Keysight N6473A OIF-CEI 56G Compliance Application

Notices

© Keysight Technologies, Inc. 2005-2018

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Keysight Technologies, Inc. as governed by United States and international copyright laws.

Revision

Version 01.00.0000

Edition

April 23, 2018

Available in electronic format only

Published by: Keysight Technologies, Inc. 1900 Garden of the Gods Road Colorado Springs, CO 80907 USA

Warranty

The material contained in this document is provided "as is," and is subject to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Keysight disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Keysight shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Keysight and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

Technology License

The hard ware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

U.S. Government Rights

The Software is "commercial computer software," as defined by Federal Acquisition Regulation ("FAR") 2.101. Pursuant to FAR 12.212 and 27.405-3 and Department of Defense FAR Supplement ("DFARS") 227.7202, the U.S. government acquires commercial computer software under the same terms by which the software is customarily provided to the public. Accordingly, Keysight provides the Software to U.S. government customers under its standard commercial license, which is embodied in its End User License Agreement (EULA), a copy of which can be found at www.keysight.com/find/sweula. The license set forth in the EULA represents the exclusive authority by which the U.S. government may use, modify, distribute, or disclose the Software. The EULA and the license set forth therein, does not require or permit, among other things, that Keysight: (1) Furnish technical information related to commercial computer software or commercial computer software documentation that is not customarily provided to the public; or (2) Relinquish to, or otherwise provide, the government rights in excess of these rights customarily provided to the public to use, modify, reproduce, release, perform, display, or disclose commercial computer software or commercial computer software documentation. No additional government requirements beyond those set forth in the EULA shall apply, except to the extent that those terms, rights, or licenses are explicitly required from all providers of commercial computer software pursuant to the FAR and the DFARS and are set forth specifically in writing elsewhere in the EULA. Keysight shall be under no obligation to update, revise or otherwise modify the Software. With respect to any technical data as defined by FAR 2.101, pursuant to FAR 12.211 and 27.404.2 and DFARS 227.7102, the U.S. government acquires no greater than Limited Rights as defined in FAR 27.401 or DFAR 227.7103-5 (c), as applicable in any technical data.

Safety Notices

CAUTION

A CAUTION notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met.

WARNING

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

In This Book

This book is your guide to programming the Keysight Technologies N6473A OIF-CEI 56G Compliance Application.

- Chapter 1, "Introduction to Programming," starting on page 7, describes test application programming basics.
- Chapter 2, "Configuration Variables and Values," starting on page 9, Chapter 3, "Test Names and IDs," starting on page 15, and Chapter 4, "Instruments," starting on page 21, provide information specific to programming the N6473A OIF-CEI 56G Compliance Application.

How to Use This Book

Programmers who are new to test application programming should read all of the chapters in order. Programmers who are already familiar with this may review chapters 2, 3, and 4 for changes.

Contents

In This Book / 3

- 1 Introduction to Programming
 - Remote Programming Toolkit / 8
- 2 Configuration Variables and Values
- 3 Test Names and IDs
- 4 Instruments

Index

1 Introduction to Programming

Remote Programming Toolkit / 8

This chapter introduces the basics for remote programming a test application. The programming commands provide the means of remote control. Basic operations that you can do remotely with a computer and a test app running on an oscilloscope include:

- · Launching and closing the application.
- Configuring the options.
- · Running tests.
- Getting results.
- · Controlling when and were dialogs get displayed
- · Saving and loading projects.

You can accomplish other tasks by combining these functions.

Remote Programming Toolkit

The majority of remote interface features are common across all the Keysight Technologies, Inc. family of compliance/test applications. Information on those features is provided in the N5452A Compliance Application Remote Programming Toolkit available for download from Keysight here: www.keysight.com/find/rpi. The N6473A OIF-CEI 56G Compliance Application uses Remote Interface Revision 5.70. The help files provided with the toolkit indicate which features are supported in this version.

In the toolkit, various documents refer to "application-specific configuration variables, test information, and instrument information". These are provided in Chapters 2, 3, and 4 of this document, and are also available directly from the application's user interface when the remote interface is enabled (View>Preferences::Remote tab::Show remote interface hints). See the toolkit for more information.

2 Configuration Variables and Values

The following table contains a description of each of the N6473A OIF-CEI 56G Compliance Application options that you may query or set remotely using the appropriate remote interface method. The columns contain this information:

- GUI Location Describes which graphical user interface tab contains the control used to change the value.
- Label Describes which graphical user interface control is used to change the value.
- · Variable The name to use with the SetConfig method.
- Values The values to use with the SetConfig method.
- Description The purpose or function of the variable.

For example, if the graphical user interface contains this control on the **Set Up** tab:

Enable Advanced Features

then you would expect to see something like this in the table below:

Table 1 Example Configuration Variables and Values

GUI Location	Label	Variable	Values	Description
Set Up	Enable Advanced Features	EnableAd vanced	True, False	Enables a set of optional features.

and you would set the variable remotely using:

```
ARSL syntax
------
arsl -a ipaddress -c "SetConfig 'EnableAdvanced' 'True'"
C# syntax
```

remoteAte.SetConfig("EnableAdvanced", "True");

Here are the actual configuration variables and values used by this application:

NOTE

Some of the values presented in the table below may not be available in certain configurations. Always perform a "test run" of your remote script using the application's graphical user interface to ensure the combinations of values in your program are valid.

NOTE

The file, "ConfigInfo.txt", which may be found in the same directory as this help file, contains all of the information found in the table below in a format suitable for parsing.

 Table 2
 Configuration Variables and Values

GUI Location	Label	Variable	Values	Description
Configure	Clock Recovery Method	CRMethod	FOPLL, SOPLL	Select the Cock Recovery Method to be used.
Configure	Damping Factor	DFactor	(Accepts user-defined text), 1	Enter the Damping Factor to use for clock recovery. This values is only used for Second Order PLL. You may enter any value.
Configure	Disable Pattern Check	DisablePattern	Enable, Disable	Select "Disable" to disable the pattern verification for square 8 pattern tests and suppress pattern error pop-ups. Select "Enable" to ensure that the correct pattern is being tested as per specification.
Configure	Dp	DpVal	(Accepts user-defined text), 2	Set the Dp value used for steady state, linear fit pulse peak, and error calculations.
Configure	Eye Height/Width Probability	NumUI	(Accepts user-defined text), 1e-5, 1e-6, 1e-15	Select the eye probability to test to for Eye Height and Width tests.
Configure	ISI Filter Lag	ISILag	(Accepts user-defined text), 5	When using Arbitrary mode for the Jitter Pattern Length, set the Lagging ISI filter coefficient. Go to www.agilent.com for application note 5989-4974EN to help select the correct ISI filter.

 Table 2
 Configuration Variables and Values (continued)

GUI Location	Label	Variable	Values	Description
Configure	ISI Filter Lead	ISILead	(Accepts user-defined text), -2	When using Arbitrary mode for the Jitter Pattern Length, set the Leading ISI filter coefficient. Go to www.agilent.com for application note 5989-4974EN to help select the correct ISI filter.
Configure	Jitter Pattern Length	PatLength	Periodic, Arbitrary	Choose Periodic or Arbitrary. Periodic is used for data patterns that are period and repeat through the scope memory. Arbitrary is used for random data patterns that does not repeat. Set ISI filter options below as well when selecting Arbitrary.
Configure	Loop Bandwidth	LoopBand width	(Accepts user-defined text), 4e6, 10e6, 10.3035e6	Enter the loop band width to use for clock recovery. Value with automatically scale with signaling rate change. Manually set to desired value if different from autoset.
Configure	Nb	NbVal	(Accepts user-defined text), 10, 12, 13, 14, 16	Set the Nb value used for steady state, linear fit pulse peak, and error calculations.
Configure	Np	NpVal	(Accepts user-defined text), 8, 12, 13, 14, 16, 200	Set the Np value used for steady state, linear fit pulse peak, and error calculations.
Configure	Pattern for Averaging	AvgPat	(Accepts user-defined text), AUTo, 127, 128, 511, 512, 8191	Auto - will automatically find the pattern when the eye is open. When the eye is closed, pattern averaging needs to know what the pattern length is to best identify the bits to average. Enter the pattern length (i.e. 8191)
Configure	Rj Bandwidth	RjBand width	NARRow, WIDE	Choose the Rj Filter used in the jitter measurements.
Configure	Save Tested Waveforms	SaveWFM	No, Yes	Select Yes to save the waveform files of the tested signals. Files will be saved to directory set in Select waveform directory.

 Table 2
 Configuration Variables and Values (continued)

GUI Location	Label	Variable	Values	Description
Configure	Scope Response	ScopeResp	BESSEL4, WALL	Select the Scope Response. A selection of 4th order Bessel will better represent a reference reciever. A flat response will give a direct look at the exact signal at the test point.
Configure	Scope Response 3dB frequency	ScopeFreq	33e9, 40e9, 43e9, 75, 50e9, 63e9	Select the Scope Response 3dB frequency. Note: a selection of 75% of Baud Rate will automatically calculate the valued based on the Baud Rate.
Configure	Select Waveform Directory	DirWFM	(Accepts user-defined text), C:\Temp\KRwfm	Type in a directory path to save your measured waveforms.
Configure	Signaling Rate	SignalingRate	(Accepts user-defined text), 10.3125e9, 25.78125e9, 26.5625e9, 50e9	Set the Signaling Rate to be tested. Enter value in the format 10.3125e9.
Configure	Start value for CTLE utility for Eye Opening	StartCTLE	1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9	Select the starting CTLE setting to use for the "Find optimal CTLE Eye Opening" test. The test will test the range of settings from this start value, to the stop value set in the next config.
Configure	Stop value for CTLE utility for Eye Opening	StopCTLE	1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9	Select the last CTLE setting to use for the "Find optimal CTLE Eye Opening" test. The test will test the range of settings from start value selected in the previous config, to the stop value set here.

 Table 2
 Configuration Variables and Values (continued)

GUI Location	Label	Variable	Values	Description
Configure	Use Optimized CTLE for Eye Opening.	UseCTLE	Off, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9	Select the optimized setting to use. Default is off. Run "Find Optimal CTLE Eye Opening" Test under "Utilities" to find the optimal setting. When the utility is run, it will automatically set the optimal setting. This value will only be automatically set if utility is run any time after app load or if project is loaded with setting. All other instances, the setting will be the default of off and will need to be manually selected.
Run Tests	Event	RunEvent	(None), Fail, Margin < N, Pass	Names of events that can be used with the StoreMode=Event or RunUntil RunEventAction options
Run Tests	RunEvent=Margin < N: Minimum required margin %	RunEvent_Margin < N_MinPercent	Any integer in range: 0 <= value <= 99	Specify N using the 'Minimum required margin %' control.

2 Configuration Variables and Values

3 Test Names and IDs

The following table shows the mapping between each test's numeric ID and name. The numeric ID is required by various remote interface methods.

- Name The name of the test as it appears on the user interface Select Tests tab.
- Test ID The number to use with the RunTests method.
- Description The description of the test as it appears on the user interface
 Select Tests tab.

For example, if the graphical user interface displays this tree in the **Select Tests** tab:

- · All Tests
 - Rise Time
 - Fall Time

then you would expect to see something like this in the table below:

Table 3 Example Test Names and IDs

Name	Test ID	Description
Fall Time	110	Measures clock fall time.
Rise Time	100	Measures clock rise time.

and you would run these tests remotely using:

```
ARSL syntax
---------
arsl -a ipaddress -c "SelectedTests '100,110'"
arsl -a ipaddress -c "Run"

C# syntax
-------
remoteAte.SelectedTests = new int[]{100,110};
remoteAte.Run();
```

Here are the actual Test names and IDs used by this application:

NOTE

The file, "TestInfo.txt", which may be found in the same directory as this help file, contains all of the information found in the table below in a format suitable for parsing.

Table 4 Test IDs and Names

Name	TestID	Description
BUJ	55202	Bounded Uncorrelated Jitter BUJ measurement
Baud Rate	75200	Baud rate of the signal
Baud Rate	65200	Baud rate of the signal
Baud Rate	55200	Baud rate of the signal
Common Mode Noise, RMS	55103	Test the common mode RMS Noise. This test can only be tested in dual single ended connection
Common Mode Noise, RMS	256103	Test the common mode rms noise. This test can only be tested in dual single ended connection
Common Mode Noise, RMS	356103	Test the common mode rms noise. This test can only be tested in dual single ended connection. Must be DC coupled.
Common Mode Voltage - Vcm	256101	Test the DC common mode voltage. This test can only be tested in dual single ended connection
Common Mode Voltage - Vcm	356101	Test the common mode voltage. This test can only be tested in dual single ended connection. Must be DC coupled.
Common-mode Output Return Loss	10001	Common-mode Output Return Loss measurement
Common-mode Output Return Loss	15001	Common-mode Output Return Loss measurement
Common-mode Return Loss	215001	Common-mode Return Loss measurement
Common-mode Return Loss	315001	Common-mode Return Loss measurement
Common-mode to Differential Mode Conversion	215003	Common-mode to Differential Mode Conversion measurement
Common-mode to Differential Mode Conversion	315003	Common-mode to Differential Mode Conversion measurement
DC Common Mode Voltage	55101	Test the DC common mode voltage. This test can only be tested in dual single ended connection
DC Common Mode Voltage Test	75101	Test the DC common mode voltage. This test can only be tested in dual single ended connection
DC Common Mode Voltage Test	65101	Test the DC common mode voltage. This test can only be tested in dual single ended connection

 Table 4
 Test IDs and Names (continued)

Name	TestID	Description
Differential Output Return Loss	10000	Differential Output Return Loss measurement
Differential Output Return Loss	15000	Differential Output Return Loss measurement
Differential Output Return Loss	215000	Differential Output Return Loss measurement
Differential Output Return Loss	315000	Differential Output Return Loss measurement
Differential Voltage pk-pk	256102	Test the maximum voltage with the TX enabled
Differential Voltage, pk-pk	55102	Test the maximum voltage with the TX enabled
Differential Voltage, pk-pk	356102	Test the maximum voltage with the TX enabled
Effective bounded uncorrelated jitter	65205	Effective bounded uncorrelated Jitter measurement
Effective total uncorrelated jitter	65206	Effective total uncorrelated Jitter measurement
Even-Odd Jitter	75201	Even-Odd Jitter measurement
Even-Odd Jitter	65201	Even-Odd Jitter measurement
Even-Odd Jitter	65204	Even-Odd Jitter measurement
Even-Odd Jitter	55201	Even-Odd Jitter measurement
Eye Height - EH15	135660 0	Measures the eye height of each the eye at user selected CTLE at 10-15 probability.
Eye Height - EH15	125660 0	Measures the height of each the eye at user selected CTLE at 10-15 probability.
Eye Height - EH6	256600	Measures the height of each the eye at user selected CTLE at 10-6 probability.
Eye Linearity	256603	Measures the Eye Linearity
Eye Width - EW15	135660 1	Measures the eye width of the eye at user CTLE at 10-15 probability
Eye Width - EW15	125660 1	Measures the width of the eye at user CTLE at 10-15 probability.
Eye Width - EW6	256601	Measures the width of the eye at user CTLE at 10-6 probability.
Far-end Eye Height - EH6	356610	Measures the Far-end eye height of each the eye at user selected CTLE at 10-6 probability.
Far-end Eye Width - EW6	356611	Measures the Far-end eye width of the eye at user CTLE at 10-6 probability

 Table 4
 Test IDs and Names (continued)

Name	TestID	Description
Find Optimal CTLE Eye Opening	6602	Measures the eye width and height with each CTLE setting and reports the optimal setting to use in Eye Width and Eye Height measurements. The optimal value is automatically set in the configure tab after this test has run.
J4	75202	J4 Jitter measurement
J4	65202	J4 Jitter measurement
JRMS	75203	JRMS Jitter measurement
JRMS	65203	JRMS Jitter measurement
Level - PRBS pattern	2000	Tests the level for each level in the PRBS pattern
Level - PRBS pattern	52000	Tests the level for each level in the PRBS pattern
Level Noise - PRBS pattern	52002	Tests the noise of each level in the PRBS pattern
Level RMS - PRBS pattern	72001	Tests the level rms for each level in the PRBS pattern
Level RMS - PRBS pattern	62001	Tests the level rms for each level in the PRBS pattern
Level RMS - PRBS pattern	52001	Tests the level rms for each level in the PRBS pattern
Level Separation Mismatch Ratio - RLM	72003	Tests the level mismatch ratio
Level Separation Mismatch Ratio - RLM	62003	Tests the level mismatch ratio
Level Separation Mismatch Ratio - RLM	52003	Tests the level mismatch ratio
Linear Fit Pulse Peak	75301	Linear Fit Pulse Peak
Linear Fit Pulse Peak	65301	Linear Fit Pulse Peak
Linear Fit Pulse Peak	55301	Linear Fit Pulse Peak
Near-end Eye Height - EH6	356600	Measures the Near-end eye height of each the eye at user selected CTLE at 10-6 probability.
Near-end Eye Linearity	356603	Measures the Near-end eye linearity of each the eye at user selected CTLE
Near-end Eye Width - EW6	356601	Measures the Near-end eye width of the eye at user CTLE at 10-6 probability
Output AC Common Mode Voltage Test	75103	Test the AC common mode voltage. This test can only be tested in dual single ended connection
Output AC Common Mode Voltage Test	65103	Test the AC common mode voltage. This test can only be tested in dual single ended connection

 Table 4
 Test IDs and Names (continued)

Name	TestID	Description
Output Differential Voltage Test	75102	Test the maximum voltage with the TX enabled
Output Differential Voltage Test	65102	Test the maximum voltage with the TX enabled
Post-cursor equalization Local_eq_c1(0)	5504	Measures Post-cursor equalization for c(1) weight 0
Post-cursor equalization Local_eq_c1(1)	5505	Measures Post-cursor equalization for c(1) weight 1
Post-cursor equalization Local_eq_c1(2)	5506	Measures Post-cursor equalization for c(1) weight 2
Post-cursor equalization Local_eq_c1(3)	5507	Measures Post-cursor equalization for c(1) weight 3
Post-cursor equalization Local_eq_c1(4)	5508	Measures Post-cursor equalization for c(1) weight 4
Post-cursor equalization Local_eq_c1(5)	5509	Measures Post-cursor equalization for c(1) weight 5
Pre-cursor equalization Local_eq_cm1(0)	5500	Measures Pre-cursor equalization for c(-1) weight 0
Pre-cursor equalization Local_eq_cm1(1)	5501	Measures Pre-cursor equalization for c(-1) weight 1
Pre-cursor equalization Local_eq_cm1(2)	5502	Measures Pre-cursor equalization for c(-1) weight 2
Pre-cursor equalization Local_eq_cm1(3)	5503	Measures Pre-cursor equalization for c(-1) weight 3
Signal-to-noise-and-distortion ratio	75302	Measures the SNDR
Signal-to-noise-and-distortion ratio	65302	Measures the SNDR
Signal-to-noise-and-distortion ratio	55302	Measures the SNDR
Steady-State Voltage Vf	75300	Steady-State Voltage Vf measurement
Steady-State Voltage Vf	65300	Steady-State Voltage Vf measurement
Steady-State Voltage Vf	55300	Steady-State Voltage Vf measurement
Total Jitter	55204	Total Jitter measurement
Transition Time - Rise Time (20%-80%)	55400	Rise Time measurement

 Table 4
 Test IDs and Names (continued)

Name	TestID	Description
Transition Time - Rise Time (20%-80%)	256400	Rise Time measurement
Transition Time - Fall Time (20%-80%)	55401	Fall Time measurement
Transition Time - Fall Time (20%-80%)	256401	Fall Time measurement
Transition Time - Fall Time (20%-80%)	356401	Fall Time measurement
Transition Time - Rise Time (20%-80%)	356400	Rise Time measurement
UUGJ	55203	Uncorrelated Unbounded Gaussian Jitter UUGJ measurement
Vertical Eye Closure	356602	Measures the Vertical Eye Closure at Near-End

4 Instruments

The following table shows the instruments used by this application. The name is required by various remote interface methods.

- Instrument Name The name to use as a parameter in remote interface commands.
- Description The description of the instrument.

For example, if an application uses an oscilloscope and a pulse generator, then you would expect to see something like this in the table below:

 Table 5
 Example Instrument Information

Name	Description
scope	The primary oscilloscope.
Pulse	The pulse generator used for Gen 2 tests.

and you would be able to remotely control an instrument using:

4 Instruments

```
queryOptions.Timeout = [timeout];
remoteAte.SendScpiQuery(queryOptions);
```

Here are the actual instrument names used by this application:

NOTE

The file, "InstrumentInfo.txt", which may be found in the same directory as this help file, contains all of the information found in the table below in a format suitable for parsing.

 Table 6
 Instrument Names

Instrument Name	Description
Infiniium	The primary oscilloscope
Keysight ENA	Economy Network Analyzer
Keysight PNA	Performance Network Analyzer

Index

```
C
configuration variables and values, 9
copyright, 2
IDs and names of tests, 15
instrument names, 21
N
names and IDs of tests, 15 names of instruments, 21
notices, 2
P
programming, introduction to, 7
R
Remote Programming Toolkit, 8
T
test names and IDs, 15
٧
variables and values, configuration, 9
W
warranty, 2
```

Index