order of the GFT constructs along the
control instance (control diagram) or component instance (test case diagram, altstep diagram
or function diagram).

Module Structure
A TTCN-3 module has a tree structure. TTCN-3 module is structured into a module definitions part and
a module control part. The module definitions part consists of definitions and declarations that may be
structured further by means of groups.

GFT provides diagrams for all "behavioral" leaves of the module tree structure, i.e. for the module control
part, for functions, for altsteps and for test cases. GFT defines no concrete graphics for the module tree-
structure, however GFT Editor provides the module structure in form of a navigator tree.

Using TTworkbench GFT Editor

68

Figure 6.2. TTCN-3 Module Tree Structure in GFT Editor

GFT Editor UI and Workflow
Designing test cases graphically with GFT Editor, its possible to create test cases, functions, altsteps, and
module controls. When the module is complete, it can be exported in a TTCN-3 core language file, if it
should be used with a TTCN-3 compiler. For documentation purposes the diagrams can also be exported
as GIF files.

About the GFT Editor Working Environment
Opening GFT Editor for the first time displays a menu bar and button bar across the top of the screen,
a navigator tree on the left side, a drawing area in the center with tools palette on the left side of it, and
a multitabbed panel on the bottom. After opening a document, GFT Editor places the diagram windows
in the middle.

Displaying a GFT diagram

Selecting a diagram in the navigator tree, displays the respective diagram. In the diagram window, the title
bar displays the diagram name.

Using TTworkbench GFT Editor

69

Selecting a symbol in the navigator tree, that is part of a certain diagram, the respective diagram will be
displayed. In this case the respective symbol is selected in the diagram, otherwise the diagram frame itself
is selected. If the respective diagram is iconified or completely not visible it will be displayed using its
last size and location.

Displaying Core Language

Every diagram and symbol in GFT has its counterpart in the TTCN-3 core language. The corresponding
core language can be shown by selecting a diagram or symbol in the drawing area or in the navigator tree
and clicking on the TTCN-3 Core Language tab on the bottom.

Figure 6.3. Core Language Tab

Displaying and Choosing Tools

The tools palette contains tools to create, select, and edit symbols in a certain diagram. Clicking on a tool
will choose it.

Using TTworkbench GFT Editor

70

Figure 6.4. Tools Palette

Note

The symbols name will be shown by holding the pointer over the tool icon in the tools palette
until the tooltip displays.

The tools palette can be removed from the drawing area just by toggling the Drawing Tools button
in the button bar, Drawing Tools menu, or via Ctrl+D.

Editing Symbol Attributes

GFT symbols have attributes that can be edited, e.g. a name. In general GFT Editor provides the following
ways to edit symbol attributes. For detailed description on specific symbols and their attributes, please
have a look at the section called “GFT Symbols”.

GFT Attributes can be edited in two ways, directly on the symbol in the drawing area, or at the property
tab on the bottom.

... in the Drawing Area

While moving the mouse over a symbol in the drawing area gray rectangles will be displayed at the places
where attributes of the respective symbol may be edited. A tool tip will explain the meaning of that attribute.

Figure 6.5. Tool Tips on Symbol Attributes

Left-click in the gray box will pop-up a list or editor to change the respective attribute.

Using TTworkbench GFT Editor

71

Figure 6.6. List of Attributes

... in the Property Panel

Besides the direct editing of symbol attributes in the drawing area, it is also possible to edit them in the
respective property panel.

To do so, select the respective symbol in the drawing area or in the navigator tree. Left-click on the prop-
erties tab on the bottom and edit as desired.

Figure 6.7. Property Panel

Note

It is possible to add a comment to every symbol. However the comment attribute can be
edited only via the property panel.

Using TTworkbench GFT Editor

72

Using Context Menus

Context menus let you quickly access commands that are relevant to the current selection. To display a
context menu: Right-click a selected symbol in the drawing area.

Figure 6.8. Symbol's Context Menu

Showing/Hiding Optional Symbol Attributes

For a better view it is possible to show or hide optional attributes of a symbol. To do so right-click on a
symbol in the drawing area, select Show / Hide from the popup menu and toggle the respective checkbox.

Figure 6.9. Show / Hide Optional Symbol Attributes

Note

Hiding an attribute will delete the value of this attribute.

Another way to show hidden attributes is to edit them in the respective property panel.

In some cases there is a dependency between the display of two attributes.

Using TTworkbench GFT Editor

73

Go to/Import Referenced Diagram
It is possible to jump to a referenced test case, function or altstep diagram. To do so, right-click on a

reference , start symbol , execution or activation in the drawing area and select Go to
Diagram from the popup menu.

This menu item is only available, if there exists another diagram with the referenced name in the current
module, otherwise it's possible to import the referenced diagram by selecting Import Referenced Diagram
from the popup menu.

Note

After loading a saved GFT file, the corresponding TTCN-3 file has to be selected, if case of
importing a referenced diagram from the module.

Undoing and Repeating Multiple Actions
Within GFT Editor it is possible to undo and afterwards redo every action the user has done up to a number

of 20. For undo use Undo button in the button bar, Undo menu, or just hit Ctrl+Z. For redo use Redo

button in the button bar, Redo menu, or just hit Ctrl+Y.

To Do Support
GFT Editor has a built-in "To Do" support, in order to support the specification of correct GFT diagrams.
In the case a symbol is not well positioned or the attributes of a symbol are not specified properly, the
symbol gets grayed-out.

A hint with an explanation of the reason will be display at the tooltip. In addition the reason and a suggestion
for a solution will be available on the respective To Do panel on the bottom.

Figure 6.10. To Do Item Panel

Using TTworkbench GFT Editor

74

Importing Definitions
As GFT provides no graphical representations for definitions of module parameters, types, constants, sig-
natures, templates, external constants and external functions, these definitions may be imported directly
from TTCN-3 core language modules.

This is expressed as an import statement, which constitutes a permanent unidirectional relationship from
the current GFT file to the core language module. Later, when a GFT file is used to produce an executable
test suite, that relationship will also be used.

Note

This function doesn't convert a TTCN-3 core language module into a GFT module (see the
section called “Importing TTCN-3 Core Language”).

Note

GFT Editor stores only a file reference to the module, not the imported definitions itself. So
when opening a GFT file, all utilized module files must be present, because GFT Editor will
re-import their definitions.

Steps for Creating an Import Statement

In order to import definitions from a TTCN-3 module:

1. Choose Import Modules... menu, or just hit Alt+I

2. Choose one or several TTCN-3 module(s) from the file system.

Figure 6.11. Choosing Multiple TTCN-3 Module Files for Import.

Using TTworkbench GFT Editor

75

Note

GFT Editor supports importing from native core language files (*.ttcn3) as well as
importing from pre-compiled TTCN-3 modules (*.jar).

For each chosen file an import statement will be generated in the navigator panel and an overview of all
imported definitions will be shown in a window. Those imported references will now become available
for selection when drawing a diagram with GFT Editor.

3. Change properties as needed via the property panel:

• File Name:

A different file can be chosen or the current file can be re-imported after an external change.

The checkbox Remember Import Path relatively controls how the file path of the imported module is
saved in the GFT file. By default it is saved relatively to the GFT file. So references to module files
will not break as long as a GFT file is moved together with its imported modules. When imported
modules are stored in a different place than the GFT file it may be desirable to use an absolute path.

• Import Scope:

With TTCN-3 one can define precisely which definitions should be imported from a module. The
default is to import all importable definitions. See the section called “Restricting the Scope of Im-
ports” about how to import only a subset of a module's content.

Figure 6.12. Property Panel of an Import Statement

After an external change the imported TTCN-3 core language module can be re-imported (updated) via
the Reload Import from File button on the import property panel. All imports can be updated at once via
Reload all Imports menu, or just by hitting Ctrl+R.

Restricting the Scope of Imports

By default all importable definitions in a module will be imported and thus visible in GFT diagrams. To
restrict the scope of an import, choose Specific Definitions... in the property panel. The dialog Choose
Definitions from Module: will pop up, where definitions can be chosen to be imported.

Using TTworkbench GFT Editor

76

Figure 6.13. Choosing the Definitions to be Imported

This dialog is similar to the overview window of imports. It shares the same two panels: the first one shows
the definitions sorted by kind. Kinds are shown as folders, containing definitions. The second panel shows
them unsorted as they appear in the module file.

Importable kinds are Groups, Constants, Moduleparameters, Functions, Altsteps, Testcases, Signa-
tures, Types and Templates. When a Group is imported, all definitions in that group will be imported.
Definitions selected for import have a plus-sign [+] before their name. A minus-sign [-] means no-import
and containers may have a dot-sign [.], indicating that part of their content will be imported. Definitions
are shown in a no-import state by default.

To import specific definitions, select them (use Ctrl+Left-Click or Shift+Left-Click to select more than
one item) and click Import. To import all definitions of a kind, use the view Definitions Sorted by Kind.
Then select the folder of the desired kind and click Import.

Using TTworkbench GFT Editor

77

Import scope settings can be changed at any time by clicking the button Choose Definitions from Module...
or by reverting the import scope back to All .

Importing TTCN-3 Core Language
This function imports existing TTCN-3 sources into the graphical editor.

Note

GFT Editor does support importing TTCN-3 2.2.1 Core Language only, thus before import-
ing, please make sure the Core Language to be imported is TTCN-3 2.2.1 compliant.

Therefore create a new GFT module using the wizard File/New/Other ... and choose GFT Module from
the TTCN-3 group. Press Next, enter a container and a file name and press Finish. Cancel the New GFT
dialog and select Import TTCN-3 Core Language... from the File menu or just hit Alt+M.

Figure 6.14. Importing TTCN-3 Core Language in GFT Editor

Note

Just to get name editing support and store a file reference to the module, see the section called
“Importing Definitions”.

The generated GFT symbols will be automatic placed. This can take a long time and needs a lot of memory,
particularly for large test suites.

Using TTworkbench GFT Editor

78

When prompted, select the diagrams to import. It's also possible to import whole groups or even the whole
module; multiple selections are possible. If diagrams already exists, the user has to decide, either to close
the current module and to import the diagrams as a new GFT module or to insert the diagrams into the
current module.

An information window and a status bar informs about the currently generated diagram, group, import
statement and GFT symbol. A counter indicates the current and the last diagram number.

Note

If the free memory is low, an information message appears and the import stops.

Exporting TTCN-3 Core Language
The whole generated TTCN-3 core language can be seen by selecting the module control in the navigator
tree and switching to the TTCN-3 Core Language tab on the bottom. To export it in a TTCN-3 core
language file, select Export TTCN-3 Core Language... from the File menu or just hit Alt+T.

Exporting GIF
The diagrams can be exported as GIF files, e.g. for documentation purposes. Activate the window with
the diagram and select Export GIF... from the File menu or just hit Alt+G.

Opening and Saving a GFT File
A project can be saved and loaded via a GFT file. If an older version of a GFT file is loaded, it will be
converted to the current version.

Note

Upgrade of the GFT file takes effect by saving the project.

If a higher version has been detected while loading a GFT file, GFT Editor needs an update to read the file.

GFT Diagrams

Overview
GFT Editor provides the following diagram types:

• control diagram for the graphical presentation of a TTCN-3 module control part

• test case diagram for the graphical presentation of a TTCN-3 test case

• altstep diagram for the graphical presentation of a TTCN-3 altstep

• function diagram for the graphical presentation of a TTCN-3 function

Common Properties

Each GFT control, test case, altstep and function diagram has a frame symbol (also called diagram frame)
to define the diagram area. All symbols and text needed to define a complete and syntactically correct
GFT diagram shall be made inside the diagram area.

Using TTworkbench GFT Editor

79

Each GFT diagram has a diagram heading uniquely identify each GFT diagram type. The diagram heading
has to be placed in the upper left-hand corner of the diagram frame.

Sequential behavior is represented by the order of events placed upon a test component instance. The
ordering of events is taken in a top-down manner, with events placed nearest the top of the component
instance symbol being evaluated first.

Figure 6.15. Sequential Behavior

Creating a Diagram

To create a diagram choose Add GFT button in the button bar, Add GFT menu, or just hit Alt+N.

1. At the new diagram dialog box select a diagram type

Using TTworkbench GFT Editor

80

Figure 6.16. Diagram Type Selection

2. Set a name

3. Select the target group

Figure 6.17. Target Group Selection

Note

If the diagram to be created is the very first diagram, a module containing the diagram will
created automatically.

Using TTworkbench GFT Editor

81

Control Diagram

A GFT control diagram provides a graphical presentation of the control part of a TTCN-3 module. The
heading of a control diagram is the keyword module followed by the module name. A GFT control diagram
shall only include one component instance (also called control instance) with the instance name control
without any type information. The control instance describes the behavior of the TTCN-3 module control
part. Attributes associated to the TTCN-3 module control part shall be specified within a text symbol in
the control diagram. On creation the control diagram has the default name 'untitled'. Only by saving the
GFT file it is possible to change this name. Anytime there is consistency between the module name and
the control diagram name.

Figure 6.18. Control Diagram

Within the control part, test cases can be selected or deselected for the test case execution with the use of
Boolean expressions. The GFT symbols are attached to the control instance.

Test Case Diagram

A GFT test case diagram provides a graphical presentation of a TTCN-3 test case. The heading of a test
case diagram shall be the keyword testcase followed by the complete signature of the test case.

A GFT test case diagram shall include one test component instance describing the behavior of the mtc (also
called mtc instance) and one port instance for each port owned by the mtc. The type associated with the
mtc instance is optional, but if the type information is present, it shall be identical to the component type
referred to in the runs on clause of the test case signature. The names associated with the port instances
shall be identical to the port names defined in the component type definition of the mtc . The associated
type information for port instances is optional. If the type information is present, port names and port types
shall be consistent with the component type definition of the mtc . The mtc and port types are displayed
in the component or port instance head symbol.

Using TTworkbench GFT Editor

82

Figure 6.19. Test Case Diagram

A test case represents the dynamic test behavior and can create test components. A test case may contain
declarations, statements, communication and timer operations and invocation of functions or altsteps.

Function Diagram

GFT presents TTCN-3 functions by means of function diagrams. The heading of a function diagram shall
be the keyword function followed by the complete signature of the function.

A GFT function diagram shall include one test component instance describing the behavior of the function
and one port instance for each port usable by the function.

The name associated with the test component instance shall be self. The type associated with the test com-
ponent instance is optional, but if the type information is present, it shall be consistent with the component
type in the runs on clause.

Using TTworkbench GFT Editor

83

Figure 6.20. Function Diagram

A function is used to specify and structure test behavior, define default behavior or to structure computation
in a module. A function may contain declarations, statements, communication and timer operations and
invocation of function or altsteps and an optional return statement.

The return statement shall be represented by a return symbol on the respective instance. This may be
optionally associated with a return value. To do so right-click on the component instance and choose return
from the Change Instance Type popup menu.

Using TTworkbench GFT Editor

84

Figure 6.21. Add a Return Symbol to a Function Component Instance

Note

A return symbol shall only be used in a GFT function diagram. It shall only be used as last
event of a component instance or as last event of an operand in an inline expression symbol.

Altstep Diagram

GFT presents TTCN-3 altsteps by means of altstep diagrams. The heading of an altstep diagram shall be
the keyword altstep followed by the complete signature of the altstep.

A GFT altstep diagram shall include one test component instance describing the behavior of the altstep
and one port instance for each port usable by the altstep.

The name associated with the test component instance shall be self. The type associated with the test com-
ponent instance is optional, but if the type information is present, it shall be consistent with the component
type in the runs on clause.

Using TTworkbench GFT Editor

85

Figure 6.22. Altstep Diagram

An altstep is used to specify default behavior or to structure the alternatives of an alt statement. An altstep
may contain statements, communication and timer operations and invocation of function or altsteps.

GFT Symbols

Instances
GFT diagrams include the following kinds of instances:

• control instances describing the flow of control for the module control part

• test component instances describing the flow of control for the test component that executes a test case,
function or altstep

• port instances representing the ports used by the different test components

Using TTworkbench GFT Editor

86

Only one control instance shall exist within a GFT control diagram. A control instance describes the flow
of control of a module control part. A GFT control instance shall graphically be described by a component
instance symbol with the mandatory name control placed on top of the instance head symbol. No instance
type information is associated with a control instance.

Figure 6.23. Control Instance Symbol

Each GFT test case, function or altstep diagram includes one test component instance that describes the
flow of control of that instance. A GFT test component instance shall graphically be described by an
instance symbol with:

• the mandatory name mtc placed on top of the instance head symbol in the case of a test case diagram

Using TTworkbench GFT Editor

87

Figure 6.24. Test Component Instance in Test Cases

• the mandatory name self placed on top of the instance head symbol in the case of a function or altstep
diagram

Figure 6.25. Test Component Instance Symbol in Functions and Altsteps

The optional test component type may be provided within the instance head symbol. It has to be consistent
with the test component type given after the runs on keyword in the heading of the GFT diagram.

Using TTworkbench GFT Editor

88

The type of a test component instance may be changed in order to stop behavior execution or to repeat
inside an alternative or to return a function.

Figure 6.26. Changing the Type of Test Components

GFT port instances may be used within test case, altstep and function diagrams. A port instance represents
a port that is usable by the test component that executes the specified test case, altstep or function. A GFT
port instance is graphically described by a component instance symbol with a dashed instance line. The
name of the represented port is mandatory information and shall be placed on top of the instance head
symbol. The port type (optional) may be provided within the instance head symbol.

Figure 6.27. Port Instance Symbol

Actions
GFT actions may be used within all types of diagrams and may contain sequences of statements in TTCN-3
core language. The following TTCN-3 declarations, statements and operations can only be specified within
action symbols:

• log

Using TTworkbench GFT Editor

89

• connect

• disconnect

• map

• unmap

• action

• external functions

• predefined functions

• declarations, with the exception of those specified in create symbols, default symbols, reference sym-
bols, execute symbols

• assignments, with the exception of those specified in create symbols, default symbols, reference sym-
bols, execute symbols

The semicolon is optional if a GFT symbol includes only one statement in TTCN-3 core language. Semi-
colons shall separate the statements in a sequence of statements within an action symbol. The semicolon
is optional for the last statement in the sequence.

Figure 6.28. Action Symbol

Note

GFT symbols and action symbols containing TTCN-3 core language may arbitrarily be
mixed to focus on dedicated parts of a TTCN-3 specification.

Comments
GFT provide three possibilities to put comments into GFT diagrams:

• The event comment symbol can be used to associate comments to GFT symbols. It has to be attached
directly before or directly after the respective symbol on the component axis. A comment in an event
comment symbol can be provided in form of free text, i.e. the comment delimiter "/*", "*/" and "//" of
the core language need not to be used.

Using TTworkbench GFT Editor

90

Figure 6.29. Event Comment Symbol

• Comments in the syntax for comments of the TTCN-3 core language can be put into text symbols (see
the section called “Text Symbols”) and freely placed in the GFT diagram area.

Figure 6.30. Text Symbol Comment

• Comments may be added to GFT symbols in the respective property panel. A comment can be provided
in form of free text, i.e. the comment delimiter "/*", "*/" and "//" of the core language need not to be used.

Figure 6.31. Comment in Property Panel

Execute Test Cases
The execution of test cases is represented by use of the execute test case symbol. The syntax of the execute
statement is placed within that symbol. The symbol may contain:

Using TTworkbench GFT Editor

91

• an execute statement for a test case with optional parameters

• optionally, time supervision

• optionally, the assignment of the returned verdict to a verdicttype variable

• optionally, the inline declaration of the verdicttype variable

Figure 6.32. Execute Symbol

References
The invocation of functions and altsteps is represented by the reference symbol.

The syntax of the function invocation is placed within the reference symbol. The symbol may contain:

• the invocation of a function with optional parameters

• an optional assignment of the returned value to a variable

• an optional inline declaration of the variable

In case of an altstep invocation the syntax of the altstep invocation is placed within that symbol. The
symbol may contain the invocation of an altstep with optional parameters. It shall be used within alternative
behavior only, where the altstep invocation shall be one of the operands of the alternative statements.

Figure 6.33. Function Reference

Note

The reference symbol is only used for user defined functions and altsteps defined within
the current module. It shall not be used for invocation of external functions or predefined
TTCN-3 functions, which shall be represented in the TTCN-3 core language within an action
symbol (see the section called “Actions”). Furthermore it should not be used where a function
is called inside a TTCN-3 language element that has its own GFT symbol.

Note

Another possibility of altstep invocation is the implicit invocation of altsteps via activated
defaults (see the section called “Defaults”).

Labels and Goto
The label statement shall be represented with a label symbol, which is connected to a component instance.

The goto statement shall be represented with a goto symbol. It shall be placed at the end of a component
instance or at the end of an operand in an inline expression symbol.

Using TTworkbench GFT Editor

92

Figure 6.34. Label and Goto

Setting the goto symbol right-click on the respective component instance and change the instance type
to goto.

Figure 6.35. Setting the Goto Type

Inline Expressions
GFT inline expression symbols may be used for TTCN-3

• if-else

• for

• while

• do-while

• alt

• interleave

• call

Using TTworkbench GFT Editor

93

To change the type, left-click on the inline expression label and choose the desired one.

Figure 6.36. Type Change of an Inline Expression

For alt, interleave, if-else, and call it is also possible to change the number of operands, alternatives, etc.
To do so right-click on the inline expression label and set the desired number.

Figure 6.37. Change the Number of Alternatives

If-Else Statements

The if-else statement shall be represented by an inline expression symbol labeled with the if keyword and
a boolean expression. The if-else inline expression symbol may contain one or two operands, separated
by a dashed line.

Using TTworkbench GFT Editor

94

Figure 6.38. If

Figure 6.39. If-Else

For Statements

The for statement shall be represented by an inline expression symbol labeled with a for definition. The
for body shall be represented as the operand of the for inline expression symbol.

Figure 6.40. For

While Statements

The while statement shall be represented by an inline expression symbol labeled with a while definition.
The while body shall be represented as the operand of the while inline expression symbol.

Using TTworkbench GFT Editor

95

Figure 6.41. While

Do-While Statements

The do-while statement shall be represented by an inline expression symbol labeled with a do-while def-
inition. The do-while body shall be represented as the operand of the do-while inline expression symbol.

Figure 6.42. Do-While

Alt Statements

Alternative behavior shall be represented using inline expression symbol with the alt keyword placed in
the top left hand corner. Each operand of the alternative behavior shall be separated using a dashed line.
Operands are evaluated top-down.

Using TTworkbench GFT Editor

96

Figure 6.43. Alt

In addition, it is possible to call an altstep as the only event within an alternative operand.

Figure 6.44. Alt With Altstep Invocation

It is possible to disable/enable an alternative operand by means of a boolean expression contained within
a condition symbol placed upon the test component instance.

Using TTworkbench GFT Editor

97

Figure 6.45. Selecting/Deselecting an Alt

The else branch shall be denoted using a condition symbol placed upon the test component instance axis
labeled with the else keyword.

Using TTworkbench GFT Editor

98

Figure 6.46. Alt With Else Branch

To represent a stop, return, repeat or goto statement inside an inline expression, right-click on the com-
ponent instance axis short above a dashed separator line or above the bottom of the inline expression,
select Change Operation in Alternative from the popup menu and select stopped, return, repeat or goto;
to switch back, select unstopped.

Using TTworkbench GFT Editor

99

Figure 6.47. Change Operation in Alternative

Note

A return statement is only possible in a GFT function diagram.

A return statement may be optionally associated with a return value. To specify a return value or a goto
label, left-click on the text field of this symbol and enter the value.

Using TTworkbench GFT Editor

100

Figure 6.48. Associate a Return Statement with a Return Value

A stop execution operation shall be represented by a stop symbol, which is attached to the test component
instance, which performs the stop execution operation. It shall only be used as last event of a component
instance or as last event of an operand in an inline expression.

Using TTworkbench GFT Editor

101

Figure 6.49. Stop Execution Operation

Interleave Statements

Interleave behavior shall be represented using an inline expression symbol with the interleave keyword
placed in the top left hand corner. Each operand shall be separated using a dashed line. Operands are
evaluated in a top-down order.

Using TTworkbench GFT Editor

102

Figure 6.50. Interleave

Call Statements

Blocking call behavior shall be represented using an inline expression symbol with the call keyword placed
in the top left hand corner. Each alternative shall be separated using a dashed line. On every dashed line
a suspension region symbol should be attached to the component instance.

Figure 6.51. Call

Using TTworkbench GFT Editor

103

Defaults
GFT provides graphical representation for the activation and deactivation of defaults.

The activation of defaults shall be represented by the placement of the activate statement within a default
symbol. As default behavior an altstep shall be referenced.

The return value of the default activation may be saved for subsequent deactivation. Variables of type
default can either be declared directly within a default symbol as part of an activate statement or outside,
i.e. in an imported module or in an action symbol.

Figure 6.52. Activate

The deactivation of defaults shall be represented by the placement of the deactivate statement within a
default symbol. If no operands are given to the deactivate statement then all defaults are deactivated,
otherwise only the referenced default will deactivated.

Figure 6.53. Deactivate

Creates
The create operation shall be represented within the create symbol, which is attached to the test component
instance which performs the create operation. The create symbol contains the create statement.

The return value of the create operation may be saved for subsequent use, e.g. starting the component
behavior. Variables of the respective component type can either be declared directly within a create symbol
as part of a create statement or outside, i.e. in an imported module or in an action symbol.

Figure 6.54. Create

Using TTworkbench GFT Editor

104

Start Components

The start test component operation shall be represented within the start symbol, which is attached to the
test component instance that performs the start operation. The start symbol contains the start statement.
As behavior a TTCN-3 function has to be referenced.

Figure 6.55. Start

Conditions

The GFT condition symbol may be used for TTCN-3

• guarding boolean expressions (for alt and call inline expressions)

• verdict setting

• port operations (start, stop and clear)

• done statement

To change the type of condition, right-click the condition symbol and choose a condition type from the
Modify popup menu.

Figure 6.56. Modify the Condition Type

Guarding Boolean Expression Statements

It is possible to disable/enable an alternative operands by means of a boolean expression contained within
a condition symbol placed upon the test component instance.

Using TTworkbench GFT Editor

105

Figure 6.57. Disable/Enable an Alternative

A special usage of guarding boolean expressions is the else branch of an alternative. It shall be denoted
using a condition symbol placed upon the test component instance axis labeled with the else keyword.

Figure 6.58. Else Branch of an Alternative

Verdict Setting Statements

The verdict set operation setverdict is represented in GFT with a condition symbol within which

• the values pass, fail, inconc or none are denoted.

• a TTCN-3 core language setverdict statement is denoted.

Using TTworkbench GFT Editor

106

To choose one of the verdict to be set, left-click the verdict editing area of the verdict condition symbol
(gray rectangle), and choose one of pass, fail , inconc, or none from the popup menu.

Figure 6.59. Popup Menu for Verdict Setting

To set a verdict based on a TTCN-3 single expression

1. Left-click the verdict editing area of the verdict condition symbol (gray rectangle)

2. Select Edit Name from the popup menu

3. Specify a single expression that results to a valid TTCN-3 verdict

4. Type Enter to complete your input

Using TTworkbench GFT Editor

107

Port Operation Statements

The port operation statements are represented in GFT with a condition symbol within which the following
values are denoted:

• start

The start port operation shall be represented by a condition symbol with the keyword start . It is attached
to the test component instance, which performs the start port operation, and to the port that is started.

• stop

The stop port operation shall be represented by a condition symbol with the keyword stop . It is attached
to the test component instance, which performs the stop port operation, and to the port that is stopped.

• clear

The clear port operation shall be represented by a condition symbol with the keyword clear . It is
attached to the test component instance, which performs the clear port operation, and to the port that
is cleared.

To choose one of the port operations to be set, left-click the port operation editing area of the port operation
condition symbol (gray rectangle), and choose one of start, stop , or clear from the popup menu.

Figure 6.60. Popup Menu for Port Operation Setting

To change the involvement of a port into a port operation perform the following steps:

1. Right-click the port operation condition symbol and select Change Port Involvements from the popup
menu

Using TTworkbench GFT Editor

108

2. Select which ports should involved in the port operation

3. The dashed port instance axis indicates which ports are not involved in this port operation

Note

The all keyword for ports together with the clear, start and stop operation is represented
by attaching the condition symbol containing the clear, start or stop operation to all port in-

Using TTworkbench GFT Editor

109

stances represented in the GFT diagram for a testcase, function or altstep, if all port instances
of the corresponding component type declaration are drawn.

Done Statements

The done operation shall be represented within a condition symbol, which is attached to the test compo-
nent instance, which performs the done operation. The condition symbol contains the done statement ref-
erencing the component whose termination is awaited.

Figure 6.61. Done

Note

The any and all keywords can be used for the running and done operations but from the
MTC instance only. They have no graphical representation, but are textually denoted at the
places of their use, i.e. in GFT action symbols.

Messages

Generally GFT messages are used to specify all kinds of communication operations. Communication op-
erations are structured into two groups:

• Sending operations

a test component sends a message (send operation), calls a procedure (call operation), replies to an
accepted call (reply operation) or raises an exception (raise operation)

• Receiving operations

a component receives a message (receive operation), accepts a procedure call (getcall operation), re-
ceives a reply for a previously called procedure (getreply operation) or catches an exception (catch op-
eration)

The direction of a message symbol can be changed by dragging the arrowhead of the message symbol and
drag it in the opposite direction.

Using TTworkbench GFT Editor

110

1.

2.

3.

4.

It is also possible to change the direction of a message symbol via popup menu. To do so:

1. Right-click the message symbol

2. Select Modify followed by Change Direction from the popup menu

Using TTworkbench GFT Editor

111

Message-based Communication

• The send operation shall be represented by an outgoing message symbol from the test component to
the port instance. The optional type information shall be placed above the message arrow. The (inline)
template shall be placed underneath the message arrow.

Figure 6.62. Send Operation

• The receive operation shall be represented by an incoming message arrow from the port instance to the
test component. The optional type information shall be placed above the message arrow. The (inline)
template shall be placed underneath the message arrow.

Using TTworkbench GFT Editor

112

Figure 6.63. Receive Operation

The receive any message operation shall be represented by an incoming message arrow from the port
instance to the test component without any further information attached to it.

Figure 6.64. Receive Any Message Operation

The receive on any port operation shall be represented by a found message symbol representing any
port to the test component

Figure 6.65. Receive on Any Port

Using TTworkbench GFT Editor

113

To change the message symbol to found message symbol:

1. Right-click the message symbol

2. Select Modify from the popup menu

3. Check Found Message

• The trigger operation shall be represented by an incoming message arrow from the port instance to the
test component and the keyword trigger above the message arrow preceding the type information if
present. The optional type information is placed above the message arrow subsequent to the keyword
trigger. The (inline) template is placed underneath the message arrow.

For switching to a trigger operation, right-click the message symbol, select Modify from the popup
menu and check Trigger.

Note

The message has to be in message-based communication mode for a trigger operation.

Procedure-based Communication

To toggle between message-based and procedure-based communication:

Using TTworkbench GFT Editor

114

1. Right-click the message symbol

2. Select Communication followed by Message-based or Procedure-based from the popup menu.

The following port operations are possible, depending on the situation:

• call

• reply

• raise

To change the port operation left-click on the message port operation label and choose the desired one.

• getcall

• getreply

• catch

Note

It is possible to show or hide the optional matching value, address expression, value, param-
eter and sender assignment. To do so right-click on the message, select Show / Hide from

Using TTworkbench GFT Editor

115

the popup menu and toggle the respective checkbox (see the section called “Showing/Hiding
Optional Symbol Attributes”).

Check Operation

The check operation shall be represented by an incoming message arrow from the port instance to the
test component. The keyword check shall be placed above the message arrow. The attachment of the
information related to the receive, getcall, getreply and catch follows the check keyword and is according
to the rules for representing those operations.

For switching to a check operation, right-click the message symbol, select Modify from the popup menu
and select Check.

Timers
In GFT, there are two different timer symbols: one for identified timers and one for call timers (implicit
timers). They differ in appearance as solid line timer symbols are used for identified timers and dashed
timer symbols for call timers. An identified timer shall have its name attached to its symbol.

To change the timer symbol type:

1. Right-click the timer symbol

2. Select Change Part from the popup menu

3. Select one of the timer symbol types

Using TTworkbench GFT Editor

116

For combinations of start timer operation with stop/timeout timer operation the connected timer symbol
can also be used. There the start operation and the stop/timeout operation is connected with a vertical line.

Figure 6.66. Connected Start Timer Stop/Timeout Timer Operation

Note

Additional timer symbols for the same timer may be added via:

1. Right-click the timer symbol

2. Select Add New Part from the popup menu

3. Select one of the timer symbol types

Using TTworkbench GFT Editor

117

4. Left-click to add the timer symbol

Start Timer Operation

For the start timer operation, the start timer symbol shall be attached to the component instance. A timer
name and an optional duration value (within parentheses) may be associated.

Using TTworkbench GFT Editor

118

Figure 6.67. Start Timer Operation

Stop Timer Operation

For the stop timer operation, the stop timer symbol shall be attached to the component instance. An optional
timer name may be associated.

Figure 6.68. Stop Timer Operation

The stop timer operation can be applied to all timers, if the timer name is omitted

Timeout Timer Operation

For the timeout operation, the timeout symbol shall be attached to the component instance. An optional
timer name may be associated.

Figure 6.69. Timeout Timer Operation

The timeout operation can be applied to any timer, if the timer name is omitted.

Text Symbols
The attributes defined for the module control part, testcases, functions and altsteps are represented within
the text symbol. The syntax of the with statement is placed within that symbol.

Using TTworkbench GFT Editor

119

1. Left-click the upper text field of the text symbol

2. Select one of the attributes from the popup menu

3. Specify the attribute

If an attribute is selected, autosize and autowrap can be enabled. To do so right-click the text symbol,
select Size Options from the popup menu and toggle the respective checkboxes.

Note

Text symbols may also be used to specify comments (see the section called “Comments”).

GFT Example
This chapter will give an example (restaurant example) on how to use GFT Editor. It will guide the user to
create graphically a complete test suite on the basis of GFT (Graphical Presentation Format for TTCN-3).

Using TTworkbench GFT Editor

120

Control Diagram

First of all a control diagram is needed. A control diagram provides a graphical presentation of the
control part of a TTCN-3 module. Therefore the new TTCN-3 Module wizard can be used, which is ac-
cessible over File > New > Other > TTCN-3 > GFT Module. Press Next, enter a container and a file
name and press Finish .

Choose control from the diagram dialog box and press Ok.

Note

The module name will be given later on by saving the project.

A control diagram cannot be placed inside a group.

Figure 6.70. Control

A new module containing a control diagram was created.

To save the project, press the Save button in the button bar, Save menu, or just hit Ctrl+S. When
asked for the file name, type in "PizzaHutTest" and save. The module name and the control diagram name
changes to "PizzaHutTest". Maximize the internal frame of the control diagram.

To describe the behavior of the TTCN-3 module control part, a control instance is needed. Click on the

Instance button in the tools palette to choose a control instance. For placing it, left-click in the control
diagram.

Note

Only one control instance shall exist within a GFT control diagram. A control instance de-
scribes the flow of control of a module control part. A GFT control instance shall graphically
be described by a component instance symbol with the mandatory name control placed on
top of the instance head symbol. This name cannot be changed. No instance type information
is associated with a control instance.

Using TTworkbench GFT Editor

121

Figure 6.71. Control Instance

We now declare a variable overallVerdict of type verdicttype with initialization, that represents the overall
result of the test suite. The type verdicttype is a TTCN-3 specific predefined basic type, that can have
five possible values: pass, fail, inconc, none and error. This declaration shall be made within an action

symbol. Select an action symbol from the tools palette and attach it to the control instance. Left-click
in the action symbol and enter the following declaration: "var verdicttype overallVerdict := pass;". To
center the action symbol, left-click on it and drag it.

Figure 6.72. Declaration

Now we call functions with a return value. These functions are invoked inside an if inline expression.

Select an inline expression symbol from the tools palette and attach it to the control instance below
the action symbol. To change the type, left-click on the inline expression label and choose if. Left-click on
the expression field (between the parenthesis) and enter: "capabilityTesting and overallVerdict := pass".

It's possible to add a comment for each symbol. Select the if inline expression and enter the following
comment for this block: "Basic Capability Tests".

We now create an invocation of a function, which is represented by a reference symbol. Select a reference

symbol from the tools palette and attach it to the control instance inside the if inline expression

Using TTworkbench GFT Editor

122

symbol. Change the function name (default is "untitled") by left-clicking on this text field. Select Edit
Name and enter "basicCapabilityTests". To assign the return value, right-click on the reference symbol,
select Show / Hide from the popup menu and select the Variable checkbox. In the new text field for the
variable (left-most), enter "overallVerdict". Enlarge the inline expression symbol and center the reference.
In the same way create the remaining inline expressions and references like shown below.

Figure 6.73. Complete Control Diagram

Note

If a symbol is selected, it can be enlarged by dragging on the four handles (here useful for
the frame of the control diagram, the control instance and the inline expressions).

Invoking Functions
In the control diagram four invoking functions can be found: basicCapabilityTests(), serviceInterwork-
ingTests(), loadTests() and qualityAssuranceTests(). To create one of these functions, choose the Add GFT

Using TTworkbench GFT Editor

123

button in the button bar, Add GFT menu, or just hit Alt+N. Choose function from the diagram dialog
box, enter the function name: "basicCapabilityTests" and press Ok. Maximize the internal frame. In the
properties below the editor panel, a return type for the function can be specified: "verdicttype".

Note

The function has to be selected to show the respective properties; left-click on the frame of
the function.

Figure 6.74. Property Panel of a Function

To create the test component, click on the Instance button in the tools palette and place the instance
in the function diagram.

Note

The name associated with the test component instance shall be self. It is placed on the top of
the instance head symbol automatically and cannot be changed.

Now we declare a variable localVerdict of type verdicttype with initialization, that represents the returned

verdict. Therefore choose an action symbol from the tools palette, place it over the control instance
and enter the declarations:

var verdicttype localVerdict := pass;

var integer nrP := 0, nrF := 0, nrI := 0;

Note

A sequence of declarations, statements and operations can be specified in a single action
symbol. It is not necessary to use a separate action symbol for each declaration, statement
or operation.

Now right-click on the instance to change the instance type and select return. At the bottom of the instance
symbol, the return statement can be entered: "localVerdict".

Using TTworkbench GFT Editor

124

Figure 6.75. Return Statement of an Instance

The execution of test cases is represented by use of the execute test case symbol . Select an execution
in the tools palette and attach it to the component instance below the action symbol. The name of the
test case to execute is "MyTestCase", so replace the initial name "untitled" for the test case reference
by "MyTestCase": left-click on the respective text field of the execution symbol or enter the test case
reference in the property panel on the bottom. To specify optional parameters, right-click on the execution
symbol, select Show / Hide from the popup menu and select the Parameter checkbox. Enter the parameter:
"true, false, false, 1, 1, nrP, nrF, nrI" in the originated text field (between the parenthesis). It's possible
to specify the parameter as well as all other attributes at the property tab on the bottom too. To specify a
time supervision, edit the text field Guarding Timer Value in the properties tab; enter "1800.0". To assign
the returned verdict to our verdicttype variable, enter "localVerdict" in the Variable Declaration of the
property panel. Finally we want to enter a comment to point up the content. Enter "INTERNET ORDER"
in the comment field of the respective property tab.

If the executed test case has passed so far, we want to execute another test case. An if statement is repre-

sented by an inline expression symbol labeled with the if keyword and a Boolean expression. Select

an inline expression from the tools palette and attach it to the component instance below the execu-
tion symbol. Change the label to if by left-clicking on the name and selecting if from the context menu.
Now left-click in the expression text field (between the parenthesis) and enter the Boolean expression
"localVerdict == pass". Again we want to enter a comment here. Enter "PHONE ORDER" in the comment
field of the property tab of the inline expression. Enlarge the inline expression by using the four handles.
Now it's useful to copy the adapted expression symbol from above: right-click the expression symbol and
select Copy or just hit Ctrl+C, if the expression symbol is selected. To paste the symbol, hit Ctrl+V.
Attach the expression symbol to the component instance inside the inline expression symbol. Change the
parameter to "false, true, false, 1, 1, nrP, nrF, nrI" by left-clicking on the parameter field.

Continue with the third execution similar as described above.

Using TTworkbench GFT Editor

125

Figure 6.76. Function basicCapabilityTests

Go ahead with the other three invoking functions loadTests(), serviceInterworkingTests() and qualityAs-
suranceTests(). They are very similar to the described invoking function. All invoking functions can be
seen in the provided example.

Main Test Case

A GFT test case diagram provides a graphical presentation of a TTCN-3 test case. For creating a test case

 , press the Add GFT button in the button bar, Add GFT menu, or just hit Alt+N. The diagram type
testcase is already chosen, so we only have to specify the name: "MyTestCase" and press Ok. Maximize

Using TTworkbench GFT Editor

126

the internal frame. Left-click on the parameter field of the test case (between the parenthesis) in the editor
pane. Specify the parameter: "in boolean internetService, ..., inout integer nrInc". The component type can
be entered in the left-most text field (after runs on); enter "MtcType". The last text field indicates the
system type; enter "TestSystemType".

A GFT test case diagram shall include one test component instance describing the behavior of the mtc (also
called mtc instance) and one port instance for each port owned my the mtc. For creating a test component

instance, left-click on the Instance button in the tools palette and place the instance in the test case
diagram.

Note

The name associated with the mtc instance shall be mtc. It is placed on the top of the instance
head symbol automatically and cannot be changed.

The optional test component type can be entered within the instance head symbol: "MtcType". It is already
specified, if the component type was given in the test case diagram.

Note

Anytime there is consistency between the test component type after the runs on keyword in
the heading of the GFT diagram and the component type of the test component instance.

Test component instances describes the flow of control for the test component that executes a test case,
function or altstep. Port instances represents the ports used by the different test components. Here we have

two ports. Left-click on the Port Instance button in the tools palette and place a port instance in the
test case diagram to the right of the component instance. A port instance has a dashed instance line. Enter
the port name "P1" on top of the port instance head symbol. Enter the optional port type "mPCOtype"
within the port instance head symbol.

In the same way create another port instance to the right of the other instances with the port name "CP"
and the port type "mCPtype". Enlarge the test case diagram if necessary by selecting it and dragging on
the four handles.

Figure 6.77. Test Component Instance and Port Instances

Now we declare a variable without initialization. Select an action symbol from the tools palette and
attach it to the component instance; enter "var ReportType report;".

Variables of type default can either be declared within an action symbol or within a default symbol as

part of an activate statement. For the activation of a default, left-click on the Default symbol in the
tools palette and attach it to the component instance. Enter the altstep reference "StandardDefault" and

Using TTworkbench GFT Editor

127

the variable reference "def" in the property panel of the activation below the editor panel. Here also the
default variable declaration can be set to default by selecting the default toggle button.

Figure 6.78. Property Panel of an Activation

Note

The ports of a test component can be connected to other components or to the ports of the
test system interface. In the case of connections between two test components the connect
operation shall be used. When connecting a test component to a test system interface the
map operation shall be used. The connect and map operations shall be represented within
an action box symbol.

Left-click on the Action button in the tools palette, attach it to the component instance and enter the
map statement "map(self:P1, system:mPCO)".

An if statement is represented by an inline expression symbol labeled with the if keyword and a

boolean expression. Select an inline expression and attach it to the component instance beneath the
action symbol. Enlarge the inline expression to attach it also to all port instances. Change the name by
left-clicking on the name field of the symbol placed in the top left hand corner and selecting if from
the popup menu. Enter the boolean expression "internetService" for the expression; internetService is a
boolean variable.

Inside the inline expression we reference to another function; select a reference , place it inside
the inline expression and enter the function name "newInternetPTC".

It is possible to create nested inline expressions. Add an if inline expression with the boolean expres-
sion "totalNrCreatedPTCs != createdPTCs and phoneService" as described above. Place a second if inline

expression with the expression "maxNrActivePTCs == 1" inside the first one.

The done operation shall be represented within a condition symbol , which is attached to the test
component instance, which performs the done operation. The any and all keywords can be used for the

running and done operations but from the MTC instance only. Left-click on the Condition button in
the tools palette and place the condition inside the inline expressions. Right-click the condition symbol,
select Modify from the popup menu and select done statement. Now enter the done statement "all compo-

Using TTworkbench GFT Editor

128

nent". Inside the first but below the second inline expression a further reference will be added with the
function/altstep name "newPhonePTC".

Figure 6.79. Nested Inline Expressions

We now use a while statement. A while loop is executed as long as the loop condition holds. Choose again

an inline expression and attach it to the component instance and all port instances beneath the if inline
expressions. Left-click on the name field placed in the top left hand corner and select while from the popup
menu. Enter the boolean expression "totalNrCreatedPTCs != createdPTCs".

To represent alternative behavior, select a new inline expression and place it inside the while inline
expression; alt is the default selection.

To receive a value from an incoming message port queue, a receive message is needed. Left-click on the

message icon in the tools palette and place it in the testcase diagram. Right-click on the message
symbol, select Modify from the popup menu and select Change Direction. Attach the receive side of the
message to the component instance inside the alt inline expression by dragging the message. Now attach
the send side to the port instance "CP" by enlarging the message via the handles. To specify the matching
type, enter "ReportType" in the type field above. The template is "?". The value of the received message
shall be assigned to a variable, so right-click on the message, select Show/Hide from the popup menu,
select Value Assignment and enter "report" in the new value assignment field or just enter "report" in the
value assignment field of the property panel.

Figure 6.80. Message Value Assignment

The verdict set operation setverdict is represented in GFT with a condition symbol . Select a condition

 from the tools palette and attach it to the component instance beneath the message. The verdict setting
mode is the default. Left-click in the condition symbol and edit the name: "report.lverdict".

Using TTworkbench GFT Editor

129

Sequences of statements in TTCN-3 core language can be entered in action symbols .

Figure 6.81. Actions

The following if inline expressions, conditions and references can be created as described above.

Figure 6.82. If Inline Expressions

To realize the else branch, left-click the condition symbol from the tools palette, place it upon the
test component instance axis below the dashed separator line, right-click on the condition symbol, select
Modify from the popup menu, select guarding boolean expression, left-click on the condition symbol and
select the else keyword from the popup menu.

Note

An else branch has to be the last branch in an alt statement.

Beneath the inline expressions, we create again a done operation within a condition symbol. A stop exe-
cution operation is represented by a stop symbol. Right-click on the component instance symbol, select
Change Instance Type and select stopped.

Using TTworkbench GFT Editor

130

Figure 6.83. Add a Stop Symbol to a Component Instance

Functions and Altsteps
Functions are used to express test behavior, to organize test execution or to structure computation in a

module. To create the function newInternetPTC(), add a new function diagram and enter the compo-

nent type "MtcType". Create a component instance (identifier and type will be given automatically)

and again the port instances "P1" and "CP" . Right-click on the component instance and change the
type to return.

The MTC is the only test component which is automatically created when a test case starts. All other
test components (the PTCs) shall be created explicitly during test execution by create operations. Add a

creation , enter the variable "newPTC" and the component type "InternetType". Right-click on the
creation symbol, select Show/Hide from the popup menu and show the Fixed Variable Declaration; enter
"InternetType".

How to create actions can be seen above.

Once a PTC has been created and connected behavior has to be bound to this PTC and the execution of its
behavior has to be started. This is done by using the start operation (PTC creation does not start execution

of the component behavior). Create a start symbol , enter the component identifier "newPTC" and
the function "internetUser".

Add the function "aGuest" with the parameter "in float eatingDur" and the component type "Guest-

Type". Create a component instance and the port instances "P1" with type "gPCOtype" and "CP"

with type "pCPtype". Set the component instance type to stopped. Declare a "timer T1" in an action .

Now we add an activation symbol with a default variable declaration, a variable reference "def" and
an altstep reference "GuestDefault".

To start a component timer, select a timer part from the tools palette and place it upon the test com-
ponent instance axis. To change the direction, right-click on the timer symbol, select Modify from the
popup menu and select Change Direction. Enter the timer name "Tvisit". Start another timer "T1" with
the timer value "waitPizzaDur".

Using TTworkbench GFT Editor

131

To send a message, left-click on a message symbol and place it between the component instance
and the port instance "P1". Enter the template "standardPizzaOrder". To receive a message, place another
message beneath. Change the direction and enter the type "PizzaType" and the template "?".

Now we want to stop the timer "T1". Right-click on the timer "T1", select Add new part and select stop.
Change the direction and attach it to the component instance.

Note

When changing the timer name, the names of all parts of it (start, stop, timeout) changes too.

Create a condition symbol with the verdict setting "pass". The other symbols can be created accord-
ingly.

To create the first message in the function "newGuest", select the message symbol from the tools
palette, place it between the component instance and the port instance "P1" and change the direction. Enter
the type "SeatAssignmentType", the template "?" and the value assignment "aSeat".

To create a verdict setting "inconc", select a condition symbol from the tools palette and attach it
to the component instance. Now left-click on the text field of the condition symbol and select the verdict
setting inconc. How to create the other symbols is described above.

Procedure-based communication can be found in the function "internetUser". Now the blocking call

operation will be described. Select an inline expression symbol from the tools palette and attach it
to the component instance and all port instances "P1", CP" and "P2". Change the name from alt to call
by left-clicking on the text field of the inline expression. Enlarge the inline expression and right-click on

it, to change the number of alternatives; enter "4". Now attach suspension region symbols on each

separator line (see figure below). To send a call message, select a message symbol from the tools
palette and attach it to the top right corner of the topmost suspension region symbol and to the port instance
"P2". Select Procedure-based communication in the property panel. The port operation switches to call.
Enter the template "StandardINetOrder".

The call operation has a timeout, represented by an implicit timer. Create a timer part symbol and
change the direction. Right-click on the timer, select Change part from the popup menu and select start
implicit. Attach it to the top left corner of the topmost suspension region symbol and enter timer value
"maxConnectTime".

To receive a getreply message, create a message symbol , switch to Procedure-based communication,
change the direction and attach it to the down right corner of the suspension region and the port instance
"P2". Select the port operation getreply and enter the type "iNetOrder". Enter the template "?", the match-
ing value "?" and the value assignment "ornerNr" in the property panel.

To create a verdict setting, select a condition symbol and change the verdict setting to pass, fail,
inconc or none.

Using TTworkbench GFT Editor

132

To create a catch message, choose a new message symbol , switch to Procedure-based communication,
change the direction and attach it to the down right corner of the suspension region and the port instance
"P2". Select the port operation catch and enter the type "iNetOrder, ReasonType" and the template "?".

To add the timeout timer, right-click on the implicit start timer, select Add new part from the popup menu
and select timeout implicit. Left-click on the diagram, change the direction and attach it to the down left
corner of the undermost suspension region.

Figure 6.84. Procedure-based Communication

The generation of the other symbols in this diagram is described before.

To create an altstep , add a new diagram, select altstep and enter the name "GuestDefault". Enter the
component type "GuestType". Create a component instance, a port instance "P1" with the type "gPCOtype"

and another port instance "CP" with the type "pCPtype". Create an alt inline expression . Enlarge the
inline expression symbol and right-click on it to change the number of alternatives to "3".

Select a message , change the direction and attach it to the component instance and the port instance
"P1". Enter the type "charstring" and the template "?". Now select again a message, attach it to both
instances and enter the template "standardConversation". A repeat statement causes the re-evaluation of
an alt statement. Right-click on the component instance axis short above the first dashed separator line,
select Change Operation in Alternative from the popup menu and select repeat.

To create a timeout, select a timer part , change the direction and attach it to the component instance.

Note

If no timer name is declared, it will be checked for the timeout of any previously started
timer. The generated TTCN-3 core language is "anytimer.timeout".

Using TTworkbench GFT Editor

133

To create a verdict setting fail or inconc, select a new condition symbol and change the verdict

setting by left-clicking in the verdict setting text field. To receive a message on any port, create a new
message symbol, change the direction, right-click on the message, select Modify from the popup menu
and select Found Message. Attach the message to the component instance.

Figure 6.85. Altstep

The altstep diagrams "StandardDefault" and "InternetDefault" can be edited in a similar manner.

Save TTCN-3 and GIF
To export the whole generated TTCN-3 core language, select Export TTCN-3 Core Language... from the
File menu or just hit Alt+T.

To export a diagram as a GIF file (e.g. for documentation purposes), activate the window with the desired
diagram and select Export GIF... from the File menu or just hit Ctrl+G.

134

Chapter 7. Using TTworkbench TTthree
TTthree provides the generation of Java sources from test suite specifications based on the TTCN-3 Code
Language, as well as the compilation of Java sources into byte code class files and their packaging into
a single JAR archive file.

As shown in Figure 7.1, “TTworkbench TTthree”, TTthree is integrated in the editing environment of CL
Editor. It makes use of the Problems view to report errors and warnings found during the compilation.
The progress information is presented as messages of different verbosity levels to the Console view. Two

actions, namely Compile and Rebuild , are added to the menus and tool bar of the editing envi-
ronment. TTthree provides also a preference category for the parameterization of the compilation process,
such as the verbosity level, the Java compiler, or the generation of a default campaign.

Figure 7.1. TTworkbench TTthree

Language Features
 TTthree supports all language features of TTCN-3. It is full TTCN-3 3.4.1 compliant, as defined by ETSI
in ES 201 873-1, except of the features listed below. The TTthree runtime environment is compliant to
the TTCN-3 Runtime Interface specification as defined by ETSI in ES 201 873-5 and TTCN-3 Control
Interface specification as defined by ETSI in ES 201 873-6.

TTthree provides the following functions:

• Full support for TTCN-3 ETSI standard 3.4.1

Using TTworkbench TTthree

135

• Execution from editing environment

• Redirection of error reports

• Preference page

Known Limitations
• Template variables Template variables are supported with restrictions. The possibilities of referencing

templates or template fields are different from those explained in section 14.3.1. The assignment or
referencing of parts of templates which are located inside of actual matching mechanisms will in most
cases cause an error at runtime, even if explicitly allowed by the standard. But, it is possible to assign
templates and values to (parts of) template variables, as long as the place of assignment is not contained
inside a matching mechanism.

• Permutation inside values It is not allowed to use the permutation matching mechanism like AnyVal-
ueOrOmit (*) inside of values, as explained in section 14.3.0.

• Meta characters in character patterns The following character pattern matching mechanisms de-
scribed in section B.5.1.0 are not implemented:

• \N{reference} - the same can be achieved by using {reference} with the appropriate one-character
template.

• \s - the same can be achieved by using or referencing the character set containing the white space
characters.

• \b

• + - the same can be achieved with #(1,)

Pattern reference expression This is implemented differently from the behavior described in B.5.1.2.
Whenever a charstring or charstring template is referenced via '{reference}', it is treated as a pattern
only if it was defined using the keyword 'pattern' or as a character dictionary. Otherwise, the referenced
string is treated literally, i.e. all meta-characters lose their special meaning.

• The regexp function Differently from the behavior described in C.17, the regexp function takes as its
second argument a charstring template, not necessarily a charstring value.

• If a charstring value is passed as second argument, all charstring pattern special characters are not
interpreted as such, but as if they would appear escaped with a backslash in a charstring pattern.

• If a charstring pattern template is passed, then the pattern is used for regexp-matching.

• If another kind of charstring template is passed, then regexp returns the whole input string (the first
argument to regexp) if the template matches and the group number 0 is passed as third argument to
regexp, otherwise, the empty string is returned.

• TLI log events Following TLI log events are currently not supported: tliPrCatchTimeout() ,
tliPrCatchTimeoutDetected() , tliTcExecute() . These events will not be generated
and therefore will not be present inside the log file.

Checked Non-Standard Language Extensions
The following language extensions can be treated as an error or warning via the --strict-standard-compli-
ance option. This option can be set directly on the command line when the command-line version is used
or on the TTCN-3 Edition preference page for the GUI.

Using TTworkbench TTthree

136

• Identifiers starting with _ Identifiers are allowed to start with the underscore character _.

• Inline Templates The inline template construct is allowed to be used anywhere where a value expression
is allowed. Since the compiler checks for every inline template, if its predicate part is definitely a value
expression, this does not change the semantics, as T:V is seen to be equal to V.

• Local Declarations after Statements In statement blocks, it is allowed to introduce new declarations
after non-declaration statements. It is not necessary to put all declarations at the beginning of the state-
ment block.

• Allow Templates as Type Constraint In a subtype specification list, it is allowed also to use matching
mechanisms to describe the subtype, instead of only constant expressions. This way, it is possible to
describe infinite subtypes of structured types.

• Escape Syntax for Special Characters in Strings In charstring literals, it is possible to use the back-
slash escape syntax for the special control characters newline (\n), carriage return (\r), and tabulator (\t).
It is also possible to use the sequence \" for escaping the quoting symbol. The special character \ must
also be quoted by writing \\.

• Multiple Free Text Lines Free text can be split into several lines which are written as consecutive free
text literals.

• Non-Constant Expressions In the declaration of const values and also in list, subset, superset, com-
plement and length constraints, allow also non-constant value expressions (which means expressions
that yield a value but which are not necessarily known at compile time), i.e. function calls or references
to module parameters.

• Fully Qualified Names in anytype It is possible to use an anytype value with a fully qualified type
name. This is useful for resolving nameclashes between types of the same name which are imported
from different modules.

• Concatenation of record of/set of Values It is possible to use the concatenation operator & also for
values of record of or set of type. The result is a new value which contains at the beginning the elements
of the left operand which are succeeded by the elements of the right operand. The length of the resulting
value is the sum of the lengths of the operand values.

• Passing Timer References to PTCs It is allowed to pass references of timers to a ptc in the start
statement.

• Passing inout Parameters to PTCs It is allowed to pass variables to PTCS as inout or out parameters.
The value of the out parameters should only be accessed by the starting component after the PTC has
finished, as it is unspecified when the values will be updated.

• External Behavior Functions It is allowed to add a runs on clause to an external function. Such a
function will be treated like a normal behavior function and can be started via a PTC.

• External Functions with Template Result It is allowed for external functions to also return results
of template kind.

Other Non-Standard Language Extensions
• Implicit omit For record or set values written with a list of field assignments, it is permitted to set fields

declared as optional to 'omit' by omitting assignments to those fields.

Note that this is (up till now) even true, if the

Using TTworkbench TTthree

137

 optional "explicit omit"

attribute is set

• Arbitrary field order of record values If the fields of a record value are written with a list of field
assignments, the assigned fields need not be in the same order as declared in the record type, but can
be used in arbitrary order. The name of the field in each field assignment, not its place of occurrance,
determines, which field of the record type is set.

• Cyclic imports As for Edition 2 of the Standard, it is still allowed for subsequent editions to use cyclic
imports of modules, i.e. modules that import (parts of) each other (directly or indirectly).

• Parameterized types Parametric type declarations can also have formal type parameters. These are
written simply with the parameter name (without a type in front) with an optional 'in' keyword in front.

• Parameterized sub-types When defining a sub-type of another type, it is also possible to parameterize
it with a formal parameter list. However, the first formal parameter of such a formal parameter list must
include the 'in' keyword (to syntactically distinguish the parameter list from a type constraint list).

• Empty Formal Parameter List for Templates Templates can also be parameterized via an empty
formal parameter list. If such a template is later referenced, it must be instantiated also with an empty
actual parameter list.

Preferences
The TTthree preferences can be found under Window > Preferences > TTCN-3 > TTthree. Global pref-
erences that also apply to TTthree are defined in preference pages directly included in the TTCN-3 pref-
erence category. Please refer to Chapter 3, Global TTCN-3 Preferences for further details. The TTthree
preferences are structured into several preference pages. The compiler version information is printed at
the top of every preference page.

Preference pages regarding options for logging, code generation, Java compiler, default campaign gener-
ation and TT3 plugins are introduced in the following. TTthree behavior can also be controlled on a per
project basis via Project > Properties > TTCN-3 Settings. the section called “Compiler Settings” explains
which options are available.

General Settings

This preference page (Figure 7.2, “General preference page”) defines the running mode of the compiler.
The compiler can be run in two ways, either in the same JRE as the workbench or in a separate virtual
machine (client/server mode). Running the compiler in the same JRE is the default running mode.

Using TTworkbench TTthree

138

Figure 7.2. General preference page

If the client/server mode is chosen (Separate JRE (client/server)), the compiler server can be configured.
Either a local or a remote compiler server can be used. In case the Local compiler server is selected the
server is started automatically when a compilation is initiated. The port the server will listen on can be
configured choosing the Custom port. If the Default server port is selected, a predefined port will be used.
The compiler server is started in a separate JVM using a default configuration. If the default configuration
does not fit your requirements, additional parameters for the virtual machine can be added, e.g. for more
heap space -Xmx768m can be used.

Choosing the Remote compiler server an already running compiler server will be used. The host where
the remote server is running and the port the server is listening on can be defined editing the fields Server
host and Server port.

Note

Using the client/server mode, the internal Eclipse compiler is not used. In this mode, always
the configured external Java compiler will be used.

In addition, compiler add-ons may be disabled when using the client/server mode.

Code Generation

This page (Figure 7.3, “Code generation preference page”) is concerned with the generation of Java code
in the given package. Default Java package is generated_ttcn.

In addition, line width of the generated Java code can be specified. The default line width is 80 columns.

This page provides also the following selections:

• (Non-standard) meaningful inout semantics for timer, ports and components: if selected (default),
timers, ports and components that are passed as parameters the keywords "in" and "out" are also allowed

Using TTworkbench TTthree

139

besides "inout", as specified in standard. This option allows compilation of legacy test suites without
modifying the sources.

• Activate dependency checking for imported TTCN-3 modules: if selected (default), only changed
sources are compiled. To process all sources, the rebuild action should be used.

• Optimize mode: if selected (default), optimization of the abstract syntax tree is supported. Code opti-
mization is not supported.

• No code generation: if selected, syntactic and semantic analysis is performed, without generation of
Java source code.

• Compiler temporary output folder: the TTCN-3 compiler generates Java related temporary files dur-
ing operation. It may be useful to direct generation of those files to a different folder or volume. A folder
on a local file system is recommended.

• Session Id: this id must be used to distinguish temporary data folders from different sessions of the
same user on a computer. By default the operating system's user name is used. The resulting temporary
output folder name is constructed by appending the id to the original folder name.

Figure 7.3. Code generation preference page

Java Compiler
This page defines the Java compiler command and options for the generation of Java class files. Either the
built-in Eclipse Java compiler or an external compiler can be configured.

In case the internal compiler is used, this will be started in a separate JVM with a predefined configuration.
In case this default configuration does not fit your requirements, additional parameters for the virtual
machine can be configures, e.g. for more heap space -Xmx768m.

In case an external compiler has to be used, either the absolute path to the compiler can be given or only
the name of the executable file. In the second case, TTthree assumes that the configured Java compiler,
e.g. javac or jikes, is installed on your system and is in your PATH.

Using TTworkbench TTthree

140

Keep the generated Java source code in the delivered JAR archive file: if deselected, the JAR archive
file contains only the compiled Java class files. This option is not applicable for javac.

Generate Java debug information: if selected, the debugging function of the selected Java compiler is
used. On selection, the verbosity level will be set to info (see also the section called “Problem or informa-
tion reporting level”) automatically.

Figure 7.4. Java compiler preferences

Perform the Compilation
The compilation of TTCN-3 sources from the editing environment is performed in the following steps:

1. Open the file that contains the TTCN-3 module to compile.

2. Check related CL Editor and TTthree preferences, in particular project path, Java compiler and default
campaign options.

3.
Press the build button. In case the Code Generation preference "Activate dependency checking
for imported TTCN-3 module" is selected (default), build uses optimized make mode and processes

only those sources that have been changed. To process all the sources, use the rebuild. command
instead. Both actions are available over the menu bar Run and the context menu, as well as the short-
keys Ctrl+Shift+R (rebuild) and Ctrl+Shift+B (build). The compilation progress is illustrated by a
progress dialog and on the progress bar, as shown in Figure 7.5, “Compilation progress”.

Using TTworkbench TTthree

141

Figure 7.5. Compilation progress

4. a. Observe the compilation output at the standard console according to the verbosity level specified in
the logging preference page (the section called “Problem or information reporting level”).

Figure 7.6. Compilation successful

b. In case of successful compilation, the generated Java archive file will be placed by default in the
same directory as the TTCN-3 source file, or in the directory for compiled modules as specified
in the code generation preference page (see the section called “Code Generation”).

Using TTworkbench TTthree

142

Figure 7.7. Generated jar file

5. a. In case of errors in the TTCN-3 module, the errors will be logged during compilation process.

Figure 7.8. Compilation failed

b. Errors and warnings that are detected during compilation are listed in the Problems view. Clicking
on one of the errors/warnings points to navigate to the erroneous location in the respective TTCN-3
source file.

Using TTworkbench TTthree

143

Figure 7.9. Problems found

c. Repeat step 3 after correction.

Command-line Mode
Batch Compiler

TTthree can also be executed via command-line mode using the scripts located in TTworkbench installa-
tion directory:

• For Linux: TTthree.sh

• For Windows: TTthree.bat

Command-line synopsis:

TTthree [options] moduleId ...

options Command-line options. TTthree Options may be in any order. For most
options a short form (with one dash), and a long form (with double dash)
exists.

moduleId One or more modules to be compiled (such as MyModule).

Using TTworkbench TTthree

144

The following TTthree options are available:

 , --clean

Clean up jar-files of modules to be compiled to force their recom-
pilation (see also --rebuild option).

 , --clf-generate-de-
fault

Generate a default test campaign loader file during compilation.

 , --clf-name <de-
fault-campaign-name>

Specify the name of the default test campaign.

 , --clf-testadapter
<testadapter-name> <tes-
tadapter-file>

Specify the name and filename of the testadapter of the default test
campaign.

 , --clf-tes-
tadapter-file <tes-
tadapter-file>

Specify the filename of the testadapter of the default test campaign.

 , --clf-tes-
tadapter-name <tes-
tadapter-name>

Specify the name of the testadapter of the default test campaign.

 , --clf-only-visi-
ble-testcases

Generate only the testcases that are visible in the root module for
the default test campaign.

 , --clf-control-part Generate a test campaign containing only the control part of the
root module.

-k , --continue Force the continuation of the compilation process even after a mod-
ule could not be delivered.

-D , --debug

Turn debugging mode on. The debugging option should only be
used in case of unclear compiler output, or any other strange be-
havior.

-d , --destination-path
<dir>

Specify the path where to place the compiled TTCN-3 modules (
*.jar file). If -d or --destination-path is not specified, TTthree
places the compiled TTCN-3 modules at the same location where
the respective TTCN-3 source file (*.ttcn3 file) resides.

Note

This directory should also be added to the project
path, if the modules import each other (see --project-
path).

Note

TTCN-3 import statements will be mapped into man-
ifest class-path entries in the respective compiled
TTCN-3 module (*.jar file). The class-paths will

Using TTworkbench TTthree

145

be relative, if the compiled output will be placed in the
same directory, i.e. either the TTCN-3 sources where
already in the same directory, or the -d option is used,
or both. The class-path will be absolute, if the import-
ed module comes from another directory and no -d
option is used, i.e. the compiled TTCN-3 modules (
*.jar files) reside in different directories. Please be
aware of this fact, when moving compiled TTCN-3
modules for execution.

 , --do-not-check-send-
templates

If set the check whether send-templates do not contain matching
mechanisms is disabled.

-0 , --dry-run Perform the syntactic and semantic analysis according to the
TTCN-3 standard, but generate no Java source code.

 , --export-metamodel

Export the TTCN-3 meta model for further processing by different
generator plugins (i.e. T3Doc).

Note

If a generator plugin uses the meta-model, this option
must be present.

 , --export-metamod-
el-as-xmi

Export the TTCN-3 meta model as XMI.

-g , --gen-debug <info> Generate code for debugging of <info>. <info> can be 'record-ini-
tialization' or 'none'. If 'record-initialization' is set, generated java
classes will contain code which can be used to monitor initializa-
tion of TTCN-3 record structures. By default no such code will be
generated. If 'none' is used, no trace and debug information will be
generated, so that no TTCN-3 debugging or tracing through the log
will be possible.

-h , --help Get help information on command-line options and exit.

 , --implicit-import
<modules>

Import the given modules implicitly into all modules which do not
import them explicitly. If more than one module name is given,
separate them with ';' or ':', according to the used operating system.
The given modules must either be built-in modules, TTCN-3 source
modules or compiled modules present in the project path. This op-
tion can be present more than once.

-C , --javac-command
<command>

Use the Java compile command <command> for the compilation
of the generated Java source code into Java class files. If -C or --
javac-command is not specified, TTthree uses jikes +E for the Ja-
va compilation.

Note

TTthree assumes that the Java compiler is installed on
your system.

Using TTworkbench TTthree

146

 , --java-compile-asap
<command>

Invoke java compiler for each module as soon as possible, i.e. when
the java code for the module and all modules it depends on has
been generated. If this option is not present, java compilation will
be delayed until java code for all modules has been generated.

-j , --keep-java

Keep the generated Java source code in the delivered JAR archive
file. If -j or --keep-java is not specified, the JAR archive file does
only contain the compiled Java class files.

Note

Due to a bug in the Java compiler javac this option
cannot be selected when javac is used

 , --license-file
<file>

The license file to be used.

-l , --line-width <num-
ber-of-cols>

Specify the line width of the generated Java code. If -l or --line-
width is not specified, TTthree uses a line width of 78 columns to
generate Java code.

 , --log Show log messages independently of verbosity level.

-x , --map-suffix <lan-
guage> <suffix>

Specify the filename suffix for modules of one of the following
languages: TTCN-3 and ASN.1:1997. If -x or --map-suffix is
not specified, TTthree uses .ttcn3 for TTCN-3 modules and
.asn1 for ASN.1 modules.

Note

Non-TTCN-3 language modules require additional
TTthree plugins.

 , --named-logs Prefix all log messages with the session name.

 , --nolock

Set OSGI file locking mode to none to avoid certain errors with
installations on read-only file systems. When this option is activated
the parameter -Dosgi.locking=none is passed to the Eclipse base
system.

Note

On Unix platforms only, will be ignored on Windows
platforms.

-i , --normal-inout Switch the (nonstandard) meaningful inout semantics for timers/
ports/components on. If activated, timers, ports and components
that are passed as parameters the keywords "in" and "out" are also
allowed besides "inout", as specified in standard. This option allows
compilation of legacy test suites without modifying the sources.

-O , --optimize Switch the optimize mode on. Currently only optimization of the
abstract syntax tree, no code optimization is supported.

Using TTworkbench TTthree

147

 , --preprocessor
<command>

Use the given command <command> as preprocessor for files that
need to be preprocessed before parsing. The default command is g
++.

 , --project <dir>

Specify the TTCN-3 project directory to search for module defini-
tions. The project path (see option --project-path) is determined
by the preferences of the given TTworkbench TTCN-3 project. The
parent directory of this project directory is treated as workspace di-
rectory, in which referenced projects must be located. If the project
depends on other projects, these preferences are also adhered to, as
long as the projects reside in the same directory as the given project.

-P , --project-path
<dir>

Specify the directories to search for module definitions. Path entries
are separated by semicolons (;) on Windows and by colons (:) on
Linux and have to be directories. If -P or --project-path is not
specified, TTthree uses the current directory (.) as default project
path. This option can be used multiple times.

-r , --rebuild Recompile and deliver all imported modules, even if up to date. To
achieve a full recompilation (the same as the Rebuild button does),
this option has to be used together with --clean (see also --clean
option)

-R , --runtime-class-
path <path>

Specify the TTCN-3 runtime class path to search for the
TTCN-3 runtime environment. It can be found in the JAR file
TTthreeRuntime.jar. It is located in the lib directory of the
installation directory. If -R or --runtime-class-path is not speci-
fied, TTthree assumes TTthreeRuntime.jar to be in the TT-
three Java Archive directory.

Windows platforms

If you did not change the destination folder
during the installation process of TTwork-
bench this is

[ProgramFiles]\[TTworkbench]\plugins
\com.testingtech.ttworkbench.ttthree.core_x.x.x
\lib .

Using TTworkbench TTthree

148

Unix platforms

This is

[InstallDir]/[TTwork-
bench]/plug-
ins/com.testingtech.ttworkbench.ttthree.core_x.x.x/
lib .

-S , --session-id <id> Specify your own session id for the compilation process. The ses-
sion id is used by TTthree to identify data that is stored temporar-
ily in the temp directory of your system. If -S or --session-id is
not specified, TTthree uses a combination of your user name and
a timestamp.

-s , --source <language>

Set the default language of source files if not explicitly specified
in the source file. If -s or --source is not specified, the default lan-
guage will be TTCN-3:2008 Amendment 1.

Note

If the language attribute is set within the TTCN-3
module itself, then this language takes precedence
over the language from the command-line.

 , --t3doc-outdir <out-
put-dir>

output directory for the generated T3Doc HTML documentation

-n , --target-package
<package-name>

Generate the Java code in the package given by < package-name>.
If -n or --target-package is not specified, the generated Java class-
es will be located in the Java package generated_ttcn .

Note

If -n or -target-package is specified, the package at-
tribute of the module loader file has been set to the
same value.

 , --tmp-copy-jars Copy reloaded JAR files to tmp working dir.

 , --tmp-dir <tmp-dir> The working directory where internal compiler output is stored
(normally, the tmp directory).

 , --use-bigint Use arbitrarily large integer values

Note

Activating this option allows using of integer values
outside of the domain -2^31..2^31-1; the use of these
values is restricted only to TTCN-3 source. They can-

Using TTworkbench TTthree

149

not be used as module parameters, in external func-
tions or codec, as such values cannot be handled by
the standardized TCI interfaces. Activation of this op-
tion may lead to loss of performance.

 , --strict-stan-
dard-compliance<mode>

Check for standard compliance of input and generate appropriate
Warnings or Errors. Valid compliance modes are suggest (default),
enforce and relax.

 , --validate-asn1 Validate X.682 ASN.1 constraints.

-v , --verbosity <level>

Define the verbosity level for TTthree. Depending on the level TT-
three will produce output during the compilation process. The fol-
lowing verbosity levels are known by TTthree: debug , log, hint,
warning , error, and failure . If -v or --verbosity is not specified,
TTthree uses hint as its default verbosity level.

-V , --version

Get version information of the currently installed TTthree version
and exit.

Exit codes:

0 Success

1 Error

2 Abort

3 Invalid usage

Advanced Batch-Compiler for Linux

For Linux systems an optimized version of the TTCN-3 compiler script has been created which starts up
faster than the regular one: TTthree2.sh. This added benefit comes with the requirement of setting certain
environment variables beforehand.

Usage of TTthree2.sh

1. To prepare the environment settings execute one of the following commands (please replace "/path/to"
with TTworkbench's installation folder!):

• eval `/path/to/PluginHomeResolver.sh --env-for-sh` in the bash or sh

• eval `/path/to/PluginHomeResolver.sh --env-for-csh` when using the tcsh

Note

The recommend commands use so called "backticks" or "backquotes" which are essential
for their functionality.

2. These environment variables will now be available:

• TTTHREE_HOME

Using TTworkbench TTthree

150

• TTWB_CORE

• ECORE_HOME

• COMMON_HOME

• TTTHREE_PLUGINS_PATH

3. Within this environment, TTthree2.sh can be used like the regular TTthree.sh command. See the
section called “Batch Compiler” for parameters and options.

PluginHomeResolver.sh script

The PluginHomeResolver.sh utility script in TTworkbench installation directory is used to set the envi-
ronment variables needed by TTthree2.sh. The documentation is included here for cases where the pro-
cedure described above is not sufficient. Depending on the option given it prints out the installation path
to certain TTworkbench (Eclipse) plugins. Such a path is then used to find needed libraries.

Recommended PluginHomeResolver.sh options:

 , --env-for-csh determines all paths needed for TTthree2.sh and prints a com-
mand-line for tcsh users.

 , --env-for-sh determines all paths needed for TTthree2.sh and prints a com-
mand-line for sh or bash users.

Use the generated output and execute it as a command in your shell to set the needed variables. The
following options print the same information but just one path at a time:

 , --common-home prints path to plugin "org.eclipse.emf.common". Set variable
COMMON_HOME to this value.

 , --ecore-home prints path to plugin "org.eclipse.emf.ecore". Set variable
ECORE_HOME to this value.

 , --ttthree-home prints path to plugin "com.testingtech.ttworkbench.ttthree.core".
Set variable TTTHREE_HOME to this value.

 , --ttwb-core prints path to plugin "com.testingtech.ttworkbench.core". Set vari-
able TTWB_CORE to this value.

 , --tt3-plugins-path prints a list of paths where TTthree-plugins can be found. Set vari-
able TTTHREE_PLUGINS_PATH to this value.

-h , --help get help information on command-line options and exit

TTthree Server

Starting
The TTthree server can be started using the shell script TTthreeServer.sh. Currently the server can be
started only on Linux machines.

Using TTworkbench TTthree

151

The usage of the script TTthreeServer.sh is similar to TTthree2.sh. Please refer to the section called
“Usage of TTthree2.sh” to learn how to set needed environment variables.

Command-line Options
The list of all available command-line options can be obtained calling TTthreeServer.sh --help

There is only one option that is specific to the server and not common with the stand-alone compiler:

-p, --port <port-number> the port number to connect to

TTCN-3 Documentation Generation (T3Doc)

TTCN-3 modules can include documentation in their source code, in special documentation comments.
Such comments can appear before each module, group, test case, function, or altstep declaration and before
each type, template, modulpar, or constant declaration. Documentation comments inside declarations are
ignored and therefore do not contribute to any generated output. A documentation comment is a the text
enclosed by the ASCII characters /** and */ that can be processed by the documentation generator to
prepare automatically generated HTML documentation or to present it in hovers.

Generate HTML Documentation

Start Generation in TTworkbench

In order to generate an HTML documentation from TTCN-3 open the Export dialog. This can by done by
right click in the TTCN-3 Project view and choosing the context menu item "Export" or by clicking on the
menu item "Export" in the file menu. Within the Export dialog open the folder "TTCN-3", select the item
T3Doc and click on the Next button. Choose in the next dialog your TTCN-3 file you want to generate an
HTML documentation from. If no file is chosen, the main module will be taken. Enter the destination path
where the HTML files shall be saved and click on the Finish button to generate the documentation files.

Start Generation from Command-line

The HTML documentation can also be generated via command-line mode by using the scripts located in
the TTworkbench installation directory:

• For Linux: T3Doc.sh

• For Windows: T3Doc.bat

Command-line synopsis:

T3Doc [options] moduleId

The following T3Doc options are available:

options Command-line options. T3Doc options may be in any order.

moduleId The module for which the documentation shall be generated.

-D Debug (see TTthree debug option for details)

Using TTworkbench TTthree

152

--nolock OSGI file locking mode (see TTthree OSGI file locking option for
details)

--t3doc-outdir <out-
put-dir>

Sets the output directory for the generated T3Doc HTML documen-
tation to <output-dir>

The Text of a Documentation Comment

Content

The text of a documentation comment consists of the characters between the /** that begins the comment
and the */ that ends it. The text is divided into one or more lines. On each of these lines, leading *
characters are ignored; for lines other than the first, blanks and tabs preceding the initial * characters are
also discarded. So, for example, in the comment:

/** @desc XYZ
 ** Initialize to pre-trial defaults.
 123 */

the text of the comment has three lines. The first line consists of the text " @desc XYZ "; the second line
consists of the text " Initialize to pre-trial defaults. " and the third line consists of the
text " 123 ". Subsequent documentation comments are combined to one logical documentation comment
that is related to the respective declaration. Optional non-documentation comments do not contribute to a
standalone documentation or combined logical documentation comments.

Formatting

Text in a documentation comment may use HTML-like markers for formatting. The following markers are
supported: paragraph <P> , forced line break
 , italic text style <I> , emphasis , computer code
fragment <CODE> , pre-formatted text <PRE> , unordered list , ordered list , list item .

General Description
The first sentence of each documentation comment should be a summary sentence, containing a concise
but complete description of the declared entity. This sentence ends at the first period that is followed by a
blank, tab, or line terminator, or at the first tagline. Alternatively the @desc tag can be used for general
description.

Tagged Paragraphs
A line of a documentation comment that begins with the character @ followed by one of a few special
keywords starts a tagged paragraph. The tagged paragraph also includes any following lines up to, but
not including, either the first line of the next tagged paragraph or the end of the documentation comment.
Tagged paragraphs identify certain information that has a routine structure, such as the description of a
function, in a form that the documentation comment processor can easily marshal into standard typograph-
ical formats for purposes of presentation and cross-reference. Different kinds of tagged paragraphs are
available for module, group, test case, function, and altstep declarations and for type, template, modulpar,
and constant declarations. Unless otherwise noted every kind of tagged paragraph can be used for every
type of declaration. Each tagged paragraph defines its own multiplicity. If more than one tag of the same

Using TTworkbench TTthree

153

kind is defined where only a single occurrence should be defined the first one will be taken for subsequent
processing. The order of tagged paragraphs will be retained unchanged.

The following table describes where the tags can be used.

Table 7.1. T3Doc Tags

 Data
Types

Com-
po-
nent

Types

Port
Types

Mod-
ulepars

Con-
stants

Tem-
plates

Sig-
na-

tures

Func-
tions

Alt-
steps

Test
Cases

Mod-
ules

Groups Con-
trol
Part

@au-
thor

X X X X X X X X X X X X X

@dep-
re-
cat-
ed

X X X X X X X X X X X X X

@de-
sc

X X X X X X X X X X X X X

@ex-
cep-
tion

 X

@img X X X X X X X X X X X X X

@mem-
ber

X X X

@param X X X X X X X X

@re-
mark

X X X X X X X X X X X X X

@re-
turn

 X X

@see X X X X X X X X X X X X X

@short-
desc

X X X X X X X X X X X X X

@since X X X X X X X X X X X X X

@url X X X X X X X X X X X X X

@ver-
dict

 X X X

@ver-
sion

X X X X X X X X X X X X X

@author This tag should be used to specify the names of the authors or an
authoring organization which either has created or is maintaining
a particular piece of TTCN-3 code. The following are examples of
@author taglines:

@author Mary Wollstonecraft
@author Hildegard von Bingen
@author Dorothy Parker

Using TTworkbench TTthree

154

The information in an @author paragraph has no special internal
structure. A documentation comment may contain more than one
@author tag. Alternatively, a single @author paragraph may
mention several authors:

@author Jack Kent, Peggy Parish, Crockett Johnson,
 A.A. Milne, Marjorie Weinman Sharmat,
 Mary Shelley, and Madeleine L'Engle

Note

It is recommended to specify one author per @au-
thor paragraph, which allows the documentation
processing tool to provide the correct punctuation in
all circumstances.

@deprecated It should be used to describe if a particular piece of TTCN-3 code is
deprecated. The first sentence of deprecated-text should at least tell
the user when the code was deprecated and what to use as a replace-
ment. Subsequent sentences can also explain why it has been dep-
recated. The following are examples of @deprecated taglines:

@deprecated As of version 1.2, replaced by
 ExtensionHeaderList

The information in a @deprecated paragraph has no special in-
ternal structure. A documentation comment may contain at most
one @deprecated tag.

@desc It should be used to describe the purpose of a particular piece of
TTCN-3 code. It should contain a concise but complete descrip-
tion of the declared entity. The following are examples of @desc
taglines:

@desc This type defines what a test packet consists of.
@desc SUT port number.
@desc Maximum duration a message will remain in the
 network.

The information in a @desc paragraph has no special internal
structure. A documentation comment may contain more than one
@desc tag.

@exception This tag should only be used with signatures. It is used to provide
additional information on the exceptions thrown by the given func-

Using TTworkbench TTthree

155

tion. The following are examples of @exception paragraphs,
which may be used in documentation comments for declarations of
signatures:

@exception IndexOutOfBoundsException the matrix is too
 large
@exception FileNotFoundException the file does not
 exist

The information in an @exception paragraph should consist of
the name of an exception followed by a short description of the cir-
cumstances that cause the exception to be thrown. A documentation
comment may contain more than one @exception tag.

@img This tag may be used to associate images with a particular piece of
TTCN-3 code. The following are examples of @img taglines:

@img /ttcn3/doc/images/small.gif
@img http://portal.etsi.org/ptcc/images/ptcc.gif

The information in an @img paragraph will be used to link to a im-
age. A documentation comment may contain more than one @img
tag.

@member This tag is used to document the members of records, sets, unions,
ports and component types. The following are examples of @mem-
ber taglines:

@member ExtensionHeaderList List of extension headers
 defined by RFC 2460.
@member Ipv6Port definition required for LibIpv6COmp
 type compatibility.

The information in a @member paragraph should consist of the
name of the member followed by a short description. For nested
definitions the dot notation should be used. A documentation com-
ment may contain more than one @member tag. The usual conven-
tion is that if any @member paragraphs are present in a documen-
tation comment, then there should be one @member paragraph for
each member of the respective TTCN-3 definition and the @mem-
ber paragraphs should appear in the order in which the members
are declared.

Note

Subsequent @member paragraphs for the same mem-
ber will be ignored.

Using TTworkbench TTthree

156

Note

@member tags that are not applicable will be ignored.

@param This tag is used to document the parameters of parameterized
TTCN-3 definitions. The following are examples of @param
taglines:

@param loc_User The name of user in the specified
 realm.
@param loc_password A known shared secret, the password
 of user of the specified username.

The information in a @param paragraph should consist of the name
of the parameter followed by a short description. A documenta-
tion comment may contain more than one @param tag. The usu-
al convention is that if any @param paragraphs are present in a
documentation comment, then there should be one @param para-
graph for each parameter of the respective TTCN-3 definition and
the @param paragraphs should appear in the order in which the
parameters are declared.

Note

Subsequent @param paragraphs for the same param-
eter will be ignored.

@remark This tag may be used to add additional information, such as high-
lighting a particular feature or aspect not covered in the description.
The following are examples of @remark taglines:

@remark Authorization was not requested as expected.
@remark This function should _not_ be called if the MTC
 acts as a client.

The information in a @remark paragraph has no special internal
structure. A documentation comment may contain more than one
@remark tag.

@return This tag should only be used with signatures and functions. It is used
to provide additional information on the value returned by the giv-
en function. The following are examples of @return paragraphs,
which may be used in documentation comments for declarations of
functions whose result type is not void:

@return The number of bytes received.
@return True in case of success, false otherwise.

Using TTworkbench TTthree

157

The information in a @return paragraph has no special internal
structure. The usual convention is that it consists of a short descrip-
tion of the returned value. A documentation comment may contain
at most one @return tag.

@see This tag may be used to refer to other globally visible TTCN-3 def-
initions in the same or another module. The following are exam-
ples of @see paragraphs, which may be used in any documentation
comment to indicate a cross-reference.

@see SIP_TypesAndConf.PX_T2
@see calculateCredentials

The information in a @see paragraph may be used to link to the ref-
erenced TTCN-3 documentation. A documentation comment may
contain more than one @see tag.

@shortdesc It should be used to give a short description the purpose of a partic-
ular piece of TTCN-3 code that can be used in generated overview
documents. The following are examples of @shortdesc taglines:

@shortdesc Registration group
@shortdesc Tests generation of IPv6 packets.

The information in a @shortdesc paragraph has no special inter-
nal structure. A documentation comment may contain at most one
@shortdesc tag.

@since This tag indicates the version of the module that a particular piece
of TTCN-3 code was added to that module. The following is an
example of a @since tagline:

@since 493.0.1beta

The information in a @since paragraph has no special internal
structure. A documentation comment may contain at most one
@since tag.

@url This tag should be used to associate references to external files or
web pages with a particular piece of TTCN-3 code, e.g. a proto-
col specification or standard. The following are examples of @url
taglines:

@url http://www.ietf.org/rfc/rfc3261.txt?number=3261

Using TTworkbench TTthree

158

@url file:///D:/docs/DTS-TIPHON-06021-2.pdf

The information in an @url paragraph may be used to link to the
referenced file or web page. A documentation comment may con-
tain more than one @url tag.

@verdict This tag should only be used with test cases, functions, and altsteps.
It is used to provide additional information on the verdict assigned
by the given test case, function, or altstep. The following is an ex-
ample of a @verdict paragraph:

@verdict fail MAC Address for test cleanup could not be
 configured.
@verdict pass Registration successful.

The information in a @verdict paragraph should consist of one
of the verdict values pass, fail, or inconc followed by a short de-
scription. A documentation comment may contain more than one
@verdict tag. The usual convention is that it consists of a short
description of the reasons for verdict assignment.

@version This tag is used to state the version of a particular piece of TTCN-3
code. The following is an example of a @version tagline:

@version 493.0.1beta

The information in a @version paragraph has no special inter-
nal structure. A documentation comment may contain at most one
@version tag.

159

Chapter 8. Using TTworkbench TTman

Overview

Figure 8.1. Overview of TTman

As depicted on figure Figure 8.1, “ Overview of TTman ” above, TTman consists of 7 views, which build

the TTCN-3 Execution Management perspective . Each of those views deals with a specific aspect
of the test execution:

• The management view is the central view of TTman. It provides an interface for the user to select a
test suite and to start and stop the execution. All subsequent operations in TTman are relative to the
selected test suite.

• The properties view displays the properties of a selected element in the test management view. For
example, if a test case is selected in the test management view, the properties view will display its name,
its description, its verdict as well as any other of its properties.

• The parameters view allows you to view and edit the module parameters.

• The TTCN-3 graphical logging view displays the traces from the test execution process in graphical
form.

• The TTCN-3 textual logging view displays the same traces as the graphical logging view, but in textual
form.

Using TTworkbench TTman

160

• The test data view is used to display the data transmitted or received during test execution.

• The dump view is used to display sent or received data as hex dump or as plain text.

There are three possibilities to open the TTman perspective:

• Select Window > Open Perspective > TTCN-3 Execution Management as depicted on figure Fig-
ure 8.2, “ Open the TTCN-3 execution management perspective ” .

• Double-click on an *.clf file.

• Right-click on an *.clf file, select Open With and then the TTworkbench TTman Figure 8.3, “ Open
the TTCN-3 execution management perspective with right click ” .

Figure 8.2. Open the TTCN-3 execution management perspective

Using TTworkbench TTman

161

Figure 8.3. Open the TTCN-3 execution management perspective with right click

Using TTman
TTman provides a means for configuring, managing and executing a TTCN-3 test suite. Prior to loading
a test configuration, the managing activities have to be done on the Management View . After loading
but prior to executing the configuration the Parameters View allows you to edit the module parameters.
During the test execution process, the Properties View , the test console view and the Dump View display
status information and data as well as property values for selected elements, while the Graphical Logging
View and the Textual Logging View show detailed information about the current test run.

Test Campaign

Test configurations get stored in test campaigns. A test campaign represents a collection of test cases,
parameter settings and information about the test adapter to use. It contains neither test results nor test logs
(see also the section called “Test Session”).

To create a test campaign, you have two options: You can either create a Default Campaign for your project
or use the start the test campaign wizard to create a custom test campaign that fits your needs.

Existing test campaigns can be modified later using the Modify Test Campaign Dialog with which you
can add and/or remove test cases and/or module parameters.

Default Campaign

Using TTworkbench TTman

162

A default campaign contains all test cases of the project's main module and, depending on which default
campaign action was used for generation, imported test cases or all test cases of all imported modules. All
test case properties (see the Management View section for details) are set to default values.

To allow the generation of a default campaign for a project, you must specify a main module and a test
adapter (see General TTCN-3 Project Properties). To actually generate the default campaign, you have
to right click on the project in development view, select the item "Generate Default Campaign" as shown
in Figure 8.4, “Generating the Default Campain” and then choose one of the three available actions. Only
visible test cases adds only test cases that are visible from the main module due to import statements, while
Recursively adds all test cases of all imported modules and their imported modules and so on. Choosing
Control part a test campaign is generated containing only the control part of the main module of the project
or of the selected module.

Using TTworkbench TTman

163

Figure 8.4. Generating the Default Campain

The default campaign's .clf file will be named <main module name>.clf and placed in the directory that
contains the main module or in the output folder of the project, according to the project settings.

Using TTworkbench TTman

164

The "Generate Default Campaign" actions are not only available for the TTCN-3 Project but also for
TTCN-3 files. In case one of the actions is applied to a TTCN-3 file, a default test campaign will be
generated in a similar way as for the project with the only difference, that the module from the specified
file is used as root module.

Test Campaign Wizard

To create a custom test campaign, first start the test campaign wizard .

Figure 8.5. Starting the test campaign wizard

At the first page you have to choose the folder that contains the test suite. Usually this will be the folder
of the TTCN-3 project. Then the new test campaign needs a name. If the property "Use test cases from
specified main module of the project" is activated, only test cases from the project's main module and its
imported modules will be shown in the next step, otherwise all test cases from all modules contained in
the project will be included.

Using TTworkbench TTman

165

Figure 8.6. The test campaign wizard (first page)

The second page of the test campaign wizard allows you to select the test cases that will be executed during
the test campaign execution. To put a test case into the area of test campaign on the right side:

• Double-click on the test case of choice, or

• Select the test case and push the > button in the middle.

If all available test cases should be included in the test campaign:

Using TTworkbench TTman

166

• Double-click on test suite entry, or

• Push the >> button in the middle.

It is also possible to select multiple test cases by additionally using the CTRL key while selecting. The
selected test cases are put into the test campaign by simply using the > button.

If test cases have been selected for the test campaign, it is possible to change their order by selecting the
specific test case and pushing the up or down arrow button on the right side.

Selecting the checkbox labeled with "Use Control Part" in the lower left corner will advice TTman to load
the test campaign dynamically during the test execution depending on its verdicts.

Figure 8.7. Selecting test cases in the test campaign wizard

On the third page you can set test case properties. They also can be edited in the Management View ; see
there for a detailed description.

Using TTworkbench TTman

167

Figure 8.8. Setting test case properties in the test campaign wizard

The fourth page of the test campaign wizard allows you to select the adapter that will be used by this test
campaign. For details see the Setting the Test Adapter section.

Using TTworkbench TTman

168

Figure 8.9. Setting the test adapter in the test campaign wizard

Modify Test Campaign Dialog

You can modify an existing test campaign by choosing "Modify CLF" from the CLF's context menu in
the Navigator or in the TTCN-3-Projects Explorer. In the opening Patch CLF Selector you can choose any
number of other CLFs (also none is possible) from your workspace which will be used later as sources for
potential patches for the CLF you want to modify.

After pressing OK in the Patch CLF Selector, the Modify Test Campaign dialog opens up. This dialog
is split into three parts. The topmost part displays the test cases (Modify Test Campaign Dialog – Test
Cases), the middle part displays the parameters (Modify Test Campaign Dialog – Parameters), and the
bottom part displays the test case descriptions (Modify Test Campaign Dialog – Description).

Pressing the OK button of the Modify Test Campaign dialog will save the new settings to the original file.

Test Cases

The left side of the part displays the test cases available (i. e. coming from the campaign to be changed
and from all given patches). The right side displays the chosen test cases currently in the campaign.

You can use the arrow buttons between the widgets to remove and/or add test cases you have selected
before.

You can use the up/down arrow buttons on the right side of the dialog to change the order of the entries.

Using TTworkbench TTman

169

Parameters

The tree viewer acts both as a display and as an editor for the parameters. Below each parameter from
the original CLF are the versions from the chosen patch CLFs; the Status column contains an equal sign
(=) if there is no difference between these versions. Otherwise an unequal sign (#) is displayed. In case a
parameter is only present in a patch CLF, this will be shown using a plus (+) symbol. If it is only present
in the original CLF, a minus (-) symbol is shown.

You can check the box labeled "Show only changed module parameters" below the tree to hide all un-
changed parameters.

If a parameter is changed (or added/removed) in at least one patch, you can choose which version is to be
used for the result. Use the Action column to choose either one of the versions or "remove" (only available
in the line of the original) to remove this parameter. If you want to keep the parameter as it is in the original
CLF, set the action to "keep". This will ignore parameters which only exist in the patch CLFs.

Test Case Description

The bottom part displays the description of the test case selected in the topmost part.

Meta Campaign

A meta campaign can be used to manage the automatic execution of different test campaigns. It basically
does the same with single test campaigns that a test campaign does with single test cases: It allows the
user to define an order in which the campaigns get executed and it allows to set parameters.

Meta campaigns get handled in the Meta Campaign View and created in the Meta Campaign Wizard.

Meta Campaign Wizard

To create a meta campaign, first start the meta campaign wizard .

Figure 8.10. Starting the meta campaign wizard

At the first page you have to choose the location where the meta campaign shall be saved. To complete
this wizard page, you also have to choose a name for the new meta campaign.

Using TTworkbench TTman

170

Figure 8.11. The meta campaign wizard (first page)

The second page of the meta campaign wizard allows you to select the test campaigns that will be executed
during the meta campaign execution. You can use test campaigns from different projects for your meta
campaign. To put a test campaign into the area of selected test campaigns on the right side:

• Double-click on the test campaign of choice, or

• Select the test campaign and push the > button in the middle.

It is also possible to select multiple test campaigns by additionally using the CTRL key while selecting.
The selected test campaigns are put into the meta campaign by simply using the > button.

If test campaigns have been selected for the meta campaign, it is possible to change their order by selecting
the specific test campaign and pushing the up or down arrow button on the right side.

After choosing the test campaigns, you can either choose to select properties for the selected test campaigns
in the next wizard page or push the Finish button and thus use default values for the properties. You can
also change them later in the Meta Campaign View .

Using TTworkbench TTman

171

Figure 8.12. Selecting campaigns in the meta campaign wizard

On the third page you can set test campaign properties. Theses are the same that can be edited in the Meta
Campaign View .

Using TTworkbench TTman

172

Figure 8.13. Setting test campaign properties in the meta campaign wizard

Setting the Test Adapter

The test adapter that is used by a test campaign during execution can be set by choosing the Set test adapter
after right-clicking on the test campaign in the Management View .

Using TTworkbench TTman

173

Figure 8.14. Setting the test adapter in the Management View

On the Test adapter configuration page , you can either use a test adapter that comes with the selected
project or one of the adapters that are included in TTworkbench. For a project-specific test adapter, you
first have to choose the .jar file that contains the adapter and then select the test adapter class. For a built-
in test adapter, you have to choose one of the adapters in the drop-down list. If you select the built-in
PluginTestAdapter, you can continue the dialog by specifying the plugin adapter's details.

Using TTworkbench TTman

174

Figure 8.15. Selecting the test adapter

On the Plugins configuration page , you can configure which TT3 runtime plugins have to be used by the
PluginTestAdapter. The edited configuration can be saved either in a file named taconfig.xml located in
the project root directory by chosing Default on the bottom of the page or at another location by choosing
a different file using the Browse... button.

The codec plugins that have to be used can be configured on the initially displayed Codecs tab. Using the
buttons located on the right side, different codec configurations can be added, edited or removed. Pressing
the 'Add...' or 'Edit...' buttons, a new window is opened allowing you to choose the codec plugin and the
encoding name the plugin is assigned to. The default codec can be configured using the checkbox in the
codec configurations list.

Using TTworkbench TTman

175

Figure 8.16. Configuring the codec plugins

On the External functions tab page you can configure the external function plugins. External function
plugins can be added and removed using the two buttons at right.

Using TTworkbench TTman

176

Figure 8.17. Configuring the external functions plugins

The port plugins are configured on the 'Ports' tab. On the top side of the page, port plugins can be added to
or removed from the configuration. A new window is opened when the 'Add...' button is pressed. Within
this window a port plugin can be chosen. It is possible to define a port plugin to be the default one, i.e.
this plugin is used for all ports that are not covered explicitly by other plugins. The default port plugin
can be selected in the same way like the default codec, by using the checkbox in the port plugins list.
On the bottom side, you can configure the list of port types the configured port plugin is responsible for.
By pressing the 'Add...' button, you can choose a system port type from the list given in the new window
that is opened.

Using TTworkbench TTman

177

Figure 8.18. Configuring the port plugins

In addition to the built-in SUT action implementation, additional custom SUT action plugins can be con-
figured on the 'SUT action' page.

In case test case having parameters have to be started directly not from the control part, a test case pa-
rameter server is needed. Such test case parameter server plugins can be added to and removed from the
configuration on the 'TC parameters servers' page.

The parameters specific for each configured runtime plugin can be edited on the test adapter parameters
configuration page . The parameters are grouped by the plugin category and within each category by
the plugin identifier. The parameter values can be edited directly in the 'Value' table. The values for the
parameters may be either literal values (e.g. 5001 as a port name) or module parameter references (e.g.
${PARAM_SUT_ADDRESS}). For module parameter references content assistance is provided and can
be activated by pressing CTRL+Space during editing.

In addition to the global parameters, for port plugins it is possible to define separate parameter sets for
different port instances. This can be done by right clicking on the port plugin identifier and choosing the
menu item 'Add parameter set'. Selecting this action, a new window is opened where you can select the
system port name (content assistance is provided by pressing CTRL+Space during editing). Such a specific
configuration can be deleted by right clicking on the port name in the parameters table and choosing the
according option. The values for all parameters can be restored to the default values by using the button
Restore defaults on the bottom side of the page.

Using TTworkbench TTman

178

Figure 8.19. Configuring the test adapter parameters

Using TTworkbench TTman

179

Management View

Figure 8.20. Management view

The management view can be used to load and execute the test cas-
es from a test campaign. It contains at most one test campaign at a time.
To reload a loaded test campaign, click on the Reload Test Campaign button

. To unload it, click on the Unload Test Campaign button

.

The test cases (shown as children of the module) have properties which can be viewed and edited in the
2nd to 4th column of the Figure 8.20, “Management view” . The "Runs" property regulates how many
times in a row the test case will be executed. With "Failure Action" you can define what happens, if the test
case finishes with the verdict "fail". The options are to "STOP" the campaign execution, to "CONTINUE"
without special treatment or to re-execute the test case, if "RETRY" is chosen. In the latter case, the
"Retry" property specifies how many times the test case gets re-executed, until the campaign execution
gets continued.

Using TTworkbench TTman

180

As children of the test cases the finished test runs get displayed - named as the timestamp of their execution.
You can change the timestamp format by clicking on the clock symbol in the menu bar of the management
view.

In the bottom section of the management view, execution statistics are displayed. To disable this section,
select the menu of the management view and choose Execution Statistics . You can reenable them the
same way.

To filter the displaying of test cases based on their verdicts in the Management View, in the menu of the
Management View select Verdict Filter . A dialog will pop up and the verdicts can be chosen.

Figure 8.21. Verdict Filter

Clicking on the campaign name (highlighted by the green C icon) will display the campaign properties
together with status information in the properties view (see Properties View). Clicking on a test case will
display information about the selected test case.

Test Case Execution

Note

To execute test cases, a test campaign must exist. If you didn't create one or specified a
default test campaign, you should do this now (see the section called “Test Campaign”).

First you have to import the test campaign. The test suite will be loaded now.

Using TTworkbench TTman

181

Figure 8.22. Importing a test campaign

The management view also enables the user to export the loaded test campaign by choosing Export Test
Campaign from the Export Files menu of the management view's menu bar. The actual test campaign is
then exported to a campaign loader file (*.clf) which of course can be imported again later.

After successfully loading the test campaign, the user is able to execute the test cases in the test campaign.
If the campaign is not configured to use a control part, a test case or a set of test cases has to be selected
for the execution. To execute a test case:

• Double-click on the test case, or

• Click on the Execute button provided by the context menu, or

• Click on the Execute button in the management view's menu bar

If all test cases of the test campaign or a control part are to be executed:

• Double-click on test suite entry, or

• Select the test suite entry, click either on the Execute button from the management view's menu bar as
shown in Figure 8.23, “Start a test case from the menu bar” or on the Execute button from its context
menu as illustrated in Figure 8.24, “ Start a test case from the context menu ” .

Using TTworkbench TTman

182

Figure 8.23. Start a test case from the menu bar

Figure 8.24. Start a test case from the context menu

Using TTworkbench TTman

183

Note

On most machines a personal firewall is running. Sometimes the security options are too
high so TTworkbench is not able to communicate. Please make sure that your security level
is not too high, or create exception rules for it. For further instructions please refer to the
users guide of your security software.

Test Session

A test session represents a test campaign and all current test results and respective test logs. Test sessions
can be saved and resumed via exporting and re-importing.

To export a test session choose Export Test Session from the Export Files menu of the management view's
menu bar. To import a test session choose Import Test Session from the Import Files menu of the man-
agement view's menu bar.

Figure 8.25. Importing a Test Session

Test Log

For each test campaign executed with TTman, a test log gets created, containing all the events generated
by the execution process. It is possible to import and export log files from and to the file system. The log
file for a test log will be saved file as a zipped file (*.tlz) and stores all generated logging information
together with the test campaign file that was used for the respective test run, including the current setting
of the module parameters. The location of the file can be specified after clicking on the Export Files button
on the Management View's menu bar and selecting Export Log

Using TTworkbench TTman

184

Note

The tlz-file can be unzipped into the pure log file and a test campaign file.

The user can import a tlz-file to review the test execution process by using the Import Files button on the
Management View's menu bar and selecting Import Log . It is also possible to load old log files (*.log).

It is also possible to export the log in a human readable form by clicking on the Export Files button on the
Management View's menu bar and selecting Export Plain-Text Log . After selection a location, a .zip
archive gets stored that contains both the according .clf and a .txt file. The latter contains the current
log formatted to be easily readable outside of TTworkbench. This functionality also is accessible by using
the according entry in the log's context menu in the Management View.

Test Report Generation

 TTman supports the generation of test reports in HTML, PDF, Excel, or Word format. The Excel format
is an XML file that can be opened with Microsoft Office Excel 2003 and later versions as well as with
OpenOffice 2.0. The Word format is also an XML file that can be opened with Microsoft Office Word 2003
and later versions. To do so, start the test report generation wizard by clicking the Create Test Report button

.

On the Report Source page , you can choose between generating test reports only from the in the Man-
agement View selected test cases of the current test case run, from the complete current test case run, or
from a previously exported log file.

Using TTworkbench TTman

185

Figure 8.26. Selecting the data source for the Test Report

The Report Destination page allows you to select a destination directory, a test report file name, and the
type (HTML, PDF, Excel, or Word) of the generated report. The directory and the report name get saved
and used as default values the next time you generate a test report for the same project.

The option Include Graphical Log sets if an image will be generated and saved in the test report directory
for each test case. In the test report, the test case name will be linked to the correspondent image file.

The option Open Report after generation (if viewer installed) can be used to set if the test report opens
automatically in an appropriate viewer after its creation. For PDF, Excel, and Word reports, an appropriate
viewer has to be installed.

With the option Send Report as E-mail , you can enforce the sending of the generated test report as e-mail.
Before enabling this option, it has to be ensured, that the Emailing Preferences are set correctly.

If the option Use global Test Report destination is set, destination directory and report name get used
as default values the next time you generate a test report, regardless from if it is generated for the same
project or not.

Using TTworkbench TTman

186

Figure 8.27. Setting test report type and destination

The Report Filter and Sorting Options page allows you to define which test cases shall be included in the
report depending on their verdict by checking or unchecking the checkboxes at the left. With the Sorting
Criteria box, you can specify how the test cases shall be sorted in the test report. If you set it to Sort By
Verdict , you can define the resulting order by rearranging the verdicts on the left by using the Up and
Down buttons. If you click on the button Default/Reverse , the verdicts will be arranged in the default
order Error, Fail, Inconc, Pass, None. Pressing again will reorder the verdicts in reversed default order.

Using TTworkbench TTman

187

Note

Neither filtering nor sorting are available for XML test reports yet.

Figure 8.28. Setting filtering and sorting options

On the Tester Properties page , you have the possibility to enter a report date, report number, company
name, test lab, and system under test (SUT) that get included in the report.

Using TTworkbench TTman

188

Figure 8.29. Tester Properties

Using TTworkbench TTman

189

Figure 8.30. Test Report Example

Using TTworkbench TTman

190

Meta Campaign View

Figure 8.31. Meta Campaign view

The meta campaign view is the place where meta campaigns get displayed and where you
can set the properties for each included test campaign. Here you also can load and ex-
ecute your meta campaigns (the view contains at most one test campaign at a time).
The entries of the currently loaded meta campaign are displayed in the according to
their structure. To unload the meta campaign, click on the Unload Meta Campaign button

.

The test campaigns (shown as children of the module) can be set to run multiple times. This property can
be viewed and edited in the 2nd column of the Figure 8.31, “Meta Campaign view” .

As children of the test campaigns the finished campaign runs get displayed - named as the timestamp of
their execution.

Meta Campaign Execution

Note

If you didn't create a meta campaign yet, please use the Meta Campaign Wizard to do so.

First you have to import the meta campaign.

Using TTworkbench TTman

191

Figure 8.32. Importing a meta campaign

The meta campaign view also enables the user to export the loaded meta campaign by choosing Export
Meta Campaign from the Export Files menu of the meta campaign view's menu bar. The meta campaign
then gets exported to a meta campaign file (*.mcf) which of course can be imported again later.

After successfully loading the meta campaign, the user is able to execute it by clicking on the Execute
button in the meta campaign view's menu bar. After doing so, the campaigns get loaded and executed in
the order that you defined while creating the meta campaign.

Meta Campaign Log

While executing a meta campaign, a meta campaign log gets created, containing all the single test logs
that were generated while executing the single test logs. To view a log, you have to select the specific
test run (test runs are diplayed as children of the respective test campaign) and choose Import Log from
the context menu. Now the test campaign's log data gets displayed by the Management View and can be
viewed, imported and exported. It is possible to import and export a meta campaign log file from and to
the file system. The log file for a meta campaign log will be saved as a zipped file (*.tlz) and stores all
the single log files for the executed test campaigns together with the meta campaign file that was used for
the respective test run. The location of the file can be specified after clicking on the Export Files button
on the meta campaign view's menu bar and selecting Export Log .

Note

The meta campaign .tlz-file can be unzipped into the meta campaign file and the single log
files of each contained test campaign.

The user can import a tlz-file to review the meta campaign execution process by using the Import Files
button on the meta campaign view's menu bar and selecting Import Log .

Parameters View

The parameters view contains a table displaying the module parameters of the currently loaded campaign.
It is possible to change the current value of a parameter here.

Using TTworkbench TTman

192

Figure 8.33. Parameters view

Parameters of a structured type can be edited by using the context menu entry Open message building
system . This opens the module parameter editor , which is based on the Template Wizard , but adds a
list of all module parameters at the left side. By selecting a parameter its current content gets displayed
in the middle and can be edited.

Parameters of a basic type can be edited either inline by simply clicking on the value or like structured
type parameters by using the module parameter editor.

Note

Currently the module parameter editor still contains the template parameters section of the
Template Wizard though it is disabled. You can safely ignore that section.

Figure 8.34. Module Parameter Editor

If values of module parameters have been changed, the user gets asked whether the campaign loader file
should be saved before loading a new module or exiting TTman.

Using TTworkbench TTman

193

Properties View

Figure 8.35. Properties view

The properties view (Figure 8.35, “Properties view”) contains a table displaying the properties of each
selected entry in the management view. All properties are continually updated at all stages of the test
configuration and during the execution process.

Textual Logging View

Using TTworkbench TTman

194

Figure 8.36. Logging View

As depicted in Figure 8.36, “Logging View” , the logging view displays all the logs and traces collected
during the test execution. This can be performed on-line or off-line, depending on the user's preferences.

Events can be copied in a textual form to the system clipboard by using the event's context menu. The
command Copy Event to Clipboard formats the event details in a human readable way, while Copy Event
as XML to Clipboard provides the plain TLI XML data. It is also possible to export the whole textual log
in human readable form (see the section called “Test Log”).

For certain types of log events, the user can view details of the data contained in those events by dou-
ble-click on their entry in the logging view. If the log event corresponds to a matching or non-matching
event upon receiving a message, both the expected template and the actually received data structure are
displayed in the data view. The data view, if not yet opened, will be opened automatically.

Note

Please mark that specific TLI log events are currently not supported by TTworkbench (see
Language Features for details).

The textual logging view supports the View TTCN-3 Source feature. If there is an event with a correspond-
ing statement in the TTCN-3 code it is possible to go directly from the logging view to its declaration.
There are three ways to perform this action:

• hold SHIFT key pressed and left click on the logging event

• right click on the logging event and choose "View TTCN-3 Source"

• select the logging event and hit F3 on your keyboard

Using TTworkbench TTman

195

Figure 8.37. View TTCN-3 Source

Time Stamps

The logging view provides three options to display time stamps of received log events. The options are:

• Time of day (default)

• Seconds since previous event

• Seconds since beginning test case

Using Filters

The logging view provides a set of mechanisms for filtering the logs, in order to limit the amount of log
output. The following criteria can be used for the filters:

• Component name

• Log event type

In addition to the previously mentioned filtering criteria, the logging view provides the possibility to filter
the displayed events by their textual content. The text filter can be enabled or disabled by using the view's
menu, as shown in the figure Figure 8.38, “Text Filter”. The initial state of the text filter can be configured
on the logging preference page (see the section called “General”).

Using TTworkbench TTman

196

Figure 8.38. Text Filter

Graphical Logging View

Figure 8.39. Graphical Logging View

In addition to the textual logging view (Textual Logging View), TTman supports a graphical logging
view. It displays the relevant logs and traces collected during the test execution as symbols in a clearly
arranged diagram. The test case name can be found in the top left corner of the graphical logging view.

Using TTworkbench TTman

197

Messages and Match/Mismatch symbols will be selected together to know easily which elements are be-
long to each other.

Messages and Match/Mismatch symbols can be selected to get more details, listed in the Data View (the
section called “Data View”).

Symbols

The graphical logging view provides the following symbols:

• Instance: the ID name is located above the instance, the component type beneath

• Message: the port operation and message type is located above the message

• Port name associated with the sending or receiving message

• Start Timer: starting timer with timer name and duration (in sec)

• Stop Timer: stopped timer with timer name and stop time (in sec)

• Timeout Timer: timeout of a timer with timer name

• Match: a previously received message matches; data type is given after it

• Mismatch: a previously received message mismatches; data type is given after it

Using TTworkbench TTman

198

• Log: a log comment

• Log Event: can be pass, fail, inconc, none or error

• Verdict is pass

• Verdict is fail

• Verdict is inconclusive

• Verdict is none

• Verdict is error; a log statement with the reason is given above the verdict error

• SUT action

Zooming

The graphical view can be zoomed in and out by using the zoom buttons

and

or alternatively by selecting a value between 50% and 400%.

Export Graphic as Image

It is possible to export the graphical logging view as a JPG image. Therefor left-click on the

icon in the graphical logging view and enter a file name.

Using TTworkbench TTman

199

Print

It is also possible to print the graphical logging view. Therefor left-click on the print icon

in the graphical logging view.

Note

Printing in Eclipse under Linux is a known problem (printing in Eclipse on GTK has not
been implemented yet).

Time Stamps

The graphical logging view provides four options to display time stamps of received log events. The
available formats are:

• None

• Time of day (default)

• Seconds since previous event

• Seconds since beginning test case

Using Filters

The graphical logging view provides the filtering of logs, in order to limit the displayed symbols.

Pressing the filter button

will popup a selection menu, where to filter the logging events and to enable or disable the filter mechanism.

Data View

Figure 8.40. Data View

Using TTworkbench TTman

200

The Data View contains two table trees. The right side shows the received or transmitted value, structured
as a tree according to the value's type. The left side contains the data template given in the corresponding
receive operation or nothing, if it is a send operation. When one or more lines on the template table tree are
selected, the corresponding data lines at the received data tree get marked, too, and vice versa. By using

the button, you can switch the User Type columns on or off. The button allows you to display an
additional column that shows integer values in hexadecimal format.

The data view can be used to compare the received data with the expected template. Data that does not
match the expected template, is highlighted as shown in Figure 8.41, “ The received message does not
match the given template ” .

Figure 8.41. The received message does not match the given template

If the content of data is of type charstring or universal charstring which contains iso control characters,
these will be displayed as =HH where HH is the hexcode of the character. To avoid confusion, the character
'=' is also quoted.

Dump View

The dump view can be used to display outgoing and incoming data as plain text, as hex dump, as XML or
other custom implementation. It is activated on selection of a send or enqueue event in the logging view.
By default, the sent or received data will be displayed as plain text Figure 8.42, “Dump view interpreting
the input as text” . The user can switch between the different presentations formats by selecting another tab.

Using TTworkbench TTman

201

Figure 8.42. Dump view interpreting the input as text

The hex mode is shown in Figure 8.43, “Dump view interpreting the input as hex” .

Using TTworkbench TTman

202

Figure 8.43. Dump view interpreting the input as hex

Another useful mode for XML based communication protocols is shown in the next figure Figure 8.44, “
The Dump view interpreting the input as formatted XML with highlighting. ” .

Using TTworkbench TTman

203

Figure 8.44. The Dump view interpreting the input as formatted XML with
highlighting.

Preferences
TTman provides preference pages for configuring different properties. These properties include:

• Behavior of test campaign execution

• Support of online logging (during the test execution logging will be displayed immediately in the
TTCN-3 logging view) and graphical logging

• Debug level of TTman

• Information to be included in test reports

• TTthree plugins

• Mail settings to send test report as e-mail

Using TTworkbench TTman

204

TTman Main Preferences

Figure 8.45. Complete test case execution is set by default

It is possible to reset all test case verdicts before test execution by checking the respective box.

If you want the test campaign execution to stop automatically after a test case has been completed with
verdict error, you have to select the checkbox in the run tab. The default behavior is the execution of the
complete test campaign independently of any test case results Figure 8.45, “ Complete test case execution
is set by default ” .

If you want the execution to pause between each test case, the duration of the pause can be determined
on this tab.

In the Reload Test Campaign After Compilation section, you can define how TTman behaves when you
compile a test suite that is currently loaded. By setting this option on Prompt , you get asked by TTwork-
bench how to behave everytime this situation occurs.

The VM arguments editor allows you to set command-line arguments that you need to be set in the Java
Virtual Machine while executing test cases. The Use VM arguments checkbox allows you to easily enable
or disable your personal VM settings.

The Debug entries on this page belong to TTdebug. Their meaning is explained in the TTdebug Preferences
section.

Logging

General

 It is possible to disable the online logging for a better performance. To do this, please use the respective
radio button.

Using TTworkbench TTman

205

Figure 8.46. Online logging is supported by default

Generation

By default, TTCN-3 logging generation is enabled. The user is able to disable this to increase the perfor-
mance.

Note

If TTCN-3 logging generation is disabled no logging events will be created.

To increase the performance during the runtime without loosing needed log information it is possible
to define only distinct log events that should be created during the runtime. This can be defined in the
Generation tab of the Logging properties page. There, all log events that should be created or not can be
defined by enabling or disabling the checkboxes.

Using TTworkbench TTman

206

Figure 8.47. TTman preferences logging generation

It is possible to export a defined logging profile for using it e.g. in the command-line mode of TTman.
Therefore, by pressing the export button it is possible to define the directory and file name of the properties
to store.

It is also possible to import an existing logging profile by pressing the import button.

Appearance

In the Textual Log Colors box, you can set the foreground and background colors for each logging event
in which it gets displayed in the Textual Logging View.

The Enqueued Messages and the appropriate Match/Mismatch Events box allows you to set the color in
which Enqueue events and connected Match/Mismatch events get highlighted when you select one of them.

The Data View Colors box allows you to set the colors to be used in the Test Data View to highlight data
mismatches.

Using TTworkbench TTman

207

Figure 8.48. Logging appearance settings

Report

In this section , you can set user and test dependent information to be included in test reports.

Using TTworkbench TTman

208

Figure 8.49. User and test dependent information for test reports

E-mailing

The properties of the feature to send test reports as e-mails can be configured via the TTman Emailing
preference page.

Mail Settings

By using the Mail Settings tab, the recipients of the test report e-mail, the subject of the message, as well
as the text in the message body can be configured.

Using TTworkbench TTman

209

Figure 8.50. Mail Settings

Server and Account Settings

In the Server and Account Settings tab the mail server and the mail sender can be configured. If the used
mail server requires authentication the SMTP Auth option has to be enabled and a user name has to be
configured. The user's password can be optionally set. If no password has been configured in the prefer-
ences, it can be entered later in interactive mode. Setting the password in the preferences, the user has
also the option to store the password. It will be saved DES engrypted in the preference store. For the
encryption, additionally a key will be generated and stored in the user's home directory in a file named
ttwbExtReport.keystore. This key will remain after closing TTworkbench and reused in further TTwork-
bench sessions.

The Export button can be used to export all mail settings into a file. If using the TTman Console Manager
(see the section called “Command-line Mode”), a mail settings file is required when sending of test report
as e-mail option has been set.

Using TTworkbench TTman

210

Figure 8.51. Server and Account Settings

Command-line Mode

TTman can also be executed via command-line mode using the scripts located in TTworkbench installation
directory:

• For Linux: TTman.sh

• For Windows: TTman.bat

The logging from the execution using the command-line tool is automatically saved in a .tlz file located in
the same directory as the executed .clf. You can then load this file into TTman and analyze the execution
log.

Additionally, the command-line tool can be used to generate test reports directly from log files (.tlz).
Therefore the report specific options have to be used and a log file has to be passed instead of a campaign
loader file.

Command-line synopsis:

TTman [options] loader_file | log_file

options Command-line options. TTman Options may be in any order. For ev-
ery option a short form (with one dash), and a long form (with double
dash) exists.

loader_file Module Loader File (*.mlf) or Campaign Loader File (*.clf).

log_file Log File (*.tlz).

Using TTworkbench TTman

211

The following TTman options are available:

-c , --control Execute the control part of this test suite.

-d , --disable-logging Disable the TTCN-3 logging generation.

-e , --error If set the execution will be stopped in case of a test case error. In
case the option is not used, execution will continue.

-h , --help Get help information on command-line options and exit.

-l , --log <log_dir> Define the destination folder where to store the log file; in case the
option is not used, the log file will be stored in the same directory
the given loader file is located in. It is possible to use absolute as
well as relative paths.

-p , --logging-proper-
ties <property-file>

Pass a configuration file to define which log events should be cre-
ated during the runtime (can be used to increase the performance).

--loop <loop_number> Define how many times all test cases contained in the loader file
should be executed.

-M , --mail
<mail_settings_file>

Send a generated test report as e-mail (pass a mail settings file).

-r , --report
<report_format>

Create a test report from the executed test suite. The output for-
mat is either HTML (html), PDF (pdf), Excel (excel), or
Word (word). The Excel format is an XML file that can be opened
with Microsoft Office Excel 2003 and later versions as well as with
OpenOffice 2.0. The Word format is also an XML file that can be
opened with Microsoft Office Word 2003 and later versions.

-R , --report-parameter
<reportsettings-file>

Include test report parameters (pass a test report parameter file).

-t , --testcase <test-
case>

Define the test case to be executed.

-P , --tt3PluginDir
<tt3-plugin-dir>

Pass the directory where possibly additional TT3 plugins are locat-
ed.

-v , --version

Get version information of the currently installed TTman version
and exit.

-w , --wait <delay> Define a delay (in seconds) between the execution of two test cases.

Exit codes:

The exit code returned by the TTman command-line execution is the most severe verdict of the test run.

110 None

111 Pass

112 Inconclusive

113 Fail

Using TTworkbench TTman

212

114 Error

213

Chapter 9. Using TTworkbench
TTdebug

With TTdebug the user obtains the possibility to execute his test cases instruction by instruction, view
states and variables and manipulate the execution. It allows fast and efficient tracking of bugs and so eases
to develop reliable test suites. TTdebug uses the eclipse debugger framework which provides standardized
views, controls and extensive layout adaptability.

Figure 9.1. TTdebug

Overview
TTdebug provides the following functions:

• GUI based setting/removal/disabling of breakpoints (see Breakpoints)

• Manually suspending/resuming a running testsuite (see Debug View)

• Stepping through a suspended test suite by using the common debugger functions "step into", "step
over" and "step return" (see Debug View)

• Viewing the status and the stack traces of multiple components (see Debug View)

• Viewing and editing the content of local and component variables and local parameters (see Variables
View)

Using TTworkbench TTdebug

214

• Viewing the status of timers and manually triggering timeouts (see Timers View)

• Viewing the content of port queues and manipulating the order of received messages (see Port Queue
View).

• Transparent debugging of TTCN-3 and Java-based test adapters and codecs at the same time (see De-
bugging Java)

How to Start Debugging a Test Suite
1. Make sure that TTdebug is enabled. The according setting can be found in the TTdebug Preferences.

2. Rebuild the test suite you wish to debug if it was compiled before installing TTdebug, otherwise the
debugger will not work (see "Perform the Compilation" in the TTthree chapter).

3. Set breakpoints (see "Breakpoints").

4. To load the test suite and select the test cases that you would like to debug, proceed like you would do
for starting a standard test session (see "Management View" in the TTman chapter). After that, use the
Debug button or the according context menu entry to start the debugging session.

Figure 9.2. Debug button

Note

Choosing between the Execute and the Debug button does not affect the Java debugger.
Its status only depends on the according option in the Preferences.

Using TTworkbench TTdebug

215

Breakpoints

Setting Breakpoints

To set breakpoints you first have to open the source file you plan to debug. Then you have three options:

• Double click on the vertical ruler at the left side of CL Editor in the line where you want to place the
breakpoint.

• Click with the right mouse button on the vertical ruler at the left side of CL Editor. In the context menu
that now shows up, select Toggle Breakpoint.

Figure 9.3. Toggling a breakpoint by using the context menu of the vertical ruler

• Switch to the Debug Perspective. Place the cursor in the line that shall get a breakpoint, then select Run
> Toggle Line Breakpoint in the TTworkbench menu bar.

All three methods do not explicitly set but toggle breakpoints, so they are also suitable for removing them.
However, breakpoint removal can also be done in the Breakpoints View.

Note

Not every line of a TTCN-3 source file is valid for setting breakpoints. To prevent setting
breakpoint in a line where TTdebug would never stop, newly set breakpoints get checked for
validity and moved to the next proper position for a breakpoint, if needed.

Using TTworkbench TTdebug

216

Note

Renaming a project makes all breakpoints placed in that project invalid. It is strongly advised
to remove all these breakpoints prior to renaming the project!

Temporarily Disabling Breakpoints
There are two ways to temporarily disable breakpoints:

• In the vertical ruler at the left side of the CL Editor click with the right mouse button on the breakpoint
you wish to disable. In the context menu that now shows up, select Disable BreakPoint.

Figure 9.4. Disabling a breakpoint by using the context menu of the vertical ruler

• In the Breakpoints View, uncheck the checkbox at the left side of the breakpoint you wish to disable.

To enable the breakpoint again, both methods are suitable (the context menu entry now is named Enable
Breakpoint.

Note

The Breakpoints View provides a button that allows to generally skip all breakpoints inde-
pendent from their current state.

Setting a Breakpoint Hit Count
By setting a hit count value, you can enforce the execution to only stop when the breakpoint was reached
as many times as defined by the given value. The hit count value can be set on the breakpoint's property

Using TTworkbench TTdebug

217

page. To open a breakpoint property page, click with the right mouse button on the breakpoint either in the
vertical ruler at the left side of the CL Editor or in the Breakpoints View and select Breakpoint Properties....

Figure 9.5. Breakpoint Properties Page

Debugging TTCN-3

Debug Perspective

TTdebug plugs into the standard Eclipse Debug Perspective.

Using TTworkbench TTdebug

218

Figure 9.6. Eclipse Debug Perspective

It utilizes the perspective's Debug View, Breakpoints View and Variables View to show its own content
while providing a standardized user interface. TTdebug also adds a Timers View to this perspective and
uses the Testing Technologies CL Editor to show the current execution position.

It is possible to automatically switch to the Debug Perspective after starting execution of a test suite in
debug mode (see Automatic Perspective Switch). To open the perspective manually you have to press its
icon in the perspective bar:

Figure 9.7. Perspective bar

If the Debug Perspective's icon is not shown in this bar, you can open it with Window > Open Perspective
> Other... and selecting Debug in the upcoming window.

Debug View

The current execution status is shown in the Eclipse Debug View.

Using TTworkbench TTdebug

219

Figure 9.8. Debug View

The root of the tree stands for the executed suite. It has three children: The TTCN-3 debug target, the
Java debug target and the Java Process on which the execution is based. For TTCN-3 debugging only
the first one is of interest. It has a child for each component that is declared at this point of execution.
Each suspended component contains a stack trace which shows the path of execution through functions
and altsteps.

The Debug View provides buttons for the debugging control functions. The ones that are relevant for
TTCN-3 debuggin now get described in detail:

•

Resume: Exits suspension mode and resumes normal execution from the current position (keyboard
shortcut F8).

•

Suspend: Stops a running testsuite immediately.

•

Terminate: Terminates a running test suite immediately.

•

Step into: Executes the next instruction. If this instruction contains a call of a function or an altstep, the
suite stops prior to the first instruction there (keyboard shortcut F5).

•

Step over: Executes the next instruction. If this instruction contains a call of a function or an altstep,
the suite executes all contained behavior and stops prior to the next instruction in the current scope
(keyboard shortcut F6).

•

Step return: Executes the current behavior scope to its end and stops prior to the next instruction in the
scope above (keyboard shortcut F7).

Using TTworkbench TTdebug

220

Note

If a component shows that it is "waiting in alt", it has to choose an alternative before you can
continue to step! To enforce this, you can either manually trigger a timeout in the Timers
View or step through another component (see Debugging Multiple Components).

Breakpoints View

Breakpoints can be seen and manipulated in the Breakpoints view.

Figure 9.9. Breakpoints View

Each breakpoint has a checkbox on its left. It shows if the breakpoint is active, i.e. by unchecking it, the
breakpoint gets ignored during execution. It is also possible to instruct TTdebug to ignore all breakpoints

by using the "Skip All Breakpoints" button . The context menu also provides diverse breakpoint ma-
nipulation functions including breakpoint removal and importing/exporting TTCN-3 breakpoints from/to
an XML file on your file system.

Variables View

The Variables View displays all variables that are declared in the stack trace element that is currently
selected in the Debug View.

Using TTworkbench TTdebug

221

Figure 9.10. Variables View

The Variables View shows the variables in a tree structure, where variables of a basic type are placed in
a single line and variables of a structured type are organized into a tree which the user may browse and
expand according to his needs. The first entry always contains the component variables, the second one
the local parameters. The view also contains a Details Pane that displays the content of the variable that
is currently selected in the variables tree. To show or hide the variable types, open the column selection
dialog like shown in Figure 9.11, “Open the column configuration” and change the configuration.

Note

The Declared Type and the Actual Type columns currently display the same content.

Using TTworkbench TTdebug

222

Figure 9.11. Open the column configuration

To stop the execution when a specific variable gets modified, right click on that variable and choose Toggle
Watchpoint. After resuming the execution, it will be stopped prior to the variable's modification.

Note

Watchpoints are set for a specific instance of a variable, i.e. after the scope level in which
the variable has been declared was left, the watchpoint automatically disappears, even if the
same scope gets reentered. This also means that watchpoints only work for the component
on which they were set.

You can set a hit count value for a watchpoint to enforce the execution to only stop when the variable was
changes as many times as defined by the given value. The hit count value can be set on the watchpoint's
properties page. To open a watchpoint properties page, click with the right mouse button in the Variables
View and select Watchpoint Properties....

It is also possible to change the value of a variable; afterwards the current execution process will use the
changed content. Variables or structured variables' subelements of a basic type like boolean or integer
can be edited directly in the Variables View by clicking on the current value. To edit the structure of a
structured variable, right click on it and choose Change Value, which causes an editor window to open.
Now you can edit the value; by choosing OK, the new content will be saved. The value editor is based on
the editor dialog of the Template Wizard, see there for additional info.

Figure 9.12. Editing a basic value in the Variables View

Using TTworkbench TTdebug

223

Timers View

The Timers View shows all timers that are declared in the stack trace element that is currently selected in the
Debug View. Timers are stopped during suspension, but get reactivated while performing step commands.

Figure 9.13. Timers View

If the icon on the left of a timer is greyed out, then the timer is not running. The second column shows

the remaining duration of the timer. By selecting timers and pressing the button in the Timers View
menu bar the user can manually trigger timeouts.

Port Queue View

The Port Queue View is separated into three sections.

• The uppermost table contains all ports declared in the component that is currently selected in the Debug
View. If you select one of the ports, the content of their message queue gets displayed in the section
below.

• The section in the middle contains all messages that were received but not yet processed on the port that
is selected in the section above. They are ordered by the time of their arrival; their position in the queue
is additionally shown in the Pos. column. It is possible to manipulate the order by using the arrows right
of this table. In the Operation column, the command that was used to send the message is displayed;
it is either Message, Call, Reply, Exception or Timeout (timeouts are not actually received messages;
they signal that a call command on their port could not be finished in the given timespan). The Sender
column shows from where the message originates. If it was sent by another component, the component's
id and the used port get displayed. If the sender was the SUT, SUT gets displayed.

• The lowest section displays the content of the messages that are selected in the table above. For mes-
sages sent by the SUT, the appropriate decoding hypothesis is not yet known. Because of that, for these
messages the Port Queue View displays the raw received data in hexadecimal form and an interpretation
of the data as ASCII code.

Using TTworkbench TTdebug

224

Figure 9.14. Port Queue View

Debugging Multiple Components

TTdebug provides a pure static component handling: If one component suspends, all components and all
timers get suspended. Stepping through the suite only affects the component you are stepping with, all
other components and their timers stay suspended. This allows the user to switch the component he is
stepping with at any time.

Automatic Perspective Switch

When a test suite suspends on a breakpoint, the user gets asked if he would like to switch to the Debug
Perspective. The dialog popup allows you to store the choices you made and, after that, Eclipse does not
ask this again in future. To get to the location to change these setting afterwards you have to open Window
> Preferences.... It is placed in Run/Debug > Perspectives, titled "Open the associated perspective when
an application suspends".

Using TTworkbench TTdebug

225

Debugging Java
Since TTCN-3 suites rely on codecs and test adapters that are usually programmed in Java, it is important
to be able to debug Java code as well as TTCN-3 code. TTdebug cooperates with the standard Eclipse Java
debugger so that both can be used during the same test suite run. To use the Java debugger you have to set a
breakpoint in the Java source file you wish to debug. When the Java debugger stops at this point, TTdebug
automatically stops all other components and sets itself on hold until the user resumes Java execution.

To prevent the Java debugger to suspend every time an executable terminates, there is an option in the
Preferences which forces TTdebug to unset the according Java debugger option when loading a test exe-
cutable. If you wish the Java compiler to suspend on uncaught exceptions, you have to uncheck that TTde-
bug option or to manually reactivate the Java debugger option while debugging (Window > Preferences...,
then open Java > Debug and there set the checkbox "Suspend execution on uncaught Exceptions").

Note

If you wish to debug Java, but not TTCN-3, you may set the according options in the Pref-
erences to disable TTdebug without disabling the Java debugger.

Handling the SUT
Usually during the debugging process a test suite does not work as it should because the system under test
does not suspend when the suite suspends. The standard Testing Technologies Testadapter provides the
method "initializeDebugging()" which is called during suite initialization if the debugger is active. The
standard implementation does nothing, but it allows the user to implement an own testadapter that inherits
from the standard adapter and overwrites that method with code to prepare the SUT for debugging.

Preferences
To open the TTdebug preferences first select Window > Preferences... in the menu bar, then open
TTCN-3 > TTman and there activate the tab "Debug". There are three options that affect TTdebug:

• "Enable Java Debugger": If this option is not set, it is not possible to suspend Java execution, neither
manually nor by setting breakpoints (see Debugging Java).

• "Enable TTCN-3 Debugger": If this option is not set, the debugger does not get loaded together with
the test executable and therefore cannot be used. This option is disabled, if the "Enable Java Debugger"
option above is not set!

• "Prevent Java Debugger to suspend on uncaught exceptions": If this option is not set, the Java Debugger
will suspend after the termination of the executable when TTdebug is enabled (see Debugging Java).

The meaning of the other entries on this page can be seen in TTman main preferences.

226

Chapter 10. Additional Runtime Plugins
If additional runtime plugins are installed, you'll find accompanying documentation in the chapter tree
view on the left.

227

Chapter 11. Frequently Asked
Questions

Here you'll find the answers to some questions frequently asked by our customers.

11.1. I've done an update of TTworkbench and now it starts to complain that it can't find several classes.
Those classes seem to belong to TTworkbench.

This might be a problem of Eclipse' configuration. To resolve this, start the eclipse.exe or
TTworkbench.exe executable with the parameter -clean. The eclipse core runtime will rebuild
caches of registered plugins. This has to be done only once. Afterwards Eclipse and thus TTwork-
bench should find all its classes.

11.2. How to start the lmgrd FLEXnet Publisher license manager?

To start FLEXnet Publisher license manager there are two possibilities:.

1. Interactive mode:
lmgrd -z -c license.dat

2. Daemon mode:
lmgrd -l <logfile> -c license.dat

Further information can be found in FLEXnet Publisher end user's guide at http://www.globes.com/
support/utilities/flexnet_licensing_end_user_guide.pdf .

11.3. In Execution perspective I always get an error when trying to load a CLF file.

If you get following error message

The error was detected in class:com.testingtech.ttworkbench.ttman.UIImpl
 java.rmi.ConnectIOException: Exception creating connection to: localhost; nested
 exception is:
 java.net.SocketException: Invalid argument or cannot assign requested address
 ...

you've hit a known problem with Java 1.4.2 on RedHat Fedora Core 4. There are three possible
workarounds:

1. Install and use Java 1.5.

2. Disable SELinux extension system-wide (using the configuration tool system-config-securitylev-
el as root).

3. Start TTworkbench with additional parameters on command-line: -vmargs -
Djava.net.preferIPv4Stack=true If this works on your system, you can change this setting per-
manently by changing the file ttworkbench.ini inside TTworkbench's installation folder
like this:

-nl
en
-vmargs
-Xms256m

http://www.globes.com/support/utilities/flexnet_licensing_end_user_guide.pdf
http://www.globes.com/support/utilities/flexnet_licensing_end_user_guide.pdf

Frequently Asked Questions

228

-Xmx512m
-XX:MaxPermSize=256m
-Dfile.encoding=UTF-8
-Djava.net.preferIPv4Stack=true

11.4. How can I tell TTworkbench to use a specific Java JRE/JDK?

Start TTworkbench with additional parameters on command-line: -vm /path/to/java/bin/java on
Linux or -vm c:\path\to\Java\bin\javaw.exe on Windows respectively to specify the JVM exe-
cutable. If this works on your system, you can change this setting permanently by changing the file
ttworkbench.ini inside TTworkbench's installation folder like this:

-nl
en
-vm
/path/to/jre/or/jdk/bin/java
-vmargs
-Xms256m
-Xmx512m
-XX:MaxPermSize=256m
-Dfile.encoding=UTF-8
-Djava.net.preferIPv4Stack=true

Please mind the line break after -vm.

11.5. I observed that the execution of the first test case in my campaign needs much more time than the
execution of the next test cases. What can I do to improve the performance of the first test case.

There are several system properties that can be set in order to increase the performance of the first ex-
ecuted test case. All these options trigger a specific initialization in the TE which would be normally
made during the execution of the first test case. The options can be given as VM arguments hav-
ing the syntax -Dmyoption=value. For setting the additional VM arguments please refer to TTman
main preferences.

Following options are defined:

• preload.modules - if set enforces pre-loading of all classes from the compiled module jars.

• preload.templates - if set enforces the initialization of all not parameterized templates defined
in the loaded modules.

• preload.tt3runtime - if set enforces pre-loading of all classes built-in runtime libraries.

• preload.ta - if set enforces pre-loading of all classes from the test adapter jar file.

• preload.modulepars - if set enforces accessing (and thus also initialization) of all module pa-
rameters.

• logging.binary - defaults to "true"; if set to "false", the slower ASCII-encoded logging is used
as a replacement for the faster binary logging; the ASCII-encoded logging can be used to ease
debugging using a network sniffer.

Note
Please note that using any of these option will increase the load time of the test cam-
paign.

11.6. How to migrate TTthree 1.3?

Frequently Asked Questions

229

To migrate TTthree 1.3 you have to do the following steps:

1. Removing old TCI

The most significant API change made within TTthree 1.3 is removing of the old proprietary TCI
interfaces. That is, some classes/interfaces from the package com.testingtech.ttcn.tci
were removed, as from TTthree 1.3 on only the standardized TCI is supported.

Following classes from this package were removed:

Any-
OrOmitValue

Any-
OrOmitVal-
ueIf

Bit-
stringValue

Bit-
stringVal-
ueIf

BooleanValue BooleanVal-
ueIf

Charstring-
Value

Charstring-
ValueIf

CodecServer Component Decoder DecodingEx-
ception

Encoder EncodingEx-
ception

Enumerat-
edValue

Enumerat-
edValueIf

ExtendedT-
ciTypeClass

FloatValue FloatValueIf Hexstring-
Value

Hexstring-
ValueIf

IntegerValue IntegerVal-
ueIf

Module

Octet-
stringValue

Octet-
stringVal-
ueIf

RecordOfVal-
ue

RecordOfVal-
ueIf

RecordValue RecordVal-
ueIf

TciBehaviour-
IdImpl

TciControl

TciException TciLogging TciLog-
gingImpl

TciManage-
ment

TciManage-
mentIf

TciMes-
sageImpl

TciOpera-
tional

TciValue

Type Type-
ClassWrapper

TypeServer UnionValue

UnionValueIf Univer-
salCharstring-
Value

Univer-
salCharstring-
ValueIf

Value

ValueServer ValueServ-
erImpl

ValueWrapper VerdictValue

VerdictVal-
ueIf

Instead of the interfaces defined in this package, the ETSI TCI interfaces located in the pack-
age org.etsi.ttcn.tci have to be used. In order to use the ETSI TCI interfaces, the
TTorg.jar file has to be present in CLASSPATH.

As the standardized TCI does not provide any exception, the old TciException, En-
codingException and DecodingException have to be replaced by user defined excep-
tions.

Frequently Asked Questions

230

2. ModuleParameterServer

As the old TCI is no more supported, the method from the interface
com.testingtech.ttcn.tci.ModuleParameterServer using the old TCI Value
interfaces was removed.

That is, the implementations of the method

public com.testingtech.ttcn.tci.Value
getModuleParameter(com.testingtech.ttcn.tci.Type parameterType,
String parameterIdentifier, String value) ;

have to be removed from the classes implementing this interface.

3. RB

As the old TCI is no more supported, the following methods have been removed from the class
RB:

public TciManagement getTciManagement()

public void setTciManagement(TciManagement tciManagement)

public TciValue getTciValue()

The public field runtimeBehavior was also removed, as it was also used by the
old TCI. Statements like RB.runtimeBehavior.function() have to be replaced by
RB.function().

To enable the usage of multiple logging implementations at the same time, the class RB uses
internally a logging dispatcher. That is, if the method setLogging is called, the given object
is not set as logging in RB, but the logging implementations is added to the list of loggers. This
means, that a call to getLogging will return the logging dispatcher not the implementation
passed to setLogging.

4. LoggingInterface

The interface LoggingInterface has been deprecated, as the "real" logging interface is now
TXILoggingInterface. For backwards compatibility reasons, the interface LoggingIn-
terface is still used, but is only extends now TXILoggingInterface. In the next major
TTthree release the LoggingInterface will be probably replaced by the TXILogging-
Interface.

Some logging methods are now deprecated and similar methods with additional parameters have
been introduced.

The following methods are new deprecated:

 public void logCallMapped(long time, Object source,
 TriComponentId componentId, TriPortId tsiPortId, TriAddress sutAddress,
 TriSignatureId signatureId, TriParameterList parameterList,
 String message);

 public void logReplyMapped(long time, Object source,
 TriComponentId componentId, TriPortId tsiPortId, TriAddress sutAddress,
 TriSignatureId signatureId, TriParameterList parameterList,

Frequently Asked Questions

231

 TriParameter returnValue, String message);

 public void logRaiseMapped(long time, Object source,
 TriComponentId componentId, TriPortId tsiPortId, TriAddress sutAddress,
 TriSignatureId signatureId, TriException exception, String message);

The new methods that have to be implemented by logging implementations are:

 public void logCallMapped(long time, Object source,
 TriComponentId componentId, TriPortId tsiPortId, TriAddress sutAddress,
 TriPortId sourcePortId,
 TriSignatureId signatureId, Value[] parameters,
 TriParameterList parameterList, String message);

 public void logReplyMapped(long time, Object source,
 TriComponentId componentId, TriPortId tsiPortId, TriAddress sutAddress,
 TriPortId sourcePortId, TriSignatureId signatureId,
 Value[] parameters, TriParameterList parameterList,
 Value tciReturnValue, TriParameter returnValue, String message);

 public void logRaiseMapped(long time, Object source,
 TriComponentId componentId, TriPortId tsiPortId, TriAddress sutAddress,
 TriPortId sourcePortId, TriSignatureId signatureId, Value
 tciValueException,
 TriException exception, String message);

5. TTorg.jar

The standardized interfaces (TCI and TRI) are now packaged separately in the library
TTorg.jar. This files has to be added to the CLASSPATH when compiling test adapters and
codecs that use these interfaces.

11.7. I have problems running my tests but the configuration seems to be okay. What's wrong?

On most machines a personal firewall is running. Sometimes the security options are too high so
TTworkbench is not able to communicate. Please make sure that your security level is not too high,
or create exception rules for it. For further instructions please refer to the users guide of your security
software.

11.8. I am using TTworkbench under Linux and for example German umlauts, Japanese or Chinese char-
acters are not properly displayed in the data view of TTman.

TTworkbench uses UTF-8 encoding. A proper display of all characters in the TTman data view or
in a eclipse console view requires the appropriate language setting on your Linux machine before
starting TTworkbench. You can check your setting by typing locale in a Linux shell, the LANG
environment variable has to include UTF-8 encoding, i.e. en_GB.UTF-8. If necessary, set the en-
vironment variable LANG accordingly or ask your system administrator to configure the language
globally on your machine (e.g. for SuSE by using yast (system -> language and system -> environ-
ment -> language).

11.9. I've imported an older TTCN-3 project into my workspace and I get the error "Project MyProject
is missing required library: 'C:\TTwb\plugins\com.testingtech.ttworkbench.ttthree.core_1.0.4\lib
\TTtools.jar'". With a previous version of TTworbench the project was running without any prob-
lems.

The location of the file TTtools.jar was changed so that the old path is no longer valid. You can
update the build path of the project by right clicking on the project and selecting from the pop-up
menu the item "Update TTtools path".

Frequently Asked Questions

232

Figure 11.1. Update TTtools path

233

Chapter 12. What's New
This chapter provides the current TTworkbench "What's new" information.

whatsnew/doc/index.html

234

Chapter 13. Contacting Technical
Support

 Telephone and Email support is available Monday through Friday (except holidays). When contacting
Technical Support through Email, please include the following information along with a detailed descrip-
tion of your problem:

• Name, telephone number, and company name

• Make and version number of operating system

• Product release number

• Your Log Id (if you are calling about a previously reported problem)

Upon receipt of your request, Testing Technologies Technical Support will send you an response with
your Log Id # and point of contact for your issue.

Testing Technologies Technical Support Con-
tact Information

This information was accurate at the time of printing. If you experience any difficulty contacting us using
this information, please check our web site at www.testingtech.com for the most up-to-date information.

Testing Technologies Technical Support

Michaelkirchstrasse 17/18

10179 Berlin

Germany

phone +49 30 726 19 19 0

fax +49 30 726 19 19 20

internet www.testingtech.com

ticket system support.testingtech.com

http://www.testingtech.com
http://www.testingtech.com
http://support.testingtech.com

235

Index
C
Campaign, 161
Campaign Wizard, 164
Checked Non-Standard Language Extensions , 135
Clean jar files, 144
Command-line Mode

PluginHomeResolver.sh, 150
TTman.bat , 210
TTman.sh , 210
TTthree.bat, 143
TTthree.sh, 143
TTthree2.sh, 149

Core Language
Display, 69
Mapping, 66

D
Debug mode, 144
Default Campaign, 161
Destination path, 144
Diagram

Creation, 79

E
Eclipse, 2

Eclipse Download, 4
EMF Download, 5
GEF Download, 5

J
Java code, 146

K
Known limitations, 135

L
Language, 148
Language Features, 134
lmgrd , 3
Logging

Export, 183
Filters, 195, 199
Generation, 205
Graphical, 196
Import, 183
Offline, 204
Textual, 193

M
Meta Campaign, 169
Meta Campaign Wizard, 169
Meta model, 145, 145
Modify Campaign, 168
Module Loader File

Package attribute, 148

O
OSGI file locking, 146
Other Non-Standard Language Extensions , 136

P
PluginHomeResolver.sh, 150
Preprocessor Command, 147
Project Directory, 147
Project Path, 147

R
Reports, 184

S
Session, 183
Symbols

Attributes, 70

T
T3Doc, 151
t3server, 150
Target package, 148
TCI Specification, 1
Technical support, 234

Contact information, 234
Log Id, 234

Test Adapter, 172
TRI Specification, 1
TTCN-3 Core Language

Specification, 1
TTCN-3 home page, 2
TTman exit codes, 211
TTman Options , 210
TTman.bat , 210
TTman.sh , 210
TTrun

JAR File, 147
TTthree exit codes, 149
TTthree Options, 143
TTthree.bat, 143
TTthree.sh, 143
TTthree2.sh, 149

Index

236

V
Verbosity, 149
Version, 149, 211

