Programmer’s Reference

Publication Number 54810-97076
March 2002

This reference applies directly to software revision code A.04.20 and later.

For Safety information, Warranties, and Regulatory information,
see the pages at the end of this book.

© Copyright Agilent Technologies 1997-2002
All Rights Reserved.

Infiniium Oscilloscopes

Common
Commands

*CLS
*ESE
*ESR?
*IDN7?
*LRN?
*0PC
*0PT?
*PSC
*PsC?
*RCL
*RST
*SAV
*SRE
*STB?
*TRG
*TST?
*WA

54830002

Programming Command Set

(roah)

ADER? SYSTem: ACQuire CALibrater CHANnel: DISK
AER?

AUToscale DATE AVERage CANCel CDIRectory
BLANK DEBug AVERage COUNt CONTinue DELete
CDISplay DSP COMPlete MPRotect DIRectary?
DiGitize ERRor? COMPlete:STATe OUTPut LOAD
MTEE HE ADer INTerpolate SDONe? MDIRectory
MTER? HELP HEADers MODE SKEW PWD?
MODel? LANGuage POINts START SIMage
OPEE LONGform SRATe STATus STORe
OPER? SETup AAAAT

PRINt TIME

RECall:'SETup BwLimif PROBe:

RUN DISPlay

SERIal INPut AT Tenuation
SINGle OFFSet EADapter
STOP PROBe ECoupling
STORe SETup PROTection EGAIN

STORe WAVeform RANGe EOFFset
TER? SCALe GAIN

VIEW UNITs D7

SKEW

DISPlay

CGRade

CGRade:LEVels

COLumn
CONNect
DATA?
DCOLor
GRATIcule
LINE
PERSistence
ROW

SCOLor
SSAVer
SSAVer-AFTer
STRINg
TEXT

r

il

EXTernal FUNClion<N>: HARDcopy: HISTogram Marker
AREA CURsor?
BWLimit PROBe: DERinter MEASurement
INP U FACTors MODE
PROBe EGAIn MAGe TDELfa?
RANGe EOFFset PRINTers? TSTAr
UNITs ID? TSTOp
SKEW VDELta?
VSTATrt
VSTOp
ADD FFET HORIZonfal: VERTIcal X1Position
AVERage X2Position
DIFF FREQuency POSItion OFFset X1Y1source
DISPlay RESolution RANGe RANGe X2Y2source
DIVide WINDow XDELta?
FFTMagnitude Y1Position
FFTPhase AXIS SCALE WINDow Y2Position
FUNCtion<N=>? MODE YDELta?
HORizontal SIZE DEFault
INTegrate SOURCe
INVert X1Position|LLIMit
MAGNify X2Pasition|RLIMit
MAXimum Y1Pasition|TLIMit
MEASurement Y 2Pasition|BLIMit
MINimum
MULTiply
OFFsSet
RANGe 54800049
SUBTract
VERSuUs

VERTIical

1l

MEASure
|
CLEG‘F\SCRGTCh CGRAde: FET HISTogram JTTer
CTCJitter
DEFine CROSsing DFRequency HITS STATistics
DELTatime CROSsing? DMAGnitude HITS? STATistics?
DUTYcycle DCDistortion FREQuency MEDian DIRection
FALLtme DCDistortion? MAGnitude MEDian? DIRection?
FREQuency EHEIght PEAK1 MEAN
NWIDth EHEight? PEAK2 MEAN?
OVERshoaot EwIDIN THReshold M1S
PERiod EWIDh? M1S7?
PHASe AT Ter M2S
PREShoot JITTer? M2S7?
PWIDth QFACtor M3S
RESults? QFACtor? M3S7?
RiSetime OFFSet?
SCRatch|CLEar PEAK
SENDvalid PEAK?
SOURce PP
STATistics pp?
TEDGe SCALe?
TMAX STDDev
TMIN STDDev?
TVOLt
VAMPlitude
VAVerage
VBASe
VLOWer
VMAX
VMIDdle
VMIN
VPP
VRMS 54800064
VTIMe
VTOP
VUPPer

iv

MTESt

SELFtest

ALIGN
AlignFIT
AUTO
AVERage
AVERage:COUNt
DELetfe
ENABle
HAMPlitude
IMPedance
INVert
LAMPlitude
LOAD
NREGions?

AMASK:

CREate
SAVE|ISTORe
SOURce
UNITs
XDELta
YDELta

PROBe IMPedance?

RUMode

RUMaode SOFaillure

SOURce
STIMe
STARISTOP
TRIGger

COUNt

FAlLures?
FWAVeforms?
WAVeforms?

AftenSET?
CANCel
SCOPETEST

SCALe:

BIND
XDELta
X1

Y1

Y2

‘ e

TMebase:

o

DELay WINDOW
POSItion
RANGe
REFerence
SCALe
VIEW

DELay
POSItion
RANGe
SCALe

54800b5C

A

DELay

MODE
EDLY
TDLY

EDLY
ARM:

SOURce
SLOPe
EVENT:
DELay
SOURce
SLOPe
TRIGger
SOURce
SLOPe

TDLY:

ARM:
SOURce
SLOPe

DELay

TRIGger
SOURce
SLOPe

MODE

DELay
PATTern
STATe
TV
VIOLation

PATTern.

CONDition
LOGic

TRIGger: WMEMory <N>
‘ ‘ ‘ DISPlay
LFFile
ADVanced EDGE GLITch: HOLDoff LOAD
HYSTeresis SAVE
COUPling POLarity LEVel XOFFse
SLOPe SOURce SWEep XRANge
SOURce WIDTh MODE YOFFset
ADVanced YRANge
EDGE
‘ ‘ ‘ GLITch
STATe TV: ViOLation
CLOCk MODE \ |
CONDitian L525
LOGic L1625 MODE PWIDth SETup: TRANSsition:
SLOPe L875 PWIDth
UpTv SETup DIRection MODE GTHan
STV TRANSsition POLarity HOLD LTHan
FIELd SOURce: SETup SOURce
LINE LEVel SHOLd HTHReshold
SOURCce WIDTh LEVel
SPOLarity ‘ L THReshold
upnTV: ‘ TYPE
EDGE
ENUMber SETup HOLD SHOLd
PGTHan
PLTHan CSOurce: CSOurce: CSOurce:
POLarity EDGE EDGE EDGE
SOURce LEVel LEVel LEVel
DSOurce DSOurce DSOurce
HTHReshald HTHReshold HTHReshald
L THReshold L THReshold L THReshald
TIME TIME HoldTIMe

SetupTIMe

WAVeform

BANDpass
BYTeorder
COMPlete?
COUNI?
COUPling?
DATA
FORMaf
POINts?
PREamble
SOURce
TYPE?
VIEW
XDISplay?
XINCrement?
XORigin?
XRANge?
XREFerence?
XUNits?
YDISplay?
YINCrement?
YORigin?
YRANge?
YREFerence~
YUNits?

54830007

In This Book

This book is your guide to programming the Infiniium-Series Oscilloscopes.

Chapters 1-5 give you an introduction to programming the oscilloscopes, along
with necessary conceptual information. These chapters describe basic program
communications, interface, syntax, data types, and status reporting.

Chapter 6 shows example BASIC and C programs, and describes chunks of one
program to show you some typical applications. The BASIC and C example
programs, and a "readme" file are also shipped on a disk with the oscilloscope.

Chapters 7-24 describe the commands used to program the Infiniium-Series
Oscilloscopes. Each chapter describes the set of commands that belong to an
individual subsystem, and explains the function of each command. These
chapters include:

Common HARDcopy

Root Level HISTogram
SYSTem MARKer

ACQuire MEASure
CALibration Mask TESt
CHANRel SELF-Test

DISK TIMe Base

DISPlay TRIGger

EXTernal Channel =~ WAVeform
FUNCtion Waveform MEMory

Chapters 25 and 26 describe the language compatibility for 548xx,
Hewlett-Packard 547xx, and Hewlett-Packard 545xx Oscilloscopes. These
chapters also show you how to choose one of these command languages if you
want to use existing programs on Infiniium Oscilloscopes without having to
modify your programs.

Chapter 27 describes error messages.

Command syntax diagrams are in the Programmer’s Quick Reference.
A Quick Start Guide, Online User’s Guide, and Service Guide also ship with the
548xx oscilloscopes.

viii

Contents

Introduction to Programming

Communicating with the Oscilloscope 1-3
Output Command 1-4

Device Address 1-4

Instructions 1-4

Instruction Header 1-4

White Space (Separator) 1-5

Braces 1-5

Ellipsis 1-5

Square Brackets 1-5

Program Data 1-5

Header Types 1-6

Duplicate Mnemonics 1-8

Query Headers 1-9

Program Header Options 1-10

Character Program Data 1-10

Numeric Program Data 1-11

Embedded Strings 1-12

Program Message Terminator 1-12
Common Commands within a Subsystem 1-13
Selecting Multiple Subsystems 1-13
Programming Getting Started 1-13
Initialization 1-14

Example Program using HP Basic 1-15
Using the DIGITIZE Command 1-16
Receiving Information from the Oscilloscope 1-18
String Variable Example 1-19

Numeric Variable Example 1-19
Definite-Length Block Response Data 1-20
Multiple Queries 1-21

Oscilloscope Status 1-21

LAN and GPIB Interfaces

LAN Interface Connector 2-3

GPIB Interface Connector 2-3

Default Startup Conditions 2-4

Interface Capabilities 2-5

GPIB Command and Data Concepts 2-6
Communicating Over the GPIB Interface 2-7
Communicating Over the LAN Interface 2-8
Bus Commands 2-9

Contents-1

Contents

Message Communication and System Functions
Protocols 3-3
Status Reporting

Status Reporting Data Structures 4-5
Status Byte Register 4-8

Service Request Enable Register 4-10
Message Event Register 4-10

Trigger Event Register 4-10

Standard Event Status Register 4-11
Standard Event Status Enable Register 4-12
Operation Status Register 4-13
Operation Status Enable Register 4-14
Mask Test Event Register 4-15

Mask Test Event Enable Register 4-16
Trigger Armed Event Register 4-17
Error Queue 4-17

Output Queue 4-17

Message Queue 4-18

Clearing Registers and Queues 4-18

Programming Conventions

Data Flow 5-3

Truncation Rule 5-5

The Command Tree 5-6

Infinity Representation 5-13

Sequential and Overlapped Commands 5-13
Response Generation 5-13

EOI 5-13

Sample Programs

Sample Program Structure 6-3
Sample C Programs 6-4

Listings of the Sample Programs 6-20
gpibdecl.h Sample Header 6-21
srgagi.c Sample Program 6-23
learnstr.c Sample Program 6-25
sicl_IO.c Sample Program 6-29
natl_IO.c Sample Program 6-33
init.bas Sample Program 6-38

Contents-2

Contents

srq.bas Sample Program 6-46
Irn_str.bas Sample Program 6-50

Common Commands

*CLS (Clear Status) 7-4

*ESE (Event Status Enable) 7-5
*ESR? (Event Status Register) 7-7
*IDN? (Identification Number) 7-9
*LRN? (Learn) 7-10

*OPC (Operation Complete) 7-12
*OPT? (Option) 7-13

*PSC (Power-on Status Clear) 7-14
*RCL (Recall) 7-15

*RST (Reset) 7-16

*SAV (Save) 7-17

*SRE (Service Request Enable) 7-18
*STB? (Status Byte) 7-20

*TRG (Trigger) 7-22

*TST? (Test) 7-23

*WAI (Wait) 7-24

Root Level Commands

AER? (Arm Event Register) 8-3
AUToscale 8-4

BLANk 8-5

CDISplay 8-6

DIGitize 8-7

MTEE 8-8

MTER? 8-9

MODel? 8-10

OPEE 8-11

OPER? 8-12

OVLEnable 8-13
OVLRegister? 8-14

PRINt 8-15

RECall:SETup 8-16

RUN 8-17

SERial (Serial Number) 8-18
SINGle 8-19

STOP 8-20

STORe:SETup 8-21
STORe:WAVeform 8-22

Contents-3

10

11

Contents

TER? (Trigger Event Register)
VIEW 8-24

System Commands

DATE 9-3

DEBug 9-4

DSP 9-6

ERRor? 9-7
HEADer 9-8
HELP:HEADers 9-10
LANGuage 9-12
LONGform 9-13
SETup 9-15

TIME 9-17

Acquire Commands

AllowMaxSR 10-3
AVERage 10-4
AVERage:COUNt 10-5
BWLimit 10-6
COMPlete 10-7
COMPlete:STATe 10-9
CONFig 10-10
INTerpolate 10-11
MODE 10-12

POINts 10-13
POINts:AUTO 10-15
SRATe (Sample RATe) 10-16
SRATe:AUTO 10-18

Calibration Commands

Oscilloscope Calibration 11-3
Probe Calibration 11-4

Calibration Commands 11-5

CANCel 11-6
CONTinue 11-7
MPRotect 11-8
OUTPut 11-9
SDONe? 11-10
SKEW 11-11
STARt 11-12

8-23

Contents-4

12

13

14

STATus? 11-13
Channel Commands

BWLimit 12-3

DISPlay 12-4

INPut 12-5

OFFSet 12-6

PROBe 12-7
PROBe:ATTenuation 12-9
PROBe:EADapter 12-10
PROBe:ECoupling 12-12
PROBe:EGAIn 12-14
PROBe:EOFFset 12-15
PROBe:GAIN 12-16
PROBe:ID? 12-17
PROBe:SKEW 12-18
PROTection:CLEar 12-19
PROTection? 12-20
RANGe 12-21

SCALe 12-22

UNITs 12-23

Disk Commands

CDIRectory 13-3
DELete 13-4
DIRectory? 13-5
LOAD 13-6
MDIRectory 13-7
PWD? 13-8
SIMage 13-9
STORe 13-10

Display Commands

CGRade 14-3
CGRade:LEVels? 14-5
COLumn 14-7
CONNect 14-8
DATA? 14-9
DCOLor 14-10
GRATicule 14-11
LINE 14-13
PERSistence 14-14

Contents

Contents-5

15

16

Contents

ROW 14-15
SCOLor 14-16
SSAVer 14-19
STRing 14-20
TEXT 14-21

External Channel Commands

BWLimit 15-3

INPut 15-4

PROBe 15-5
PROBe:ATTenuation 15-6
PROBe:EADapter 15-7
PROBe:ECoupling 15-9
PROBe:EGAin 15-11
PROBe:EOFFset 15-12
PROBe:GAIN 15-13
PROBe:ID? 15-14
PROBe:SKEW 15-15
RANGe 15-16

UNITs 15-17

Function Commands

FUNCtion<N>? 16-4
ADD 16-5

AVERage 16-6

DIFF (Differentiate) 16-7
DISPlay 16-8

DIVide 16-9
FFT:FREQuency 16-10
FFT:RESolution? 16-11
FFT:WINDow 16-12
FFTMagnitude 16-14
FFTPhase 16-15
HORizontal 16-16
HORizontal:POSition 16-17
HORizontal:RANGe 16-18
INTegrate 16-19

INVert 16-20

MAGNIify 16-21
MAXimum 16-22
MEASurement 16-23
MINimum 16-25

Contents-6

17

18

19

MULTiply 16-26
OFFSet 16-27
RANGe 16-28
SUBTract 16-29
VERSus 16-30
VERTical 16-31
VERTical:OFFSet 16-32
VERTical:RANGe 16-33

Hardcopy Commands

AREA 17-3
DPRinter 17-4
FACTors 17-6
IMAGe 17-7
PRINters? 17-8

Histogram Commands

AXIS 184

MODE 18-5

SCALe:SIZE 18-6
WINDow:DEFault 18-7
WINDow:SOURce 18-8
WINDow:X1Position | LLIMit 18-9
WINDow:X2Position | RLIMit 18-10
WINDow:Y1Position | BLIMit 18-11
WINDow:Y2Position | TLIMit 18-12

Marker Commands

CURSor? 19-3
MEASurement:READout 19-4
MODE 19-5
TDELta? 19-6
TSTArt 19-7
TSTOp 19-9
VDELta? 19-11
VSTArt 19-12
VSTOp 19-14
X1Position 19-16
X2Position 19-17
X1Ylsource 19-18
X2Y2source 19-19
XDELta? 19-20

Contents

Contents-7

20

Contents

Y1Position 19-21
Y2Position 19-22
YDELta? 19-23

Measure Commands

AREA 20-6
CGRade:CROSsing 20-7
CGRade:DCDistortion 20-8
CGRade:EHEight 20-9
CGRade:EWIDth 20-10
CGRade:JITTer 20-11
CGRade:QFACtor 20-12
CLEar 20-13

CTClitter 20-14
DEFine 20-16
DELTatime 20-20
DUTYcycle 20-22
FALLtime 20-24
FFT:DFRequency 20-26
FFT:DMAGnitude 20-27
FFT:FREQuency 20-28
FFT:MAGNitude 20-29
FFT:PEAK1 20-30
FFT:PEAK2 20-31
FFT:THReshold 20-32
FREQuency 20-33
HISTogram:HITS 20-35
HISTogram:MEAN 20-37
HISTogram:MEDian 20-39
HISTogram:M1S 20-41
HISTogram:M2S 20-43
HISTogram:M3S 20-45
HISTogram:PEAK 20-47
HISTogram:PP 20-49
HISTogram:STDDev 20-51
JITTer:DIRection 20-53
JITTer:STATistics 20-55
NWIDth 20-57
OVERshoot 20-59
PERiod 20-61

PHASe 20-63
PREShoot 20-65
PWIDth 20-67

Contents-8

21

RESults? 20-69
RISetime 20-72
SCRatch 20-74
SENDvalid 20-75
SOURce 20-76
STATistics 20-77
TEDGe 20-78
TMAX 20-80
TMIN 20-82
TVOLt 20-83
VAMPlitude 20-85
VAVerage 20-87
VBASe 20-89
VLOWer 20-91
VMAX 20-92
VMIDdle 20-94
VMIN 20-95
VPP 20-97
VRMS 20-99
VTIMe 20-101
VTOP 20-102
VUPPer 20-104

Mask Test Commands

ALIGn 21-4
AlignFIT 21-5
AMASk:CREate 21-7
AMASKk:SOURce 21-8

AMASK:SAVE | STORe 21-9

AMASK:UNITs 21-10
AMASk:XDELta 21-11
AMASK:YDELta 21-13
AUTO 21-15

AVERage 21-16
AVERage:COUNt 21-17
COUNt:FAILures? 21-18

COUNt:FWAVeforms? 21-19

COUNt:WAVeforms? 21-20
DELete 21-21

ENABle 21-22
HAMPIlitude 21-23
IMPedance 21-24

INVert 21-26

Contents

Contents-9

22

23

24

Contents

LAMPlitude 21-27
LOAD 21-28
NREGions? 21-29
PROBe:IMPedance? 21-30
RUMode 21-31
RUMode:SOFailure 21-33
SCALe:BIND 21-34
SCALe:X1 21-35
SCALe:XDELta 21-36
SCALe:Y1 21-37
SCALe:Y2 21-38
SOURce 21-39
STARt | STOP 21-40
STIMe 21-41

TITLe? 21-42
TRIGger:SOURce 21-43

Self-Test Commands

AttenSET? 22-3
CANCel 22-4
SCOPETEST 22-5

Time Base Commands

DELay 23-3

POSition 23-5

RANGe 23-6
REFerence 23-7
SCALe 23-8

VIEW 23-9
WINDow:DELay 23-10
WINDow:POSition 23-12
WINDow:RANGe 23-13
WINDow:SCALe 23-14

Trigger Commands
Organization of Trigger Modes and Commands 24-5

Summary of Trigger Modes and Commands 24-6
Trigger Modes 24-8

HOLDoff 24-9

HTHReshold 24-10

HYSTeresis 24-11

Contents-10

LEVel 24-12
LTHReshold 24-13
SWEep 24-14

Edge Trigger Mode and Commands 24-15
EDGE:COUPling 24-17

EDGE:SLOPe 24-18

EDGE:SOURce 24-19

Glitch Trigger Mode and Commands 24-20
GLITch:POLarity 24-22

GLITch:SOURce 24-23

GLITch:WIDTh 24-24

Advanced COMM Trigger Mode and Commands 24-25
COMM:BWIDth 24-26

COMM:ENCode 24-27

COMM:LEVel 24-28

COMM:PATTern 24-29

COMM:POLarity 24-30

COMM:SOURce 24-31

Advanced Pattern Trigger Mode and Commands 24-32

PATTern:CONDition 24-34
PATTern:LOGic 24-35

Advanced State Trigger Mode and Commands 24-36
STATe:CLOCk 24-38

STATe:CONDition 24-39

STATe:LOGic 24-40

STATe:LTYPe 24-41

STATe:SLOPe 24-42

Advanced Delay By Event Mode and Commands 24-43
EDLY:ARM:SOURce 24-45

EDLY:ARM:SLOPe 24-46

EDLY:EVENt:DELay 24-47

EDLY:EVENt:SOURce 24-48

EDLY:EVENt:SLOPe 24-49

EDLY:TRIGger:SOURce 24-50
EDLY:TRIGger:SLOPe 24-51

Contents

Contents-11

Contents

Advanced Delay By Time Mode and Commands 24-52
TDLY:ARM:SOURce 24-54

TDLY:ARM:SLOPe 24-55

TDLY:DELay 24-56

TDLY:TRIGger:SOURce 24-57
TDLY:TRIGger:SLOPe 24-58

Advanced Standard TV Mode and Commands 24-59
STV:FIELd 24-61

STV:LINE 24-62

STV:SOURce 24-63

STV:SPOLarity 24-64

Advanced User Defined TV Mode and Commands 24-65
UDTV:EDGE 24-68

UDTV:ENUMber 24-69

UDTV:PGTHan 24-70

UDTV:PLTHan 24-71

UDTV:POLarity 24-72

UDTV:SOURce 24-73

Advanced Trigger Violation Modes 24-75
VIOLation:MODE 24-76

Pulse Width Violation Mode and Commands 24-77

VIOLation:PWIDth:SOURce 24-79
VIOLation:PWIDth:POLarity 24-80
VIOLation:PWIDth:DIRection 24-81
VIOLation:PWIDth:WIDTh 24-82

Setup Violation Mode and Commands 24-83

VIOLation:SETup:MODE 24-86
VIOLation:SETup:SETup:CSOurce 24-87
VIOLation:SETup:SETup:CSOurce:LEVel 24-88
VIOLation:SETup:SETup:CSOurce:EDGE 24-89
VIOLation:SETup:SETup:DSOurce 24-90
VIOLation:SETup:SETup:DSOurce:HTHReshold 24-91
VIOLation:SETup:SETup:DSOurce:LTHReshold 24-92
VIOLation:SETup:SETup:TIME 24-93
VIOLation:SETup:HOLD:CSOurce 24-94
VIOLation:SETup:HOLD:CSOurce:LEVel 24-95
VIOLation:SETup:HOLD:CSOurce:EDGE 24-96

Contents-12

25

Contents

VIOLation:SETup:HOLD:DSOurce 24-97
VIOLation:SETup:HOLD:DSOurce:HTHReshold 24-98
VIOLation:SETup:HOLD:DSOurce:LTHReshold 24-99
VIOLation:SETup:HOLD:TIME 24-100
VIOLation:SETup:SHOLd:CSOurce 24-101
VIOLation:SETup:SHOLd:CSOurce:LEVel 24-102
VIOLation:SETup:SHOLd:CSOurce:EDGE 24-103
VIOLation:SETup:SHOLd:DSOurce 24-104
VIOLation:SETup:SHOLd:DSOurce:HTHReshold 24-105
VIOLation:SETup:SHOLd:DSOurce:LTHReshold 24-106
VIOLation:SETup:SHOLd:SetupTIMe (STIMe) 24-107
VIOLation:SETup:SHOLd:HoldTIMe (HTIMe) 24-108

Transition Violation Mode 24-109

VIOLation:TRANsition 24-111
VIOLation:TRANsition:SOURce 24-112
VIOLation:TRANsition:SOURce:HTHReshold 24-113
VIOLation:TRANsition:SOURce:LTHReshold 24-114
VIOLation:TRANsition:TYPE 24-115

Waveform Commands

BANDpass? 25-5
BYTeorder 25-6
CLIPped? 25-7
COMPlete? 25-8
COUNt? 25-9
COUPling? 25-10
DATA 25-11
FORMat 25-32
POINts? 25-35
PREamble 25-36
SOURce 25-41
TYPE? 25-42
VIEW 25-44
XDISplay? 25-46
XINCrement? 25-47
XORigin? 25-48
XRANge? 25-49
XREFerence? 25-50
XUNits? 25-51
YDISplay? 25-52
YINCrement? 25-53
YORigin? 25-54

Contents-13

26

27

Contents

YRANge? 25-55
YREFerence? 25-56
YUNits? 25-57

Waveform Memory Commands

DISPlay 26-3
LOAD 26-4
SAVE 26-5
XOFFset 26-6
XRANge 26-7
YOFFset 26-8
YRANge 26-9

Infiniium and HP 547XX Digitizing Oscilloscopes Language
Compatibility

To select a command language 27-4

Acquisition System Command Language Compatibility 27-5
Calibration Command Language Compatibility 27-6
Channel Command Language Compatibility 27-7

Disk Command Language Compatibility 27-8

Display Command Language Compatibility 27-9

External Command Language Compatibility 27-10

FFT Command Language Compatibility 27-11

Function Command Language Compatibility 27-12
Hardcopy Command Language Compatibility 27-13

Limit Test Command Language Compatibility 27-14
Marker Command Language Compatibility 27-15

Measure Command Language Compatibility 27-16
Multiple Memory Command Language Compatibility 27-17
Memory Test Command Language Compatibility 27-18
Pixel Memory Command Language Compatibility 27-19
Self-Test Command Language Compatibility 27-20
Sequential Command Language Compatibility 27-21
System Command Language Compatibility 27-22

Time Base Command Language Compatibility 27-23
Trigger Command Language Compatibility 27-24
Waveform Command Language Compatibility 27-27
Waveform Memory Command Language Compatibility 27-28
Root Command Language Compatibility 27-29

Common Command Language Compatibility 27-30

Contents-14

28

29

Infiniium and HP 545XX Oscilloscopes Language
Compatibility

To select a command language 28-4

Acquisition System Command Language Compatibility 28-5
Calibration Command Language Compatibility 28-6
Channel Command Language Compatibility 28-7

Disk Command Language Compatibility 28-8

Display Command Language Compatibility 28-9

External Command Language Compatibility 28-10

FFT Command Language Compatibility 28-11

Function Command Language Compatibility 28-12
Hardcopy Command Language Compatibility 28-13

Limit Test Command Language Compatibility 28-14
Marker Command Language Compatibility 28-15

Measure Command Language Compatibility 28-16
Multiple Memory Command Language Compatibility 28-18
Memory Test Command Language Compatibility 28-19
Pixel Memory Command Language Compatibility 28-20
Self-Test Command Language Compatibility 28-21
Sequential Command Language Compatibility 28-22
System Command Language Compatibility 28-23

Time Base Command Language Compatibility 28-24
Trigger Command Language Compatibility 28-25
Waveform Command Language Compatibility 28-28
Waveform Memory Command Language Compatibility 28-29
Root Command Language Compatibility 28-30

Common Command Language Compatibility 28-31

Error Messages

Error Queue 29-3

Error Numbers 29-4

Command Error 29-5

Execution Error 29-6

Device- or Oscilloscope-Specific Error 29-7
Query Error 29-8

List of Error Messages 29-9

Contents

Contents-15

Contents-16

Introduction to Programming

Introduction to Programming

This chapter introduces the basics for remote programming of an
oscilloscope. The programming commands in this manual conform to
the IEEE 488.2 Standard Digital Interface for Programmable
Instrumentation. The programming commands provide the means of
remote control.

Basic operations that you can do with a computer and an oscilloscope
include:

Set up the oscilloscope.
Make measurements.

Get data (waveform, measurements, and configuration) from the
oscilloscope.

Send information, such as waveforms and configurations, to the
oscilloscope.

You can accomplish other tasks by combining these functions.

Example Programs are Written in HP BASIC and C

The programming examples for individual commands in this manual are written in
HP BASIC and C.

1-2

Introduction to Programming
Communicating with the Oscilloscope

Communicating with the Oscilloscope

Computers communicate with the oscilloscope by sending and receiving
messages over a remote interface, such as a GPIB card or a Local Area Network
(LAN) card. Commands for programming normally appear as ASCII character
strings embedded inside the output statements of a “host” language available
on your computer. The input commands of the host language are used to read
responses from the oscilloscope.

For example, HP BASIC uses the OUTPUT statement for sending commands
and queries. After a query is sent, the response is usually read using the

HP BASIC ENTER statement. The ENTER statement passes the value across
the bus to the computer and places it in the designated variable.

For the GPIB interface, messages are placed on the bus using an output
command and passing the device address, program message, and a terminator.
Passing the device address ensures that the program message is sent to the
correct GPIB interface and GPIB device.

The following HP BASIC OUTPUT statement sends a command that sets the
channel 1 scale value to 500 mV:

OUTPUT <device address> ;" :CHANNEL1:SCALE 500E-
3'"<terminators>

The device address represents the address of the device being programmed.
Each of the other parts of the above statement are explained on the following

pages.

Use the Suffix Multiplier Instead

Using "mV" or "V" following the numeric voltage value in some commands will cause
Error 138 - Suffix not allowed. Instead, use the convention for the suffix multiplier as
described in chapter 3, "Message Communication and System Functions."

1-3

Introduction to Programming
Qutput Command

Output Command

The output command depends entirely on the programming language.
Throughout this book, HP BASIC and ANSI C are used in the examples of
individual commands. If you are using other languages, you will need to find
the equivalents of HP BASIC commands like OUTPUT, ENTER, and CLEAR, to
convert the examples.

Device Address

The location where the device address must be specified depends on the
programming language you are using. In some languages, it may be specified
outside the OUTPUT command. In HP BASIC, it is always specified after the
keyword, OUTPUT. The examples in this manual assume that the oscilloscope
and interface card are at GPIB device address 707. When writing programs, the
device address varies according to how the bus is configured.

Instructions

Instructions, both commands and queries, normally appear as strings embedded
in a statement of your host language, such as BASIC, Pascal, or C. The only
time a parameter is not meant to be expressed as a string is when the
instruction's syntax definition specifies <block data>, such as HP BASIC’s
"learnstring" command. There are only a few instructions that use block data.

Instructions are composed of two main parts:
e The header, which specifies the command or query to be sent.

® The program data, which provides additional information to clarify the
meaning of the instruction.

Instruction Header

The instruction header is one or more command mnemonics separated by
colons (:). They represent the operation to be performed by the oscilloscope.
See the “Programming Conventions” chapter for more information.

Queries are formed by adding a question mark (?) to the end of the header.
Many instructions can be used as either commands or queries, depending on
whether or not you include the question mark. The command and query forms
of an instruction usually have different program data. Many queries do not use
any program data.

1-4

Introduction to Programming
White Space (Separator)

White Space (Separator)

White space is used to separate the instruction header from the program data.
If the instruction does not require any program data parameters, you do not
need to include any white space. In this manual, white space is defined as one
or more spaces. ASCII defines a space to be character 32 in decimal.

Braces

When several items are enclosed by braces, { }, only one of these elements may
be selected. Vertical line (|) indicates "or". For example, {ON | OFF} indicates
that only ON or OFF may be selected, not both.

Ellipsis

... An ellipsis (trailing dots) indicates that the preceding element may be
repeated one or more times.

Square Brackets

Items enclosed in square brackets, [], are optional.

Program Data

Program data is used to clarify the meaning of the command or query. It
provides necessary information, such as whether a function should be on or off,
or which waveform is to be displayed. Each instruction’s syntax definition
shows the program data and the values they accept. See the Programmer’s
Quick Reference Guide for more information about general syntax rules and
acceptable values.

When there is more than one data parameter, they are separated by commas ().
You can add spaces around the commas to improve readability.

1-5

Introduction to Programming
Header Types

Header Types

There are three types of headers:
¢ Simple Command headers

e Compound Command headers
e Common Command headers

Simple Command Header

Simple command headers contain a single mnemonic. AUTOSCALE and
DIGITIZE are examples of simple command headers typically used in this
oscilloscope. The syntax is:

<program mnemonics<terminators
or
OUTPUT 707;"” : AUTOSCALE”

When program data must be included with the simple command header
(for example, :DIGITIZE CHAN1), white space is added to separate the data
from the header. The syntax is:

<program mnemonics<separator><program data><terminators>
or
OUTPUT 707;"” :DIGITIZE CHANNEL1, FUNCTION2”

Compound Command Header

Compound command headers are a combination of two program mnemonics.
The first mnemonic selects the subsystem, and the second mnemonic selects
the function within that subsystem. The mnemonics within the compound
message are separated by colons. For example:

To execute a single function within a subsystem:
:<subsystem>:<function><separator><program data><terminators

For example:

OUTPUT 707;"” :CHANNEL1:BWLIMIT ON”"

1-6

Introduction to Programming
Header Types

Combining Commands in the Same Subsystem

To execute more than one command within the same subsystem, use a semi-
colon (;) to separate the commands:

:<subsystems>:<command><separator><data>;<command><separators
<data><terminators

For example:

:CHANNEL1 : INPUT DC; BWLIMIT ON

Common Command Header

Common command headers, such as clear status, control the IEEE 488.2
functions within the oscilloscope. The syntax is:

*<command headers><terminator>

No space or separator is allowed between the asterisk (*) and the command
header. *CLS is an example of a common command header.

1-7

Introduction to Programming
Duplicate Mnemonics

Duplicate Mnemonics

Identical function mnemonics can be used for more than one subsystem. For
example, you can use the function mnemonic RANGE to change both the
vertical range and horizontal range:

To set the vertical range of channel 1 to 0.4 volts full scale:
: CHANNEL1 : RANGE .4

To set the horizontal time base to 1 second full scale:

: TIMEBASE:RANGE 1

In these examples, CHANNEL1 and TIMEBASE are subsystem selectors, and
determine the range type being modified.

1-8

Introduction to Programming
Query Headers

Query Headers

A command header immediately followed by a question mark (?) is a query.
After receiving a query, the oscilloscope interrogates the requested subsystem
and places the answer in its output queue. The answer remains in the output
queue untilitisread or until another command isissued. Whenread, the answer
is transmitted across the bus to the designated listener (typically a computer).
For example, the query:

: TIMEBASE : RANGE?

places the current time base setting in the output queue.

In HP BASIC, the computer input statement:

ENTER < device address > ;Range

passes the value across the bus to the computer and places it in the variable
Range.

You can use queries to find out how the oscilloscope is currently configured and
to get results of measurements made by the oscilloscope.

For example, the command:

:MEASURE : RISETIME?

tells the oscilloscope to measure the rise time of your waveform and place the
result in the output queue.

The output queue must be read before the next program message is sent. For
example, when you send the query :MEASURE:RISETIME?, you must follow it
with an input statement. In HP BASIC, this is usually done with an ENTER
statement immediately followed by a variable name. This statement reads the
result of the query and places the result in a specified variable.

Handle Queries Properly

Ifyousend another command or query before reading the resultof a query, the output
buffer is cleared and the current response is lost. This also generates a query-
interrupted error in the error queue. If you execute an input statement before you
send a query, it will cause the computer to wait indefinitely.

1-9

Introduction to Programming
Program Header Options

Program Header Options

You can send program headers using any combination of uppercase or lowercase
ASCII characters. Oscilloscope responses, however, are always returned in
uppercase.

You may send program command and query headers in either long form
(complete spelling), short form (abbreviated spelling), or any combination of
long form and short form. For example:

:TIMEBASE:DELAY 1E-6 is the long form.

TIM:DEL 1E-6 is the short form.

Using Long Form or Short Form

Programs written in long form are easily read and are almost self-documenting.
The short form syntax conserves the amount of computer memory needed for
program storage and reduces I/0 activity.

The rules for the short form syntax are described in the chapter, “Programming
Conventions.”

Character Program Data

Character program data is used to convey parameter information as alpha or
alphanumeric strings. For example, the :TIMEBASE:REFERENCE command
can be set to left, center, or right. The character program data in this case may
be LEFT, CENTER, or RIGHT. The command :TIMEBASE:REFERENCE
RIGHT sets the time base reference to right.

The available mnemonics for character program data are always included with
the instruction's syntax definition. You may send either the long form of
commands, or the short form (if one exists). You may mix uppercase and
lowercase letters freely. When receiving responses, uppercase letters are used
exclusively.

Introduction to Programming
Numeric Program Data

Numeric Program Data

Some command headers require program data to be expressed numerically. For
example, :TIMEBASE:RANGE requires the desired full-scale range to be
expressed numerically.

For numeric program data, you can use exponential notation or suffix
multipliers to indicate the numeric value. The following numbers are all equal:

28 = 0.28E2 = 280E-1 = 28000m = 0.028K = 28E-3K

When a syntax definition specifies that a number is an integer, it means that the
number should be whole. Any fractional part isignored and truncated. Numeric
data parameters that accept fractional values are called real numbers. For more
information see the chapter, “Interface Functions.”

All numbers are expected to be strings of ASCII characters.

e When sending the number 9, you would send a byte representing the
ASCII code for the character “9” (which is 57).

e A three-digit number like 102 would take up three bytes (ASCII codes 49,
48, and 50). The number of bytes is figured automatically when you
include the entire instruction in a string.

1-11

Introduction to Programming
Embedded Strings

Embedded Strings

Embedded strings contain groups of alphanumeric characters which are treated
as a unit of data by the oscilloscope. An example of thisis the line of text written
to the advisory line of the oscilloscope with the :SYSTEM:DSP command:
:SYSTEM:DSP ""This is a message.""

You may delimit embedded strings with either single (*) or double (") quotation
marks. These strings are case-sensitive, and spaces are also legal characters.

Program Message Terminator

The program instructions within a data message are executed after the program
message terminator is received. The terminator may be either an NL (New
Line) character, an EOI (End-Or-Identify) asserted in the GPIB interface, or a
combination of the two. Asserting the EOI sets the EOI control line low on the
last byte of the data message. The NL character is an ASCII linefeed (decimal
10).

New Line Terminator Functions Like EQS and EOT

The NL (New Line) terminator has the same function as an EOS (End Of String) and
EOT (End Of Text) terminator.

Introduction to Programming
Common Commands within a Subsystem

Common Commands within a Subsystem

Common commands can be received and processed by the oscilloscope whether
they are sent over the bus as separate program messages or within other
program messages. If you have selected a subsystem, and a common command
is received by the oscilloscope, the oscilloscope remains in the selected
subsystem. For example, if the program message

":ACQUIRE:AVERAGE ON;*CLS; COUNT 1024"

is received by the oscilloscope, the oscilloscope turns averaging on, then clears
the status information without leaving the selected subsystem.

If some other type of command is received within a program message, you must
re-enter the original subsystem after the command. For example, the program
message

":ACQUIRE:AVERAGE ON; :AUTOSCALE; : ACQUIRE:AVERAGE: COUNT 1024"
turns averaging on, completes the autoscale operation, then sets the acquire

average count. Here, :ACQUIRE must be sent again after AUTOSCALE to re-
enter the ACQUIRE subsystem and set the count.

Selecting Multiple Subsystems

You can send multiple program commands and program queries for different
subsystems on the same line by separating each command with a semicolon.
The colon following the semicolon lets you enter a new subsystem. For example:
<program mnemonics><datas; :<program mnemonic><data><terminators

:CHANNEL1:RANGE 0.4;: TIMEBASE:RANGE 1

You can Combine Compound and Simple Commands

Multiple program commands may be any combination of compound and simple
commands.

Programming Getting Started

The remainder of this chapter explains how to set up the oscilloscope, how to
retrieve setup information and measurement results, how to digitize a
waveform, and how to pass data to the computer. The chapter, “Measure
Commands” describes sending measurement data to the oscilloscope.

1-13

Introduction to Programming
Initialization

Initialization

To make sure the bus and all appropriate interfaces are in a known state, begin
every program with an initialization statement. For example, HP BASIC
provides a CLEAR command which clears the interface buffer:

CLEAR 707 ! initializes the interface of the oscilloscope

When you are using GPIB, CLEAR also resets the oscilloscope’s parser. The
parser is the program that reads in the instructions you send.

After clearing the interface, initialize the oscilloscope to a preset state:

OUTPUT 707;"*RST" | initializes the oscilloscope to a preset
state

Initializing the Oscilloscope

The commands and syntax for initializing the oscilloscope are discussed in the
chapter, “Common Commands.” Refer to your GPIB manual and programming
language reference manual for information on initializing the interface.

Autoscale

The AUTOSCALE feature of Agilent Technologies digitizing oscilloscopes
performs a very useful function on unknown waveforms by automatically setting
up the vertical channel, time base, and trigger level of the oscilloscope.

The syntax for the autoscale function is:

:AUTOSCALE<terminator>

Setting Up the Oscilloscope

A typical oscilloscope setup configures the vertical range and offset voltage, the
horizontal range, delay time, delay reference, trigger mode, trigger level, and
slope.

A typical example of the commands sent to the oscilloscope are:

:CHANNEL1:PROBE 10; RANGE 16;0OFFSET 1.00<terminator>
:SYSTEM:HEADER OFF<terminators>
: TIMEBASE:RANGE 1E-3;DELAY 100E-6<terminator>

This example sets the time base at 1 ms full-scale (100 ps/div), with delay of
100 us. Vertical is set to 16 V full-scale (2 V/div), with center of screen at 1 V,
and probe attenuation of 10.

Introduction to Programming
Example Program using HP Basic

10
20
30
40
50
60
70
80
90
100
110
120
125
130
140
150

CLEAR 707!

OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
END

707 ;
707 ;
707 ;
707 ;
707 ;
707 ;
707 ;
707 ;
707 ;
707 ;
707 ;
707 ;
707 ;
707 ;

Example Program using HP Basic

This program demonstrates the basic command structure used to program the
oscilloscope.

Initialize oscilloscope interface
"*RST"!Initialize oscilloscope to preset state

n

n

n

n

n

n

:TIMEBASE:RANGE 5E-4"! Time base to 500 us full scale

: TIMEBASE:DELAY 0"! Delay to zero

: TIMEBASE:REFERENCE CENTER"! Display reference at center
:CHANNEL1:PROBE 10"! Probe attenuation to 10:1
:CHANNEL1:RANGE 1.6"! Vertical range to 1.6 V full scale
: CHANNEL1 :OFFSET -.4"! Offset to -0.4

: CHANNEL1 : INPUT DC"! Coupling to DC

:TRIGGER:MODE EDGE"! Edge triggering

:TRIGGER:LEVEL CHAN1,-.4"! Trigger level to -0.4
:TRIGGER:SLOPE POSITIVE"! Trigger on positive slope
:SYSTEM: HEADER OFF<terminators>

:ACQUIRE:MODE RTIME"! Normal acquisition
:DISPLAY:GRATICULE FRAME"! Grid off

Overview of the Program

Line 10 initializes the oscilloscope interface to a known state.
Line 20 initializes the oscilloscope to a preset state.

Lines 30 through 50 set the time base, the horizontal time at 500 us full scale,
and 0 s of delay referenced at the center of the graticule.

Lines 60 through 90 set 10:1 probe attenuation, set the vertical range to
1.6 volts full scale, center screen at —0.4 volts, and select DC 1 Mohm
impedance coupling.

Lines 100 through 120 configure the oscilloscope to trigger at —0.4 volts with
positive edge triggering.

Line 125 turns system headers off.
Line 130 configures the oscilloscope for real time acquisition.
Line 140 turns the grid off.

1-15

Introduction to Programming
Using the DIGITIZE Command

Using the DIGITIZE Command

The DIGITIZE command is a macro that captures data using the acquisition
(ACQUIRE) subsystem. When the digitize process is complete, the acquisition
is stopped. You can measure the captured data by using the oscilloscope or by
transferring the data to a computer for further analysis. The captured data
consists of two parts: the preamble and the waveform data record.

After changing the oscilloscope configuration, the waveform buffers are cleared.
Before doing a measurement, you should send the DIGITIZE command to
ensure new data has been collected.

You can send the DIGITIZE command with no parameters for a higher
throughput. Refer to the DIGITIZE command in the chapter, “Root Level
Commands” for details.

When the DIGITIZE command is sent to an oscilloscope, the specified channel’s
waveform is digitized using the current ACQUIRE parameters. Before sending
the :WAVEFORM:DATA? query to download waveform data to your computer,
you should specify the WAVEFORM parameters.

The number of data points comprising a waveform varies according to the
number requested in the ACQUIRE subsystem. The ACQUIRE subsystem
determines the number of data points, type of acquisition, and number of
averages used by the DIGITIZE command. This lets you specify exactly what
the digitized information contains. The following program example shows a
typical setup:

OUTPUT 707;":SYSTEM:HEADER OFF<terminators

OUTPUT 707;":ACQUIRE:MODE RTIME"<terminators

OUTPUT 707;":ACQUIRE:COMPLETE 100"<terminators

OUTPUT 707;":WAVEFORM:SOURCE CHANNEL1"<terminators

OUTPUT 707;":WAVEFORM:FORMAT BYTE'"<terminators

OUTPUT 707;" :ACQUIRE:COUNT 8"<terminators>

OUTPUT 707;":ACQUIRE:POINTS 500"<terminators

OUTPUT 707;":DIGITIZE CHANNELl"<terminators

OUTPUT 707;" :WAVEFORM:DATA?"<terminators>

This setup places the oscilloscope into the real time sampling mode using eight
averages. This means that when the DIGITIZE command is received, the
command will execute until the waveform has been averaged at least eight
times.

After receiving the :WAVEFORM:DATA? query, the oscilloscope will start
downloading the waveform information.

Digitized waveforms are passed from the oscilloscope to the computer by
sending a numerical representation of each digitized point. The format of the
numerical representation is controlled by using the :WAVEFORM:FORMAT
command and may be selected as BYTE, WORD, or ASCILI.

1-16

Introduction to Programming
Using the DIGITIZE Command

The easiest method of receiving a digitized waveform depends on data
structures, available formatting, and I/0 capabilities. You must convert the data
values to determine the voltage value of each point. These data values are
passed starting with the left most point on the oscilloscope’s display. For more
information, refer to the chapter, “Waveform Commands.”

When using GPIB, you may abort a digitize operation by sending a Device Clear
over the bus (for example, CLEAR 707).

1-17

Introduction to Programming
Receiving Information from the Oscilloscope

Receiving Information from the Oscilloscope

After receiving a query (a command header followed by a question mark), the
oscilloscope places the answer in its output queue. The answer remains in the
output queue until it is read or until another command is issued. When read,
the answer is transmitted across the interface to the computer. The input
statement for receiving a response message from an oscilloscope’s output queue
typically has two parameters; the device address and a format specification for
handling the response message. For example, to read the result of the query
command :CHANNELI1:INPUT? you would execute the HP BASIC statement:
ENTER <device address> ;Setting$

This would enter the current setting for the channel 1 coupling in the string
variable Setting$. The device address parameter represents the address of the
oscilloscope.

All results for queries sent in a program message must be read before another
program message is sent. For example, when you send the query
:MEASURE:RISETIME?, you must follow that query with an input statement.
In HP BASIC, this is usually done with an ENTER statement.

Handle Queries Properly

Ifyousend another command or query before reading the result of a query, the output
buffer will be cleared and the current response will be lost. This will also generate
aquery-interrupted errorinthe error queue. Ifyou execute aninput statement before
you send a query, it will cause the computer to wait indefinitely.

The format specification for handling response messages depends on both the
computer and the programming language.

Introduction to Programming
String Variable Example

String Variable Example

The output of the oscilloscope may be numeric or character data depending on
what is queried. Refer to the specific commands for the formats and types of
data returned from queries.

For the example programs, assume that the device being programmed is at
device address 707. The actual address depends on how you have configured
the bus for your own application.

In HP BASIC 5.0, string variables are case-sensitive, and must be expressed
exactly the same each time they are used. This example shows the data being
returned to a string variable:

10 DIM Rang$[30]

20 OUTPUT 707;":CHANNELI : RANGE?"

30 ENTER 707;Rang$

40 PRINT Rang$

50 END

After running this program, the computer displays:
+8.00000E-01

Numeric Variable Example

This example shows the data being returned to a numeric variable:

10 OUTPUT 707;":CHANNEL1:RANGE?"
20 ENTER 707;Rang

30 PRINT Rang

40 END

After running this program, the computer displays:
.8

1-19

Introduction to Programming
Definite-Length Block Response Data

Definite-Length Block Response Data

Definite-length block response data allows any type of device-dependent data
to be transmitted over the system interface as a series of 8-bit binary data bytes.
This is particularly useful for sending large quantities of data or 8-bit extended
ASCII codes. The syntax is a pound sign (#) followed by a non-zero digit
representing the number of digits in the decimal integer. After the non-zero
digitis the decimal integer that states the number of 8-bit data bytes being sent.
This is followed by the actual data.

For example, for transmitting 4000 bytes of data, the syntax would be:
#44000 <4000 bytes of data> <terminators

The lifetimes “4” represents the number of digits in the number of bytes, and
“4000” represents the number of bytes to be transmitted.

1-20

Introduction to Programming
Multiple Queries

Multiple Queries

You can send multiple queries to the oscilloscope within a single program
message, but you must also read them back within a single program message.
This can be accomplished by either reading them back into a string variable or
into multiple numeric variables. For example, you could read the result of the
query :TIMEBASE:RANGE?;DELAY? into the string variable Results$ with the
command:

ENTER 707;Resultss$

When youread the result of multiple queries into string variables, each response
is separated by a semicolon. For example, the response of the query
"TIMEBASE:RANGE?;DELAY? would be:

<range_value>;<delay value>

Use the following program message to read the query
"TIMEBASE:RANGE?;DELAY? into multiple numeric variables:

ENTER 707;Resultl,Result2

Oscilloscope Status

Status registers track the current status of the oscilloscope. By checking the
oscilloscope status, you can find out whether an operation has completed and
is receiving triggers. The chapter, “Status Reporting” explains how to check
the status of the oscilloscope.

1-21

1-22

LAN and GPIB Interfaces

LAN and GPIB Interfaces

There are two types of interfaces that can be used to remotely program
the Infiniium oscilloscope: Local Area Network (LAN) interface and
GPIB interface.

2-2

LAN Interface Connector

The oscilloscope is equiped with a LAN interface RJ-45 connector on the
rear panel. This allows direct connect to your network. However, before
you can use the LAN interface to program the oscilloscope, the network
properties must be configured. Unless you are a Network Administrator,
you should contact your Network Administrator to add the appropriate
client, protocols, and configuration information for your LAN. This
information is different for every company.

CAUTION

GPIB Interface Connector

The oscilloscope is equipped with a GPIB interface connector on the rear panel.
This allows direct connection to a GPIB equipped computer. You can connect
an external GPIB compatible device to the oscilloscope by installing a GPIB
cable between the two units. Finger tighten the captive screws on both ends
of the GPIB cable to avoid accidentally disconnecting the cable during
operation.

A maximum of fifteen GPIB compatible instruments (including a computer) can
be interconnected in a system by stacking connectors. This allows the
oscilloscopes to be connected in virtually any configuration, as long as there is
a path from the computer to every device operating on the bus.

Avoid stacking more than three or four cables on any one connector. Multiple
connectors produce leverage that can damage a connector mounting,.

2-3

LAN and GPIB Interfaces
Default Startup Conditions

Default Startup Conditions

The following default conditions are established during power-up:

The Request Service (RQS) bit in the status byte register is set to zero.
All of the event registers are cleared.

The Standard Event Status Enable Register is set to OXFF hex.

Service Request Enable Register is set to 0x80 hex.

The Operation Status Enable Register is set to OxFFFF hex.

The Overload Event Enable Register is set to OXFF hex.

The Mask Test Event Enable Register is set to OXFF hex.

You can change the default conditions using the *PSC command with a
parameter of 1 (one). Whenset to 1, the Standard Event Status Enable Register
is set 0x00 hex and the Service Request Enable Register is set to 0x00 hex. This
prevents the Power On (PON) event from setting the SRQ interrupt when the
oscilloscope is ready to receive commands.

2-4

LAN and GPIB Interfaces
Interface Capabilities

Table 2-1

Interface Capabilities

The interface capabilities of this oscilloscope, as defined by IEEE 488.1 and
IEEE 488.2, are listed in Table 2-1.

Interface Capabilities

Code Interface Function Capability

SH1 Source Handshake Full Capability

AH1 Acceptor Handshake Full Capability

T5 Talker Basic Talker/Serial Poll/Talk Only Mode/
Unaddress if Listen Address (MLA)

L4 Listener Basic Listener/
Unaddresses if Talk Address (MTA)

SR1 Service Request Full Capability

RL1 Remote Local Complete Capability

PPO Parallel Poll No Capability

DC1 Device Clear Full Capability

DT1 Device Trigger Full Capability

Co Computer No Capability

E2 Driver Electronics Tri State (1 MB/SEC MAX)

2-5

LAN and GPIB Interfaces
GPIB Command and Data Concepts

GPIB Command and Data Concepts

The GPIB interface has two modes of operation: command mode and datamode.
The interface is in the command mode when the Attention (ATN) control line
istrue. The command modeis used to send talk and listen addresses and various
interface commands such as group execute trigger (GET).

The interface is in the data mode when the ATN line is false. The data mode is
used to convey device-dependent messages across the bus. The
device-dependent messages include all of the oscilloscope-specific commands,
queries, and responses found in this manual, including oscilloscope status
information.

2-6

LAN and GPIB Interfaces
Communicating Over the GPIB Interface

Communicating Over the GPIB Interface

Device addresses are sent by the computer in the command mode to specify
who talks and who listens. Because GPIB can address multiple devices through
the same interface card, the device address passed with the program message
must include the correct interface select code and the correct oscilloscope
address.

Device Address = (Interface Select Code * 100) + Oscilloscope Address

The Oscilloscope is at Address 707 for Programming Examples

The programming examples inthis manual assume thatthe oscilloscope is at device
address 707.

Interface Select Code

Each interface card has a unique interface select code. This code is used by
the computer to direct commands and communications to the proper interface.
The default is typically “7” for the GPIB interface cards.

Oscilloscope Address

Each oscilloscope on the GPIB must have a unique oscilloscope address
between decimal 0 and 30. This oscilloscope address is used by the computer
to direct commands and communications to the proper oscilloscope on an
interface. The default is typically “7” for this oscilloscope. You can change the
oscilloscope address in the Utilities, Remote Interface dialog box.

Do Not Use Address 21 for an Oscilloscope Address

Address 21 is usually reserved for the Computer interface Talk/Listen address, and
should not be used as an oscilloscope address.

2-7

Communicating Over the LAN Interface

The device address used to send commands and receive data using the LAN
interface is located in the GPIB Setup dialog box as shown below.

GPIB Setup x|

Command Language o
Standard - 4|DSE
>
— GPIB Interface————— ﬂlh_l

GPIB Address
I—I,v Fy
i

— LM Interface

LAN Address SICL Address
I|an[1 30.29.71.49]inst0

Debug...

GPIB Setup Dialog Box

The following C example program shows how to communicate with the
oscilloscope using the LAN interface and the Agilent Standard Instrument
Control Library (SICL).

#include <sicl.h>
#define BUFFER_SIZE 100

main ()

INST Bus;

int reason;

unsigned long actualcnt;
char buffer| BUFFER_SIZE 1;

/* Open the LAN interface */
Bus = iopen(“lan[130.29.71.49]:inst0”);
if(Bus != 0) {
/* Bus timeout set to 20 seconds */
itimeout (Bus, 20000);

/* Clear the interface */

iclear(Bus);

/* Query and print the oscilloscope’s Id */

iwrite(Bus, “*IDN?”, 5, 1, &actualcnt);

iread(Bus, buffer, BUFFER SIZE, &reason, &actualcnt);
buffer[actualcnt - 1] = 0;

printf (“%s\n”, buffer);
iclose(Bus);

2-8

LAN and GPIB Interfaces
Bus Commands

Bus Commands

The following commands are IEEE 488.1 bus commands (ATN true).
IEEE 488.2 defines many of the actions that are taken when these commands
are received by the oscilloscope.

Device Clear

The device clear (DCL) and selected device clear (SDC) commands clear the
input buffer and output queue, reset the parser, and clear any pending
commands. If either of these commands is sent during a digitize operation, the
digitize operation is aborted.

Group Execute Trigger

The group execute trigger (GET) command arms the trigger. This is the same
action produced by sending the RUN command.

Interface Clear

The interface clear (IFC) command halts all bus activity. This includes
unaddressing all listeners and the talker, disabling serial poll on all devices, and
returning control to the system computer.

2-9

2-10

Message Communication and System
Functions

Message Communication and System
Functions

This chapter describes the operation of oscilloscopes that operate in
compliance with the IEEE 488.2 (syntax) standard. Itisintended to give
you enough basic information about the IEEE 488.2 standard to
successfully program the oscilloscope. You can find additional detailed
information about the IEEE 488.2 standard in ANSI/IEEE Std 488.2-
1987, “IEEE Standard Codes, Formats, Protocols, and Common
Commands.”

This oscilloscope series is designed to be compatible with other Agilent
Technologies IEEE 488.2 compatible instruments. Oscilloscopes that
are compatible with IEEE 488.2 must also be compatible with IEEE 488.1
(GPIB bus standard); however, IEEE 488.1 compatible oscilloscopes
may or may not conform to the IEEE 488.2 standard. The IEEE 488.2
standard defines the message exchange protocols by which the
oscilloscope and the computer will communicate. It also defines some
common capabilities that are found in all IEEE 488.2 oscilloscopes.
This chapter also contains some information about the message
communication and system functions not specifically defined by

IEEE 488.2.

3-2

Message Communication and System Functions
Protocols

Protocols

The message exchange protocols of IEEE 488.2 define the overall scheme used
by the computer and the oscilloscope to communicate. This includes defining
when it is appropriate for devices to talk or listen, and what happens when the
protocol is not followed.

Functional Elements

Before proceeding with the description of the protocol, you should understand
a few system components, as described here.

Input Buffer

Output Queue

Parser

The input buffer of the oscilloscope is the
memory area where commands and queries are
stored prior to being parsed and executed. It
allows a computer to send a string of commands,
which could take some time to execute, to the
oscilloscope, then proceed to talk to another
oscilloscope while the first oscilloscope is
parsing and executing commands.

The output queue of the oscilloscope is the
memory area where all output data or response
messages are stored until read by the computer.

The oscilloscope’s parser is the component
that interprets the commands sent to the
oscilloscope and decides what actions should be
taken. “Parsing” refers to the action taken by
the parser to achieve this goal. Parsing and
execution of commands begins when either the
oscilloscope recognizes a program message
terminator, or the input buffer becomes full. If
you want to send a long sequence of commands
to be executed, then talk to another oscilloscope
while they are executing, you should send all of
the commands before sending the program
message terminator.

3-3

Message Communication and System Functions
Protocols

Protocol Overview

The oscilloscope and computer communicate using program messages and
response messages. These messages serve as the containers into which sets of
program commands or oscilloscope responses are placed.

A program message is sent by the computer to the oscilloscope, and a response
message is sent from the oscilloscope to the computer in response to a query

message. A query message is defined as being a program message that contains
one or more queries. The oscilloscope will only talk when it has received a valid
query message, and therefore has something to say. The computer should only
attempt to read a response after sending a complete query message, but before
sending another program message.

Remember this Rule of Oscilloscope Communication

The basic rule to remember is that the oscilloscope will only talk when prompted to,
and it then expects to talk before being told to do something else.

Protocol Operation

When you turn the oscilloscope on, the input buffer and output queue are
cleared, and the parser is reset to the root level of the command tree.

The oscilloscope and the computer communicate by exchanging complete
program messages and response messages. This means that the computer
should always terminate a program message before attempting to read a
response. The oscilloscope will terminate response messages except during a
hard copy output.

After you send a query message, the next message should be the response
message. The computer should always read the complete response message
associated with a query message before sending another program message to
the same oscilloscope.

The oscilloscope allows the computer to send multiple queries in one query
message. Thisis called sending a “compound query.” Multiple queriesin a query
message are separated by semicolons. The responses to each of the queries in
a compound query will also be separated by semicolons.

Commands are executed in the order they are received.

Protocol Exceptions

If an error occurs during the information exchange, the exchange may not be
completed in a normal manner.

3-4

Table 3-1

Table 3-2

Suffix Multiplier
The suffix multipliers that the oscilloscope will accept are shown in Table 3-1.

Message Communication and System Functions

Protocols

<suffix mult>

Value Mnemonic Value Mnemonic
1E18 EX 1E-3 M

1E15 PE 1E-6 U

1E12 1E-9 N

1E9 G 1E-12 P

1E6 MA 1E-15 F

1E3 K 1E-18 A

Suffix Unit

The suffix units that the oscilloscope will accept are shown in Table 3-2.

<suffix unit>

Suffix Referenced Unit
v Volt

S Second

3-5

3-6

Status Reporting

Status Reporting

An overview of the oscilloscope’s status reporting structure is shown in
Figure 4-1. The status reporting structure shows you how to monitor
specific events in the oscilloscope. Monitoring these events lets you
determine the status of an operation, the availability and reliability of
the measured data, and more.

e To monitor an event, first clear the event, then enable the event. All
of the events are cleared when you initialize the oscilloscope.

e To generate a service request (SRQ) interrupt to an external
computer, enable at least one bit in the Status Byte Register.

The Status Byte Register, the Standard Event Status Register group, and
the Output Queue are defined as the Standard Status Data Structure
Model in IEEE 488.2-1987. IEEE 488.2 defines data structures,
commands, and common bit definitions for status reporting. There are
also oscilloscope-defined structures and bits.

4-2

Status Reporting

Figure 4-1
Trigger
Event
Register
Arm Operation gfpefroﬂon
Event | | Status Enuabufe
Register Register
Register
Oufput
Queue
Error
Queue
Standard
Standard
£ ' Event
ven
’—V Siol - Status
atus
Register Enable
Key ? Register
Queue
Message
Queue

Stafus
Byfe
Register

Service Service
— Reques! — Request
Enable Generation
Regisfer
Service
54700803 Reguest(SRQ)
Inferrupt
to Camputer
54800045

Status Reporting Overview Block Diagram

Table 4-1

The status reporting structure consists of the registers shown here.

Table 4-1 lists the bit definitions for each bit in the status reporting data
structure.

Status Reporting Bit Definition

Bit
PON
URQ
CME
EXE

Description
Power On

User Request
Command Error

Execution Error

Definition

Indicates power is turned on.

Not Used. Permanently set to zero.
Indicates if the parser detected an error.

Indicates if a parameter was out of range or was
inconsistent with the current settings.

4-3

Status Reporting

Bit Description Definition

DDE Device Dependent Error Indicates if the device was unable to complete an
operation for device-dependent reasons.

QYE Query Error Indicates if the protocol for queries has been violated.

RQAL Request Control Indicates if the device is requesting control.

0PC Operation Complete Indicates if the device has completed all pending
operations.

OPER Operation Status Register Indicates if any of the enabled conditions in the
Operation Status Register have occurred.

RQS Request Service Indicates that the device is requesting service.

MSS Master Summary Status Indicatesif a device has a reason for requesting service.

ESB Event Status Bit Indicatesif any ofthe enabled conditions inthe Standard
Event Status Register have occurred.

MAV Message Available Indicates if there is a response in the output queue.

MSG Message Indicates if an advisory has been displayed.

USR User Event Register Indicates if any of the enabled conditions have occurred
in the User Event Register.

TRG Trigger Indicates if a trigger has been received.

WAIT TRIG Wait for Trigger

Indicates the oscilloscope is armed and ready for
trigger.

4-4

Status Reporting
Status Reporting Data Structures

Status Reporting Data Structures

The different status reporting data structures, descriptions, and interactions
are shown in Figure 4-2. To make it possible for any of the Standard Event
Status Register bits to generate a summary bit, you must enable the
corresponding bits. These bits are enabled by using the *ESE common
command to set the corresponding bit in the Standard Event Status Enable
Register.

To generate a service request (SR®) interrupt to the computer, you must enable
at least one bit in the Status Byte Register. These bits are enabled by using the
*SRE common command to set the corresponding bit in the Service Request
Enable Register. These enabled bits can then set RQS and MSS (bit 6) in the
Status Byte Register.

For more information about common commands, see the “Common Commands”
chapter.

Status Reporting
Status Reporting Data Structures

Figure 4-2

7 6 B 4 3 2 1 0
Mosk ALIGN|ALIGN| HIGH | Low Read by
R R FAIL | COMP
Teegi Syl FAIL |COMP | AMP | AP MTER?
I I i i i I I \
c Mms'k ETeshtl Set by:
ven! Enable
’ 6 ° ‘ 3 2 ! o Register Read by

Over load e
ven --- - --- |Chan4|Chan3|Chan2|Chanl| oyLRr?
Register

Over load Set by. OVLE
Event Enable Read by OVLE?
Register
Read by
Trigger - AER?
Armed
Event ARM
Register
Read by:
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0 OPER?
Operation
Status [el By =~ |OVLR»| -~ MASK | === | === | -~ WAL e | e | oo | -
Register TRIG
[[[[[[[[[[[[[[[[Set by
Operation OPEE
Stafus Enable
Register Read by
OPEE?
To BIt 7 of
Status Byle Register » Overload register used by 54845A and 54835A only 54800b46

Status Reporting Data Structures

MTEE

MTEE™®

Status Reporting
Status Reporting Data Structures

Figure 4-2 (Continued)

Read by:
7 6 5 4 3 2 1 0 <ESR?
Standard
Event Status PON | URQ | CME | EXE | DDE | QYE | RQC OPC
Register
[[[[[[[[
Standard Set b ESE <NRf
Event Stafus Enable e yoox - -
Register Read by: =ESE?
Read by
+ Read by- TER?
SYST DSP? Trigger
Message Event | TRG
Event X% Register
Register
From Operation
Status Register Oufput
Queue
—=—— Read by SERIAL POLL
Read by:
7 6 5 4 3 2 1 0 «STB?
Status RQS
Byte OPER ESB | MAV - MSG --—— | TRG
Regisfer MSS
[[[[[
R Sery\ge bl Set by: =SRE<NRf=>
EQEEZ\STE? € Read by: =SRE?
X Messages sent to the display via :SYST:DSP
will nof set this bif. The bil is set only
54800047 SRQ by infternal messages

Status Reporting Data Structures (Continued)

4-7

Status Reporting
Status Byte Register

Status Byte Register

The Status Byte Register is the summary-level register in the status reporting
structure. It contains summary bits that monitor activity in the other status
registers and queues. The Status Byte Register is a live register. That is, its
summary bits are set and cleared by the presence and absence of a summary
bit from other event registers or queues.

If the Status Byte Register is to be used with the Service Request Enable
Register to set bit 6 (RQS/MSS) and to generate an SRQ, at least one of the
summary bits must be enabled, then set. Also, event bits in all other status
registers must be specifically enabled to generate the summary bit that sets the
associated summary bit in the Status Byte Register.

You canread the Status Byte Register using either the *STB? common command
query or the GPIB serial poll command. Both commands return the decimal-
weighted sum of all set bits in the register. The difference between the two
methods is that the serial poll command reads bit 6 as the Request Service
(RQS) bit and clears the bit which clears the SRQ interrupt. The *STB? query
reads bit 6 as the Master Summary Status (MSS) and does not clear the bit or
have any effect on the SRQ interrupt. The value returned is the total bit weights
of all of the bits that are set at the present time.

The use of bit 6 can be confusing. This bit was defined to cover all possible
computer interfaces, including a computer that could not do a serial poll. The
important point to remember is that if you are using an SRQ interrupt to an
external computer, the serial poll command clears bit 6. Clearing bit 6 allows
the oscilloscope to generate another SRQ interrupt when another enabled event
occurs.

The only other bit in the Status Byte Register affected by the *STB? query is
the Message Available bit (bit 4). If there are no other messages in the Output
Queue, bit 4 (MAV) can be cleared as a result of reading the response to the
*STB? query.

If bit 4 (weight = 16) and bit 5 (weight = 32) are set, a program would print the
sum of the two weights. Since these bits were not enabled to generate an SRQ),
bit 6 (weight = 64) is not set.

4-8

Example 1

Example 2

Status Reporting
Status Byte Register

This HP BASIC example uses the *STB? query to read the contents of the
oscilloscope’s Status Byte Register when none of the register's summary bits
are enabled to generate an SRQ interrupt.

10 OUTPUT 707;":SYSTEM:HEADER OFF; *STB?" !Turn headers off
20 ENTER 707;Result !Place result in a numeric variable
30 PRINT Result !Print the result

40 End

The next program prints 132 and clears bit 6 (RQS) of the Status Byte Register.
The difference in the decimal value between this example and the previous one
is the value of bit 6 (weight = 64). Bit 6 is set when the first enabled summary
bit is set, and is cleared when the Status Byte Register is read by the serial poll
command.

This example uses the HP BASIC serial poll (SPOLL) command to read the
contents of the oscilloscope’s Status Byte Register.
10 Result = SPOLL(707)

20 PRINT Result
30 END

Use Serial Polling to Read the Status Byte Register

Serial pollingisthe preferred method to read the contents of the Status Byte Register
because it resets bit 6 and allows the next enabled event that occurs to generate a

new SRQ interrupt.

4-9

Status Reporting
Service Request Enable Register

Example

Service Request Enable Register

Setting the Service Request Enable Register bits enables corresponding bits in
the Status Byte Register. These enabled bits can then set RQS and MSS (bit 6)
in the Status Byte Register.

Bits are set in the Service Request Enable Register using the *SRE command,
and the bits that are set are read with the *SRE? query. Bit 6 always returns 0.
Refer to the Status Reporting Data Structures shown in Figure 4-2.

This example sets bit 4 (MAV) and bit 5 (ESB) in the Service Request Enable
Register.

OUTPUT 707;"*SRE 48"

This example uses the parameter “48” to allow the oscilloscope to generate an
SRQ interrupt under the following conditions:

e When one or more bytes in the Output Queue set bit 4 (MAV).

e When an enabled event in the Standard Event Status Register generates a
summary bit that sets bit 5 (ESB).

Message Event Register

This register sets the MSG bit in the status byte register when an internally
generated message is written to the advisory line on the oscilloscope. The
message is read using the :SYSTEM:DSP? query. Note that messages written
to the advisory line on the oscilloscope using the :SYSTEM:DSP command does
not set the MSG status bit.

Trigger Event Register

This register sets the TRG bit in the status byte register when a trigger event
occurs.

The trigger event register stays set until it is cleared by reading the register with
the TER? query or by using the *CLS (clear status) command. If your
application needs to detect multiple triggers, the trigger event register must be
cleared after each one.

If you are using the Service Request to interrupt a computer operation when
the trigger bit is set, you must clear the event register after each time it is set.

Status Reporting
Standard Event Status Register

Example

Standard Event Status Register

The Standard Event Status Register (SESR) monitors the following oscilloscope
status events:

e PON - Power On

e CME - Command Error

e EXE - Execution Error

e DDE - Device Dependent Error
e QYE - Query Error

¢ RQC - Request Control

e (OPC - Operation Complete

When one of these events occurs, the corresponding bit is set in the register.
If the corresponding bit is also enabled in the Standard Event Status Enable
Register, a summary bit (ESB) in the Status Byte Register is set.

You can read the contents of the Standard Event Status Register and clear the
register by sending the *ESR? query. The value returned is the total bit weights
of all bits set at the present time.

This example uses the *ESR? query to read the contents of the Standard Event
Status Register.

10 OUTPUT 707;" :SYSTEM:HEADER OFF" !'Turn headers off

20 OUTPUT 707;"*ESR?"

30 ENTER 707;Result !Place result in a numeric variable
40 PRINT Result !Print the result

50 End

If bit 4 (weight = 16) and bit 5 (weight = 32) are set, the program prints the
sum of the two weights.

4-11

Status Reporting
Standard Event Status Enable Register

Example

Standard Event Status Enable Register

For any of the Standard Event Status Register bits to generate a summary bit,
you must first enable the bit. Use the *ESE (Event Status Enable) common
command to set the corresponding bit in the Standard Event Status Enable
Register. Set bits are read with the *ESE? query.

Suppose your application requires an interrupt whenever any type of error
occurs. The error status bits in the Standard Event Status Register are bits

2 through 5. The sum of the decimal weights of these bits is 60. Therefore, you
can enable any of these bits to generate the summary bit by sending:

OUTPUT 707;"*ESE 60"

Whenever an error occurs, the oscilloscope sets one of these bits in the Standard
Event Status Register. Because the bits are all enabled, a summary bit is
generated to set bit 5 (ESB) in the Status Byte Register.

If bit 5 (ESB) in the Status Byte Register is enabled (via the *SRE command),
a service request interrupt (SRQ) is sent to the external computer.

Disabled Standard Event Status Register Bits Respond, but Do Not Generate a
Summary Bit

Standard Event Status Register bits that are not enabled still respond to their
corresponding conditions (that is, they are set if the corresponding event occurs).
However, because they are not enabled, they do not generate a summary bit in the
Status Byte Register.

Status Reporting
Operation Status Register

Operation Status Register

This register hosts the following bits:
e WAIT TRIG bit (bit 5)

e Mask Test Summary bit (bit 9)

e Overload Summary bit (bit 11)

The WAIT TRIG bit is set by the Trigger Armed Event Register and indicates
the trigger is armed.

The Mask Test Summary bit is set whenever at least one of the Mask Test Event
Register bits is enabled.

The Overload Summary bit is set whenever at least one of the Overload Event
Register bits is enabled (this register is only used by the 54845A and the
54835A).

If any of these bits are set, the OPER bit (bit 7) of the Status Byte Register is
set. The Operation Status Register is read and cleared with the OPER? query.
The register output is enabled or disabled using the mask value supplied with
the OPEE command.

4-13

Status Reporting
Operation Status Enable Register

Example

Operation Status Enable Register

For any of the Operation Status Register bits to generate a summary bit, you
must first enable the bit. Use the OPEE (Operation Event Status Enable)
command to set the corresponding bit in the Operation Status Enable Register.
Set bits are read with the OPEE? query.

Suppose your application requires an interrupt whenever any event occurs in
the mask test register. The error status bit in the Operation Status Register is
bit 9. Therefore, you can enable this bit to generate the summary bit by sending;:
OUTPUT 707;”O0PEE 512” (hex 200)

Whenever an error occurs, the oscilloscope sets this bit in the Mask Test Event
Register. Because this bit is enabled, a summary bit is generated to set bit 9
(OPER) in the Operation Status Register.

Ifbit 7 (OPER) in the Status Byte Register is enabled (via the *SRE command),
a service request interrupt (SRQ) is sent to the external computer.

Disabled Operation Status Register Bits Respond, but Do Not Generate a Summary
Bit

Operation Status Register bits that are not enabled still respond to their
corresponding conditions (that is, they are set if the corresponding event occurs).

However, because they are not enabled, they do not generate a summary bit in the
Status Byte Register.

Status Reporting
Mask Test Event Register

Mask Test Event Register

This register hosts the following bits:
e Mask Test Complete bit (bit 0)

e Mask Test Fail bit (bit 1)

e Mask Low Amplitude bit (bit 2)

e Mask High Amplitude bit (bit 3)

e Mask Align Complete bit (bit 4)

e Mask Align Fail bit (bit 5)

The Mask Test Complete bit is set whenever the mask test is complete.
The Mask Test Fail bit is set whenever the mask test failed.

The Mask Low Amplitude bit is set whenever the signal is below the mask
amplitude.

The Mask High Amplitude bit is set whenever the signal is above the mask
amplitude.

The Mask Align Complete bit is set whenever the mask align is complete.
The Mask Align Fail bit is set whenever the mask align failed.

If any of these bits are set, the MASK bit (bit 9) of the Operation Status Register
is set. The Mask Test Event Register is read and cleared with the MTER? query.
The register output is enabled or disabled using the mask value supplied with
the MTEE command.

4-15

Status Reporting
Mask Test Event Enable Register

Example

Mask Test Event Enable Register

For any of the Mask Test Event Register bits to generate a summary bit, you
must first enable the bit. Use the MTEE (Mask Test Event Enable) command
to set the corresponding bit in the Mask Test Event Enable Register. Set bits
are read with the MTEE? query.

Suppose your application requires an interrupt whenever a Mask Test Fail
occursinthe mask test register. You can enable this bit to generate the summary
bit by sending:

OUTPUT 707;”MTEE 2”

Whenever an error occurs, the oscilloscope sets the MASK bit in the Operation
Status Register. Because the bits in the Operation Status Enable Register are
all enabled, a summary bit is generated to set bit 7 (OPER) in the Status Byte
Register.

Ifbit 7 (OPER) in the Status Byte Register is enabled (via the *SRE command),
a service request interrupt (SRQ) is sent to the external computer.

Disabled Mask Test Event Register Bits Respond, but Do Not Generate a Summary
Bit

Mask Test Event Register bits that are not enabled still respond to their
corresponding conditions (that is, they are set if the corresponding event occurs).

However, because they are not enabled, they do not generate a summary bit in the
Operation Status Register.

Status Reporting
Trigger Armed Event Register

Trigger Armed Event Register

This register sets bit 5 (Wait Trig bit) in the Operation Status Register and bit
7 (OPER bit) in the Status Byte Register when the oscilloscope becomes armed.
The ARM event register stays set until it is cleared by reading the register with
the AER? query or by using the *CLS command. If your application needs to

detect multiple triggers, the ARM event register must be cleared after each one.

If you are using the Service Request to interrupt the computer operation when
the trigger bit is set, you must clear the event register after each time it is set.

Error Queue

As errors are detected, they are placed in an error queue. This queue is a first-
in, first-out queue. If the error queue overflows, the last error in the queue is
replaced with error -350, “Queue overflow.” Any time the queue overflows, the
oldest errors remain in the queue, and the most recent error is discarded. The
length of the oscilloscope's error queue is 30 (29 positions for the error
messages, and 1 position for the “Queue overflow” message).

The error queue isread with the :SYSTEM:ERROR? query. Executing this query
reads and removes the oldest error from the head of the queue, which opens a
position at the tail of the queue for a new error. When all the errors have been
read from the queue, subsequent error queries return 0, “No error.”

The error queue is cleared when any of these events occur:

e When the oscilloscope is powered up.

e When the oscilloscope receives the *CLS common command.
e When the last item is read from the error queue.

For more information on reading the error queue, refer to the
:SYSTEM:ERROR? query in the System Commands chapter. For a complete list
of error messages, refer to the chapter, “Error Messages.”

Output Queue

The output queue stores the oscilloscope-to-computer responses that are
generated by certain oscilloscope commands and queries. The output queue
generates the Message Available summary bit when the output queue contains
one or more bytes. This summary bit sets the MAV bit (bit 4) in the Status Byte
Register. You may read the output queue with the HP Basic ENTER statement.

4-17

Status Reporting
Message Queue

Message Queue

The message queue contains the text of the last message written to the advisory
line on the screen of the oscilloscope. The queue is read with the
:SYSTEM:DSP? query. Note that messages sent with the :SYSTEM:DSP
command do not set the MSG status bit in the Status Byte Register.

Clearing Registers and Queues

The *CLS common command clears all event registers and all queues except
the output queue. If *CLS is sent immediately following a program message
terminator, the output queue is also cleared.

Status Reporting
Clearing Registers and Queues

Figure 4-3

Do you want
to do status
reporting?

Reset the instrument
and clear the status
registers.

OUTPUT 707;"+RST"
QUTPUT 707 ;"+CLS"

%yes

Do you want to
send a Service Request
(SRQ) interrupt to the
controller?

'

Use the following to
read the Stondord
Event Status Register:
OUTPUT 7@7; "*ESR?
ENTER 7@7;<variable>
PRINT <variable>

Do you want to
repart events monitored by
the Standard Event Status
Register?

v

Activate the instrument function
that you want to monitor.

'

Use the +ESE cormmon command When an interrupt occurs, read y -
to enable the bits you want to the Stotus Byte Register. Use the Use .the fol ‘wag to
use to generate a summary bit following: P=SPOLL(767) see ifan oFermt\on
to the Status Byte Register. PRINT P O‘ST;Z’?D;S;?‘V‘*OFC?
¢ ENTER 7@7;<variable>
€ PRINT <variable>
W To read the Stotus Byte Register

use the following:
OUTPUT 7@7;"+STB?"
ENTER 787 ;<variable>
PRINT <variable>
This reads the decimal value of W
the Stotus Byte Register. Use the following to

Use the *ESE common command to
enable the bits you want to
generate the RO5/M3S bit to set
bit 6 in the Stotus Byte Register
and send an SRQ to the computer.
If events ore monitored by the
Standard event Status Register read the contents of
also Enable ESB with *SRE command. the status byte:
QUTPUT 7@7;"*5TB?

Determine which bits in the ENTER 707;<variable>
Status Byte Register are set. PRINT <variable>
N 54700805

Status Reporting Decision Chart

4-19

4-20

Programming Conventions

Programming Conventions

This chapter describes conventions used to program the Infiniium-Series
Oscilloscopes, and conventions used throughout this manual. A block
diagram and description of data flow is included for understanding
oscilloscope operations. A description of the command tree and
command tree traversal is also included. Also see the Programmer’s
Quick Reference Guide for more information about command syntax.

5-2

Programming Conventions
Data Flow

Data Flow

The data flow gives you an idea of where the measurements are made on the
acquired data, and when the post-waveform processing is applied to the data.

Figure 5-1is a block diagram of the oscilloscope. The diagram is laid out serially

for a visual perception of how the data is affected by the oscilloscope.

Figure 5-1
> Averaging
A
Waveform
v Sinx/x Interpolation Memories
; X .
Sample - Channel Filter (Optional)
pata Memory 9-Bit High Resolution
Filter (Optional)
Ly Measurements Connect Dots Disola
(Optional) (Optional) play
A
Math/FFT
Functions
54800b01.vsd

Sample Data Processing

5-3

Programming Conventions
Data Flow

The sample data is stored in the channel memory for further processing before
being displayed. The time it takes for the sample data to be displayed depends
on the number of post processes you have selected.

Averaging your sampled data helps remove any unwanted noise from your
waveform. The 9-bit, high-resolution filter also removes noise from your
waveform by limiting the bandwidth of the oscilloscope to:

Fy/20
where:
Fy = the sampling frequency

This filter lowers the noise floor of the oscilloscope, which increases the
oscilloscope’s vertical resolution.

You can store your sample data in Infiniium’s waveform memories for use as one
of the sources in Math/FFT functions, or to visually compare against a waveform
that is captured at a future time. The Math/FFT functions let you apply
mathematical operations on your sampled data. You can use these functions to
duplicate many of the mathematical operations that your circuit may be
performing to verify that your circuit is operating correctly.

The measurements section performs any of the automated measurements that
are available in Infiniium. The measurements that you have selected appear at
the bottom of the display.

The Connect Dots section draws a straight line between sample data points,
giving an analog look to the waveform. This is sometimes called linear
interpolation.

Programming Conventions
Truncation Rule

Table 5-1

Truncation Rule

The truncation rule is used to produce the short form (abbreviated spelling) for
the mnemonics used in the programming headers and alpha arguments.

Command Truncation Rule

The mnemonicisthefirstfour characters of the keyword, unless the fourth character
is a vowel. Then the mnemonic is the first three characters of the keyword. If the
length of the keyword is four characters or less, this rule does not apply, and the

short form is the same as the long form.

Table 5-1 shows how the truncation rule is applied to commands.

Mnemonic Truncation

Long Form ShortForm How the Rule is Applied

RANGE RANG Short form is the first four characters of the keyword.

PATTERN PATT Short form is the first four characters of the keyword.

DISK DISK Short form is the same as the long form.

DELAY DEL Fourth character is a vowel; short form is the first three
characters.

Programming Conventions
The Command Tree

See Also

The Command Tree

The command tree in Figure 5-2 shows all of the commands in the Infiniium-
Series Oscilloscopes and the relationship of the commands to each other. The
IEEE 488.2 common commands are not listed as part of the command tree
because they do not affect the position of the parser within the tree.

When a program message terminator (<NL>, linefeed - ASCII decimal 10) or a
leading colon (:) is sent to the oscilloscope, the parser is set to the “root” of the
command tree.

Command Types

The commands in this oscilloscope can be viewed as three types: common
commands, root level commands, and subsystem commands.

Common commands are commands defined by IEEE 488.2 and control some
functions that are common to all IEEE 488.2 instruments. These commands
are independent of the tree and do not affect the position of the parser within
the tree. *RST is an example of a common command.

Root level commands control many of the basic functions of the oscilloscope.
These commands reside at the root of the command tree. They can always
be parsed if they occur at the beginning of a program message or are
preceded by a colon. Unlike common commands, root level commands place
the parser back at the root of the command tree. AUTOSCALE is an example
of a root level command.

Subsystem commands are grouped together under a common node of the
command tree, such as the TIMEBASE commands. You may select only one
subsystem at a given time. When you turn on the oscilloscope initially, the
command parser is set to the root of the command tree and no subsystem is
selected.

The Programmer’s Quick Reference Guide for information about command
syntax and command syntax diagrams.

Programming Conventions
The Command Tree

Tree Traversal Rules

Command headers are created by traversing down the command tree. A legal
command header from the command tree would be :TIMEBASE:RANGE. This
is referred to as a compound header. A compound header is a header made up
of two or more mnemonics separated by colons. The compound header contains
no spaces. The following rules apply to traversing the tree.

Tree Traversal Rules

Aleading colon or a program message terminator (<NL> or EQl true on the last byte)
places the parser atthe root of the command tree. A leading colonis a colon that is
the first character of a program header. Executing a subsystem command places
the oscilloscope in that subsystem until a leading colon or a program message
terminator is found.

In the command tree, use the last mnemonic in the compound header as a
reference point (for example, RANGE). Then find the last colon above that
mnemonic (TIMEBASE:). That is the point where the parser resides. You can
send any command below this point within the current program message
without sending the mnemonics which appear above them (for example,
REFERENCE).

Figure 5-2

Comman
Commands

*CLS
*ESE
*ESR?
*IDN?
*LRN?
*0OPC
*0PT?
*PSC
*PSC?
*RCL
*RST
*SAV
*SRE
*STB?
*TRG
*TST?
*WA

54830002

Command Tree

Programming Conventions

The Command Tree

(roof)

ADER?
AER?
AUToscale
BLANK
CDISplay
DiGitize
MTEE
MTER?
MODel?
OPEE
OPER?
PRINt
RECall:SETup
RUN
SERial
SINGle
STOP

STORe SETup

SYSTem:

DATE

DEBug

DsSP

ERRor?
HEADer
HELP:HEADers
LANGuage
LONGform
SETup

TIME

STORe WAVefarm

TER?
VIEW

ACQuire:

AVERage
AVERage COUNT
COMPlete
COMPlete:STATe
INTerpolate
MODE

POINts

SRATe

CALibrate: CHANnel DISK
CANCel CDIRectary
CONTInue DELete
MPRaotect DIRectory?
OUTPu! LOAD
SDONe? MDIRectory
SKEW PWD?
STARt SIMage
STATus STORe
]

BwLimit PROBe:

DISPlay

INPut ATTenuation

OFFSet EADapter

PROBe ECoupling

PROTection EGAIN

RANGe EOFFsef

SCALe GAIN

UNITs D?

SKEW

DISPlay

CGRade

CGRadeLEVels

COLumn
CONNect
DATA?
DCOLor
GRATIcule
LINE
PERSistence
ROW

SCOLor
SSAVer
SSAVer AFTer
STRing
TEXT

K

5-8

Programming Conventions
The Command Tree

Figure 5-3
—l ‘ —
EXTernal: FUNCtion=N=. HARDcopy: HISTogram: Marker:
AREA CURsOr?
BWLimit PROBe: DPRinter MEASurement
INP Ut FACTors MODE
PROBe EGAIN MAGe TDELfar
RANGe EOFFsof PRINTers? TSTATrt
UNITs D7 TSTOP
SKEW VDELta?
VSTATt
VSTOp
ADD FET: HORIZantal VERTICcal: XIPosition
AVERage X2Posifion
DIFF FREQuency POSition OFFset X1 1saurce
DIsSPlay RESalution RANGe RANGe X2YZsource
DIVide WINDow XDELta™?
FFETMagnitude YI1Position
FETPhase AXIS SCALE: WINDow: YZ2Posifion
FUNCHan<=N="7 MODE YDELTa~»
HORizontal SIZE DEFault
INTegrate SOURCce
INVert X1Position|LLIMit
MAGNITY X2Pasition|RLIMit
MAXimum Y1Position|TLIMIit
MEASurement Y2Pasition|BLIMIt
MINImum
MUL Tiply
OFFSet
RANGe 54800049
SUBTract
VERSUs
VERTIcal

Command Tree (Continued)

5-9

Programming Conventions
The Command Tree

Figure 5-4

MTESt SELFfest: TMebase

|
\ AftenSET?

ALIGN AMASK. COUNT SCALe. CANCel DELay WINDOW
AlignFIT SCOPETEST position

AUTO CREate FAlLures? BIND RANGe DELay

AVERage SAVE|STORe FWAVeforms? XDELta REFerence POSition
AVERage:COUNf SOURce WAVeforms? X1 SCALe RANGe

DELete UNITs Y1 VIEW SCALe

ENABle XDELta Y2
HAMPlitude YDELta

IMPedance

INVert

LAMPlitude

LOAD

NREGions?

PROBe IMPedance?

RUMaode

RUMaode SOFaillure

SOURce

STIMe

STARISTOP

TRIGger

54800b5C

Command Tree (Continued)

5-10

Programming Conventions
The Command Tree

Figure 5-5
- ‘

TRIGger WMEMory<N=" WAVeform
‘ ‘ DISPlay BANDpass
LFFile BYTeorder
ADVanced EDGE: GLITch HOLDoff LOAD COMPlete?

HYSTeresis SAVE COUNt?
COUPling POLarity LEVel XOFFset COUPling?

SLOPe SOURce SWEep XRANge DATA

SOURce WIDTh MODE YOFFset FORMat

ADVanced YRANge POINts?
EDGE PREamble

‘ GLITch SOURce

2

DELay MODE: PATTern. STATe: TV: VIOLation TYPe

‘ VIEW
XDISplay?
XINCrement?

MODE DELay CONDition CLOCk MODE ‘

EDLY PATTern LOGic CONDition L525

TDLY STATe L 0Gic L6725 MODE PWIDth SETup. TRANsitian: XORigin?
EDLY. TV SLOPe L875 PWIDth XRANge?
ARM: ViOLation UDTV SETup DIRection MODE GTHan XREFerence?
SOURce STV TRANsition POLarity HOLD LTHan XUNits?
SLoPe FIELD SOURCce: SETup SOURce YDISplay?
EVENT: LINE LEVel SHOLd HTHResholg 'NCrement?
DELay SOURce WiDTh LEVel YORigin?
SOURce SPOLarily ‘ LTHReshold YRANGE?
SLoPe uDTV ‘ TYPE YREFerence™”
TRIGger EDGE TUNifS?
SOURce ENUMber SETup: HOLD: SHOLd

SLOPe PGTHan

TDLY: PLTHan CSOurce CSOurce CSOurce

ARM: POLarity EDGE EDGE EDGE

SOURce SOURce LEVel LEVel LEVel

SLOPe DSOurce: DSOurce DSOurce:

DELay HTHReshold HTHReshold HTHReshold

TRIGger L THReshold L THReshold L THReshold

SOURce TIME TIME HoldTIMe

SLOPe SetupTIMe 54830007

Command Tree (Continued)

5-11

Example 1

Example 2

Example 3

Programming Conventions
The Command Tree

Tree Traversal Examples

The OUTPUT statements in the following examples are written using
HP BASIC 5.0. The quoted string is placed on the bus, followed by a carriage
return and linefeed (CRLF).

Consider the following command:
OUTPUT 707;":CHANNEL1:RANGE 0.5;0FFSET 0"

The colon between CHANNEL1 and RANGE is necessary because
:CHANNELI1:RANGE is a compound command. The semicolon between the
RANGE command and the OFFSET command is required to separate the two
commands or operations. The OFFSET command does not need :CHANNEL1
preceding it because the :CHANNEL1:RANGE command sets the parser to the
CHANNELI1 node in the tree.

Consider the following commands:
OUTPUT 707;":TIMEBASE:REFERENCE CENTER;POSITION 0.00001"
or

OUTPUT 707;":TIMEBASE:REFERENCE CENTER"
OUTPUT 707;":TIMEBASE:POSITION 0.00001"

In the first line of example 2, the “subsystem selector” is implied for the
POSITION command in the compound command.

A second way to send these commands is shown in the second part of the
example. Because the program message terminator places the parser back at
the root of the command tree, you must reselect TIMEBASE to re-enter the
TIMEBASE node before sending the POSITION command.

Consider the following command:
OUTPUT 707;":TIMEBASE:REFERENCE CENTER; : CHANNEL1:OFFSET 0"

In this example, the leading colon before CHANNEL] tells the parser to go back
to the root of the command tree. The parser can then recognize the
:CHANNELI:OFFSET command and enter the correct node.

Programming Conventions
Infinity Representation

Infinity Representation

The representation for infinity for this oscilloscope is 9.99999E+37. This is also
the value returned when a measurement cannot be made.

Sequential and Overlapped Commands

IEEE 488.2 makes a distinction between sequential and overlapped commands.
Sequential commands finish their task before the execution of the next
command starts. Overlapped commands run concurrently. Commands
following an overlapped command may be started before the overlapped
command is completed.

Response Generation

As defined by IEEE 488.2, query responses may be buffered for these reasons:
e When the query is parsed by the oscilloscope.

e When the computer addresses the oscilloscope to talk so that it may read the
response.

This oscilloscope buffers responses to a query when the query is parsed.

EOI

The EOI bus control line follows the IEEE 488.2 standard without exception.

5-13

Sample Programs

Sample Programs

Sample programs for the Infiniium-Series Oscilloscopes are shipped on
a CD ROM with the instrument. Each program demonstrates specific
sets of instructions.

This chapter shows you some of those functions, and describes the
commands being executed. Both C and BASIC examples are included.

The header file is:
e gpibdecl.h

The C examples include:
e init.c

® gen_srq.c

® srgagi.c

® srgnat.c

¢ learnstr.c

e sicl_IO.c

e natl_IO.c

The BASIC examples include:

e init.bas
® srqg.bas
e Irn_str.bas

The sample program listings are included at the end of this chapter.

6-2

Sample Program Structure

This chapter includes segments of both the C and BASIC sample
programs. Each program includes the basic functions of initializing
the interface and oscilloscope, capturing the data, and analyzing the

data.

In general, both the C and BASIC sample programs typically contain
the following fundamental segments:

Segment
main program
initialize

acquire_data
auto_measurements

transfer_data

Description

Defines global variables and constants, specifies include files,
and calls various functions.

Initializes the GPIB or LAN interface and oscilloscope, and sets
up the oscilloscope and the ACQuire subsystem.

Digitizes the waveform to capture data.
Performs simple parametric measurements.

Brings waveform data and voltage/timing information (the
preamble) into the computer.

Sample Programs
Sample C Programs

Sample C Programs

Segments of the sample programs “init.c” and “gen_srq.c” are shown and
described in this chapter.

init.c - Initialization

/* init. c */

/* Command Order Example.
suggested for operation of

This program initializes the oscilloscope,

automatic measurements,

PC as time/voltage pairs in a comma-separated file format
for spreadsheet applications.
and an 548xx oscilloscope at address 7.

as 'hpib7’

This program demonstrates the order of commands

the 548xx oscilloscope via GPIB.

acquires data, performs
and transfers and stores the data on the
useful
It assumes a SICL INTERFACE exists

It also requires the cal waveform attached to Channel 1.

See the README file on the demo disk for development and linking information.

*/

#include <stdio.h> /*
#include <stdlib.h> /*
#include "gpibdecl.h" /*
void initialize(); /*

void acquire data(); /*

void auto_measurements(); /*
void transfer data();

void convert data(); /*
void store csv(); /*

/*

location of: printf () */
location of: atof (), atoi() */
prototypes, global declarations, constants */
initialize the oscilloscope */

digitize waveform */

perform built-in automatic measurements */

/* transfers waveform data from oscilloscope to PC */

converts data to time/voltage values */
stores time/voltage pairs to comma-separated
variable file format */

The include statements start the program. The file “gpibdecl.h” includes
prototypes and declarations that are necessary for the Infiniium Oscilloscope
sample programs.

This segment of the sample program defines the functions, in order, that are
used to initialize the oscilloscope, digitize the data, perform measurements,
transfer data from the oscilloscope to the PC, convert the digitized data to time
and voltage pairs, and store the converted data in comma-separated variable

file format.

See the following descriptions of the program segments.

6-4

Sample Programs
Sample C Programs

init.c - Global Definitions and Main Program

/* GLOBALS */

int count;

double xorg,xref,xinc; /*
double yorg,yref,yinc;

int Acquired length;

char data[MAX LENGTH] ; /*
double time_ value [MAX LENGTH]; /*
double volts[MAX LENGTH] ; /*

void main(void)

{

values necessary for conversion of data */

data buffer */
time value of data */
voltage value of data */

/* initialize interface and device sessions */
/* note: routine found in sicl IO.c or natl IO.c */

init IO();

/* initialize the oscilloscope and interface and set up SRQ */

initialize();

acquire data(); /* capture the data */

/* perform automated measurements on acquired data */

auto_measurements() ;

transfer data(); /* transfer waveform data to the PC from oscilloscope */
convert_data(); /* convert data to time/voltage pairs */
store csv(); /* store the time/voltage pairs as csv file */
close IO(); /* close interface and device sessions */
/* note: routine found in sicl IO.c or natl IO.c */

} /* end main() */

The init_IO routine initializes the oscilloscope and interface so that the
oscilloscope can capture data and perform measurements on the data. At the
start of the program, global symbols are defined which will be used to store and
convert the digitized data to time and voltage values.

6-5

Sample Programs
Sample C Programs

init.c - Initializing the Oscilloscope

*

Function name: initialize

Parameters: none

Return value: none

Description: This routine initializes the oscilloscope for proper
acquisition of data. The instrument is reset to a known state and the
interface is cleared. System headers are turned off to allow faster
throughput and immediate access to the data values requested by queries.
The oscilloscope time base, channel, and trigger subsystems are then
configured. Finally, the acquisition subsystem is initialized.

L R B T R R

*/

void initialize()
write IO("*RST"); /* reset oscilloscope - initialize to known state */
write IO("*CLS") ; /* clear status registers and output queue */

write IO(":SYSTem:HEADer OFF"); /* turn off system headers */

/* initialize time base parameters to center reference, */
/* 2 ms full-scale (200 us/div), and 20 us delay */
write IO (":TIMebase:REFerence CENTer;RANGe 2e-3;POSition 20e-6");

/* initialize Channell 1.6V full-scale (200 mv/div); offset -400mv */
write_IO(”:CHANnell:RANGe 1.6;0FFSet -400e-3");

/* initialize trigger info: channell waveform on positive slope at 300mv */
write IO (":TRIGger:EDGE:SOURce CHANnell;SLOPe POSitive");
write IO(":TRIGger:LEVel CHANnell,-0.40");

/* initialize acquisition subsystem */
/* Real time acquisition - no averaging; record length 4096 */
write IO(":ACQuire:MODE RTIMe;AVERage OFF;POINts 4096") ;

} /* end initialize() */

6-6

Sample Programs
Sample C Programs

init.c - Acquiring Data

/*
* Function name: acquire data
* Parameters: none
* Return value: none
* Description: This routine acquires data according to the current
* instrument settings.
*/
void acquire data()
b
* The root level :DIGitize command is recommended for acquisition of new
* data. It will initialize data buffers, acquire new data, and ensure that
* acquisition criteria are met before acquisition of data is stopped. The
* captured data is then available for measurements, storage, or transfer
* to a PC. Note that the display is automatically turned off by the
* :DIGitize command and must be turned on to view the captured data.
*/
write IO(":DIGitize CHANnell");
write IO(":CHANnell:DISPlay ON"); /* turn on channel 1 display which is */
/* turned off by the :DIGitize command */
} /* end acquire data() */

6-7

Sample Programs
Sample C Programs

init.c - Making Automatic Measurements

/*
* Function name: auto measurements
* Parameters: none
* Return value: none
* Description: This routine performs automatic measurements of volts
* peak-to-peak and frequency on the acquired data. It also demonstrates
* two methods of error detection when using automatic measurements.
*
/

void auto measurements()

{

float frequency, Vvpp;
unsigned char vpp str([l16];
unsigned char freq str[l6];
int bytes read;

*
Error checking on automatic measurements can be done using one of two methods.
The first method requires that you turn on results in the Measurements
subsystem using the command :MEASure:SEND ON. When this is on, the oscilloscope
will return the measurement and a result indicator. The result flag is zero
if the measurement was successfully completed, otherwise a non-zero value is
returned which indicates why the measurement failed. See the Programmer’s

Manual

* % ok ok Xk

* for descriptions of result indicators.
*
* The second method simply requires that you check the return value of the
* measurement. Any measurement not made successfully will return with the value
* +9.999E37. This could indicate that either the measurement was unable to be
* performed, or that insufficient waveform data was available to make the
* measurement.
*/
/*
* METHOD ONE - turn on results to indicate whether the measurement completed
* successfully. ©Note that this requires transmission of extra data from the
* oscilloscope.
*/
write IO(":MEASure:SENDvalid ON") ; /* turn results on */
write IO(":MEASure:VPP? CHANnell"); /* query -- volts peak-to-peak channel 1%/
bytes read = read IO(vpp str,16L); /* read in value and result flag */
if (vpp_str([bytes read-2] != '0')

printf ("Automated vpp measurement error with result %c\n",

vpp_str [bytes read-2]);

else

printf ("VPP is $f\n", (float)atof (vpp_str)) ;

write IO (":MEASure:FREQuency? CHANnell");

bytes read = read IO(freq str,16L);

if (freq str[bytes read-2] != ’'0’)

Sample Programs
Sample C Programs

/* frequency channel 1 */

/* read in value and result flag */

printf ("Automated frequency measurement error with result %c\n",

freq str[bytes read-21);
else

printf ("Frequency is %f\n", (float)atof (freq str));

/*

* METHOD TWO - perform automated measurements and error checking with

* :MEAS:RESULTS OFF

*/
frequency =(float)o0;
vpp = (float)O0;

/* turn off results */
write_IO(":MEASure:SENDvalid OFF") ;

write IO (":MEASure:FREQuency? CHANnell");
bytes read = read IO(freq str,16L);
frequency = (float) atof (freg str);

if (frequency > 9.99e37)

/* frequency channel 1 */
/* read in value and result flag */

printf ("\nFrequency could not be measured.\n") ;

else

printf ("\nThe frequency of channel 1 is %f Hz.\n",

write IO(":MEASure:VPP? CHANnell");
bytes read = read IO(vpp str,16L);
vpp = (float) atof (vpp_str);

if (vpp > 9.99e37)

frequency) ;

printf ("Peak-to-peak voltage could not be measured.\n");

else

printf ("The voltage peak-to-peak is %f volts.\n", vpp);

} /* end auto_measurements () */

6-9

Sample Programs
Sample C Programs

init.c - Error Checking

/* Error checking on automatic measurements can be done using one of two methods.

*
*
*
*
*

The first method requires that you turn on results in the Measurements
subsystem using the command :MEASure:SEND ON. When this is on, the oscilloscope
will return the measurement and a result indicator. The result flag is zero
if the measurement was successfully completed, otherwise a non-zero value is
returned which indicates why the measurement failed. See the Programmer’s

Manual

*

* % ok ok X

for descriptions of result indicators.

The second method simply requires that you check the return value of the
measurement . Any measurement not made successfully will return with the value
+9.999E37. This could indicate that either the measurement was unable to be
performed, or that insufficient waveform data was available to make the
measurement .

METHOD ONE - turn on results to indicate whether the measurement completed
successfully. Note that this requires transmission of extra data from the
oscilloscope. */

write IO(":MEASure:SENDvalid ON") ; /* turn results on */

/* query -- volts peak-to-peak channel 1%/
write IO(":MEASure:VPP? CHANnell");

bytes read = read IO (vpp_str,16L); /* read in value and result flag */

if (vpp_strlbytes read-2] != '0')
printf ("Automated vpp measurement error with result %c\n",
vpp_str [bytes read-2]) ;

else
printf ("VPP is %f\n", (float)atof (vpp_str));

write IO(":MEASure:FREQuency? CHANnell"); /* frequency channel 1 */
bytes read = read IO(freq str,16L); /* read in value and result flag */
if (freq str[bytes read-2] != '0’)

printf ("Automated frequency measurement error with result %c\n",
freq str[bytes read-2]);

else
printf ("Frequency is %f\n", (float)atof (freq str));

6-10

Sample Programs
Sample C Programs

/*

* METHOD TWO - perform automated measurements and error checking with
* :MEAS :RESULTS OFF.

*/

frequency =(float)0;

vpp = (float)o0;

/* turn off results */
write IO(":MEASure:SENDvalid OFF") ;

write IO(":MEASure:FREQuency? CHANnell"); /* frequency channel 1 */
bytes read = read IO(freq str,16L); /* read in value and result flag */
frequency = (float) atof (freg_str);

if (frequency > 9.99e37)
printf ("\nFrequency could not be measured.\n");
else
printf ("\nThe frequency of channel 1 is %f Hz.\n", frequency);

write IO(":MEASure:VPP? CHANnell");
bytes read = read IO(vpp_str,16L);

vpp = (float) atof (vpp str);
if (vpp > 9.99e37)

printf ("Peak-to-peak voltage could not be measured.\n");
else

printf ("The voltage peak-to-peak is $f volts.\n", vpp);

} /* end auto measurements() */

6-11

Sample Programs
Sample C Programs

init.c - Transferring Data to the PC

/*

* Function name: transfer data

* Parameters: none

* Return value: none

* Description: This routine transfers the waveform conversion factors and
* waveform data to the PC.

*/

void transfer data()
{
int header length;
char header str[8];
char term;

char xinc_str([32],xorg str[32],xref str([32];
char yinc_str([32],yref str[32],yorg str([32];

int bytes read;

/* waveform data source channel 1 */
write IO (":WAVeform:SOURce CHANnell");

/* setup transfer format */
write IO(":WAVeform:FORMat BYTE") ;

/* request values to allow interpretation of raw data */
write IO (":WAVeform:XINCrement?") ;

bytes read = read IO(xinc_str,32L);
xinc = atof (xinc_str);

write IO (":WAVeform:XORigin?");
bytes read = read IO(xorg str,32L);
xorg = atof (xorg str);

write IO(":WAVeform:XREFerence?") ;
bytes read = read IO (xref str,32L);
xref = atof (xref str);

write IO(":WAVeform:YINCrement?") ;
bytes read = read IO(yinc_str,32L);
yinc = atof (yinc_str);

write IO (":WAVeform:YORigin?");
bytes read = read IO(yorg str,32L);

Sample Programs
Sample C Programs

yorg = atof (yorg str);

write IO(":WAVeform:YREFerence?") ;
bytes read = read IO(yref str,32L);
yref = atof (yref str);

write IO(":WAVeform:DATA?"); /* request waveform data */
while (datal[0] != ‘#')

bytes read = read_IO(data,lL); /* find the # character */
bytes read = read IO (header_ str,1L); /* input byte counter */

header length = atoi (header_str);

/* read number of points - value in bytes */
bytes read = read IO (header str, (long)header length);

Acquired length = atoi (header_ str); /* number of bytes */

bytes read = read IO(data,Acquired length) ; /* input waveform data */

bytes read = read IO(&term,1L); /* input termination character */
} /* end transfer data() */

An example header resembles the following when the information is stripped
off:

#510225
The left most “5” defines the number of digits that follow (10225). The number
“10225” is the number of points in the waveform. The information is stripped

off of the header to get the number of data bytes that need to be read from the
oscilloscope.

6-13

Sample Programs
Sample C Programs

init.c - Converting Waveform Data

/*

* Function name: convert data

* Parameters: none

* Return value: none

* Description: This routine converts the waveform data to time/voltage

* information using the values that describe the waveform. These values are
* stored in global arrays for use by other routines.

*/

void convert data()

{

int i;
for (i = 0; 1 < Acquired length; i++)
{ time value[i] =((i - xref) * xinc) + xorg; /* calculate time info */
volts[i] = ((datal[i]l - yref) * yinc) + yorg; /* calculate volt info */
} /i end convert data() */

The data values are returned as digitized samples (sometimes called
quantization levels or g-levels). These data values must be converted into
voltage and time values.

*

* % ok kX F ok

~

Sample Programs
Sample C Programs

init.c - Storing Waveform Time and Voltage Information

Function name: store csv

Parameters: none

Return value: none

Description: This routine stores the time and voltage information about
the waveform as time/voltage pairs in a comma-separated variable file
format.

void store csv()

{

FILE *fp;
int i;
fp = fopen("pairs.csv","wb") ; /* open file in binary mode - clear file */
/* if already exists */
if (fp != NULL)
{
for (1 = 0; 1 < Acquired length; i++)
{
/* write time,volt pairs to file */
fprintf (fp,"%e,%$1f\n",time value[i],volts[i]);
!
fclose(fp); /* close file */
!
else

printf ("Unable to open file ’'pairs.csv’\n");

/* end store_csv() */

The time and voltage information of the waveform is stored in integer format,
with the time stored first, followed by a comma, and the voltage stored second.

6-15

/*

*/

Sample Programs
Sample C Programs

Sample C Program - Generating a Service Request

Segments of the sample C program “gen_srq.c” show how to initialize the
interface and oscilloscope, and generate a service request.

Two include statements start the “gen_srq.c” program. The file “stdio.h” defines
the standard location of the printf routine, and is needed whenever input or
output functions are used. The file “gpibdecl.h” includes necessary prototypes
and declarations for the Infiniium-Series Oscilloscopes sample programs. The
path of these files must specify the disk drive and directory where the “include”
files reside.

gen srqg.c */

This example program initializes the 548xx oscilloscope, runs an autoscale,
then generates and responds to a Service Request from the oscilloscope. The
program assumes an 548xx at address 7, an interface card at interface select
code 7, and a waveform source attached to channel 1.

#include <stdio.h> /* location of: printf () */
#include "gpibdecl.h"

void initialize();
void setup_ SRQ() ;
void create SRQ() ;

void main(void)

{

init IO(); /* initialize interface and device sessions */
initialize(); /* initialize the oscilloscope and interface */

setup SRQ() ; /* enable SRQs on oscilloscope and set up SRQ handler */
create SRQ(); /* generate SRQ */

close IO(); /* close interface and device sessions */

} /* end main() */

The routine “init_IO” contains three subroutines that initialize the oscilloscope
and interface, and sets up and generate a service request.

The following segment describes the initialize subroutine.

6-16

*

Function name:
Parameters:
Return value:

L R B A T R

~

void initialize(

{

Sample Programs
Sample C Programs

Initializing the Oscilloscope
The following function is demonstrated in the “gen_srq.c” sample program.
initialize

none
none

Description: This routine initializes the oscilloscope for proper acquisition
of data. The instrument is reset to a known state and the interface is
cleared. System headers are turned off to allow faster throughput and
immediate access to the data values requested by queries. The oscilloscope
performs an autoscale to acquire waveform data.

)

write IO("*RST"); /* reset oscilloscope - initialize to known state */
write IO("*CLS"); /* clear status registers and output queue */
write IO(":SYSTem:HEADer OFF"); /* turn off system headers */
write IO(":AUToscale"); /* perform autoscale */
} /* end initialize() */

The *RST command is a common command that resets the oscilloscope to a
known default configuration. Using *RST ensures that the oscilloscope is in a
known state before you configure it. It ensures very consistent and repeatable
results. Without *RST, a program may run one time, but it may give different
results in following runs if the oscilloscope is configured differently.

For example, if the trigger mode is normally set to edge, the program may
function properly. But, if someone puts the oscilloscope in the advanced TV
trigger mode from the front panel, the program may read measurement results
that are totally incorrect. So, *RST defaults the oscilloscope to a set
configuration so that the program can proceed from the same state each time.

The *CLS command clears the status registers and the output queue.

AUToscale finds and displays all waveforms that are attached to the
oscilloscope. You should program the oscilloscope’s time base, channel, and
trigger for the specific measurement to be made, as you would do from the front
panel, and use whatever other commands are needed to configure the
oscilloscope for the desired measurement.

6-17

Sample Programs
Sample C Programs

Setting Up a Service Request

The following code segment shows how to generate a service request. The
following function is demonstrated in the “gen_srq.c” sample program.

/*
* Function name: setup SRQ
* Parameters: none

* Return value: none

* Description: This routine initializes the device to generate Service Requests.
It

* sets the Service Request Enable Register Event Status Bit and the Standard
* Event Status Enable Register to allow SRQs on Command, Execution, Device

* Dependent, or Query errors.

*/

void setup SRQ()

{

/* Enable Service Request Enable Register - Event Status Bit */
write IO("*SRE 32"); /* Enable Standard Event Status Enable Register */
/* enable Command Error - bit 4 - value 32 */

write TO("*ESE 32");

} /* end setup SRQ() */

6-18

Sample Programs
Sample C Programs

Generating a Service Request
The following function is demonstrated in the “gen_srq.c” sample program.

/*

* Function name: create SRQ

* Parameters: none

* Return value: none

* Description: This routine sends two illegal commands to the oscilloscope which
* will generate an SRQ and will place two error strings in the error queue. The
* oscilloscope ID is requested to allow time for the SRQ to be generated. The ID
* string will contain a leading character which is the response placed in

* the output queue by the interrupted query.

*

/

void create SRQ()

{
char buf([256] = { 0 }; // read buffer for id string
int bytes read = 0;

#ifdef AGILENT
// Setup the Agilent interrupt handler
ionsrg(scope, srg agilent);
#else
// Setup the National interrup handler
ibnotify(scope, RQS, srqg national, NULL);
#endif

// Generate command error - send illegal header
write IO(":CHANnel:DISPlay OFF") ;

srg_asserted = TRUE;

while(srg_asserted)

{
}

} /* end create SRQ() */

// Do nothing until the interrupt has finished

6-19

Listings of the Sample Programs

Listings of the C sample programs in this section include:

e gpibdecl.h
® srqgagi.c

e learnstr.c
e sicl IO.c
e natl 10.c

Listings of the BASIC sample programs in this section include:

¢ init.bas
® srqg.bas
e]rn_str.bas

Read the README File Before Using the Sample Programs

Before using the sample programs, be sure to read the README file on the disk that
contains the sample programs.

6-20

Sample Programs
gpibdecl.h Sample Header

gpibdecl.h Sample Header

/* gpibdecl.h */

/* This file includes necessary prototypes and declarations for the
example programs for the Agilent 548xx */

/* User must indicate which GPIB card (Agilent or National) is being used or
if the LAN interface is being used.
Also, if using a National card, indicate which version of windows
(WIN31 or WIN95) is being used */

#define LAN /* Uncomment if using LAN interface */
#define AGILENT/* Uncomment if using LAN or Agilent interface card */
// #define NATL /* Uncomment if using National interface card */

/* #define WIN31 */ /* For National card ONLY - select windows version */
#define WINSS

#ifdef WIN95

#include <windows.h>/* include file for Windows 95 */
#else

#include <windecl.h>/* include file for Windows 3.1 */
#endif

#ifdef AGILENT

#include "d:\siclnt\c\sicl.h" /* Change the path for the sicl.h location */
#else

#include "decl-32.h"
#endif

#define CME 32
#define EXE 16
#define DDE 8
##define QYE 4

#define SRQ BIT 64
#define MAX LRNSTR 40000
#define MAX LENGTH 4096
#define MAX INT 4192

#ifdef AGILENT
#ifdef LAN
#define INTERFACE "lan[130.29.71.82]:instQO"
#else

6-21

Sample Programs
gpibdecl.h Sample Header

#define DEVICE_ADDR "hpib7,7"
#define INTERFACE "hpib7"
#endif
#telse
#define INTERFACE "gpibO"

#define board_index 0

#define prim addr 7

#define second addr 0

#define timeout 13

#define eoi_mode 1

#define eos mode 0
#endif

/* GLOBALS */
#ifdef AGILENT

INST bus;

INST scope;
#else

int bus;

int scope;
#endif

#define TRUE 1
#define FALSE 0

extern int srg asserted;

/* GPIB prototypes */

void init IO();

void write IO(char*);

void write lrnstr(char*, long);
int read IO(char*, unsigned long);
unsigned char read status();

void close IO();

void gpiberr() ;

#ifdef AGILENT

extern void SICLCALLBACK srg agilent(INST);
#telse

extern int _ stdcall srqg national(int, int, int,
#endif

long,

void*) ;

6-22

Sample Programs
srqagi.c Sample Program

srqagi.c Sample Program
/* file: srqg.c */

/* This file contains the code to handle Service Requests from an HP-IB device */

#include <stdio.h> /* location of printf (), fopen(), and fclose() */
#include "gpibdecl.h"

int srqg_asserted;

*

Function name: srg_agilent
Parameters: INST which is id of the open interface.
Return value: none
Description: This routine services the scope when an SRQ is generated.
An error file is opened to receive error data from the scope.

* % ok ok X F

~

void SICLCALLBACK srg agilent (INST id)

{
FILE *fp;
unsigned char statusbyte = 0;
int i =0;
int more_errors = 0;
char error_ str[64] ={0};
int bytes read;

srg_asserted = TRUE;
statusbyte = read status();

if (statusbyte & SRQ BIT)

{

fp = fopen("error list","wb"); /* open error file */

if (fp == NULL)
printf ("Error file could not be opened.\n");

/* read error queue until no more errors */

more_errors = TRUE;

6-23

Sample Programs
srgqagi.c Sample Program

while (more_ errors)
{
write IO(":SYSTEM:ERROR? STRING") ;

bytes read = read IO(error_ str, 64L);

error_str([bytes read] = '\0’;
printf ("Error string:%s\n", error str); /* write error msg to std IO */
if (fp != NULL)
fprintf (fp, "Error string:%s\n", error str); /* write error msg to file */
if (error str[0] == '0')
write IO("*CLS"); /* Clear event registers and queues,

except output */

more_errors = FALSE;
if(fp != NULL)
fclose(fp);

} /* end while (more errors) *x/

else
/* scope did not cause SRQ */

{
}

printf (" SRQ not generated by scope.\n ") ;

srg_asserted = FALSE;

}/* end srqg_agilent */

6-24

Sample Programs
learnstr.c Sample Program

learnstr.c Sample Program

/* learnstr.c */

/*

* This example program initializes the 548xx oscilloscope, runs autoscale to
* acquire a waveform, queries for the learnstring, and stores the learnstring
* to disk. It then allows the user to change the setup, then restores the

* original learnstring. It assumes that a waveform is attached to the

* oscilloscope.

*/

#include <stdio.h> /* location of: printf (), fopen(), fclose(),

fwrite () ,getchar */

#include "gpibdecl.h"

void initialize();

void store learnstring();
void change setup();
void get learnstring();

void main(void)

{

init IO(); /* initialize device and interface */

/* Note: routine found in sicl IO.c or natl IO.c */
/* initialize the oscilloscope and interface, and set up SRQ */
initialize();

store learnstring(); /* request learnstring and store */
change setup() ; /* request user to change setup */
get_learnstring(); /* restore learnstring */

close IO(); /* close device and interface sessions */

/* Note: routine found in sicl IO.c or natl IO.c */

} /* end main */

6-25

*

L R R T T B

~

Sample Programs
learnstr.c Sample Program

Function name: initialize

Parameters: none

Return value: none

Description: This routine initializes the oscilloscope for proper
acquisition of data. The instrument is reset to a known state and the
interface is cleared. System headers are turned off to allow faster
throughput and immediate access to the data values requested by queries.
Autoscale is performed to acquire a waveform. The waveform is then
digitized, and the channel display is turned on following the acquisition.

void initialize()

write IO("*RST"); /* reset oscilloscope - initialize to known state */
write IO("*CLS"); /* clear status registers and output queue */

write IO(":SYSTem:HEADer ON");/* turn on system headers */

/* initialize Timebase parameters to center reference, 2 ms
full-scale (200 us/div), and 20 us delay */
write IO (":TIMebase:REFerence CENTer;RANGe 5e-3;POSition 20e-6");

/* initialize Channell 1.6v full-scale (200 mv/div) ;
offset -400mv */
Write_IO(":CHANnell:RANGe 1.6;0FFSet -400e-3");

/* initialize trigger info: channell waveform on positive slope
at 300mv */

write IO (":TRIGger:EDGE:SOURce CHANnell;SLOPe POSitive");

write IO(":TRIGger:LEVel CHANnell,-0.40");

/* initialize acquisition subsystem */
/* Real time acquisition - no averaging; record length 4096 */
write IO(":ACQuire:MODE RTIMe;AVERage OFF;POINts 4096") ;

} /* end initialize() */

6-26

Sample Programs
learnstr.c Sample Program

/*

* Function name: store_learnstring

* Parameters: none

* Return value: none

* Description: This routine requests the system setup known as a

* learnstring. The learnstring is read from the oscilloscope and stored in a file
* called Learn2.

*/

void store learnstring()

{
FILE *fp;
unsigned char setup[MAX LRNSTR]={0};
int actualcnt = 0;

write IO(":SYSTem:SETup?") ; /* request learnstring */
actualcnt = read IO(setup, MAX LRNSTR) ;

fp = fopen("learn2", "wb") ;

if (fp != NULL)

{

fwrite(setup,sizeof (unsigned char), (int)actualcnt, fp) ;
printf ("Learn string stored in file Learn2\n") ;

fclose(fp);

}

else
printf ("Error in file open\n") ;

}/* end store learnstring */

/*
* Function name: change setup
* Parameters: none
* Return value: none
* Description: This routine places the oscilloscope into local mode to allow the
* customer to change the system setup.
*
/

void change setup()

printf ("Please adjust setup and press ENTER to continue.\n");
getchar () ;

} /* end change setup */

6-27

Sample Programs
learnstr.c Sample Program

*

Function name: get learnstring

Parameters: none

Return value: none

Description: This routine retrieves the system setup known as a
learnstring from a disk file called Learn2. It then restores

the system setup to the oscilloscope.

L B R T

~

void get learnstring()

FILE *fp;
unsigned char setup [MAX LRNSTR] ;
unsigned long count = 0;

fp = fopen("learn2",'"rb");

if (fp != NULL)

{

count = fread(setup, sizeof (unsigned char),MAX LRNSTR, fp) ;

fclose(fp);

}

write lrnstr (setup,count) ; /* send learnstring */
write_IO(":RUN");

}/* end get learnstring */

6-28

Sample Programs
sicl_l0.c Sample Program

sicl_IO.c Sample Program
/* sicl IO.c */
#include <stdio.h> /* location of: printf () */
#include <string.h> /* location of: strlen() */

#include "gpibdecl.h"

/* This file contains IO and initialization routines for the SICL libraries. */

/*

Function name: init IO
Parameters: none
* Return value: none
* Description: This routine initializes the SICL environment. It sets up
* error handling, opens both an interface and device session, sets timeout
* values, clears the interface by pulsing IFC, and clears the instrument
* Dby performing a Selected Device Clear.
*
/

void init TIO()

{

ionerror (I_ERROR_EXIT) ; /* set-up interface error handling */

/* open interface session for verifying SRQ line */
bus = iopen(INTERFACE) ;
if (bus == 0)

printf ("Bus session invalid\n") ;

itimeout (bus, 20000); /* set bus timeout to 20 sec */
iclear(bus); /* clear the interface - pulse IFC */

#ifdef LAN
scope = bus;

#else
scope = iopen(DEVICE ADDR) ; /* open the scope device session */
if (scope == 0)
printf ("Scope session invalid\n");
itimeout (scope, 20000); /* set device timeout to 20 sec */
iclear(scope); /* perform Selected Device Clear on oscilloscope */
#endif

} /* end init I0 */

6-29

Sample Programs
sicl_l0.c Sample Program

/*

* Function name: write IO

* Parameters: char *buffer which is a pointer to the character string to be
* output; unsigned long length which is the length of the string to be output
* Return value: none

* Description: This routine outputs strings to the oscilloscope device session
* using the unformatted I/0 SICL commands.

*/

void write IO(void *buffer)
{
unsigned long actualcnt;
unsigned long length;
int send end = 1;
length = strlen(buffer);
iwrite(scope, buffer, length, send end, &actualcnt);

} /* end write IO */

/*

* Function name: write lrnstr

* Parameters: char *buffer which is a pointer to the character string to be
* output; long length which is the length of the string to be output

* Return value: none

* Description: This routine outputs a learnstring to the oscilloscope device
* gession using the unformatted I/O SICL commands.

*

/

void write lrnstr(void *buffer, long length)

unsigned long actualcnt;
int send end = 1;

iwrite(scope, buffer, (unsigned long) length,
send_end, &actualcnt);

} /* end write lrnstr() */

6-30

Sample Programs
sicl_l0.c Sample Program

/*

* Function name: read IO

* Parameters: char *buffer which is a pointer to the character string to be
* dinput; unsigned long length which indicates the max length of the string to
* Dbe input

* Return value: integer which indicates the actual number of bytes read

* Description: This routine inputs strings from the oscilloscope device session
* using SICL commands.

*

/

int read IO(void *buffer,unsigned long length)

int reason;
unsigned long actualcnt;

iread (scope,buffer, length, &reason, &actualcnt) ;

return((int) actualcnt);

/*

* Function name: check SRQ

* Parameters: none

* Return value: integer indicating if bus SRQ line was asserted

* Description: This routine checks for the status of SRQ on the bus and
* returns a value to indicate the status.

*

/

int check SRQ()
int srg_asserted;

/* check for SRQ line status */
igpibbusstatus (bus, I _GPIB BUS SRQ, &srg asserted) ;

return(srq_asserted) ;

} /* end check SRQ() */

6-31

Sample Programs
sicl_l0.c Sample Program

/*

* Function name: read status

* Parameters: none

* Return value: unsigned char indicating the value of status byte

* Description: This routine reads the oscilloscope status byte and returns
* the status.

*/

unsigned char read status()
unsigned char statusbyte;
/* Always read the status byte from instrument */
/* NOTE: ireadstb uses serial poll to read status byte - this

should clear bit 6 to allow another SRQ. */

ireadstb(scope, &statusbyte);
return(statusbyte);

} /* end read status() */

*

Function name: close IO

Parameters: none

Return value: none

Description: This routine closes device and interface sessions for the
SICL environment and calls the routine _siclcleanup which de-allocates
resources used by the SICL environment.

* %k ko ok X F

~

void close IO()

iclose(scope); /* close device session */
iclose(bus) ; /* close interface session */
_siclcleanup() ; /* required for 16-bit applications */

} /* end close SICL() */

6-32

Sample Programs
natl_l0.c Sample Program

natl_IO.c Sample Program

/* natl IO.c */

#include <stdio.h> /* location of: printf () */
#include <string.h> /* location of: strlen() */
#include "gpibdecl.h"

/* This file contains IO and initialization routines for the NI488.2 commands. */
/*
* Function name: gpiberr

* Parameters: char* - string describing error

* Return value: none

* Description: This routine outputs error descriptions to an error file.

*/
void gpiberr(char *buffer)
{

printf ("Error string: %s\n",buffer);

} /* end gpiberr() =*/

*

Function name: init IO

Parameters: none

Return value: none

Description: This routine initializes the NI environment. It sets up error
handling, opens both an interface and device session, sets timeout values
clears the interface by pulsing IFC, and clears the instrument by performing
a Selected Device Clear.

* % ok ok Xk kX

~

void init IO()
{
bus = ibfind(INTERFACE) ; /* open and initialize GPIB board */
if (ibsta & ERR)
gpiberr ("ibfind error") ;

ibconfig(bus, IbcAUTOPOLL, 0); /* turn off autopolling */

ibsic(bus) ; /* clear interface - pulse IFC */
if (ibsta & ERR)

{

gpiberr("ibsic error");

6-33

Sample Programs
natl_l0.c Sample Program

/* open device session */

scope = ibdev(board index, prim addr, second addr, timeout,
eol mode, eos _mode) ;

if(ibsta & ERR)

{
}

ibclr (scope) ; /* clear the device(scope) */

gpiberr("ibdev error");

if (ibsta & ERR)

{

gpiberr ("ibclr error");

} /* end init IO */

*
Function name: write IO
Parameters: void *buffer which is a pointer to the character string
to be output
Return value: none
Description: This routine outputs strings to the oscilloscope device session.

* % ok ok

*

*/

void write_IO(void *buffer)
long length;
length = strlen(buffer);

ibwrt (scope, buffer, (long) length);
if (ibsta & ERR)

{
}

} /* end write IO() */

gpiberr("ibwrt error");

6-34

Sample Programs
natl_l0.c Sample Program

/*

* Function name: write lrnstr

* Parameters: void *buffer which is a pointer to the character string to

* Dbe output; length which is the length of the string to be output

* Return value: none

* Description: This routine outputs a learnstring to the oscilloscope device
* session.

*/

void write lrnstr(void *buffer, long length)

ibwrt (scope, buffer, (long) length);
if (ibsta & ERR)

{

gpiberr ("ibwrt error");

} /* end write lrnstr() */

*

Function name: read IO

Parameters: char *buffer which is a pointer to the character string to be
input; unsigned long length which indicates the max length of the string
to be input

Return value: integer which indicates the actual number of bytes read
Description: This routine inputs strings from the oscilloscope device session.

* Ok ko ok Xk

~

int read IO(void *buffer,unsigned long length)
ibrd (scope, buffer, (long)length);
return(ibcntl) ;

} /* end read IO() */

6-35

Sample Programs
natl_l0.c Sample Program

/*
* Function name: check SRQ
* Parameters: none
* Return value: integer indicating if bus SRQ line was asserted
* Description: This routine checks for the status of SRQ on the bus and
* returns a value to indicate the status.
*
/

int check SRQ()

int srg_asserted;
short control lines = 0;

iblines(bus, &control lines) ;

if (control lines & BusSRQ)
srg_asserted = TRUE;

else
srg_asserted = FALSE;

return(srg_asserted);

} /* end check SRQ() */

*
Function name: read status
Parameters: none
Return value: unsigned char indicating the value of status byte
Description: This routine reads the oscilloscope status byte and returns
* the status.
*/

unsigned char read status()

* %k ok

unsigned char statusbyte;

/* Always read the status byte from instrument */
ibrsp(scope, &statusbyte);

return(statusbyte);

} /* end read status() */

6-36

Sample Programs
natl_l0.c Sample Program

/*
* Function name: close IO
* Parameters: none
* Return value: none
Description: This routine closes device session.
*/

void close IO()

{

ibonl (scope,0); /* close device session */

} /* end close IO() */

6-37

Sample Programs
init.bas Sample Program

init.bas Sample Program

10 I1file: init

20 !

30 !

40 ! This program demonstrates the order of commands suggested for
operation of

50 ! the 548xx oscilloscope via GPIB. This program initializes the
oscilloscope, acquires

60 ! data, performs automatic measurements, and transfers and stores the
data on the

70 ! PC as time/voltage pairs in a comma-separated file format useful for
spreadsheet

80 ! applications. It assumes an interface card at interface select code 7, an
90 ! 548xx oscilloscope at address 7, and the 548xx cal waveform connected
to Channel 1.

100 !

110 !

120 !

130 COM /Io/@Scope,@Path, Interface

140 COM /Raw_data/ INTEGER Data (4095)

150 COM /Converted data/ REAL Time (4095),Volts(4095)
160 COM /Variables/ REAL Xinc,Xref,Xorg,Yinc,Yref, Yorg
170 COM /Variables/ INTEGER Record length

180 !

190 !

200 CALL Initialize

210 CALL Acquire data

220 CALL Auto_msmts

230 CALL Transfer data

240 CALL Convert_data

250 CALL Store csv

260 CALL Close

270 END

280 !

290
| A O A A

320 ! BEGIN SUBPROGRAMS

6-38

Sample Programs
init.bas Sample Program

360 !

370 ! Subprogram name: Initialize

380 ! Parameters: none

390 ! Return value: none

400 ! Description: This routine initializes the interface and the

oscilloscope. The instrument

410 ! is reset to a known state and the interface is cleared. System headers

420 ! are turned off to allow faster throughput and immediate access to the

430 ! data values requested by the queries. The oscilloscope time base,

440 ! channel, and trigger subsystems are then configured. Finally, the

450 ! acquisition subsystem is initialized.

460 !

470 !

480 SUB Initialize

490 COM /Io/@Scope,@Path, Interface

500 COM /Variables/ REAL Xinc,Xref,Xorg,Yinc, Yref, Yorg

510 COM /Variables/ INTEGER Record_ length

520 Interface=7

530 ASSIGN @Scope TO 707

540 RESET Interface

550 CLEAR @Scope

560 OUTPUT @Scope; "*RST"

570 OUTPUT @Scope;"*CLS"

580 OUTPUT @Scope; " :SYSTem:HEADer OFF"

590 lInitialize Timebase: center reference, 2 ms full-scale (200 us/div),
20 us delay

600 OUTPUT @Scope;":TIMebase:REFerence CENTer;RANGe 2e-3;POSition 20e-6"

610 ! Initialize Channell: 1.6V full-scale (200mv/div), -415mv offset

620 OUTPUT @Scope;":CHANnell:RANGe 1.6;0FFSet -415e-3"

630 !Tnitialize Trigger: Edge trigger, channell source at -415mv

640 OUTPUT @Scope; ":TRIGger: EDGE:SOURce CHANnell;SLOPe POSitive"

650 OUTPUT @Scope;":TRIGger:LEVel CHANnell,-0.415"

660 ! Initialize acquisition subsystem

665 ! Real time acquisition, Averaging off, memory depth 4096

670 OUTPUT @Scope; ":ACQuire:MODE RTIMe;AVERage OFF;POINts 4096"

680 Record length=4096

690 SUBEND

700 !

710 !

720

[o O o O O A O O O O O A O N NSy

rrrrrrrrnd

730 !

740 !

750 ! Subprogram name: Acquire data

760 ! Parameters: none

770 ! Return value: none

780 ! Description: This routine acquires data according to the current

6-39

Sample Programs
init.bas Sample Program

instrument

790

This command

800

it will initialize

810

acquisition

820

stopped. The captured

830

or transfer to a

840
off
850
860
870
880
890
900
910
920
930
940
950

!
by the :DIGitize

setting. It uses the root level :DIGitize command.

is recommended for acquisition of new data because
the data buffers, acquire new data, and ensure that
criteria are met before acquisition of data is
data is then available for measurements, storage,

PC. Note that the display is automatically turned

! command and must be turned on to view the captured data.

SUB Acquire data

COM /Io/@Scope,@Path, Interface
OUTPUT @Scope;":DIGitize CHANnell"
OUTPUT @Scope;":CHANnell:DISPlay ON"

SUBEND
!
!

1010
volt
1020

! Subprogram name: Auto msmts

! Parameters:

nomne

! Return value: none

! Description: This routine performs automatic measurements of

s peak-to-peak
!

demonstrates two methods

1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
two

!
|
!
SUB Auto_msmts

and frequency on the acquired data. It also

of error detection when using automatic measurements.

COM /Io/@Scope,@Path, Interface

REAL Freq, Vpp
DIM Vpp_strs[64]
DIM Freq str$[64]
Bytes read=0

|

! Error checking on automatic measurements can be done using one of

methods.

6-40

Sample Programs
init.bas Sample Program

1140 ! The first method requires that you turn on results in the Measurement
subsystem

1150 ! using the command ":MEASure:SEND ON". When this is on, the
oscilloscope will return the

1160 ! measurement and a result indicator. The result flag is zero if
the measurement

1170 ! was successfully completed, otherwise a non-zero value is returned
which indicates

1180 ! why the measurement failed. See the Programmer’s Manual for
descriptions of result

1190 ! indicators. The second method simply requires that you check the
return value of

1200 ! the measurement. Any measurement not made successfully will return
with the wvalue

1210 ! +9.999e37. This could indicate that either the measurement was
unable to be

1220 ! performed or that insufficient waveform data was available to make
the measurement.

1230 !

1240 ! METHOD ONE

1250 !

1260 OUTPUT @Scope; " :MEASure:SENDvalid ON" lturn on results
1270 OUTPUT @Scope; " :MEASure:VPP? CHANnell" !Query volts peak-to-peak
1280 ENTER @Scope;Vpp_str$

1290 Bytes read=LEN (Vpp_ str$) !Find length of string
1300 CLEAR SCREEN

1310 IF Vpp str$[Bytes read;1]="0" THEN !Check result value
1320 PRINT

1330 PRINT "VPP is ";VAL(Vpp_strs$[l,Bytes read-1])

1340 PRINT

1350 ELSE

1360 PRINT

1370 PRINT "Automated vpp measurement error with result
";Vpp_str$[Bytes read;1]

1380 PRINT

1390 END IF

1400 !

1410 !

1420 OUTPUT @Scope; " :MEASure:FREQuency? CHANnell" [!Query frequency
1430 ENTER @Scope;Freq strs$

1440 Bytes read=LEN(Freq str$) !Find string length
1450 IF Freq str$[Bytes read;1]="0" THEN |Determine result value
1460 PRINT

1470 PRINT "Frequency is ";VAL(Freq_str$[l,Bytes read-1])

1480 PRINT

1490 ELSE

1500 PRINT

1510 PRINT "Automated frequency measurement error with result

6-41

Sample Programs
init.bas Sample Program

";Freq_strs$ [Bytes_read;1]

1520 PRINT

1530 END IF

1540 !

1550 !

1560 ! METHOD TWO

1570 !

1580 OUTPUT @Scope; " :MEASure:SENDvalid OFF" lturn off results
1590 OUTPUT @Scope; " :MEASure:VPP? CHANnell" !Query volts peak-to-peak
1600 ENTER @Scope;Vpp

1610 IF Vpp<9.99E+37 THEN

1620 PRINT

1630 PRINT "VPP is ";Vpp

1640 PRINT

1650 ELSE

1660 PRINT

1670 PRINT "Automated vpp measurement error ";Vpp

1680 PRINT

1690 END IF

1700 OUTPUT @Scope; " :MEASure:FREQuency? CHANnell"

1710 ENTER @Scope;Freq

1720 IF Freg<9.99E+37 THEN

1730 PRINT

1740 PRINT "Frequency is ";Freq

1750 PRINT

1760 ELSE

1770 PRINT

1780 PRINT "Automated frequency measurement error";Freq
1790 PRINT

1800 END IF

1810 SUBEND

1820 !

1830 !

1840

[o O o O A S O O O O O A O e N Ny
rtrrrrrred

1850 !

1860 !

1870 ! Subprogram name: Transfer data

1880 ! Parameters: none

1890 ! Return value: none

1900 ! Description: This routine transfers the waveform data and conversion
factors to

1910 ! to PC.

1920 !

1930 !

1940 SUB Transfer data
1950 COM /Io/@Scope,@Path, Interface

6-42

1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200

Sample Programs
init.bas Sample Program

COM /Raw_data/ INTEGER Data(4095)
COM /Converted data/ REAL Time (4095),Volts(4095)
COM /Variables/ REAL Xinc,Xref,Xorg,Yinc,Yref, Yorg
COM /Variables/ INTEGER Record length
! define waveform data source and format
OUTPUT @Scope;":WAVeform:SOURce CHANnell"
OUTPUT @Scope;":WAVeform: FORMat WORD"
request values needed to convert raw data to real
OUTPUT @Scope; " :WAVeform:XINCrement?"
ENTER @Scope;Xinc
OUTPUT @Scope;":WAVeform:XORigin?"
ENTER @Scope;Xorg
OUTPUT @Scope; " :WAVeform:XREFerence?"
ENTER @Scope;Xref
OUTPUT @Scope; " :WAVeform:YINCrement?"
ENTER @Scope;Yinc
OUTPUT @Scope;":WAVeform:YORigin?"
ENTER @Scope;Yorg
OUTPUT @Scope; " :WAVeform: YREFerence?"
ENTER @Scope;Yref
|
! request data
OUTPUT @Scope; " :WAVeform:DATA?"
ENTER @Scope USING "#,1A";First chrs lignore leading #
ENTER @Scope USING "#,1D";Header_ length linput number of bytes in

header value
ENTER @Scope USING "#, "&VALS (Header length) &"D";Record length IRecord
length in bytes

2210

2220
2230
2240
2250
2260
2270
2280
2290

Record length=Record length/2 !|Record length in words
ENTER @Scope USING "#,W";Data(*)
ENTER @Scope USING "#,A";Term$

!

SUBEND
!

!Enter terminating character

2350

! Subprogram name: Convert data

! Parameters: none

! Return value: none

! Description: This routine converts the waveform data to time/

voltage information

2360

! using the values Xinc, Xref, Xorg, Yinc, Yref, and

Yorg used to describe

2370

! the raw waveform data.

6-43

Sample Programs
init.bas Sample Program

2400 SUB Convert_ data

2410 COM /Io/@Scope,@Path, Interface

2420 COM /Raw_data/ INTEGER Data(4095)

2430 COM /Converted data/ REAL Time (4095),Volts(4095)
2440 COM /Variables/ REAL Xinc,Xref,Xorg,Yinc,Yref, Yorg
2450 COM /Variables/ INTEGER Record length

2460 !

2470 FOR I=0 TO Record length-1

2480 Time (I)=(((I)-Xref) *Xinc) +Xorg

2490 Volts (I)=((Data(I)-Yref)*Yinc) +Yorg

2500 NEXT I
2510 SUBEND
2520 !
2530 !

2570 ! Subprogram name: Store csv

2580 ! Parameters: none

2590 ! Return value: none

2600 ! Description: This routine stores the time and voltage information
about the waveform

2610 ! as time/voltage pairs in a comma-separated variable
file format.

2620 !

2630 !

2640 SUB Store_csv

2650 COM /Io/@Scope,@Path, Interface

2660 COM /Converted data/ REAL Time (4095),Volts(4095)

2670 COM /Variables/ REAL Xinc,Xref,Xorg,Yinc, Yref, Yorg

2680 COM /Variables/ INTEGER Record length

2690 ICreate a file to store pairs in

2700 ON ERROR GOTO Cont

2710 PURGE "Pairs.csv"

2720 Cont: OFF ERROR

2730 CREATE "Pairs.csv",Max length

2740 ASSIGN @Path TO "Pairs.csv";FORMAT ON

2750 I0utput data to file
2760 FOR I=0 TO Record length-1
2770 OUTPUT @Path;Time(I),Volts(I)

2780 NEXT I
2790 SUBEND
2800 !
2810 !

6-44

2820

Sample Programs
init.bas Sample Program

2830
2840
2850
2860
2870
2880
2890
2900
2910
2920
2930
2940
2950
2960

! Subprogram name: Close

! Parameters: none

! Return value: none

! Description: This routine closes the IO paths.

SUB Close
COM /Io/@Scope,@Path, Interface

RESET Interface
ASSIGN @Path TO *
SUBEND

6-45

Sample Programs
srg.bas Sample Program

srq.bas Sample Program

10 IFile: srg.bas

20 !

30 ! This program demonstrates how to set up and check Service Requests from
40 ! the oscilloscope. It assumes an interface select code of 7 with an
oscilloscope at

50 ! address 7. It also assumes a waveform is connected to the oscilloscope.
60 !

70 !

80 COM /Io/@Scope, Interface

90 COM /Variables/Temp

100 CALL Initialize

110 CALL Setup srg

120 ON INTR Interface CALL Srqg_handler !Set up routine to handle interrupt
130 ENABLE INTR Interface;2 Enable SRQ Interrupt for Interface
140 CALL Create_srqg

150 CALL Close

160 END

170 !

200 ! BEGIN SUBPROGRAMS

250 ! Subprogram name: Initialize

260 ! Parameters: none

270 ! Return value: none

280 ! Description: This routine initializes the interface and the
oscilloscope.

290 ! The instrument is reset to a known state and the interface is
300 ! cleared. System headers are turned off to allow
faster throughput

310 ! and immediate access to the data values requested by the queries.
320 !

330 !

340 SUB Initialize

350 COM /Io/@Scope, Interface

360 ASSIGN @Scope TO 707
370 Interface=7

380 RESET Interface

390 CLEAR @Scope

6-46

Sample Programs
srg.bas Sample Program

400 OUTPUT @Scope;"*RST"

410 OUTPUT @Scope; "*CLS"

420 OUTPUT @Scope;":SYSTem:HEADer OFF"

430 OUTPUT @Scope; " :AUToscale"

440 SUBEND

450 !

460 !

470 !

480
trrrrprrrrrrrrrprrrrrrrrrrprrrrrrrrrprrrrrrrrrrrrrrrrrprrprrrrrrrrrrirrrrrrnd
[

490 !

500 ! Subprogram name: Setup_ srqg
510 ! Parameters: none
520 ! Return value: none
530 ! Description: This routine sets up the oscilloscope to generate

Service Requests.

540 ! It sets the Service Request Enable Register Event Status Bit
550 ! and the Standard Event Status Enable REgister to allow SRQs on
560 ! Command or Query errors.

570 !

580 !

590 SUB Setup_srg
600 COM /Io/@Scope, Interface

610 OUTPUT @Scope; "*SRE 32" !Enable Service Request Enable Registers
- Event Status bit

620 !

630 ! Enable Standard Event Status Enable Register:

640 ! enable bit 5 - Command Error - value 32

650 ! bit 2 - Query Error - value 4

660 OUTPUT @Scope;"*ESE 36"

670 SUBEND

680 !

690 !

700 !

710

[o O o O O A O O O O O A O N N N NSy
rtrret

720 !

730 !

740 ! Subprogram name: Create_ srqg

750 ! Parameters: none

760 ! Return value: none

770 ! Description: This routine will send an illegal command to the
oscilloscope to

780 ! show how to detect and handle an SRQ. A query is sent to
790 ! the oscilloscope which is then followed by another

command causing

6-47

Sample Programs
srg.bas Sample Program

800 ! a query interrupt error. An illegal command header is then
810 ! sent to demonstrate how to handle multiple errors in
the error queue.

820 !

830 !

840 !

850 SUB Create_srg

860 COM /Io/@Scope, Interface

870 DIM Buf$[256]

880 OUTPUT @Scope; " :CHANnel2:DISPlay?"

890 OUTPUT @Scope; " :CHANnel2:DISPlay OFF" Isend query interrupt
900 OUTPUT @Scope;":CHANnel:DISPlay OFF" !send illegal header

910 ! Do some stuff to allow time for SRQ to be recognized
920 !

930 OUTPUT @Scope; "*IDN?" IRequest IDN to verify communication

940 ENTER @Scope;Bufs$ INOTE: There is a leading zero to this
query response

950 PRINT lwhich represents the response to the
interrupted query above

960 PRINT Buf$

970 PRINT

980 SUBEND

990 !

1000 !

1010 !

1020

[o O T O O A O O O O O A O N N NNy
trrend

1030 !

1040 !

1050 ! Subprogram name: Srqg handler

1060 ! Parameters: none

1070 ! Return value: none

1080 ! Description: This routine verifies the status of the SRQ line. It
then checks

1090 ! the status byte of the oscilloscope to determine if
the oscilloscope caused the

1100 ! SRQ. Note that using a SPOLL to read the status byte
of the oscilloscope

1110 ! clears the SRQ and allows another to be generated.
The error queue

1120 ! is read until all errors have been cleared. All event
registers and

1130 ! queues, except the output queue, are cleared before
control is returned

1140 ! to the main program.

1150 !

1160 !

6-48

Sample Programs
srg.bas Sample Program

1170 !

1180 SUB Srg handler

1190 COM /Io/@Scope, Interface

1200 DIM Error str$[64]

1210 INTEGER Srg asserted,More_errors

1220 Status_byte=SPOLL (@Scope)

1230 IF BIT(Status_byte,6) THEN

1240 More_ errors=1

1250 WHILE More_ errors

1260 OUTPUT @Scope;" :SYSTem:ERROR? STRING"
1270 ENTER @Scope;Error_ strs$

1280 PRINT

1290 PRINT Error strs$

1300 IF Error str$[1,1]="0" THEN

1310 OUTPUT @Scope; "*CLS"

1320 More_ errors=0

1330 END IF

1340 END WHILE

1350 ELSE

1360 PRINT

1370 PRINT "Scope did not cause SRQ"

1380 PRINT

1390 END IF

1400 ENABLE INTR Interface;2 !re-enable SRQ
1410 SUBEND

1420 !

1430 !

1440
rtrrrbrrrrrrrrrrrrrirrrrrrrnd
[

1450 !

1460 ! Subprogram name: Close

1470 ! Parameters: none

1480 ! Return value: none

1490 ! Description: This routine resets the interface.
1500 !

1510 !

1520 !

1530 SUB Close
1540 COM /Io/@Scope, Interface

1560 RESET Interface
1570 SUBEND

6-49

Sample Programs
Irn_str.bas Sample Program

Irn_str.bas Sample Program

10 !FILE: lrn str.bas

20 !

30 !THIS PROGRAM WILL INITIALIZE THE OSCILLOSCOPE, AUTOSCALE, AND DIGITIZE
THE WAVEFORM

40 !INFORMATION. IT WILL THEN QUERY THE INSTRUMENT FOR THE LEARNSTRING AND WILL
50 !SAVE THE INFORMATION TO A FILE. THE PROGRAM WILL THEN PROMPT YOU TO CHANGE
60 !THE SETUP THEN RESTORE THE ORIGINAL LEARNSTRING CONFIGURATION. IT ASSUMES
70 !AN 548xx at ADDRESS 7, GPIB INTERFACE at 7, AND THE CAL waveform ATTACHED TO
80 !CHANNEL 1.

90 !

100 !

110 COM /Io/@Scope,@Path, Interface
120 COM /Variables/Max_ length

130 CALL Initialize

140 CALL Store_lrnstr

150 CALL Change_ setup

160 CALL Get lrnstr

170 CALL Close

180 END

190 !

200 !

230 ! BEGIN SUBROUTINES

260 ! Subprogram name: Initialize

270 ! Parameters: none

280 ! Return value: none

290 ! Description: This routine initializes the path descriptions and
resets the

300 ! interface and the oscilloscope. It performs an autoscale
on the waveform,

310 ! acquires the data on channel 1, and turns on the display.
320 ! NOTE: This routine also turns on system headers. This allows the
330 ! string ":SYSTEM:SETUP " to be returned with the
learnstring so the

340 ! return string is in the proper format.

350 !

360 SUB Initialize

6-50

COM /Io/@Scope,@Path, Interface
COM /Variables/Max length

Max length=14000

ASSIGN @Scope TO 707
Interface=7

RESET Interface

CLEAR @Scope

OUTPUT @Scope; "*RST"

OUTPUT @Scope;"*CLS"

OUTPUT @Scope;":SYSTem:HEADer ON"
OUTPUT @Scope; ":AUToscale"

480 SUBEND

490 !
500 !

570 !
learnstring
580 !

590 !

600 !

610 !

620 SUB S
630

640

650

660

670 Cont:
680

690

700

710

720

730

740

750

Sample Programs
Irn_str.bas Sample Program

Subprogram name: Store lrnstr
Parameters: none
Return value: none

Description: This routine creates a file in which to store the

configuration (Filename:Lrn strg). It requests the learnstring

and inputs the configuration to the PC.
configuration to the file.

tore lrnstr

COM /Io/@Scope,@Path, Interface
COM /Variables/Max length

ON ERROR GOTO Cont

PURGE "Lrn_ strg"

OFF ERROR

CREATE BDAT "Lrn strg",1,14000
DIM Setup$[14000]

ASSIGN @Path TO "Lrn strg"
OUTPUT @Scope; " :SYSTem: SETup?"
ENTER @Scope USING "-K";Setup$
OUTPUT @Path,1;Setup$

CLEAR SCREEN

PRINT "Learn string stored in file: Lrn strg"

760 SUBEND

770 !
780 !
790

Finally, it stores the

6-51

Sample Programs
Irn_str.bas Sample Program

800 !

810 ! Subprogram name: Change setup

820 ! Parameters: none

830 ! Return value: none

840 ! Description: This subprogram requests that the user change the
850 ! oscilloscope setup, then press a key to continue.
860 !

870 !

880 SUB Change_setup

890 COM /Io/@Scope,@Path, Interface

900

910 PRINT

920 PRINT "Please adjust setup and press Continue to resume."

930 PAUSE

940 SUBEND

950 !

960 !

970
trrrrprrrrrrrrrrrrrtbrrrrrebrrrrrrrrrirrrrrrrrrribrrrrrrrrrrrrrrrrrrrrirrrrrrd
rtrrrrrred

980 !

990 ! Subprogram name: Get lrnstr

1000 ! Parameters: none

1010 ! Return value: none

1020 ! Description: This subprogram loads a learnstring from the

1030 ! file "Lrn strg" to the oscilloscope.

1040 !

1050 !

1060 SUB Get_lrnstr

1070 COM /Io/@Scope,@Path, Interface

1080 COM /Variables/Max length

1090 DIM Setup$[14000]

1100 ENTER @Path,1;Setup$

1110 OUTPUT @Scope USING "#,-K";Setups

1120 OUTPUT @Scope; " :RUN"

1130 SUBEND

1140 !

1150 !

1160
trrrrprrrrrrrrrprrrrrrrrrrprrrrrrrrrprrrprrrrrrrrrrrrrprrprrrprrrrrrirrrrrrnd
eyt

1170 !

1180 !

1190 ! Subprogram name: Close

1200 ! Parameters: none

1210 ! Return value: none

1220 ! Description: This routine resets the interface, and closes all I/
O paths

6-52

1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330

!

!

!

SUB Close

COM /Io/@Scope,@Path, Interface

RESET Interface
ASSIGN @Path TO *

SUBEND
!

Sample Programs
Irn_str.bas Sample Program

6-53

6-54

Common Commands

Common Commands

Common commands are defined by the IEEE 488.2 standard. They
control generic device functions that are common to many different
types of instruments. Common commands can be received and
processed by the oscilloscope, whether they are sent over the GPIB as
separate program messages or within other program messages.

These common commands and queries are implemented in the Infiniium
Oscilloscopes:

*CLS (Clear Status)

e *ESE (Event Status Enable)

e *ESR? (Event Status Register)
e *[DN? (Identification Number)
e *LRN? (Learn)

e *OPC (Operation Complete)

e *OQPT? (Option)

e *PSC (Power-on Status Clear)

e *RCL (Recall)

e *RST (Reset)

e *SAV (Save)

e *SRE (Service Request Enable)
e *STB? (Status Byte)

o *TRG (Trigger)

e *¥TST? (Test)

o *WAI (Wait-to-Continue)

7-2

Table 7-1

Common Commands

Receiving Common Commands

Common commands can be received and processed by the oscilloscope,
whether they are sent over the GPIB as separate program messages or
within other program messages. If a subsystem is currently selected and
a common command is received by the oscilloscope, the oscilloscope

remains in the selected subsystem. For example, if the program message

"ACQUIRE:AVERAGE ON; *CLS; COUNT 1024"

is received by the oscilloscope, the oscilloscope sets the acquire type,
clears the status information, then sets the number of averages without
leaving the selected subsystem.

Headers and Common Commands.

Headers are not prepended to common commands.

Status Registers

The following two status registers used by common commands have an
enable (mask) register. By setting bits in the enable register, you can
select the status information for use. Refer to the chapter, “Status
Reporting,” for a complete discussion of status.

Status and Enable Registers

Status Register Enable Register
Event Status Register Event Status Enable Register
Status Byte Register Service Request Enable Register

Common Commands
*CLS (Clear Status)

*CLS (Clear Status)

Command *CLS

The *CLS command clears all status and error registers.

Example This example clears the status data structures of the oscilloscope.
10 OUTPUT 707;"*CLS"
20 END
See Also Refer to the “Status Reporting” chapter for a complete discussion of status.

Common Commands
*ESE (Event Status Enable)

Command

<mask>

Example

Query

Returned Format

<mask>

Example

*ESE (Event Status Enable)

*ESE <mask>

The *ESE command sets the Standard Event Status Enable Register bits.

An integer, 0 to 255, representing a mask value for the bits to be enabled in the
Standard Event Status Register as shown in Table 7-2.

This example enables the User Request (URQ®) bit of the Standard Event Status
Enable Register. When this bit is enabled and a front-panel key is pressed, the
Event Summary bit (ESB) in the Status Byte Register is also set.

10 OUTPUT 707;"*ESE 64"
20 END

*ESE?

The *ESE? query returns the current contents of the Standard Event Status
Enable Register.

<mask><NL>

An integer, +0 to +255 (the plus sign is also returned), representing a mask
value for the bits enabled in the Standard Event Status Register as shown in
Table 7-2.

This example places the current contents of the Standard Event Status Enable
Register in the numeric variable, Event. The value of the variable is printed on
the computer’s screen.

10 OUTPUT 707;"*ESE?"

20 ENTER 707;Event

30 PRINT Event

40 END

Table 7-2

See Also

Common Commands
*ESE (Event Status Enable)

The Standard Event Status Enable Register contains a mask value for the bits
tobe enabled in the Standard Event Status Register. A"1"in the Standard Event
Status Enable Register enables the corresponding bit in the Standard Event
Status Register. A "0"in the enable register disables the corresponding bit.

Standard Event Status Enable Register Bits

Bit
7
6

Weight
128
64

32

16

Enables
PON - Power On

CME - Command Error

EXE - Execution Error

DDE - Device Dependent Error

QYE - Query Error
RQC - Request Control

OPC - Operation Complete

Definition
Indicates power is turned on.

Not Used.
Permanently set to zero.

Indicates whether the parser detected an
error.

Indicates whether a parameter was out of
range, or was inconsistent with the current
settings.

Indicates whether the device was unable to
complete an operation for device-
dependent reasons.

Indicatesifthe protocolforquerieshasbeen
violated.

Indicates whether the device is requesting
control.

Indicateswhetherthe device has completed
all pending operations.

Refer to the chapter, “Status Reporting,” for a complete discussion of status.

Common Commands
*ESR? (Event Status Register)

Query

Returned Format

<status>

Example

*ESR? (Event Status Register)

*ESR?

The *ESR? query returns the contents of the Standard Event Status Register.
Reading this register clears the Standard Event Status Register, as does a *CLS.

<status><NL>

An integer, 0 to 255, representing the total bit weights of all bits that are high
at the time you read the register.

This example places the current contents of the Standard Event Status Register
in the numeric variable, Event, then prints the value of the variable to the
computer’s screen.

10 OUTPUT 707;"*ESR?"
20 ENTER 707;Event

30 PRINT Event

40 END

Table 7-3 lists each bit in the Event Status Register and the corresponding bit
weights.

Common Commands
*ESR? (Event Status Register)

Table 7-3 Standard Event Status Register Bits
Bit Bit Weight Bit Name Condition
7 128 PON 1= 0FF to ON transition has occurred.
6 64 Not Used. Permanently set to zero.
5 32 CME 0 =no command errors.
1=a command error has been detected.
4 16 EXE 0 =no execution error.
1 =an execution error has been detected.
3 8 DDE 0=no device-dependent errors.
1=adevice-dependent error has been detected.
2 4 QYE 0 =no query errors.
1=a query error has been detected.
1 2 RQC 0 =request control - NOT used - always 0.
0 1 0PC 0 = operation is not complete.

1 = operation is complete.

0 =False = Low 1 =True = High

Common Commands
*|DN? (ldentification Number)

Query

<USXXXXXXXX>

<Rev #>

Returned Format

Example

*IDN? (Identification Number)

*IDN?

The *IDN? query returns the company name, oscilloscope model number, serial
number, and software version by returning this string:

HEWLETT-PACKARD, 548xxA, <USXXXXXXXX>, <Rev #>

Specifies the serial number of the oscilloscope. The first four digits and letter
are the serial prefix, which is the same for all identical oscilloscopes. The last
five digits are the serial suffix, which is assigned sequentially, and is different
for each oscilloscope.

Specifies the software version of the oscilloscope, and is the revision number.

HEWLETT-PACKARD, 548xxA, USXXXXXXXX,A.XX.XX<NL>

This example places the oscilloscope’s identification information in the string
variable, Identify$, then prints the identification information to the computer’s
screen.

10 DIM Identifys[50]!dimension variable
20 OUTPUT 707;"*IDN?"

30 ENTER 707;Identifys$

40 PRINT Identify$

50 END

7-9

Common Commands
*LRN? (Learn)

Query

Returned Format

<setup>

Example

*LRN? (Learn)

*LRN?

The *LRN? query returns a string that contains the oscilloscope’s current setup.
You can store the oscilloscope’s setup and send it back to the oscilloscope at a
later time. This setup string should be sent to the oscilloscope just as it is. It
works because of its embedded ":SYSTem:SETup" header.

:SYSTem: SETup <setup><NL>

This is a definite-length, arbitrary block response specifying the current
oscilloscope setup. The block size is subject to change with different firmware
revisions.

This example sets the oscilloscope’s address and asks for the learn string, then
determines the string length according to the IEEE 488.2 block specification.
It then reads the string and the last EOF character.

10 ! Set up the oscilloscope’s address and
20 ! ask for the learn string...

30 ASSIGN @Scope TO 707

40 OUTPUT @Scope:"*LRN?"

50 !

60 ! Search for the # sign.

70 !

80 Find pound sign: !

90 ENTER @Scope USING "#,A";Thischars$

100 IF Thischar$<>"#" THEN Find pound sign
110 !

120 ! Determine the string length according
130 ! to the IEEE 488.2 # block spec.

140 ! Read the string then the last EOF char.
150 !

160 ENTER @Scope USING "#,D";Digit count
170 ENTER @Scope USING

"#,"&VALS (Digit count) &"D";Stringlength

180 ALLOCATE Learn_ string$ [Stringlength+1]
190 ENTER @Scope USING "-K";Learn string$
200 OUTPUT 707;":syst:err?"

210 ENTER 707;Errornum

220 PRINT "Error Status=";Errornum

7-10

See Also

Common Commands
*LRN? (Learn)

:SYSTem:SETup command and query. When HEADers and LONGform are ON,
the :SYSTem:SETup command performs the same function as the *LRN? query.
Otherwise, *LRN and SETup are not interchangeable.

*LRN? Returns Prefix to Setup Block
The *LRN query always returns :SYSTem:SETup as a prefix to the setup block.

The :SYSTem:HEADer command has no effect on this response.

7-11

Common Commands
*QPC (Operation Complete)

Command

Example

Query

Returned Format

Example

*OPC (Operation Complete)

*OPC

The *OPC command sets the operation complete bit in the Standard Event
Status Register when all pending device operations have finished.

This example sets the operation complete bit in the Standard Event Status
Register when the DIGitize operation is complete.

10 OUTPUT 707;":DIGITIZE CHANNEL1; *OPC"
20 END

*OPC?

The *OPC? query places an ASCII character “1” in the oscilloscope's output
queue when all pending selected device operations have finished.

1<NL>

This example places an ASCII character “1” in the oscilloscope's output queue
when the AUToscale operation is complete. Then the value in the output queue
is placed in the numeric variable “Complete.”

10 OUTPUT 707;":AUTOSCALE; *OPC?"
20 ENTER 707;Complete

30 PRINT Complete

40 END

The *OPC? query allows synchronization between the computer and the
oscilloscope by using the message available (MAV) bit in the Status Byte, or by
reading the output queue. Unlike the *OPC command, the *OPC query does
not affect the OPC Event bit in the Standard Event Status Register.

Common Commands
*QPT? (Option)

Query

Example

*OPT? (Option)

*OPT?

The *OPT? query returns a string with a list of installed options. If no options
are installed, the string will have a 0 as the first character.

The length of the returned string may increase as options become available in
the future. Once implemented, an option name will be appended to the end of
the returned string, delimited by a comma.

This example places all options into the string variable, Options$, then prints
the option model and serial numbers to the computer’s screen.

10 DIM Options$[100]
20 OUTPUT 70Q07;"*OPT?"
30 ENTER 707;Options$
40 PRINT Options$

50 END

7-13

Common Commands
*PSC (Power-on Status Clear)

Command

Example

Query

Returned Format

Example

*PSC (Power-on Status Clear)
*pPSC {{oN|1} | {OFF|0}}

The *PSC command determines whether or not the SRQ line is set upon the
completion of the oscilloscope’s boot process. When the *PSC flag is set to 1,
the Power On (PON) bit of the Standard Event Status Register is 0 during the
boot process. When the *PSC flag is set to 0, the PON bit is set to a 1 during
the boot process.

When the *PSC flag is set to 0, the Standard Event Status Enable Register must
be set to 128 decimal and the Service Request Enable Register must be set to
32 decimal. This allows the Power On (PON) bit to set the SRQ line when the
oscilloscope is ready to receive commands.

If you are using a LAN interface rather than a GPIB interface, it is not possible to
receive the SRQ during the boot process.

This example sets the *PSC flag to 0 which sets the SRQ line during the boot
process.

10 OUTPUT 707;”*PSC 0;*SRE 32;*ESE 128"
20 END

The *PSC? query returns the value of the *PSC flag.

1<NL>

This example places the *PSC flag into the integer variable Pscflag.

10 OUTPUT 707;"*PSC?”
20 ENTER 707;Pscflag
30 PRINT Pscflag

40 END

Common Commands
*RCL (Recall)

Command

<registers>

Example

See Also

*RCL (Recall)

*RCL <register>

The *RCL command restores the state of the oscilloscope to a setup previously
stored in the specified save/recall register. An oscilloscope setup must have
been stored previously in the specified register. Registers 0 through 9 are
general-purpose registers and can be used by the *RCL command.

An integer, 0 through 9, specifying the save/recall register that contains the
oscilloscope setup you want to recall.

This example restores the oscilloscope to the oscilloscope setup stored in
register 3.

10 OUTPUT 707;"*RCL 3"
20 END

*SAV (Save). An error message appears on the oscilloscope’s display if nothing
has been previously saved in the specified register.

7-15

Common Commands
*RST (Reset)

*RST (Reset)

Command *RST

The *RST command places the oscilloscope in a known state. This is the same
as using the front-panel default setup button.

Default setup does change the the :SYSTem:HEADer or the
:SYSTem:LONGform settings but does change the completion criteria
(:ACQuire:COMPlete) to 90%.

Example This example resets the oscilloscope to a known state.

10 OUTPUT 707;"*RST"
20 END

The default values for all of the Infiniium controls is located in the Infiniilum Help
System under Default Setup.

Common Commands
*SAV (Save)

Command

*SAV (Save)

*SAV <registers

The *SAV command stores the current state of the oscilloscope in a save
register.

<register> An integer, 0 through 9, specifying the register used to save the current

Example

See Also

oscilloscope setup.

This example stores the current oscilloscope setup to register 3.

10 OUTPUT 707;"*SAV 3"
20 END

*RCL (Recall).

7-17

Common Commands
*SRE (Service Request Enable)

Command

<mask>

Example

Query

Returned Format

<mask>

Example

*SRE (Service Request Enable)

*SRE <mask>

The *SRE command sets the Service Request Enable Register bits. By setting
the *SRE, when the event happens, you have enabled the oscilloscope’s
interrupt capability. The oscilloscope will then do an SRQ (service request),
which is an interrupt.

An integer, 0 to 255, representing a mask value for the bits to be enabled in the
Service Request Enable Register as shown in Table 7-4.

This example enables a service request to be generated when a message is
available in the output queue. When a message is available, the MAV bit is high.

10 OUTPUT 707;"*SRE 16"
20 END

*SRE?

The *SRE? query returns the current contents of the Service Request Enable
Register.

<mask><NL>

Aninteger, 0 to 255, representing a mask value for the bits enabled in the Service
Request Enable Register.

This example places the current contents of the Service Request Enable
Register in the numeric variable, Value, then prints the value of the variable to
the computer's screen.

10 OUTPUT 707;"*SRE?"
20 ENTER 707;Value

30 PRINT Value

40 END

Table 7-4

Common Commands
*SRE (Service Request Enable)

The Service Request Enable Register contains a mask value for the bits to be
enabled in the Status Byte Register. A “1” in the Service Request Enable
Register enables the corresponding bit in the Status Byte Register. A “0”
disables the bit.

Service Request Enable Register Bits

Bit Weight Enables

7 128 OPER - Operation Status Register
6 64 Not Used

5 32 ESB - Event Status Bit

4 16 MAV - Message Available

3 8 Not Used

2 4 MSG - Message

1 2 USR - User Event Register

0 1 TRG - Trigger

7-19

Common Commands
*STB? (Status Byte)

Query

Returned Format

<value>

Example

*STB? (Status Byte)
*STB?

The *STB? query returns the current contents of the Status Byte, including the
Master Summary Status (MSS) bit. See Table 7-5 for Status Byte Register bit
definitions.

<value><NL>

Aninteger, 0 to 255, representing a mask value for the bits enabled in the Status
Byte.

This example reads the contents of the Status Byte into the numeric variable,
Value, then prints the value of the variable to the computer’s screen.

10 OUTPUT 707;"*STB?"
20 ENTER 707;Value

30 PRINT Value

40 END

In response to a serial poll (SPOLL), Request Service (RQS) is reported on
bit 6 of the status byte. Otherwise, the Master Summary Status bit (MSS) is
reported on bit 6. MSSis the inclusive OR of the bitwise combination, excluding
bit 6, of the Status Byte Register and the Service Request Enable Register. The
MSS message indicates that the oscilloscope is requesting service (SRQ).

7-20

Table 7-5

Common Commands
*STB? (Status Byte)

Status Byte Register Bits

Bit Bit Weight
7 128

6 64

5 32

4 16

3 8

2 4

1 2

0 1

Bit Name
OPER

RQS/MSS

ESB

MAV

MSG

USR

TRG

0= False = Low

Condition

0=no enabled operation status conditions have occurred
1=an enabled operation status condition has occurred

0
1

0 = no event status conditions have occurred
1 =an enabled event status condition has occurred

oscilloscope has no reason for service
oscilloscope is requesting service

0 = no output messages are ready
1 =an output message is ready

0=not used

0 = no message has been displayed
1 =message has been displayed

0 =no enabled user event conditions have occurred
1 =an enabled user event condition has occurred

0 =no trigger has occurred
1 =atrigger occurred

1=True = High

7-21

Common Commands
*TRG (Trigger)

*TRG (Trigger)
Command *TRG
The *TRG command has the same effect as the Group Execute Trigger message

(GET) or RUN command. It acquires data for the active waveform display, if
the trigger conditions are met, according to the current settings.

Example This example starts the data acquisition for the active waveform display
according to the current settings.

10 OUTPUT 707;"*TRG"
20 END

Trigger Conditions Must Be Met

When you send the *TRG command in Single trigger mode, the trigger conditions
must be met before the oscilloscope will acquire data.

7-22

Common Commands
*TST? (Test)

Query

Returned Format

<result>

Example

*TST? (Test)
*TST?

The *TST? query causes the oscilloscope to perform a self-test, and places a
response in the output queue indicating whether or not the self-test completed
without any detected errors. Use the :SYSTem:ERRor command to check for
errors. A zero indicates that the test passed and a non-zero indicates the self-
test failed.

Disconnect Inputs First

You must disconnect all front-panel inputs before sending the *TST? command.

<result><NL>

0 for pass; non-zero for fail.

This example performs a self-test on the oscilloscope and places the results in
the numeric variable, Results. The program then prints the results to the
computer’s screen.

10 OUTPUT 707;"*TST?"
20 ENTER 707;Results
30 PRINT Results

40 END

If a test fails, refer to the troubleshooting section of the service guide.

Expanded Error Reporting

The :SELFtest:SCOPETEST command has expanded error reporting. Instead of using
*TST?, Agilent recommends that you use the :SELFtest:SCOPETEST command. In
either case, be sure you disconnect all front-panel inputs before sending the *TST?
command.

The self-test takes approximately 3 minutes to complete. When using timeouts
in your program, a 200-second duration is recommended.

7-23

Common Commands
*WAI (Wait)

*WAL (Wait)
Command *WAT

The *WAI command has no function in the oscilloscope, but is parsed for
compatibility with other instruments.

Example Output 707;"”*WAI”

7-24

Root Level Commands

Root Level Commands

Root level commands control many of the basic operations of the
oscilloscope that you can select by pressing the labeled keys on the front
panel. These commands are always recognized by the parser if they are
prefixed with a colon, regardless of the current tree position. After
executing a root level command, the parser is positioned at the root of
the command tree.

Theserootlevel commands and queries are implemented in the Infiniium
Oscilloscopes:

e AER? (Arm Event Register)

e AUToscale

e BLANk

e CDISplay

e DIGitize

e MTEE (Mask Test Enable Register)

e MTER? (Mask Test Event Register)

e MODel?

e OPEE (Operation Status Enable)

e OPER? (Operation Status Register)

e OVLEnable (for 54845A and 54835A only)
e OVLRegister (for 54845A and 54835A only)
e PRINt

e RECall:SETup

e RUN

e SERial (Serial Number)

e SINGle

e STOP

e STORe:SETup

e STORe:WAVeform

e TER? (Trigger Event Register)

e VIEW

8-2

Root Level Commands
AER? (Arm Event Register)

Query

Returned Format

AER? (Arm Event Register)

:AER?

The :AER? query reads the Arm Event Register and returns 1 or 0. After the
Arm Event Register is read, the register is cleared. The returned value 1
indicates a trigger armed event has occurred and 0 indicates a trigger armed
has not occurred.

Arm Event Returns

:AER? will allow the Arm Event to return either inmediately (if you have armed but
not triggered) or on the next arm (if you have already triggered). However, *CLS is

always required to get an SRQ again.

Once the AER bit is set, it is cleared only by doing :AER? or by sending a *CLS
command.

[:AER] {1 | o}

Root Level Commands
AUToscale

Command

Example

AUToscale

:AUToscale

The :AUToscale command causes the oscilloscope to evaluate all input
waveforms and find the optimum conditions for displaying the waveform. It
searches each of the channels for input waveforms and shuts off channels where
no waveform is found. It adjusts the vertical gain and offset for each channel
that has a waveform, and sets the time base on the lowest numbered input
channel that has a waveform.

The trigger is found by first searching external trigger inputs, then searching
each channel, starting with channel 4, then channel 3, channel 2, and channel 1,
until a trigger waveform is detected. If waveforms cannot be found on any
vertical input, the oscilloscope is returned to its former state.

Autoscale sets the following:

e (Channel Display, Scale, and Offset

e Trigger Sweep, Mode, Edge, Source, Level, Slope, Hysteresis, and Holdoff
e Acquisition Sampling Rate and Memory Depth

e Time Base Scale and Position

e Marker Mode Set to Measurement

e Resets Acquisition Completion Criteria to 100%

Autoscale turns off the following;:

* Measurements on sources that are turned off
e [Functions

e Windows

e Memories

No other controls are affected by Autoscale.

This example automatically scales the oscilloscope for the input waveform.

10 OUTPUT 707;":AUTOSCALE"
20 END

Root Level Commands
BLANk

Command

<N>

Example

BLANk

:BLANk {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

The :BLANk command turns off an active channel, function, or waveform
memory. The :VIEW command turns them on.

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

This example turns off channel 1.

10 OUTPUT 707;":BLANK CHANNEL1"
20 END

Root Level Commands
CDISplay

Command

Example

CDISplay

:CDISplay

The :CDISplay command clears the display and resets all associated
measurements. If the oscilloscope is stopped, all currently displayed data is
erased. If the oscilloscope is running, all of the data in active channels and
functions is erased; however, new data is displayed on the next acquisition.
Waveform memories are not erased.

This example clears the oscilloscope display.

10 OUTPUT 707;":CDISPLAY"
20 END

Root Level Commands
DIGitize

Command

<N>

Example

DIGitize

:DIGitize [CHANnel<N> | FUNCtion<N>] [, ...]

An integer, 1 - 2, for 54810A and 54820A Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

The :DIGitize command invokes a special mode of data acquisition that is more
efficient than using the :RUN command. This command initializes the selected
channels or functions, then acquires them according to the current oscilloscope
settings. When all waveforms are completely acquired, the oscilloscope is
stopped. The waveform completion criteria is set with the
“:ACQuire:COMPlete” command.

If you specify channel or function parameters, then these are the only
waveforms acquired and the display waveforms of the specified channels and
functions are turned off.

Full Range of Measurement and Math Operators are Available

Even though digitized waveforms are not displayed, you may perform the full range
of measurement and math operators on them.

If you use the :DIGitize command with no parameters, the digitize operation is
performed on the channels or functions that are being displayed in the Infiniium
waveform viewing area. In this case, the display state of the acquired waveforms
is not changed after the the :DIGitize command is completed. Because the
command executes more quickly without parameters, this form of the command
is useful for repetitive measurement sequences. You can also use this mode if
you want to view the digitize results because the display state of the digitized
waveforms is not affected.

See the Sample Programs in chapter 6 for examples of how to use :DIGitize and
its related commands.

This example acquires data on channel 1 and function 2.

10 OUTPUT 707;":DIGITIZE CHANNEL1l, FUNCTION2"
20 END

The ACQuire subsystem commands set up conditions such as COUNt for the
next :DIGitize command. The WAVeform subsystem commands determine how
the data is transferred out of the oscilloscope, and how to interpret the data.

Root Level Commands
MTEE

Command

<enable mask>

Query

Returned Format

Example

MTEE

:MTEE <enable mask>

The :MTEE command is used to set bits in the Mask Test Enable Register. This
register enables the following bits of the Mask Test Event Register:

Bit 0 - Mask Test Complete

Bit 1 - Mask Test Fail

Bit 2 - Mask Low Amplitude

Bit 3 - Mask High Amplitude

Bit 4 - Mask Align Complete

Bit 5 - Mask Align Fail

Bit 6-7 are not used and are set to zero (0).

:MTEE?

The :MTEE? query returns the value stored in the Mask Test Enable Register.

[:MTEE] <enable mask>

Suppose your application requires an interrupt whenever a Mask Test Fail
occursinthe mask test register. You can enable this bit to generate the summary
bit by sending:

OUTPUT 707;"”MTEE 2"

Whenever an error occurs, the oscilloscope sets the MASK bit in the Operation
Status Register. Because the bits in the Operation Status Enable Register are
all enabled, a summary bit is generated to set bit 7 (OPER) in the Status Byte
Register.

Ifbit 7 (OPER) in the Status Byte Register is enabled (via the *SRE command),
a service request interrupt (SRQ) is sent to the external computer.

Root Level Commands
MTER?

MTER?

Query :MTER?

The :MTER? query returns the value stored in the Mask Test Event Register.
The bits stored in the register have the following meanings:

Bit 0 Mask Test Complete bit is set whenever the mask test is complete.
Bit 1 Mask Test Fail bit is set whenever the mask test failed.

Bit 2 Mask Low Amplitude bit is set whenever the signal is below the mask
amplitude.

Bit 3 Mask High Amplitude bit is set whenever the signal is above the mask
amplitude.

Bit 4 Mask Align Complete bit is set whenever the mask align is complete.
Bit 5 Mask Align Fail bit is set whenever the mask align failed.

The Mask Test Event Register is read and cleared by the MTER? query. The
register output is enabled or disabled using the mask value supplied with the
MTEE command.

Returned Format 0-63 decimal value.

Disabled Mask Test Event Register Bits Respond, but Do Not Generate a Summary
Bit

Mask Test Event Register bits that are not enabled still respond to their
corresponding conditions (that is, they are set if the corresponding event occurs).

However, because they are not enabled, they do not generate a summary bit in the
Operation Status Register.

Root Level Commands
MODel?

MODel?

Query :MODel? [FRAMe]

The :MODel? query returns the model number for the oscilloscope frame.

Returned Format A six-character alphanumeric model number in quotation marks. Output is
determined by header and longform status as in Table 8-1.

Table 8-1 MODel? Returned Format
HEADER LONGFORM RESPONSE
ON OFF ON OFF
X X 548xx
X X 548xx
X X :MOD 548xx
X X :MODEL 548xx

Where “xx” in the Response 548xx = 10A, 15A, 20A, 25A, and 45A.

Example This example places the model number of the frame in a string variable, Model$,
then prints the contents of the variable on the computer’s screen.

10 Dim Model$[13] !Dimension variable
20 OUTPUT 707;":MODEL? FRAME"

30 ENTER 707; Models

40 PRINT MODELS

50 END

Root Level Commands
OPEE

OPEE

Command :OPEE <mask>

<mask> The decimal weight of the enabled bits.

The :OPEE command sets amask in the Operation Status Enable register. Each
bit that is set to a “1” enables that bit to set bit 7 in the status byte register, and
potentially causes an SRQ to be generated. Bit 5, Wait for Trig is used. Other
bits are reserved.

Query :OPEE?

The query returns the current value contained in the Operation Status Enable
register as a decimal number.

Returned Format [OPEE] <value><NL>

8-11

Root Level Commands
OPER?

OPER?

Query :OPER?

The :OPER? query returns the value contained in the Operation Status Register
as a decimal number. This register hosts the WAIT TRIG bit (bit 5) and the
PROG bit (bit 14).

The WAIT TRIG bit is set by the Trigger Armed Event Register and indicates
that the trigger is armed. The PROG bit is reserved for future use.

Returned Format [OPER] <value><NL>

Root Level Commands
OVLEnable

OVLEnable

Command :OVLEnable <enable mask>

The :OVLEnable command enables the built-in overload protection in the
54845A and 54835A oscilloscope. If too much voltage is present at the channel
input, the oscilloscope turns the channel off. When the voltage load is removed,
the channel returns automatically. This command is available only on the
54845A and 54835A.

<enable mask> The overload enable mask is an integer representing a channel as follows:

Bit 0 - Channel 1
Bit 1 - Channel 2
Bit 2 - Channel 3
Bit 3 - Channel 4
Bits 7-4 are not used.

Query :OVLEnable?

The :OVLEnable? query returns the current value contained in the Overload
Enable Register.

Returned Format [OVLEnable] <enable mask><NL>

See Also :CHANnel<N>:PROTection:CLEar

8-13

Root Level Commands
OVLRegister?

OVLRegister?

Query :OVLRegister?

The :OVLRegister? query returns the overload value stored in the overload
register. This query is available only on the 54845A and 54835A.

Returned Format [OVLRegister] <values><NL>

Root Level Commands
PRINt

Command

Example

PRINt

: PRINt

The :PRINt command outputs a copy of the screen to a printer or other device
destination specified in the HARDcopy subsystem. You can specify the selection
of the output and the printer using the HARDcopy subsystem commands.

This example outputs a copy of the screen to a printer or a disk file.

10 OUTPUT 707;":PRINT"
20 END

8-15

Root Level Commands
RECall:SETup

Command

<setup
_memory num>

Examples

RECall:SETup

:RECall:SETup <setup memory num>

Setup memory number, an integer, 0 through 9.

The :RECall:SETup command recalls a setup that was saved in one of the
oscilloscope’s setup memories. You can save setups using either the
:STORe:SETup command or the front panel.

This command recalls a setup from setup memory 2.

10 OUTPUT 707;":RECall:SETup 2"
20 END

Root Level Commands
RUN

RUN

Command :RUN

The :RUN command starts the oscilloscope running. When the oscilloscope is
running, it acquires waveform data according to its current settings. Acquisition
runsrepetitively until the oscilloscope receives a :STOP command, or until there
is only one acquisition if Trigger Sweep is set to Single.

Example This example causes the oscilloscope to acquire data repetitively.

10 OUTPUT 707;":RUN"
20 END

8-17

Root Level Commands
SERial (Serial Number)

Command
<serial
_number>
Example
Query

Returned Format

Example

SERial (Serial Number)

:SERial { [FRAMe], <serial numbers}

A ten-character alphanumeric serial number enclosed with quotation marks.

The :SERial command sets the serial number for the oscilloscope frame. The
serial number is entered by Agilent Technologies. Therefore, setting the serial
number is not normally required unless the oscilloscope is serialized for a
different application.

The oscilloscope’s serial number is part of the string returned for the *IDN?
query described in the Common Commands chapter.

This example sets the serial number for the oscilloscope's frame to
“US12345678”.

10 OUTPUT 707;":SERIAL FRAME, ""US12345678"""
20 END

:SERial? [FRAMe]

The query returns the current serial number string for the specified frame.

[:SERial FRAMe] US12345678

This example places the serial number for the oscilloscope frame in the string
variable Serial?, then prints the contents of the variable to the computer’s
screen.

10 Dim Serial$[50] !Dimension variable
20 OUTPUT 707;":SERIAL? FRAME"

30 ENTER 707; Serial$

40 PRINT SERIALS

50 END

Root Level Commands
SINGle

Command

Example

See Also

SINGle

:SINGle

The :SINGle command causes the oscilloscope to make a single acquisition when
the next trigger event occurs.

This example sets up the oscilloscope to make a single acquisition when the
next trigger event occurs.

10 OUTPUT 707;":SINGLE"
20 END

‘TRIGger:SWEep AUTOITRIGgeredISINGle for how to turn the single sweep off.

8-19

Root Level Commands
STOP

STOP

Command :STOP

The :STOP command causes the oscilloscope to stop acquiring data. To restart
the acquisition, use the :RUN or :SINGle command.

Example This example stops the current data acquisition.

10 OUTPUT 707;":STOP"
20 END

8-20

Root Level Commands
STORe:SETup

STORe:SETup

Command :STORe: SETup <setup memory nums>

<setup Setup memory number, an integer, 0 through 9.

_memory num> The :STORe:SETup command saves the current oscilloscope setup in one of the
setup memories.

Example This example stores the current oscilloscope setup to setup memory 0.
10 OUTPUT 707;":STORE:SETUP 0"
20 END

8-21

Root Level Commands
STORe:WAVeform

Command

<N>

Example

STORe:WAVeform

:STORe:WAVeform {{CHANnel<N> | FUNCtion<N>
WMEMory<N>}, {WMEMory<N>} }

An integer, 1 - 2, for 54810/564820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

The :STORe:WAVeform command copies a channel, function, or stored
waveform to a waveform memory. The parameter preceding the comma
specifies the source and can be any channel, function, or waveform memory.
The parameter following the comma is the destination, and can be any waveform
memory.

This example copies channel 1 to waveform memory 3.

10 OUTPUT 707;":STORE:WAVEFORM CHANNEL1l, WMEMORY3"
20 END

8-22

Root Level Commands
TER? (Trigger Event Register)

Query

Returned Format

Example

TER? (Trigger Event Register)

: TER?

The :TER? query reads the Trigger Event Register. A “1”is returned if a trigger
has occurred. A “0”is returned if a trigger has not occurred.

{1] o}<NL>

This example checks the current status of the Trigger Event Register, places
the status in the string variable, Current$, then prints the contents of the
variable to the computer's screen.

10 DIM Current$[50] !Dimension variable

20 OUTPUT 707;":TER?"

30 ENTER 707;Current$

40 PRINT Currents$s

50 END

Once this bit is set, you can clear it only by reading the register with the :TER?
query, or by sending a *CLS common command. After the Trigger Event
Register is read, it is cleared.

8-23

Root Level Commands
VIEW

VIEW

Command :VIEW {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

The :VIEW command turns on a channel, function, or waveform memory.

<N> Aninteger, 1 - 2, for 564810/564820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

Example This example turns on channel 1.
10 OUTPUT 707;":VIEW CHANNEL1"
20 END
See Also The :BLANk command turns off a channel, function, or waveform memory.

8-24

System Commands

System Commands

SYSTem subsystem commands control the way query responses are
formatted, send and receive setup strings, and enable reading and
writing to the advisory line of the oscilloscope. You can also set and read
the date and time in the oscilloscope using the SYSTem subsystem
commands.

These SYSTem commands and queries are implemented in the Infiniium
Oscilloscopes:

e DATE

e DEBug

e DSP

e ERRor?

e HEADer

e HELP:HEADers?
e LANGuage

e LONGform

e SETup

e TIME

9-2

System Commands
DATE

Command
<year>
<month>
<day>
Example
Query

Returned Format

Example

DATE

:SYSTem:DATE <day>, <months>, <years>

The :SYSTem:DATE command sets the date in the oscilloscope, and is not
affected by the *RST common command.

Specifies the year in the format <yyyy> | <yy>. The values range from
1992 to 2035.

Specifies the month in the format <1, 2, ... 12> | <JAN, FEB, MAR .. .>.
Specifies the day in the format <1 ... 31>.

This example sets the date to July 1, 1997.

10 OUTPUT 707;":SYSTEM:DATE 1,7,97"
20 END

:SYSTem:DATE?

The :SYSTem:DATE? query returns the current date in the oscilloscope.

[:SYSTem:DATE] <day> <month> <year><NL>

This example queries the date.

10 DIM Date$ [50]

20 OUTPUT 707;" :SYSTEM:DATE?"
30 ENTER 707; Date$

40 PRINT Date$

9-3

System Commands
DEBug

Command

<output_ mode>

<file name>

<create_ mode>

Examples

DEBug

:SYSTem:DEBug { {ON|1} [, <output mode>[, "<file name>"
[,<create mode>]1] | {OFF|0}}

The :SYSTem:DEBug command turns the debug/trace m ode on and off. This
mode enables the tracing of incoming GPIB commands. If you select CREate
mode, a new file is created, and/or an existing file is overwritten. If you select
APPend mode, the information is appended to an existing file. The
:SYSTem:DEBug command shows any header and/or parameter errors.

The default create mode is CREate, the default output mode is FileSCReen, and
the default file name is c:\scope\data\debug.txt. In debug mode, the File View
button lets you view the current debug file, or any other debug file. This is a
read-only mode.

{FILE | SCReen | FileSCReen}

An MS-DOS compatible name of the file, a maximum of 254 characters long
(including the path name, if used). The file name assumes the present working
directory if a path does not precede the file name.

{CREate | APPend}

This example turns on the debug/trace mode and creates a debug file.

10 OUTPUT 707;":SYSTEM:DEBUG ON, FILE,
"C:\scope\data\pacg8xx.txt", CREATE"
20 END

The created file resembles:

Debug information file C:\scope\data\pacg8xx.txt
Date: 14 NOV 1997

Time: 09:59:35

Model: 54815A

Serial#: sn ?

>:syst:err? string$<NL>

<:SYSTEM:ERROR 0, "No error"$
>:ACQuire:BEST FLATnessS$S<NL>

- ~

?-113, Undefined header

>:syst:err? string$<NL>

<:SYSTEM:ERROR -113, "Undefined header"$
>:syst:err? string$<NL>

<:SYSTEM:ERROR 0, "No error"$

This example appends information to the debug file.

Query

Returned Format

System Commands
DEBug

10 OUTPUT 707;" :SYSTEM:DEBUG ON, FILE,
"C:\scope\data\pacg8xx.txt", APPEND"
20 END

After appending information, the file resembles:

Debug information file C:\scope\data\pacg8xx.txt
Date: 14 NOV 1997

Time: 09:59:35

Model: 54815A

Serial#: sn ?

>:syst:err? string$<NL>

<:SYSTEM:ERROR 0, "No error"$
>:ACQuire:BEST FLATnessS$S<NL>

) A

?-113, Undefined header

>:syst:err? string$<NL>

<:SYSTEM:ERROR -113,"Undefined header"$
>:syst:err? string$<NL>

<:SYSTEM:ERROR 0, "No error"$

Debug information file C:\scope\data\pacg8xx.txt appended
Date: 14 NOV 1997

Time: 10:10:35

Model: 54815A

Serial#: sn ?

>:syst:err? string$<NL>

<:SYSTEM:ERROR 0, "No error"$
>:ACQuire:BEST FLATnessS$S<NL>

- N

?-113, Undefined header

>:syst:err? string$<NL>

<:SYSTEM:ERROR -113,"Undefined header"$

:SYSTem:DEBug?

The :SYSTem:DEBug? query returns the current debug mode settings.

[:SYSTem:DEBug] {{1,<output mode>,"<file names>",
<create mode>} | 0} <NL>

9-5

System Commands

DSP
DSP

Command :SYSTem:DSP "<string>"
The :SYSTem:DSP command writes a quoted string, excluding quotation marks,
to the advisory line of the instrument display. If you want to clear a message
on the advisory line, send a null (empty) string.

<string> An alphanumeric character array up to 89 bytes long.

Example This example writes the message, “Test 1” to the advisory line of the
oscilloscope.
10 OUTPUT 707;":SYSTEM:DSP ""Test 1"""
20 END

Query :SYSTem:DSP?

Returned Format

Example

The :SYSTem:DSP? query returns the last string written to the advisory line.
This may be a string written with a :SYSTem:DSP command, or an internally
generated advisory.

The string is actually read from the message queue. The message queue is
cleared when it is read. Therefore, the displayed message can only be read once
over the bus.

[:SYSTem:DSP] <string><NL>

This example places the last string written to the advisory line of the
oscilloscope in the string variable, Advisory$. Then, it prints the contents of
the variable to the computer's screen.

10 DIM Advisorys[89] !Dimension variable
20 OUTPUT 707;":SYSTEM:DSP?"

30 ENTER 707;Advisory$

40 PRINT Advisory$

50 END

9-6

System Commands
ERRor?

Query

Returned Format
<error_numbers>

<quoted_string>

Example

See Also

ERRor?

:SYSTem:ERRor? [{NUMBer | STRing}]

The :SYSTem:ERRor? query outputs the next error number in the error queue
over the GPIB. When either NUMBer or no parameter is specified in the query,
only the numeric error code is output. When STRing is specified, the error
number is output followed by a comma and a quoted string describing the error.
Table 29-1 lists the error numbers and their corresponding error messages.

[:SYSTem:ERRor] <error numbers[,<quoted string>]<NL>
A numeric error code.

A quoted string describing the error.

This example reads the oldest error number and message in the error queue
into the string variable, Condition$, then prints the contents of the variable to
the computer’s screen.

10 DIM Condition$[64] !Dimension variable

20 OUTPUT 707;":SYSTEM:ERROR? STRING"

30 ENTER 707;Condition$

40 PRINT Condition$

50 END

Infiniium Oscilloscopes have an error queue that is 30 errors deep and operates
on a first-in, first-out (FIFO) basis. Successively sending the :SYSTem:ERRor?
query returns the error numbers in the order that they occurred until the queue
is empty. When the queue is empty, this query returns headers of 0, “No error.”
Any further queries return zeros until another error occurs. Note that front-
panel generated errors are also inserted in the error queue and the Event Status
Register.

Send *CLS Before Other Commands or Queries

Send the *CLS common command to clearthe error queue and Event Status Register
before you send any other commands or queries.

The “Error Messages” chapter for more information on error messages and their
possible causes.

9-7

System Commands
HEADer

Command

Example

Query

Returned Format

HEADer

:SYSTem:HEADer {{ON|1} | {OFF|0}}

The :SYSTem:HEADer command specifies whether the instrument will output
a header for query responses. When :SYSTem:HEADer is set to ON, the query
responses include the command header.

This example sets up the oscilloscope to output command headers with query
responses.

10 OUTPUT 707;":SYSTEM:HEADER ON"
20 END

:SYSTem: HEADer?

The :SYSTem:HEADer? query returns the state of the :SYSTem:HEADer
command.

[:SYSTem:HEADer] {1|0}<NL>

Example

System Commands
HEADer

This example examines the header to determine the size of the learn string.
Memory is then allocated to hold the learn string before reading it. To output
the learn string, the header is sent, then the learn string and the EOF.

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200

DIM Header$[64]

OUTPUT 707;"syst:head on"

OUTPUT 707;":syst:set?"

More_ chars: !

ENTER 707 USING ”#,A”;This_char$
Headers=Header$&This chars

IF This char$<>"#" THEN More chars

1

ENTER 707 USING ”#,D”;Num_of_digits

ENTER 707 USING "#,"&VALS (Num of digits)&"D";Set size
Headers=Header$&"#"&VALS (Num_of digits) &VALS (Set size)
1

ALLOCATE INTEGER Setup(l:Set_size)

ENTER 707 USING "#,B";Setup(*)

ENTER 707 USING "#,A";Eofs

1

OUTPUT 707 USING "#,-K";Header$

OUTPUT 707 USING "#,B";Setup(*)

OUTPUT 707 USING "#,A";Eofs

END

Turn Headers Off when Returning Values to Numeric Variables

Turn headers off when returning values to numeric variables. Headers are always
off for all common command queries because headers are not defined in the
IEEE 488.2 standard.

9-9

System Commands
HELP:HEADers

HELP:HEADers

Query :SYSTem:HELP:HEADers? [<language>]

The :SYSTem:HELP:HEADers? query returns a list of all commands and queries
for the selected language. The default language is HP548XX.

<language> {HP548XX | HP547XX | HP545XX]}

Example This example generates three files that contain all of the commands and queries
for the three different languages.
10 ! do headers transfer
20 DIM Header$[64],A$[8192] ,Headerfiles[128]
30 S=707
40 OUTPUT S;"*cls"
50 OUTPUT S;":syst:head on;long on "
60 !
70 Show_all=0
80 !
90 FOR I=1 TO 3

100 IF I=1 THEN Language$="HP545XX"

110 IF I=2 THEN Language$="HP547XX"

120 IF I=3 THEN Language$="HP548XX"

130 OUTPUT S;":syst:help:headers? "&Language$

140 Headers=""

150 !

160 More chars: !

170 ENTER S USING "#,A";This char$

180 IF This char$<>"#" THEN Header$=Header$&This chars
190 IF This char$<>"#" THEN More chars

200 !

210 ENTER S USING "#,D";Num of digits

220 ENTER S USING "#,"&VALS (Num_of digits)&"D";Set size
230 Headers=Header$&"#"&VALS (Num_of digits) &VALS (Set_size)
240 !

250 PRINT Headers,Set_size

260 !

270 Headerfile$="H"&Language$

280 Eof$=CHRS (10)

290 ON ERROR GOTO Off error

300 PURGE Headerfile$

310 !

320 Off error: !

330 OFF ERROR

340 !

9-10

Returned Format

<n>

<d..d>

Example

350
360
370
375
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580

System Commands
HELP:HEADers

CREATE Headerfiles$,100
ASSIGN @Headerfile TO Headerfile$; FORMAT ON
!
OUTPUT @Headerfile;CHRS (9) &Language$
!
ON TIMEOUT 7,5 GOTO Lines_done
More_lines: !
ENTER S;AS
IF Show_all:l THEN PRINT AS
AS=CHRS (9) &AS
OUTPUT @Headerfile;AS
GOTO More lines
!
Lines_done: !
ASSIGN @Headerfile TO *
OFF TIMEOUT
!
NEXT I
STOP
Get_ans: !
ENTER S;AS$
PRINT AS
RETURN
!
END

[:SYSTem:HELP:HEADers] #nd..d<definite block data><NL>

Number of digits to follow.

Size of definite block data.

This example shows a query return with HEADer on and LONGform off.

:SYST:HELP:HEAD #517734<NL>
:ACOMplete?<NL>
:ACQuire:AVERage<NL>
:ACQuire:AVERage : COUNt<NL>
:ACQuire:BWLimit<NL>
*TRG<NL>

*TST?<NL>

*WAI<NL>

9-11

System Commands

LANGuage
LANGuage

Command :SYSTem:LANGuage {HP548XX | HP547XX | HP545XX}
The :SYSTem:LANGuage command selects the programming language for the
Infiniium Oscilloscope. At powerup, the default language is HP548XX. The
programming language does not change when either *RST or AUToscale are
sent over the bus.

Example This example sets the programming language for the Infiniium Oscilloscope to
the language used in 545xx Oscilloscopes.
10 OUTPUT 707;":SYSTEM:LANGUAGE HP545XX"
20 END

Query : SYSTem: LANGuage?

Returned Format

The :SYSTem:LANGuage? query returns the currently selected programming
language.

[:SYSTem:LANGuage] <selected language><NL>

System Commands
LONGform

Command

Example

Query

Returned Format

LONGform

:SYSTem:LONGform {{ON|1} | {OFF|0}}

The :SYSTem:LONGform command specifies the format for query responses. If
the LONGform is set to OFF, command headers and alpha arguments are sent
from the oscilloscope in the short form (abbreviated spelling). If LONGform is
set to ON, the whole word is output.

This example sets the format for query responses from the oscilloscope to the
short form (abbreviated spelling).

10 OUTPUT 707;":SYSTEM:LONGFORM OFF"
20 END

:SYSTem: LONGform?

The :SYSTem:LONGform? query returns the current state of the
:SYSTem:LONGform command.

[:SYSTem:LONGform] {1|0}<NL>

9-13

System Commands
LONGform

Example This example checks the current format for query responses from the
oscilloscope, and places the result in the string variable, Result$. Then, it prints
the contents of the variable to the computer’s screen.

10 DIM Results$[50] !Dimension variable
20 OUTPUT 707;" :SYSTEM: LONGFORM?"

30 ENTER 707;Result$

40 PRINT Results$

50 END

LONGform Does Not Affect Input Headers and Arguments

LONGform has no effect on input headers and arguments sent to the instrument. You
may send headers and arguments to the oscilloscope in either the long form or
short form, regardless of the current state of the :SYSTem:LONGform command.

System Commands
SETup

Command

<binary
_block_data>

Example

Query

Returned Format

SETup

:SYSTem: SETup <binary block data>

The :SYSTem:SETup command sets up the oscilloscope as defined by the data
in the setup string from the computer.

A string, consisting of bytes of setup data. The number of bytes is a dynamic
number that is read and allocated by oscilloscope’s software.

This example sets up the instrument as defined by the setup string stored in
the variable, Set$.

10 OUTPUT 707 USING "#,-K";":SYSTEM:SETUP ";Set$
20 END

HP BASIC Image Specifiers

#is an HP BASIC image specifier that suppresses the automatic output of the EOI
sequence following the last output item.

K'is an HP BASIC image specifier that outputs a number or string in standard form

with no leading or trailing blanks.

:SYSTem: SETup?

The :SYSTem:SETup? query outputs the oscilloscope's current setup to the
computer in binary block data format as defined in the IEEE 488.2 standard.
[:SYSTem: SETup] #NX...X<setup data string><NL>

The first character in the setup data string is a number added for disk
operations.

9-15

Example

System Commands
SETup

This example stores the current oscilloscope setup in the string variable, Set$.

10
20
30
40
50

DIM Sets$[15000] !Dimension variable

OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
OUTPUT 707;":SYSTEM:SETUP?"

ENTER 707 USING "-K";Sets

END

HP BASIC Image Specifiers

—Kis an HP BASIC image specifier which places the block data in a string, including
carriage returns and line feeds, until EQl is true, or the dimensioned length of the
string is reached.

:SYSTem:SETup Can Operate Just Like *LRN?

When headers and LONGform are on, the :SYSTem:SETup? query operates the
same as the *LRN? query in the common commands. Otherwise, *LRN? and
:SYSTem:SETup are not interchangeable.

System Commands
TIME

Command

<hour>
<minutes>

<second>

Example

Query

Returned Format

TIME

:8YSTem: TIME <hours>,<minute>, <second>

The :SYSTem:TIME command sets the time in the oscilloscope to 10:30:45, and
is not affected by the *RST common command.

0..23
0..59
0..59

This example sets the oscilloscope time to 10:30:45 p.m.

10 OUTPUT 707;":SYSTEM:TIME 10,30,45"
20 END

:SYSTem: TIME?

The :SYSTem:TIME? query returns the current time in the oscilloscope.

[:SYSTem:TIME] <hour>,<minute>, <second>

9-17

9-18

10

Acquire Commands

Acquire Commands

The ACQuire subsystem commands set up conditions for executing a
:DIGitize root level command to acquire waveform data. The commands
in this subsystem select the type of data, the number of averages, and
the number of data points.

These ACQuire commands and queries are implemented in the Infiniium
Oscilloscopes:

AllowMaxSR

AVERage
AVERage:COUNt
BWLimit

COMPlete
COMPlete:STATe
CONFig (for 54846A, 54845A, and 54835A only)
INTerpolate

MODE

POINts (memory depth)
POINts:AUTO

SRATe (sampling rate)
SRATe:AUTO

10-2

Acquire Commands
AllowMaxSR

Command

<N>

Example

AllowMaxSR

:ACQuire:AllowMaxSR {CHANnel<Ns>}

The :ACQuire:AllowMaxSR command is used to set the 54846A, 54845A, and
54835A oscilloscopes into the two channel 8 GSa/s mode (54846A/45A) or the
two channel 4GSa/s mode (54835A) when the channel number is 1 or 3. If the
channel number is 2 or 4 the 54846 A/45A has a maximum sample rate of 4 GSa/
s and the 54835A has a maximum sample rate of 2 GSa/s.

This command is designed to be used in a mask template file.

The :ACQuire:SRATe command sets the sample rate.

The 548104, 54815A, 54820A, 54325A oscilloscopes accept the
:ACQuire:AllowMaxSR command but do nothing.

An integer, 1-4.

This example puts an 54846A/45A into the two channel 8 GSa/s mode or an
54835A into the two channel 4 GSa/s mode.

10 OUTPUT 707;":ACQUIRE:ALLOWMAXSR CHANNEL 1"
20 END

10-3

Acquire Commands

AVERage
AVERage
Command :ACQuire:AVERage {{ON|1} | {OFF|0}}
The :ACQuire:AVERage command enables or disables averaging. When ON, the
oscilloscope acquires multiple data values for each time bucket, and averages
them. When OFF, averaging is disabled. To set the number of averages, use
the :ACQuire:AVERage:COUNt command described next.
Averaging is not available in PDETect mode.
The :MTESt:AVERage command performs the same function as this command.
Example This example turns averaging on.
10 OUTPUT 707;":ACQUIRE:AVERAGE ON"
20 END
Query :ACQuire:AVERage?

Returned Format

Example

The :ACQuire:AVERage? query returns the current setting for averaging.

[:ACQuire:AVERAGE] {1|0}<NL>

This example places the current settings for averaging into the string variable,
Setting$, then prints the contents of the variable to the computer’s screen.

10 DIM Setting$[50] |IDimension variable
20 OUTPUT 707;" :ACQUIRE:AVERAGE?"

30 ENTER 707;Setting$

40 PRINT Setting$

50 END

10-4

Acquire Commands
AVERage:COUNt

Command

<count_value>

Example

Query

Returned Format

<value>

Example

AVERage:COUNt

:ACQuire:AVERage: COUNt <count_ value>

The :ACQuire:[AVERage:]COUNt command sets the number of averages for the
waveforms. In the AVERage mode, the :ACQuire:AVERage:COUNt command
specifies the number of data values to be averaged for each time bucket before
the acquisition is considered complete for that time bucket.

The :MTESt:AVERage:COUNt command performs the same function as this
command.

An integer, 2 to 4096, specifying the number of data values to be averaged.

This example specifies that 16 data values must be averaged for each time
bucket to be considered complete. The number of time buckets that must be
complete for the acquisition to be considered complete is specified by the
:ACQuire:COMPlete command.

10 OUTPUT 707;":ACQUIRE:COUNT 16"
20 END

:ACQuire:COUNLt?

The :ACQuire:COUNt? query returns the currently selected count value.

[:ACQuire:COUNt] <value><NL>

An integer, 2 to 4096, specifying the number of data values to be averaged.

This example checks the currently selected count value and places that value
in the string variable, Result$. The program then prints the contents of the
variable to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF”

20 OUTPUT 707;":ACQUIRE:AVERAGE:COUNT?"
30 ENTER 707;Result

40 PRINT Result

50 END

10-5

Acquire Commands

BWLimit
BWLimit
Command :ACQuire:BWLimit {{oN|1} | {OFF|0}}
The :ACQuire:BWLimit command controls the acquisition of filtering. The
9-bit, high-resolution bandwidth limit filter only applies to data acquired in the
real time sampling mode. This command does not pertain to the equivalent
time mode.
ON Thedigital bandwidth limit filter passes the raw data through a filter which limits
the bandwidth to approximately
Js
20
where f; is the current sample frequency.
OFF The filter is turned off.
Example This example turns the bandwidth limit filter off.
10 OUTPUT 707;":ACQUIRE:BWLIMIT OFF"
20 END
Query :ACQuire:BWLimit?

Returned Format

Example

The :ACQuire:BWLimit? query returns the current bandwidth limit filter state.

[:ACQuire:BWLimit] {1|0}<NL>

This example places the current setting of the bandwidth limit filter in the string
variable, Setting$, then prints the contents of the variable to the computer’s
screen.

10 DIM Setting$[50] IDimension variable
20 OUTPUT 707;" :ACQUIRE:BWLIMIT?"

30 ENTER 707;Setting$

40 PRINT Setting$

50 END

10-6

Acquire Commands
COMPIlete

Command

<percents>

Example

COMPlete

:ACQuire:COMPlete <percents

The :ACQuire:COMPIlete command specifies how many of the data point storage
bins (time buckets) in the waveform record must contain a waveform sample
before a measurement will be made. For example, if the command
:ACQuire:COMPlete 60 has been sent, 60% of the storage bins in the waveform
record must contain a waveform data sample before a measurement is made.

e Jf:ACQuire:AVERage is set to OFF, the oscilloscope only needs one value
per time bucket for that time bucket to be considered full.

e [f:ACQuire:AVERage is set to ON, each time bucket must have » hits for it
to be considered full, where 72 is the value set by :ACQuire:AVERage: COUNt.

Due to the nature of real time acquisition, 100% of the waveform record bins
are filled after each trigger event, and all of the previous data in the record is
replaced by new data when :ACQuire:AVERage is off. Hence, the complete
mode really has no effect, and the behavior of the oscilloscope is the same as
when the completion criteria is set to 100% (this is the same as in PDETect
mode). When :ACQuire:AVERage is on, all of the previous data in the record is
replaced by new data.

The range of the :ACQuire:COMPlete command is 0 to 100 and indicates the
percentage of time buckets that must be full before the acquisition is considered
complete. If the complete value is set to 100%, all time buckets must contain
data for the acquisition to be considered complete. If the complete value is set
to 0, then one acquisition cycle will take place. Completion is set by default
setup or *RST to 90%. Autoscale changes it to 100%.

Aninteger, 0to 100, representing the percentage of storage bins (time buckets)
that must be full before an acquisition is considered complete.

This example sets the completion criteria for the next acquisition to 90%.

10 OUTPUT 707;":ACQUIRE:COMPLETE S0"
20 END

10-7

Acquire Commands
COMPlete

Query :ACQuire:COMPlete?
The :ACQuire:COMPlete? query returns the completion criteria.
Returned Format [:ACQuire:COMPlete] <percents><NL>
<percent> Aninteger, 0to 100, representing the percentage of time buckets that must be
full before an acquisition is considered complete.
Example This example reads the completion criteria and places the result in the variable,

Percent. Then, it prints the content of the variable to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF”
20 OUTPUT 707;" :ACQUIRE:COMPLETE?"
30 ENTER 707;Percent

40 PRINT Percent

50 END

10-8

Acquire Commands
COMPlete:STATe

Command

Query

ON

OFF

COMPlete:STATe

:ACQuire:COMPlete:STATe {{ON|1} | OFF|0}}

The :ACQuire:COMPlete:STATe command specifies the state of the
:ACQuire:COMPlete mode. This mode is used to make a tradeoff between how
often equivalent time waveforms are measured, and how much new data is
included in the waveform record when a measurement is made. This command
has no effect when the oscilloscope is in real time mode because the entire
record is filled on every trigger. However, in equivalent time mode, as few as 0
new data points will be placed in the waveform record as the result of any given
trigger event. You set the acquire mode of the oscilloscope by using the
:ACQuire:MODE command.

Use :ACQuire:COMPlete:STATe when DIGitize is Not Performing

The :ACQuire:COMPlete:STATe command is used only when the oscilloscope is
operating in equivalent time mode and a digitize operation is not being performed.
The :DIGitize command temporarily overrides the setting of this mode and forces it
to ON.

Turns the COMPlete mode on. Then you can specify the completion percent.

When off, the oscilloscope makes measurements on waveforms after each
acquisition cycle, regardless of how complete they are. The waveform record
is not cleared after each measurement. Instead, previous data points will be
replaced by new samples as they are acquired.

:ACQuire:COMPlete:STATe?

The :ACQuire:COMPlete? query returns the state of the :ACQuire:COMPlete
mode.

10-9

Acquire Commands
CONFig

Command

Example

Query

Returned Format

CONFig

:ACQuire:CONFig {TwoCHannel | FourCHannel}

The :ACQuire:CONFig command configures the 54846A, 54845A, and 54835A
oscilloscopes to use 2 or 4 channels for acquisitions. This command is only valid
for the 54846A, 54845A, and 54835A.

This example configures the 54846A, 54845A, and 54835A oscilloscopes to use
4 channels for acquisitions.

10 OUTPUT 707;":ACQUIRE:CONFIG FCH"
20 END

:ACQuire:CONFig?

The :ACQuire:CONFig? query returns the configured number of channels for
acquisitions on the 54846A, 54845A, and 54835A.

[:ACQuire:CONFig] {TwoCHannel | FourCHannel}<NL>

10-10

Acquire Commands
INTerpolate

Command

Query

Returned Format

INTerpolate

:ACQuire:INTerpolate {{ON|1} | {OFF|0}}

The :ACQuire:INTerpolate command turns the sin(x)/x interpolation filter on
or off when the oscilloscope is in real time acquisition mode.

:ACQuire:INTerpolate?

The :ACQuire:INTerpolate? query returns the current state of the sin(x)/x
interpolation filter control.

[:ACQuire:INTerpolate] {1|0}<NL>

10-11

Acquire Commands
MODE

Command

RTIMe

ETIMe or
REPetitive

PDETect

Example

Query

Returned Format

Example

MODE

:ACQuire:MODE {RTIMe|{ETIMe|REPetitive} |PDETect}

The :ACQuire:MODE command sets the acquisition mode of the oscilloscope.
Sampling mode canbe Equivalent Time (Repetitive), Real Time, or Peak Detect.

In Real Time mode, the complete data record is acquired on a single trigger
event.

In Equivalent Time (Repetitive) mode, the data record is acquired over multiple
trigger events.

In Peak Detect mode, the oscilloscope acquires all of the waveform data points
during one trigger event, similar to the Real Time mode; however, the rate at
which data is stored to memory is limited to 2560 MSa/s. Waveform anomalies
are detected between samples because the oscilloscope internally acquires data
at a faster speed than the selected sample rate. From these extra samples, the
minimum and maximum values are determined for each sample point. The
minimum and maximum values for each sample point are then displayed. This
mode is not available in the 54846A, 54845A, and 54835A Oscilloscopes.

This example sets the acquisition mode to Real Time.

10 OUTPUT 707;":ACQUIRE:MODE RTIME"
20 END

:ACQuire :MODE?

The :ACQuire:MODE? query returns the current acquisition sampling mode.

[:ACQuire:MODE] {RTIMe | {ETIMe | REPetitive} | PDETect}<NL>

This example places the current acquisition mode in the string variable, Mode$,
then prints the contents of the variable to the computer’s screen.

10 DIM Mode$[50] !Dimension variable
20 OUTPUT 707;" :ACQUIRE:MODE?"

30 ENTER 707;Mode$

40 PRINT Modes

50 END

10-12

Acquire Commands
POINts

Command

<points_value>

Table 10-1

Example

POINts

:ACQuire:POINts {AUTO|<points value>}

The :ACQuire:POINts command sets the requested memory depth for an
acquisition. Before you download data from the oscilloscope to your computer,
always query the points value with the :WAVeform:POINts? query or
:WAVeform:PREamble? query to determine the actual number of acquired
points.

You can set the points value to AUTO, which allows Infiniium to select the
optimum memory depth and display update rate.
An integer representing the memory depth.

The range of points available for a single channel depends on the oscilloscope
model and the acquistion mode setting, as shown in Table 10-1:

Points Value Ranges

54810A/15A/ 54846A/45A/35A 54846A/45A/35A
20A/25A 2-channel mode 4-channel mode
Real Time mode 16 to 32768 16 to 65536 16 to 32768
Equivalent Time mode 16 to 32768 mode not available 16 to 32768
Peak Detect mode 16 to 16384 mode not available mode not available

Equivalent Time mode takes the oscilloscope out of 2 channel, 4 GSa/s (54835A)
or 2 channel, 8 GSa/s (54846A/45A)).

This example sets the memory depth to 500 points.

10 OUTPUT 707;":ACQUIRE:POINTS 500"
20 END

10-13

Query

Returned Format

Example

See Also

Acquire Commands
POINts

:ACQuire:POINts?

The :ACQuire:POINts? query returns the value of the memory depth control.

[:ACQuire:POINts] <points value><NL>

This example checks the current setting for memory depth and places the result
in the variable, Length. Then the program prints the contents of the variable
to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF”
20 OUTPUT 707;":ACQUIRE:POINTS?"
30 ENTER 707;Length

40 PRINT Length

50 END

:-WAVeform:DATA

10-14

Acquire Commands
POINts:AUTO

Command

Example

Query

Returned Format

Example

See Also

POINts:AUTO

:ACQuire:POINts:AUTO {{ON | 1} |{OFF | 0}}

The :ACQuire:POINts:AUTO command enables (automatic) or disables
(manual) the automatic memory depth selection control. When enabled,
Infiniium chooses a memory depth that optimizes the amount of waveform data
and the display update rate. When disabled, you can select the amount of
memory using the :ACQuire:POINts command.

This example sets the automatic memory depth control to off.

10 OUTPUT 707;":ACQUIRE:POINTS:AUTO OFF"
20 END

:ACQuire:POINts:AUTO?

The :ACQuire:POINts:AUTO? query returns the automatic memory depth
control state.

[:ACQuire:POINts:AUTO] {1 | 0}<NL>

This example checks the current setting for automatic memory depth control
and places the result in the variable, State. Then the program prints the
contents of the variable to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF”

20 OUTPUT 707;":ACQUIRE:POINTS:AUTO?"

30 ENTER 707;State

40 DPRINT State

50 END

:-WAVeform:DATA

10-15

Acquire Commands
SRATe (Sample RATe)

SRATe (Sample RATe)

Command :ACQuire:SRATe {AUTO | MAX | <rate>}

The :ACQuire:SRATe command sets the acquisition sampling rate for real time
and peak detect sampling modes. If the oscilloscope is in the equivalent time
sampling mode, the SRATe command has no effect on the sampling rate.
However, if you change the sampling mode to real time or peak detect sampling
the control will show the new value.

AUTO The AUTO rate allows the oscilloscope to select a sample rate that best
accommodates the selected memory depth and sweep speed.

MAX The MAXrate enablesthe oscilloscope to select maximum available sample rate.

<rate> A real number representing the sample rate. You can send any value, but the
value is rounded to the next fastest sample rate.

Table 10-2

Sample Rate Minimum and Maximum Values

Acquisition 54810A/54815A 54820A/54825A 54835A 54835A 54846A/45A, 54846A/45A,
Mode 2-channel mode 4-channel mode 2-channel mode 4-channel mode

Real Time mode 500E-3-1.0E+9 500E-3-2.0E+9 500E-3 - 4.0E+9 500E-3 - 2.0E+9 500E-3 - 8.0E+9 500E-3 - 4.0E+9

Peak Detect 500E-3 - 250E+6 * 500E-3 - 250E+6 *
mode

* Effective sample rates; internally the oscilloscope is sampling at 1 GSa/s.

Table 10-3

Available Sample Rate Values (in Sa/s)

5 1 25 5 10 25 50 100 250 500 1K 25K 5K 10K 25K
50K 100K 250K 500K 1M 25M 5M oM 25M 50M 100M 250M 500M 1G 2G
4G 8G

The sample rate of 4 GSa/s is available on the 54835A.
The sample rates of 4 GSa/s and 8 GSa/s are available on 54846A/45A,.

Example This example sets the sample rate to 250 MSa/s.
10 OUTPUT 707;":ACQUIRE:SRATE 250E+6"
20 END

10-16

Query

Returned Format

Example

Acquire Commands
SRATe (Sample RATe)

:ACQuire:SRATe?

The :ACQuire:SRATe? query returns the current acquisition sample rate.

[:ACQuire:SRATe] {AUTO | <rates>}<NL>

This example places the current sample rate in the string variable, Sample$,
then prints the contents of the variable to the computer’s screen.

10
20
30
40
50

DIM Samples$[50] !Dimension variable
OUTPUT 707;" :ACQUIRE:SRATE?"

ENTER 707;Sample$

PRINT Samples$

END

10-17

Acquire Commands
SRATe:AUTO

Command

Example

Query

Returned Format

Example

SRATe:AUTO

:ACQuire:SRATe:AUTO {{ON | 1} | {OFF | 0}}

The :ACQuire:SRATe:AUTO command enables or disables the automatic
sampling rate selection control for real time and peak detect sampling modes.
If the oscilloscope is in the equivalent time sampling mode, the AUTO command
has no effect. However, if you change the sampling mode to real time or peak
detect sampling the control will show the new value.

This example changes the sampling rate to manual.

10 OUTPUT 707;":ACQUIRE:SRATE:AUTO OFF"
20 END

:ACQuire:SRATe :AUTO?

The :ACQuire:SRATe:AUTO? query returns the current acquisition sample rate.

[:ACQuire:SRATe:AUTO] {1 | 0}<NL>

This example places the current sample rate in the variable, Sample, then prints
the contents of the variable to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF”
20 OUTPUT 707;":ACQUIRE:SRATE:AUTO?"
30 ENTER 707;Sample

40 PRINT Sample

50 END

10-18

11

Calibration Commands

Calibration Commands

This chapter briefly explains the calibration of the Infiniium-Series
Oscilloscopes. Itisintended to give you and the calibration lab personnel
an understanding of the calibration procedure and how the calibration
subsystem is intended to be used. Also, this section acquaints you with
the terms used in this chapter, and with help screens and data sheets.

A calibration procedure is included at the end of this chapter.

Calibration Commands
Oscilloscope Calibration

See Also

Oscilloscope Calibration

Oscilloscope calibration establishes calibration factors for the oscilloscope.
These factors are stored on the oscilloscope’s hard disk.

Initiate the calibration from the “Utilities Calibration” menu.

You should calibrate the oscilloscope periodically (at least annually), or if the
ambient temperature since the last calibration has changed more than +5 °C.
The temperature change since the last calibration is shown on the calibration
status screen which is found under the “Utilities Calibration” dialog. It is the
line labeled “Current Frame Temperature A: _ °C.”

To perform the oscilloscope calibration, you need a short BNC-to-BNC cable
such as the 8120-1838 cable. When you initiate the calibration, instructions
appear on the screen describing how to perform the calibration.

The Infiniium-Series Oscilloscopes Service Guide has more details about the
mainframe calibration.

11-3

Calibration Commands
Probe Calibration

Probe Calibration

Probe calibration establishes the gain and offset of a probe that is connected to
a channel of the oscilloscope, and applies these factors to the calibration of that
channel.

Initiate probe calibration from the “Utilities Calibration” menu.

To achieve the specified accuracy (¥2%) with a probe connected to a channel,
make sure the oscilloscope is calibrated.

For active probes that the oscilloscope can identify through the probe power
connector, like the 54701A, the oscilloscope automatically adjusts the
vertical scale factors for that channel even if a probe calibration is not
performed.

For passive probes or nonidentified probes, the oscilloscope adjusts the
vertical scale factors only if a probe calibration is performed.

If you do not perform a probe calibration but want to use a passive
probe, enter the attenuation factor in the Probe Cal dialog under the
Channel dialog.

If the probe being calibrated has an attenuation factor that allows the
oscilloscope to adjust the gain (in hardware) to produce even steps in the
vertical scale factors, the oscilloscope will do so.

If the probe being calibrated has an unusual attenuation, like 3.75, the
oscilloscope may have to adjust the vertical scale factors to an unusual
number, like 3.75 V/div.

Typically, probes have standard attenuation factors such as divide by 10, divide
by 20, or divide by 100.

Calibration Commands

The commands in the CALibration subsystem initiate the oscilloscope
calibration over GPIB. These CALibration commands and queries are
implemented in the Infiniium Oscilloscopes:

e CANCel

e CONTinue

e MPRotect

e OUTPut

e SDONe?

e SKEW

e STARt

e STATus?

Let the Oscilloscope Warm Up First

Let the oscilloscope warm up at least 30 minutes before you calibrate it.

Calibration Commands
CANCel

CANCel

Command :CALibrate:CANCel

The :CALibrate:CANCel command cancels the calibration on the oscilloscope.
If a calibration has been initiated by the :CALibrate:STARt command, this will
cancel the calibration.

Example This example cancels the oscilloscope calibration.
10 OUTPUT 707;":CALIBRATE:CANCEL"
20 END

Calibration Commands
CONTinue

Command

Example

CONTinue

:CALibrate:CONTinue

The :CALibrate:CONTinue command continues the calibration on the
oscilloscope. If a calibration has been initiated by the :CALibrate:STARt
command, this will continue through the next calibration step.

This example continues the oscilloscope calibration.

10 OUTPUT 707;":CALIBRATE:CONTINUE"
20 END

Calibration Commands
MPRotect

Command

Example

Query

Returned Format

Example

MPRotect

:CALibrate:MPRotect {{ON|1} | {OFF|0}}

The :CALibrate:MPRotect command turns the calibration memory protection
on or off. A calibration cannot be started with MPRotect on. This lets you
protect the oscilloscope’s calibration factors from accidentally being changed.

This example turns on the calibration memory protection.

10 OUTPUT 707;":CALIBRATE:MPROTECT ON"
20 END

:CALibrate:MPRotect?

The :CALibrate:MPRotect? query returns the current calibration memory
protection status.

[:CALibrate:MPRotect] {ON | OFF}

This example places the current selection for the calibration memory protection
to be printed in the string variable, Selection$, then prints the contents of the
variable to the computer's screen.

10 DIM Selection$[50] !Dimension variable
20 OUTPUT 707;" :CALIBRATE:MPROTECT?"

30 ENTER 707;Selection$

40 PRINT Selection$

50 END

Calibration Commands
OUTPut

Command

<dc_value>

Example

Query

Returned Format

Example

OUTPut

:CALibrate:0UTPut {{AC|TRIGOUT} | {DC,<dc value>}}

The :CALibrate:OUTPut command sets the coupling frequency, trigger output
pulse, and dc level of the calibrator waveform output through the front panel

CAL connector. To trigger other instruments, use the TRIGOUT setting to cause
the oscilloscope to send a pulse when the trigger event occurs.

Arealnumber for the DClevel value in volts, adjustable from -2.5 Vto +2.5 VDC.

This example puts a DC voltage of 2.0 V on the oscilloscope Aux Out connector.

10 OUTPUT 707;":CALIBRATE:OUTPUT DC,2.0"
20 END

:CALibrate:0UTPut?

The :CALibrate:OUTPut? query returns the current setup.

[:CALibrate:0UTPut] {{AC|TRIGOUT} | {DC,<dc_value>}}

This example places the current selection for the DC calibration to be printed
in the string variable, Selection$, then prints the contents of the variable to the
computer’s screen.

10 DIM Selection$[50] !Dimension variable
20 OUTPUT 707;" :CALIBRATE:QUTPUT?"

30 ENTER 707;Selection$

40 PRINT Selections$

50 END

11-9

Calibration Commands
SDONe?

Query

Returned Format

Example

SDONe?

:CALibrate:SDONe?

The :CALibrate:SDONe? (Step DONe) query will return when the current
calibration step is complete.

The returned string contents tell you the next step. For example, "Connect Aux
Out to Channel 1 with a short 50-ohm cable."

[:CALibrate:SDONe] <strings>

This example places the current selection for the calibration pass/fail status to
be printed in the string variable, Selection$, then prints the contents of the
variable to the computer’s screen.

10
20
30
40
50

DIM Selection$[80] !Dimension variable
OUTPUT 707;" :CALIBRATE:SDONE?"

ENTER 707;Selection$

PRINT Selection$

END

11-10

Calibration Commands
SKEW

SKEW

Command :CALibrate:SKEW {CHANnel<N> | EXTernal}, <skew value>

The :CALibrate:SKEW command sets the channel-to-channel skew factor for a
channel. The numeric argument is a real number in seconds, which is added to
the current time base position to shift the position of the channel’s data in time.
Use this command to compensate for differences in the electrical lengths of
input paths due to cabling and probes.

<N> Aninteger, 1 - 2, for 54810/564820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<skew_value> A real number, in seconds.

Example This example sets the oscilloscope channel 1 skew to 0.1 S.
10 OUTPUT 707;":CALIBRATE:SKEW CHANNEL1,0.1S "
20 END

Query :CALibrate:SKEW? {CHANnel<N>|EXTernal}

The :CALibrate:SKEW? query returns the current skew value.

Returned Format [:CALibrate:SKEW] <skew value><NL>

11-11

Calibration Commands
STARt

Command

Example

STARt

:CALibrate:STARt

The :CALibrate:STARt command starts the calibration sequence.
Now :SDONe?, :CONTinue, and :CANCel are valid.

This example starts the oscilloscope calibration.

10 OUTPUT 707;":CALIBRATE:START"
20 END

11-12

Calibration Commands
STATus?

Query

Returned Format

<status>

STATus?

:CALibrate:STATus?

The :CALibrate:STATus? query returns the calibration status of the
oscilloscope. These are ten, comma-separated integers, with 1, 0, or -1. A "1"
indicates pass, a "0" indicates fail and a "-1" indicates unused. This matches the
status in the Calibration dialog box in the Utilities menu.

[:CALibrate:STATus] <status>

<Frame Status>,

<Channell Vertical>, <Channell Trigger>,

<Channel2 Vertical>, <Channel2 Trigger>,

<Channel3 Vertical>, <Channel3 Trigger>, (-1 for 54810A, 54820A)
<Channel4 Vertical>, <Channel4 Trigger>, (-1 for 54810A, 54820A)
<Aux Trigger> (<Ext Trigger> for 54810A, 54820A)

11-13

11-14

12

Channel Commands

12-1

Channel Commands

The CHANnel subsystem commands control all vertical (Y axis)
functions of the oscilloscope. You may toggle the channel displays on
and off with the root level commands :VIEW and :BLANK, or with
:CHANnel:DISPlay.

These CHANnel commands and queries are implemented in the
Infiniium Oscilloscopes:

e BWLimit

e DISPlay

e INPut

e OFFSet

e PROBe

e PROBe:ATTenuation (only for the 1154A probe)

e PROBe:EADapter

e PROBe:ECoupling

e PROBe:EGAIn

e PROBe:EOFFset

e PROBe:GAIN (only for the 1154A probe)

e PROBe:ID?

e PROBe:SKEW

e PROTection (only for the 54846A, 54845A, and 54835A)
e RANGe

e SCALe

e UNITs

54810A and 54820A Infiniium Oscilloscopes each have 2 channels. All
other Infiniium Oscilloscope models have 4 channels.

12-2

Channel Commands
BWLimit

Command

<N>

Example

Query

Returned Format

Example

BWLimit
:CHANnel<N>:BWLimit {{ON|1} | {OFF|0}}

The :CHANnel<N>:BWLimit command controls the low-pass filter, except on
the 54846A, 54845A, and 54835A oscilloscopes, which has no low-pass filter.
The 54846A, 54845A, and 54835A will not recognize this command or the

query.
When ON, the bandwidth of the specified channel is limited. The bandwidth
limit filter can be used with either AC or DC coupling.

An integer, 1 - 2, for 54810/564820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

This example sets the internal low-pass filter to "ON" for channel 1.

10 OUTPUT 707;":CHANNEL1:BWLIMIT ON"
20 END

:CHANnel<N>:BWLimit?

The :CHANnel<N>:BWLimit? query returns the state of the low-pass filter for
the specified channel.

[:CHANnel<N>:BWLimit] {1]0}<NL>

This example places the current setting of the low-pass filter in the variable
Limit, then prints the contents of the variable to the computer’s screen.

10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":CHANNEL1:BWLIMIT?"
30 ENTER 707;Limit

40 PRINT Limit

50 END

12-3

Channel Commands
DISPlay

Command

<N>

Example

Query

Returned Format

Example

DISPlay

:CHANnel<N>:DISPlay {{oN|1} | {OoFF|0}}

The :CHANnel<N>:DISPlay command turns the display of the specified channel
on or off.

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

This example sets channel 1 display to on.

10 OUTPUT 707;"CHANNEL1:DISPLAY ON"
20 END

:CHANnel<N>:DISPlay?

The :CHANnel<N>:DISPlay? query returns the current display condition for the
specified channel.

[:CHANnel<N>:DISPlay] {1]|0}<NL>

This example places the current setting of the channel 1 display in the variable
Display, then prints the contents of the variable to the computer’s screen.

10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":CHANNEL1:DISPLAY?"
30 ENTER 707;Display

40 PRINT Display

50 END

12-4

Channel Commands
INPut

Command
<N>
<parameter>
Example
Query

Returned Format

Example

INPut

:CHANnel<N>:INPut <parameters>

The :CHANnel<N>:INPut command selects the input coupling, impedance, and
LF/HF reject for the specified channel. The coupling for each channel can be
AC, DC, DC50, or DCFifty when no probe is attached. If you have an 1153A
probe attached, the valid parameters are DC, LFR1, and LFR2 (low-frequency
reject).

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.
The parameters available in this command for Infiniium are.
e DC: DC coupling, 1 MQ input impedance

e DC5H0 | DCFifty: DC coupling, 50Q input impedance

e AC: AC 1 MQ input impedance

e LFR1ILFR2: AC 1 MQ input impedance

This example sets the channel 1 input to DC50.

10 OUTPUT 707;":CHANNEL1:INPut DC50"
20 END

: CHANnel<N>: INPut?

The :CHANnel<N>:INPut? query returns the selected channel input parameter.

[CHANnel<N>:INPut] <parameter><NL>

This example puts the current input for channel 1 in the string variable, Input$.
The program then prints the contents of the variable to the computer's screen.

10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":CHANNEL1:INPUT?
30 ENTER 707;Input$

40 PRINT Input$

50 END

12-5

Channel Commands
OFFSet

Command

<N>

<offset values>

Example

Query

Returned Format

Example

OFFSet

:CHANnel<N>:0FFSet <offset value>

The :CHANnel<N>:OFFSet command sets the voltage that is represented at the
center of the display for the selected channel. Offset parameters are probe and
vertical scale dependent.

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

A real number for the offset value at center screen. Usually expressed in volts,
but can be in other measurement units, such as amperes, if you have specified
other units using the :CHANnel<N>:UNITs command.

This example sets the offset for channel 1 to 0.125 in the current measurement
units:

10 OUTPUT 707;":CHANNEL1:OFFSET 125E-3"
20 END

:CHANnel<N>:OFFSet?

The :CHANnel<N>:OFFSet? query returns the current offset value for the
specified channel.

[CHANnel<N>:0FFSet] <offset value><NL>

This example places the offset value of the specified channel in the string
variable, Offset$, then prints the contents of the variable to the computer’s
screen.

10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;"CHANNEL1:OFFSET?"
30 ENTER 707;0ffset

40 PRINT Offset

50 END

12-6

Channel Commands
PROBe

Command

<attenuation

<N>

_factors>

Example

See Also

PROBe

:CHANnel<N>:PROBe <attenuation factors[, {RATio |
DECibel}]

The :CHANnel<N>:PROBe command sets the probe attenuation factor and,
optionally, the units for the probe attenuation factor. The range of the probe
attenuation factor is from 0.0001 to 1,000,000 and from —80 dB to 120 dB.
The reference factors that are used for scaling the display are changed with this
command, and affect automatic measurements and trigger levels.

The “,DEC” or “,RAT” also sets the “mode” for the probe attenuation. This mode
also determines the units that may be used for a subsequent command. For
example, if you select RATio mode, “DB” cannot be used. In “DECibel” mode,
you can specify the units for the argument as “DB”.

An integer, 1-2, for 54810/564820 Infiniium Oscilloscopes.
An integer, 1-4, for all other Infiniium Oscilloscope models.

A real number from 0.0001 to 1,000,000 or from —80 dB to 120 dB, representing
the probe attenuation factor. The factor depends on the units.

This example sets the probe attenuation factor of channel 1 to 10, and the units
to decibel.

10 OUTPUT 707;":CHANNEL1:PROBE 10,DEC"
20 END

For information on skew, see the Calibration Commands.

12-7

Query

Returned Format

Example

Channel Commands
PROBe

:CHANnel<N>: PROBe?

The

:CHANnel<N>:PROBe? query returns the current probe attenuation

setting for the selected channel and the units.

[:CHANnel<N>:PROBe] <attenuations>, {RATio | DECibel}<NL>

This example places the current attenuation setting for channel 1 in the string
variable, Atten$, then the program prints the contents.

10
20
30
40
50

DIM Atten$[50] !Dimension variable
OUTPUT 707;" :CHANNEL1 : PROBE?
ENTER 707;Atten$

PRINT Attens$

END

If you use a string variable, the query returns the attenuation value and the
factor (decibel or ratio). If you use an integer variable, the query returns the
attenuation value. You must then read the attenuation units into a string
variable.

12-8

Channel Commands
PROBe:ATTenuation

Command

<N>

Example

Query

Returned Format

PROBe:ATTenuation

: CHANnel<N>:PROBe:ATTenuation {DIV1 | DIV10}

The :CHANnel<N>:PROBe:ATTenuation command sets the probe’s
attenuation. There are some Infiniium active and differential probes that have
the ability to change the probe’s input amplifier’s attenuation.

This command is only available when an Infiniium active or differential probe
is connected to the channel. If one of these probes is not connected to the
channel you will get a settings conflict error.

An integer, 1 - 2, for 54810/564820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

This example sets the probe attenuation for channel 1 to divide by 10.

10 OUTPUT 707;":CHANNEL1:PROBE:ATTENUATION DIV1QO"
20 END

:CHANnel<N>: PROBe:ATTenuation?

The :CHANnel<N>:PROBe:ATTenuation? query returns the current probe
attenuation setting for the selected channel.

[:CHANnel<N>:PROBe:ATTenuation] {DIV1 | DIV1O0}<NL>

12-9

Channel Commands
PROBe:EADapter

PROBe:EADapter

Command : CHANnel<N>:PROBe:EADapter {NONE | DIV10 |
DIV20 | DIV100}

The :CHANnel<N>:PROBe:EADapter command sets the Infiniium external
adapter control. There are some probes that have external adapters that you
can attach to the end of your probe. When you attach one of these adapters,
you should use the EADapter command to set the external adapter control to
match the adapter connected to your probe as follows.

Parameter Description

NONE Use this setting when there is no adapter
connected to the end of your probe.

DIV10 Use this setting when you have a divide by
10 adapter connected to the end of your
probe.

DIV20 Use this setting when you have a divide by
20 adapter connected to the end of your
probe.

DIV100 Use this setting when you have a divide by
100 adapter connected to the end of your
probe.

<N> Aninteger, 1 - 2, for 54810/564820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

Example This example sets the external adapter for channel 1 to divide by 10:
10 OUTPUT 707;":CHANNEL1:PROBE:EADAPTER DIV10"
20 END

12-10

Query

Returned Format

Example

Channel Commands
PROBe:EADapter

:CHANnel<N>:PROBe:EADapter?

The :CHANnel<N>:PROBe:EADapter? query returns the current external
adapter value for the specified channel.

[CHANnel<N>:PROBe:EDApter] {NONE | AC | DIV10 | DIV20
| DIV100}<NL>

This example places the external adapter value of the specified channel in the
string variable, Adapter$, then prints the contents of the variable to the
computer’s screen.

10
20
30
40
50

DIM Adapter$[50] |IDimension variable
OUTPUT 707;" :CHANNEL1 : PROBE : EADAPTER?
ENTER 707;Adapter$

PRINT Adapters$

END

12-11

Channel Commands
PROBe:ECoupling

Command

<N>

Example

PROBe:ECoupling

: CHANnel<N>:PROBe:ECoupling {NONE | AC}

The :CHANnel<N>:PROBe:ECoupling command sets the Infiniium external
coupling adapter control. There are some probes that have external coupling
adapters that you can attach to the end of your probe. When you attach one of
these adapters, you should use the ECoupling command to set the external
coupling adapter control to match the adapter connected to your probe as
follows.

Parameter Description

NONE Use this setting when there is no adapter
connected to the end of your probe.

AC Use this setting when you have an ac
coupling adapter connected to the end of
your probe.

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.

An integer, 1 - 4, for all other Infiniium Oscilloscope models.

This example sets the external coupling adapter for channel 1 to ac:

10 OUTPUT 707;":CHANNEL1:PROBE:ECOUPLING AC"
20 END

12-12

Query

Returned Format

Example

Channel Commands
PROBe:ECoupling

: CHANnel<N>:PROBe:ECoupling?

The :CHANnel<N>:PROBe:ECoupling? query returns the current external
coupling adapter value for the specified channel.

[CHANnel<N>:PROBe:ECoupling] {NONE | AC}<NL>

This example places the external coupling adapter value of the specified
channel in the string variable, Adapter$, then prints the contents of the variable
to the computer’s screen.

10
20
30
40
50

DIM Adapter$[50] |IDimension variable
OUTPUT 707;" :CHANNEL1 : PROBE : ECOUPLING?
ENTER 707;Adapters$

PRINT Adapters$

END

12-13

Channel Commands
PROBe:EGAin

Command

<N>

<gain value>

Example

Query

Returned Format

PROBe:EGAin

:CHANnel<N>:PROBe:EGAin <gain values>

The :CHANnel<N>:PROBe:EGAin command sets the probe gain. The units of
volts, amperes, watts, and unknown are set using the :CHANnel<N>:UNITs
command.

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

A real number for the gain value.

This example sets the probe gain for channel 1 to 125 x 1073,

10 OUTPUT 707;":CHANNEL1:PROBE:EGAIN 125E-3"
20 END

:CHANnel<N>:PROBe:EGAiIin?

The :CHANnel<N>:PROBe:EGAIn? query returns the gain setting for the
selected channel.

[:CHANnel<N>:PROBe:EGAin] <gain value><NL>

12-14

Channel Commands
PROBe:EOFFset

Command

<N>

<offset value>

Example

Query

Returned Format

PROBe:EOFFset

:CHANnel<N>:PROBe:EOFFset <offset value>

The :CHANnel<N>:PROBe:EOFFset command sets the probe offset. The units
of volts, amperes, watts, and unknown are set using the :CHANnel<N>:UNITs
command.

An integer, 1 - 2, for 54810/564820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

A real number for the offset value.

This example sets the probe offset for channel 1 to 125 x 1073,

10 OUTPUT 707;":CHANNEL1:PROBE:EOFFSET 125E-3"
20 END

: CHANnel<N>:PROBe: EOFFset?

The :CHANnel<N>:PROBe:EOFFset? query returns the offset value for the
selected channel.

[:CHANnel<N>:PROBe:EOFFset] <offset value><NL>

12-15

Channel Commands
PROBe:GAIN

PROBe:GAIN

Command : CHANnel<N>:PROBe:GAIN {X1 | X10}

The :CHANnel<N>:PROBe:GAIN command sets the probe gain. There are some
Infiniium active and differential probes that have the ability to change the
probe’s input amplifier gain.

This command is only available when an Infiniium active or differential probe
is connected to the channel. If one of these probes is not connected to the
channel you will get a settings conflict error.

The units of volts, amperes, watts, and unknown are set using the
:CHANnel<N>:UNITs command.

<N> Aninteger, 1 - 2, for 54810/564820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

Example This example sets the probe gain for channel 1 to times 10.
10 OUTPUT 707;":CHANNEL1:PROBE:GAIN X10"
20 END

Query :CHANnel<N>: PROBe:GAIN?

The :CHANnel<N>:PROBe:GAIN? query returns the current probe gain setting
for the selected channel.

Returned Format [:CHANnel<N>:PROBe:GAIN] {X1 | X10}<NL>

12-16

Channel Commands
PROBe:ID?

Query

<N>

Returned Format

<probe id>

Example

PROBe:ID?

: CHANnel<N>:PROBe:ID?

The :CHANnel<N>:PROBe:ID? query returns the type of probe attached to the
specified oscilloscope channel.

An integer, 1 - 2, for 54810/564820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

[:CHANnel<N>:PROBe:ID] <probe_id>
A string of up to 9 alphanumeric characters. Some of the possible returned
values are:

e 1147A

e 1154A

e 1159A

e AutoProbe

e E2621A

e [E2622A

e HP1152A

e HPI11563A

e NONE

* Probe

This example reports the probe type connected to channel 1, if one is
connected.

10 OUTPUT 707;":CHANNEL1:PROBE:ID?"
20 END

12-17

Channel Commands
PROBe:SKEW

PROBe:SKEW

Command : CHANnel<N>:PROBe: SKEW <skew value>

The :CHANnel<N>:PROBe:SKEW command sets the channel-to-channel skew
factor for the specified channel. You can use the oscilloscope’s probe skew
control to remove timing differences between probes or cables on different
channels.

<N> Aninteger, 1 - 2, for 54810/564820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<skew_value> A real number for the skew value, in the range -100 s to 100 us.

Example This example sets the probe skew for channel 1 to 10 ps.
10 OUTPUT 707;":CHANNELL:PROBE:SKEW 10E-6"
20 END

Query : CHANnel <N>: PROBe : SKEW?

The :CHANnel<N>:PROBe:SKEW? query returns the current probe skew
setting for the selected channel.

Returned Format [:CHANnel<N>:PROBe:SKEW] <skew value><NL>

12-18

Channel Commands
PROTection:CLEar

PROTection:CLEar

Command :CHANnel<N>:PROTection:CLEar

The :CHANnel<N>:PROTection:CLEar command is used to clear (reset) the
overload protection. It allows the channel to be used again after the waveform
that caused the overload has been removed from the channel input. This
command is only available on the 54846A, 54845A, and 54835A.

<N> An integer, 1 - 4.

Example This example clears the overload protection for channel 1.
10 OUTPUT 707;":CHANNELI:PROTECTION:CLEAR"
20 END

12-19

Channel Commands
PROTection?

Command

Returned Format

PROTection?

:CHANnel<N>:PROTection?

The :CHANnel<N>:PROTection? query returns the state of the input protection
for CHANnel<N>. If the channel protection is engaged, then a 1 is returned
otherwise a 0 is returned. This command is only available on the 54846A,
54845A, and H54835HA.

<N> An integer, 1 - 4.

[:CHANnel<N>:PROTection] {1 | 0}

Example

This example places the current state of the input protection for the specified
channel in the number variable, Protect, then prints the contents of the variable
to the computer’s screen.

10
20
30
40
50

OUPUT 707;"”SYSTEM:HEADER OFF” !Response headers off
OUTPUT 707;" :CHANNEL1 : PROTECTION?"

ENTER 707;Protect

PRINT Protect

END

12-20

Channel Commands
RANGe

Command

<N>

<range_value>

Example

Query

Returned Format

Example

RANGe

:CHANnel<N>:RANGe <range_ value>

The :CHANnel<N>:RANGe command defines the full-scale vertical axis of the
selected channel. It sets up acquisition and display hardware to display the
waveform at a given range scale. The values represent the full-scale deflection
factor of the vertical axis in volts. These values change as the probe attenuation
factor is changed.

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

A real number for the full-scale voltage of the specified channel number.

This example sets the full-scale range for channel 1 to 500 mV.

10 OUTPUT 707;":CHANNEL1:RANGE 500E-3"
20 END

:CHANnel<N>:RANGe?

The :CHANnel<N>:RANGe? query returns the current full-scale vertical axis
setting for the selected channel.

[: CHANnel<N>:RANGe] <range value><NL>

This example places the current range value in the number variable, Setting,
then prints the contents of the variable to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF” |Response headers off
20 OUTPUT 707;":CHANNEL1 :RANGE?"

30 ENTER 707;Setting

40 PRINT Setting

50 END

12-21

Channel Commands
SCALe

Command

<N>

<scale value>

Example

Query

Returned Format

Example

SCALe

:CHANnel<N>:SCALe <scale_value>

The :CHANnel<N>:SCALe command sets the vertical scale, or units per
division, of the selected channel. This command is the same as the front-panel
channel scale.

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

A real number for the vertical scale of the channel in units per division.

This example sets the scale value for channel 1 to 500 mV.

10 OUTPUT 707;":CHANNEL1:SCALE 500E-3"
20 END

:CHANnel<N>:SCALe?

The :CHANnel<N>:SCALe? query returns the current scale setting for the
specified channel.

[:CHANnel<N>:SCALe] <scale value><NL>

This example places the current scale value in the number variable, Setting,
then prints the contents of the variable to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":CHANNEL1:SCALE?"

30 ENTER 707;Setting

40 PRINT Setting

50 END

12-22

Channel Commands
UNITs

Command

<N>

Example

Query

Returned Format

Example

UNITs

:CHANnel<N>:UNITs {VOLT | AMPere | WATT | UNKNown}

The :CHANnel<N>:UNITs command sets the vertical units. You can specify
Y-axis units of VOLTs, AMPs, WATTs, or UNKNown. The units are implied for
other pertinent channel commands (such as :CHANnel<N>:RANGe and
:CHANnel<N>:0OFFSet). See the Probe Setup dialog box for more information.

An integer, 1 - 2, for 54810/564820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

This example sets the units for channel 1 to amperes.

10 OUTPUT 707;":CHANNEL1:UNITS AMPERE"
20 END

:CHANnel<N>:UNITS?

The :CHANnel<N>:UNITs? query returns the current units setting for the
specified channel.

[:CHANnel<N>:UNITs] {VOLT | AMPere | WATT | UNKNown}<NL>

This example places the vertical units for the specified channel in the string
variable, Units$, then prints the contents of the variable to the computer’s
screen.

10 DIM Units$[50]

20 OUTPUT 707; "CHANNEL1:UNITS?"
30 ENTER 707;Units$

40 PRINT Units$

50 END

12-23

12-24

13

Disk Commands

Disk Commands

The DISK subsystem commands perform the disk operations as defined
in the File menu. This allows saving and loading of waveforms and
setups, as well as saving screen images to bitmap files.

Enclose File Name in Quotation Marks

When specifying a file name, you must enclose it in quotation marks.

Filenames are Not Case Sensitive.

The filename that you use is not case sensitive.

These DISK commands and queries are implemented in the Infiniium
Oscilloscopes:

e CDIRectory

e DELete

e DIRectory?

e LOAD

¢ MDIRectory

e PWD?

e SIMage

e STORe

13-2

Disk Commands
CDIRectory

Command

<directorys>

Example

CDIRectory

:DISK:CDIRectory "<directorys>"

The :DISK:CDIRectory command changes the present working directory to the
designated directory name. An error occurs when the requested directory does
not exist. You can then view the error with the :SYSTem:ERRor? [{NUMBer |
STRing}] query.

A character-quoted ASCII string, which can include the subdirectory
designation. You must separate the directory name and any subdirectories with
a backslash (V).

This example sets the present working directory to C:\SCOPE\DATA.

10 OUTPUT 707;":DISK:CDIRECTORY ""C:\SCOPE\DATA"""
20 END

Directories Not Allowed

You can execute the command CDIR "A:\", but the following commands are not
allowed.

:DISK:CDIR “C:\"
:DISK:CDIR “C:\SCOPE\BIN”
:DISK:CDIR “C:\SCOPE\CAL"

If you attempt to execute CDIR using these directories an eror message (-257) is
issued and the present working directory (PWD) is unchanged.

13-3

Disk Commands
DELete

DELete

Command :DISK:DELete "<file name>"

The :DISK:DELete command deletes a file from the disk. An error is displayed
on the oscilloscope screen if the requested file does not exist.

<file name> A character-quoted ASCII string which can include subdirectories with the
name of the file.

Example This example deletes FILE1.SET from the disk.
10 OUTPUT 707;":DISK:DELETE ""FILEl.SET"""
20 END

13-4

Disk Commands
DIRectory?

Query

<directory>

Returned Format

<n>

<directorys>

Example

DIRectory?

:DISK:DIRectory? ["<directory>"]

The :DISK:DIRectory? query returns the requested directory listing. Each entry
is 63 bytes long, including a carriage return and line feed.

The list of filenames and directories.

[:DISK:DIRectoryl<n><NL><directory>

The specifier that is returned before the directory listing, indicating the number
of lines in the listing.

The list of filenames and directories. Each line is separated by a <NL>.

This example displays a number, then displays a list of files and directories in
the current directory. The number indicates the number of lines in the listing.

10 DIM AS[80]

20 INTEGER Num of lines

30 OUTPUT 707;":DISK:DIR?"
40 ENTER 707;Num _of lines
50 PRINT Num of lines

60 FOR I=1 TO Num of lines
70 ENTER 707;AS

80 PRINT AS$

90 NEXT I

100 END

13-5

Disk Commands
LOAD

Command

<file name>

<destination>

Example

LOAD

:DISK:LOAD "<file name>"[,<destination>]

The :DISK:LOAD command restores a setup or a waveform from the disk. The
type of file is determined by the filename suffix if one is present, or by the
destination field if one isnot present. You canload .wfm, .txt, and .set file types.
The destination is only used when loading a waveform memory.

A quoted ASCII string with a maximum of 254 characters including the entire
path name, if used. You can use either .wfm, .txt, or .set as a suffix after the
filename. If no file suffix is specified, the default is .wfm.

The present working directory is assumed, or you can specify the entire path.
For example, you can load the standard setup file "setup0.set" using the
command:

:DISK:LOAD "c:\scope\setups\setup0.set"

Or, you can use :DISK:CDIRectory to change the present working directory to
c:\scope\setups, then just use the file name ("setup0.set", for example).
WMEMory<N>.

Where <N> is an integer from 1-4.

If a destination is not specified, waveform memory 1 is used.

This example restores the waveform in FILE1.WFM to waveform memory 1.

10 OUTPUT 707;":DISK:LOAD ""FILEl.WFM"",WMEM1"
20 END

13-6

Disk Commands
MDIRectory

Command

<directorys>

Example

MDIRectory

:DISK:MDIRectory "<directorys>"

The :DISK:MDIRectory command creates a directory in the present working
directory, with the designated directory name. An error is displayed if the
requested subdirectory does not exist.

A quoted ASCII string which can include subdirectories. You must separate the
directory name and any subdirectories with a backslash (V).

This example creates the directory CPROGRAMS in the present working
directory.

10 OUTPUT 707;":DISK:MDIRECTORY ""C:\SCOPE\DATA\CPROGRAMS"""
20 END

You can check your path with the :DISK:DIRectory? query.

13-7

Disk Commands
PWD?

PWD?

Query :DISK:PWD?

The :DISK:PWD? query returns the name of the present working directory
(including the full path).

Returned Format :DISK:PWD? <present working directory><NL>

Example This example places the present working directory in the string variable Wdir?,
then prints the contents of the variable to the computer’s screen.

10 DIM Wdir$[200]

20 OUTPUT 707;":DISK:PWD?"
30 ENTER 707; Wdir$

40 PRINT Wdirs

50 END

13-8

Disk Commands
SIMage

Command

SIMage

:DISK:SIMage “<file name>" [,<format>
[, {SCReen|GRATicule}

[, {oN|1} | {oFF|0}

[, {NORMal |INVert}]111]

The DISK:SIMage command saves a screen image in BMP, PCX, PS, EPS, GIF
or TIF format. The extension is supplied by the oscilloscope depending on the
selected file format. If you do not include the format in the command, the file
is saved in the format which is shown in the Save Screen dialog box.

<file name> A quoted ASCII string with a maximum of 254 characters including the entire

<format>

Examples

path name, if used.

{BMP | PCX | PS | EPS | GIF | TIF}

ouTpPUT 707;":DISK:SIM " "FILE1l" ", PCX, ON, INVERT"
or

ouTpUT 707;":DISK:SIM " "FILE1" ", TIF, ON"

or

ouTpUT 707;":DISK:SIM " "FILE1"™ " "

13-9

Disk Commands
STORe

Command

<source>

<N>

<file name>

<format>

<preamble>

Example

STORe

:DISK:STORe <source>,"<file name>"
[,<formats>[, <preamble>]]

The :DISK:STORe command saves a setup or a waveform to a disk. The filename
does not include a suffix. The suffix is supplied by the oscilloscope, depending
on the source and file format specified.

{CHANnel<N> | FUNCtion<N> | HISTogram | WMEMory<N> | SETup}

For CHANnel<N>:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

For FUNCtion<N> and WMEM<N>:

An integer, 1 - 4, representing the function or waveform memory number.

A quoted ASCII string with a maximum of 254 characters including the entire
path name, if used. The filename assumes the present working directory if a
path does not precede the file name.

One of {INTernal | TEXT {,YVALues | VERBose | XYPairs | TSV}}
{ON | OFF}

Fields and Default Values

The format field is for waveforms, and the defaultis INTernal. In TEXT mode, you
may specify Y values so that only the Y values are stored. VERBose is the defaultin
which Y values and the waveform preamble are saved. Only waveforms of 128K or
less can be written to disk in the TEXT formats. See the Waveform Commands
chapter for information on converting data to values.

This example stores the current oscilloscope setup to FILE1 on the disk.

10 OUTPUT 707;":DISK:STORE SETUP,""FILE1"""
20 END

13-10

14

Display Commands

Display Commands

The DISPlay subsystem controls the display of data, text, and graticules,
and the use of color.

These DISPlay commands and queries are implemented in the Infiniium
Oscilloscopes:

e CGRade

e CGRade:LEVels?

e COLumn

e CONNect

e DATA?

e DCOLor (Default COLor)
e GRATicule

e LINE

e PERSistence

e ROW

e SCOLor (Set COLor)

e SSAVer

e SSAVer:AFTer

e STRing

e TEXT

14-2

Display Commands
CGRade

Command

Example

CGRade

:DISPlay:CGRade {{oN | 1} | {oFF | 0}}

The :DISPlay:CGRade command sets the color grade persistence on or off.

When in the color grade persistence mode, all waveforms are mapped into a
database and shown with different colors representing varying number of hits
in a pixel. "Connected dots" display mode is disabled when the color grade
persistence is on.

The oscilloscope has three features that use a specific database. This database
uses a different memory area than the waveform record for each channel. The
three features that use the database are histograms, mask testing, and color
grade persistence. When any one of these three features is turned on, the
oscilloscope starts building the database. The database is the size of the
graticule area and varies in size. Behind each pixel is a 21-bit counter. Each
counter is incremented each time a pixel is hit by data from a channel or
function. The maximum count (saturation) for each counteris 2,097,151. You
can check to see if any of the counters is close to saturation by using the
DISPlay:CGRade:LEVels? query. The color grade persistence uses colors to
represent the number of hits on various areas of the display. The default color-
grade state is off.

This example sets the color grade persistence on.

10 OUTPUT 707;":DISPLAY:CGRADE ON"
20 END

14-3

Query

Returned Format

Example

Display Commands
CGRade

:DISPlay:CGRade?

The DISPlay:CGRade query returns the current color-grade state.

[:DISPlay:CGRade] {ON | OFF}<NL>

This example returns the current color grade state.

10
20
30
40
50

DIM Setting$ [50] !Dimension variable
OUTPUT 707;":DISPLAY:CGRADE?"

ENTER 707;Cgrades$

PRINT Cgrade$

END

14-4

Display Commands
CGRade:LEVels?

CGRade:LEVels?

Query :DISPlay:CGRade:LEVels?

The :DISPlay:CGRade:LEVels? query returns the range of hits represented by
each color. Fourteen values are returned, representing the minimum and
maximum count for each of seven colors. The values are returned in the
following order:

e White minimum value
e White maximum value
e Yellow minimum value
e Yellow maximum value
e (QOrange minimum value
e QOrange maximum value
¢ Red minimum value

¢ Red maximum value

e Pink minimum value

e Pink maximum value

¢ Blue minimum value

e Blue maximum value

e Green minimum value
e (Green maximum value

Returned Format [DISPlay:CGRade:LEVels] <color formats><NL>

<color formats> <intensity color min/max> is an integer value from 0 to 2,076,151

14-5

Example

Display Commands
CGRade:LEVels?

This example gets the range of hits represented by each color and prints it on
the computer screen:

10
20
30
40
50

DIM Setting$[50] !Dimension variable
OUTPUT 707;" :DISPLAY:CGRADE:LEVELS?"

ENTER 707;Cgrades

PRINT Cgrade$

END

Colors start at green minimum, maximum, then blue, pink, red, orange, yellow,
white. The format is a string where commas separate minimum and maximum
values. The largest number in the string can be 2,076,151

An example of a possible returned string is as follows:
1,414,415,829,830,1658,1659,3316,3317,6633,6634,13267,13268,26535

14-6

Display Commands
COLumn

Command
<column
_number>
Example
Query

Returned Format

Example

COLumn

:DISPlay:COLumn <column_number>

The :DISPlay:COLumn command specifies the starting column for subsequent
:DISPlay:STRing and :DISPlay:LINE commands.

An integer, 0 to 81, representing the starting column for subsequent
:DISPlay:STRing and :DISPlay:LINE commands. The entire viewing area of the
screen is divided into a maximum of 31 lines, depending on the size of the
waveform area.

This example sets the starting column for subsequent :DISPlay:STRing and
:DISPlay:LINE commands to column 10.

10 OUTPUT 707;":DISPLAY:COLUMN 10"
20 END

:DISPlay:COLumn?

The :DISPlay:COLumn? query returns the column where the next
:DISPlay:LINE or :DISPlay:STRing starts.

[:DISPlay:COLumn] <value><NL>

This example returns the current column setting to the string variable, Setting$,
then prints the contents of the variable to the computer’s screen.

10 DIM Setting$[50] !Dimension variable
20 OUTPUT 707;":DISPLAY:COLUMN?"

30 ENTER 707;Setting$

40 PRINT Settings$

50 END

14-7

Display Commands

CONNect
CONNect
Command :DISPlay:CONNect {{oN|1} | {OFF|0}}
When enabled, :DISPlay:CONNect draws a line between consecutive waveform
data points. This is also known as linear interpolation.
Example This example turns on the connect-the-dots feature.
10 OUTPUT 707;":DISPLAY:CONNECT ON"
20 END
Query :DISPlay:CONNect?

Returned Format

The :DISPlay:CONNect? query returns the status of the connect-the-dots
feature.

[:DISPlay:CONNect] {{oN|1} | {OFF|0}}<NL>

14-8

Display Commands
DATA?

Query

<type>

<screen_mode>

<compression>

<inversion>

Returned Format

<binary block
_data>

DATA?

:DISPlay:DATA?
[<type>[,<screen mode> [, <compression>
[,<inversion>]11]]

The file type: BMP | PCX | EPS | PS | GIF | TIF.

The display setting: SCReen | GRATicule. Selecting GRATicule displays a
10-by-8 (unit) display graticule on the screen. See also :DISPlay:GRATicule.

The file compression feature: ON | OFF.
The inversion of the displayed file: NORMal | INVert.

The :DISPlay:DATA? query returns information about the captured data. If no
options to the query are specified, the default selections are PCX file type,
SCReen mode, compression turned ON, and inversion set to NORMal.

[:DISPlay:DATA] <binary block data><NL>

Data in the IEEE 488.2 definite block format.

14-9

Display Commands
DCOLor

DCOLor

Command :DISPlay:DCOLor [<color_names>]

The :DISPlay:DCOLor command resets the screen colors to the predefined
factory default colors. It also resets the grid intensity.

<color name> {CGLevell | CGLevel2 | CGLevel3 | CGLevel4 | CGLevel5

{
| CGLevel6 | CGLevel7 | CHANnell | CHANnel2 | CHANnel3
| CHANnel4 | DBACkgrnd | GRID | MARKers

| MEASurements | MIConsCGLevell| MTPolygons

| STEXt | WBACkgrnd | TINPuts | WOVerlap | TSCale

| DHIGhlight | WMEMories | WINText | WINBackgrnd}

Example This example sends the :DISPlay:DCOLor command.

10 OUTPUT 707;":DISPLAY:DCOLOR"
20 END

14-10

Display Commands
GRATicule

Commands

<intensity

_value>

Example

GRATicule

:DISPlay:GRATicule {GRID|FRAMe}
:DISPlay:GRATicule:INTensity <intensity wvalue>

:DISPlay:GRATicule:SPLit {{ON|1} {OFF|0}}

The :DISPlay:GRATicule command selects the type of graticule that is
displayed. Infiniium oscilloscopes have a 10-by-8 (unit) display graticule grid
GRID), a grid line is place on each vertical and horizontal division. When it is
off (FRAMe), a frame with tic marks surrounds the graticule edges.

You can dim the grid’s intensity or turn the grid off to better view waveforms
that might be obscured by the graticule lines using the
:DISPlay:GRATicule:INTensity command. Otherwise, you can use the grid to
estimate waveform measurements such as amplitude and period.

When printing, the grid intensity control does not affect the hard copy. To

remove the grid from a printed hard copy, you must turn off the grid before
printing.

A integer from 0 to 100, indicating the percentage of grid intensity.

You can divide the waveform viewing area into two separate viewing areas using
the :DISPlay:GRATicule:SPLit command. This allows you to separate
waveforms without having to adjust the vertical position controls.

This example sets up the oscilloscope’s display background with a frame that
is separated into major and minor divisions.

10 OUTPUT 707;":DISPLAY:GRATICULE FRAME"
20 END

14-11

Display Commands
GRATicule

Queries :DISPlay:GRATicule?
:DISPlay:GRATicule:INTensity?

The :DISPlay:GRATicule? and :DISPlay:GRATicule:INTensity? queries return
the type of graticule currently displayed, or the intensity, depending on the
query you request.

Returned Format [:DISPlay:GRATicule] {GRID|FRAMe}<NL>
[:DISPlay:GRATicule:INTensity] <value><NL>

Example This example places the current display graticule setting in the string variable,
Setting$, then prints the contents of the variable to the computer’s screen.

10 DIM Setting$[50] IDimension variable
20 OUTPUT 707;" :DISPLAY:GRATICULE?"

30 ENTER 707;Setting$

40 PRINT Setting$

50 END

14-12

Display Commands
LINE

Command

<string
_argument>

Example

LINE

:DISPlay:LINE "<string arguments>"

The :DISPlay:LINE command writes a quoted string to the screen, starting at
the location specified by the :DISPlay:ROW and :DISPlay:COLumn commands.
When using the C programming language, quotation marks as shown in the
example delimit a string.

Any series of ASCII characters enclosed in quotation marks.

This example writes the message “Infiniium Test” to the screen, starting at the
current row and column location.

10 OUTPUT 707;":DISPLAY:LINE ""Infiniium Test"""

20 END

This example writes the message "Infiniium Test" to the screen using C.
Quotation marks are included because the string is delimited.

printf ("\"Infiniium Test\"");

You may write text up to column 81. If the characters in the string do not fill
the line, the rest of the line is blanked. If the string is longer than the space
available on the current line, the excess characters are discarded.

In any case, the ROW is incremented and the COLumn remains the same. The
next :DISPlay:LINE command will write on the next line of the display. After
writing the last line in the display area, the ROW is reset to 0.

14-13

Display Commands
PERSistence

Command
<persistence
_value>
Example
Query

Returned Format

Example

PERSistence

:DISPlay:PERSistence {MINimum | INFinite |
<persistence values}

The :DISPlay:PERSistence command sets the display persistence. It works in
both real time and equivalent time modes. The parameter for this command
can be either MINimum (zero persistence), INFinite, or a real number from 0.1
to 40.0, representing the persistence in seconds.

A real number, 0.1 to 40.0, representing the persistence in seconds.

This example sets the persistence to infinite.

10 OUTPUT 707;":DISPLAY:PERSISTENCE INFINITE"
20 END

:DISPlay:PERSistence?

The :DISPlay:PERSistence? query returns the current persistence value.

[:DISPlay:PERSistence] {MINimum | INFinite | <value>}<NL>

This example places the current persistence setting in the string variable,
Setting$, then prints the contents of the variable to the computer’s screen.

10 DIM Setting$[50] |IDimension variable
20 OUTPUT 707;" :DISPLAY:PERSISTENCE?"
30 ENTER 707;Setting$

40 PRINT Setting$

50 END

14-14

Display Commands
ROW

Command

<row_number>

Example

Query

Returned Format

Example

ROW

:DISPlay:ROW <row_number>

The :DISPlay:ROW command specifies the starting row on the screen for
subsequent :DISPlay:STRing and :DISPlay:LINE commands. The row number
remains constant until another :DISPlay:ROW command is received, or the row
is incremented by the :DISPlay:LINE command.

An integer, 0 to 31, representing the starting row for subsequent
:DISPlay:STRing and :DISPlay:LINE commands. The entire screen viewing area
is divided into a maximum of 31 lines, depending on the size of the waveform
area.

This example sets the starting row for subsequent :DISPlay:STRing and
:DISPlay:LINE commands to 10.

10 OUTPUT 707;":DISPLAY:ROW 10"
20 END

:DISPlay:ROW?

The :DISPlay:ROW? query returns the current value of the row.

[:DISPlay:ROW] <row number><NL>

This example places the current value for row in the string variable, Setting$,
then prints the contents of the variable to the computer’s screen.

10 DIM Setting$[50] IDimension variable
20 OUTPUT 707;" :DISPLAY:ROW?"

30 ENTER 707;Setting$

40 PRINT Setting$

50 END

14-15

Display Commands

SCOLor

Command

<color_name>

Table 14-1

SCOLor

:DISPlay:SCOLor <color name>, <hue>, <saturations,
<luminosity>

The :DISPlay:SCOLor command sets the color of the specified display element
and restores the colors to their factory settings. The display elements are
described in Table 14-1.

{CGLevell | CGLevel2 | CGLevel3 | CGLevel4 | CGLevel5
CGLevel6 | CGLevel7 | CHANnell | CHANnel2 | CHANnel3

CHANnel4

| DBACkgrnd | GRID | MARKers

STEXt | WBACkgrnd | TINPuts | WOVerlap | TSCale

|
|
| MEASurements | MICons | MTPolygons
|

DHIGhlight | WMEMories | WINText | WINBackgrnd}

Color Names

Color Name Definition

CGLevell Color Grade Level 1 waveform display element.

CGLevel2 Color Grade Level 2 waveform display element.

CGLevel3 Color Grade Level 3 waveform display element.

CGLeveld Color Grade Level 4 waveform display element.

CGLevel5 Color Grade Level 5 waveform display element.

CGLevel6 Color Grade Level 6 waveform display element.

CGLevel7 Color Grade Level 7 waveform display element.

CHANnel1 Channel 1 waveform display element.

CHANnel2 Channel 2 waveform display element.

CHANnel3 Channel 3 waveform display element.

CHANnel4 Channel 4 waveform display element.

DBACkgrnd Display element for the border around the outside of the waveform viewing
area.

GRID Display element for the grid inside the waveform viewing area.

MARKers Display element for the markers.

MEASurements Display element for the measurements text.

MICons Display element for measurement icons to the left of the waveform viewing

area.

14-16

<hue>

<saturation>

<luminosity>

Example

Display Commands

SCOLor
Color Name Definition
MTPolygons Display element for the mask test violation regions
STEXt Display element for status messages displayed in the upper left corner of the
display underneath the menu bar. Changing this changes the memory bar’s
color.
WBACkgrnd Display element for the waveform viewing area’s background.
TINPuts Display elementforline and auxmenu entries on 54815/25/45A oscilloscopes.

On 54810/20A oscilloscopes, it is the display element for line and external
menu entries.

WOVerlap Display element for waveforms when they overlap each other.

TSCale Display element for horizontal scale and offset control text.

DHIGhlight Display element for the highlighted waveform when in delayed sweep mode.
WMEMories Display element for waveform memories.

WINText Display element used in dialog box controls and pull-down menus.

WINBackgrnd Display element for the background color used in dialog boxes and buttons.

An integer from 0 to 100. The hue control sets the color of the chosen display
element. As hue is increased from 0%, the color changes from red, to yellow,
to green, to blue, to purple, then back to red again at 100% hue. For color
examples, see the sample color settings table in the Infiniium Oscilloscope
online help file. Pure red is 100%, pure blue is 67%, and pure green is 33%.

An integer from 0 to 100. The saturation control sets the color purity of the
chosen display element. The saturation of a color is the purity of a color, or the
absence of white. A 100% saturated color has no white component. A 0%
saturated color is pure white.

An integer from 0 to 100. The luminosity control sets the color brightness of
the chosen display element. A 100% luminosity is the maximum color
brightness. A 0% luminosity is pure black.

This example sets the hue to 50, the saturation to 70, and the luminosity to 90
for the markers.

10 OUTPUT 707;":DISPLAY:SCOLOR MARKERS,50,70,90"
20 END

14-17

Query

Returned Format

Example

Display Commands
SCOLor

:DISPlay:SCOLor? <color names

The :DISPlay:SCOLor? query returns the hue, saturation, and luminosity for the
specified color.

[:DISPlay:SCOLor] <color name>, <hue>, <saturations,
<luminosity><NL>

This example places the current settings for the graticule color in the string
variable, Setting$, then prints the contents of the variable to the computer’s
screen.

10 DIM Setting$[50] IDimension variable

20 OUTPUT 707;" :DISPLAY:SCOLOR? GRATICULE"
30 ENTER 707;Setting$

40 PRINT Setting$

50 END

14-18

Display Commands
SSAVer

Commands

<time>

Example

Queries

Returned Format

SSAVer

:DISPlay:SSAVer {DISabled|ENABled}
:DISPlay:SSAVer:AAFTer <times>

These commands let you disable or enable the oscilloscope screen saver, and
specify a time before the screen saver turns on.

An integer; either 2, 3, 4, 5, 6, 7, or 8. The time value specifies the amount of
time, in hours, that must pass before the screen saver will turn on.

This example enables the oscilloscope screen saver and turns it on in 4 hours.

10 OUTPUT 707;":DISPLAY:SSAVER ENABLED"
20 OUTPUT 707;":DISPLAY:SSAVER:AAFT 4"
30 END

:DISPlay:SSAVer?
:DISPlay:SSAVer:AAFTer?

The :DISPlay:SSAVer? and :DISPlay:SSAVer:AAFTer? queries return the state
of the screen saver.

[:DISPlay:SSAVer] {DISabled|ENABled}<NL>
[:DISPlay:SSAVer:AAFTer <time>]<NL>

14-19

Display Commands
STRing

STRing

Command :DISPlay:STRing "<string arguments>"

The :DISPlay:STRing command writes text to the oscilloscope screen. The text
is written starting at the current row and column settings. If the column limit
is reached (81), the excess text is discarded. The :DISPlay:STRing command
does not increment the row value, but :DISPlay:LINE does.

<string Any series of ASCII characters enclosed in quotation marks.
_argument>

Example This example writes the message “Example 1” to the oscilloscope's display
starting at the current row and column settings.

10 OUTPUT 707;":DISPLAY:STRING "'"Example 1"""
20 END

14-20

Display Commands
TEXT

TEXT

Command :DISPlay:TEXT BLANk

The :DISPlay: TEXT command blanks the user text area of the screen.
This area includes rows 0 through 27, and columns 0 through 81.

Example This example blanks the user text area of the oscilloscope’s screen.
10 OUTPUT 707;":DISPLAY:TEXT BLANK"
20 END

14-21

14-22

15

External Channel Commands

External Channel Commands

The EXTernal channel subsystem commands control the vertical, Y axis
functions of the oscilloscope’s external channel. These EXTernal
commands and queries are implemented in the Infiniium Oscilloscopes:
e BWLimit

e INPut

e PROBe

e PROBe:ATTenuation (only for the 1154A probe)

e PROBe:EADapter

e PROBe:ECoupling

e PROBe:EGAIn

e PROBe:GAIN (only for the 1154A probe)

e PROBe:ID?

e PROBe:EOFFset

e PROBe:SKEW

e RANGe

e UNITs

The EXTernal commands only apply to the 54810A and 54820A Infiniium
Oscilloscopes.

15-2

External Channel Commands
BWLimit

Command

Example

Query

Returned Format

Example

BWLimit
:EXTernal:BWLimit {{oON|1} | {OFF|0}}

The :EXTernal:BWLimit command controls the low-pass filter. When ON, the
bandwidth of the external channel is limited. The bandwidth limit filter can be
used with either AC or DC coupling.

This example sets the internal low-pass filter to "ON" for the external channel.

10 OUTPUT 707;":EXTERNAL:BWLIMIT ON"
20 END

:EXTernal :BWLimit?

The :EXTernal:BWLimit? query returns the state of the low-pass filter for the
external channel.

[:EXTernal:BWLimit] {1]|0}<NL>

This example places the current setting of the low-pass filter in the variable
Limit, then prints the contents of the variable to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"
20 OUTPUT 707;" :EXTERNAL:BWLIMIT?"
30 ENTER 707;Limit

40 PRINT Limit

50 END

15-3

External Channel Commands

INPut
INPut

Command :EXTernal : INPut <parameters
The :EXTernal:INPut command selects the input coupling, impedance, and LF/
HF reject for the external channel. The coupling can be set to AC, DC, DC50
or DCFifty, or LFR1 or LFR2 (low-frequency reject).
LFR1 and LFR2 only apply if an 1153A probe is connected to the oscilloscope’s
External Trigger input. With an 1152A probe attached to the External Trigger
input, the :EXTernal:INPut command will not change either the coupling or
impedance.

<parameter> The parameters available in this command for Infiniium are listed below.

e DC: dc coupling, 1 MQ input impedance
e DCH0 | DCFifty: dc coupling, 50Q input impedance
e AC: ac 1 MQ input impedance
e LFR1ILFR2: ac 1 MQ input impedance

Example This example sets the external channel input to DC50.
10 OUTPUT 707;":EXTERNAL:INPUT DC50"
20 END

Query :EXTernal : INPut?

Returned Format

Example

The :EXTernal:INPut? query returns the state of the external channel input.

[EXTernal : INPut] <parameter><NL>

This example places the current input for the external channel in the string
variable, Input$. The program then prints the contents of the variable to the
computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"
20 OUTPUT 707;":EXTERNAL:INPUT?

30 ENTER 707;Inputs$

40 PRINT Input$

50 END

15-4

External Channel Commands
PROBe

Command

<attenuation
_factors>

Example

Query

Returned Format

Example

PROBe

:EXTernal :PROBe {<attenuation factors>, {RATio |
DECibel} }

The :EXTernal:PROBe command sets the probe attenuation factor and,
optionally, the units for the probe attenuation factor. The range of the probe
attenuation factor is from 0.0001 to 1,000,000 and from -80 dB to 120 dB. The
reference factors that are used for scaling the display are changed with this
command, and affect automatic measurements and trigger levels.

A real number from 0.0001 to 1,000,000, and -80 dB to 120 dB, representing the
probe attenuation factor; the factor depends on the units.

This example sets the probe attenuation factor of the external channel to 10,
and the units to decibel.

10 OUTPUT 707;":EXTERNAL:PROBE 10,DEC"
20 END

:EXTernal : PROBe?

The :EXTernal:PROBe? query returns the current probe attenuation setting for
the external channel and the units.

[:EXTernal : PROBe] <attenuation factors>, {RATio | DECibel}<NL>

This example places the current attenuation setting for the external channel in
the string variable, Atten$, and prints the contents.

10 DIM Atten$[50] !Dimension variable
20 OUTPUT 707;" :EXTERNAL: PROBE?"

30 ENTER 707;Atten$

40 PRINT Attens$

50 END

15-5

External Channel Commands
PROBe:ATTenuation

Command

Example

Query

Returned Format

PROBe:ATTenuation

:EXTernal : PROBe:ATTenuation {DIV1 | DIV10}

The :EXTernal:PROBe:ATTenuation command sets the probe’s attenuation.
There are some Infiniium active and differential probes that have the ability to
change the probe’s input amplifier’s attenuation.

This command is only available when an Infiniium active or differential probe
is connected to the channel. If one of these probes is not connected to the
external channel you will get a settings conflict error.

This example sets the probe attenuation to divide by 10.

10 OUTPUT 707;":EXTERNAL:PROBE:ATTENUATION DIV1QO"
20 END

:EXTernal : PROBe:ATTenuation?

The :EXTernal:PROBe:ATTenuation? query returns the current probe
attenuation setting.

[:EXTernal : PROBe:ATTenuation] {DIV1l | DIV10}<NL>

15-6

External Channel Commands
PROBe:EADapter

Command

Example

PROBe:EADapter

:EXTernal : PROBe:EADapter {NONE | AC | DIV10 |
DIV20 | DIV100}

The :EXTernal:EADapter command sets the Infiniium external adapter control.
There are some probes that have external adapters that you can attach to the
end of your probe. When you attach one of these adapters, you should use the
EADapter command to set the external adapter control to match the adapter
connected to your probe as follows.

Parameter Description

NONE Use this setting when there is no adapter
connected to the end of your probe.

AC Use this setting when you have an ac
coupling adapter connected to the end of
your probe.

DIV10 Use this setting when you have a divide by
10 adapter connected to the end of your
probe.

DIV20 Use this setting when you have a divide by
20 adapter connected to the end of your
probe.

DIV100 Use this setting when you have a divide by
100 adapter connected to the end of your
probe.

This example sets the external adapter to divide by 10:

10 OUTPUT 707;":EXTERNAL:PROBE:EADAPTER DIV10"
20 END

15-7

External Channel Commands
PROBe:EADapter

Query :EXTernal : PROBe : EADapter?

The :EXTernal:PROBe:EADapter? query returns the external adapter value.

Returned Format [CHANnel<N>:EDApter] {NONE | AC | DIV10 | DIV20 |
DIV100 }<NL>

Example This example places the external adapter value in the string variable, Adapter$,
then prints the contents of the variable to the computer’s screen.

10 DIM Adapter$[50] !Dimension variable
20 OUTPUT 707;" :EXTERNAL:EADAPTER?

30 ENTER 707;Adapters

40 PRINT Adapter$

50 END

15-8

External Channel Commands
PROBe:ECoupling

Command

<N>

Example

PROBe:ECoupling

:EXTernal : PROBe:ECoupling {NONE | AC}

The :EXTernal:PROBe:ECoupling command sets the Infiniium external
coupling adapter control. There are some probes that have external coupling
adapters that you can attach to the end of your probe. When you attach one of
these adapters, you should use the ECoupling command to set the external
coupling adapter control to match the adapter connected to your probe as
follows.

Parameter Description

NONE Use this setting when there is no adapter
connected to the end of your probe.

AC Use this setting when you have an ac
coupling adapter connected to the end of
your probe.

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.

An integer, 1 - 4, for all other Infiniium Oscilloscope models.

This example sets the external coupling adapter for external trigger channel to
ac:

10 OUTPUT 707;":EXTERNAL:PROBE:ECOUPLING AC"
20 END

15-9

Query

Returned Format

Example

External Channel Commands
PROBe:ECoupling

:EXTernal : PROBe : ECoupling?

The :EXTernal:PROBe:ECoupling? query returns the current external coupling
adapter value for the external trigger channel.

[EXTernal : PROBe:ECoupling] {NONE | AC}<NL>

This example places the external coupling adapter value of the external trigger
channel in the string variable, Adapter$, then prints the contents of the variable
to the computer’s screen.

10
20
30
40
50

DIM Adapter$[50] |IDimension variable
OUTPUT 707;" :EXTERNAL: PROBE : ECOUPLING?
ENTER 707;Adapters$

PRINT Adapters$

END

15-10

External Channel Commands
PROBe:EGAin

Command

PROBe:EGAin

:EXTernal : PROBe:EGAin <gain value>

The :EXTernal:PROBe:EGAin command sets the probe gain. The units of volts,
amperes, watts, and unknown are set using the :EXTernal:UNITs command.

<gain_value> A real number for the gain value.

Example

Query

Returned Format

This example sets the probe gain for the external channel to 125 x 1073,

10 OUTPUT 707;":EXTERNAL:PROBE:EGAIN 125E-3"
20 END

:EXTernal : PROBe: EGAInNn?

The :EXTernal:PROBe:EGAIn? query returns the gain setting for the external
channel.

[:EXTernal : PROBe:EGAin] <gain value><NL>

15-11

External Channel Commands
PROBe:EOFFset

Command

<offset value>

Example

Query

Returned Format

PROBe:EOFFset

:EXTernal : PROBe: EOFFset <offset values>

The :EXTernal:PROBe:EOFFset command sets the probe offset. The units of
volts, amperes, watts, and unknown are set using the :EXTernal:UNITs
command.

A real number for the offset value.

This example sets the probe offset for the external channel to 125 x 1073,

10 OUTPUT 707;":EXTERNAL:PROBE:EOFFSET 125E-3"
20 END

:EXTernal : PROBe : EOFFset?

The :EXTernal:PROBe:EOFFset? query returns the offset value.

[:EXTernal : PROBe: EOFFset] <offset value><NL>

15-12

External Channel Commands
PROBe:GAIN

Command

Example

Query

Returned Format

PROBe:GAIN

:EXTernal : PROBe:GAIN (X1 | X10}

The :EXTernal:PROBe:GAIN command sets the probe gain. There are some
Infiniium active and differential probes that have the ability to change the
probe’s input amplifier gain.

This command is only available when an Infiniium active or differential probe
is connected to the external channel. If one of these probes is not connected
to the external channel you will get a settings conflict error.

The units of volts, amperes, watts, and unknown are set using the
:EXTernal:UNITs command.

This example sets the probe gain to times 10.

10 OUTPUT 707;":EXTERNAL:PROBE:GAIN X10"
20 END

:EXTernal : PROBe : GAIN?

The :EXTernal:PROBe:GAIN? query returns the probe gain setting.

[:EXTernal :PROBe:GAIN] {X1 | X10}<NL>

15-13

External Channel Commands
PROBe:ID?

PROBe:ID?

Query :EXTernal : PROBe: ID?

The :EXTernal:PROBe:ID? query returns the type of probe attached to the

Oscilloscope.
Example This example reports the probe type connected to channel 1, if one is
connected.
10 OUTPUT 707;":EXTernal:PROBE:ID?"
20 END

15-14

External Channel Commands
PROBe:SKEW

Command

PROBe:SKEW

:EXTernal : PROBe: SKEW <skew_ value>

The :EXTernal:PROBe:SKEW command sets the value of the External Trigger
probe skew.

<skew_value> A real number from -100E-6 to 100E-6.

Example

Query

Returned Format

See Also

This example sets the external probe skew to 10 microseconds.

10 OUTPUT 707;":EXTERNAL:PROBE:SKEW 10E-6"
20 END

:EXTernal : PROBe : SKEW?

The :EXTernal:PROBe:SKEW? query returns the current skew setting for the
external channel.

[:EXTernal : PROBe: SKEW] <skew value><NL>

For information on skew, see the Calibration Commands chapter.

15-15

External Channel Commands
RANGe

Command

<range_ value>

Example

Query

Returned Format

Example

RANGe

:EXTernal :RANGe <range values

The :EXTernal:RANGe command defines the vertical axis of the external
channel. The value represents the full-scale deflection of the vertical axis in
volts. This value changes as the probe attenuation factor is changed. If you
change the probe attenuation, the range value is multiplied by the probe
attenuation factor.

Voltage setting of 1, 5, or 25, corresponding to +1V, +5V, or +25V for the external
channel vertical range.

This example sets the vertical range for the external channel to +£5V.

10 OUTPUT 707;":EXTERNAL:RANGE 5"
20 END

:EXTernal : RANGe?

The :EXTernal:RANGe? query returns the current vertical axis setting for the
external channel.

[:EXTernal :RANGe] <range value><NL>

This example places the current range value in the number variable, Setting,
then prints the contents of the variable to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF” |Response headers off
20 OUTPUT 707;":EXTERNAL:RANGE?"

30 ENTER 707;Setting

40 PRINT Setting

50 END

15-16

External Channel Commands
UNITs

Command

Example

Query

Returned Format

Example

UNITs

:EXTernal:UNITs {VOLT | AMPere | WATT | UNKNown}

The :EXTernal:UNITs command sets the vertical units. You can specify Y-axis
units of VOLTS, AMPS, WATTs, or UNKNown. The units are implied for other
pertinent channel commands (such as RANGe and OFFSet). See the Probe
Setup dialog box for more information.

This example sets the units for the external channel to amperes.

10 OUTPUT 707;":EXTERNAL:UNITS AMPERE"
20 END

:EXTernal :UNITs?

The :EXTernal:UNITs? query returns the current units setting for the external
channel.

[:EXTernal:UNITs] {VOLT | AMPere | WATT | UNKNown}<NL>

This example places the vertical units for the external channel in the string
variable, Units$, then prints the contents of the variable to the computer’s
screen.

10 DIM Units$[50]

20 OUTPUT 707; "EXTERNAL:UNITS?"
30 ENTER 707;Unitss$

40 PRINT Units$

50 END

156-17

15-18

16

Function Commands

Function Commands

The FUNCtion subsystem defines functions 1 - 4. The operands of these
functions can be any of the installed channels in the oscilloscope,
waveform memories 1 - 4, functions 1 - 4, or a constant. These FUNCtion
commands and queries are implemented in the Infiniium Oscilloscopes:
e FUNCtion<N>?

e ADD

e AVERage

e DIFF (Differentiate)

e DISPlay

e DIVide

e FFT:FREQuency

e FFT:RESolution?

e FFT:WINDow

e FFTMagnitude

e HORizontal

e HORizontal:POSition

e HORizontal:RANGe

e [NTegrate

e [NVert

e MAGNify

e MAXimum

e MEASurement (Only available on the 54845A and 54846A)

e MINimum

e MULTiply

e OFFSet

e RANGe

e SUBTract

e VERSus

e VERTical

e VERTical:OFFset

16-2

Function Commands

e VERTical:RANGe

You can control the vertical scaling and offset functions remotely using
the RANGe and OFFSet commands in this subsystem. You can obtain
the horizontal scaling and position values of the functions using the
:HORizontal:RANge? and :HORizontal:POSition? queries in this
subsystem.

If a channel is not on but is used as an operand, that channel will acquire
waveform data.

If the operand waveforms have different memory depths, the function
uses the shorter of the two.

If the two operands have the same time scales, the resulting function has
the same time scale. If the operands have different time scales, the
resulting function has no valid time scale. This is because operations are
performed based on the displayed waveform data position, and the time
relationship of the data records cannot be considered. When the time
scale is not valid, delta time pulse parameter measurements have no
meaning, and the unknown result indicator is displayed on the screen.

Constant operands take on the same time scale as the associated
waveform operand.

16-3

Function Commands
FUNCtion<N>?

Query

Returned Format

<N>

<operator>

<operand>

Example

FUNCtion<N>?

:FUNCtion<N>?

The :FUNCtion<N>? query returns the currently defined source(s) for the
function.

[:FUNCtion<N>:<operator>] {<operands, [,<operand>] }<NL>
An integer, 1 - 4, representing the selected function.

Active math operation for the selected function: ADD, AVERage, DIFF, DIVide,
FFTMagnitude, INTegrate, INVert, MAGNify, MAXimum, MINimum,
MULTiply, SUBTract, or VERSus.

Any allowable source for the selected FUNCtion, including channels, waveform
memories 1-4, and functions 1-4. If the function is applied to a constant, the
source returns the constant.

The channel number is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

This example returns the currently defined source for function 1.

10 OUTPUT 707;":FUNCTION1?"
20 END

If the headers are off (see :SYSTem:HEADer), the query returns only the
operands, not the operator.

10 :SYST:HEAD ON

20 :FUNC1:ADD CHAN1, CHAN2

30 :FUNC1? !returns :FUNC1:ADD CHAN1, CHAN2
40 :SYST:HEAD OFF

50 :FUNC1? !returns CHAN1, CHAN2

16-4

Function Commands
ADD

Command

<N>

<operand>

Example

ADD

:FUNCtion<N>:ADD <operands>, <operand>

The :FUNCtion<N>:ADD command defines a function that takes the algebraic
sum of the two operands.

An integer, 1 - 4, representing the selected function.

{CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}
CHANnel<n> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.
<float_value> is:

A real number from -1E6 to 1E6.

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.
F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

This example sets up function 1 to add channel 1 to channel 2.

10 OUTPUT 707;":FUNCTION1:ADD CHANNEL1l, CHANNEL2"
20 END

16-5

Function Commands
AVERage

Command

<N>

<operand>

<avereages>

Example

AVERage

: FUNCtion<N>:AVERage <operands> [, <averages>]

The :FUNCtion<N>:AVERage command defines a function that averages the
operand based on the number of specified averages.

An integer, 1 - 4, representing the selected function.

{CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}
CHANnel<n> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.
<float_value> is:

A real number from -1E6 to 1E6

An integer, 2 to 4096 specifing the number of waveforms to be averaged

This example sets up function 1 to average channel 1 using 16 averages.

10 OUTPUT 707;":FUNCTION1:AVERAGE CHANNEL1,16"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.
F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-6

Function Commands
DIFF (Differentiate)

Command

<N>

<operand>

Example

DIFF (Differentiate)

:FUNCtion<N>:DIFF <operands>

The :FUNCtion<N>:DIFF command defines a function that computes the
discrete derivative of the operand.

An integer, 1 - 4, representing the selected function.

{CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}
CHANnel<n> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.
<float_value> is:

A real number from -1E6 to 1E6.

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.
F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

This example sets up function 2 to take the discrete derivative of the waveform
on channel 2.

10 OUTPUT 707;":FUNCTION2:DIFF CHANNEL2"
20 END

16-7

Function Commands
DISPlay

Command

Example

Query

Returned Format

Example

DISPlay

:FUNCtion<N>:DISPlay {{ON|1} | {OFF|0}}

The :FUNCtion<N>:DISPlay command either displays the selected function or
removes it from the display.

<N> An integer, 1 - 4, representing the selected function.

This example turns function 1 on.

10 OUTPUT 707;":FUNCTION1:DISPLAY ON"
20 END

:FUNCtion<N>:DISPlay?

The :FUNCtion<N>:DISPlay? query returns the displayed status of the specified
function.

[:FUNCtion<N>:DISPlay] {1|0}<NL>

This example places the current state of function 1 in the variable, Setting, then
prints the contents of the variable to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"
20 OUTPUT 707;":FUNCTION1:DISPLAY?"
30 ENTER 707;Setting

40 PRINT Setting

50 END

16-8

Function Commands
DiVide

Command

<N>

<operand>

Example

DIVide

:FUNCtion<N>:DIVide <operands>, <operand>

The :FUNCtion<N>:DIVide command defines a function that divides the first
operand by the second operand.

An integer, 1 - 4, representing the selected function.

{CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}
CHANnel<n> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.
<float_value> is:

A real number from -1E6 to 1E6.

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.
F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

This example sets up function 2 to divide the waveform on channel 1 by the
waveform in waveform memory 4.

10 OUTPUT 707;":FUNCTION2:DIVIDE CHANNEL1, WMEMORY4"
20 END

16-9

Function Commands
FFT:FREQuency

FFT:FREQuency

Command : FUNCtion<N>:FFT:FREQuency <center frequency value>

The :FUNCtion<N>:FFT:FREQuency command sets the center frequency for
the FFT when :FUNCtion<N>:FFTMagnitude is defined for the selected
function.

<N> An integer, 1 - 4, representing the selected function.

<center
_frequency
_value> Areal number for the value in Hertz, from -1E12 to 4E9

Query : FUNCtion<N>:FFT:FREQuency?

The :FUNCtion<N>:FFT:FREQuency? query returns the center frequency
value.

Returned Format [FUNCtion<N>:FFT:FREQuency] <center frequency value><NL>

16-10

Function Commands
FFT:RESolution?

Query

Returned Format
<N>

<resolution
_value>

FFT:RESolution?

:FUNCtion<N>:FFT:RESolution?

The :FUNCtion<N>:FFT:RESolution? query returns the current resolution of
the FFT function.

[FUNCtion<N>:FFT:RESolution] <resolution value><NL>

An integer from 1 to 4 representing the selected function.

Resolution frequency.

The FFT resolution is determined by the sample rate and memory depth
settings. The FFT resolution is calculated using the following equation:

FFT Resolution = Sample Rate / Effective Memory Depth
The effective memory depth is the highest power of 2 less than or equal to the
number of sample points across the display. The memory bar in the status area

at the top of the display indicates how much of the actual memory depth is
across the display.

16-11

Function Commands
FFT:WINDow

FFT:WINDow

Command :FUNCtion<N>:FFT:WINDow {RECTangular | HANNing |
FLATtop }

The :FUNCtion<N>:FFT:WINDow command sets the window type for the FFT
function.

The FFT function assumes that the time record repeats. Unless there is an
integral number of cycles of the sampled waveform in the record, a discontinuity
is created at the beginning of the record. This introduces additional frequency
components into the spectrum about the actual peaks, which is referred to as
spectral leakage. To minimize spectral leakage, windows that approach zero
smoothly at the beginning and end of the record are employed as filters to the
FFTs. Each window is useful for certain classes of input waveforms.

e The RECTangular window is essentially no window, and all points are
multiplied by 1. This window is useful for transient waveforms and
waveforms where there are an integral number of cycles in the time record.

e The HANNing window is useful for frequency resolution and general purpose
use. It is good for resolving two frequencies that are close together, or for
making frequency measurements.

e The FLATtop window is best for making accurate amplitude measurements
of frequency peaks.

<N> Aninteger, 1 - 4, representing the selected function. This command presently
selects all functions, regardless of which integer (1-4) is passed.

Example This example sets the window type for the FFT function to RECTangular.
10 OUTPUT 707;":FUNCTION<N>:FFT:WINDOW RECTANGULAR
20 END

16-12

Query

Returned Format

Example

Function Commands
FFT:WINDow

:FUNCtion<N>:FFT:WINDow?

The :FUNCtion<N>:FFT:WINDow? query returns the current selected window
for the FFT function.

[: FUNCtion<N>:FFT:WINDow] {RECTangular | HANNing |
FLATtop } <NL>

This example places the current state of the function 1 FFT window in the string
variable, WND?, then prints the contents of the variable to the computer’s
screen.

10 DIM WNDS$ [50]

20 OUTPUT 707;" :FUNCTION1:FFT:WINDOW?"
30 ENTER 707;WND$

40 PRINT WNDS$

50 END

16-13

Function Commands

FFTMagnitude
FFTMagnitude
Command : FUNCtion<N>:FFTMagnitude <operand>
The :FUNCtion<N>:FFTMagnitude command computes the Fast Fourier
Transform (FFT) of the specified channel, function, or memory. The FFT takes
the digitized time record and transforms it to magnitude and phase components
as a function of frequency.
<N> An integer, 1 - 4, representing the selected function.
<operand> {CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}
CHANnel<n> is:
An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.
FUNCtion<n> and WMEMory<n> are:
An integer, 1 - 4, representing the selected function or waveform memory.
<float_value> is:
A real number from -1E6 to 1E6.
Example This example sets up function 1 to compute the FFT of waveform memory 3.

10 OUTPUT 707;":FUNCTION1:FFTMAGNITUDE WMEMORY3"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.
F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-14

Function Commands
FFTPhase

Command

<N>

<source>

Example

FFTPhase

:FUNCtion<N>:FFTPhase <source>

The :FUNCtion<N>:FFTPhase command computes the Fast Fourier Transform
(FFT) of the specified channel, function, or waveform memory. The FFT takes
the digitized time record and transforms it into magnitude and phase
components as a function of frequency.

An integer, 1 - 4, representing the selected function.

{CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}
CHANnel<n> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.

An integer, 1 - 4, for all other Infiniium Oscilloscope models.
FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.
<float_value> is:

A real number from -1E6 to 1E6.

This example sets up function 1 to compute the FFT of waveform memory 3.

10 OUTPUT 707;":FUNCTION1:FFTPHASE WMEMORY3"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.
F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-15

Function Commands
HORizontal

Command

Query

Returned Format

<N>

Example

HORizontal

:FUNCtion<N>:HORizontal {AUTO | MANual}

The :FUNCtion<N>:HORizontal command sets the horizontal tracking to either
AUTO or MANual.

The HORizontal command also includes the following commands and queries,
which are described on the following pages:

e POSition

e RANGe

An integer, 1 - 4, representing the selected function.

:FUNCtion<N>:HORizontal?

The :FUNCtion<N>:HORizontal? query returns the current horizontal scaling
mode of the specified function.

[: FUNCtion<N>:HORizontal] {AUTO | MANual}<NL>

This example places the current state of the function 1 horizontal tracking in
the string variable, Setting$, then prints the contents of the variable to the
computer's screen.

10 DIM Setting$[50] |IDimension variable
20 OUTPUT 707;" :FUNCTION1:HORIZONTAL?"
30 ENTER 707;Setting$

40 PRINT Setting$

50 END

16-16

Function Commands
HORizontal:POSition

Command
<N>
<position
_value>
Query

Returned Format

Example

HORizontal:POSition

:FUNCtion<N>:HORizontal:POSition <position_ values

The :FUNCtion<N>:HORizontal:POSition command sets the time value at
center screen for the selected function. If the oscilloscope is not already in
manual mode when you execute this command, it puts the oscilloscope in
manual mode.

When you select :FUNCtion<N>:FFTMagnitude, the horizontal position is
equivalent to the center frequency. This also automatically selects manual
mode.

An integer, 1 - 4, representing the selected function.

A real number for the position value in time, in seconds, from -1E12 to 4E9.

:FUNCtion<N>:HORizontal :POSition?

The :FUNCtion<N>:HORizontal:POSition? query returns the current time value
at center screen of the selected function.

[: FUNCtion<N>:HORizontal:POSition] <position><NL>

This example places the current horizontal position setting for function 2 in the
numeric variable, Value, then prints the contents to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":FUNCTION2:HORIZONTAL:POSITION?"

30 ENTER 707;Value

40 PRINT Value

50 END

16-17

Function Commands
HORizontal:RANGe

Command

HORIizontal:RANGe

:FUNCtion<N>:HORizontal :RANGe <range_ value>

The :FUNCtion<N>:HORizonta:RANGe command sets the current time range
for the specified function. This automatically selects manual mode.

<N> An integer, 1 - 4, representing the selected function.

<range value> Areal number for the width of screen in current X-axis units (usually seconds),

Query

Returned Format

Example

from 1E-12 to 5E12.

:FUNCtion<N>:HORizontal : RANGe?

The :FUNCtion<N>:HORizontal:RANGe? query returns the current time range
setting of the specified function.

[:FUNCtion<N>:HORizontal :RANGe] <range><NL>

This example places the current horizontal range setting of function 2 in the
numeric variable, Value, then prints the contents to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":FUNCTION2:HORIZONTAL:RANGE?"

30 ENTER 707;Value

40 PRINT Value

50 END

16-18

Function Commands
INTegrate

Command

<N>

<operand>

Example

INTegrate

:FUNCtion<N>:INTegrate <operands>

The :FUNCtion<N>:INTegrate command defines a function that computes the
integral of the specified operand’s waveform.

An integer, 1 - 4, representing the selected function.

{CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}
CHANnel<n> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.

An integer, 1 - 4, for all other Infiniium Oscilloscope models.
FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.
<float_value> is:

A real number from -1E6 to 1E6.

This example sets up function 1 to compute the integral of
waveform memory 3.

10 OUTPUT 707;":FUNCTION1:INTEGRATE WMEMORY3"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.
F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-19

Function Commands

INVert
INVert
Command : FUNCtion<N>:INVert <operands>
The :FUNCtion<N>:INVert command defines a function that inverts the defined
operand’s waveform by multiplying by -1.
<N> An integer, 1 - 4, representing the selected function.
<operand> {CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}
CHANnel<n> is:
An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.
FUNCtion<n> and WMEMory<n> are:
An integer, 1 - 4, representing the selected function or waveform memory.
<float_value> is:
A real number from -1E6 to 1E6.
Example This example sets up function 2 to invert the waveform on channel 1.

10 OUTPUT 707;":FUNCTIONZ2:INVERT CHANNELL1"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.
F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-20

Function Commands
MAGNify

Command

<N>

<operand>

Example

MAGNify

:FUNCtion<N>:MAGNify <operands>

The :FUNCtion<N>:MAGNify command defines a function that is a copy of the
operand. The magnify function is a software magnify. No hardware settings are
altered as aresult of using this function. Itis useful for scaling channels, another
function, or memories with the RANGe and OFFSet commands in this
subsystem.

An integer, 1 - 4, representing the selected function.

{CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}
CHANnel<n> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.
<float_value> is:

A real number from -1E6 to 1E6.

This example creates a function (function 1) that is a magnified version of
channel 1.

10 OUTPUT 707;":FUNCTION1:MAGNIFY CHANNEL1"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.
F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-21

Function Commands
MAXimum

Command

<N>

<operand>

Example

MAXimum

: FUNCtion<N>:MAXimum <operand>

The :FUNCtion<N>:MAXimum command defines a function that computes the
maximum value of the operand waveform in each time bucket.

An integer, 1 - 4, representing the selected function.

{CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}
CHANnel<n> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.

An integer, 1 - 4, for all other Infiniium Oscilloscope models.
FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.
<float_value> is:

A real number from -1E6 to 1E6.

This example sets up function 2 to compute the maximum of each time bucket
for channel 2.

10 OUTPUT 707;":FUNCTIONZ2:MAXIMUM CHANNEL2"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.
F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-22

Function Commands
MEASurement

Command

<N>

Example

MEASurement

:FUNCtion<N>:MEASurement {MEAS1 | MEAS2 | MEAS3 |
MEAS4 }

The :FUNCtion<N>:MEASurement command defines a function that creates a
graph of the selected measurement versus time. Only one function that uses
the measurement operator can be display at a time. If you try to turn more than
one on, an error is generated.

| This command is only available on the 54845A and 54846A oscilloscopes. |

The measurement is computed for every cycle of the waveform that is in the
waveform viewing area. This command returns an error when there are no
automated timing measurements on. The measurements that are allowed for
this command are:

e + width

e - width

e Duty Cycle
e Fall Time
e Frequency
e Period

e Rise Time

An integer, 1 - 4, representing the selected function.

This example defines function 1 to have a measurement operator which graphs
measurement 2.

10 OUTPUT 707;":FUNCTION1:MEASUREMENT MEAS2"
20 END

16-23

Function Commands
MEASurement

Query : FUNCtion<N>:MEASurement?

The :FUNCtion<N>:MEASurement? query returns the measurement being
used by the measurement operator.

| If no valid measurements are on, an empty string is returned.

| This query is only available on the 54845A and 54846A oscilloscopes.

Returned Format [:FUNCtion<N>:MEASurement] {MEAS1 | MEAS2 | MEAS3 |
MEAS4 } <NL>

Example This example places the measurement being used by function 1 in the string
variable, Setting$, then prints the contents of the variable to the computer’s
screen.

10 DIM Setting$[50] !Dimension variable
20 OUTPUT 707;":FUNCTION1:MEASUREMENT?"
30 ENTER 707;Setting$

40 PRINT Settings$

50 END

16-24

Function Commands
MINimum

Command

<N>

<operand>

Example

MINimum

:FUNCtion<N>:MINimum <operand>

The :FUNCtion<N>:MINimum command defines a function that computes the
minimum of each time bucket for the defined operand’s waveform.

An integer, 1 - 4, representing the selected function.

{CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}
CHANnel<n> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.

An integer, 1 - 4, for all other Infiniium Oscilloscope models.
FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.
<float_value> is:

A real number from -1E6 to 1E6.

This example sets up function 2 to compute the minimum of each time bucket
for channel 4.

10 OUTPUT 707;":FUNCTION2:MINIMUM CHANNEL4"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.
F3 can have F1 or F2 as a source.
F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-25

Function Commands
MULTiply

Command

<N>

<operand>

Example

MULTiply

:FUNCtion<N>:MULTiply <operands>, <operand>

The :FUNCtion<N>:MULTiply command defines a function that algebraically
multiplies the first operand by the second operand.

An integer, 1 - 4, representing the selected function.

{CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}
CHANnel<n> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.

An integer, 1 - 4, for all other Infiniium Oscilloscope models.
FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.
<float_value> is:

A real number from -1E6 to 1E6.

This example defines a function that multiplies channel 1 by waveform
memory 1.

10 OUTPUT 707;":FUNCTION1:MULTIPLY CHANNEL1l, WMEMORY1"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.
F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-26

Function Commands
OFFSet

Command

<N>

<offset value>

Example

Query

Returned Format

Example

OFFSet

:FUNCtion<N>:0FFSet <offset value>

The :FUNCtion<N>:0FFSet command sets the voltage represented at the
center of the screen for the selected function. This automatically changes the
mode from auto to manual.

An integer, 1 - 4, representing the selected function.

A real number for the vertical offset in the currently selected Y-axis units
(normally volts). The offset value is limited to being within the vertical range
that can be represented by the function data.

This example sets the offset voltage for function 1 to 2 mV.

10 OUTPUT 707;":FUNCTION1:OFFSET 2E-3"
20 END

:FUNCtion<N>:0FFSet?

The :FUNCtion<N>:OFFSet? query returns the current offset value for the
selected function.

[:FUNCtion<N>:0FFSet] <offset value><NL>

This example places the current setting for offset on function 2 in the numeric
variable, Value, then prints the result to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":FUNCTION2:OFFSET?"

30 ENTER 707;Value

40 PRINT Value

50 END

16-27

Function Commands
RANGe

Command

<N>

<full_scale
_range>

Example

Query

Returned Format

Example

RANGe

:FUNCtion<N>:RANGe <full scale_range>

The :FUNCtion<N>:RANGe command defines the full-scale vertical axis of the
selected function. This automatically changes the mode from auto to manual.

An integer, 1 - 4, representing the selected function.

A real number for the full-scale vertical range, from 10E-18 to 1E15.

This example sets the full-scale range for function 1 to 400 mV.

10 OUTPUT 707;":FUNCTION1:RANGE 400E-3"
20 END

: FUNCtion<Ns>:RANGe?

The :FUNCtion<N>:RANGe? query returns the current full-scale range setting
for the specified function.

[:FUNCtion<N>:RANGe] <full scale range><NL>

This example places the current range setting for function 2 in the numeric
variable “Value,” then prints the contents to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":FUNCTIONZ2:RANGE?"

30 ENTER 707;Value

40 PRINT Value

50 END

16-28

Function Commands
SUBTract

Command

<N>

<operand>

Example

SUBTract

:FUNCtion<N>:SUBTract <operands>, <operand>

The :FUNCtion<N>:SUBTract command defines a function that algebraically
subtracts the second operand from the first operand.

An integer, 1 - 4, representing the selected function.

{CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}
CHANnel<n> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.
<float_value> is:

A real number from -1E6 to 1E6.

This example defines a function that subtracts waveform memory 1 from
channel 1.

10 OUTPUT 707;":FUNCTION1:SUBTRACT CHANNEL1l, WMEMORY1"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.
F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-29

Function Commands
VERSus

Command

<N>

<operands>

Example

VERSus

: FUNCtion<N>:VERSus <operands>, <operand>

The :FUNCtion<N>:VERSus command defines a function for an X-versus-Y
display. The first operand defines the Y axis and the second defines the X axis.
The Y-axis range and offset are initially equal to that of the first operand, and
you can adjust them with the RANGe and OFFSet commands in this subsystem.

An integer, 1 - 4, representing the selected function.

{CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}
CHANnel<n> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.
<float_value> is:

A real number from -1E6 to 1E6.

This example defines function 1 as an X-versus-Y display. Channel 1 is the X
axis and waveform memory 2 is the Y axis.

10 OUTPUT 707;":FUNCTION1:VERSUS WMEMORY2, CHANNEL1"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.
F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-30

Function Commands
VERTical

Command

Query

Returned Format

<N>

Example

VERTical

:FUNCtion<N>:VERTical {AUTO | MANual}

The :FUNCtion<N>:VERTical command sets the vertical scaling mode of the
specified function to either AUTO or MANual.

This command also contains the following commands and queries:
e OFFset
e RANge

An integer, 1 - 4, representing the selected function.

:FUNCtion<N>:VERTical?

The :FUNCtion<N>:VERTical? query returns the current vertical scaling mode
of the specified function.

[:FUNCtion<N>:VERTical] {AUTO | MANual}<NL>

This example places the current state of the vertical tracking of function 1 in
the string variable, Setting$, then prints the contents of the variable to the
computer's screen.

10 DIM Setting$[50] !Dimension variable
20 OUTPUT 707;":FUNCTION1:VERTICAL?"
30 ENTER 707;Setting$

40 PRINT Settings$

50 END

16-31

Function Commands
VERTical:0FFSet

Command

<N>

<offset value>

Query

Returned Format

Example

VERTical:OFFSet

:FUNCtion<N>:VERTical:0FFSet <offset value>

The :FUNCtion<N>:VERTical:OFFSet command sets the voltage represented
at center screen for the selected function. This automatically changes the mode
from auto to manual.

An integer, 1 - 4, representing the selected function.

A real number for the vertical offset in the currently selected Y-axis units
(normally volts). The offset value is limited only to being within the vertical
range that can be represented by the function data.

:FUNCtion<N>:VERTical :OFFset?

The :FUNCtion<N>:VERTical:OFFSet? query returns the current offset value
of the selected function.

[:FUNCtion<N>:VERTical:OFFset] <offset value><NL>

This example places the current offset setting for function 2 in the numeric
variable, Value, then prints the contents to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":FUNCTIONZ2:VERTICAL:OFFSET?"

30 ENTER 707;Value

40 PRINT Value

50 END

16-32

Function Commands
VERTical:RANGe

Command

<N>

<full_scale
_range>

Query

Returned Format

Example

VERTical:RANGe

:FUNCtion<N>:VERTical :RANGe <full scale_range>

The :FUNCtion<N>:VERTical: RANGe command defines the full-scale vertical
axis of the selected function. This automatically changes the mode from auto
to manual, if the oscilloscope is not already in manual mode.

An integer, 1 - 4, representing the selected function.

A real number for the full-scale vertical range, from 10E-18 to 1Eb5.

: FUNCtion<N>:VERTical : RANGe?

The :FUNCtion<N>:VERTical: RANGe? query returns the current range setting
of the specified function.

[:FUNCtion<N>:VERTical:RANGe] <range><NL>

This example places the current vertical range setting of function 2 in the
numeric variable, Value, then prints the contents to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":FUNCTIONZ2:VERTICAL:RANGE?"

30 ENTER 707;Value

40 PRINT Value

50 END

16-33

16-34

17

Hardcopy Commands

Hardcopy Commands

The HARDcopy subsystem commands set various parameters for
printing the screen. The print sequence is activated when the root level
command :PRINt is sent.

These HARDcopy commands and queries are implemented in the
Infiniium Oscilloscopes:

AREA

DPRinter

FACTors

IMAGe

PRINTers?

17-2

Hardcopy Commands
AREA

Command

Example

Query

Returned Format

Example

AREA

:HARDcopy:AREA {GRATicule | SCReen}

The :HARDcopy:AREA command selects which data from the screen is to be
printed. When you select GRATicule, only the graticule area of the screen is
printed (this is the same as choosing Waveforms Only in the Configure Printer
dialog box). When you select SCReen, the entire screen is printed.

This example selects the graticule for printing.

10 OUTPUT 707;" :HARDCOPY:AREA GRATICULE"
20 END

:HARDcopy : AREA?

The :-HARDcopy:AREA? query returns the current setting for the area of the
screen to be printed.

[:HARDcopy:AREA] {GRATicule | SCReen}<NL>

This example places the current selection for the area to be printed in the string
variable, Selection$, then prints the contents of the variable to the computer’s
screen.

10 DIM Selection$[50] !Dimension variable
20 OUTPUT 707;" :HARDCOPY :AREA?"

30 ENTER 707;Selection$

40 PRINT Selections$

50 END

17-3

Hardcopy Commands
DPRinter

Command

<printer
_number>

<printer
_string>

Examples

DPRinter

:HARDcopy :DPRinter
{<printer numbers|<printer strings}

The :HARDcopy:DPRinter command selects the default printer to be used.

An integer representing the attached printer. This number corresponds to the
number returned with each printer name by the :HARDcopy:PRINters? query.

A string of alphanumeric characters representing the attached printer.

The :HARDcopy:DPRinter command specifies a number or string for the printer
attached to the oscilloscope. The printer string must exactly match the
character strings in the File->Print Setup dialog boxes, or the strings returned
by the :HARDcopy:PRINters? query.

This example sets the default printer to the second installed printer returned
by the :HARDcopy:PRINters? query.

10 OUTPUT 707;":HARDCOPY:DPRINTER 2"

20 END

This example sets the default printer to the installed printer with the name
"HP Laser".

10 OUTPUT 707;":HARDCOPY:DPRINTER ""HP Laser"""
20 END

17-4

Query

Returned Format

Example

Hardcopy Commands
DPRinter

:HARDcopy:DPRinter?

The :-HARDcopy:DPRinter? query returns the current printer number and
string.

[:HARDcopy:DPRinter?]
{<printer numbers, <printer strings>,DEFAULT}<NL>

Or, if there is no default printer (no printers are installed), only a <NL> is
returned.

This example places the current setting for the hard copy printer in the string

variable, Setting$, then prints the contents of the variable to the computer’s
screen.

10 DIM Setting$[50] !Dimension variable
20 OUTPUT 707;":HARDCOPY:DPRinter?"

30 ENTER 707;Setting$

40 PRINT Settings$

50 END

Programs Must Wait After Changing the Default Printer

It takes several seconds to change the default printer. Any programs that try to set
the default printer must wait (10 seconds is a safe amount of time) for the change to

complete before sending other commands. Otherwise the oscilloscope will become
unresponsive.

17-5

Hardcopy Commands

FACTors
FACTors
Command :HARDcopy: FACTors {{ON|1} | {OFF|0}}
The :HARDcopy:FACTors command determines whether the oscilloscope setup
factors will be appended to screen or graticule images. FACTors ON is the same
as choosing Include Setup Information in the Configure Printer dialog box.
Example This example turns on the setup factors.
10 OUTPUT 707;":HARDCOPY : FACTORS ON"
20 END
Query :HARDcopy : FACTors?

Returned Format

Example

The :HARDcopy:FACTors? query returns the current setup factors setting.

[:HARDcopy : FACTors] {1]|0}<NL>

This example places the current setting for the setup factors in the string
variable, Setting$, then prints the contents of the variable to the computer’s
screen.

10 DIM Setting$[50] !Dimension variable
20 OUTPUT 707;" :HARDCOPY : FACTORS?"

30 ENTER 707;Setting$

40 PRINT Settings$

50 END

17-6

Hardcopy Commands
IMAGe

Command

Example

Query

Returned Format

Example

IMAGe

:HARDcopy: IMAGe {NORMal | INVert}

The :HARDcopy:IMAGe command prints the image normally, inverted, or in
monochrome. IMAGe INVert is the same as choosing Invert Waveform Colors
in the Configure Printer dialog box.

This example sets the hard copy image output to normal.

10 OUTPUT 707;":HARDCOPY:IMAGE NORMAL"
20 END

:HARDcopy : IMAGe?

The :HARDcopy:IMAGe? query returns the current image setting.

[:HARDcopy:IMAGe] {NORMal | INVert }<NL>

This example places the current setting for the hard copy image in the string
variable, Setting$, then prints the contents of the variable to the computer’s
screen.

10 DIM Setting$[50] !Dimension variable
20 OUTPUT 707; " :HARDCOPY:IMAGE?"

30 ENTER 707;Setting$

40 PRINT Settings$

50 END

17-7

Hardcopy Commands
PRINters?

Query

Returned Format

<printer counts>

<printer
_data>

Example

PRINters?

:HARDcopy : PRINters?

The :HARDcopy:PRINters? query returns the currently available printers.

[:HARDcopy: PRINters?]
<printer count><NL><printer data><NL>[,<printer data><NL>]

The number of printers currently installed.

The printer number and the name of an installed printer. The word DEFAULT
appears next to the printer that is the currently selected default printer.

The <printer_data> return string has the following format:
<printer_number>,<printer_string>{, DEFAULT}

This example places the number of installed printers into the variable Count,
loops through it that number of times, and prints the installed printer names to
the computer’s screen.

10 DIM Setting$[50] IDimension variable
20 OUTPUT 707;" :HARDCOPY :PRINTERS?"

30 ENTER 707;Count

40 IF Count>0 THEN

50 FOR Printer number=1 TO Count

60 ENTER 707;Setting$

70 PRINT Setting$

80 NEXT Printer number

90 END IF

100 END

17-8

18

Histogram Commands

Histograms and the
database

Histogram Commands

The HISTogram commands and queries control the histogram features.
A histogram is a probability distribution that shows the distribution of
acquired data within a user-definable histogram window.

You can display the histogram either vertically, for voltage
measurements, or horizontally, for timing measurements.

The most common use for histograms is measuring and characterizing
noise or jitter on displayed waveforms. Noise is measured by sizing the
histogram window to a narrow portion of time and observing a veritcal
histogram that measures the noise on a waveform. Jitter is measured by
sizing the histogram window to a narrow portion of voltage and observing
a horizontal histogram that measures the jitter on an edge.

These HISTogram commands and queries are implemented in the
Infiniium Oscilloscopes:

o AXIS

e MODE

e SCALe:SIZE

e WINDow:DEFault

e WINDow:SOURce

e WINDow:X1PositionILLIMit
e WINDow:X2PositionIRLIMit
e WINDow:Y1Position| TLIMit
e WINDow:Y2Position|BLIMit

The histograms, mask testing, and color grade persistence use a specific
database that uses a different memory area from the waveform record
for each channel. When any of these features are turned on, the
oscilloscope starts building the database. The database is the size of the
graticule area. Behind each pixel is a 21-bit counter that is incremented
each time data from a channel or function hits a pixel. The maximum
count (saturation) for each counter is 2,097,151. You can use the
DISPlay:CGRade:LEVels command to see if any of the counters are close
to saturation.

18-2

Histogram Commands

The database continues to build until the oscilloscope stops acquiring
data or all three features (color grade persistence, mask testing, and
histograms) are turned off. You can clear the database by turning off all
three features that use the database.

The database does not differentiate waveforms from different channels
or functions. If three channels are on and the waveform from each
channel happens to light the same pixel at the same time, the counter is
incremented by three. However, it is not possible to tell how many hits
came from each waveform. To separate waveforms, you can position the
waveforms vertically with the channel offset. By separating the
waveforms, you can avoid overlapping data in the database caused by
multiple waveforms. Even if the display is set to show only the most
recent acquisition, the database keeps track of all pixel hits while the
database is building.

Remember that color grade persistence, mask testing, and histograms
all use the same database. Suppose that the database is building because
color grade persistence is ON; when mask testing or histograms are
turned on, they can use the information already established in the
database as though they had been turned on the entire time.

To avoid erroneous data, clear the display after you change oscilloscope
setup conditions or DUT conditions and acquire new data before
extracting measurement results.

18-3

Histogram Commands
AXIS

Command

Example

Query

Returned Format

Example

AXIS

:HISTogram:AXIS {VERTical | HORizontal}

The :HISTogram:AXIS command selects the type of histogram. A horizontal
histogram can be used to measure time related information like jitter. A vertical
histogram can be used to measure voltage related information like noise.

This example defines a vertical histogram.

10 OUTPUT 707;":HISTOGRAM:AXIS VERTICAL"
20 END

:HISTogram:AXIS?

The :HISTogram:AXIS? query returns the currently selected histogram type.

[:HISTogram:AXIS] {VERTical | HORizontal}<NL>

This example returns the histogram type and prints it to the computer’s screen.

10 DIM Axis$[50]

20 OUTPUT 707;":HISTOGRAM:AXIS?"
30 ENTER 707;Axis$

40 PRINT Axiss$

50 END

18-4

Histogram Commands
MODE

Command

Example

Query

Returned Format

Example

MODE

:HISTogram:MODE {OFF | WAVeforms}

The :HISTogram:MODE command selects the histogram mode. The histogram
may be off or set to track the waveform database.

This example sets the histogram mode to track the waveform database.

10 OUTPUT 707;" :HISTOGRAM:MODE WAVEFORM"
20 END

:HISTogram:MODE?

The :HISTogram:MODE? query returns the currently selected histogram mode.

[:HISTogram:MODE] {OFF | WAVeform}<NL>

This example returns the result of the mode query and prints it to the
computer’s screen.

10 DIM Mode$[10]

20 OUTPUT 707;" :HISTOGRAM:MODE?"
30 ENTER 707;Modes$

40 PRINT Mode$

50 END

18-5

Histogram Commands

SCALe:SIZE
SCALe:SIZE
Command :HISTogram:SCALe:SIZE <size>
The :HISTogram:SCALe:SIZE command sets histogram size for vertical and
horizontal mode.
<size> The size is from 1.0 to 8.0 for the horizontal mode and from 1.0 to 10.0 for the
vertical mode.
Example This example sets the histogram size to 3.5.
10 OUTPUT 707;":HISTOGRAM:SCALE:SIZE 3.5"
20 END
Query :HISTogram: SCALe:SIZE?

Returned Format

Example

The :HISTogram:SCALe:SIZE? query returns the correct size of the histogram.

[:HISTogram:SCALe:SIZE] <size><NL>

This example returns the result of the size query and prints it to the computer’s
screen.

10 DIM Size$[50]

20 OUTPUT 707;":HISTOGRAM:SCALE:SIZE?"
30 ENTER 707;Size$

40 PRINT Size$

50 END

18-6

Histogram Commands
WINDow:DEFault

Command

Example

WINDow:DEFault

:HISTogram:WINDow:DEFault

The :HISTogram: WINDow:DEFault command positions the histogram markers
to a default location on the display. Each marker will be positioned one division
off the left, right, top, and bottom of the display.

This example sets the histogram window to the default position.

10 OUTPUT 707;" :HISTOGRAM:WINDOW:DEFAULT"
20 END

18-7

Histogram Commands
WINDow:SOURce

Command

<N>

Example

Query

Returned Format

Example

WINDow:SOURce

:HISTogram:WINDow: SOURce {CHANnel<N> | FUNCtion<N>
| WMEMory<N>}

The :HISTogram:WINDow:SOURce command selects the source of the
histogram window. The histogram window will track the source’s vertical and
horizontal scale.

For channels: the number represents an integer, 1 through 4.
For waveform memories: 1, 2, 3, or 4.
For functions: 1 or 2

This example sets the histogram window’s source to Channel 1.

10 OUTPUT 707;" :HISTOGRAM:WINDOW: SOURCE CHANNEL1"
20 END

:HISTogram: WINDow: SOURce?

The :HISTogram:WINDow:SOURce? query returns the currently selected
histogram window source.

[:HISTogram:WINDow:SOURce] {CHANnelN | FUNCtionN |
WMEMoryN } <NL>

This example returns the result of the window source query and prints it to the
computer’s screen.

10 DIM Winsours$ [50]

20 OUTPUT 707;" :HISTOGRAM:WINDOW: SOURCE?"
30 ENTER 707;Winsour$

40 PRINT Winsour$

50 END

18-8

Histogram Commands
WINDow:X1Pesition | LLIMit

Command

<x1 positions>

Example

Query

Returned Format

Example

WINDow:X1Position | LLIMit

:HISTogram: WINDow:X1Position <x1 positions>

:HISTogram:WINDow:LLIMit <x1 positions>

The :HISTogram:WINDow:X1Position command moves the X1 marker of the
histogram window. The histogram window determines the portion of the display
used to build the database for the histogram. The histogram window markers
will track the scale of the histogram window source.

A real number that represents the left boundary of the histogram window.

This example sets the X1 position to -200 microseconds.

10 OUTPUT 707;" :HISTOGRAM:WINDOW:X1POSITION -200E-6"
20 END

:HISTogram:WINDow:X1Position?

:HISTogram:WINDow: LLIMit?

The :HISTogram:WINDow:X1Position? query returns the value of the X1
histogram window marker.

[:HISTogram:WINDow:X1Position] <xl1 position><NL>

This example returns the result of the X1 position query and prints it to the
computer’s screen.

10 DIM X1s[50]

20 OUTPUT 707;" :HISTOGRAM: WINDOW:X1POSITION?"
30 ENTER 707;X1$

40 PRINT X1$

50 END

18-9

Histogram Commands
WINDow:X2Pesition | RLIMit

Command

<x2 positions>

Example

Query

Returned Format

Example

WINDow:X2Position | RLIMit

:HISTogram: WINDow:X2Position <x2 positions>

:HISTogram: WINDow:RLIMit <x2 positions>

The :HISTogram:WINDow:X2Position command moves the X2 marker of the
histogram window. The histogram window determines the portion of the display
used to build the database used for the histogram. The histogram window
markers will track the scale of the histogram window source.

A real number that represents the right boundary of the histogram window.

This example sets the X2 marker to 200 microseconds.

10 OUTPUT 707;" :HISTOGRAM:WINDOW:X2POSITION 200E-6"
20 END

:HISTogram:WINDow:X2Position?

:HISTogram:WINDow:RLIMit?

The :HISTogram:WINDow:X2Position? query returns the value of the X2
histogram window marker.

[:HISTogram:WINDow:X2Position] <x2 position><NL>

This example returns the result of the X2 position query and prints it to the
computer’s screen.

10 DIM X2s[50]

20 OUTPUT 707;" :HISTOGRAM: WINDOW:X2POSITION?"
30 ENTER 707;X2$

40 PRINT X2$

50 END

18-10

Histogram Commands
WINDow:Y1Pesition | BLIMit

Command

<yl positions>

Example

Query

Returned Format

Example

WINDow:Y1Position | BLIMit

:HISTogram:WINDow:Y1lPosition <yl POSITION>

:HISTogram: WINDow:BLIMit <yl POSITION>

The :HISTogram:WINDow:Y1Position command moves the Y1 marker of the
histogram window. The histogram window determines the portion of the display
used to build the database used for the histogram. The histogram window
markers will track the scale of the histogram window source.

A real number that represents the bottom boundary of the histogram window.

This example sets the position of the Y1 marker to -250 mV.

10 OUTPUT 707;" :HISTOGRAM:WINDOW:Y1POSITION -250E-3"
20 END

:HISTogram:WINDow:Y1Position?

:HISTogram:WINDow:BLIMit?

The :HISTogram:WINDow:Y1Position? query returns the value of the Y1
histogram window marker.

[:HISTogram:WINDow:Y1lPosition] <yl position><NL>

This example returns the result of the Y1 position query and prints it to the
computer’s screen.

10 DIM Y1s5[50]

20 OUTPUT 707;" :HISTOGRAM: WINDOW:Y1POSITION?"
30 ENTER 707;Y1$

40 PRINT Y1$

50 END

18-11

Histogram Commands
WINDow:Y2Position | TLIMit

Command

<y2 positions>

Example

Query

Returned Format

Example

WINDow:Y2Position | TLIMit

:HISTogram: WINDow:Y2Position <y2 positions>

:HISTogram:WINDow: TLIMit <y2 positions>

The :HISTogram:WINDow:Y2Position command moves the Y2 marker of the
histogram window. The histogram window determines the portion of the display
used to build the database used for the histogram. The histogram window
markers will track the scale of the histogram window source.

A real number that represents the top boundary of the histogram window.

This example sets the position of the Y2 marker to 250 mV.

10 OUTPUT 707;" :HISTOGRAM:WINDOW:Y2POSITION 250E-3"
20 END

:HISTogram:WINDow:Y2Position?

:HISTogram:WINDow: TLIMit?

The :HISTogram:WINDow:Y2Position? query returns the value of the Y2
histogram window marker.

[:HISTogram:WINDow:Y2Position] <y2 position><NL>

This example returns the result of the Y2 position query and prints it to the
computer’s screen.

10 DIM Y25[50]

20 OUTPUT 707;" :HISTOGRAM: WINDOW:Y2POSITION?"
30 ENTER 707;Y2$

40 PRINT Y2$

50 END

18-12

19

Marker Commands

Marker Commands

The commands in the MARKer subsystem specify and query the settings
of the time markers (X axis) and current measurement unit markers
(volts, amps, and watts for the Y axis). You typically set the Y-axis
measurement units using the :CHANnel:UNITs command.

These MARKer commands and queries are implemented in the Infiniium
Oscilloscopes:

e CURsor?

e MEASurement:READout
e MODE

e TDELta?

e TSTArt

e TSTOp

e VDELta?

e VSTArt

e VSTOp

e Xl1Position

e X2Position

o XlYlsource

e X2Y2Zsource

e XDELta?

¢ Y1Position

e YZ2Position

e YDELta?

Guidelines for Using Queries in Marker Modes

In Track Waveforms mode, use :MARKer:CURSor? to track the position of the
waveform. In Manual Markers and Track Measurements Markers modes, use other
queries, such as the TSTArt? and TSTOp?, and VSTArt? and VSTOp? queries. Ifyou
use :MARKer:CURSor? when the oscilloscope is in either Manual Markers or Track
Measurements Markers modes, it will put the oscilloscope in Track Waveforms
mode, regardless of the mode previously selected.

19-2

Marker Commands
CURSor?

Query

Returned Format

Example

CAUTION

CURSor?

:MARKer:CURSor? {DELTa | STARt | STOP}

The :MARKer:CURSor? query returns the time and current measurement unit
values of the specified marker (if markers are in Track Waveforms mode) as an
ordered pair of time and measurement unit values.

e [f DELTA is specified, the value of delta Y and delta X are returned.
e [f START is specified, marker A’s x-to-y positions are returned.
e [f STOP is specified, marker B’s x-to-y positions are returned.

[:MARKer:CURSor] {DELTa | STARt | STOP}
{<ax, Ay> | <Bx, By> | <deltaX, delta¥>}<NL>

This example returns the current position of the X cursor and measurement
unit marker 1 to the string variable, Position$. The program then prints the
contents of the variable to the computer's screen.

10 DIM Position$([50] !Dimension variable

20 OUTPUT 707;":MARKER:CURSOR? START"

30 ENTER 707;Position$

40 PRINT Position$

50 END

The :MARKer:CURSor? query may change marker mode and results.
In Track Waveforms mode, use :MARKer:CURSor? to track the position of the
waveform. In Manual Markers and Track Measurements Markers modes, use
other marker queries, such as the TSTArt? and TSTOp?, and VSTArt? and
VSTOp? queries.

If you use :MARKer:CURSor? when the oscilloscope is in either Manual
Markers or Track Measurements Markers modes, it will put the oscilloscope
in Track Waveforms mode, regardless of the mode previously selected. In
addition, measurement results may not be what you expected.

19-3

Marker Commands
MEASurement:READout

Command

ON|1

OFF |0

Query

Returned Format

Example

MEASurement:READout

:MARKer :MEASurement :READout {{ON|1} | {OFF|0}}

The :MARKer:MEASurement:READout command controls the display of the
marker position values.

Shows marker position values.

Turns off marker position values.

:MARKer :MEASurement : READout?

The :MARKer:MEASurement:READout? query returns the current display of
the marker position values.

{ :MARKer:MEASurement :READout] {1]0}<NL>

This example displays the marker position values.

10 OUTPUT 707;":MARKER:MEASUREMENT : READOUT ON"
20 END

19-4

Marker Commands
MODE

Command

OFF
MANual
WAVeform

MEASurement

Example

Query

Returned Format

Example

MODE

:MARKer:MODE {OFF | MANual | WAVeform | MEASurement}

The :MARKer:MODE command sets the marker mode.
Removes the marker information from the display.
Enables manual placement of markers A and B.
Tracks the current waveform.

Tracks the most recent measurement.

This example sets the marker mode to waveform.

10 OUTPUT 707;":MARKER:MODE WAVEFORM"
20 END

:MARKer :MODE?

The :MARKer:MODE? query returns the current marker mode.

[:MARKer:MODE] {OFF | MANual | WAVeform | MEASurement }<NL>

This example places the current marker mode in the string variable, Selection$,
then prints the contents of the variable to the computer’s screen.

10 DIM Selection$[50] !Dimension variable
20 OUTPUT 707;" :MARKER:MODE?"

30 ENTER 707;Selection$

40 PRINT Selection$

50 END

19-5

Marker Commands
TDELta?

Query

Returned Format

<time>

Example

TDELta?

:MARKer : TDELta?

The :MARKer:TDELta? query returns the time difference between Ax and Bx
time markers. The :MARKer:XDELta command described in this chapter does
also.

Use :MARKer:XDELta? Instead of :MARKer:TDELta?

The :MARKer:TDELta? query performs the same function as the :MARKer:XDELta?
query. The :MARKer:TDELta? query is provided for compatibility with programs
written for older oscilloscopes. You should use :MARKer:XDELta? for new programs.

[:MARKer:TDELta] <time><NL>

The time difference between Ax and Bx time markers.

This example places the time difference between the Ax and Bx markers in the
numeric variable, Time, then prints the contents of the variable to the
computer’s screen. Notice that this example uses the :MARKer:XDELta? query
instead of the :MARKer:TDELta? query.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;" :MARKER:XDELTA?"

30 ENTER 707;Time

40 PRINT Time

50 END

Turn Headers Off

When receiving numeric data into numeric variables, turn off the headers.

Otherwise, the headers may cause misinterpretation of returned data.

19-6

Marker Commands
TSTArt

Command

<Ax _position>

Example

Query

Returned Format

TSTArt

:MARKer:TSTArt <Ax position>

The :MARKer:TSTArt command sets the Ax marker position. The
:MARKer:X1Position command described in this chapter also sets the
Ax marker position.

Use :MARKer:X1Position Instead of :MARKer:TSTArt

The :MARKer:TSTArt command and query perform the same function as the
:MARKer:X1Position command and query. The :MARKer:TSTArt command is
provided for compatibility with programs written for previous oscilloscopes. You
should use :MARKer:X1Position for new programs.

A real number for the time at the Ax marker, in seconds.

This example sets the Ax marker at 90 ns. Notice that this example uses the
X1Position command instead of TSTArt.

10 OUTPUT 707;":MARKER:X1POSITION 90E-9"
20 END

:MARKer: TSTArt?

The :MARKer:TSTArt? query returns the time at the Ax marker.

[:MARKer:TSTArt] <Ax position><NL>

19-7

Example

Marker Commands
TSTArt

This example places the current setting of the Ax marker in the numeric
variable, Setting, then prints the contents of the variable to the computer’s
screen. Notice that this example uses the :MARKer:X1Position? query instead
of the :MARKer:TSTArt? query.

10
20
30
40
50

OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off"
OUTPUT 707;" :MARKER:X1POSITION?"

ENTER 707;Setting

PRINT Setting

END

Do Not Use TST as the Short Form of TSTArt and TSTOp

The short form of the TSTArt command and query does not follow the defined
convention for short form commands. Because the short form, TST, is the same for
TSTArt and TSTOp, sending TST produces an error. Use TSTA for TSTArt.

19-8

Marker Commands
TSTOp

Command

TSTOp

:MARKer:TSTOp <Bx position>

The :MARKer:TSTOp command sets the Bx marker position. The
:MARKer:X2Position command described in this chapter also sets the
Bx marker position.

Use :MARKer:X2Position Instead of :MARKer:-TSTOp

The :MARKer:TSTOp command and query perform the same function as the
:MARKer:X2Position command and query. The :MARKer:TSTOp command is
provided for compatibility with programs written for previous oscilloscopes.

You should use :MARKer:X2Position for new programs.

<Bx_position> A real number for the time at the Bx marker, in seconds.

Example

This example sets the Bx marker at 190 ns. Notice that this example uses the
X2Position command instead of TSTOp.

10 OUTPUT 707;":MARKER:X2POSITION 190E-9"
20 END

19-9

Query

Returned Format

Example

Marker Commands
TSTOp

:MARKer : TSTOp?

The :MARKer:TSTOp? query returns the time at the Bx marker position.

[:MARKer:TSTOp] <Bx_position><NL>

This example places the current setting of the Bx marker in the numeric
variable, Setting, then prints the contents of the variable to the computer’s
screen. Notice that this example uses the :MARKer:X2Position? query instead
of the :MARKer:TSTOp? query.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;" :MARKER:X2POSITION?"

30 ENTER 707;Setting

40 PRINT Setting

50 END

Do Not Use TST as the Short Form of TSTArt and TSTOp

The short form of the TSTOp command and query does not follow the defined
convention for short form commands. Because the short form, TST, is the same for
TSTArt and TSTOp, sending TST produces an error. Use TSTO for TSTOp.

19-10

Marker Commands
VDELta?

Query

Returned Format

<value>

Example

VDELta?

:MARKer :VDELta?

The :MARKer:VDELta? query returns the current measurement unit difference
between markers Ay and By. The :MARKer:YDELta? query described in this
chapter does also.

Use :MARKer:YDELta? Instead of :MARKer:VDELta?

The :MARKer:VDELta? query performs the same function as the :MARKer:YDELta?
query. The :MARKer:VDELta? query is provided for compatibility with programs
written for previous oscilloscopes. You should use the :MARKer:YDELta? query for
new programs.

[:MARKer:VDELta] <value><NL>

Current measurement unit difference between markers Ay and By.

This example returns the voltage difference between Ay and By to the numeric
variable, Volts, then prints the contents of the variable to the computer’s screen.
Notice that this example uses the :MARKer:YDELta? query instead of the
:-MARKer:VDELta? query.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;" :MARKER:YDELTA?"

30 ENTER 707;Volts

40 PRINT Volts

50 END

19-11

Marker Commands
VSTArt

VSTArt

Command :MARKer:VSTArt <Ay positionx>

The :MARKer:VSTArt command sets the Ay marker position and moves the
Ay marker to the specified measurement unit value on the specified source.
The :MARKer:Y1Position command described in this chapter does also.

Use :MARKer:Y1Position Instead of :MARKer:VSTArt

The :MARKer:VSTArt command and query perform the same function as the
:MARKer:Y1Position command and query. The :MARKer:VSTArt command is
provided for compatibility with programs written for previous oscilloscopes. You
should use :MARKer:Y1Position for new programs.

<Ay positions> A real number for the current measurement unit value at Ay (volts, amps, or
watts).

Example This example sets Ay to —10 mV. Notice that this example uses the Y1Position
command instead of VSTArt.

10 OUTPUT 707;":MARKER:Y1POSITION —10E-3"
20 END

Query :MARKer :VSTArt?

The :MARKer:VSTArt? query returns the current measurement unit level of Ay.

Returned Format [:MARKer:VSTArt] <Ay position><NL>

19-12

Example

Marker Commands
VSTArt

This example returns the voltage setting for Ay to the numeric variable, Value,
then prints the contents of the variable to the computer’s screen. Notice that
this example uses the :MARKer:Y1Position? query instead of the
:MARKer:VSTArt? query.

10
20
30
40
50

OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
OUTPUT 707;" :MARKER:Y1POSITION?"

ENTER 707;Value

PRINT Value

END

Do Not Use VST as the Short Form of VSTArt and VSTOp

The short form of the VSTArt command and query does not follow the defined
convention for short form commands. Because the shortform, VST, is the same for
VSTArt and VSTOp, sending VST produces an error. Use VSTA for VSTArt.

19-13

Marker Commands
VSTOp

VSTOp

Command :MARKer:VSTOp <By positions>

The :MARKer:VSTOp command sets the By marker position and moves By to
the specified measurement unit on the specified source.

The :MARKer:Y2Position command described in this chapter does also.

Use :MARKer:Y2Position Instead of :MARKer:VSTOp

The :MARKer:VSTOp command and query perform the same function as the
:MARKer:Y2Position command and query. The :MARKer:VSTOp command is
provided for compatibility with programs written for previous oscilloscopes.
You should use :MARKer:Y2Position for new programs.

<By positions> A real number for the current measurement unit value at By (volts, amps, or
watts).

Example This example sets By to -100 mV. Notice that this example uses the
:MARKer:Y2Position command instead of :MARKer:VSTOp.

10 OUTPUT 707;":MARKER:Y2POSITION -100E-3"
20 END

Query :MARKer :VSTOp?

The :MARKer:VSTOp? query returns the current measurement unit level at By.

Returned Format [:MARKer:VSTOp] <By positions><NL>

19-14

Example

Marker Commands
VSTOp

This example returns the voltage at By to the numeric variable, Value, then
prints the contents of the variable to the computer’s screen. Notice that this
example uses the :MARKer:Y2Position? query instead of the :MARKer:VSTOp?

query.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;" :MARKER:Y2POSITION?"

30 ENTER 707;Value

40 PRINT Value

50 END

Do Not Use VST as the Short Form of VSTArt and VSTOp

The short form of the VSTOp command and query does not follow the defined
convention for short form commands. Because the shortform, VST, is the same for
VSTArt and VSTOp, sending VST produces an error. Use VSTO for VSTOp.

19-15

Marker Commands
X1Position

Command

<Ax positions>

Example

Query

Returned Format

Example

See Also

X1Position

:MARKer:X1Position <Ax position>

The :MARKer:X1Position command sets the Ax marker position, and moves the
Ax marker to the specified time with respect to the trigger time.

A real number for the time at the Ax marker in seconds.

This example sets the Ax marker to 90 ns.

10 OUTPUT 707;":MARKER:X1POSITION 90E-9"
20 END

:MARKer:X1Position?

The :MARKer:X1Position? query returns the time at the Ax marker position.

[:MARKer:X1Position] <Ax position><NL>

This example returns the current setting of the Ax marker to the numeric
variable, Value, then prints the contents of the variable to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MARKER:X1POSITION?"

30 ENTER 707;Value

40 PRINT Value

50 END

:MARKer:TSTArt

19-16

Marker Commands
X2Position

Command

<Bx positions>

Example

Query

Returned Format

Example

X2Position

:MARKer:X2Position <Bx position>

The :MARKer:X2Position command sets the Bx marker position and moves the
Bx marker to the specified time with respect to the trigger time.

A real number for the time at the Bx marker in seconds.

This example sets the Bx marker to 90 ns.

10 OUTPUT 707;":MARKER:X2POSITION 90E-9"
20 END

:MARKer:X2Position?

The :MARKer:X2Position? query returns the time at Bx marker in seconds.

[:MARKer:X2Position] <Bx position><NL>

This example returns the current position of the Bx marker to the numeric
variable, Value, then prints the contents of the variable to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;" :MARKER:X2POSITION?"

30 ENTER 707;Value

40 PRINT Value

50 END

19-17

Marker Commands
X1Y1source

Command

<N>

Example

Query

Returned Format

Example

X1Y1source

:MARKer:X1Ylsource {CHANnel<N> | FUNCtion<N> |
WMEMory<Ns> }

The :MARKer:X1Y1source command sets the source for the Ax and Ay markers.
The channel you specify must be enabled for markers to be displayed. If the
channel, function, or waveform memory that you specify is not on, an error
message is issued and the query will return channel 1.

CHANnel<N> is:
An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.
FUNCtion<N> and WMEMory<N> are:

Integers, 1 - 4, representing the selected function or waveform memory.

This example selects channel 1 as the source for markers Ax and Ay.

10 OUTPUT 707;":MARKER:X1Y1SOURCE CHANNEL1"
20 END

:MARKer:X1Ylsource?

The :MARKer:X1Y1source? query returns the current source for markers
Ax and Ay.

[:MARKer:X1Ylsource] {CHANnel<N> | FUNCtion<N> |
WMEMory<N> } <NL>

This example returns the current source selection for the Ax and Ay markers
to the string variable, Selection$, then prints the contents of the variable to the
computer’s screen.

10 DIM Selection$[50] !Dimension variable
20 OUTPUT 707;":MARKER:X1Y1SOURCE?"

30 ENTER 707;Selection$

40 PRINT Selection$

50 END

19-18

Marker Commands
X2Y2source

Command

<N>

Example

Query

Returned Format

Example

X2Y2source

:MARKer:X2Y2source {CHANnel<N> | FUNCtion<N> |
WMEMory<Ns> }

The :MARKer:X2Y2source command sets the source for the Bx and By markers.
The channel you specify must be enabled for markers to be displayed. If the
channel, function, or waveform memory that you specify is not on, an error
message is issued and the query will return channel 1.

CHANnel<N> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.

An integer, 1 - 4, for all other Infiniium Oscilloscope models.
FUNCtion<N> and WMEMory<N> are:

Integers, 1 - 4, representing the selected function or waveformm memory.

This example selects channel 1 as the source for markers Bx and By.

10 OUTPUT 707;":MARKER:X2Y2SOURCE CHANNEL1"
20 END

:MARKer:X2Y2source?

The :MARKer:X2Y2source? query returns the current source for markers
Bx and By.

[:MARKer:X2Y2source] {CHANnel<N> | FUNCtion<N> |
WMEMory<N> } <NL>

This example returns the current source selection for the Bx and By markers
to the string variable, Selection$, then prints the contents of the variable to the
computer’s screen.

10 DIM Selection$[50] !Dimension variable
20 OUTPUT 707;" :MARKER:X2Y2SOURCE?"

30 ENTER 707;Selection$

40 PRINT Selection$

50 END

19-19

Marker Commands
XDELta?

Query

Returned Format

<time>

Example

XDELta?

:MARKer :XDELta?

The :MARKer:XDELta? query returns the time difference between Ax and Bx
time markers.

Xdelta = time at Bx — time at Ax

[:MARKer:XDELta] <time><NL>

Time difference between Ax and Bx time markers in seconds.

This example returns the current time between the Ax and Bx time markers to
the numeric variable, Time, then prints the contents of the variable to the
computer’s screen.

10
20
30
40
50

OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
OUTPUT 707;" :MARKER :XDELTA?"

ENTER 707;Time

PRINT Time

END

19-20

Marker Commands
Y1Position

Command

<Ay positions>

Example

Query

Returned Format

Example

Y1Position

:MARKer:Y1Position <Ay position>

The :MARKer:Y1Position command sets the Ay marker position on the specified
source.

A real number for the current measurement unit value at Ay (volts, amps, or
watts).

This example sets the Ay marker to 10 mV.

10 OUTPUT 707;":MARKER:Y1POSITION 10E-3"
20 END

:MARKer:Y1lPosition?

The :MARKer:Y1Position? query returns the current measurement unit level at
the Ay marker position.

[:MARKer:Y1lPosition] <Ay position><NL>

This example returns the current setting of the Ay marker to the numeric
variable, Value, then prints the contents of the variable to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MARKER:Y1POSITION?"

30 ENTER 707;Value

40 PRINT Value

50 END

19-21

Marker Commands
Y2Position

Command

<By positions>

Example

Query

Returned Format

Example

Y2Position

:MARKer:Y2Position <By position>

The :MARKer:Y2Position command sets the By marker position on the specified
source.

A real number for the current measurement unit value at By (volts, amps, or
watts).

This example sets the By marker to -100 mV.

10 OUTPUT 707;":MARKER:Y2POSITION -100E-3"
20 END

:MARKer:Y2Position?

The :MARKer:Y2Position? query returns the current measurement unit level at
the By marker position.

[:MARKer:Y2Position] <By position><NL>

This example returns the current setting of the By marker to the numeric
variable, Value, then prints the contents of the variable to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;" :MARKER:Y2POSITION?"

30 ENTER 707;Value

40 PRINT Value

50 END

19-22

Marker Commands
YDELta?

Query

Returned Format

<value>

Example

YDELta?

:MARKer:YDELta?

The :MARKer:YDELta? query returns the current measurement unit difference
between Ay and By.

Vdelta = value at By — value at Ay

[:MARKer:YDELta] <value><NL>

Measurement unit difference between Ay and By.

This example returns the voltage difference between Ay and By to the numeric
variable, Volts, then prints the contents of the variable to the computer’s screen.

10
20
30
40
50

OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
OUTPUT 707;" :MARKER:YDELTA?"

ENTER 707;Volts

PRINT Volts

END

19-23

19-24

20

Measure Commands

Measure Commands

The commands in the MEASure subsystem are used to make parametric
measurements on displayed waveforms.

These MEASure commands and queries are implemented in the
Infiniium Oscilloscopes:

e AREA

¢ CGRade:CROSsing

¢ CGRade:DCDistortion

¢ CGRade:EHEight

e CGRade:EWIDth

e CGRade:JITTer

e CGRade:QFACtor

e CLEar | SCRatch

e (CTCJitter (available only on the 54845A and 54846A)
e DEFine

e DELTatime

e DUTYcycle

e FALLtime

e FFT:DFRequency (delta frequency)
e FFT:DMAGnitude (delta magnitude)
e FFT:FREQuency

e FFT:MAGNitude

e FFT:PEAK1

e FFT:PEAK2

e FFT:THReshold

e FREQuency

e HISTogram:HITS

e HISTogram:MEAN

e HISTogram:MEDian

e HISTogram:M1S

e HISTogram:M2S

20-2

HISTogram:M3S
HISTogram:PEAK
HISTogram:PP
HISTogram:STDDev
JITTer (available only on the 54845A and 54846A)
NWIDth
OVERshoot
PERiod

PHAse
PREShoot
PWIDth
RESults?
RISetime
SCRatch | CLEar
SENDvalid
SOURce
STATistics
TEDGe

TMAX

TMIN

TVOLt
VAMPlitude
VAVerage
VBASe

VLOWer

VMAX

VMIDdle

VMIN

VPP

VRMS

VTIMe

VTOP

VUPPer

Measure Commands

20-3

Measure Commands

FFT Commands

The :MEASure:FFT commands control the FFT measurements that are
accessible through the Measure subsystem.

Measurement Setup

To make a measurement, the portion of the waveform required for that
measurement must be displayed on the oscilloscope.

e For a period or frequency measurement, at least one and a half
complete cycles must be displayed.

e For a pulse width measurement, the entire pulse must be displayed.
e For arise time measurement, the leading (positive-going) edge of the
waveform must be displayed.

¢ For a fall time measurement, the trailing (negative-going) edge of the
waveform must be displayed.

User-Defined Measurements

When you make user-defined measurements, the defined parameters
must be set before actually sending the measurement command or
query.

Measurement Error

If a measurement cannot be made because of a lack of data, because the
source waveform is not displayed, the requested measurement is not
possible (for example, a period measurement on an FFT waveform), or
for some other reason, the following results are returned:

e 9.99999E+37 is returned as the measurement result.
e [f SENDvalid is ON, the error code is also returned.

Making Measurements

If more than one period, edge, or pulse is displayed, time measurements
are made on the first, left-most portion of the displayed waveform.

When any of the defined measurements are requested, the oscilloscope
first determines the top (100%) and base (0%) voltages of the waveform.
From this information, the oscilloscope determines the other important
voltage values (10%, 90%, and 50% voltage values) for making
measurements.

20-4

Measure Commands

The 10% and 90% voltage values are used in the rise time and fall time
measurements when standard measurements are selected. The 50%
voltage value is used for measuring frequency, period, pulse width, and
duty cycle with standard measurements selected.

You can also make measurements using user-defined parameters instead
of the standard measurement values.

When the command form of a measurement is used, the oscilloscope is
placed in the continuous measurement mode. The measurement result
will be displayed on the front panel. There may be a maximum of four
measurements running continuously. Use the SCRatch command to turn
off the measurements.

When the query form of the measurement is used, the measurement is
made one time, and the measurement result is returned.

e [fthe current acquisition is complete, the current acquisition is
measured and the result is returned.

e If the current acquisition is incomplete and the oscilloscope is
running, acquisitions will continue to occur until the acquisition is
complete. The acquisition will then be measured and the result
returned.

e [fthe current acquisition is incomplete and the oscilloscope is
stopped, the measurement result will be 9.99999e+37 and the
incomplete result state will be returned if SENDvalid is ON.

All measurements are made using the entire display, except for
VAVerage and VRMS which allow measurements on a single cycle.
Therefore, if you want to make measurements on a particular cycle,
display only that cycle on the screen.

Measurements are made on the displayed waveforms specified by the
SOURce command. The SOURce command lets you specify two sources.
Most measurements are only made on a single source. Some
measurements, such as the DELTatime measurement, require two
sources.

If the waveformis clipped, the measurement result may be questionable.
In this case, the value returned is the most accurate value that can be
made using the current scaling. You might be able to obtain a more
accurate measurement by adjusting the vertical scale to prevent the
waveform from being clipped.

20-5

Measure Commands
AREA

Command

<source>

<N>

Example

Query

Returned Format

Example

AREA

:MEASure:AREA {CYCle | DISPlay} [, <source>]

The :MEASure:AREA command turns on the area measurement. The area
measurement measures between the waveform, or a selected cycle of the
waveform, and the waveform ground. When measuring Area, it is sometimes
useful to use the Subtract Math Operator to remove any dc offset from a
waveform you want to measure. Also see Math/FFT Functions for more details.

{CHANnel<N> | FUNCtion<N> | WMEMory<N>}

CHANnRel<N> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.

An integer, 1 - 4, for all other Infiniium Oscilloscope models.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

This example turns on the area measurement which measures between the
waveform and ground. Only that portion of the waveform which is in the
waveform viewing area is measured.

10 OUTPUT 707; "MEASURE:AREA DISPLAY"
20 END

:MEASure:AREA?

The :MEASure:AREA? query returns the area measurement.

[:MEASure:AREA] <value>[, <result state>]<NL>

This example places the current selection for the area to be measured in the
string variable, Selection$, then prints the contents of the variable to the
computer’s screen.

10 DIM Selection$[50]

20 OUTPUT 707; "MEASure:AREA?"
30 ENTER 707;Selection$

40 PRINT Selection$

50 END

20-6

Measure Commands
CGRade:CROSsing

Command

Example

Query

Returned Format
<value>

<result_ state>

Example

CGRade:CROSsing

:MEASure:CGRade: CROSsing

The :MEASure:CGRade:CROSsing command enables the crossing level percent
measurement on the current eye pattern. Before using this command or query,
you must use the :DISPlay:CGRade command to enable the color grade
persistence feature.

This example measures the crossing level.

10 OUTPUT 707; "MEASURE : CGRADE : CROSSING"
20 END

:MEASure:CGRade :CROSsing?

The :MEASure:CGRade:CROSsing? query returns the crossing level percent
measurement of the current eye diagram on the color grade display. Before
using this command or query, you must use the :DISPlay:CGRade command to
enable the color grade persistence feature.

[:MEASure:CGRade:CROSsing] <values> [, <result state>] <NL>
The crossing level.

If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

This example places the current crossing level in the numeric variable, Value,
then prints the contents of the variable to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !|Response headers off
20 OUTPUT 707;" :MEASURE:CGRADE:CROSSING?"

30 ENTER 707;Value

40 PRINT Value

50 END

20-7

Measure Commands
CGRade:DCDistortion

Command

<format>

Example

Query

Returned Format
<value>

<result_ state>

Example

CGRade:DCDistortion

:MEASure:CGRade:DCDistortion <formats>

The :MEASure:CGRade:DCDistortion command enables the duty cycle
distortion measurement on the current eye pattern. The parameter specifies
the format for reporting the measurement. Before using this command or query,
you must use the :DISPlay:CGRade command to enable the color grade
persistence feature.

{TIME | PERCent)

This example measures the duty cycle distortion.

10 OUTPUT 707; "MEASURE :CGRADE :DCDISTORTION TIME"
20 END

:MEASure:CGRade:DCDistortion? <formats>

The :MEASure:CGRade:DCDistortion query returns the duty cycle distortion
measurement of the color grade display. Before using this command or query,
you must use the :DISPlay:CGRade command to enable the color grade
persistence feature.

[:MEASure:CGRade:DCDistortion] <value>[, <result_state>] <NL>
The duty cycle distortion.

If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

This example places the current duty cycle distortion in the numeric variable,
Value, then prints the contents of the variable to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"

20 OUTPUT 707;" :MEASURE:CGRADE:DCDISTORTION? PERCENT"
30 ENTER 707;Value

40 PRINT Value

50 END

20-8

Measure Commands
CGRade:EHEight

Command

<format>

Example

Query

Returned Format
<value>

<result state>

Example

CGRade:EHEight

:MEASure:CGRade:EHEight <formats>

The :MEASure:CGRade:EHEight command enables the eye height
measurement on the current eye pattern. The parameter specifies the format
for reporting the measurement. Before using this command or query, you must
use the :DISPlay:CGRade command to enable the color grade persistence
feature.

{TIME | PERCent)

This example measures the eye height.

10 OUTPUT 707; "MEASURE:CGRADE : EHEIGHT TIME"
20 END

:MEASure:CGRade:EHEight? <formats>

The :MEASure:CGRade:EHEight? query returns the eye height measurement
of the color grade display. Before using this command or query, you must use
the :DISPlay:CGRade command to enable the color grade persistence feature.

[:MEASure:CGRade:EHEight] <value>[, <result state>]<NL>
The eye height.

If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

This example places the current eye height in the numeric variable, Value, then
prints the contents of the variable to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;" :MEASURE:CGRADE:EHEIGHT?"

30 ENTER 707;Value

40 PRINT Value

50 END

20-9

Measure Commands
CGRade:EWIDth

Command

Example

Query

Returned Format
<value>

<result state>

Example

CGRade:EWIDth

:MEASure:CGRade:EWIDth

The :MEASure:CGRade:EWIDth command enables the eye width measurement
on the current eye pattern. Before using this command or query, you must use
the :DISPlay:CGRade command to enable the color grade persistence feature.

This example measures the eye width.

10 OUTPUT 707; "MEASURE :CGRADE : EWIDTH"
20 END

:MEASure:CGRade:EWIDth?

The :MEASure:CGRade:EWIDth? query returns the eye width measurement of
the color grade display. Before using this command or query, you must use the
:DISPlay:CGRade command to enable the color grade persistence feature.

[:MEASure:CGRade:EWIDth] <value> [, <result state>] <NL>
The eye width.

If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

This example places the current eye width in the numeric variable, Value, then
prints the contents of the variable to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:CGRADE:EWIDTH?"

30 ENTER 707;Value

40 PRINT Value

50 END

20-10

Measure Commands
CGRade:JITTer

Command

<format>

Example

Query

Returned Format
<value>

<result_ state>

Example

CGRade:JITTer

:MEASure:CGRade:JITTer <formats>

The :MEASure:CGRade:JITTer measures the jitter at the eye diagram crossing
point. The parameter specifies the format, peak-to-peak or RMS, of the
returned results. Before using this command or query, you must use the
:DISPlay:CGRade command to enable the color grade persistence feature.

{PP | RMS)

This example measures the jitter.

10 OUTPUT 707; "MEASURE:CGRADE:JITTER RMS"
20 END

:MEASure:CGRade:JITTer? <formats>

The :MEASure:CGRade:JITTer? query returns the jitter measurement of the
color grade display. Before using this command or query, you must use the
:DISPlay:CGRade command to enable the color grade persistence feature.

[:MEASure:CGRade:JITTer] <value>[,<result state>]<NL>
The jitter.

If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

This example places the current jitter in the numeric variable, Value, then prints
the contents of the variable to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:CGRADE:JITTER? RMS"

30 ENTER 707;Value

40 PRINT Value

50 END

20-11

Measure Commands
CGRade:QFACtor

Command

Example

Query

Returned Format
<value>

<result state>

Example

CGRade:QFACtor

:MEASure:CGRade:QFACtor

The :MEASure:CGRade:QFACtor command measures the Q factor. Before
using this command or query, you must use the :DISPlay:CGRade command to
enable the color grade persistence feature.

This example measures the Q factor.

10 OUTPUT 707; "MEASURE :CGRADe : QFACTOR"
20 END

:MEASure:CGRade:QFACtor?

The :MEASure:CGRade:QFACtor? query returns the Q factor measurement of
the color grade display. Before using this command or query, you must use the
:DISPlay:CGRade command to enable the color grade persistence feature.

[:MEASure:CGRade:QFACtor] <value>[, <result state>]<NL>
The Q factor.

If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

This example places the @ factor in the numeric variable, Value, then prints the
contents of the variable to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;" :MEASURE:CGRADE:QFACTOR"

30 ENTER 707;Value

40 PRINT Value

50 END

20-12

Measure Commands
CLEar

Command

Example

CLEar

:MEASure: {CLEar | SCRatch}

The :MEASure:CLEar command clears the measurement results from the
screen and disables all previously enabled measurements.

This example clears the current measurement results from the screen.

10 OUTPUT 707;":MEASURE:CLEAR"
20 END

20-13

Measure Commands
CTCJitter

CTClJitter

Command :MEASure:CTCJitter [<sources>]

The :MEASure:CTCJitter command measures the cycle-to-cycle jitter for the
specified channel, waveform memory, or function. Sources are specified with
the :MEASure:SOURce command or with the optional parameter following the
:MEASure:CTCJitter command.

| This command is only available on the 54845A and 54846A oscilloscopes.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> CHANnel<N> is: integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:
An integer, 1 - 4, representing the selected function or waveform memory.

Example This example measures the cycle-to-cycle jitter of channel 1.
10 OUTPUT 707;"MEASURE:CTCJITTER CHANNELL"
20 END

20-14

Query

Returned Format
<value>

<result_ state>

Example

Measure Commands
CTCJitter

:MEASure:CTCJitter? [<sources>]

The :MEASure:CTCJitter? query returns the cycle-to-cycle jitter measurement
for the selected source. Before using this query, you must use the
:MEASure:CTCJitter command to enable the cycle-to-cycle jitter measurement
feature.

| This query is only available on the 54845A and 54846A oscilloscopes.

[:MEASure:CTCJitter] <value>|[,<result state>]<NL>
The cycle-to-cycle jitter measurement.

If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

This example places the cycle-to-cycle jitter measurement in the numeric
variable, Value, then prints the contents of the variable to the computer’s
screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:CGRADE:QFACTOR"

30 ENTER 707;Value

40 PRINT Value

50 END

20-15

Measure Commands
DEFine

DEFine

Command :MEASure:DEFine <meas_spec>

The :MEASure:DEFine command sets up the definition for measurements by
specifying the delta time, threshold, or top-base values. Changing these values
may affect other measure commands. Table 20-1 identifies the relationships
between user-defined values and other MEASure commands.

<meas_spec> {DELTatime | EWINdow | THResholds | TOPBase }

Table 20-1 :MEASure:DEFine Interactions
MEASure Commands DELTatime THResholds TOPBase
RISEtime X X
FALLtime X X
PERiod X X
FREQuency X X
VTOP X
VBASe X
VAMPlitude X
PWIDth X X
NWIDth X X
OVERshoot X X
DUTYcycle X X
DELTatime X X X
VRMS X X
PREShoot X X
VLOWer X X
VMIDdle X X
VUPPer X X
VAVerage X X
VARea X X

20-16

Command

<edge
_direction>

<edge
_number>

<edge

_positions>

Command

<start>
<stop>

<start_after>

Command

<upper pct>
<middle pct>
<lower pcts>

<upper_volts>
<middle volts>
<lower volts>

Measure Commands
DEFine

:MEASure:DEFine DELTatime,<start edge directions>,
<start edge numbers>,<start edge positions,

<stop edge directions>,<stop edge numbers,
<stop_ edge position>

{RISing | FALLing | EITHer} for start and stop directions.
An integer from 1 to 65534 for start and stop edge numbers.

{UPPer | MIDDIle | LOWer} for start and stop edge positions.

:MEASure:DEFine EWINdow, <start>, <stop>
[,<start_after>]

An integer from 1 to 100 for horizontal starting point. (Default value is 40%.)
An integer from 1 to 100 for horizontal stopping point. (Default value is 60%.)
An integer from 1 to 63,488 for number of hits to acquire before making

measurements. (Default value is 1.)

:MEASure:DEFine THResholds, { {STANdard} |
{PERCent, <upper pcts>,<middle pct>,<lower pcts>} |
{vOoLTage, <upper voltss>,<middle voltss,

<lower volts>}}, {ALL|CHANnel<N> |
FUNCtion<N>|WMEMory<Ns>}

An integer, - 25 to 125.

A real number specifying voltage.

20-17

Command

<top_volts>
<base_volts>

Example

Query

Returned Format

Measure Commands
DEFine

:MEASure:DEFine TOPBase, { {STANdard}
| {<top_voltss>, <base voltss>}}, {ALL|CHANnel<Ns> |
FUNCtion<N>|WMEMory<N>}

A real number specifying voltage.

This example sets the parameters for a time measurement from the first positive
edge at the upper threshold level to the second negative edge at the middle
threshold.

10 OUTPUT 707;":MEASURE:DEFINE DELTATIME,RISING,

1,UPPER, FALLING, 2, MIDDLE"

20 END

If you specify one source, both parameters apply to that waveform. If you
specify two sources, the measurement is from the first positive edge on source
1 to the second negative edge on source 2.

Specify the source either using :MEASure:SOURce, or using the optional
<source> parameter when the DELTatime measurement is started.

:MEASure:DEFine? {DELTatime | EWINdow | THResholds|
TOPBase}<start>

The :MEASure:DEFine? query returns the current setup for the specified
parameter.

[:MEASure:DEFine DELTatime] <start_edge_direction>,
<start_edge numbers>,<start edge positions,
<stop_edge direction>,<stop edge numbers,
<stop_edge position><NL>

[:MEASure:DEFine] EWINdow,<start>,<stop>,<start_after> <NL>

[:MEASure:DEFine] THResholds, {{STANdard} |

{PERcent, <upper pcts>,<middle pcts>,<lower pct>} |

{VOLTage, <upper volts>,<middle voltss>,<lower voltss}}<NL>,
{ALL|CHANnel<N> | FUNCtion<N> | WMEMory<N>}

20-18

Example

Measure Commands
DEFine

[:MEASure:DEFine] TOPBase, { {STANdard}
| {<top_volts>, <base voltss>}}<NL>, {ALL|CHANnel<Ns> |
FUNCtion<N> | WMEMory<Ns>}

Use the Suffix Multiplier Instead

Using "'mV" or "V" following the numeric value for the voltage value will cause
Error 138 - Suffix not allowed. Instead, use the convention for the suffix multiplier
as described in chapter 3, "Message Communication and System Functions."

This example returns the current setup for the measurement thresholds to the
string variable, Setup$, then prints the contents of the variable to the
computer’s screen.

10
20
30
40
50

DIM Setups$[50] !Dimension variable
OUTPUT 707;" :MEASURE:DEFINE? THRESHOLDS"
ENTER 707; Setup$

PRINT Setup$

END

20-19

Measure Commands
DELTatime

Command

<source>

<N>

Example

DELTatime

:MEASure:DELTatime [<source>[,<source>]]

The :MEASure:DELTatime command measures the delta time between two
edges. If one source is specified, the delta time from the leading edge of the
specified source to the trailing edge of the specified source is measured. If two
sources are specified, the delta time from the leading edge on the first source
to the trailing edge on the second source is measured.

Sources are specified with the :MEASure:SOURce command or with the
optional parameter following the :MEASure:DELTatime command. The rest of
the parameters for this command are specified with the :MEASure:DEFine
command.

The necessary waveform edges must be present on the display. The query will
return 9.99999E+37 if the necessary edges are not displayed.
{CHANnel<N> | FUNCtion<N> | WMEMory<N>}

CHANnRel<N> is:
An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

This example measures the delta time between channel 1 and
channel 2.

10 OUTPUT 707;":MEASURE:DELTATIME CHANNEL1, CHANNEL2"
20 END

20-20

Query

Returned Format

<value>

<result states>

Example

Related Commands

Measure Commands
DELTatime

:MEASure:DELTatime? [<source>[, <source>]]

The :MEASure:DELTatime? query returns the measured delta time value.

[:MEASure:DELTatime] <values>|[,<result state>]<NL>

Delta time from the first specified edge on one source to the next specified edge
on another source.

If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

This example places the current value of delta time in the numeric variable,
Value, then prints the contents of the variable to the computer’s screen. This
example assumes the source was set using :MEASure:SOURce.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;" :MEASURE:DELTATIME?"

30 ENTER 707;Value

40 PRINT Value

50 END

Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers.
Otherwise, the headers may cause misinterpretation of returned data.

:MEASure:DEFine DELTatime

20-21

Measure Commands
DUTYcycle

Command

<source>

<N>

Example

DUTYcycle

:MEASure:DUTYcycle [<sources>]

The :MEASure:DUTYcycle command measures the ratio of the positive pulse
width to the period. Sources are specified with the :MEASure:SOURce
command or with the optional parameter following the :MEASure:DUTYcycle
command.

{CHANnel<N> | FUNCtion<N> | WMEMory<N>}

CHANnel<N> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<N> and WMEMory<N> are:
An integer, 1 - 4, representing the selected function or waveform memory.

This example measures the duty cycle of the last specified waveform.

10 OUTPUT 707;" :MEASURE:DUTYCYCLE"
20 END

20-22

Query

Returned Format
<value>

<result states>

Example

Measure Commands
DUTYcycle

:MEASure:DUTYcycle? [<sources]

The :MEASure:DUTYcycle? query returns the measured duty cycle of the
specified source.

[:MEASure:DUTYcycle] <value>[,<result_state>]<NL>

The ratio of the positive pulse width to the period.

If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

This example places the current duty cycle of the specified waveform in the
numeric variable, Value, then prints the contents of the variable to the
computer’s screen.

10
20
30
40
50

OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
OUTPUT 707;" :MEASURE :DUTYCYCLE?

ENTER 707;Value

PRINT Value

END

20-23

Measure Commands
FALLtime

Command

<source>

<N>

Example

FALLtime

:MEASure:FALLtime [<source>]

The :MEASure:FALLtime command measures the time at the upper threshold
of the falling edge, measures the time at the lower threshold of the falling edge,
then calculates the fall time. Sources are specified with the :MEASure:SOURce
command or with the optional parameter following the :MEASure:FALLtime
command.

The first displayed falling edge is used for the fall-time measurement.
Therefore, for best measurement accuracy, set the sweep speed as fast as
possible while leaving the falling edge of the waveform on the display.

Fall time = time at lower threshold point — time at upper threshold point.
{CHANnel<N> | FUNCtion<N> | WMEMory<N>}

CHANnel<N> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<N> and WMEMory<N> are:
An integer, 1 - 4, representing the selected function or waveform memory.

This example measures the fall time of the last specified waveform.

10 OUTPUT 707;":MEASURE:FALLTIME"
20 END

20-24

Query

Returned Format
<value>

<result_ state>

Example

Measure Commands
FALLtime

:MEASure:FALLtime? [<source>]

The :MEASure:FALLtime? query returns the fall time of the specified source.

[:MEASure:FALLtime] <values>[,<result state>]<NL>

Time at lower threshold - time at upper threshold.

If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

This example places the current value for fall time in the numeric variable,
Value, then prints the contents of the variable to the computer’s screen.

10
20
30
40
50

OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
OUTPUT 707;" :MEASURE: FALLTIME?"

ENTER 707;Value

PRINT Value

END

20-25

Measure Commands
FFT:DFRequency

Command

<source>

<N>

Query

Returned Format

<result_ state>

Related Commands

Example

FFT:DFRequency

:MEASure:FFT:DFRequency [<source>]

The :MEASure:FFT:DFRequency command enables the delta frequency
measurement. The source is specified with the :MEASure:SOURce command
or with the optional parameter following the :MEASure:FFT command.

The source must be a function that is set to FFT, or a waveform memory that
contains an FFT for this command and query to work.

{(FUNCtion<N> | WMEMory<N>}

For functions and waveform memories: 1, 2, 3, or 4.

:MEASure:FFT:DFRequency? [<source>]

The :MEASure:FFT:-DFRequency? query returns the FFT delta frequency of the
specified peaks.

[:MEASure:FFT:DFRequency]
<delta frequencys> [, <result state>]<NL>

If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

:MEASure:FFT:PEAK]1, :MEASure:FFT:PEAKZ, :MEASure:FFT:THReshold

This example measures the frequency difference between peaks 2 and 3 of an
FFT of channel 4.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off

20 OUTPUT 707;":func4:fftm chan4"!Perform FFT on channel 4

30 OUTPUT 707;":func4:disp on"!Display the FFT

40 OUTPUT 707;":meas:FFT:thr -47"!Set peak threshold at -47 dBm
50 OUTPUT 707;":meas:FFT:Peakl 2"!Meas diff between peak 2 and 3
60 OUTPUT 707;":meas:FFT:Peak2 3"

70 OUTPUT 707;":meas:FFT:dfr func4"!Perform dfrequency meas
80 OUTPUT 707;":meas:FFT:dfr? func4"!Query oscilloscope for
measurement

90 ENTER 707;Frequency

100 PRINT Frequency

110 END

20-26

Measure Commands
FFT:DMAGnitude

Command

<source>

<N>

Query

Returned Format

<result_ state>

Related Commands

FFT:DMAGnitude

:MEASure:FFT:DMAGnitude [<source>]

The :MEASure:FFT:DMAGnitude command enables the delta magnitude
measurement. The source is specified with the :MEASure:SOURce command
or with the optional parameter following the :MEASure:FFT command.

The source must be a function that is set to FF'T, or a waveform memory that
contains an FFT for this command and query to work.

{(FUNCtion<N> | WMEMory<N>}

For functions and waveform memories: 1, 2, 3, or 4.

:MEASure:FFT:DMAGnitude? [<source>]

The :MEASure:FFT:DMAGnitude? query returns the delta magnitude of the
specified peaks.

[:MEASure:FFT:DMAGnitude]

<delta magnitudes>[, <result state>]<NL>

If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

:MEASure:FFT:PEAK]1, :MEASure:FFT:PEAKZ, :MEASure:FFT:THReshold

20-27

Measure Commands
FFT:FREQuency

Command

<source>

<N>

Query

Returned Format

<result_ state>

FFT:FREQuency

:MEASure:FFT:FREQuency [<sources]

The :MEASure:FFT:FREQuency command enables the frequency
measurement. The source is specified with the :MEASure:SOURce command
or with the optional parameter following the :MEASure:FFT command.

The source must be a function that is set to FFT, or a waveform memory that
contains an FFT for this command and query to work.

{(FUNCtion<N> | WMEMory<N>}

For functions and waveform memories: 1, 2, 3, or 4.

:MEASure:FFT:FREQuency? [<source>]

The :MEASure:FFT:FREQuency? query returns the frequency measurement.

[:MEASure:FFT:FREQuency] <frequency>[,<result state>]<NL>

If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

20-28

Measure Commands
FFT:MAGNitude

Command

<source>

<N>

Query

Returned Format

<result_ state>

FFT:MAGNitude

:MEASure:FFT:MAGNitude [<source>]

The :MEASure:FFT:MAGNitude command measures the magnitude of the FFT.
The source is specified with the :MEASure:SOURce command or with the
optional parameter following the :MEASure:FFT command.

The source must be a function that is set to FF'T, or a waveform memory that
contains an FFT for this command and query to work.

{(FUNCtion<N> | WMEMory<N>}

For functions and waveform memories: 1, 2, 3, or 4.

:MEASure:FFT:MAGNitude?

The :MEASure:FFT:MAGNitude? query returns the magnitude value of the FFT.

[:MEASure:FFT:FMAGNitude] <magnitudes>[,<result state>]<NL>

If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

20-29

Measure Commands
FFT:PEAK1

Command

<lst_peak
_number>

Query

Returned Format

See Also

<N>

FFT:PEAK1

:MEASure:FFT:PEAK]l <lst peak numbers

The :MEASure:FFT:PEAK1command sets the peak number of the first peak for
FFT measurements. The source is specified with the :MEASure:SOURce
command as FUNCtion<N> or WMEMory<N>.

An integer, 1 to 100,000 specifying the number of the first peak.

For functions and waveform memories: 1, 2, 3, or 4.

:MEASure:FFT:PEAKL?

The :MEASure:FFT:PEAK1? query returns the peak number currently set as
the first peak.

[:MEASure:FFT:PEAK1] <lst peak number><NL>

:MEASure:FFT:THReshold
Also see the example for :MEASure:FFT:DFRequency in this chapter.

20-30

Measure Commands
FFT:PEAK2

Command
<2nd_peak
_number>
<N>
Query

Returned Format

See Also

FFT:PEAK2

:MEASure:FFT:PEAK2 <2nd_peak numbers>

The :MEASure:FFT:PEAK2 command sets the peak number of the second peak
for FFT measurements. The source is specified with the :MEASure:SOURce
command as FUNCtion<N> or WMEMory<N>.

An integer, 1 to 100,000 specifying the number of the second peak.

For functions and waveform memories: 1, 2, 3, or 4.

:MEASure:FFT:PEAK2?

The :MEASure:FFT:PEAK2? query returns the peak number currently set as
the second peak.

[:MEASure:FFT:PEAK1] <2nd peak number><NL>

:MEASure:FFT:THReshold
Also see the example for :MEASure:FFT:-DFRequency in this chapter.

20-31

Measure Commands
FFT:THReshold

FFT:THReshold

Command :MEASure:FFT:THReshold <threshold value>

The :MEASure:FFT:THReshold command sets the peak search threshold value
in dB. The dB after the threshold value is optional.

<threshold
_value> A real number specifying the threshold for peaks.

Query :MEASure:FFT:THReshold?

The :MEASure:FFT:THReshold? query returns the peak search threshold value.

Returned Format [:MEASure:FFT:THReshold] <threshold value><NL>

These :MEASure commands also operate on FFT functions:

Measure Command Measurement Performed
:TMAX The frequency of the maximum value in the spectrum.
:TMIN The frequency of the minimum value in the spectrum.
:‘VMAX The maximum value in the spectrum.
VMIN The minimum value in the spectrum.
:\VPP The range of values in the spectrum.
VTIM The value at a specified frequency.
See Also Also see the example for :MEASure:FFT:DFRequency in this chapter.

20-32

Measure Commands
FREQuency

Command

<source>

<N>

Example

FREQuency

:MEASure:FREQuency [<sources>]

The :MEASure:FREQuency command measures the frequency of the first
complete cycle on the screen using the mid-threshold levels of the waveform
(50% levels if standard measurements are selected). The source is specified
with the :MEASure:SOURce command or with the optional parameter following
the :MEASure:FREQuency command.

The algorithm is:
If the first edge on the screen is rising,
then
frequency = 1/(time at second rising edge - time at first rising edge)
else
frequency = 1/(time at second falling edge - time at first falling edge).

{CHANnel<N> | FUNCtion<N> | WMEMory<N>}

CHANnel<N> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<N> and WMEMory<N> are:
An integer, 1 - 4, representing the selected function or waveform memory.

This example measures the frequency of the last specified waveform.

10 OUTPUT 707;" :MEASURE:FREQUENCY"
20 END

20-33

Query

Returned Format

<value>

<result_ state>

Example

Measure Commands
FREQuency

:MEASure:FREQuency? [<sources>]

The :MEASure:FREQuency? query returns the measured frequency.

[:MEASure:FREQuency] <value>|[,<result state>]<NL>

The frequency value in Hertz of the first complete cycle on the screen using the
mid-threshold levels of the waveform.

If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

This example places the current frequency of the waveform in the numeric
variable, Freq, then prints the contents of the variable to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;" :MEASURE: FREQUENCY?"

30 ENTER 707;Freq

40 PRINT Freq

50 END

20-34

Measure Commands
HISTogram:HITS

Command

<source>

<number>

Example

HISTogram:HITS

:MEASure:HISTogram:HITS [<sources>]

The :MEASure:HISTogram:HITS command enables the number of hits within
the histogram measurement. The source is specified with the
MEASure:SOURce command or with the optional parameter following the HITS
command. The HISTogram:HITS measurement only applies to the histogram
waveform or memories containing histograms.

The measurement requires that the histogram feature be enabled using the
:HISTogram:MODE command.

{(WMEMory<number> | HISTogramy}

For waveform memories (WMEMory): 1,2,3, or 4.

This example measures the number of hits within the histogram stored in
WMEMoryl.

10 OUTPUT 707; "MEASURE:HISTOGRAM:HITS WMEMORY1"
20 END

20-35

Query

Returned Format
<value>

<result state>

Example

Measure Commands
HISTogram:HITS

:MEASure:HISTogram:HITS? [<source>]

The :MEASure:HISTogram:HITS? query returns the number of hits
measurement within the histogram.

[:MEASure:HISTogram:HITS] <value>[, <result state>]<NL>

The number of hits in the histogram.

If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

This example returns the number of hits within the current histogram and prints
the result to the computer’s screen.

10
20
30
40
50

OUTPUT 707;":SYSTEM:HEADER OFF" IResponse headers off
OUTPUT 707;" :MEASURE:HISTOGRAM:HITS?"

ENTER 707;Histhits

PRINT Histhits

END

20-36

Measure Commands
HISTogram:MEAN

Command

<source>

<number>

Example

HISTogram:MEAN

:MEASure:HISTogram:MEAN [<sources>]

The :MEASure:HISTogram:MEAN command enables the mean of the histogram
measurement. The mean of the histogram is the average value of all the points
in the histogram. The source is specified with the MEASure:SOURce command
or with the optional parameter following the MEAN command. The
HISTogram:MEAN measurement only applies to the histogram waveform or
memories containing histograms.

The measurement requires that the histogram feature be enabled using the
:HISTogram:MODE command.

{(WMEMory<number> | HISTogram}
For waveform memories (WMEMory): 1,2,3, or 4.

This example measures the mean of the histogram source.

10 OUTPUT 707; "MEASURE:HISTOGRAM:MEAN HISTOGRAM"
20 END

20-37

Query

Returned Format
<value>

<result state>

Example

Measure Commands
HISTogram:MEAN

:MEASure:HISTogram:MEAN? [<source>]

The :MEASure:HISTogram:MEAN? query returns the measurement of the mean
of the histogram.

[:MEASure:HISTogram:MEAN] <value> [, <result state>]<NL>

The mean of the histogram.

If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

This example returns the mean of the current histogram and prints the result
to the computer’s screen.

10
20
30
40
50

OUTPUT 707;":SYSTEM:HEADER OFF" IResponse headers off
OUTPUT 707;" :MEASURE :HISTOGRAM: MEAN?"

ENTER 707;Histmean

PRINT Histmean

END

20-38

Measure Commands
HISTogram:MEDian

Command

<source>

<number>

Example

HISTogram:MEDian

:MEASure:HISTogram:MEDian [<source>]

The :MEASure:HISTogram:MEDian command enables the median of the
histogram measurement. The median of the histogram is the time or voltage of
the point at which 50% of the histogram is to the left or right (above or below
for vertical histograms). The source is specified with the MEASure:SOURce
command or with the optional parameter following the MEDian command. The
HISTogram:MEDian measurement only applies to the histogram waveform or
memories containing histograms.

The measurement requires that the histogram feature be enabled using the
:HISTogram:MODE command.
{(WMEMory<number> | HISTogram}

For waveform memories (WMEMory): 1,2,3, or 4.

This example measures the median of the histogram whose source has been
defined with the MEASure:SOURce command.

10 OUTPUT 707; "MEASURE:HISTOGRAM:MEDIAN"
20 END

20-39

Query

Returned Format
<value>

<result state>

Example

Measure Commands
HISTogram:MEDian

:MEASure:HISTogram:MEDian? [<sources>]

The :MEASure:HISTogram:MEDian? query returns the measurement of the
median of the histogram.

[:MEASure:HISTogram:MEDian] <value> [, <result state>]<NL>

The median of the histogram.

If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

This example returns the median of the current histogram and prints the result
to the computer’s screen.

10
20
30
40
50

OUTPUT 707;":SYSTEM:HEADER OFF" IResponse headers off
OUTPUT 707;" :MEASURE:HISTOGRAM: MEDIAN?"

ENTER 707;Histmed

PRINT Histmed

END

20-40

Measure Commands
HISTogram:M1S

Command

<source>

<number>

Example

HISTogram:M1S

:MEASure:HISTogram:M1S [<source>]

The :MEASure:HISTogram:M1S command enables the percentage of points
measurement that are within one standard deviation of the mean of the
histogram. The source is specified with the MEASure:SOURce command or
with the optional parameter following the M1S command. The HISTogram:M1S
measurement only applies to the histogram waveform or memories containing
histograms.

The measurement requires that the histogram feature be enabled using the
:HISTogram:MODE command.
{(WMEMory<number> | HISTogram}

For waveform memories (WMEMory): 1,2,3, or 4.

This example measures the percentage of points that are within one standard
deviation of the mean of the histogram of the data stored in waveform memory 3.

10 OUTPUT 707; "MEASURE:HISTOGRAM:M1S WMEMORY3"
20 END

20-41

Query

Returned Format

<value>

<result_ state>

Example

Measure Commands
HISTogram:M1S

:MEASure:HISTogram:M1S? [<sources>]

The :MEASure:HISTogram:M1S? query returns the measurement of the
percentage of points within one standard deviation of the mean of the histogram.

[:MEASure:HISTogram:M1S] <value>[,<result state>] <NL>

The percentage of points within one standard deviation of the mean of the
histogram.

If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

This example returns the percentage of points within one standard deviation of
the mean of the current histogram and prints the result to the computer’s
screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:HISTOGRAM:M1S?"

30 ENTER 707;Histmls

40 PRINT Histmls

50 END

20-42

Measure Commands
HISTogram:M2S

Command

<source>

<number>

Example

HISTogram:M2S

:MEASure:HISTogram:M2S [<source>]

The :MEASure:HISTogram:M2S command enables the percentage of points
measurement that are within two standard deviations of the mean of the
histogram. The source is specified with the MEASure:SOURce command or
with the optional parameter following the M2S command. The HISTogram:M2S
measurement only applies to the histogram waveform or memories containing
histograms.

The measurement requires that the histogram feature be enabled using the
:HISTogram:MODE command.
{(WMEMory<number> | HISTogram}

For waveform memories (WMEMory): 1,2,3, or 4.

This example measures the percentage of points that are within two standard
deviations of the mean of the histogram whose source is specified using the
MEASure:SOURce command.

10 OUTPUT 707; "MEASURE:HISTOGRAM:M2S™"
20 END

20-43

Query

Returned Format

<value>

<result_ state>

Example

Measure Commands
HISTogram:M2S

:MEASure:HISTogram:M2S? [<sources>]

The :MEASure:HISTogram:M2S? query returns the measurement of the
percentage of points within two standard deviations of the mean of the
histogram.

[:MEASure:HISTogram:M2S] <value> [, <result state>] <NL>

The percentage of points within two standard deviations of the mean of the
histogram.

If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

This example returns the percentage of points within two standard deviations
of the mean of the current histogram and prints the result to the computer’s
screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" IResponse headers off
20 OUTPUT 707;" :MEASURE:HISTOGRAM:M2S?"

30 ENTER 707;Histm2s

40 PRINT Histm2s

50 END

20-44

Measure Commands
HISTogram:M3S

Command

<source>

<number>

Example

HISTogram:M3S

:MEASure:HISTogram:M3S [<sources>]

The :MEASure:HISTogram:M3S command enables the percentage of points
measurement that are within three standard deviations of the mean of the
histogram. The source is specified with the MEASure:SOURce command or
with the optional parameter following the M3S command. The HISTogram:M3S
measurement only applies to the histogram waveform or memories containing
histograms.

The measurement requires that the histogram feature be enabled using the
:HISTogram:MODE command.
{(WMEMory<number> | HISTogram}

For waveform memories (WMEMory): 1,2,3, or 4.

This example measures the percentage of points that are within three standard
deviations of the mean of the histogram.

10 OUTPUT 707; "MEASURE:HISTOGRAM:M3S HISTOGRAM"
20 END

20-45

Measure Commands
HISTogram:M3S

Query :MEASure:HISTogram:M3S? [<sources>]

The :MEASure:HISTogram:M3S? query returns the measurement of the
percentage of points within three standard deviations of the mean of the
histogram.

Returned Format [:MEASure:HISTogram:M3S] <values> [, <result_state>]<NL>

<value> The percentage of points within three standard deviations of the mean of the
histogram.

<result state> IfSENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

Example This example returns the percentage of points within three standard deviations
of the mean of the current histogram and prints the result to the computer’s
screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" IResponse headers off
20 OUTPUT 707;" :MEASURE:HISTOGRAM:M3S?"

30 ENTER 707;Histm3s

40 PRINT Histm3s

50 END

20-46

Measure Commands
HISTogram:PEAK

Command

<source>

<number>

Example

HISTogram:PEAK

:MEASure:HISTogram:PEAK [<sources>]

The MEASure:HISTogram:PEAK command enables the number of hits in the
greatest peak of the histogram measurement. The source is specified with the
MEASure:SOURce command or with the optional parameter following the
PEAK command. The HISTogram:PEAK measurement only applies to the
histogram waveform or memories containing histograms.

The measurement requires that the histogram feature be enabled using the
:HISTogram:MODE command.

{(WMEMory<number> | HISTogramy}

For waveform memories (WMEMory): 1,2,3, or 4.

This example measures the number of hits in the greatest peak of the histogram
stored in waveform memory 2.

10 OUTPUT 707; "MEASURE:HISTOGRAM:PEAK WMEMORY2"
20 END

20-47

Query

Returned Format
<value>

<result state>

Example

Measure Commands
HISTogram:PEAK

:MEASure:HISTogram: PEAK? [<source>]

The :MEASure:HISTogram:PEAK? query returns the number of hits in the
greatest peak of the histogram measurement.

[:MEASure:HISTogram: PEAK] <value>[, <result state>]<NL>

The number of hits in the histogram peak.

If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

This example returns the number of hits in the greatest peak of the current
histogram and prints the result to the computer’s screen.

10
20
30
40
50

OUTPUT 707;":SYSTEM:HEADER OFF" IResponse headers off
OUTPUT 707;" :MEASURE :HISTOGRAM: PEAK?"

ENTER 707;Histpeak

PRINT Histpeak

END

20-48

Measure Commands
HISTogram:PP

Command

<source>

<number>

Example

HISTogram:PP

:MEASure:HISTogram:PP [<sources>]

The MEASure:HISTogram:PP command enables the width measurement of the
histogram. The width is measured as the time or voltage of the last histogram
bucket with data in it minus the time or voltage of the first histogram bucket
with data in it. The source is specified with the MEASure:SOURce command
or with the optional parameter following the PP command. The HISTogram:PP
measurement only applies to the histogram waveform or memories containing
histograms.

The measurement requires that the histogram feature be enabled using the
:HISTogram:MODE command.

{(WMEMory<number> | HISTogram}
For waveform memories (WMEMory): 1,2,3, or 4.

This example measures the width of the histogram.

10 OUTPUT 707; "MEASURE:HISTOGRAM:PP HISTOGRAM"
20 END

20-49

Query

Returned Format
<value>

<result_ state>

Example

Measure Commands
HISTogram:PP

:MEASure:HISTogram:PP? [<sources>]

The :MEASure:HISTogram:PP? query returns the measurement of the width of
the histogram.

[:MEASure:HISTogram:PP] <value> [, <result state>]<NL>

The width of the histogram.

If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

This example returns the width of the current histogram and prints the result
to the computer’s screen.

10
20
30
40
50

OUTPUT 707;":SYSTEM:HEADER OFF" IResponse headers off
OUTPUT 707;" :MEASURE:HISTOGRAM:PP?"

ENTER 707;Histpp

PRINT Histpp

END

20-50

Measure Commands
HISTogram:STDDev

Command

<source>

<number>

Example

HISTogram:STDDev

:MEASure:HISTogram: STDDev [<source>]

The :MEASure:HISTogram:STDDev command enables the standard deviation
of the histogram measurement. The source is specified with the
MEASure:SOURce command or with the optional parameter following the
STDDev command. The HISTogram:STDDev measurement only applies to the
histogram waveform or memories containing histograms.

The measurement requires that the histogram feature be enabled using the
:HISTogram:MODE command.

{(WMEMory<number> | HISTogramy}

For waveform memories (WMEMory): 1,2,3, or 4.

This example measures the standard deviation of the histogram whose source
is specified using the MEASure:SOURce command.

10 OUTPUT 707; "MEASURE:HISTOGRAM: STDDEV"
20 END

20-51

Query

Returned Format
<value>

<result state>

Example

Measure Commands
HISTogram:STDDev

:MEASure:HISTogram:STDDev? [<sources]

The :MEASure:HISTogram:STDDev? query returns the measurement of
standard deviation of the histogram.

[:MEASure:HISTogram:STDDev] <value> [, <result state>] <NL>
The standard deviation of the histogram.

If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

This example returns the standard deviation of the histogram whose source is
specified using the MEASure:SOURce command and prints the result to the
computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" IResponse headers off
20 OUTPUT 707;" :MEASURE:HISTOGRAM:STDDEV?"

30 ENTER 707;Histsttd

40 PRINT Histsttd

50 END

20-52

Measure Commands
JITTer:DIRection

Command

Example

Query

Returned Format

JITTer:DIRection

:MEASure:JITTer:DIRection {RISing | FALLing |
FODisplay}

The :MEASure:JITTer:DIRection command selects the which edge of your
waveform is used when measurement statistics are computed for all complete
cycles of a waveform within the waveform viewing area. The
:MEASure:JITTer:STATistics must be on before issuing this command. This
command only affects the following measurements:

e (Cycle-to-cycle Jitter
e Duty Cycle

e Frequency

e Period

e Phase

| This command and query are only available on the 54845A and 54846A oscilloscope. |

This example changes the edge used to make measurements on all cycles of the
waveform to the falling edge.

10 OUTPUT 707;":MEASURE:JITTER:DIRECTION FALLING"
20 END

:MEASure:JITTer:DIRection?

The :MEASure:JITTer:DIRection? query returns the state of the “Edge
Direction” control .

[:MEASure:JITTer:DIRection] {RISing | FALLing |
FODisplay}<NL>

20-53

Measure Commands
JITTer:DIRection

Example This example places the current state of the “Edge Direction” control in the
variable, Value, then prints the contents of the variable to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;"”"MEASURE:JITTER:DIRECTION?"

30 ENTER 707;Value

40 PRINT Value

50 END

20-54

Measure Commands
JITTer:STATistics

Command

Example

JITTer:STATistics

:MEASure:JITTer:STATistics {{OFF | 0} | {oN | 1}}

The :MEASure:JITTer:STATistics command enables measurement statistics to
be computed for all complete cycles of a waveform within the waveform viewing
area. This command only affects the following measurements:

e +width

e -width

e Delta Time
e Duty Cycle
e Fall Time
e Frequency
e Period

* Rise Time

| This command are only available on the 54845A and 54846A oscilloscopes.

This example enables measurement statistics on all cycles of the waveform.

10 OUTPUT 707;":MEASURE:JITTER:STATISTICS ON"
20 END

20-55

Measure Commands
JITTer:STATistics

Query :MEASure:JITTer:STATistics?

The :MEASure:JITTer:STATistics? query returns the state of the “Compute
statistics on all measurements in the waveform” control .

|This query are only available on the 54845A and 54846A oscilloscopes.

Returned Format [:MEASure:JITTer:STATistics] {0 | 1}<NL>

Example This example places the current state of the “Compute statistics on all
measurements in the waveform” control in the variable, Value, then prints the
contents of the variable to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;"”"MEASURE:JITTER:STATISTICS?"

30 ENTER 707;Value

40 PRINT Value

50 END

20-56

Measure Commands
NWIDth

Command

<source>

<N>

Example

NWIDth

:MEASure:NWIDth [<source>]

The :MEASure:NWIDth command measures the width of the first negative pulse
on the screen using the mid-threshold levels of the waveform (50% levels with
standard measurements selected). Sources are specified with the
:MEASure:SOURce command or with the optional parameter following the
:MEASure:NWIDth command.

The algorithm is:
If the first edge on the screen is rising,
then
nwidth = time at the second rising edge — time at the first falling edge
else
nwidth = time at the first rising edge — time at the first falling edge.

{CHANnel<N> | FUNCtion<N> | WMEMory<N>}

CHANnel<N> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<N> and WMEMory<N> are:
An integer, 1 - 4, representing the selected function or waveform memory.

This example measures the width of the first negative pulse on the screen.

10 OUTPUT 707;":MEASURE:NWIDTH"
20 END

20-57

Query

Returned Format

<value>

<result_ state>

Example

Measure Commands
NWIDth

:MEASure:NWIDth? [<sources>]

The :MEASure:NWIDth? query returns the measured width of the first negative
pulse of the specified source.

[:MEASure:NWIDth] <values>[,<result state>]<NL>

The width of the first negative pulse on the screen using the mid-threshold levels
of the waveform.

If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

This example places the current width of the first negative pulse on the screen
in the numeric variable, Width, then prints the contents of the variable to the
computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;" :MEASURE:NWIDTH?"

30 ENTER 707;Width

40 PRINT Width

50 END

20-58

Measure Commands
OVERshoot

Command

<source>

<N>

Example

OVERshoot

:MEASure:OVERshoot [<source>]

The :MEASure:OVERshoot command measures the overshoot of the first edge
on the screen. Sources are specified with the :MEASure:SOURce command or
with the optional parameter following the :MEASure:OVERshoot command.

The algorithm is:
If the first edge on the screen is rising,
then
overshoot = (Local Vmax — Vtop) / Vamplitude
else
overshoot = (Vbase — Local Vmin) / Vamplitude.

{CHANnel<N> | FUNCtion<N> | WMEMory<N>}

CHANnel<N> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<N> and WMEMory<N> are:
An integer, 1 - 4, representing the selected function or waveform memory.

This example measures the overshoot of the first edge on the screen.

10 OUTPUT 707;" :MEASURE:OVERSHOOT"
20 END

20-59

Query

Returned Format
<value>

<result state>

Example

Measure Commands
OVERshoot

:MEASure:0OVERshoot? [<sources>]

The :MEASure:OVERshoot? query returns the measured overshoot of the
specified source.

[:MEASure:0OVERshoot] <value>|[,<result state>]<NL>
Ratio of overshoot to amplitude, in percent.

If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

This example places the current value of overshoot in the numeric variable,
Value, then prints the contents of the variable to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;" :MEASURE:OVERSHOOT?"

30 ENTER 707;Value

40 PRINT Value

50 END

20-60

Measure Commands
PERiod

Command

<source>

<N>

Example

PERiod

:MEASure:PERiod [<source>]

The :MEASure:PERiod command measures the period of the first complete
cycle on the screen using the mid-threshold levels of the waveform (50% levels
with standard measurements selected). The source is specified with the
:MEASure:SOURce command or with the optional parameter following the
:MEASure:PERiod command.

The algorithm is:
If the first edge on the screen is rising,
then
period = time at the second rising edge — time at the first rising edge
else
period = time at the second falling edge — time at the first falling edge.

{CHANnel<N> | FUNCtion<N> | WMEMory<N>}

CHANnel<N> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<N> and WMEMory<N> are:
An integer, 1 - 4, representing the selected function or waveform memory.

This example measures the period of the waveform.

10 OUTPUT 707;":MEASURE:PERIOD"
20 END

20-61

Measure Commands
PERiod

Query :MEASure:PERiod? [<sources>]

The :MEASure:PERiod? query returns the measured period of the specified
source.

Returned Format [:MEASure:PERiod] <values>[,<result state>]<NL>
<value> Period of the first complete cycle on the screen.

<result states> If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current period of the waveform in the numeric variable,
Value, then prints the contents of the variable to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;" :MEASURE:PERIOD?"

30 ENTER 707;Value

40 PRINT Value

50 END

20-62

Measure Commands
PHASe

Command

<source>

<N>

Example

Related Commands

PHASe

:MEASure:PHASe [<source>|[,<source>]]

The :MEASure:PHASe command measures the phase in degrees between two
edges. If one source is specified, the phase from the specified edge of the first
source to the specified edge of the second source is measured. If one source is
specified, the phase is always 0.0E0.00°.

The edge that is used for the measurement can be changed for the 54845A and
54846A oscilloscopes by using the :MEASure:JITTer:DIRection command. This
also requires the :MEASure:JITTer:STATistics to be on. All other Infiniium
oscilloscopes use the rising edge for the measurement.

{CHANnel<N> | FUNCtion<N> | WMEMory<N>}

CHANnel<N> is:

An integer, 1 or 3, for two channel acquisition mode. (54835/45A/46A)
An integer, 1 - 4, for four channel acquisition mode. (54835/45A/46A)

An integer, 1-2, for the 54810/20A oscilloscopes.
An integer, 1-4, for all other Infiniium oscilloscope models.
FUNCtion<N> and WMEMory<N> are:
An integer, 1 - 4, representing the selected function or waveform memory.

This example measures the phase between channel 1 and
channel 2.

10 OUTPUT 707;":MEASURE:PHASE CHANNEL1l, CHANNEL2"
20 END

:MEASure:JITTer:DIRection

20-63

Query

Returned Format

<value>

<result_ state>

Example

Measure Commands
PHASe

:MEASure:PHASe? [<source>][,<source>]]

The :MEASure:PHASe? query returns the measured phase angle value.

The necessary waveform edges must be present on the display. The query will
return 9.99999E+37 if the necessary edges are not displayed.

[:MEASure:PHASe] <value>[,result state] <NL>

Phase angle from the first edge on the first source to the first edge edge on the
second source.

If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

This example places the current phase angle value between channel 1 and
channel 2 in the variable, Value, then prints the contents of the variable to the
computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;" :MEASURE:PHASE? CHANNEL1l, CHANNEL2"

30 ENTER 707;Value

40 PRINT Value

50 END

20-64

Measure Commands
PREShoot

Command

<source>

<N>

Example

PREShoot

:MEASure: PREShoot [<source>]

The :MEASure:PREShoot command measures the preshoot of the first edge on
the screen. Sources are specified with the :MEASure:SOURce command or with
the optional parameter following the :MEASure:PREShoot command.

The algorithm is:
If the first edge on the screen is rising,
then
preshoot = (Vbase — Local Vmin) / Vamplitude
else
preshoot = (Local Vmax — Vtop) / Vamplitude.

{CHANnel<N> | FUNCtion<N> | WMEMory<N>}

CHANnel<N> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<N> and WMEMory<N> are:
An integer, 1 - 4, representing the selected function or waveform memory.

This example measures the preshoot of the waveform on the screen.

10 OUTPUT 707;":MEASURE:PRESHOOT"
20 END

20-65

Query

Returned Format
<value>

<result state>

Example

Measure Commands
PREShoot

:MEASure: PREShoot? [<source>]

The :MEASure:PREShoot? query returns the measured preshoot of the
specified source.

[:MEASure:PREShoot] <value>|[,<result state>]<NL>

Ratio of preshoot to amplitude, in percent.

If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

This example places the current value of preshoot in the numeric variable,
Preshoot, then prints the contents of the variable to the computer’s screen.

10
20
30
40
50

OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
OUTPUT 707;" :MEASURE: PRESHOOT?"

ENTER 707;Preshoot

PRINT Preshoot

END

20-66

Measure Commands
PWIDth

Command

<source>

<N>

Example

PWIDth

:MEASure:PWIDth [<source>]

The :MEASure:PWIDth command measures the width of the first positive pulse
on the screen using the mid-threshold levels of the waveform (50% levels
with standard measurements selected). Sources are specified with the
:MEASure:SOURce command or with the optional parameter following the
:MEASure:PWIDth command.

The algorithm is:
If the first edge on the screen is rising,
then
pwidth = time at the first falling edge — time at the first rising edge
else
pwidth = time at the second falling edge — time at the first rising edge.

{CHANnel<N> | FUNCtion<N> | WMEMory<N>}

CHANnel<N> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

This example measures the width of the first positive pulse on the screen.

10 OUTPUT 707;":MEASURE:PWIDTH"
20 END

20-67

Query

Returned Format

Measure Commands
PWIDth

:MEASure:PWIDth? [<source>]

The :MEASure:PWIDth? query returns the measured width of the first positive
pulse of the specified source.

[:MEASure:PWIDth] <values>[,<result state>]<NL>

<value> Width of the first positive pulse on the screen in seconds.

<result state>

Example

If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

This example places the value of the width of the first positive pulse on the
screen in the numeric variable, Width, then prints the contents of the variable
to the computer’s screen.

10
20
30
40
50

OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
OUTPUT 707;" :MEASURE: PWIDTH?"

ENTER 707;Width

PRINT Width

END

20-68

Measure Commands
RESults?

Query

Returned Format

<result list>

Example

RESults?

:MEASure:RESults?

The :MEASure:RESults? query returns the results of the continuous
measurements. The measurement results always include only the current
results. If SENDvalid is ON, the measurement results state is returned
immediately following the measurement result. If :MEASure:STATistics is ON,
the measurement results include the current, minimum, maximum, mean,
standard deviation, and statistical sample size of each measurement.

If more than one measurement is running continuously, the values in the
:MEASure:RESults table in this chapter will be duplicated for each continuous
measurement from the first to last (top to bottom) of display. There may a
maximum of four continuous measurements at a time.

[:MEASure:RESults] <result list><NL>

A list of the measurement results, as in the :MEASure:RESults table in this
chapter, separated with commas.

This example places the current results of the measurements in the string
variable, Result$, then prints the contents of the variable to the computer’s
screen.

10 DIM Result$[200] !Dimension variable
20 OUTPUT 707;" :MEASURE :RESULTS?"

30 ENTER 707;Result$

40 PRINT Results$

50 END

20-69

Table 20-2

Measure Commands

RESults?

Result States

Code Result Description

0 RESULT_CORRECT Result correct. No problem found.

1 RESULT_QUESTIONABLE Result questionable but could be measured.

2 RESULT_LESS_EQ Result less than or equal to value returned

3 RESULT_GTR_EQ Result greater than or equal to value returned.

4 RESULT_INVALID Result returned is invalid

5 EDGE_NOT_FOUND Resultinvalid. Required edge not found.

6 MAX_NOT_FOUND Resultinvalid. Max not found.

7 MIN_NOT_FOUND Result invalid. Min not found.

8 TIME_NOT_FOUND Resultinvalid. Requested time not found.

9 VOLT_NOT_FOUND Resultinvalid. Requested voltage not found.

10 TOP_EQUALS_BASE Resultinvalid. Top and base are equal.

1 MEAS_ZONE_SMALL Result invalid. Measurement zone too small.

12 LOWER_INVALID Resultinvalid. Lower threshold not on waveform.

13 UPPER_INVALID Result invalid. Upper threshold not on waveform.

14 UPPER_LOWER_INVALID Resultinvalid. Upper and lower thresholds are too close.

15 TOP_INVALID Result invalid. Top not on waveform.

16 BASE_INVALID Resultinvalid. Base not on waveform.

17 INCOMPLETE Resultinvalid. Completion criteria not reached.

18 INVALID_SIGNAL Resultinvalid. Measurement invalid for this type of
waveform.

19 SIGNAL_NOT_DISPLAYED Resultinvalid. waveform is not displayed.

20 CLIPPED_HIGH Result invalid. Waveform is clipped high

21 CLIPPED_LOW Result invalid. Waveform is clipped low.

22 CLIPPED_HIGH_LOW Resultinvalid. Waveform is clipped high and low.

23 ALL_HOLES Resultinvalid. Data contains all holes.

24 NO_DATA Resultinvalid. No data on screen.

25 CURSOR_OFF_SCREEN Resultinvalid. Cursor is not on screen.

26 MEASURE_CANCELED Resultinvalid. Measurement aborted.

27 MEASURE_TIMEOUT Resultinvalid. Measurement timed-out.

28 NO_MEAS Resultinvalid. No measurement to track.

29 PEAK_NOT_FOUND Resultinvalid. FFT peak not found.

30 BAD_EYE Resultinvalid. Eye pattern not found.

20-70

31
32
33

34
35
36

BAD_NRZ
BAD_ER_CAL
NOT_1_CHANNEL

DONT_DISPLAY_MEAS
SMALL_SIGNAL
RESULT_AVERAGING

Measure Commands
RESults?

Resultinvalid. No NRZ eye pattern found.
Resultinvalid. No valid extinction Ratio calibration.

Resultinvalid. There is more than one source on creating
the database.

Resultinvalid. Do not display the measurement.
Signal may be too small to evaluate.

Resultinvalid. Awaiting completion of averaging.

20-71

Measure Commands
RISetime

Command

<source>

<N>

Example

RISetime

:MEASure:RISetime [<source>]

The :MEASure:RISetime command measures the rise time of the first displayed
edge by measuring the time at the lower threshold of the rising edge, measuring
the time at the upper threshold of the rising edge, then calculating the rise time
with the following algorithm:

Rise time = time at upper threshold point — time at lower threshold point.

Sources are specified with the :MEASure:SOURce command or with the
optional parameter following the RISetime command. With standard
measurements selected, the lower threshold is at the 10% point and the upper
threshold is at the 90% point on the rising edge.

{CHANnel<N> | FUNCtion<N> | WMEMory<N>}

CHANnel<N> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<N> and WMEMory<N> are:
An integer, 1 - 4, representing the selected function or waveform memory.

This example measures the rise time of the displayed waveform.

10 OUTPUT 707;":MEASURE:RISETIME"
20 END

20-72

Query

Returned Format
<value>

<result_ state>

Example

Measure Commands
RISetime

:MEASure:RISetime? [<sources>]

The :MEASure:RISetime? query returns the rise time of the specified source.

[:MEASure:RISetime] <values>[,<result state>]<NL>

Rise time in seconds.

If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

This example places the current value of rise time in the numeric variable, Rise,
then prints the contents of the variable to the computer’s screen.

10
20
30
40
50

OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
OUTPUT 707;" :MEASURE:RISETIME?"

ENTER 707;Rise

PRINT Rise

END

20-73

Measure Commands
SCRatch

Command

Example

SCRatch

:MEASure: {SCRatch | CLEar}

The :MEASure:SCRatch command clears the measurement results from the
screen. This command performs the same function as :MEASure:CLEar.

This example clears the current measurement results from the screen.

10 OUTPUT 707;":MEASURE:SCRATCH"
20 END

20-74

Measure Commands
SENDvalid

Command

Example

Query

Returned Format

Example

See Also

SENDvalid

:MEASure:SENDvalid {{oFF|0} | {oN|1}}

The :MEASure:SENDvalid command enables the result state code to be
returned with the :MEASure:RESults? query.

This example turns the send valid function on.

10 OUTPUT 707;":MEASURE:SENDVALID ON"
20 END

:MEASure:SENDvalid?

The :MEASure:SENDvalid? query returns the state of the send valid control.

{:MEASure:SENDvalid] {0 | 1}<NL>

This example places the current mode for SENDvalid in the string variable,
Mode$, then prints the contents of the variable to the computer’s screen.
10 DIM Mode$[50] !Dimension variable

20 OUTPUT 707;":MEASURE:SENDVALID?"

30 ENTER 707;Mode$

40 PRINT Mode$s

50 END

Refer to the :MEASure:RESults? query for information on the results returned
and how they are affected by the SENDvalid command. Refer to the individual
measurements for information on how the result state is returned.

20-75

Measure Commands

SOURce
SOURce
Command :MEASure:SOURce <source> [, <source>]
The :MEASure:SOURce command selects the source for measurements. You
can specify one or two sources with this command. All measurements except
:MEASure:DELTatime are made on the first specified source. The delta time
measurement uses two sources if two are specified. If only one source is
specified, the delta time measurement uses that source for both of its
parameters.
<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}
<N> CHANnel<N> is:
An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.
FUNCtion<N> and WMEMory<N> are:
An integer, 1 - 4, representing the selected function or waveform memory.
Example This example selects channel 1 as the source for measurements.
10 OUTPUT 707;":MEASURE:SOURCE CHANNEL1"
20 END
Query :MEASure:SOURce?

Returned Format

Example

The :MEASure:SOURce? query returns the current source selection.

[:MEASure:SOURce] <source>|[,<source>]<NL>

This example places the currently specified sources in the string variable,
Source$, then prints the contents of the variable to the computer’s screen.

10 DIM Source$[50] !Dimension variable
20 OUTPUT 707;" :MEASURE:SOURCE?"

30 ENTER 707;Source$

40 PRINT Sources$

50 END

20-76

Measure Commands
STATistics

Command

Example

Query

Returned Format

Example

See Also

STATistics

:MEASure:STATistics {{OFF|0} | {oN|1}}

The :MEASure:STATistics command turns the statistics measurements on and
off. The statistics state only affects the information returned by the
:MEASure:RESults? query.

This example turns the statistics function on.

10 OUTPUT 707;":MEASURE:STATISTICS ON"
20 END

:MEASure:STATistics?

The :MEASure:STATistics? query returns the current statistics mode.

[:MEASure:STATistics] {0 | 1}<NL>

This example places the current mode for statistics in the string variable,
Mode$, then prints the contents of the variable to the computer’s screen.
10 DIM Mode$ [50] !Dimension variable

20 OUTPUT 707;":MEASURE:STATISTICS?"

30 ENTER 707;Mode$

40 PRINT Mode$

50 END

Refer to the :MEASure:RESults? query for information on the result returned
and how it is affected by the STATistics command.

20-77

Measure Commands
TEDGe

Command

<meas_thres
_txt>

<slope>

<occurrence>

<source>

<N>

TEDGe

:MEASure: TEDGe <meas_thres txts>,
[<slope>] <occurrences [, <sources]

The :MEASure:TEDGe command measures the time interval between the
trigger event and the specified edge (threshold level, slope, and transition).
Sources are specified with the :MEASure:SOURce command or with the
optional parameter following the :MEASure:TEDGe command.

UPPer, MIDDIle, or LOWer to identify the threshold.

{ - (minus) for falling | + (plus) for rising | <none> (the slope is optional; if
no slope is specified, + (plus) is assumed) }

An integer value representing the edge of the occurrence. The desired edge
must be present on the display. Edges are counted with 1 being the first edge
from the left on the display, and a maximum value of 65534.

{CHANnel<N> | FUNCtion<N> | WMEMory<N>}

CHANnel<N> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<N> and WMEMory<N> are:
An integer, 1 - 4, representing the selected function or waveform memory.

20-78

Query

Returned Format

<time>

<result_ state>

Example

Measure Commands
TEDGe

:MEASure:TEDGe? <meas_ thres txts,
<slope><occurrence> [,<sources]

The :MEASure:TEDGe? query returns the time interval between the trigger
event and the specified edge (threshold level, slope, and transition).

[:MEASure:TEDGe] <time>[,<result state>]<NL>

The time interval between the trigger event and the specified voltage level and
transition.

If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

This example returns the time interval between the trigger event and the 90%
threshold on the second rising edge of the source waveform to the numeric

variable, Time. The contents of the variable are then printed to the computer’s
screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:TEDGE? UPPER, +2"

30 ENTER 707;Time

40 PRINT Time

50 END

Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers.
Otherwise, the headers may cause misinterpretation of returned data.

20-79

Measure Commands
TMAX

TMAX

Command :MEASure:TMAX [<source>]

The :MEASure: TMAX command measures the first time at which the maximum
voltage of the source waveform occurred. Sources are specified with the
:MEASure:SOURce command or with the optional parameter following the
:MEASure:TMAX command.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> CHANnel<N> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<N> and WMEMory<N> are:
An integer, 1 - 4, representing the selected function or waveform memory.

20-80

Query

Returned Format

<time>

<result_ state>

Example

Measure Commands
TMAX

:MEASure:TMAX? [<source>]

The :MEASure:TMAX? query returns the time at which the first maximum
voltage occurred.

[:MEASure:TMAX] <times>[,<result state>]<NL>

Time at which the first maximum voltage occurred or frequency where the
maximum FFT amplitude occurred.

If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

This example returns the time at which the first maximum voltage occurred to
the numeric variable, Time, then prints the contents of the variable to the
computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;" :MEASURE:TMAX?"

30 ENTER 707;Time

40 PRINT Time

50 END

20-81

Measure Commands
TMIN

Command

<source>

<N>

Query

Returned Format
<time>

<result_ state>

Example

TMIN

:MEASure: TMIN [<source>]

The :MEASure:TMIN command measures the time at which the first minimum
voltage occurred. Sources are specified with the :MEASure:SOURce command
or with the optional parameter following the :MEASure:TMIN command.

{CHANnel<N> | FUNCtion<N> | WMEMory<N>}

CHANnel<N> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

:MEASure: TMIN? [<source>]

The :MEASure:TMIN? query returns the time at which the first minimum
voltage occurred or the frequency where the minimum FFT amplitude occurred.

[:MEASure:TMIN] <times>[,<result state>]<NL>
Time at which the first minimum voltage occurred.

If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

This example returns the time at which the first minimum voltage occurred to
the numeric variable, Time, then prints the contents of the variable to the
computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;" :MEASURE:TMIN?"

30 ENTER 707;Time

40 PRINT Time

50 END

20-82

Measure Commands
TVOLt

Command

Query

<voltages>

<slope>

<occurrence>

<source>

<N>

Returned Format

<time>

<result state>

TVOLt

:MEASure:TVOLt <voltages>, [<slope>]<occurrences>
[, <source>]

The :MEASure:TVOLt command measures the time interval between the trigger
event and the defined voltage level and transition. Sources are specified with
the :MEASure:SOURce command or with the optional parameter following the
:MEASure:TVOLt command.

:MEASure:TVOLt? <voltages>, <slope><occurrences
[, <source>]

The :MEASure:TVOLt? query returns the time interval between the trigger
event and the specified voltage level and transition.

Voltage level at which time will be measured.

The direction of the waveform change when the specified voltage is crossed -
rising (+) or falling (—). If no +/- sign is present, + is assumed.

The number of the crossing to be reported (if one, the first crossing is reported;
if two, the second crossing is reported, etc.). The desired edge (crossing) must
be present on the display. Edges are counted with 1 being the first edge from
the left of the display, and a maximum value of 656534.

{CHANnel<N> | FUNCtion<N> | WMEMory<N>}

CHANnel<N> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<N> and WMEMory<N> are:
An integer, 1 - 4, representing the selected function or waveform memory.

[:MEASure:TVOLt] <times>[,<result state>]<NL>

The time interval between the trigger event and the specified voltage level and
transition.

If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

20-83

Example

Measure Commands
TVOLt

This example returns the time interval between the trigger event and the
transition through —.250 Volts on the third rising edge of the source waveform
to the numeric variable, Time. The contents of the variable are then printed to
the computer’s screen.

10
20
30
40
50

OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
OuTPUT 707;" :MEASURE:TVOLT? -.250,+3"

ENTER 707;Time

PRINT Time

END

20-84

Measure Commands
VAMPlitude

Command

<source>

<N>

Example

VAMPlitude

:MEASure:VAMPlitude [<sources>]

The :MEASure:VAMPlitude command calculates the difference between the top
and base voltage of the specified source. Sources are specified with the
:MEASure:SOURce command or with the optional parameter following the
:MEASure:VAMPIlitude command.

{CHANnel<N> | FUNCtion<N> | WMEMory<N>}

CHANnel<N> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

This example calculates the difference between the top and base voltage of the
specified source.

10 OUTPUT 707;":MEASURE:VAMPLITUDE"
20 END

20-85

Query

Returned Format
<value>

<result state>

Example

Measure Commands
VAMPlitude

:MEASure:VAMPlitude? [<source>]

The :MEASure:VAMPIlitude? query returns the calculated difference between
the top and base voltage of the specified source.

[:MEASure:VAMPlitude] <value>[,<result state>]<NL>
Calculated difference between the top and base voltage.

If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

This example places the current Vamplitude value in the numeric variable,
Value, then prints the contents of the variable to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;" :MEASURE:VAMPLITUDE?"

30 ENTER 707;Value

40 PRINT Value

50 END

20-86

Measure Commands
VAVerage

Command
CYCLe
DISPlay
<source>
<N>
Example

VAVerage

:MEASure:VAVerage {CYCLe | DISPlay}[,<source>]

The :MEASure:VAVerage command calculates the average voltage over the
displayed waveform. Sources are specified with the :MEASure:SOURce
command or with the optional parameter following the :MEASure:VAVerage
command.

The CYCLe parameter instructs the average measurement to measure the
average voltage across the first period on the display.

The DISPlay parameter instructs the average measurement to measure all the
data on the display.

{CHANnel<N> | FUNCtion<N> | WMEMory<N>}

CHANnel<N> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

This example calculates the average voltage over the displayed waveform.

10 OUTPUT 707;":MEASURE:VAVERAGE DISPLAY"
20 END

20-87

Query

Returned Format
<value>

<result_ state>

Example

Measure Commands
VAVerage

:MEASure:VAVerage? {CYCLe | DISPlay} [, <source>]

The :MEASure:VAVerage? query returns the calculated average voltage of the
specified source. Sources are specified with the :MEASure:SOURce command
or with the optional parameter following the :MEASure:VAVerage command.

[:MEASure:VAVerage] <values>[,<result state>]<NL>
The calculated average voltage.

If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

This example places the current average voltage in the numeric variable,
Average, then prints the contents of the variable to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;" :MEASURE:VAVERAGE? DISPLAY"

30 ENTER 707;Average

40 PRINT Average

50 END

20-88

Measure Commands
VBASe

Command

<source>

<N>

Example

VBASe

:MEASure:VBASe [<source>]

The :MEASure:VBASe command measures the statistical base of the waveform.
Sources are specified with the :MEASure:SOURce command or with the
optional parameter following the :MEASure:VBASe command.

{CHANnel<N> | FUNCtion<N> | WMEMory<N>}

CHANnel<N> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<N> and WMEMory<N> are:
An integer, 1 - 4, representing the selected function or waveform memory.

This example measures the voltage at the base of the waveform.

10 OUTPUT 707;":MEASURE:VBASE"
20 END

20-89

Query

Returned Format
<value>

<result state>

Example

Measure Commands
VBASe

:MEASure:VBASe? [<source>]

The :MEASure:VBASe? query returns the measured voltage value at the base
of the specified source.

[:MEASure:VBASe] <value>[,<result state>]<NL>
Voltage at the base of the waveform.

If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

This example returns the current voltage at the base of the waveform to the
numeric variable, Voltage, then prints the contents of the variable to the
computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;" :MEASURE:VBASE?"

30 ENTER 707;Voltage

40 PRINT Voltage

50 END

20-90

Measure Commands
VLOWer

Command

<source>

<N>

Query

Returned Format
<value>

<result state>

Example

VLOWer

:MEASure:VLOWer [<source>]

The :MEASure:VLOWer command measures the voltage value at the lower
threshold of the waveform. Sources are specified with the :MEASure:SOURce
command or with the optional parameter following the :MEASure:VLOWer
command.

{CHANnel<N> | FUNCtion<N> | WMEMory<N>}

CHANnel<N> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.

An integer, 1 - 4, for all other Infiniium Oscilloscope models.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

:MEASure : VLOWer?

The :MEASure:VLOWer? query returns the measured lower threshold of the
selected source.

[:MEASure:VLOWer] <values>[,<result state>]<NL>
Voltage value at the lower threshold.

If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

This example returns the measured voltage at the lower threshold of the
waveform to the numeric variable, Vlower, then prints the contents of the
variable to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;" :MEASURE:VLOW?"

30 ENTER 707;Vlower

40 PRINT Vlower

50 END

20-91

Measure Commands
VMAX

Command

<source>

<N>

Example

VMAX

:MEASure:VMAX [<source>]

The :MEASure:VMAX command measures the absolute maximum voltage
present on the selected source waveform. Sources are specified with the
:MEASure:SOURce command or with the optional parameter following the
:MEASure:VMAX command.

{CHANnel<N> | FUNCtion<N> | WMEMory<N>}

CHANnel<N> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<N> and WMEMory<N> are:
An integer, 1 - 4, representing the selected function or waveform memory.

This example measures the absolute maximum voltage on the waveform.

10 OUTPUT 707;":MEASURE:VMAX"
20 END

20-92

Query

Returned Format

Measure Commands
VMAX

:MEASure:VMAX? [<source>]

The :MEASure:VMAX? query returns the measured absolute maximum voltage
or maximum FFT amplitude present on the selected source waveform.

[:MEASure:VMAX] <value>[,<result state>]<NL>

<value> Absolute maximum voltage present on the waveform.

<result states>

Example

If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

This example returns the measured absolute maximum voltage on the waveform
to the numeric variable, Maximum, then prints the contents of the variable to
the computer’s screen.

10
20
30
40
50

OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
OUTPUT 707;" :MEASURE:VMAX?"

ENTER 707 ;Maximum

PRINT Maximum

END

20-93

Measure Commands
VMIDdle

Command

Query

<source>

<N>

Returned Format
<value>

<result_ state>

Example

VMIDdle

:MEASure:VMIDdle [<source>]

The :MEASure:VMIDdle command measures the voltage level at the middle
threshold of the waveform. Sources are specified with the :MEASure:SOURce
command or with the optional parameter following the :MEASure:VMIDdle
command.

:MEASure:VMIDdle? [<sources>]

The :MEASure:VMIDdle? query returns the voltage value at the middle
threshold of the waveform.

{CHANnel<N> | FUNCtion<N> | WMEMory<N>}

CHANnel<N> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.

An integer, 1 - 4, for all other Infiniium Oscilloscope models.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

[MEASure:VMIDdle] <value>[,<result state>]<NL>
The middle voltage present on the waveform.

If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

This example returns the measured middle voltage on the waveform to the
numeric variable, Middle, then prints the contents of the variable to the
computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;" :MEASURE:VMID?"

30 ENTER 707;Middle

40 PRINT Middle

50 END

20-94

Measure Commands
VMIN

Command

<source>

<N>

Example

VMIN

:MEASure:VMIN [<source>]

The :MEASure:VMIN command measures the absolute minimum voltage
present on the selected source waveform. Sources are specified with
:MEASure:SOURce or with the optional parameter following the
:MEASure:VMIN command.

{CHANnel<N> | FUNCtion<N> | WMEMory<N>}

CHANnel<N> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

This example measures the absolute minimum voltage on the waveform.

10 OUTPUT 707;":MEASURE:VMIN"
20 END

20-95

Query

Returned Format
<value>

<result state>

Example

Measure Commands
VMIN

:MEASure:VMIN? [<source>]

The :MEASure:VMIN? query returns the measured absolute minimum voltage
or minimum FFT amplitude present on the selected source waveform.

[:MEASure:VMIN] <value>[,<result state>]<NL>
Absolute minimum voltage present on the waveform.

If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

This example returns the measured absolute minimum voltage on the waveform
to the numeric variable, Minimum, then prints the contents of the variable to
the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;" :MEASURE:VMIN?"

30 ENTER 707;Minimum

40 PRINT Minimum

50 END

20-96

Measure Commands
VPP

Command

<source>

<N>

Example

VPP

:MEASure: VPP [<source>]

The :MEASure:VPP command measures the maximum and minimum voltages
on the selected source, then calculates the peak-to-peak voltage as the
difference between the two voltages. Sources are specified with the
:MEASure:SOURce command or with the optional parameter following the
:MEASure:VPP command.

{CHANnel<N> | FUNCtion<N> | WMEMory<N>}

CHANnel<N> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

This example measures the peak-to-peak voltage or FF'T amplitude range of the
previously selected source.

10 OUTPUT 707;":MEASURE:VPP"
20 END

20-97

Query

Returned Format
<value>

<result_ state>

Example

Measure Commands
VPP

:MEASure:VPP? [<source>]

The :MEASure:VPP? query returns the specified source peak-to-peak voltage.

[:MEASure:VPP] <value>[,<result state>]<NL>
Peak-to-peak voltage of the selected source.

If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

This example places the current peak-to-peak voltage in the numeric variable,
Voltage, then prints the contents of the variable to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;" :MEASURE:VPP?"

30 ENTER 707;Voltage

40 PRINT Voltage

50 END

20-98

Measure Commands
VRMS

Command

CYCLe

DISPlay

AC

DC

<source>

<N>

Example

VRMS

:MEASure:VRMS {CYCLe | DISPlay}, {AC | DC} [, <source>]

The :MEASure:VRMS command measures the RMS voltage of the selected
waveform by subtracting the average value of the waveform from each data
point on the display. Sources are specified with the :MEASure:SOURce
command or with the optional parameter following the :MEASure:VRMS
command.

The CYCLe parameter instructs the RMS measurement to measure the RMS
voltage across the first period of the display.

The DISPLay parameter instructs the RMS measurement to measure all the data
on the display. Generally, RMS voltage is measured across one waveform or
cycle, however, measuring multiple cycles may be accomplished with the
DISPLay option. The DISPlay parameter is also useful when measuring noise.

The AC parameter is used to measure the RMS voltage subtracting the DC
component.

The DC parameteris used to measure RMS voltage including the DC component.
The AC RMS, DC RMS, and VAVG parameters are related as in this formula:
DCVRMS?=ACVRMS?+VAVG?

{CHANnel<N> | FUNCtion<N> | WMEMory<N>}

CHANnel<N> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<N> and WMEMory<N> are:
An integer, 1 - 4, representing the selected function or waveform memory.

This example measures the RMS voltage of the previously selected waveform.

10 OUTPUT 707;":MEASURE:VRMS CYCLE,AC"
20 END

20-99

Query

Returned Format
<value>

<result state>

Example

Measure Commands
VRMS

:MEASure:VRMS? {CYCLe | DISplay}, {AC | DC}
[, <source>]

The :MEASure:VRMS? query returns the RMS voltage of the specified source.

[:MEASure:VRMS] <value>[,<result state>]<NL>
RMS voltage of the selected waveform.

If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

This example places the current AC RMS voltage over one period of the
waveform in the numeric variable, Voltage, then prints the contents of the
variable to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:VRMS? CYCLE,AC"

30 ENTER 707;Voltage

40 PRINT Voltage

50 END

20-100

Measure Commands
VTIMe

Command
<source>
<N>
<time>
Query

Returned Format

<value>

<result_ state>

Example

VTIMe

:MEASure:VTIMe <time> [, <source>]

The :MEASure:VTIMe command measures the voltage at the specified time.
The time is referenced to the trigger event and must be on the screen. When
an FFT functionis the specified source, the amplitude at the specified frequency
is measured. Sources are specified with the :MEASure:SOURce command or
with the optional parameter following the :MEASure:VTIMe command.

{CHANnel<N> | FUNCtion<N> | WMEMory<N>}

CHANnRel<N> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.

An integer, 1 - 4, for all other Infiniium Oscilloscope models.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

A real number for time from trigger in seconds, or frequency in Hertz for an
FFT (when a function is set to FFT or a waveform memory contains an FFT).

:MEASure:VTIMe? <time>[, <sources>]

The :MEASure:VTIMe? query returns the measured voltage or amplitude.

[:MEASure:VTIMe] <value>[,<result state>]<NL>

Voltage at the specified time. When the source is an FFT function, the returned
value is the vertical value at the horizontal setting passed in the VTIMe <time>
parameter. The time parameter is in Hertz when an FFT function is the source.

If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

This example places the voltage at 500 ms in the numeric variable, Value, then
prints the contents to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:VTIME? 500E-3"

30 ENTER 707;Value

40 PRINT Value

50 END

20-101

Measure Commands
VTOP

Command

<source>

<N>

Example

VTOP

:MEASure:VTOP [<source>]

The :MEASure:VTOP command measures the statistical top of the selected
source waveform. Sources are specified with the :MEASure:SOURce command
or with the optional parameter following the :MEASure:VTOP command.

{CHANnel<N> | FUNCtion<N> | WMEMory<N>}

CHANnel<N> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<N> and WMEMory<N> are:
An integer, 1 - 4, representing the selected function or waveform memory.

This example measures the voltage at the top of the waveform.

10 OUTPUT 707;":MEASURE:VTOP"
20 END

20-102

Query

Returned Format

Measure Commands
VTOP

:MEASure:VTOP? [<source>]

The :MEASure:VTOP? query returns the measured voltage at the top of the
specified source.

[:MEASure:VTOP] <value>[,<result state>]<NL>

<value> Voltage at the top of the waveform.

<result states>

Example

If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

This example places the value of the voltage at the top of the waveform in the
numeric variable, Value, then prints the contents of the variable to the
computer’s screen.

10
20
30
40
50

OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
OUTPUT 707;" :MEASURE:VTOP?"

ENTER 707;Value

PRINT Value

END

20-103

Measure Commands
VUPPer

Command

<source>

<N>

Example

VUPPer

:MEASure:VUPPer [<source>]

The :MEASure:VUPPer command measures the voltage value at the upper
threshold of the waveform. Sources are specified with the MEASure:SOURce
command or with the optional parameter following the :MEASure:VUPPer
command.

{CHANnel<N> | FUNCtion<N> | WMEMory<N>}

CHANnel<N> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<N> and WMEMory<N> are:
An integer, 1 - 4, representing the selected function or waveform memory.

This example measures the voltage at the upper threshold of the waveform.

10 OUTPUT 707;":MEASURE:VUPPer"
20 END

20-104

Query

Returned Format
<value>

<result states>

Example

Measure Commands
VUPPer

:MEASure:VUPPer? [<source>]

The :MEASure:VUPPer? query returns the measured upper threshold value of
the selected source.

[:MEASure:VUPPer] <values>[,<result state>]<NL>

Voltage at the upper threshold.

If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

This example places the value of the voltage at the upper threshold of the
waveform in the numeric variable, Value, then prints the contents of the variable
to the computer’s screen.

10
20
30
40
50

OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
OUTPUT 707;" :MEASURE:VUPPER?"

ENTER 707;Value

PRINT Value

END

20-105

20-106

21

Mask Test Commands

Mask Test Commands

The MTESt subsystem commands and queries control the mask test
features. Mask Testing automatically compares measurement results
with the boundaries of a set of polygons that you define. Any waveform
or sample that falls within the boundaries of one or more polygons is
recorded as a failure.

These MTESt commands and queries are implemented in the
HP Infiniium Oscilloscopes:

ALIGn

AlignFIT
AMASk:CREate
AMASk:SOURce
AMASK:SAVE | STORe
AMASK:UNITs
AMASKk:XDELta
AMASKk:YDELta
AUTO

AVERage
AVERage:COUNt
COUNt:FAILures?
COUNt:FWAVeforms?
COUNt:WAVeforms?
DELete

ENABIe

HAMPIlitude
IMPedance

INVert

LAMPIlitude

LOAD

NREGions?
PROBe:IMPedance?

RUMode
RUMode:SOFailure
SCALe:BIND
SCALe:X1
SCALe:XDELta
SCALe:Y1
SCALe:Y2
SOURce

STARt | STOP
STIMe

TITLe?

Mask Test Commands

Mask Test Commands
ALIGn

Command

Example

ALIGn

:MTESt : ALIGn

The :MTESt:ALIGn command automatically aligns and scales the mask to the
current waveform on the display. The type of mask alignment performed
depends on the current setting of the Use File Setup When Aligning control.
See the :MTESt:AUTO command for more information.

This example aligns the current mask to the current waveform.

10 Output 707;" :MTEST:ALIGN"
20 END

Mask Test Commands
AlignFIT

Command

Table 21-1

AlignFIT

:MTESt :AlignFIT {EYEAMI | EYECMI | EYENRZ | FANWidth
| FAPeriod | FAPWidth | FYNWidth | FYPWidth | NONE
| NWIDth | PWIDth | TMAX | TMIN}

The :MTESt:AlignFIT command specifies the alignment type for aligning amask
to a waveform. The pulse mask standard has rules that determine which
controls the oscilloscope can adjust or change during the alignment process.
An X in a column indicates that the control can be adjusted for each of the
alignment types of Table 21-1.

Available Alignment Types

Alignment Waveform Horizontal 0 Level 1 Level Vertical Invert

Type Type Position Voltage Voltage Offset Waveform

EYEAMI AMI X X X

EYECMI CMI X X X

EYENRZ NRz X X X

FANWidth Negative X X X

FAPeriod Full Period X X

FAPWidth Positive X X X

FYNWidth Negative X X

FYPWidth Positive X X X

NONE Automask

NWIDth Negative X X X X
Pulse

PWIDth Positive X X X X
Pulse

TMAX Positive Sine X X X X
Pulse

TMIN Negative X X X X
Sine Pulse

Example

Query

Returned Format

Mask Test Commands
AlignFIT

This example specifies the alignment type to be EYEAMI.

10 Output 707;":MTEST:ALIGNFIT EYEAMI"
20 END

:MTESt : AlignFIT?

The :MTEST:AlignFIT? query returns the alignment type used for the mask.

[:MTESt:AlignFIT] {EYEAMI | EYECMI | EYENRZ |
FANWidth | FAPeriod | FAPWidth | FYNWidth |
FYPWidth | NONE | NWIDth | PWIDth | TMAX | TMIN}<NL>

21-6

Mask Test Commands
AMASk:CREate

Command

Example

AMASk:CREate

:MTESt : AMASk : CREate

The :MTESt:AMASk:CREate command automatically constructs a mask around
the current selected channel, using the tolerance parameters defined by the
AMASKk:XDELta, AMASk:YDELta, and AMASk:UNITs commands. The mask
only encompasses the portion of the waveform visible on the display, so you
must ensure that the waveform is acquired and displayed consistently to obtain
repeatable results.

The :MTESt:SOURce command selects the channel and should be set before
using this command.

This example creates an automask using the current XDELta and YDELta units
settings.

10 OUTPUT 707;":MTEST:AMASK:CREATE"
20 END

Mask Test Commands
AMASk:SOURce

Command

<number>

Example

Query

Returned Format

Example

AMASk:SOURce

:MTESt : AMASk : SOURce CHANnel<number>

The :MTESt:AMASk:SOURce command selects the source for the interpretation
of the AMASk:XDELta and AMASk:YDELta parameters when AMASK:UNITs is
set to CURRent. When UNITs are CURRent, the XDELta and YDELta
parameters are defined in terms of the channel units, as set by the
:CHANnNel:UNITs command, of the selected source. Suppose that UNITs are
CURRent and that you set SOURce to CHANNEL]1, which is using units of volts.
Then you can define AMASk:XDELta in terms of volts and AMASk:YDELta in
terms of seconds.

An integer, 1 through 4 for the 54815A, 54825A, and 54845A
An integer, 1 through 2 for the 54810A and 54820A

This example sets the automask source to Channel 1.

10 OUTPUT 707; "MTEST:AMASK:SOURCE CHANNEL1"
20 END

:MTESt : AMASk : SOURce?

The :MTESt:AMASk:SOURce? query returns the currently set source.

[:MTESt : AMASk : SOURce] CHANnel<number><NL>

This example gets the source setting for automask and prints the result on the
computer display.

10 DIM Amask_source$ [30]

20 OUTPUT 707; "MTEST :AMASK:SOURCE?"
30 ENTER 707;Amask_sources$

40 PRINT Amask sources$

50 END

21-8

Mask Test Commands
AMASKk:SAVE | STORe

Command

<filename>

Example

AMASK:SAVE | STORe

:MTESt:AMASk:SAVE|STORe "<«filenames>"

The :MTESt:AMASk:SAVE command saves the automask generated mask to a
file. If an automask has not been generated, an error occurs.

An MS-DOS compatible name of the file, a maximum of 254 characters long
(including the path name, if used). The filename assumes the present working
directory if a path does not precede the file name.

This example saves the automask generated mask to a file named "FILE1".

10 OUTPUT 707;":MTEST:AMASK:SAVE""FILE1"""
20 END

Mask Test Commands

AMASk:UNITs
AMASK:UNITs
Command :MTESt :AMASk:UNITs {CURRent | DIVisions}
The :MTESt:AMASk:UNITs command alters the way the mask test subsystem
interprets the tolerance parameters for automasking as defined by
AMASKk:XDELta and AMASk:YDELta commands.
CURRent When set to CURRent, the mask test subsystem uses the units as set by the
:CHANnNel:UNITs command, usually time for AX and voltage for AY.
DIVisions When set to DIVisions, the mask test subsystem uses the graticule as the
measurement system, so tolerance settings are specified as parts of a screen
division. The mask test subsystem maintains separate XDELta and YDELta
settings for CURRent and DIVisions. Thus, XDELta and YDELta are not
converted to new values when the UNITs setting is changed.
Example This example sets the measurement units for automasking to the current
:CHANnNel:UNITs setting.
10 OUTPUT 707;"MTEST:AMASK:UNITS CURRENT"
20 END
Query :MTESt : AMASk : UNITs?

Returned Format

Example

The AMASK:UNITs query returns the current measurement units setting for the
mask test automask feature.

[:MTESt :AMASk:UNITs] {CURRent | DIVision}<NL>

This example gets the automask units setting, then prints the setting on the
screen of the computer.

10 DIM Automask units$[10]

20 OUTPUT 707;"MTEST:AMASK:UNITS?"
30 ENTER 707;Automask unitss$

40 PRINT Automask unitss$

50 END

21-10

Mask Test Commands
AMASk:XDELta

Command

<xdelta_ value>

Example

AMASk:XDELta

:MTESt : AMASk :XDELta <xdelta value>

The :MTESt:AMASk:XDELta command sets the tolerance in the X direction
around the waveform for the automasking feature. The absolute value of the
tolerance will be added and subtracted to horizontal values of the waveform to
determine the boundaries of the mask.

A value for the horizontal tolerance. This value is interpreted based on the
setting specified by the AMASk:UNITs command; thus, if you specify 250-E3,
the setting for AMASk:UNITs is CURRent, and the current setting specifies time
in the horizontal direction, the tolerance will be +250 ms. If the setting for
AMASK:UNITs is DIVisions, the same xdelta_value will set the tolerance to 250
millidivisions, or 1/4 of a division.

This example sets the units to divisions and sets the AX tolerance to one-eighth
of a division.
10 OUTPUT 707;"MTEST:AMASK:UNITS DIVISIONS"

20 OUTPUT 707;":MTEST:AMASK:XDELTA 125E-3"
30 END

21-11

Query

Returned Format

Example

Mask Test Commands
AMASk:XDELta

:MTESt : AMASk : XDELta?

The AMASk:XDELta? query returns the current setting of the AX tolerance for
automasking. If your computer program will interpret this value, it should also
request the current measurement system using the AMASK:UNITs query.

[:MTESt : AMASk:XDELta] <xdelta value><NL>

This example gets the measurement system units and AX settings for
automasking from the oscilloscope and prints the results on the computer
screen.

10
20
30
40
50
60
70
80
90

DIM Automask units$[10]

DIM Automask xdelta$[20]

OUTPUT 707 ; "MTEST : AMASK:UNITS?"
ENTER 707;Automask _unitss$

OUTPUT 707;":MTEST:AMASK:XDELTA?"
ENTER 707;Automask xdelta$

PRINT Automask _unitss$

PRINT Automask xdelta$

END

21-12

Mask Test Commands
AMASk:YDELta

Command

<ydelta value>

Example

AMASk:YDELta

:MTESt : AMASk : YDELta <ydelta value>

The :MTESt:AMASk:YDELta command sets the vertical tolerance around the
waveform for the automasking feature. The absolute value of the tolerance will
be added and subtracted to vertical values of the waveform to determine the
boundaries of the mask.

This command requires that mask testing be enabled, otherwise a settings
conflict error message is displayed. See :MTESt:ENABIe for information on
enabling mask testing.

A value for the vertical tolerance. This value is interpreted based on the setting
specified by the AMASKk:UNITs command; thus, if you specify 250-E3, the
setting for AMASK:UNITs is CURRent, and the current setting specifies voltage
in the vertical direction, the tolerance will be 250 mV. If the setting for
AMASK:UNITs is DIVisions, the same ydelta_value will set the tolerance to +250
millidivisions, or 1/4 of a division.

This example sets the units to current and sets the AY tolerance to 30 mV,
assuming that the current setting specifies volts in the vertical direction.
10 OUTPUT 707;"MTEST:AMASK:UNITS CURRENT"

20 OUTPUT 707;":MTEST:AMASK:YDELTA 30E-3"
30 END

21-13

Query

Returned Format

Example

Mask Test Commands
AMASk:YDELta

:MTESt : AMASk : YDELta?

The AMASk:YDELta? query returns the current setting of the AY tolerance for
automasking. If your computer program will interpret this value, it should also
request the current measurement system using the AMASK:UNITs query.

[:MTESt : AMASk:YDELta] <ydelta value><NL>

This example gets the measurement system units and AY settings for
automasking from the oscilloscope and prints the results on the computer
screen.

10
20
30
40
50
60
70
80
90

DIM Automask units$[10]

DIM Automask ydelta$[20]

OUTPUT 707 ; "MTEST : AMASK:UNITS?"
ENTER 707;Automask _unitss$

OUTPUT 707;":MTEST:AMASK:YDELTA?"
ENTER 707;Automask_ydelta$

PRINT Automask _unitss$

PRINT Automask ydelta$

END

21-14

Mask Test Commands
AUTO

Command

Example

Query

Returned Format

Example

AUTO

:MTESt :AUTO {{ON|1} | {OFF|0}}

The :MTESt:AUTO command enables (ON) or disables (OFF) the Use File
Setup When Aligning control. This determines which type of mask alignment
is performed when the :MTESt:ALIGn command is sent. When enabled, the
oscilloscope controls are changed to the values which are determined by the
loaded mask file. This alignment guarantees that the aligned mask and any
subsequent mask tests meet the requirements of the standard.

When disabled, the alignment is performed using the current oscilloscope
settings. This may be useful when troubleshooting problems during the design
phase of a project.

This example enables the Use File Settings When Aligning control.

10 OUTPUT 707; "MTEST:AUTO ON"
20 END

:MTESt : AUTO?

The :MTESt:AUTO? query returns the current value of the Use File Setup When
Aligning control.

[:MTESt :AUTO] {1]|0} <NL>

10 OUTPUT 707;":MTEST:AUTO?"
20 ENTER 707;Value

30 PRINT Value

40 END

21-15

Mask Test Commands
AVERage

Command

Example

Query

Returned Format

Example

AVERage

:MTESt :AVERage {{ON|1} | {OFF|0}}

The :MTESt:AVERage command enables or disables averaging. When ON, the
oscilloscope acquires multiple data values for each time bucket, and averages
them. When OFF, averaging is disabled. To set the number of averages, use
the :MTESt:AVERage:COUNt command described next.

The :ACQuire:AVERage command performs the same function as this
command.

Averaging is not available in PDETect mode.

This example turns averaging on.

10 OUTPUT 707; "MTEST:AVERAGE ON"
20 END

:MTESt : AVERage?

The :MTESt:AVERage? query returns the current setting for averaging.

[:MTESt :AVERage] {1|0} <NL>

This example places the current settings for averaging into the string variable,
Setting$, then prints the contents of the variable to the computer’s screen.

10 DIM Settings$[50] !Dimension variable
20 OUTPUT 707; "MTEST:AVERAGE?"

30 ENTER 707;Setting$

40 PRINT Settings$

50 END

21-16

Mask Test Commands
AVERage:COUNt

Command

<count_value>

Example

Query

Returned Format

<value>

Example

AVERage:COUNt

:MTESt : AVERage : COUNt <count value>

The :MTESt:AVERage:COUNt command sets the number of averages for the
waveforms. In the AVERage mode, the :MTESt:AVERage:COUNt command
specifies the number of data values to be averaged for each time bucket before
the acquisition is considered complete for that time bucket.

The :ACQuire:AVERage: COUNt command performs the same function as this
command.

An integer, 2 to 4096, specifying the number of data values to be averaged.

This example specifies that 16 data values must be averaged for each time
bucket to be considered complete. The number of time buckets that must be
complete for the acquisition to be considered complete is specified by the
:MTESt:COMPlete command.

10 OUTPUT 707;":MTESt:COUNT 16"
20 END

:MTESt : COUNt?

The :MTESt:COUNt? query returns the currently selected count value.

[:MTESt : COUNt] <value><NL>

An integer, 2 to 4096, specifying the number of data values to be averaged.

This example checks the currently selected count value and places that value
in the string variable, Result$. The program then prints the contents of the
variable to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF”

20 OUTPUT 707;":MTEST:AVERAGE:COUNT?"
30 ENTER 707;Result

40 PRINT Result

50 END

21-17

Mask Test Commands
COUNt:FAILures?

Query

<number>

Returned Format

<number of

failures>

Example

COUNt:FAILures?

:MTESt : COUNt : FATILures? REGion<numbers>

The MTESt:COUNt:FAILures? query returns the number of failures that
occurred within a particular mask region.

The value 9.999E37 is returned if mask testing is not enabled or if you specify
a region number that is unused.

Aninteger, 1 through 8, designating the region for which you want to determine
the failure count.

[:MTESt : COUNt : FAILures] REGion<numbers><number of failuress
<NL>

The number of failures that have occurred for the designated region.

This example determines the current failure count for region 3 and prints it on
the computer screen.

10 DIM Mask_failuress [50]

20 OUTPUT 707;"MTEST:COUNT:FAILURES? REGION3"
30 ENTER 707;Mask failures$

40 PRINT Mask failures$

50 END

21-18

Mask Test Commands
COUNt:FWAVeforms?

Query

Returned Format

<number
of failed
waveforms>

Example

COUNt:FWAVeforms?

:MTESt : COUNt : FWAVeforms?

The :MTESt: COUNt:FWAVeforms? query returns the total number of failed
waveforms in the current mask test run. This count is for all regions and all

waveforms, so if you wish to determine failures by region number, use the
COUNt:FAILures? query.

This count may not always be available. It is available only when the following
conditions are true:

e Mask testing was turned on before the histogram or color grade persistence,
and

e No mask changes have occurred, including scaling changes, editing, or new
masks.

The value 9.999E37 is returned if mask testing is not enabled, or if you have
modified the mask.

[:MTESt : COUNt : FWAVeforms] <number of failed waveforms><NL>

The total number of failed waveforms for the current test run.

This example determines the number of failed waveforms and prints the result
on the computer screen.

10 OUTPUT 707;"SYSTEM:HEADER OFF"

20 OUTPUT 707;" :MTEST:COUNT : FWAVEFORMS?
30 ENTER 707;Mask fwaveforms$

40 PRINT Mask fwaveformss

50 END

21-19

Mask Test Commands
COUNt:WAVeforms?

Query

Returned Format

<number of
waveforms>

Example

COUNt:WAVeforms?

:MTESt : COUNt : WAVeforms?

The :MTESt:COUNt:WAVeforms? query returns the total number of waveforms
acquired in the current mask test run. The value 9.999E37 is returned if mask
testing is not enabled.

[:MTESt : COUNt : WAVeforms] <number of waveforms><NL>

The total number of waveforms for the current test run.

This example determines the number of waveforms acquired in the current test
run and prints the result on the computer screen.

10
20
30
40
50

OUTPUT 707;"SYSTEM:HEADER OFF"
OUTPUT 707; " :MTEST:COUNT : WAVEFORMS?"
ENTER 707;Mask_waveforms

PRINT Mask waveforms

END

21-20

Mask Test Commands
DELete

DELete

Command :MTESt :DELete

The :MTESt:DELete command clears the currently loaded mask.

Example This example clears the currently loaded mask.
10 OUTPUT 707; "MTEST:DELETE"
20 END

21-21

Mask Test Commands
ENABIle

Command

ON

OFF

Example

Query

Returned Format

Example

ENABIle

:MTESt :ENABle {{ON|1} | {OFF|0}}

The :MTESt:ENABle command enables or disables the mask test features.
Enables the mask test features.

Disables the mask test features.

This example enables the mask test features.

10 OUTPUT 707;":MTEST:ENABLE ON"
20 END

:MTESt : ENABle?

The :MTESt:ENABIe? query returns the current state of mask test features.

[MTESt : ENABle] {1]0}<nL>

This example places the current value of the mask test state in the numeric
variable Value, then prints the contents to the computer’s screen.

10 OUTPUT 707;"SYSTEM:HEADER OFF
20 OUTPUT 707;":MTEST:ENABLE?"
30 ENTER 707;Value

40 PRINT Value

50 END

21-22

Mask Test Commands
HAMPIlitude

Command

<upper limits>

Example

Query

Returned Format

<upper_ limits>

Example

HAMPIlitude

:MTESt :HAMPlitude <upper limits>

The :MTESt:HAMPIlitude command sets the maximum pulse amplitude value
that passes the pulse standard. For some of the pulse communications
standards, a pulse has arange of amplitude values and still passes the standard.
This command sets the upper limit used during mask testing.

A real number that represents the maximum amplitude in volts of a pulse as
allowed by the pulse standard.

This example sets the maximum pulse amplitude to 3.6 volts.

10 OUTPUT 707;"MTEST:HAMPLITUDE 3.6"
20 END

:MTESt : HAMP1itude?

The :MTESt:HAMPIlitude? query returns the current value of the maximum
pulse amplitude.

[MTESt :HAMPlitude] <upper limit><NL>

A real number that represents the maximum amplitude in volts of a pulse as
allowed by the pulse standard.

This example returns the current upper pulse limit and prints it to the
computer’s screen.

10 OUTPUT 707;"SYSTEM:HEADER OFF" |[IResponse headers off
20 OUTPUT 707; "MTEST:HAMPLITUDE?"

30 ENTER 707;ULimit

40 PRINT ULimit

50 END

21-23

Mask Test Commands
IMPedance

Command

NONE
IMP75

IMP100

IMP110

IMP120

Example

IMPedance

:MTESt : IMPedance {NONE | IMP75 | IMP100 | IMP110 |
IMP120}

The :MTESt:IMPedance command sets the desired probe impedance of the
channel being used for mask testing. This impedance value is used when
starting a mask test to determine whether or not the correct Infiniium probe is
connected and in the case of the E2621A if the switch is set to the correct
impedance value.

Infiniium has an AutoProbe interface that detects probes that have Probe 1D
resistors. If one of these probes is connected to the channel being mask tested
and is not the correct probe for the selected impedance, a warning dialog box
appears when the mask test is started from the human interface.

This command is meant to be used in the setup section of a mask file.
Disables the probe impedance check.
Enables the probe impedance check for the E2622A probe.

Enables the probe impedance check for the E2621A probe with the switch set
to the 100 ohm position.

Enables the probe impedance check for the E2621A probe with the switch set
to the 110 ohm position.

Enables the probe impedance check for the E2621A probe with the switch set
to the 120 ohm position.

This example sets the probe impedance of the channel being used for mask
testing to 100 ohms.

10 OUTPUT 707; "MTEST:IMPEDANCE IMP10O0O"
20 END

21-24

Query

Returned Format

Example

Mask Test Commands
IMPedance

:MTESt : IMPedance?

The :MTESt:IMPedance? query returns the current value of the mask test
impedance.

[:MTESt :IMPedance] {NONE | IMP75 | IMP100 | IMP110
| IMP120}<NL>

This example returns the current value of the mask test impedance and prints
the result to the computer screen.

10
20
30
40
50

OUTPUT 707;":SYSTEM:HEADER OFF" !|Response headers off
OUTPUT 707;" :MTEST:IMPEDANCE?"

ENTER 707 ; Impedance

PRINT Impedance

END

21-25

Mask Test Commands

INVert
INVert

Command :MTESt:INVert {{ON|1} | {OFF|0}}
The :MTESt:INVert command inverts the mask for testing negative-going
pulses. The trigger level and mask offset are also adjusted. Not all masks
support negative-going pulse testing, and for these masks, the command is
ignored.

Example This example inverts the mask for testing negative-going pulses.
10 OUTPUT 707;"MTEST:INVERT ON"
20 END

Query :MTESt : INVert?

Returned Format

The :MTESt:INVert? query returns the current inversion setting.

[:MTESt:INVert] {1|0}<NL>

21-26

Mask Test Commands
LAMPlitude

Command

<lower limits>

Example

Query

Returned Format

<lower limits>

Example

LAMPlitude

:MTESt : LAMPlitude <lower limits>

The :MTESt:LAMPIlitude command sets the minimum pulse amplitude value
that passes the pulse standard. For some of the pulse communications
standards, a pulse has arange of amplitude values and still passes the standard.
This command sets the lower limit used during mask testing.

A real number that represents the minimum amplitude in volts of a pulse as
allowed by the pulse standard.

This example sets the minimum pulse amplitude to 2.4 volts.

10 OUTPUT 707;"MTEST:LAMPLITUDE 2.4"
20 END

:MTESt : LAMP1litude?

The :MTESt LAMPIlitude? query returns the current value of the minimum pulse
amplitude.

[:MTESt:LAMPlitude] <lower limit><NL>

A real number that represents the minimum amplitude in volts of a pulse as
allowed by the pulse standard.

This example returns the current lower pulse limit and prints it to the
computer’s screen.

10 OUTPUT 707;"SYSTEM:HEADER OFF !Response headers off
20 OUTPUT 707; "MTEST:LAMPLITUDE?"

30 ENTER 707;ULimit

40 PRINT ULimit

50 END

21-27

Mask Test Commands
LOAD

Command

<filename>

Example

LOAD

:MTESt :LOAD "<filename>"

The :MTESt:LOAD command loads the specified mask file. The default path
for mask files is c:\scope\masks. To use a different path, specify the complete
path and file name.

An MS-DOS compatible name of the file, a maximum of 254 characters long
(including the path name, if used).

This example loads the mask file named "140md_itu_1.msk".

10 OUTPUT 707;"MTEST:LOAD""c:\scope\masks\140md_itu 1.msk"""
20 END

21-28

Mask Test Commands
NREGions?

Query

Returned Format

NREGions?

:MTESt : NREGions?

The :MTESt:NREGions? query returns the number of regions that define the
mask.

[:MTESt :NREGions] <regions><NL>

<regions> An integer from 0 to 8.

Example

This example returns the number of mask regions.

10
20
30
40
50

OUTPUT 707;":SYSTEM:HEADER OFF"
OUTPUT 707;" :MTEST:NREGIONS?"
ENTER 707;Regions

PRINT Regions

END

21-29

Mask Test Commands
PROBe:IMPedance?

PROBe:IMPedance?

Query :MTESt : PROBe : IMPedance?

The :MTESt:PROBe:IMPedance? query returns the impedance setting for the
E2621A and E2622A probes for the current mask test channel.

Returned Format [:MTESt : PROBe : IMPedance] <impedances<NL>

<impedance> An unquoted string: 75, 100, 110, 120, or NONE

Example This example returns the impedance setting for the probe.

10 DIM Impedance$[20]

20 OUTPUT 707;":SYSTEM:HEADER OFF"

30 OUTPUT 707;":MTEST:PROBE: IMPEDANCE?"
40 ENTER 707; Impedances$

50 PRINT Impedance$

60 END

21-30

Mask Test Commands
RUMode

Command

FORever

TIME

<time>

WAVeforms

<number_ of
waveforms>

Example

RUMode

:MTESt :RUMode {FORever | TIME, <time> | WAVeforms,
<number of waveformss}

The :MTESt:RUMode command determines the termination conditions for the
mask test. The choices are FORever, TIME, or WAVeforms.

If WAVeforms is selected, a second parameter is required indicating the number

of failures that can occur or the number of samples or waveforms that are to be
acquired.

FORever runs the Mask Test until the test is turned off. This is used when you
want a measurement to run continually and not to stop after a fixed number of
failures. For example, you may want the Mask Test to run overnight and not be
limited by a number of failures.

TIME sets the amount of time in minutes that a mask test will run before it
terminates.

A real number: 0.1 to 1440.0

WAVeforms sets the maximum number of waveforms that are required before
the mask test terminates.

An integer: 1 to 1,000,000,000.

This example sets the mask test subsystem run until mode to continue testing
until 500,000 waveforms have been gathered.

10 OUTPUT 707; "MTEST:RUMODE WAVEFORMS,500E3"
20 END

21-31

Query

Returned Format

Example

Mask Test Commands
RUMode

:MTESt : RUMode?

The query returns the currently selected termination condition and value.

[:MTESt:RUMode] {FORever | TIME,<time> | WAVeforms,
<number of waveformss}<NL>

This example gets the current setting of the mask test run until mode from the
oscilloscope and prints it on the computer screen.

10
20
30
40
50

DIM MTEST_Runmode$ [50]
OUTPUT 707; "MTEST:RUMODE?"
ENTER 707;":MTEST Runmode$
PRINT MTEST Runmode$

END

21-32

Mask Test Commands
RUMode:SOFailure

Command

Example

Query

Returned Format

RUMode:SOFailure

:MTESt :RUMode : SOFailure {{ON|1} | {OFF|0}}

The :MTESt:RUMode:SOFailure command enables or disables the Stop On
Failure run until criteria. When a mask test is run and a mask violation is
detected, the mask test is stopped and the acquisition system is stopped.

This example enables the Stop On Failure run until criteria.

10 OUTPUT 707;":MTEST:RUMODE:SOFAILURE ON"
20 END

:MTESt : SOFailure?

The :MTESt:SOFailure? query returns the current state of the Stop on Failure
control.

[:MTESt:SOFailure] {1|0}<NL>

21-33

Mask Test Commands
SCALe:BIND

Command

Example

Query

Returned Format

SCALe:BIND

:MTESt :SCALe:BIND {{ON|1} | {OFF|0}}

The :MTESt:SCALe:BIND command enables or disables Bind 1 & 0 Levels (Bind
-1 & 0 Levels for inverted masks) control. If the Bind 1 & 0 Levels control is
enabled, the 1 Level and the 0 Level controls track each other. Adjusting either
the 1 Level or the 0 Level control shifts the position of the mask up or down
without changing its size. If the Bind 1 & 0 Levels control is disabled, adjusting
either the 1 Level or the 0 Level control changes the vertical height of the mask.

If the Bind -1 & 0 Levels control is enabled, the -1 Level and the 0 Level controls
track each other. Adjusting either the -1 Level or the 0 Level control shifts the
position of the mask up or down without changing its size. If the Bind -1 & 0
Levels control is disabled, adjusting either the -1 Level or the 0 Level control
changes the vertical height of the mask.

This example enables the Bind 1 & 0 Levels control.

10 OUTPUT 707;"MTEST:BIND ON"
20 END

:MTESt : SCALe :BIND?

The :MTESt:SCALe:BIND? query returns the value of the Bind 1&0 control
(Bind -1&0 for inverted masks).

[:MTESt :SCALe:BIND?] {1]|0}<NL>

21-34

Mask Test Commands
SCALe:X1

Command

<x1 value>

Example

Query

Returned Format

Example

SCALe:X1

:MTESt : SCALe:X1 <x1 value>

The :MTESt:SCALe:X1 command defines where X=0 in the base coordinate
system used for mask testing. The other X-coordinate is defined by the
SCALe:XDELta command. Once the X1 and XDELta coordinates are set, all X
values of vertices in the mask regions are defined with respect to this value,
according to the equation: X = (X X AX) + X1

Thus, if you set X1 to 100 ms, and XDELta to 100 ms, an X value of 0.100 is a
vertex at 110 ms.

The oscilloscope uses this equation to normalize vertices. This simplifies
reprogramming to handle different data rates. For example, if you halve the
period of the waveform of interest, you need only to adjust the XDELta value
to set up the mask for the new waveform.

A time value specifying the location of the X1 coordinate, which will then be
treated as X=0 for mask regions coordinates.

This example sets the X1 coordinate at 150 ms.

10 OUTPUT 707;":MTEST:SCALE:X1 150E-3"
20 END

:MTESt : SCALe:X17?

The :MTESt:SCALe:X1? query returns the current X1 coordinate setting.

[:MTESt :SCALe:X1] <x1 value><NL>

This example gets the current setting of the X1 coordinate from the oscilloscope
and prints it on the computer screen.

10 DIM Scale x1s$[50]

20 OUTPUT 707;":MTEST:SCALE:X1?"
30 ENTER 707;Scale x1$

40 PRINT Scale x1$

50 END

21-35

Mask Test Commands
SCALe:XDELta

Command

<xdelta values>

Example

Query

Returned Format

Example

SCALe:XDELta

:MTESt : SCALe:XDELta <xdelta_ value>

The :MTESt:SCALe:XDELta command defines the position of the X2 marker
with respect to the X1 marker. In the mask test coordinate system, the X1
marker defines where X=0; thus, the X2 marker defines where X=1.

Because all X vertices of the regions defined for mask testing are normalized
with respect to X1 and AX, redefining AX also moves those vertices to stay in
the same locations with respect to X1 and AX. Thus, in many applications, it is
best if you define XDELta as a pulse width or bit period. Then a change in data
rate without corresponding changes in the waveform can easily be handled by
changing AX.

The X-coordinate of polygon vertices is normalized using this equation:

X = (XxXAX)+ X1

A time value specifying the distance of the X2 marker with respect to the X1
marker.

Assume that the period of the waveform you wish to test is 1 ms. Then the
following example will set AX to 1 ms, ensuring that the waveform’s period is
between the X1 and X2 markers.

10 OUTPUT 707;":MTEST:SCALE:XDELTA 1E-6:
20 END

:MTESt : SCALe : XDELta?

The :MTESt:SCALe:XDELta? query returns the current value of AX.

[:MTESt :SCALe:XDELta] <xdelta value><NL>

This example gets the value of AX from the oscilloscope and prints it on the
computer screen.

10 DIM Scale xdelta$[50]

20 OUTPUT 707;":MTEST:SCALE:XDELTA?"
30 ENTER 707;Scale xdeltas$

40 PRINT Scale xdeltas

50 END

21-36

Mask Test Commands
SCALe:Y1

Command

<yl value>

Example

Query

Returned Format

Example

SCALe:Y1

:MTESt : SCALe:Y1 <y value>

The :MTESt:SCALe:Y1 command defines where Y=0 in the coordinate system
for mask testing. All Y values of vertices in the coordinate system are defined
with respect to the boundaries set by SCALe:Y1 and SCALe:Y2 according to the
equation: ¥ = (YX(Y2b Y1))+7Yl1

Thus, if you set Y1 to 100 mV, and Y2 to 1 V, a Y value of 0.100 in a vertex is at
190 mV.

A voltage value specifying the point at which Y=0.

This example sets the Y1 marker to -150 mV.

10 OUTPUT 707; ":MTEST:SCALE:Y1l -150E-3"
20 END

:MTESt : SCALe:Y1?

The SCALe:Y1? query returns the current setting of the Y1 marker.

[:MTESt:SCALe:Y1] <yl value><NL>

This example gets the setting of the Y1 marker from the oscilloscope and prints
it on the computer screen.

10 DIM Scale yls[50]

20 OUTPUT 707;":MTEST:SCALE:Y1?"
30 ENTER 707;Scale_yl$

40 PRINT Scale y1$

50 END

21-37

Mask Test Commands
SCALe:Y2

Command

<y2_value>

Example

Query

Returned Format

Example

SCALe:Y2

:MTESt :SCALe:Y2 <y2 value>

The :MTESt:SCALe:Y2 command defines the Y2 marker in the coordinate
system for mask testing. All Y values of vertices in the coordinate system are
defined with respect to the boundaries defined by SCALe:Y1 and SCALe:Y2
according to the following equation: ¥ = (Y X (¥Y2D Y1))+ Y1

Thus, if you set Y1 to 100 mV, and Y2 to 1 V, a Y value of 0.100 in a vertex is at
190 mV.

A voltage value specifying the location of the Y2 marker.

This example sets the Y2 marker to 2.5 V.

10 OUTPUT 707;":MTEST:SCALE:Y2 2.5"
20 END

:MTESt : SCALe:Y27?

The SCALe:Y2? query returns the current setting of the Y2 marker.

[:MTESt :SCALe:Y2] <y2 value><NL>

This example gets the setting of the Y2 marker from the oscilloscope and prints
it on the computer screen.

10 DIM Scale y2s$[50]

20 OUTPUT 707;":MTEST:SCALE:Y2?"
30 ENTER 707;Scale_y2$

40 PRINT Scale y2$

50 END

21-38

Mask Test Commands
SOURce

Command
<N>
<M>
Example
Query

Returned Format

Example

SOURce

:MTESt : SOURce {CHANnel<N> | FUNCtion<M>}

The :MTESt:SOURce command selects the channel which is configured by the
commands contained in a mask file when it is loaded.

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

An integer, 1 - 4.

This example selects channel 1 as the mask test source.

10 OUTPUT 707; "MTEST:SOURCE CHANNEL1"
20 END

:MTESt : SOURce?

The :MTESt:SOURce? query returns the channel which is configured by the
commands contained in the current mask file.

[:MTESt:SOURce] {CHANnel<N> | FUNCtion<Ms>}<NL>

This example gets the mask test source setting and prints the result on the
computer display.

10 DIM Amask source$ [30]

20 OUTPUT 707; "MTEST:SOURCE?"
30 ENTER 707;Amask source$
40 PRINT Amask sources

50 END

21-39

Mask Test Commands
STARt | STOP

STARt | STOP

Command :MTESt : STARt | STOP

The :MTESt:STARtISTOP command starts or stops the mask test. The
:MTESt:STARt command also starts the oscilloscope acquisition system. The
:MTESt:STOP command does not stop the acquisition system.

Example This example starts the mask test and acquisition system.
10 OUTPUT 707;"MTEST:START"
20 END

21-40

Mask Test Commands
STIiMe

Command

<timeout>

Example

Query

Returned Format

Example

STIMe

:MTESt :STIMe <timeouts>

The :MTESt:STIMe command sets the timeout value for the Autoalign feature.
If the oscilloscope is unable to align the mask to your waveform within the
specified timeout value, it will stop trying to align and will report an alignment
failure.

An integer from 1 to 120 seconds representing the time between triggers (not
the time that it takes to finish the alignment.)

This example sets the timeout value for the Autoalign feature to 10 seconds.

10 OUTPUT 707;"MTEST:STIMe 10"
20 END

:MTESt : STIMe?

The query returns timeout value for the Autoalign feature.

[:MTESt :STIMe] <timeout><NL>

This example gets the timeout setting and prints the result on the computer
display.

10 OUTPUT 707;"MTEST:STIME?"

30 ENTER 707;Value

40 PRINT Value

50 END

21-41

Mask Test Commands
TITLe?

Query

Returned Format

<mask title>

Example

TITLe?

:MTESt :TITLe?

The :MTESt:TITLe? query returns the mask title which is a string of up to 23
characters. The title is displayed in the mask test dialog box and mask test tab
when a mask file is loaded.

[:MTESt:TITLe] <mask _title><NL>

A string of up to 23 ASCII characters which is the mask title.

This example places the mask title in the string variable and prints the contents
to the computer’s screen.

10
20
30
40
50

DIM Title$[24]

OUTPUT 707;":MTEST:TITLE?"
ENTER 707;Titles$

PRINT Titles$

END

21-42

Mask Test Commands
TRIGger:SOURce

Command

<N>

Example

Query

Returned Format

Example

TRIGger:SOURce

:MTESt : TRIGger:SOURce {CHANnel<N> | EXTernal}

The :MTESt:TRIGger:SOURce command sets the channel or function to use as
the trigger. The EXTernal parameter is only available on the 54810A and 54820A
oscilloscopes. Mask testing must be enabled before using this command.

An integer, 1 - 2, for 54810/564820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

This example sets the mask trigger source to channel 1.

10 OUTPUT 707; "MTEST:TRIGGER:SOURCE CHANNEL1"
20 END

:MTESt : TRIGger : SOURce?

The query returns the currenly selected mask test trigger source.

[:MTESt :TRIGger] {CHANnel<N> | EXTernal}<NL>

This example gets the trigger source setting and prints the result on the
computer display.

10 DIM Amask_source$ [30]

20 OUTPUT 707;"MTEST:TRIGGER:SOURCE?"
30 ENTER 707;Amask_sources$

40 PRINT Amask sources$

50 END

21-43

21-44

22

Self-Test Commands

Self-Test Commands

The SELFtest subsystem commands set up the self-test dialog and run
the Infiniium-Series Oscilloscopes Self-Tests.

Enclose File Name in Quotation Marks

When specifying a file name, you must enclose it in quotation marks.

These SELFtest commands and queries are implemented in the
Infiniium Oscilloscopes:

e AttenSET?

e CANCel

e SCOPETEST

22-2

Self-Test Commands
AttenSET?

Query

Returned Format

<atten_ set

_chan>

Example

AttenSET?

:SELFtest:AttenSET? [<atten_set chan>]

The :SELFtest:AttenSET? query returns the channel number and number of
relay actuations for each channel.

[SELFtest :AttenSET]
Channel<space><channel numbers, <num_actuationss>}{ [, Channel

<spaces><channel numbers, <num_actuations>]...}<NL>
{CHAN<N> | EXTernal | ALL}
<N> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

ALL is the default, and performs the same function as if no parameter is
specified. External is only available on 2-channel oscilloscopes, which include
54810/54820.

This example queries the oscilloscope for channels and the number of relay
actuations for each channel.

10 DIM Txt$[85]

20 OUTPUT 707;":SELF:ASET?"
30 ENTER 707;Txts

40 PRINT TxtS$

50 END

22-3

Self-Test Commands
CANCel

CANCel

Command :SELFtest : CANCel

The :SELFtest:CANCel command stops the currenly running selftest.

Example This example stops the currently running selftest.
10 OUTPUT 707;":SELF:CANC"
20 END

22-4

Self-Test Commands
SCOPETEST

Command

Example

Query

Returned Format

<test name>

<time_stamp>

Example

SCOPETEST

:SELFtest : SCOPETEST

The :SELFtest:SCOPETEST command brings up the self-test dialog in customer
self-test mode (Service Extensions Off) and runs the test, “Scope Self Tests.”
Use the :SELFtest:SCOPETEST? query to determine the status of the test.

This example brings up the self-test dialog and runs the oscilloscope self-tests.

10 OUTPUT 707;":SELF:SCOPETEST"
20 END

:SELFtest :SCOPETEST?

[:SELFtest :SCOPETEST] <test name>,<test status>,
<time_ stamp><NL>

<test_status> Status Description

FAILED Test completed and failed.

PASSED Test completed and passed.

WARNING Test passed but warning message was issued.
CANCELLED Test was cancelled by user.

NODATA Self-tests have not been executed on this instrument.
INPROGRESS Testis in progress.

A string as follows: “Scope Self Tests”.

The time stamp follows the test name and test status, and is the part of the
returned string that includes the date and time, in the format:
“29 AUG 1997 10:13:35”.

This example places the current status of the self-test in the string variable,
Txt$, then prints the contents of the variable to the computer's screen.

10 DIM Txts[64]

20 OUTPUT 707;":SELF:SCOPETEST?"
30 ENTER 707;Txt$

40 PRINT Txts$

50 END

22-5

22-6

23

Time Base Commands

Time Base Commands

The TIMebase subsystem commands control the horizontal (X axis)
oscilloscope functions. These TIMebase commands and queries are
implemented in the Infiniium Oscilloscopes:

e DELay

e POSition

e RANGe

e REFerence

e SCALe

e VIEW

e WINDow:DELay

e WINDow:POSition

e WINDow:RANGe

e WINDow:SCALe

23-2

Time Base Commands
DELay

Command

DELay

:TIMebase:DELay <delay values

The :TIMebase:DELay command sets the time interval between the trigger

event and the delay reference point. The delay reference point is set with the
‘TIMebase:REFerence command.

This Command is Provided for Compatibility

This command has the same function as the :TIMebase:P0Sition command, and is
provided for compatibility with programs written for previous oscilloscopes. The

preferred command for compatibility with Infiniium Oscilloscopes is
:TIMebase:POSition.

<delay value> Arealnumber for the time in seconds from trigger to the delay reference point.

Example

The maximum value depends on the time/division setting.

This example sets the delay to 2 ms.

10 OUTPUT 707;":TIMEBASE:DELAY 2E-3"
20 END

23-3

Time Base Commands
DELay

Query :TIMebase:DELay?

The :TIMebase:DELay? query returns the current delay value in seconds.

Returned Format [:TIMebase:DELay] <delay value><NL>

Example This example places the current delay value in the numeric variable, Value, then
prints the contents of the variable to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":TIMEBASE:DELAY?"

30 ENTER 707;Value

40 PRINT Value

50 END

Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers.
Otherwise, the headers may cause misinterpretation of returned data.

See Also The :TIMebase:POSition command performs the same function as this
command and is preferred for new programs.

23-4

Time Base Commands
POSition

Command

POSition

:TIMebase:POSition <position_ values

The :TIMebase:POSition command sets the time interval between the trigger
event and the delay reference point. The delay reference point is set with the
‘TIMebase:REFerence command.

<position Arealnumber for the time in seconds from trigger to the delay reference point.

_value>

Example

Query

Returned Format

Example

The maximum value depends on the time/division setting.

This example sets the delay position to 2 ms.

10 OUTPUT 707;":TIMEBASE:POSITION 2E-3"
20 END

: TIMebase:POSition?

The :TIMebase:POSition? query returns the current delay value in seconds.

[:TIMebase:POSition] <position_value><NL>

This example places the current delay value in the numeric variable, Value, then
prints the contents of the variable to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":TIMEBASE:POSITION?"

30 ENTER 707;Value

40 PRINT Value

50 END

23-5

Time Base Commands
RANGe

Command

<full scale
_range>

Example

Query

Returned Format

Example

RANGe

:TIMebase:RANGe <full scale range>

The :TIMebase:RANGe command sets the full-scale horizontal time in seconds.
The range value is ten times the time-per-division value.

A real number for the horizontal time, in seconds.
The 54845A and 54835A have 1 ns (100 ps/div) to 50 s (5 s/div).
The 54810/20/15/25/A models have 5 ns (500 ps/div) to 50 s (5 s/div).

This example sets the full-scale horizontal range to 10 ms.

10 OUTPUT 707;":TIMEBASE:RANGE 10E-3"
20 END

: TIMebase : RANGe?

The :TIMebase:RANGe? query returns the current full-scale horizontal time.

[:TIMebase:RANGe] <full_scale_range><NL>

This example places the current full-scale horizontal range value in the numeric
variable, Setting, then prints the contents of the variable to the computer’s
screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":TIMEBASE:RANGE?"

30 ENTER 707;Setting

40 PRINT Setting

50 END

23-6

Time Base Commands
REFerence

Command

Example

Query

Returned Format

Example

REFerence

:TIMebase:REFerence {LEFT | CENTer | RIGHt}

The :TIMebase:REFerence command sets the delay reference to the left, center,
or right side of the display.

This example sets the delay reference to the center of the display.

10 OUTPUT 707;":TIMEBASE:REFERENCE CENTER"
20 END

: TIMebase:REFerence?

The :TIMebase:REFerence? query returns the current delay reference position.

[:TIMebase:REFerence] {LEFT | CENTer | RIGHt}<NL>

This example places the current delay reference position in the string variable,
Setting$, then prints the contents of the variable to the computer’s screen.

10 DIM Setting$[50] !Dimension variable
20 OUTPUT 707;":TIMEBASE:REFERENCE?"
30 ENTER 707;Setting$

40 PRINT Settings$

50 END

23-7

Time Base Commands
SCALe

Command

SCALe

:TIMebase:SCALe <time>

The :TIMebase:SCALe command sets the time base scale. This corresponds to
the horizontal scale value displayed as time/div on the oscilloscope screen.

<time> A real number for the time value, in seconds per division.

Example

Query

Returned Format

Example

This example sets the scale to 10 ms/div.

10 OUTPUT 707;":TIMEBASE:SCALE 10E-3"
20 END

:TIMebase:SCALe?

The :TIMebase:SCALe? query returns the current scale time setting.

[:TIMebase:SCALe] <time><NL>

This example places the current scale value in the numeric variable, Setting,
then prints the contents of the variable to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":TIMEBASE:SCALE?"

30 ENTER 707;Setting

40 PRINT Setting

50 END

23-8

Time Base Commands
VIEW

Command

Example

Query

Returned Format

Example

VIEW

:TIMebase:VIEW {MAIN | WINDow}

The :TIMebase:VIEW command turns the delayed displayed view on and off.
This is the same as using the front panel Delayed button.

This example turns the delayed view on.

10 OUTPUT 707;":TIMEBASE:VIEW WINDOW"
20 END

: TIMebase:VIEW?

The :TIMebase:VIEW? query returns Infiniium’s current view.

[:TIMebase:VIEW] {MAIN | WINDow}<NL>

This example places the current view in the string variable, State$, then prints
the contents of the variable to the computer's screen.

10 DIM State$[50] !Dimension variable
20 OUTPUT 707;":TIMEBASE:VIEW?"

30 ENTER 707;State$

40 PRINT States

50 END

23-9

Time Base Commands
WINDow:DELay

Command

WINDow:DELay

:TIMebase:WINDow:DELay <delay values

The :TIMebase:WINDow:DELay sets the horizontal position in the delayed view
of the main sweep. The range for this command is determined by the main
sweep range and the main sweep horizontal position. The value for this
command must keep the time base window within the main sweep range.

This Command is Provided for Compatibility

This command has the same function as the :TIMebase:WINDow:PQSition
command, and is provided for compatibility with programs written for previous
oscilloscopes. The preferred command for compatibility with Infiniium
Oscilloscopes is :TIMebase:WINDow:PQSition.

<delay value> A real number for the time in seconds from the trigger event to the delay

Example

reference point. The maximum position depends on the main sweep range and
the main sweep horizontal position.

This example sets the time base window delay position to 20 ns.

10 OUTPUT 707;":TIMEBASE:WINDOW:DELAY 20E-9"
20 END

23-10

Query

Returned Format

Example

See Also

Time Base Commands
WINDow:DELay

: TIMebase :WINDow:DELay?

The :TIMebase:WINDow:DELay? query returns the current horizontal position
in the delayed view.

[:TIMebase:WINDow:DELay] <delay position><NL>

This example places the current horizontal position in the delayed view in the
numeric variable, Setting, then prints the contents of the variable to the
computer’s screen.

10
20
30
40
50

OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
OUTPUT 707;" :TIMEBASE:WINDOW:DELAY?"

ENTER 707;Setting

PRINT Setting

END

The :TIMebase:WINDow:POSition command performs the same function as this
command and should be used in new programs.

23-11

Time Base Commands
WINDow:POSition

Command

<position
_value>

Example

Query

Returned Format

Example

WINDow:POSition

:TIMebase:WINDow: POSition <position values

The :TIMebase:WINDow:POSition sets the horizontal position in the delayed
view of the main sweep. The range for this command is determined by the main
sweep range and the main sweep horizontal position. The value for this
command must keep the time base window within the main sweep range.

A real number for the time in seconds from the trigger event to the delay
reference point. The maximum position depends on the main sweep range and
the main sweep horizontal position.

This example sets the time base window delay position to 20 ns.

10 OUTPUT 707;":TIMEBASE:WINDOW:POSITION 20E-9"
20 END

: TIMebase:WINDow:POSition?

The :TIMebase:WINDow:POSition? query returns the current horizontal
position in the delayed view.

[:TIMebase:WINDow:POSition] <position_ value><NL>

This example places the current horizontal position in the delayed view in the
numeric variable, Setting, then prints the contents of the variable to the
computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":TIMEBASE:WINDOW: POSITION?"

30 ENTER 707;Setting

40 PRINT Setting

50 END

23-12

Time Base Commands
WINDow:RANGe

Command

<full_ scale
_range>

Example

Query

Returned Format

Example

WINDow:RANGe

:TIMebase:WINDow:RANGe <full scale_ range>

The :TIMebase:WINDow:RANGe command sets the full-scale range of the
delayed view. The range value is ten times the time per division of the delayed
view. The maximum range of the delayed view is the current main range. The
minimum delayed view range is 10 ps (1 ps/div).

A real number for the full-scale range of the time base window, in seconds.

This example sets the full-scale range of the delayed view to 100 ns.

10 OUTPUT 707;":TIMEBASE:WINDOW:RANGE 100E-9"
20 END

: TIMebase :WINDow: RANGe?

The :TIMebase:WINDow:RANGe? query returns the current full-scale range of
the delayed view.

[: TIMebase:WINDow:RANGe] <full scale range><NL>

This example reads the current full-scale range of the delayed view into the
numeric variable, Value, then prints the contents of the variable to the
computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":TIMEBASE:WINDOW:RANGE?"

30 ENTER 707;Value

40 PRINT Value

50 END

23-13

Time Base Commands
WINDow:SCALe

Command

WINDow:SCALe

: TIMebase:WINDow:SCALe <time>

The :TIMebase:WINDow:SCALe command sets the time/divin the delayed view.
This command rescales the horizontal components of displayed waveforms.

<time> A real number for the time applied to scale the waveforms, ranging from 20 ps

Example

Query

Returned Format

to 2.00E-5.

This example sets the scale of the time base window to
2 milliseconds/div.

10 OUTPUT 707;":TIMEBASE:WINDOW:SCALE 2E-3"
20 END

: TIMebase :WINDow: SCALe?

The :TIMebase:WINDow:SCALe? query returns the scaled window time, in
seconds/div.

[:TIMebase:WINDow:SCALe] <time><NL>

23-14

24

Trigger Commands

Trigger Commands

The oscilloscope trigger circuitry helps you locate the waveform you
want to view. There are several different types of triggering, but the one
that is used most often is edge triggering. Edge triggering identifies a
trigger condition by looking for the slope (rising or falling) and voltage
level (trigger level) on the source you select. Any input channel,
auxiliary input trigger (only in 4-channel oscilloscopes), line, or external
trigger (only in 2-channel oscilloscopes) can be used as the trigger
source.

The commands in the TRIGger subsystem define the conditions for
triggering. Many of the commands in the TRIGger subsystem are used
in more than one of the trigger modes. The command set has been
defined to closely represent the front-panel trigger menus. As a trade-
off, there may be less compatibility between Infiniium Oscilloscopes and
command sets for previous oscilloscopes. Infiniium Oscilloscopes still
accept some commands for compatibility with previous instruments. An
alternative command that is accepted by the oscilloscope is noted for a
particular command.

These TRIGger commands and queries are implemented in the Infiniium
Oscilloscopes:

e HOLDoff

e HYSTeresis

e LEVel

e SWEep

e MODE {(EDGE | GLITch | ADVanced}

e EDGe {:SLOPe | :SOURce | :COUPling}
e GLITch {:POLarity | :SOURce | :WIDTh}

e :ADVanced:MODE {COMM | DELay | PATTern | STATe | TV |
VIOLation}

e :ADVanced:MODE COMM

e :ADVanced:COMM:{BWIDth | ENCode | LEVel | PATTern | POLarity |
SOURce}

24-2

:ADVanced:MODE DELay
:ADVanced:DELay
:ADVanced:DELay:MODE {EDLY | TDLY}

:ADVanced:MODE PATTern
:ADVanced:PATTern {:CONDition | :LOGic}

:ADVanced:MODE STATe
:ADVanced:STATE {:CLOCKk | :CONDition | :LOGic I :SLOPe}

:ADVanced:MODE TV
:ADVanced: TV
:ADVanced:TV:MODE {L525 | L625 | L8751 UDTV}

:ADVanced:MODE VIOLation
:ADVanced:VIOLation (See the following list.)

The :TRIGger:ADVanced:VIOLation modes and commands described in
this chapter include:

:VIOLation:MODE SETup

:VIOLation:SETup:MODE SETup
:VIOLation:SETup:SETup:CSOurce
:VIOLation:SETup:SETup:CSOurce:LEVel
:VIOLation:SETup:SETup:CSOurce:EDGE
:VIOLation:SETup:SETup:DSOurce
:VIOLation:SETup:SETup:DSOurce:LTHReshold
:VIOLation:SETup:SETup:DSOurce:HTHReshold
:VIOLation:SETup:SETup:TIME
:VIOLation:SETup:MODE HOLD
:VIOLation:SETup:HOLD:CSOurce
:VIOLation:SETup:HOLD:CSOurce:LEVel
:VIOLation:SETup:HOLD:CSOurce:EDGE
:VIOLation:SETup:HOLD:DSOurce
:VIOLation:SETup:HOLD:DSOurce:LTHReshold
:VIOLation:SETup:HOLD:DSOurce:HTHReshold
:VIOLation:SETup:HOLD:TIME

24-3

e :VIOLation:SETup:MODE SHOLd

e :VIOLation:SETup:SHOLd:CSOurce

e :VIOLation:SETup:SHOLd:CSOurce:LEVel

e :VIOLation:SETup:SHOLd:CSOurce:EDGE

e VIOLation:SETup:SHOLd:DSOurce

e :VIOLation:SETup:SHOLd:DSOurce:LTHReshold
e :VIOLation:SETup:SHOLd:DSOurce:HTHReshold
e :VIOLation:SETup:SHOLd:SetupTIMe

e :VIOLation:SETup:SHOLd:HoldTIMe

e :VIOLation:MODE TRANSsition
e :VIOLation:TRANsition:SOURce
e :VIOLation:TRANsition:TYPE

e :VIOLation:TRANsition:GTHan
e :VIOLation:TRANsition:LTHan

e :VIOLationMODE PWIDth

e :VIOLation:PWIDth:SOURce
e :VIOLation:PWIDth:POLarity
e VIOLation:PWIDth:DIRection
e :VIOLation:PWIDth:WIDTh

24-4

Organization of Trigger Modes and Commands

The trigger modes are summarized in the next section. In addition, each mode

is described before its set of commands in the following sections.
These general trigger commands are described first.

HOLDoff
HYSTeresis
LEVel

e SWEep
The following sections in this chapter describe the individual trigger modes and

commands, and are organized in this order:

e EDGE
e GLITch
e ADVanced

COMM
DELay
PATTern
STATe
TV
VIOLation

24-5

<Advanced
_trigger mode>

Summary of Trigger Modes and Commands

Make sure the oscilloscope is in the proper trigger mode for the
command you want to send. One method of ensuring that the
oscilloscope is in the proper trigger mode is to send the :TRIGger:MODE
command in the same program message as the parameter to be set.

For example, these commands place the instrument in the advanced
triggering mode you select:

: TRIGger :MODE ADVanced
:TRIGger :ADVanced:MODE <Advanced trigger mode>

Advanced trigger modes include COMM, DELay, PATTern, STATe, TV,
and VIOLation. Each mode is described with its command set in this
chapter.

Summary of Trigger Commands

The following table lists the TRIGger subsystem commands that are
available for each trigger mode.

24-6

Table 24-1

Valid Commands for Specific Trigger Modes

Main Level EDGE GLITCH
HOLDoff COUPIing POLarity
HYSTeresis SLOPe SOURce
LEVel SOURce WIDTh
SWEep
ADVANCED TRIGGERING MODES AND COMMANDS
COMM DELay PATTern STATe v ViOLation
BWIDth MODE CONDition CLOCk MODE MODE
ENCode EDLY LOGic CONDition {L5251 1625 | L875 | UDTV} PWIDth
ARM LOGic STV SETup
LEVel EVENt SLOPe FIELd TRANSsition
PATTern TRIGger LINE
POLarity TDLY SOURce (See the
SOURce ARM SPOLarity :TRIGger:ADVanced:VIOLation
DELay ubTvV commands in this chapter for
TRIGger ENUMber descriptions of the various
PGTHan violation modes and commands.)
PLTHan
POLarity
SOURce
EDGE

Use :TRIGger:SWEep to Select Sweep Mode

Select the Infiniium Oscilloscope’s Auto, Triggered, or Single Sweep mode with
:TRIGger:SWEep {AUTO | TRIGgered | SINGle}.

24-7

Trigger Commands

Trigger Modes

Trigger Modes

Command :TRIGger:MODE {EDGE | GLITch | ADVanced}

The :TRIGger:MODE command selects the trigger mode.

Table 24-2 Trigger Mode Settings
Mode Definition
EDGE Edge trigger mode.
GLITch Trigger on a pulse that has a width less than a specified amount of time.
ADVanced Allows access to the DELay, PATTern, STATe, TV, and VIOLation modes.

COMM COMM mode lets you trigger on a serial pattern of bits in a waveform.

DELay Delay by Events mode lets you view pulses in your waveform that occur a
number of events after a specified waveform edge. Delay by Time mode lets
you view pulses in your waveform that occur a long time after a specified
waveform edge.

PATTern Pattern triggering lets you trigger the oscilloscope using more than one
channel as the trigger source. You can also use pattern triggering to trigger
on a pulse of a given width.

STATe State triggering lets you set the oscilloscope to use several channels as the
trigger source, with one of the channels being used as a clock waveform.

TV TV trigger mode lets you trigger the oscilloscope on one of the standard
television waveforms. You can also use this mode to trigger on a custom
television waveform that you define.

VIOLation Trigger violation modes: Pulse WIDth, SETup, TRANSsition.

Query : TRIGger :MODE?

The query returns the currently selected trigger mode.

Returned Format [: TRIGger:MODE] {EDGE | GLITch | ADVanced}<NL>

24-8

Trigger Commands
HOLDoff

HOLDoff

Command :TRIGger:HOLDoff <holdoff time>

The :TRIGger:HOLDoff command specifies the amount of time the oscilloscope
should wait after receiving a trigger before enabling the trigger again.

<holdoff times A real number for the holdoff time, ranging from 60 ns to 320 ms.

Query :TRIGger :HOLDoff?

The query returns the current holdoff value for the current mode.

Returned Format [: TRIGger :HOLDoff] <holdoff><NL>

24-9

Trigger Commands
HTHReshold

HTHReshold

Command :TRIGger :HTHReshold
{{CHANnel<N>|EXTernal}, <levels>}}

This command specifies the high threshold voltage level for the selected trigger
source. Set the high threshold level to a value considered to be a high level for
your logic family; your data book gives two values, Vi and Vgy.

<N> Aninteger, 1 - 2, for 54810/564820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<level> A real number for the voltage level for the trigger source.

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope models (including the
54810A and 54820A).

Query :TRIGger:HTHReshold? {CHANnel<Ns>|EXTernal}

The query returns the currently defined high threshold voltage level for the
trigger source.

Returned Format [: TRIGger:HTHReshold {CHANnel<N>|EXTernal},] <level><NL>

24-10

Trigger Commands
HYSTeresis

Command

Query

Returned Format

HYSTeresis

:TRIGger:HYSTeresis {NORMal |NREJect}

The :TRIGger:HYSTeresis command specifies the trigger hysteresis (noise
reject) as either normal or maximum. The NORMal option is the typical
hysteresis selection. The NREJect (noise reject) option gives maximum
hysteresis but the lowest trigger bandwidth.

Trigger Hysteresis is Available on Most Infiniium Models

The:TRIGger:HYSTeresiscommandis available on all Infiniium-Series Oscilloscopes

except the 54845A and 54835A.

:TRIGger:HYSTeresis?

The query returns the current hysteresis setting.

[: TRIGger:HYSTeresis] {NORMal|NREJect}<NL>

24-11

Trigger Commands
LEVel

Command

<N>

<level>

Query

Returned Format

LEVel

:TRIGger:LEVel {{CHANnel<N>|AUX|EXTernal},<levels>}}

The :TRIGger:LEVel command specifies the trigger level on the specified
channel for the trigger source. Only one trigger level is stored in the oscilloscope
for each channel. This level applies to the channel throughout the trigger
dialogs (Edge, Glitch, and Advanced). This level also applies to all the High
Threshold (HTHReshold) values in the Advanced Violation menus.

An integer, 1 - 2, for 54810/564820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

A real number for the trigger level on the specified channel, External Trigger,
or Auxilliary Trigger Input.

:TRIGger:LEVel? {CHANnel<N>|AUX|EXTernal}

The query returns the specified channel’s trigger level.

[:TRIGger:LEVel {CHANnel<N>|AUX|EXTernal},] <level><NL>

EXTernal and AUXiliary are Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope models (including the
54810A and 54820A).

AUXiliary is only available in 4-channel Infiniium Oscilloscope models (including the
54815A, 54825A, 54835A, and 54845A).

24-12

Trigger Commands
LTHReshold

Command

<N>

<level>

Query

Returned Format

LTHReshold

: TRIGger: LTHReshold
{{CHANnel<N>|EXTernal}, <levels>}}

This command specifies the low threshold voltage level for the selected trigger
source. This command specifies the low threshold voltage level for the selected
trigger source. Set the low threshold level to a value considered to be a low
level for your logic family; your data book gives two values, Vi, and V..

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

A real number for the voltage level for the trigger source.

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope models (including the
54810A and 54820A).

:TRIGger:LTHReshold? {CHANnel<N>|EXTernal}

The query returns the currently defined low threshold for the trigger source.

[: TRIGger:LTHReshold {CHANnel<N>|EXTernal},] <level><NL>

24-13

Trigger Commands
SWEep

Command

<AUTO>

<TRIGgered>

<SINGle>

Query

Returned Format

SWEep

:TRIGger:SWEep {AUTO|TRIGgered|SINGle}

The :TRIGger:SWEep command selects the oscilloscope sweep mode.

When you select AUTO, if a trigger event does not occur within a time
determined by the oscilloscope settings, the oscilloscope automatically forces
a trigger which causes the oscilloscope to sweep. If the frequency of your
waveform is 50 Hz or less, you should not use the AUTO sweep mode because
it is possible that the oscilloscope will automatically trigger before your
waveform trigger occurs.

When you select TRIGgered, if no trigger occurs, the oscilloscope will not sweep,
and the previously acquired data will remain on the screen.

When you select SINGle, if no trigger occurs, the oscilloscope will not sweep,
and the previously acquired data will remain on the screen.

:TRIGger: SWEep?

The query returns the specified channel’s trigger level.

[:TRIGger:SWEep] {AUTO|TRIGgered|SINGle}<NL>

24-14

Edge Trigger Mode and Commands

The oscilloscope identifies an edge trigger by looking for the specified
slope (rising edge or falling edge) of your waveform. Once the slope is
found, the oscilloscope will trigger when your waveform crosses the
trigger level.

The Edge Trigger Mode is the easiest trigger mode to understand and
use from the front panel or over the remote interface, because it has the
least number of parameters to be set. This explanation of the trigger
mode commands follow the front-panel keys very closely. Refer to the
online help file for further explanations of the trigger operation.

In the Edge Trigger Mode, you must set the trigger source using the
'TRIGger:EDGE:SOURce command. This selects the source that the
oscilloscope triggers on. The argument for the :TRIGger:EDGE:SOURce
command is CHANnel<n> (where n = 1 through 4) AUX, or LINE (or
External for 2-channel units).

After setting the trigger source, set the trigger slope. The actual edge
that creates the triggeris set with the :TRIGger:EDGE:SLOPe command.
You can set this command to POSitive or NEGative for each of the
sources, except LINE.

Set the trigger level for the trigger source. Only one trigger levelis stored
in the oscilloscope for each channel. The trigger level values that are set
in the Edge Trigger Mode are used for all modes. Any levels set in the
PATTern, STATe, or DELay, TV, or violation (high threshold) modes set
the levels for the EDGE mode. LINE has no level.

Available trigger conditioning includes HOLDoff, HYSTeresis (Noise
Reject) and COUPling.

24-15

Set the Mode Before Executing Commands

Before you can execute the :TRIGger:EDGE commands, set the mode
by entering:

:TRIGger :MODE EDGE

This command sets the conditions for the EDGE slope and source trigger
commands.

To query the oscilloscope for the trigger mode, enter:
: TRIGger :MODE?

You set up the :TRIGger:EDGE commands with the following commands
and queries:

e COUPIling

e SLOPe

e SOURce

24-16

Trigger Commands
EDGE:COUPling

EDGE:COUPling

Command :TRIGger:EDGE:COUPling {AC|DC|LFReject |HFReject}

The :TRIGger:EDGE:COUPIling command sets the trigger coupling when
‘TRIG:EDGE:SOURCce is set to one of the channels, or to External (for 2-channel
oscilloscope models).

Query : TRIGger : EDGE: COUPling?

The query returns the currently selected coupling for the specified edge trigger
source.

Returned Format [: TRIGger:EDGE:COUPling] {AC|DC|LFReject |HFReject }<NL>

24-17

Trigger Commands
EDGE:SLOPe

Command

Query

Returned Format

EDGE:SLOPe

:TRIGger:EDGE:SLOPe {POSitive|NEGative}

The :TRIGger:EDGE:SLOPe command sets the slope of the trigger source
previously selected by the :TRIGger:EDGE:SOURce command. The LINE
source has no slope.

: TRIGger : EDGE: SLOPe?

The query returns the currently selected slope for the specified edge trigger
source.

[: TRIGger:EDGE:SLOPe] {POS|NEG}<NL>

24-18

Trigger Commands
EDGE:SOURce

EDGE:SOURce

Command :TRIGger :EDGE: SOURce {CHANnel<N>|AUX|LINE|EXTernal}

The :TRIGger:EDGE:SOURce command selects the source for edge mode
triggering. This is the source that will be used for subsequent
‘TRIGger:EDGE:SLOPe commands or queries.

<N> Aninteger, 1 - 2, for 54810/564820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

EXTernal and AUXiliary are Only Available in Some Infiniium Oscilloscopes

EXTernalis only available in 2-channel Infiniium Oscilloscope models (including the
54810A and 54820A).

AUXiliary is only available in 4-channel Infiniium Oscilloscope models (including the
54815A, 54825A, 4835A, and 54845A).

Query : TRIGger :EDGE: SOURce?

The query returns the currently selected edge mode trigger source.

Returned Format [:TRIGger:EDGE: SOURce] {CHANnel<N>|AUX|LINE|EXTernal}<NL>

24-19

Source

Level

Polarity

Glitch Trigger Mode and Commands

Use the Glitch Trigger Mode to find pulses in a waveform that are
narrower than the rest of the pulses in the waveform.

To look for pulses that are wider than the other pulses in your waveform,
you should use the pulse width trigger. Pulse width trigger is in the
Advanced trigger menu under Violation trigger.

The oscilloscope identifies a glitch trigger by looking for a pulse that is
narrower than other pulses in your waveform. You specify the width that
the pulse must be narrower than, and the pulse polarity (positive or
negative) that the oscilloscope should consider to be a glitch. For a
positive glitch, the oscilloscope triggers when the falling edge of a pulse
crosses the trigger level. For a negative glitch, the oscilloscope triggers
when the rising edge of the pulse crosses the trigger level.

Use this control to select the oscilloscope channel used to trigger the
oscilloscope.

Use the Level control to set the trigger level through which the glitch
must pass before the oscilloscope will trigger.

When setting the trigger level for your waveform, it is usually best to
choose a voltage value that is equal to the voltage value at the mid point
of your waveform. For example, if you have a waveform with a minimum
value of 0 (zero) volts and a maximum value of 5 volts, then 2.5 volts is
the best place to set your trigger level. The reason this is the best choice
is that there may be some ringing or noise at both the 0-volt and 5-volt
levels that can cause false triggers.

When you adjust the trigger level control, a horizontal dashed line with
a T on the right-hand side appears, showing you where the trigger level
is with respect to your waveform. After a period of time the dashed line
will disappear. To redisplay the line, adjust the trigger level control
again, or activate the Trigger dialog. A permanent icon with arrow
(either T, T}, or Ty) is also displayed on the right side of the waveform
area, showing the trigger level.

Use the Positive control to look for positive glitches. Use the Negative
control to look for negative glitches.

24-20

Wwidth Use the Width control to define the maximum pulse width that is
considered a glitch. The glitch width range is from 1.5 ns to 160 ms.

Available trigger conditioning includes HOLDoff and HYSTeresis (Noise
Reject).

Set the Mode Before Executing Commands

Before you can execute the :TRIGger:GLITch commands, set the mode
by entering:

:TRIGger :MODE GLITch

This command sets the conditions for the glitch polarity, source, and
width trigger commands.

To query the oscilloscope for the trigger mode, enter:
: TRIGger :MODE?

You set up the :TRIGger:GLITch commands with the following
commands and queries:

e POLarity

e SOURce

e WIDTh

24-21

Trigger Commands
GLITch:POLarity

Command

Query

Returned Format

GLITch:POLarity

:TRIGger:GLITch:POLarity {POSitive|NEGative}

This command defines the polarity of the glitch as positive or negative. The
trigger source must be set using the :TRIGger:GLITch:SOURce command.

:TRIGger:GLITch:POLarity?

The query returns the currently selected glitch polarity.

[: TRIGger:GLITch:POLarity] {POS|NEG}<NL>

24-22

Trigger Commands
GLITch:SOURce

GLITch:SOURce

Command :TRIGger:GLITch:SOURce {CHANnel<N>|EXTernal}

This command sets the source for the glitch trigger mode.

<N> Aninteger, 1 - 2, for 54810/564820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope models (including the
54810A and 54820A).

Query :TRIGger:GLITch:SOURce?

The query returns the currently selected source for the glitch trigger mode.

Returned Format [:TRIGger:GLITch:SOURce] {CHANnel<N>|EXTernal}<NL>

24-23

Trigger Commands
GLITch:WIDTh

GLITch:-WIDTh

Command :TRIGger:GLITch:WIDTh <width>

This command sets the glitch width. The oscilloscope will trigger on a pulse
that has a width less than the specified width.

<width> A real number for the glitch width, ranging from 1.5 ns to 160 ms.

Query :TRIGger :GLITch:WIDTh?

The query returns the currently specified glitch width.

Returned Format [: TRIGger:GLITch:WIDTh] <width><NL>

24-24

Advanced COMM Trigger Mode and Commands

Use the COMM Trigger Mode to find a serial pattern of bits in a waveform. The
COMM Trigger Mode is primarily used to find an isolated logically one bit in a
waveform for mask testing applications. The patternis defined by the standards
used by the telecommunication and data communication industries. Mask
testing is used to verify a waveform meets industrial standards which
guarantees that equipment made by different manufacturers will work together.

Set the Mode Before Executing Commands

Before you can execute the :TRIGger:ADVanced:COMMunications
commands, mask testing must be enabled at least one time. The
:MTESt:ENABIle command enables or disables mask testing. Then you
can set the mode by entering:

: TRIGger :MODE ADVanced and
: TRIGger:ADVanced :MODE COMM

To query the oscilloscope for the advanced trigger mode, enter:
: TRIGger : ADVanced : MODE?

The :TRIGger:ADVanced:COMM commands define the

24-25

Trigger Commands
COMM:BWIDth

Command

COMM:BWIDth

:TRIGger:ADVanced: COMM: BWIDth <bwidth wvalues>

The :TRIGger:ADVanced:COMM:BWIDth command is used to set the width of
a bit for your waveform. The bit width is usually defined in the mask standard
for your waveform.

<bwidth value> A real number that represents the width of a bit.

Query

Returned Format

:TRIGger:ADVanced:COMM: BWIDth?

The query returns the current bit width.

[: TRIGger:ADVanced:COMM:BWIDth] <bwidth value><NL>

24-26

Trigger Commands
COMM:ENCode

COMM:ENCode

Command :TRIGger:ADVanced:COMM: ENCode {RZ | NRZ}

This :TRIGger:ADVanced:COMM:ENCode command sets the type of waveform
encoding for your waveform. You should use NRZ for CMI type waveforms and
RZ for all other type of waveforms.

Query : TRIGger :ADVanced: COMM: ENCode?

The :TRIGger:ADVanced:COMM:ENCode? query returns the current value of
encoding

Returned Format [: TRIGger:ADVanced:COMM:ENCode] {RZ | NRZ}<NL>

24-27

Trigger Commands
COMM:LEVel

Command

<N>

<level>

Query

Returned Format

COMM:LEVel

:TRIGger:ADVanced:COMM: LEVel CHANnel<N>,<levels>

The : TRIGger : ADVanced: COMM: LEVel command sets the voltage level
used to determine a logic 1 from a logic 0 for the communication pattern.

An integer, 1-2, for 54810/564820 Infiniium Oscilloscopes
An integer, 1-4, for all other Infiniium Oscilloscope models.

A real number which is the logic level voltage.

:TRIGger:ADVanced: COMM: LEVel?

The : TRIGger :ADVanced: COMM: LEVel? query returns the current
level for the communication pattern.

[:TRIGger:ADVanced: COMM:LEVel] <level><NL>

24-28

Trigger Commands
COMM:PATTern

Command

<bit>

Query

Returned Format

<patterns>

COMM:PATTern

:TRIGger:ADVanced:COMM: PATTern
<bit>[,<bit[,<bit[,<bit[,<bit[,<bit]]1]11]

The :TRIGger:ADVanced:COMM:PATTern command sets the pattern used for
triggering the oscilloscope when in communication trigger mode. The pattern
can be up to 6 bits long. For NRZ type waveforms with positive polarity, there
must be at least one logic 0 to logic 1 transition in the pattern. For NRZ
waveforms with negative polarity there must be at least one logic 1 to logic 0
transition in the pattern. For RZ type waveforms the pattern must have at least
one logic 1 bit for positive polarity. For RZ type waveforms the pattern must
have at least one logic -1 bit for negative polarity.

Al -1,0r0.
:TRIGger :ADVanced: COMM: PATTern?

The : TRIGger : ADVanced: COMM: PATTern? queryreturns the current
communication trigger pattern.

[: TRIGger:ADVanced:COMM: PATTern] <pattern><NL>

A string of up to 6 characters.

24-29

Trigger Commands
COMM:POLarity

Command

Query

Returned Format

COMM:POLarity

:TRIGger:ADVanced:COMM: POLarity {POSitive |
NEGative}

The : TRIGger:ADVanced: COMM: POLarity command directly
controls the trigger slope used for communication trigger. When set to a positive
value, the rising edge of a pulse or waveform is used to trigger the oscilloscope.
When set to a negative value, the falling edge of a pulse or waveform is used.

The polarity setting is also used to check for valid patterns. If you are trying to
trigger on an isolated 1 pattern, you should set the polarity to positive. If you
are trying to trigger on an isolated -1 pattern, you should set the polarity to
negative.

:TRIGger :ADVanced:COMM: POLarity?

The : TRIGger :ADVanced:COMM: POLarity? query returns the
current setting for polarity.

[: TRIGger:ADVanced:COMM: POLarity} {1|0}<NL>

24-30

Trigger Commands
COMM:SOURce

COMM:SOURce

Command : TRIGger :ADVanced: COMM: SOURce CHANnel<N>

The :TRIGger:ADVanced:COMM:SOURce command selects the channel used
for the communication trigger.

<N> An integer, 1-2, for 54810/54820 Infiniium Oscilloscopes
An integer, 1-4, for all other Infiniium Oscilloscope models.

Query : TRIGger :ADVanced: COMM: SOURce?

The : TRIGger : ADVanced: COMM: SOURce? queryreturnsthe currently
selected communication trigger source.

Returned Format [: TRIGger:ADVanced:COMM: SOURce] CHANnel<N><NL>

24-31

Entered

Exited

Advanced Pattern Trigger Mode and Commands

Logic triggering is similar to the way that a logic analyzer captures data.
This mode is useful when you are looking for a particular set of ones and
zeros on a computer bus or control lines. You determine which channels
the oscilloscope uses to form the trigger pattern. Because you can set
the voltage level that determines a logic 1 or a logic 0, any logic family
that you are probing can be captured.

There are two types of logic triggering: Pattern and State. The difference
between pattern and state triggering modes is that state triggering uses
one of the oscilloscope channels as a clock.

Use pattern triggering to trigger the oscilloscope using more than one
channel as the trigger source. You can also use pattern triggering to
trigger on a pulse of a given width.

The Pattern Trigger Mode identifies a trigger condition by looking for a
specified pattern. A pattern is a logical combination of the channels.
Each channel can have a value of High (H), Low (L) or Don’t Care (X).
A value is considered a High when your waveform's voltage level is
greater than its trigger level, and a Low when the voltage level is less
than its trigger level. If a channel is set to Don’t Care, it is not used as
part of the pattern criteria.

One additional qualifying condition determines when the oscilloscope
triggers once the pattern is found. The :PATTern:CONDition command
has five possible ways to qualify the trigger:

The oscilloscope will trigger on the edge of the source that makes the
pattern true.

The oscilloscope will trigger on the edge of the source that makes the
pattern false.

24-32

Present >

Present <

Range

The oscilloscope will trigger when the pattern is present for greater than
the time that you specify. An additional parameter allows the
oscilloscope to trigger when the pattern goes away or when the time
expires.

The oscilloscope will trigger when the pattern is present for less than
the time that you specify.

The oscilloscope will trigger on the edge of the waveform that makes the
patterninvalid as long as the pattern is present within the range of times
that you specify.

Available trigger conditioning includes HOLDoff and HYSTeresis (Noise
Reject).

Set the Mode Before Executing Commands

Before you can execute the :TRIGger:ADVanced:PATTern commands,
set the mode by entering;:

:TRIGger :MODE ADVanced and
:TRIGger : ADVanced:MODE PATTern

To query the oscilloscope for the advanced trigger mode, enter:

: TRIGger :ADVanced:MODE?

The :TRIGger:ADVanced:PATTern commands define the conditions for
the Pattern Trigger Mode. As described in the following commands, you
set up the :TRIGger:ADVanced:PATTern commands with the following
commands and queries:

e CONDition
e LOGic

24-33

Trigger Commands
PATTern:CONDition

Command

<gt_time>

<lt time>

<time>

Query

Returned Format

PATTern: CONDition

:TRIGger:ADVanced: PATTern: CONDition {ENTered|EXITed
| {GT,<time>[,PEXits|TIMeout]} |
{LT, <time>} | {RANGe,<gt time>,<lt times>}}

This command describes the condition applied to the trigger pattern to actually
generate a trigger.

The minimum time (greater than time) for the trigger pattern, from 20 ns to
160 ms.

The maximum time (less than time) for the trigger pattern, from 30 ns to
160 ms.

The time condition, in seconds, for the pattern trigger, from 1.5 ns to 160 ms.

With the greater than parameter, Pattern Exits (PEXits) or TIMeout controls
when the trigger is generated.

:TRIGger:ADVanced: PATTern: CONDition?

The query returns the currently defined trigger condition.

[: TRIGger:ADVanced:PATTern:CONDition] {ENTered|EXITed |
{GT, <time>[, PEXits|TIMeout] } | {LT,<time>} |
{RANGe, <gt_time>, <1t times>}}<NL>

24-34

Trigger Commands
PATTern:LOGic

PATTern:LOGic

Command :TRIGger:ADVanced: PATTern:LOGic
{{CcHANnel<N>|EXTernal}, {HIGH|LOW|DONTcare} }

This command defines the logic criteria for a selected channel.

<N> Aninteger, 1 - 2, for 54810/564820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

Query :TRIGger :ADVanced: PATTern:LOGic?
{CHANnel<N>|EXTernal}

The query returns the current logic criteria for a selected channel.

Returned Format [: TRIGger:ADVanced:PATTern:LOGic {CHANnel<Ns>|EXTernall}]
{HIGH|LOW|DONTcare } <NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope models (including the
54810A and 54820A).

24-35

Advanced State Trigger Mode and Commands

Logic triggering is similar to the way that a logic analyzer captures data.
This mode is useful when you are looking for a particular set of ones and
zeros on a computer bus or control lines. You determine which channels
the oscilloscope uses to form the trigger pattern. Because you can set
the voltage level that determines a logic 1 or a logic 0, any logic family
that you are probing can be captured.

There are two types of logic triggering: Pattern and State. The difference
between pattern and state triggering modes is that state triggering uses
one of the oscilloscope channels as a clock.

Use state triggering when you want the oscilloscope to use several
channels as the trigger source, with one of the channels being used as a
clock waveform.

The State trigger identifies a trigger condition by looking for a clock edge
on one channel and a pattern on the remaining channels. A patternis a
logical combination of the remaining channels. Each channel can have
avalue of High (H), Low (L) or Don’t Care (X). A value is considered a
High when your waveform's voltage level is greater than the trigger level
and a Low when the voltage levelis less than the trigger level. If a channel
is set to Don’t Care, it is not used as part of the pattern criteria. You can
select the clock edge as either rising or falling.

The logic type control determines whether or not the oscilloscope will
trigger when the specified pattern is found on a clock edge. When AND
is selected, the oscilloscope will trigger on a clock edge when input
waveforms match the specified pattern. When NAND is selected, the
oscilloscope will trigger when the input waveforms are different from the
specified pattern and a clock edge occurs.

Available trigger conditioning includes HOLDoff and HYSTeresis (Noise
Reject).

24-36

Set the Mode Before Executing Commands

Before you can execute the :TRIGger:ADVanced:STATe commands, set
the mode by entering;:

: TRIGger :MODE ADVanced and
:TRIGger :ADVanced:MODE STATe

To query the oscilloscope for the advanced trigger mode, enter:

: TRIGger : ADVanced : MODE?

The :TRIGger:ADVanced:STATe commands define the conditions for
the State Trigger Mode. As described in the following commands, you
set up the :TRIGger:ADVanced:STATe commands with the following
commands and queries:

CLOCk

CONDition

LOGic

LTYPe

SLOPe

24-37

Trigger Commands
STATe:CLOCk

Command

Query

Returned Format

<N>

STATe:CLOCk

: TRIGger:ADVanced: STATe: CLOCk {CHANnel<N>|EXTernal}

This command selects the source for the clock waveform in the State Trigger
Mode.

An integer, 1 - 2, for 54810/564820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

: TRIGger :ADVanced: STATe: CLOCk?

The query returns the currently selected clock source.

[: TRIGger:ADVanced:STATe:CLOCk] {CHANnel<Ns>|EXTernal}<NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope models (including the
54810A and 54820A).

24-38

Trigger Commands
STATe:CONDition

STATe:CONDition

Command :TRIGger:ADVanced: STATe:CONDition {TRUE|FALSe}

This command determines if a trigger is generated when the pattern specified
by the LOGic command is TRUE (present for AND pattern) or FALSe (not
present—NAND). This command is the same as :STATe:LTYPe.

Query :TRIGger:ADVanced:STATe:CONDition?

The query returns the currently specified condition.

Returned Format [: TRIGger:ADVanced:STATe:CONDition] {TRUE|FALSe}<NL>

24-39

Trigger Commands
STATe:LOGic

Command

Query

Returned Format

<N>

<N>

STATe:LOGic

:TRIGger :ADVanced: STATe: LOGic
{{CcHANnel<N>|EXTernal}, {LOW|HIGH|DONTcare} }

This command defines the logic state of the specified channel for the State
Trigger Mode.

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

:TRIGger:ADVanced:STATe :LOGic?
{CHANnel<N>|EXTernal}

The query returns the logic state definition for the specified channel input.

N is the channel number, an integer in the range of 1 - 4.

[: TRIGger:ADVanced:STATe:LOGic {CHANnel<N>|EXTernal}]
{LOW|HIGH|DONTcare}<NL>

DONTcare is returned on the channel currently selected as clock.

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope models (including the
54810A and 54820A).

24-40

Trigger Commands
STATe:LTYPe

STATe:LTYPe

Command :TRIGger:ADVanced: STATe: LTYPe {AND |NAND)}

This command defines the state trigger logic type. This command is the same
as :STATe:CONDition.

Query :TRIGger :ADVanced: STATe:LTYPe?

The query returns the currently specified state trigger logic type.

Returned Format [: TRIGger:ADVanced: STATe:LTYPe] {AND|NAND}<NL>

24-41

Trigger Commands
STATe:SLOPe

Command

Query

Returned Format

STATe:SLOPe

:TRIGger:ADVanced: STATe:SLOPe {POSitive|NEGative}

This command specifies the slope of the input previously selected by the
‘TRIGger:ADVanced:STATe:CLOCk command.

:TRIGger :ADVanced: STATe: SLOPe?

The query returns the currently defined slope for the clock in State Trigger
Mode.

[: TRIGger:ADVanced:STATe:SLOPe] {POSitive|NEGative}<NL>

24-42

Arm On

Delay By Event

Advanced Delay By Event Mode and Commands

You can set the delay mode to delay by events or time. Use Delay By
Event mode to view pulses in your waveform that occur a number of
events after a specified waveform edge. Infiniium Oscilloscopes identify
atrigger by arming on the edge you specify, counting a number of events,
then triggering on the specified edge.

Use Arm On to set the source, level, and slope for arming the trigger
circuitry. When setting the arm level for your waveform, it is usually best
to choose a voltage value that is equal to the voltage value at the mid
point of your waveform. For example, if you have a waveform with a
minimum value of 0 (zero) volts and a maximum value of 5 volts, then
2.5 volts is the best place to set your arm level. The reason this is the
best choice is that there may be some ringing or noise at both the 0-volt
and 5-volt levels that can cause false triggers.

When you adjust the arm level control, a horizontal dashed line with a T
on the right-hand side appears showing you where the arm level is with
respect to your waveform. After a period of time the dashed line will
disappear. To redisplay the line, adjust the arm level control again, or
activate the Trigger dialog.

Use Delay By Event to set the source, level, and edge to define an event.
When setting the event level for your waveform, it is usually best to
choose a voltage value that is equal to the voltage value at the mid point
of your waveform. For example, if you have a waveform with a minimum
value of 0 (zero) volts and a maximum value of 5 volts, then 2.5 volts is
the best place to set your event level. The reason this is the best choice
is that there may be some ringing or noise at both the 0-volt and 5-volt
levels that can cause false triggers.

24-43

Event

Trigger On

Use Event to set the number of events (edges) that must occur after the
oscilloscope is armed until it starts to look for the trigger edge.

Use Trigger On to set the trigger source and trigger slope required to
trigger the oscilloscope. Each source can have only one level, so if you
are arming and triggering on the same source, only one level is used.

Set the Mode Before Executing Commands

Before you can execute the :TRIGger:ADVanced:DELay commands, set
the mode by entering:

:TRIGger :MODE ADVanced and
: TRIGger :ADVanced:MODE DELay

The ADVanced DELay commands define the conditions for the Delay
Trigger Mode. The Delay By Events Mode lets you view pulses in your
waveform that occur anumber of events after a specified waveform edge.
After entering the commands above, to select Delay By Events Mode,
enter:

:TRIGger :ADVanced:DELay :MODE EDLY
Then you can use the Event Delay (EDLY) commands and queries for
ARM, EVENt, and TRIGger on the following pages.

To query the oscilloscope for the advanced trigger mode or the advanced
trigger delay mode, enter:

:TRIGger :ADVanced:MODE? or
:TRIGger :ADVanced:DELay : MODE?

24-44

Trigger Commands
EDLY:ARM:SOURce

Command

Query

Returned Format

<N>

EDLY:ARM:SOURce

: TRIGger :ADVanced:DELay: EDLY : ARM: SOURce
{CHANnel<N>|EXTernal}

This command sets the Arm On source for arming the trigger circuitry when
the oscilloscope is in the Delay By Event trigger mode.

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

:TRIGger :ADVanced:DELay: EDLY : ARM: SOURce?

The query returns the currently defined Arm On source for the Delay By Event
trigger mode.

[: TRIGger:ADVanced:DELay : EDLY : ARM: SOURce]
{CHANnel<N>|EXTernal } <NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope models (including the
54810A and 54820A).

24-45

Trigger Commands
EDLY:ARM:SLOPe

EDLY:ARM:SLOPe

Command :TRIGger:ADVanced:DELay: EDLY : ARM: SLOPe
{NEGative |POSitive}

This command sets a positive or negative slope for arming the trigger circuitry
when the oscilloscope is in the Delay By Event trigger mode.

Query :TRIGger :ADVanced:DELay: EDLY :ARM: SLOPe?

The query returns the currently defined slope for the Delay By Event trigger
mode.

Returned Format [: TRIGger:ADVanced:DELay: EDLY : ARM: SLOPe]
{NEGative|POSitive}<NL>

24-46

Trigger Commands
EDLY:EVENt:DELay

EDLY:EVENt:DELay

Command :TRIGger:ADVanced:DELay:EDLY : EVENt : DELay
<edge numbers>

This command sets the event count for a Delay By Event trigger event.
<edge num> An integer from 0 to 16,000,000 specifying the number of edges to delay.

Query :TRIGger :ADVanced:DELay: EDLY: EVENt : DELay?

The query returns the currently defined number of events to delay before
triggering on the next Trigger On condition in the Delay By Event trigger mode.

Returned Format [: TRIGger:ADVanced:DELay : EDLY : EVENt : DELay]
<edge number><NL>

24-47

Trigger Commands
EDLY:EVENt:SOURce

EDLY:EVENt:SOURce

Command :TRIGger :ADVanced:DELay: EDLY : EVENt : SOURce
{CHANnel<N>|EXTernal}

This command sets the Event source for a Delay By Event trigger event.

<N> An integer, 1 - 2, for 54810/564820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

Query :TRIGger:ADVanced:DELay: EDLY : EVENt : SOURce?

The query returns the currently defined Event source in the Delay By Event
trigger mode.

Returned Format [: TRIGger:ADVanced:DELay: EDLY : EVENt : SOURce]
{CHANnel<N> |EXTernal}<NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope models (including the
54810A and 54820A).

24-48

Trigger Commands
EDLY:EVENt:SLOPe

EDLY:EVENt:SLOPe

Command :TRIGger:ADVanced:DELay : EDLY : EVENt : SLOPe
{NEGative |POSitive}

This command sets the trigger slope for the Delay By Event trigger event.

Query :TRIGger :ADVanced:DELay: EDLY: EVENt : SLOPe?

The query returns the currently defined slope for an event in the Delay By Event
trigger mode.

Returned Format [: TRIGger:ADVanced:EDLY : EVENt : SLOPe]
{NEGative|POSitive}<NL>

24-49

Trigger Commands
EDLY:TRIGger:SOURce

Command

Query

Returned Format

<N>

EDLY:TRIGger:SOURce

: TRIGger:ADVanced:DELay: EDLY : TRIGger : SOURce
{CHANnel<N>|EXTernal}

This command sets the Trigger On source for a Delay By Event trigger event.

An integer, 1 - 2, for 54810/564820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope models (including the
54810A and 54820A).

:TRIGger :ADVanced:DELay: EDLY: TRIGger: SOURce?

The query returns the currently defined Trigger On source for the event in the
Delay By Event trigger mode.

[: TRIGger:ADVanced:DELay: EDLY : TRIGger : SOURce]
{CHANnel<N>|EXTernal}<NL>

24-50

Trigger Commands
EDLY:TRIGger:SLOPe

EDLY:TRIGger:SLOPe

Command : TRIGger:ADVanced:DELay:EDLY : TRIGger : SLOPe
{NEGative |POSitive}

This command sets the trigger slope for the Delay By Event trigger event.

Query :TRIGger :ADVanced:DELay:EDLY: TRIGger: SLOPe?

The query returns the currently defined slope for an event in the Delay By Event
trigger mode.

Returned Format [: TRIGger:ADVanced:DELay:EDLY: TRIGger : SLOPe]
{NEGative|POSitive}<NL>

24-51

Arm On

Advanced Delay By Time Mode and Commands

You can set the delay mode to delay by events or time. Use Delay By
Time mode to view pulses in your waveform that occur a long time after
a specified waveform edge. The Delay by Time identifies a trigger
condition by arming on the edge you specify, waiting a specified amount
of time, then triggering on a specified edge. This can be thought of as
two-edge triggering, where the two edges are separated by a selectable
amount of time.

It is also possible to use the Horizontal Position control to view a pulse
some period of time after the trigger has occurred. The problem with
this method is that the further the pulse is from the trigger, the greater
the possibility that jitter will make it difficult to view. Delay by Time
eliminates this problem by triggering on the edge of interest.

Use Arm On to set the source, level, and slope for the arming condition.
When setting the arm level for your waveform, it is usually best to choose
a voltage value that is equal to the voltage value at the mid point of your
waveform. For example, if you have a waveform with a minimum value
of 0 (zero) volts and a maximum value of 5 volts, then 2.5 volts is the
best place to set your arm level. The reason this is the best choice is that
there may be some ringing or noise at both the 0-volt and 5-volt levels
that can cause false triggers.

When you adjust the arm level control, a horizontal dashed line with a T
on the right-hand side appears showing you where the arm level is with
respect to your waveform. After a period of time the dashed line will
disappear. To redisplay the line, adjust the arm level control again, or
activate the Trigger dialog.

24-52

Delay By Time

Trigger On

Use Delay By Time to set the amount of delay time from when the
oscilloscope is armed until it starts to look for the trigger edge. The range
is from 30 ns to 160 ms.

Use Trigger On to set the source and slope required to trigger the
oscilloscope. Trigger On Level is slaved to Arm On Level.

Available trigger conditioning includes HOLDoff and HYSTeresis (Noise
Reject).

Set the Mode Before Executing Commands

Before you can execute the :TRIGger:ADVanced:DELay commands, set
the mode by entering:

: TRIGger :MODE ADVanced and
: TRIGger :ADVanced:MODE DELay

The ADVanced DELay commands define the conditions for the Delay
Trigger Mode. The Delay By Time Mode lets you view pulses in your
waveform that occur a specified time after a specified waveform edge.
After entering the commands above, to select Delay By Time Mode,
enter:

: TRIGger:ADVanced:DELay:MODE TDLY
Then you can use the Time Delay (TDLY) commands and queries for

ARM, DELay, and TRIGger on the following pages.

To query the oscilloscope for the advanced trigger mode or the advanced
trigger delay mode, enter:

: TRIGger:ADVanced:MODE? or
: TRIGger :ADVanced:DELay :MODE?

24-53

Trigger Commands
TDLY:ARM:SOURce

Command

Query

Returned Format

<N>

TDLY:ARM:SOURce

: TRIGger :ADVanced:DELay: TDLY : ARM: SOURce
{CHANnel<N>|EXTernal}

This command sets the Arm On source for arming the trigger circuitry when
the oscilloscope is in the Delay By Time trigger mode.

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

:TRIGger :ADVanced:DELay: TDLY : ARM: SOURce?

The query returns the currently defined channel source for the Delay By Time
trigger mode.

[: TRIGger:ADVanced:DELay: TDLY : ARM: SOURce]
{CHANnel<N>|EXTernal } <NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope models (including the
54810A and 54820A).

24-54

Trigger Commands
TDLY:ARM:SLOPe

Command

Query

Returned Format

TDLY:ARM:SLOPe

: TRIGger :ADVanced:DELay: TDLY : ARM: SLOPe
{NEGative |POSitive}

This command sets a positive or negative slope for arming the trigger circuitry
when the oscilloscope is in the Delay By Time trigger mode.

:TRIGger:ADVanced:DELay:TDLY : ARM: SLOPe?

The query returns the currently defined slope for the Delay By Time trigger
mode.

[: TRIGger:ADVanced:DELay: TDLY : ARM: SLOPe]
{NEGative|POSitive}<NL>

24-55

Trigger Commands
TDLY:DELay

Command

<delay>

Query

Returned Format

TDLY:DELay

: TRIGger:ADVanced:DELay:TDLY :DELay <delay>
This command sets the delay for a Delay By Time trigger event.
Time, in seconds, set for the delay trigger, from 30 ns to 160 ms.

:TRIGger :ADVanced:DELay: TDLY :DELay?

The query returns the currently defined time delay before triggering on the next
Trigger On condition in the Delay By Time trigger mode.

[:TRIGger:ADVanced:DELay:TDLY:DELay] <delay><NL>

24-56

Trigger Commands
TDLY:TRIGger:SOURce

TDLY:TRIGger:SOURce

Command : TRIGger:ADVanced:DELay: TDLY : TRIGger : SOURce
{CHANnel<N>|EXTernal}

This command sets the Trigger On source for a Delay By Time trigger event.

<N> Aninteger, 1 - 2, for 54810/564820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

Query :TRIGger:ADVanced:DELay: TDLY : TRIGger : SOURce?

The query returns the currently defined Trigger On source in the Delay By Time
trigger mode.

Returned Format [: TRIGger:ADVanced:DELay: TDLY : TRIGger : SOURce]
{CHANnel<N> |EXTernal}<NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope models (including the
54810A and 54820A).

24-57

Trigger Commands
TDLY:TRIGger:SLOPe

Command

Query

Returned Format

TDLY:TRIGger:SLOPe

: TRIGger:ADVanced:DELay: TDLY : TRIGger : SLOPe
{NEGative |POSitive}

This command sets the trigger slope for the Delay By Time trigger event.

: TRIGger :ADVanced :DELay: TDLY : TRIGger : SLOPe?

The query returns the currently defined slope for an event in the Delay By Time
trigger mode.

[: TRIGger:ADVanced:DELay: TDLY : TRIGger : SLOPe]
{NEGative|POSitive}<NL>

24-58

Source

Level

Positive or
Negative Sync

Field

Line

Advanced Standard TV Mode and Commands

Use TV trigger mode to trigger on one of the standard television
waveforms. Also, use this mode to trigger on a custom television
waveform that you define, as described in the next section.

There are four types of television (TV) trigger modes: 525 (NTSC or
PAL-M), 625 (PAL or SECAM), 875 (High Definition Zenith Standard),
and User Defined. The 525, 625, and 875 are predefined video standards
used throughout the world. The User Defined TV trigger, described in
the next section, lets you trigger on nonstandard TV waveforms.

525, 625, and 875 TV Trigger Modes

Use the Source control to select one of the oscilloscope channels as the
trigger source.

Use to set the trigger voltage level. When setting the trigger level for
your waveform, it is usually best to choose a voltage value that is just
below the bottom of burst.

When you adjust the trigger level control, a horizontal dashed line with
a T on the right-hand side appears showing you where the trigger level
is with respect to your waveform. After a period of time the dashed line
will disappear. To redisplay the line, adjust the trigger level control
again, or activate the Trigger dialog.

Use the Positive and Negative Sync controls to select either a positive
sync pulse or a negative sync pulse as the trigger.

Use the Field control to select video field 1 or video field 2 as the trigger.

Use the Line control to select the horizontal line you want to view within
the chosen video field.

Available trigger conditioning includes HOLDoff and HYSTeresis (Noise
Reject).

24-59

STV Commands

These commands set the conditions for the TV trigger mode using
standard, predefined parameters (in STV mode), or user-defined
parameters (in UDTV mode). The STV commands are used for
triggering on television waveforms, and let you select one of the TV
waveform frames and one of the lines within that frame.

Set the Mode Before Executing Commands

Before executing the :TRIGger:ADVanced:STV commands, set the mode
by entering:

:TRIGger :MODE ADVanced and
:TRIGger :ADVanced:MODE TV and

: TRIGger:ADVanced:TV:MODE L525 or
:TRIGger:ADVanced:TV:MODE L625 or
: TRIGger:ADVanced: TV:MODE L875

To query the oscilloscope for the advanced trigger mode or the advanced
trigger TV mode, enter:

:TRIGger :ADVanced:MODE? or
: TRIGger :ADVanced:TV:MODE?

You set up the :TRIGger:ADVanced:TV:STV commands with the
following commands and queries:

FIELd

LINE

SOURce

SPOLarity

24-60

Trigger Commands
STV:FIELd

STV:FIELd

Command :TRIGger:ADVanced:TV:STV:FIELd {1]2}

This command is available in standard TV trigger modes L525, L625, and L875.

The :TRIGger:ADVanced:TV:STV:FIELd command selects which TV waveform
field is used during standard TV trigger mode. The line within the selected field
is specified using the :TRIGger:ADVanced:TV:STV:LINE <line_number>
command.

Query :TRIGger:ADVanced:TV:STV:FIELdA?

The query returns the current television waveform field.

Returned Format [:TRIGger:ADVanced:TV:STV:FIELd] {1]2}<NL>

24-61

Trigger Commands
STV:LINE

Command

<line numbers>

Query

Returned Format

STV:LINE

:TRIGger:ADVanced:TV:STV:LINE <line number>

This command is available in standard TV trigger modes L525, L625, and L875.

The :TRIGger:ADVanced:TV:STV:LINE command selects the horizontal line
that the instrument will trigger on. Allowable line_number entry depends on
the :TRIGger:ADVanced:TV:STV:FIELd selected. Once the vertical sync pulse
of the selected field is received, the trigger is delayed by the number of lines
specified.

Horizontal line number. Allowable values range from 1 to 875, depending on
‘TRIGger:ADVanced:TV:STV:FIELd settings as shown below.

STV Modes

525 625 875
Field 1 1to0 263 1t0 313 1t0 438
Field 2 1to0 262 314 t0 625 1t0 437

:TRIGger:ADVanced:TV:STV:LINE?

The query returns the current line number.

[: TRIGger:ADVanced:TV:STV:LINE] <line number><NL>

24-62

Trigger Commands
STV:SOURce

STV:SOURce

Command :TRIGger :ADVanced:TV:STV:SOURce
{CHANnel<N>|EXTernal}

This command is available in standard TV trigger modes L525, L625, and L875.

The :TRIGger:ADVanced:TV:STV:SOURce command selects the source for
standard TV mode triggering. This is the source that will be used for subsequent
‘TRIGger:ADVanced:TV:STV commands and queries.

<N> Aninteger, 1 - 2, for 54810/564820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

Query :TRIGger :ADVanced:TV:STV:SOURce?

The query returns the currently selected standard TV trigger mode source.

Returned Format [: TRIGger:ADVanced:TV:STV:SOURce] {CHANnel<Ns>|EXTernal}<NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope models (including the
54810A and 54820A).

24-63

Trigger Commands
STV:SPOLarity

Command

Query

Returned Format

STV:SPOLarity

:TRIGger:ADVanced:TV:STV:SPOLarity
{NEGative|POSitive}

This command is available in standard TV trigger modes L525, L625, and L875.

The :TRIGger:ADVanced:TV:STV:SPOLarity (Sync POLarity) command
specifies the vertical sync pulse polarity for the selected field used during
standard TV mode triggering.

:TRIGger:ADVanced:TV:STV:SPOLarity?

The query returns the currently selected sync pulse polarity.

[: TRIGger:ADVanced:TV:STV:SPOLarity] {NEGative|POSitive}<N
L>

24-64

Source

Level

Pos or Neg

Time >

Time <

Trigger On

Edge Number

Advanced User Defined TV Mode and Commands

Use TV trigger mode to trigger on one of the standard television
waveforms, as described in the previous section, and to trigger on a
custom television waveform that you define. The User Defined TV
trigger lets you trigger on nonstandard TV waveforms.

User Defined TV Trigger

Use the Source control to select one of the oscilloscope channels as the
trigger source.

Use the Level control to set the trigger voltage level.

When setting the trigger level for your waveform, it is usually best to
choose a voltage value that is just below the bottom of burst.

When you adjust the trigger level control, a horizontal dashed line with
a T on the right-hand side appears showing you where the trigger level
is with respect to your waveform. After a period of time the dashed line
will disappear. To redisplay the line, adjust the trigger level control
again, or activate the Trigger dialog. A permanent icon with arrow
(either T, T}, or Ty) is also displayed on the right side of the waveform
area, showing the trigger level.

Use the Pos and Neg controls to select either a positive pulse or a
negative pulse to arm the trigger circuitry.

Use the Time > control to set the minimum time that the pulse must be
present to be considered a valid sync pulse.

Use the Time < control to set the maximum time that the pulse must be
present to be considered a valid sync pulse.

Use the Trigger On control to select either a Rising or Falling edge as
the trigger condition.

Use the Edge Number control to select the number of edges you want
the oscilloscope to count before triggering.

Available trigger conditioning includes HOLDoff and HYSTeresis (Noise
Reject).

24-65

UDTV Commands

These commands set the conditions for the TV trigger mode using user-
defined parameters. They are used for triggering on non-standard
television waveforms, and let you define the conditions that must be met
before a trigger occurs.

Set the Mode Before Executing Commands

Before executing the : TRIGger:ADVanced:TV:UDTV commands, set the
mode by entering;:

: TRIGger :MODE ADVanced and
:TRIGger:ADVanced:MODE TV and
:TRIGger:ADVanced:TV:MODE UDTV

To query the oscilloscope for the advanced trigger mode or the advanced
trigger TV mode, enter:

: TRIGger:ADVanced:MODE? or
: TRIGger :ADVanced:TV:MODE?

You set up the :TRIGger:ADVanced:TV:UDTV commands with the
following commands and queries:

e EDGE

e ENUMber

e PGTHan

e PLTHan

e POLarity

e SOURce

24-66

When triggering for User Defined TV mode:

e Set the channel or trigger source for the trigger using:
:TRIGger : ADVanced: TV:UDTV: SOURce

e Set the conditions for arming the trigger using:

:TRIGger :ADVanced:TV:UDTV: PGTHan,
:TRIGger:ADVanced:TV:UDTV:PLTHan, and
:TRIGger:ADVanced:TV:UDTV:POLarity.

e Set the number of events to delay after the trigger is armed using:
:TRIGger :ADVanced: TV:UDTV: ENUMber

e Set the waveform edge that causes the trigger to occur after arming
and delay using:

:TRIGger :ADVanced: TV:UDTV : EDGE

24-67

Trigger Commands
UDTV:EDGE

UDTV:EDGE

Command :TRIGger:ADVanced:TV:UDTV:EDGE {RISing|FALLing}

The :TRIGger:ADVanced:TV:UDTV:EDGE command specifies the waveform
edge that causes a trigger to occur after arming and delay conditions have been
satisfied.

Query : TRIGger :ADVanced: TV:UDTV: EDGE?

The query returns the currently selected Trigger On edge selection.

Returned Format [: TRIGger:ADVanced:TV:UDTV:EDGE] {RISing|FALLing}<NL>

24-68

Trigger Commands
UDTV:ENUMber

Command

<count>

Query

Returned Format

UDTV:ENUMber

: TRIGger:ADVanced: TV:UDTV: ENUMber <counts>

The :TRIGger:ADVanced:TV.UDTV:ENUMber command specifies the number
of events (horizontal sync pulses) to delay after arming the trigger before
looking for the trigger event. Specify conditions for arming the trigger using:

TRIGger:ADVanced: TV.UDTV:PGTHan,
TRIGger:ADVanced:TV:UDTV:PLTHan, and
TRIGger:ADVanced:TV:UDTV:POLarity.

An integer for the number of events to delay. Allowable values range from 1 to
16,000,000.

:TRIGger:ADVanced:TV:UDTV: ENUMber?

The query returns the currently programmed count value.

[: TRIGger:ADVanced:TV:UDTV: ENUMber] <count><NL>

24-69

Trigger Commands
UDTV:PGTHan

UDTV:PGTHan

Command : TRIGger:ADVanced:TV:UDTV: PGTHan <lower limits

The :TRIGger:ADVanced:TV:UDTV:PGTHan (Present Greater THan) command
specifies the minimum pulse width of the waveform used to arm the trigger used
during user-defined trigger mode.

<lower limits> Minimum pulse width (time >), from 20 ns to 150 ms.

Query : TRIGger:ADVanced: TV:UDTV: PGTHan?

The query returns the currently selected minimum pulse width.

Returned Format [: TRIGger:ADVanced:TV:UDTV:PGTHan] <lower limit><NL>

24-70

Trigger Commands
UDTV:PLTHan

Command

<upper limits>

Query

Returned Format

UDTV:PLTHan

:TRIGger:ADVanced: TV:UDTV: PLTHan <upper limits>

The :TRIGger:ADVanced:TV:UDTV:PLTHan (Present Less THan) command
specifies the maximum pulse width of the waveform used to arm the trigger
used during user-defined trigger mode.

Maximum pulse width (time <), from 30 ns to 160 ms.

:TRIGger:ADVanced:TV:UDTV: PLTHan?

The query returns the currently selected maximum pulse width.

[:TRIGger:ADVanced:TV:UDTV:PLTHan] <upper limit><NL>

24-71

Trigger Commands
UDTV:POLarity

UDTV:POLarity

Command :TRIGger:ADVanced:TV:UDTV:POLarity
{NEGative |POSitive}

The :TRIGger:ADVanced:TV:UDTV:POLarity command specifies the polarity
for the sync pulse used to arm the trigger in the user-defined trigger mode.

Query :TRIGger:ADVanced:TV:UDTV:POLarity?

The query returns the currently selected UDTV sync pulse polarity.

Returned Format [: TRIGger:ADVanced:TV:UDTV:POLarity]
{NEGative|POSitive}<NL>

24-72

Trigger Commands
UDTV:SOURce

UDTV:SOURce

Command :TRIGger :ADVanced:TV:UDTV: SOURce
{CHANnel<N>|EXTernal}

The :TRIGger:ADVanced:TV:UDTV:SOURce command selects the source for
user-defined TV mode triggering. This is the source that will be used for
subsequent :TRIGger:ADVanced:TV:UDTV commands and queries.

<N> Aninteger, 1 - 2, for 54810/564820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

24-73

Trigger Commands
UDTV:SOURce

Query : TRIGger :ADVanced: TV:UDTV:SOURce?

The query returns the currently selected user-defined TV trigger mode source

Returned Format [: TRIGger:ADVanced:TV:UDTV:SOURce]

{CHANnel<N>|EXTernal } <NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope models (including the
54810A and 54820A).

24-74

PWIDth

SETup

TRANsition

Advanced Trigger Violation Modes

Violation triggering helps you find conditions within your circuit that
violate the design rules. There are four types of violation triggering:
Pulse Width, Setup and Hold Time, and Transition.

This mode lets you find pulses that are wider than the rest of the pulses
in your waveform. It also lets you find pulses that are narrower than the
rest of the pulses in the waveform.

This mode lets you find violations of setup and hold times in your circuit.
Use this mode to select setup time triggering, hold time triggering, or
both setup and hold time triggering.

This mode lets you find any edge in your waveform that violates a rise
time or fall time specification. The Infiniium oscilloscope can be set to
trigger on rise times or fall times that are too slow or too fast.

24-75

Trigger Commands
VIOLation:MODE

VIOLation:MODE

Command :TRIGger:ADVanced:VIOLation:MODE {PWIDth | SETup |
TRANsition}

After you have selected the advanced trigger mode with the commands
‘TRIGger:MODE ADVanced and :TRIGger:ADVanced:MODE VIOLation,
the :TRIGger:ADVanced:VIOLation:MODE <violation_mode> command
specifies the mode for trigger violations. The <violation_mode> is either
PWIDth, SETup, or TRANSition.

Query :TRIGger:ADVanced:VIOLation:MODE?

The query returns the currently defined mode for trigger violations.

Returned Format [: TRIGger:ADVanced:VIOLation:MODE] {PWIDth | SETup |
TRANsition}<NL>

24-76

Source

Level

Pulse Width Violation Mode and Commands

Use Pulse Width Violation Mode to find pulses that are wider than the
rest of the pulses in your waveform. You can also use this mode to find
pulses that are narrower than the rest of the pulses in the waveform.

The oscilloscope identifies a pulse width trigger by looking for a pulse
that is either wider than or narrower than other pulses in your waveform.
You specify the pulse width and pulse polarity (positive or negative) that
the oscilloscope uses to determine a pulse width violation. For a positive
polarity pulse, the oscilloscope triggers when the falling edge of a pulse
crosses the trigger level. For a negative polarity pulse, the oscilloscope
triggers when the rising edge of a pulse crosses the trigger level.

When looking for narrower pulses, pulse width less than (Width <)
trigger is the same as glitch trigger.

Use Source to select the oscilloscope channel used to trigger the
oscilloscope.

Use the Level control to set the voltage level through which the pulse
must pass before the oscilloscope will trigger.

When setting the trigger level for your waveform, it is usually best to
choose a voltage value that is equal to the voltage value at the mid point
of your waveform. For example, if you have a waveform with a minimum
value of 0 (zero) volts and a maximum value of 5 volts, then 2.5 volts is
the best place to set your trigger level. The reason this is the best choice
is that there may be some ringing or noise at both the 0-volt and 5-volt
levels that can cause false triggers.

When you adjust the trigger level control, a horizontal dashed line with
a T on the right-hand side appears showing you where the trigger level
is with respect to your waveform. After a period of time the dashed line
will disappear. To redisplay the line, adjust the trigger level control
again, or activate the Trigger dialog. A permanent icon with arrow
(either T, T}, or Ty) is also displayed on the right side of the waveform
area, showing the trigger level.

24-77

Polarity

Direction

wWidth

Use the Polarity control to specify positive or negative pulses.

Use Direction to set whether a pulse must be wider (Width >) or
narrower (Width <) than the width value to trigger the oscilloscope.

Use the Width control to define how wide of a pulse will trigger the
oscilloscope. The glitch width range is from 1.5 ns to 160 ms.

Available trigger conditioning includes HOLDoff and HYSTeresis (Noise
Reject).

Set the Mode Before Executing Commands

Before executing the :TRIGger:ADVanced:VIOLation:PWIDth
commands, set the mode by entering;:

:TRIGger :MODE ADVanced and
:TRIGger :ADVanced:MODE VIOLation and
:TRIGger:ADVanced:VIOLation:MODE PWIDth

To query the oscilloscope for the advanced trigger violation mode, enter:

:TRIGger:ADVanced:VIOLation:MODE?

24-78

Trigger Commands
VIOLation:PWIDth:SOURce

Command

<N>

<level>

Query

Returned Format

VIOLation:PWIDth:SOURce

:TRIGger :ADVanced:VIOLation: PWIDth:SOURce
{CHANnel<N>|EXTernal}

This command specifies the channel source used to trigger the oscilloscope with
a pulse width trigger. The level is the voltage through which the pulse must
pass to trigger the oscilloscope.

An integer, 1 - 2, for 564810/564820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

A real number for the voltage through which the pulse must pass before the
oscilloscope will trigger.

:TRIGger:ADVanced:VIOLation:PWIDth:SOURce?

The query returns the currently defined channel source for the pulse width
trigger.

[: TRIGger:ADVanced:VIOLation:PWIDth: SOURce]
{CHANnel<N>|EXTernal } <NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope models (including the
54810A and 54820A).

24-79

Trigger Commands
VIOLation:PWIDth:POLarity

Command

Query

Returned Format

VIOLation:PWIDth:POLarity

:TRIGger:ADVanced:VIOLation:PWIDth:POLarity
{NEGative |POSitive}

This command specifies the pulse polarity that the oscilloscope uses to
determine a pulse width violation. For a negative polarity pulse, the oscilloscope
triggers when the rising edge of a pulse crosses the trigger level. For a positive
polarity pulse, the oscilloscope triggers when the falling edge of a pulse crosses
the trigger level.

:TRIGger:ADVanced:VIOLation:PWIDth:POLarity?

The query returns the currently defined polarity for the pulse width trigger.

[:TRIGger:ADVanced:VIOLation:PWIDth:POLarity]
{NEGative|POSitive}<NL>

24-80

Trigger Commands
VIOLation:PWIDth:DIRection

Command

Query

Returned Format

VIOLation:PWIDth:DIRection

:TRIGger :ADVanced:VIOLation:PWIDth:DIRection
{GTHan |LTHan}

This command specifies whether a pulse must be wider or narrower than the
width value to trigger the oscilloscope.

:TRIGger:ADVanced:VIOLation:PWIDth:DIRection?

The query returns the currently defined direction for the pulse width trigger.

[: TRIGger:ADVanced:VIOLation:PWIDth:DIRection]
{GTHan |LTHan} <NL>

24-81

Trigger Commands
VIOLation:PWIDth:WIDTh

VIOLation:PWIDth:WIDTh

Command :TRIGger:ADVanced:VIOLation:PWIDth:WIDTh <widths>

This command specifies how wide a pulse must be to trigger the oscilloscope.

<width> Pulse width, which can range from 1.5 ns to 160 ms.

Query :TRIGger:ADVanced:VIOLation: PWIDth:WIDTh?

The query returns the currently defined width for the pulse.

Returned Format [: TRIGger:ADVanced:VIOLation:PWIDth:WIDTh] <width><NL>

24-82

Setup Time Mode

Hold Time Mode

Setup and Hold
Time Mode

DSQurce

Low Threshold

High Threshold

Setup Violation Mode and Commands

Use Setup Violation Mode to find violations of setup and hold times in
your circuit.

Mode
Use MODE to select Setup, Hold, or both Setup and Hold time triggering.

You can have the oscilloscope trigger on violations of setup time, hold
time, or both setup and hold time. To use Setup Violation Type, the
oscilloscope needs a clock waveform, used as the reference, and a data
waveform for the trigger source.

When using the Setup Time Mode, a time window is defined where the
right edge is the clock edge and the left edge is the selected time before
the clock edge. The waveform must stay outside of the thresholds during
this time window. If the waveform crosses a threshold within the time
window, a violation event occurs and the oscilloscope triggers.

When using Hold Time Mode, the waveform must not cross the threshold
voltages after the specified clock edge for at least the hold time you have
selected. Otherwise, a violation event occurs and the oscilloscope
triggers.

When using the Setup and Hold Time Mode, if the waveform violates
either a setup time or hold time, the oscilloscope triggers.

Data Source

Use the data source (DSOurce) command to select the channel used as
the data, the low-level data threshold, and the high-level data threshold.
For data to be considered valid, it must be below the lower threshold or
above the upper threshold during the time of interest.

Use DSOurce to select the channel you want to use for the data source.

Use the low threshold (LTHReshold) to set the minimum threshold for
your data. Data is valid below this threshold.

Use the high threshold (HTHReshold) to set the maximum threshold for
your data. Data is valid above this threshold.

24-83

CSOurce

LEVel

RISing or

FALLing

Setup Time

Hold Time

Setup and Hold

Clock Source

Use the clock source (CSOurce) command to select the clock source,
trigger level, and edge polarity for your clock. Before the trigger circuitry
looks for a setup or hold time violation, the clock must pass through the
voltage level you have set.

Use CSOurce to select the channel you want to use for the clock source.

Use LEVel to set voltage level on the clock waveform as given in the data
book for your logic family.

Use RISing or FALLIng to select the edge of the clock the oscilloscope
uses as a reference for the setup or hold time violation trigger.

Time
Use SETup to set the amount of setup time used to test for a violation.

The setup time is the amount of time that the data has to be stable and
valid prior to a clock edge. The minimumis 1.5 ns; the maximum is 20 ns.

Use HOLD to set the amount of hold time used to test for a violation.
The hold time is the amount of time that the data has to be stable and
valid after a clock edge. The minimum is 1.5 ns; the maximum is 20 ns.

Use SHOLA (Setup and Hold) to set the amount of setup and hold time
used to test for a violation.

The setup time is the amount of time that the data has to be stable and
valid prior to a clock edge. The hold time is the amount of time that the
data waveform has to be stable and valid after a clock edge.

The setup time plus hold time equals 20 ns maximum. So, if the setup
time is 1.5 ns, the maximum hold time is 18.5 ns.

Available trigger conditioning includes HOLDoff and HYSTeresis (Noise
Reject).

24-84

Set the Mode Before Executing Commands

Before executing the :TRIGger:ADVanced:VIOLation:SETup
commands, set the mode by entering:

: TRIGger :MODE ADVanced and

:TRIGger:ADVanced:MODE VIOLation and
:TRIGger:ADVanced:VIOLation:MODE SETup and
:TRIGger:ADVanced:VIOLation: SETup:MODE <setup modex>

Where <setup_mode> includes SETup, HOLD, and SHOLJ.

To query the oscilloscope for the advanced trigger violation setup mode,
enter:

:TRIGger:ADVanced:VIOLation: SETup:MODE?

24-85

Trigger Commands
VIOLation:SETup:MODE

Command

SETup

HOLD

SHOLdA

Query

Returned Format

VIOLation:SETup:MODE

:TRIGger :ADVanced:VIOLation:SETup:MODE
{SETup | HOLD | SHOLA }

When using the setup time mode, a time window is defined where the right edge
is the clock edge and the left edge is the selected time before the clock edge.
The waveform must stay outside of the trigger level thresholds during this time
window. If the waveform crosses a threshold during this time window, a violation
event occurs and the oscilloscope triggers.

When using the hold time mode, the waveform must not cross the threshold
voltages after the specified clock edge for at least the hold time you have
selected. Otherwise, a violation event occurs and the oscilloscope triggers.

When using the setup and hold time mode, if the waveform violates either a
setup time or hold time, the oscilloscope triggers. The total time allowed for
the sum of setup time plus hold time is 20 ns maximum.

:TRIGger:ADVanced:VIOLation: SETup:MODE?

The query returns the currently selected trigger setup violation mode.

[: TRIGger:ADVanced:VIOLation: SETup : MODE]
{SETup | HOLD | SHOLd } <NL>

24-86

Trigger Commands
VIOLation:SETup:SETup:CSOurce

Command

Query

Returned Format

<N>

VIOLation:SETup:SETup:CSOurce

:TRIGger:ADVanced:VIOLation:SETup: SETup:CSOurce
{CHANnel<N>|EXTernal}

This command specifies the clock source for the clock used for the trigger setup
violation. The clock must pass through the voltage level you have set before
the trigger circuitry looks for a setup or hold time violation.

An integer, 1 - 2, for 564810/564820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

:TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce?

The query returns the currently defined clock source for the trigger setup
violation.

[:TRIGger:ADVanced:VIOLation:SETup: SETup:CSOurce]
{CHANnel<N> |EXTernal}<NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope models (including the
54810A and 54820A).

24-87

Trigger Commands
VIOLation:SETup:SETup:CSOurce:LEVel

Command

<N>

<level>

Query

Returned Format

VIOLation:SETup:SETup:CSOurce:LEVel

: TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce:
LEVel {{CHANnel<N>|EXTernal},<levels>}

This command specifies the level for the clock source used for the trigger setup
violation. The clock must pass through the voltage level you have set before
the trigger circuitry looks for a setup or hold time violation.

An integer, 1 - 2, for 54810/564820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

A real number for the voltage level for the trigger setup violation clock
waveform, and depends on the type of circuitry logic you are using.

:TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce:
LEVel? {CHANnel<N>|EXTernal}

The query returns the specified clock source level for the trigger setup violation.

[: TRIGger:ADVanced:VIOLation:SETup: SETup:CSOurce:LEVel
{CHANnel<N>|EXTernal},] <level><NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernalis only available in 2-channel Infiniium Oscilloscope models (including the
54810A and 54820A).

24-88

Trigger Commands
VIOLation:SETup:SETup:CSOurce:EDGE

Command

Query

Returned Format

VIOLation:SETup:SETup:CSOurce:EDGE

:TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce:
EDGE {RISing|FALLing}

This command specifies the edge for the clock source used for the trigger setup
violation. The clock must pass through the voltage level you have set before
the trigger circuitry looks for a setup or hold time violation.

:TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce:
EDGE?

The query returns the currently defined clock source edge for the trigger setup
violation.

[: TRIGger:ADVanced:VIOLation:SETup: SETup:CSOurce : EDGE]
{RISing|FALLing}<NL>

24-89

Trigger Commands
VIOLation:SETup:SETup:DSOurce

VIOLation:SETup:SETup:DSOurce

Command :TRIGger:ADVanced:VIOLation:SETup: SETup:DSOurce
{CHANnel<N>|EXTernal}

The data source commands specify the data source for the trigger setup
violation.

<N> Aninteger, 1 - 2, for 54810/564820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

Query :TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce?

The query returns the currently defined data source for the trigger setup
violation.

Returned Format [: TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurcel]
{CHANnel<N>|EXTernal } <NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope models (including the
54810A and 54820A).

24-90

Trigger Commands
VIOLation:SETup:SETup:DSOurce:HTHReshold

Command

<N>

<level>

Query

Returned Format

VIOLation:SETup:SETup:DSOurce:HTHReshold

: TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce:
HTHReshold {{CHANnel<Ns>|EXTernal}, <levels>}

This command specifies the data source for the trigger setup violation, and the
high-level data threshold for the selected data source. Data is valid when it is
above the high-level data threshold, and when it is below the low-level data
threshold.

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

A real number for the data threshold level for the trigger setup violation, and is
used with the high and low threshold data source commands.

:TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce:
HTHReshold? {CHANnel<Ns>|EXTernal}

The query returns the specified data source for the trigger setup violation, and
the high data threshold for the data source.

[: TRIGger:ADVanced:VIOLation:SETup: SETup:DSOurce:HTHReshol
d {CHANnel<Ns>|EXTernal},] <level><NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernalis only available in 2-channel Infiniium Oscilloscope models (including the
54810A and 54820A).

24-91

Trigger Commands
VIOLation:SETup:SETup:DSOurce:LTHReshold

Command

<N>

<level>

Query

Returned Format

VIOLation:SETup:SETup:DSOurce:LTHReshold

:TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce:
LTHReshold {{CHANnel<N>|EXTernal}, <levels>}

This command specifies the data source for the trigger setup violation, and the
low-level data threshold for the selected data source. Data is valid when it is
above the high-level data threshold, and when it is below the low-level data
threshold.

An integer, 1 - 2, for 54810/564820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

A real number for the data threshold level for the trigger setup violation, and is
used with the high and low threshold data source commands.

:TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce:
LTHReshold? {CHANnel<N>|EXTernal}

The query returns the specified data source for the trigger setup violation, and
the low data threshold for the data source.

[: TRIGger:ADVanced:VIOLation:SETup: SETup:DSOurce: LTHReshol
d

{CHANnel<N>|EXTernal},] <level><NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope models (including the
54810A and 54820A).

24-92

Trigger Commands
VIOLation:SETup:SETup:TIME

VIOLation:SETup:SETup:TIME

Command :TRIGger:ADVanced:VIOLation:SETup:SETup:TIME <time>

This command specifies the amount of setup time used to test for a trigger
violation. The setup time is the amount of time that the data must be stable
and valid prior to a clock edge.

<time> Setup time, in seconds.

Query :TRIGger:ADVanced:VIOLation:SETup:SETup: TIME?

The query returns the currently defined setup time for the trigger violation.

Returned Format [: TRIGger:ADVanced:VIOLation:SETup:SETup: TIME] <time><NL>

24-93

Trigger Commands
VIOLation:SETup:HOLD:CSOurce

VIOLation:SETup:HOLD:CSOurce

Command :TRIGger :ADVanced:VIOLation:SETup:HOLD:CSOurce
{CHANnel<N>|EXTernal}

This command specifies the clock source for the clock used for the trigger hold
violation. The clock must pass through the voltage level you have set before
the trigger circuitry looks for a setup or hold time violation.

<N> Aninteger, 1 - 2, for 54810/564820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

Query :TRIGger:ADVanced:VIOLation:SETup:HOLD:CSOurce?

The query returns the currently defined clock source for the trigger hold
violation.

Returned Format [: TRIGger:ADVanced:VIOLation:SETup:HOLD: CSOurcel
{CHANnel<N>|EXTernal}<NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope models (including the
54810A and 54820A).

24-94

Trigger Commands
VIOLation:SETup:HOLD:CSOurce:LEVel

Command

<N>

<level>

Query

Returned Format

VIOLation:SETup:HOLD:CSOurce:LEVel

:TRIGger :ADVanced:VIOLation:SETup:HOLD:CSOurce:
LEVel {{CHANnel<N>|EXTernal},<levels>}

This command specifies the level for the clock source used for the trigger hold
violation. The clock must pass through the voltage level you have set before
the trigger circuitry looks for a setup or hold time violation.

An integer, 1 - 2, for 564810/564820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other nfiniium Oscilloscope models.

A real number for the voltage level for the trigger hold violation clock waveform,
and depends on the type of circuitry logic you are using.

:TRIGger:ADVanced:VIOLation:SETup:HOLD:CSOurce:
LEVel? {CHANnel<N>|EXTernal}

The query returns the specified clock source level for the trigger hold violation.

[: TRIGger:ADVanced:VIOLation:SETup:HOLD:CSOurce:LEVel
{CHANnel<N>|EXTernal},] <level><NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope models (including the
54810A and 54820A).

24-95

Trigger Commands
VIOLation:SETup:HOLD:CSOurce:EDGE

Command

Query

Returned Format

VIOLation:SETup:HOLD:CSOurce:EDGE

:TRIGger :ADVanced:VIOLation:SETup:HOLD:CSOurce:
EDGE {RISing|FALLing}

This command specifies the edge for the clock source used for the trigger hold
violation. The clock must pass through the voltage level you have set before
the trigger circuitry looks for a setup or hold time violation.

:TRIGger :ADVanced:VIOLation:SETup:HOLD:CSOurce:
EDGE?

The query returns the currently defined clock source edge for the trigger hold
violation.

[: TRIGger:ADVanced:VIOLation:SETup:HOLD:CSOurce : EDGE]
{RISing|FALLing}<NL>

24-96

Trigger Commands
ViOLation:SETup:HOLD:DSOurce

VIOLation:SETup:HOLD:DSOurce

Command :TRIGger :ADVanced:VIOLation:SETup:HOLD:DSOurce
{CHANnel<N>|EXTernal}

The data source commands specify the data source for the trigger hold violation.

<N> Aninteger, 1 - 2, for 54810/564820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

Query :TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce?

The query returns the currently defined data source for the trigger hold
violation.

Returned Format [: TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurcel
{CHANnel<N> |EXTernal}<NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope models (including the
54810A and 54820A).

24-97

Trigger Commands
ViOLation:SETup:HOLD:DSOurce:HTHReshold

Command

<N>

<level>

Query

Returned Format

VIOLation:SETup:HOLD:DSOurce:HTHReshold

:TRIGger :ADVanced:VIOLation:SETup:HOLD:DSOurce:
HTHReshold {{CHANnel<N>|EXTernal}, <levels>}

This command specifies the data source for the trigger hold violation, and the
high-level data threshold for the selected data source. Data is valid when it is
above the high-level data threshold, and when it is below the low-level data
threshold.

An integer, 1 - 2, for 54810/564820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

A real number for the data threshold level for the trigger hold violation, and is
used with the high and low threshold data source commands.

:TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce:
HTHReshold? {CHANnel<N>|EXTernal}

The query returns the specified data source for the trigger hold violation, and
the high data threshold for the data source.

[:TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce :HTHReshold
{CHANnel<N>|EXTernal},] <level><NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope models (including the
54810A and 54820A).

24-98

Trigger Commands
VIOLation:SETup:HOLD:DSOQurce:LTHReshold

Command

<N>

<level>

Query

Returned Format

VIOLation:SETup:HOLD:DSOurce:LTHReshold

:TRIGger :ADVanced:VIOLation:SETup:HOLD:DSOurce:
LTHReshold {{CHANnel<N>|EXTernal}, <levels>}

This command specifies the data source for the trigger hold violation, and the
low-level data threshold for the selected data source. Data is valid when it is
above the high-level data threshold, and when it is below the low-level data
threshold.

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

A real number for the data threshold level for the trigger hold violation, and is
used with the high and low threshold data source commands.

:TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce:
LTHReshold? {CHANnel<Ns>|EXTernal}

The query returns the specified data source for the trigger hold violation, and
the low data threshold for the data source.

[:TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce: LTHReshold
{CHANnel<N>|EXTernal},] <level><NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernalis only available in 2-channel Infiniium Oscilloscope models (including the
54810A and 54820A).

24-99

Trigger Commands
ViOLation:SETup:HOLD:TIME

Command

<time>

Query

Returned Format

VIOLation:SETup:HOLD:TIME

:TRIGger:ADVanced:VIOLation:SETup:HOLD: TIME <time>

This command specifies the amount of hold time used to test for a trigger
violation. The hold time is the amount of time that the data must be stable and
valid after a clock edge.

Hold time, in seconds.

:TRIGger:ADVanced:VIOLation:SETup:HOLD: TIME?

The query returns the currently defined hold time for the trigger violation.

[:TRIGger:ADVanced:VIOLation:SETup:HOLD: TIME] <time><NL>

24-100

Trigger Commands
VIOLation:SETup:SHOLd:CSOQurce

Command

Query

Returned Format

<N>

VIOLation:SETup:SHOLd:CSOurce

:TRIGger :ADVanced:VIOLation:SETup:SHOLd: CSOurce:
{CHANnel<N>|EXTernal}

This command specifies the clock source for the clock used for the trigger setup
and hold violation. The clock must pass through the voltage level you have set
before the trigger circuitry looks for a setup and hold time violation.

An integer, 1 - 2, for 564810/564820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

:TRIGger:ADVanced:VIOLation:SETup:SHOLd:CSOurce?

The query returns the currently defined clock source for the trigger setup and
hold violation.

[:TRIGger:ADVanced:VIOLation:SETup: SHOLd:CSOurce]
{CHANnel<N> |EXTernal}<NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope models (including the
54810A and 54820A).

24-101

Trigger Commands
ViOLation:SETup:SHOLd:CSOurce:LEVel

Command

<N>

<level>

Query

Returned Format

VIOLation:SETup:SHOLd:CSOurce:LEVel

:TRIGger :ADVanced:VIOLation:SETup:SHOLd: CSOurce:
LEVel {{CHANnel<N>|EXTernal},<levels>}

This command specifies the clock source trigger level for the clock used for the
trigger setup and hold violation. The clock must pass through the voltage level
you have set before the trigger circuitry looks for a setup and hold time violation.

An integer, 1 - 2, for 54810/564820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

A real number for the voltage level for the trigger setup and hold violation clock
waveform, and depends on the type of circuitry logic you are using.

:TRIGger:ADVanced:VIOLation:SETup:SHOLd:CSOurce:
LEVel? {CHANnel<N>|EXTernal}

The query returns the specified clock source level for the trigger setup and hold
violation level for the clock source.

[: TRIGger:ADVanced:VIOLation:SETup: SHOLd:CSOurce:LEVel
{CHANnel<N>|EXTernal},] <level><NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope models (including the
54810A and 54820A).

24-102

Trigger Commands
VIOLation:SETup:SHOLd:CSOurce:EDGE

Command

Query

Returned Format

VIOLation:SETup:SHOLd:CSOurce:EDGE

:TRIGger :ADVanced:VIOLation:SETup:SHOLd: CSOurce:
EDGE {RISing|FALLing}

This command specifies the clock source trigger edge for the clock used for the
trigger setup and hold violation. The clock must pass through the voltage level
you have set before the trigger circuitry looks for a setup and hold time violation.

:TRIGger :ADVanced:VIOLation:SETup:SHOLd:CSOurce:
EDGE?

The query returns the currently defined clock source edge for the trigger setup
and hold violation level for the clock source.

[: TRIGger:ADVanced:VIOLation:SETup: SHOLd:CSOurce : EDGE]
{RISing|FALLing}<NL>

24-103

Trigger Commands
VIOLation:SETup:SHOLd:DSOurce

Command

Query

Returned Format

<N>

VIOLation:SETup:SHOLd:DSOurce

:TRIGger :ADVanced:VIOLation:SETup:SHOLd:DSOurce
{CHANnel<N>|EXTernal}

The data source commands specify the data source for the trigger setup and
hold violation.

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

:TRIGger:ADVanced:VIOLation:SETup:SHOLd:DSOurce?

The query returns the currently defined data source for the trigger setup and
hold violation.

[: TRIGger:ADVanced:VIOLation:SETup: SHOLd:DSOurcel
{CHANnel<N>|EXTernal } <NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope models (including the
54810A and 54820A).

24-104

Trigger Commands
VIOLation:SETup:SHOLd:DSOurce:HTHReshold

Command

<N>

<level>

Query

Returned Format

VIOLation:SETup:SHOLd:DSOurce:HTHReshold

:TRIGger :ADVanced:VIOLation:SETup:SHOLd:DSOurce:
HTHReshold {{CHANnel<Ns>|EXTernal}, <levels>}

This command specifies the data source for the trigger setup and hold violation,
and the high-level data threshold for the selected data source. Data is valid
when it is above the high-level data threshold, and when it is below the low-
level data threshold.

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

A real number for the data threshold level for the trigger setup and hold
violation, and is used with the high and low threshold data source commands.

:TRIGger:ADVanced:VIOLation:SETup:SHOLd:DSOurce:
HTHReshold? {CHANnel<Ns>|EXTernal}

The query returns the specified data source for the trigger setup and hold
violation, and the high data threshold for the data source.

[: TRIGger:ADVanced:VIOLation:SETup: SHOLd:DSOurce :HTHReshol
d {CHANnel<Ns>|EXTernal},] <level><NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernalis only available in 2-channel Infiniium Oscilloscope models (including the
54810A and 54820A).

24-105

Trigger Commands
VIOLation:SETup:SHOLd:DSOurce:LTHReshold

VIOLation:SETup:SHOLd:DSOurce:LTHReshold

Command :TRIGger :ADVanced:VIOLation:SETup:SHOLd:DSOurce:
LTHReshold {{CHANnel<N>|EXTernal}, <levels>}

This command specifies the data source for the trigger setup and hold violation,
and the low-level data threshold for the selected data source. Datais valid when
it is above the high-level data threshold, and when it is below the low-level data
threshold.

<N> Aninteger, 1 - 2, for 54810/564820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<level> A real number for the data threshold level for the trigger setup and hold
violation, and is used with the high and low threshold data source commands.

Query :TRIGger:ADVanced:VIOLation:SETup:SHOLd:DSOurce:
LTHReshold? {CHANnel<N>|EXTernal}

The query returns the specified data source for the setup and trigger hold
violation, and the low data threshold for the data source.

Returned Format [: TRIGger:ADVanced:VIOLation:SETup: SHOLA:DSOurce : LTHReshol
d {CHANnel<Ns>|EXTernal},] <level><NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope models (including the
54810A and 54820A).

24-106

Trigger Commands
VIOLation:SETup:SHOLd:SetupTIMe (STIMe)

Command

<time>

Query

Returned Format

VIOLation:SETup:SHOLd:SetupTIMe (STIMe)

: TRIGger:ADVanced:VIOLation:SETup:SHOLd: SetupTIMe
<time>

This command specifies the amount of setup time used to test for both a setup
and hold trigger violation. The setup time is the amount of time that the data
must be stable and valid before a clock edge.

Setup time, in seconds.

:TRIGger:ADVanced:VIOLation:SETup:SHOLd: SetupTIMe?

The query returns the currently defined setup time for the setup and hold
trigger violation.

[: TRIGger:ADVanced:VIOLation: SETup:SHOLd: SetupTIMe]
<time><NL>

24-107

Trigger Commands
VIOLation:SETup:SHOLd:HoldTIMe (HTIMe)

Command

<time>

Query

Returned Format

VIOLation:SETup:SHOLd:HoldTIMe (HTIMe)

:TRIGger :ADVanced:VIOLation:SETup:SHOLd:HoldTIMe
<time>

This command specifies the amount of hold time used to test for both a setup
and hold trigger violation. The hold time is the amount of time that the data
must be stable and valid after a clock edge.

Hold time, in seconds.

:TRIGger:ADVanced:VIOLation:SETup:SHOLD:HoldTIMe?

The query returns the currently defined hold time for the setup and hold trigger
violation.

[: TRIGger:ADVanced:VIOLation:SETup: SHOLD:HoldTIMe]
<time><NL>

24-108

Source

Low Threshold
High Threshold
Type

Trigger On

> Time

< Time

Time

Transition Violation Mode

Use Transition Violation Mode to find any edge in your waveform that
violates a rise time or fall time specification. Infiniium Oscilloscopes find
a transition violation trigger by looking for any pulses in your waveform
with rising or falling edges that do not cross two voltage levels in the
amount of time you have specified.

The rise time is measured from the time that your waveform crosses the
low threshold until it crosses the high threshold. The fall time is
measured from the time that the waveform crosses the high threshold
until it crosses the low threshold.

Use Source to select the channel used for a transition violation trigger.
Use Low Threshold to set the low voltage threshold.

Use High Threshold to set the high voltage threshold.

Use Type to select Rise Time or Fall Time violation.

Trigger On parameters include > Time and < Time.

Use > Time to look for transition violations that are longer than the time
specified.

Use < Time to look for transition violations that are less than the time
specified.

Use Time to set the amount of time to determine a rise time or fall time
violation.

Available trigger conditioning includes HOLDoff and HYSTeresis (Noise
Reject).

24-109

Set the Mode Before Executing Commands

Before executing the :TRIGger:ADVanced:VIOLation:TRANsition
commands, set the mode by entering:

: TRIGger :MODE ADVanced and
:TRIGger:ADVanced:MODE VIOLation and
:TRIGger:ADVanced:VIOLation:MODE TRANsition

To query the oscilloscope for the advanced trigger violation mode, enter:

: TRIGger:ADVanced:VIOLation:MODE?

24-110

Trigger Commands
VIOLation:TRANSsition

VIOLation:TRANSsition

Command :TRIGger:ADVanced:VIOLation:TRANsition:
{GTHan |LTHan} <times>

This command lets you look for transition violations that are greater than or
less than the time specified.

<time> The time for the trigger violation transition, in seconds.

Query :TRIGger:ADVanced:VIOLation: TRANsition:
{GTHan|LTHan}?

The query returns the currently defined time for the trigger transition violation.

Returned Format [: TRIGger:ADVanced:VIOLation:TRANsition: {GTHan|LTHan}]
<time><NL>

24-111

Trigger Commands
VIOLation:TRANSsition:SOURce

VIOLation:TRANSsition:SOURce

Command :TRIGger :ADVanced:VIOLation: TRANsition:SOURce
{CHANnel<N>|EXTernal}

The transition source command lets you find any edge in your waveform that
violates a rise time or fall time specification. The oscilloscope finds a transition
violation trigger by looking for any pulses in your waveform with rising or falling
edges that do not cross two voltage levels in the amount of time you have
specified.

<N> Aninteger, 1 - 2, for 54810/564820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

Query :TRIGger:ADVanced:VIOLation: TRANsition:SOURce?

The query returns the currently defined transition source for the trigger
transition violation.

Returned Format [: TRIGger:ADVanced:VIOLation:TRANsition:SOURce]
{CHANnel<N>|EXTernal } <NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope models (including the
54810A and 54820A).

24-112

Trigger Commands
ViOLation:TRANSsition:SOURce:HTHReshold

Command

<N>

<level>

Query

Returned Format

VIOLation:TRANsition:SOURce:HTHReshold

:TRIGger:ADVanced:VIOLation:TRANsition:SOURce:
HTHReshold {{CHANnel<Ns>|EXTernal}, <levels>}

This command lets you specify the source and high threshold for the trigger
violation transition. The oscilloscope finds a transition violation trigger by
looking for any pulses in your waveform with rising or falling edges that do not
cross two voltage levels in the amount of time you have specified.

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

A real number for the voltage threshold level for the trigger transition violation,
and is used with the high and low threshold transition source commands.

:TRIGger:ADVanced:VIOLation: TRANsition:SOURce:
HTHReshold? {CHANnel<Ns>|EXTernal}

The query returns the specified transition source for the trigger transition high
threshold violation.

[:TRIGger:ADVanced:VIOLation:TRANsition:SOURce:HTHReshold
{CHANnel<N>|EXTernal},] <level><NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernalis only available in 2-channel Infiniium Oscilloscope models (including the
54810A and 54820A).

24-113

Trigger Commands
ViOLation:TRANSsition:SOURce:LTHReshold

Command

<N>

<level>

Query

Returned Format

VIOLation:TRANsition:SOURce:LTHReshold

:TRIGger:ADVanced:VIOLation:TRANsition:SOURce:
LTHReshold {{CHANnel<N>|EXTernal}, <levels>}

This command lets you specify the source and low threshold for the trigger
violation transition. The oscilloscope finds a transition violation trigger by
looking for any pulses in your waveform with rising or falling edges that do not
cross two voltage levels in the amount of time you have specified.

An integer, 1 - 2, for 54810/564820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

A real number for the voltage threshold level for the trigger transition violation,
and is used with the high and low threshold transition source commands.

:TRIGger:ADVanced:VIOLation: TRANsition:SOURce:
LTHReshold? {CHANnel<N>|EXTernal}

The query returns the currently defined transition source for the trigger
transition low threshold violation.

[:TRIGger:ADVanced:VIOLation:TRANsition:SOURce:LTHReshold
{CHANnel<N>|EXTernal},] <level><NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope models (including the
54810A and 54820A).

24-114

Trigger Commands
VIOLation:TRANSsition:TYPE

Command

Query

Returned Format

VIOLation:TRANsition: TYPE

:TRIGger:ADVanced:VIOLation:TRANsition:TYPE
{RISetime |FALLtime}

This command lets you select either a rise time or fall time transition violation
trigger event.

:TRIGger:ADVanced:VIOLation: TRANsition:TYPE?

The query returns the currently defined transition type for the trigger transition
violation.

[:TRIGger:ADVanced:VIOLation:TRANsition:TYPE]
{RISetime|FALLtime}<NL>

24-115

24-116

25

Waveformm Commands

Waveform Commands

The WAVeform subsystem is used to transfer waveform data between a
computer and the oscilloscope. It contains commands to set up the
waveform transfer and to send or receive waveform records to or from
the oscilloscope. These WAVeform commands and queries are
implemented in the Infiniium Oscilloscopes:

e BANDpass?

e BYTeorder

e CLIPped?

e COMPlete?

e COUNt?

e COUPIling?

e DATA

e FF'ORMat

e POINts?

e PREamble

e SOURce

e TYPE?

e VIEW

e XDISplay?

e XINCrement?

e XORigin?

e XRANge?

e XREFerence?

e XUNits?

e YDISplay?

¢ YINCrement?

e YORigin?

e YRANge?

e YREFerence?

e YUNits?

25-2

CAUTION

CAUTION

Data Acquisition

When data is acquired using the DIGitize command, the data is placed
in the channel or function memory of the specified source. After the
DIGitize command executes, the oscilloscope is stopped. If the
oscilloscope is restarted over GPIB or from the front panel, the data
acquired with the DIGitize command is overwritten.

You can query the preamble, elements of the preamble, or waveform data
while the oscilloscope is running, but the data will reflect only the current
acquisition, and subsequent queries will not reflect consistent data. For
example, if the oscilloscope is running and you query the X origin, the
data is queried in a separate GPIB command, and it is likely that the first
point in the data will have a different time than that of the X origin. This
is due to data acquisitions that may have occurred between the queries.
For this reason, Agilent Technologies does not recommend this mode of
operation. Instead, you should use the DIGitize command to stop the
oscilloscope so that all subsequent queries will be consistent.

Function data is volatile and must be read following a DIGgitize command or
the data will be lost when the oscilloscope is turned off.

Waveform Data and Preamble

The waveform record consists of two parts: the preamble and the
waveform data. The waveform data is the actual sampled data acquired
for the specified source. The preamble contains the information for
interpreting the waveform data, including the number of points
acquired, the format of the acquired data, and the type of acquired data.
The preamble also contains the X and Y increments, origins, and
references for the acquired data.

The values in the preamble are set when you execute the DIGitize
command. The preamble values are based on the settings of controls in
the ACQuire commands subsystem.

Although you can change preamble values with a GPIB computer, you
cannot change the way the data is acquired. Changing the preamble
values cannot change the type of data that was actually acquired or the
number of points actually acquired.

You must use extreme caution when changing any waveform preamble values
to ensure that the datais still useful. For example, setting the number of points
in the preamble to a different value from the actual number of points in the
waveform results in inaccurate data.

The waveform data and preamble must be read or sent using the separate
commands :WAVeform:DATA and :WAVeform:PREamble.

25-3

Data Conversion

Data sent from the oscilloscope must be scaled for useful interpretation.
The values used to interpret the data are the X and Y origins, X and Y
increments, and X and Y references. These values can be read from the
waveform preamble.

Conversion from Data Values to Units

To convert the waveform data values (essentially A/D counts) to
real-world units, such as volts, use the following scaling formulas:

Y-axis Units = (data value - Yreference) x Yincrement + Yorigin
X-axis Units = (data index - Xreference) x Xincrement + Xorigin,
where the data index starts at zero: 0, 1, 2, ..., n-1.

The first data point for the time (X-axis units) must be zero, so the time
of the first data point is the X origin.

Data Format for GPIB Transfer

There are four types of data formats that you can select using the
:‘WAVeform:FORMat command: ASCii, BYTE, WORD, and LONG. Refer
to the FORMat command in this chapter for more information on data
formats.

25-4

Waveform Commands
BANDpass?

Query

Returned Format
<lower cutoffs>

<upper_cutoff>

Example

BANDpass?

:WAVeform:BANDpass?

The :WAVeform:BANDpass? query returns an estimate of the maximum and
minimum bandwidth limits of the source waveform. The bandwidth limits are
computed as a function of the coupling and the selected filter mode. The cutoff
frequencies are derived from the acquisition path and software filtering.

[:WAVeform:BANDpass] <lower cutoffs>, <upper cutoff><NL>
Minimum frequency passed by the acquisition system.

Maximum frequency passed by the acquisition system.

This example places the estimated maximum and minimum bandwidth limits
of the source waveform in the string variable, Bandwidth$, then prints the
contents of the variable to the computer’s screen.

10 DIM Bandwidth$[50] !Dimension variable
20 OUTPUT 707;" :WAVEFORM: BANDPASS?"

30 ENTER 707;Bandwidth$

40 PRINT Bandwidth$

50 END

256-5

Waveform Commands
BYTeorder

Command

Example

Query

Returned Format

Example

BYTeorder

:WAVeform:BYTeorder {MSBFirst | LSBFirst}

The :WAVeform:BYTeorder command selects the order in which bytes are
transferred to and from the oscilloscope using WORD and LONG formats. If
MSBF'irst is selected, the most significant byte is transferred first. Otherwise,
the least significant byte is transferred first. The default setting is MSBFirst.

This example sets up the oscilloscope to send the most significant byte first
during data transmission.

10 OUTPUT 707;" :WAVEFORM:BYTEORDER MSBFIRST"
20 END

:WAVeform:BYTeorder?

The :WAVeform:BYTeorder? query returns the current setting for the byte order.

[:WAVeform:BYTeorder] {MSBFirst | LSBFirst}<NL>

This example places the current setting for the byte order in the string variable,
Setting$, then prints the contents of the variable to the computer’s screen.

10 DIM Setting$[10] !Dimension variable
20 OUTPUT 707;" :WAVEFORM:BYTEORDER?"
30 ENTER 707;Setting$

40 PRINT Settings$

50 END

MSBFirst and LSBFirst

MSBFirst is for microprocessors like Motorola’s, where the most significant byte
resides atthe lower address. LSBFirstis for microprocessors like Intel’s, where the
least significant byte resides at the lower address.

25-6

Waveform Commands
CLIPped?

Query

Returned Format

Example

CLIPped?

:WAVeform:CLIPped?

The :WAVeform:CLIPped? query returns a"1"if the currently selected waveform
is clipped, and a "0" if the waveform is not clipped.

[:WAVeform:CLIPped] {1 | 0}<NL>

This example places the current clipped status of the selected waveform in the
string variable, Setting$, then prints the contents of the variable.

10
20
30
40
50

DIM Setting$[50] !Dimension variable
OUTPUT 707;" :WAVEFORM: CLIPPED?"
ENTER 707;Settings$

PRINT Setting$

END

256-7

Waveform Commands
COMPIlete?

COMPlete?

Query :WAVeform: COMPlete?

The :WAVeform:COMPlete? query returns the percent of time buckets that are
complete for the currently selected waveform.

For the NORMal, RAW, and INTerpolate waveform types, the percent complete
is the percent of the number of time buckets that have data in them, compared
to the memory depth.

For the AVERage waveform type, the percent complete is the number of time
buckets that have had the specified number of hits divided by the memory
depth. The hits are specified by the :WAVeform:COUNt command.

For the VERSus waveform type, percent complete is the least complete of the
X-axis and Y-axis waveforms.

Returned Format [:WAVeform:COMPlete] <criteria><NL>

<criterias> 0 to 100 percent, rounded down to the closest integer.

Example This example places the current completion criteria in the string variable,
Criteria$, then prints the contents of the variable to the computer’s screen.

10 DIM Criteria$[50] !Dimension variable
20 OUTPUT 707;" :WAVEFORM: COMPLETE?"

30 ENTER 707;Criterias

40 PRINT Criteria$

50 END

25-8

Waveform Commands
COUNt?

Query

Returned Format

<number>

Example

COUNt?

:WAVeform: COUNt?

The :WAVeform:COUNt? query returns the fewest number of hits in all of the
time buckets for the currently selected waveform. For the AVERage waveform
type, the count value is the fewest number of hits for all time buckets. This
value may be less than or equal to the value specified with the
:ACQuire:AVERage:COUNt command.

For the NORMal, RAW, INTerpolate, and VERSus waveform types, the count
value returned is one, unless the data contains holes (sample points where no
data is acquired). If the data contains holes, zero is returned.

[:WAVeform:COUNt] <number><NL>

An integer. Values range from 1 to 262144 for NORMal, RAW, or INTerpolate
types, and from 1 to 32768 for VERSus type.

This example places the current count field value in the string variable, Count$,
then prints the contents of the variable to the computer’s screen.

10 DIM Count$[50] !Dimension variable
20 OUTPUT 707;" :WAVEFORM: COUNT?"

30 ENTER 707;Count$

40 PRINT Count$

50 END

25-9

Waveform Commands
COUPling?

Query

Returned Format

Example

See Also

COUPling?

:WAVeform: COUPling?

The :WAVeform:COUPIling? query returns the input coupling of the currently
selected source.

[:WAVeform:COUPling] {AC | DC | DCFifty | LFReject}<NL>

This example places the current input coupling of the selected waveform in the
string variable, Setting$, then prints the contents of the variable.

10
20
30
40
50

DIM Setting$[50] !Dimension variable
OUTPUT 707;" :WAVEFORM: COUPLING?"
ENTER 707;Setting$

PRINT Setting$

END

The :CHANnel<N>:INPut command sets the coupling for a particular channel.

You can use the :WAVeform:SOURce command to set the source for the coupling

query.

Source Return Value

CGRade Lowest numbered channel that is on.

HISTogram The selected channel or for functions, the lowest
numbered channel in the function.

CHANnel The channel number

FUNCtion The lowest numbered channel in the function

WMEMory The coupling value that was loaded into the

waveform memory. If channel 1 was loaded, it would
be the channel 1 coupling value.

256-10

Waveform Commands
DATA

Command

<block data>

Example

DATA

:WAVeform:DATA <block datas>[, <block data>]

The :WAVeform:DATA command transfers waveform data to the oscilloscope
over GPIB and stores the data in a previously specified waveform memory. The
waveform memory is specified using the :WAVeform:SOURce command. Only
waveform memories may have waveform data sent to them. The format of the
data being sent must match the format previously specified by the waveform
preamble for the destination memory. Color grade data cannot be stored into
a waveform memory.

VERSus data is transferred as two arrays. The first array contains the data on
the X axis, and the second array contains the data on the Y axis. The two arrays
are transferred one at a time over GPIB in a linear format. The number of points
sent in each array is equal to the number in the points portion of the preamble.

The full-scale vertical range of the A/D converter will be returned with the data
query. You should use the Y-increment, Y-origin, and Y-reference values to
convert the full-scale vertical ranges to voltage values. You should use the
Y-range and Y-display values to plot the voltage values. All of these reference
values are available from the waveform preamble. Refer to "Conversion from
Data Values to Units" earlier in this chapter.

Binary block data in the # format (as described in HP BASIC Image Specifiers
below).

HP BASIC Image Specifiers

#is an HP BASIC image specifier that suppresses the automatic output of the EOL
sequence following the last output item.

K'is an HP BASIC image specifier that outputs a number or string in standard form
with no leading or trailing blanks.

W is an HP BASIC image specifier that outputs 16-bit words with the most significant
byte first.

This example sends 1000 bytes of previously saved data to the oscilloscope from
the array, Set.
10 OUTPUT 707 USING "#,K"; :WAVEFORM:DATA #800001000"

20 OUTPUT 707 USING "W";Set (*)
30 END

256-11

Query

Returned Format

BASIC Example

Waveform Commands
DATA

:WAVeform:DATA?

The :WAVeform:DATA? query outputs waveform data to the computer over the
GPIB Interface. The data is copied from a waveform memory, function, or
channel buffer previously specified with the :WAVeform:SOURce command.
The returned data is described by the waveform preamble.

[:WAVeform:DATA] <block datas>[,<block data>]<NL>

This example places the current waveform data from channel 1 of the array
Wdata in the word format.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;" :WAVEFORM:SOURCE CHANNEL1!Select source
30 OUTPUT 707;":WAVEFORM:FORMAT WORD"!Select word format
40 OUTPUT 707;" :WAVEFORM:DATA?"

50 ENTER 707 USING "#,1A";Pound sign$

60 ENTER 707 USING "#,1D";Header length

70 ENTER 707 USING "#, "&VALS (Header length)&"D";Length
80 Length = Length/2!Length in words

90 ALLOCATE INTEGER Wdata (1:Length)

100 ENTER 707 USING "#,W";Wdata(*)

110 ENTER 707 USING "-K,B";EndsS

120 END

HP BASIC Image Specifiers

#isan HP BASIC image specifier that terminates the statementwhen the last ENTER
item is terminated. EOl and line feed are the item terminators.

1Aisan HP BASIC image specifier that places the next character receivedin a string
variable.

1D is an HP BASIC image specifier that places the next character in a numeric
variable.

W is an HP BASIC image specifier that places the data in the array in word format
with the first byte entered as the most significant byte.

-K'is an HP BASIC image specifier that places the block data in a string, including
carriage returns and line feeds until EQl is true or when the dimensioned length of
the string is reached.

B is an HP BASIC specifier that enters the next byte in a variable.

25-12

Waveform Commands
DATA

The format of the waveform data must match the format previously specified
by the :WAVeform:FFORMat, :WAVeform:BYTeorder, and :WAVeform:PREamble
commands.

256-13

Waveform Commands
DATA

C Example The following example shows how to transfer both BYTE and WORD formatted
waveform data to a computer. There is a file on the Infiniium Oscilloscope
Example Programs disk called readdata.c in the c directory that contains this
program.

/* readdata. c */

/* Reading Byte and Word format Example. This program demonstrates the order
of commands suggested for operation of the Infiniium oscilloscope via GPIB.
This program initializes the scope, acquires data, transfers data in both
the BYTE and WORD formats, converts the data into voltage and time values,
and stores the data on the PC as time, word voltage values, and byte
voltage values in a comma-separated file format. This format is useful

for spreadsheet applications. It assumes a SICL GPIB interface card exists
as 'hpib7’ and an Infiniium oscilloscope at address 7. It also requires a
waveform connected to Channel 1.

*/

#include <stdio.h> /* location of: printf () */

#include <stdlib.h> /* location of: atof (), atoi() */

#include <string.h> /* location of: strlen() */

#include <sicl.h>

/* Prototypes */
int InitIO(void) ;
void WriteIO(char *buffer);
unsigned long ReadByte(char *buffer, unsigned long BytesToRead) ;
unsigned long ReadWord(short *buffer, unsigned long BytesToRead) ;
void ReadDouble(double *buffer);
void CloseIO(void) ;
void AcquireData(void) ;
void GetVoltageConversionFactors(double *yInc,
double *yOrg,
double *yRef);
void GetTimeConversionFactors(double *xInc,
double *x0Org,
double *xRef);
void CreateTimeData(double xInc,
double xOrg,
double xRef,
unsigned long AcquiredLength,
double *TimeValues) ;
void ConvertWordDataToVolts(short *byteData,
double *byteVolts,
unsigned long AcquiredLength,
double yInc,
double yOrg,
double yRef);

25-14

Waveform Commands
DATA

void ConvertByteDataToVolts(char *byteData,

double *byteVolts,

unsigned long AcquiredLength,
double yInc,

double yOrg,

double yRef);

void WriteCsvToFile (

double *TimeValues,

double *wordVolts,

double *byteVolts,

unsigned long AcquiredLength) ;
unsigned long SetupDataTransfer(void);

/* Defines */

#define
#define
#define
#define
#define
#define

MAX_LENGTH 131072
INTERFACE "hpib7"
DEVICE ADDR "hpib7,7"
TRUE 1

FALSE 0

I0_TIMEOUT 20000

/* Globals */

INST bus;

INST scope;

double TimeValues [MAX LENGTH]; /*

double byteVolts[MAX LENGTH]; /*
double wordvolts[MAX LENGTH]; /*
short wordData [MAX LENGTH/2]; /*

char byteData [MAX LENGTH] ; /*

Time value of data */

Voltage value of data in byte format */
Voltage value of data in word format */
Buffer for reading word format data */
Buffer for reading byte format data */

256-15

Waveform Commands
DATA

void main(void)

{
double x0Org=0L, xRef=0L, xInc=0L; /* Values used to create time data */
double yOrg=0L, yRef=0L, yInc=0L; /* Values used to convert data to volts */
char Term;
unsigned long BytesToRead;

if (tInitIo()) {
exit(1);
}

AcquireDatal() ;

WriteIO(":WAVeform:FORMat WORD"); /* Setup transfer format */

WriteIO(":WAVeform:BYTeorder LSBFirst");/* Setup transfer of LSB first */
WriteIO(":WAVeform:SOURce CHANnell"); /* Waveform data source channel 1 */

GetVoltageConversionFactors(&yInc, &yOrg, &yRef);

BytesToRead = SetupDataTransfer() ;

ReadWord (wordData, BytesToRead) ;

ReadByte(&Term, 1L); /* Read termination character */

ConvertWordDataToVolts (wordData, wordVolts, BytesToRead,
yInc, yOrg, yRef);

WriteIO(":WAVeform:FORMat BYTE") ;/* Setup transfer format */

GetVoltageConversionFactors(&yInc, &yOrg, &yRef);

BytesToRead = SetupDataTransfer() ;

ReadByte (byteData, BytesToRead) ;

ReadByte (&Term, 1L); /* Read the termination character */

ConvertByteDataToVolts (byteData, byteVolts, BytesToRead,
yInc, yOrg, yRef);

GetTimeConversionFactors(&xInc, &xOrg, &xRef);
CreateTimeData(xInc, xOrg, xRef, BytesToRead, TimeValues) ;

WriteCsvToFile(TimeValues, wordVolts, byteVolts, BytesToRead) ;

CloseIO();

256-16

Waveform Commands
DATA

/***

* Function name: InitIO

* Parameters: none

* Return value: none

* Description: This routine initializes the SICL environment. It sets up

* error handling, opens both an interface and device session,
* sets timeout values, clears the GPIB interface card,

* and clears the oscilloscope’s GPIB card by performing a

* Selected Device Clear.
**/

int InitIO(void)

{

ionerror (I_ERROR_EXIT) ; /* set-up interface error handling */
bus = iopen(INTERFACE) ; /* open interface session */
if (bus == 0) {

printf ("Bus session invalid\n");
return FALSE;

}

itimeout (bus, IO _TIMEOUT) ; /* set bus timeout */
iclear(bus) ; /* clear the interface */

scope = iopen(DEVICE ADDR) ; /* open the scope device session */
if (scope == 0) {

printf ("Scope session invalid\n");

iclose(bus); /* close interface session */

_siclcleanup() ; /* required for 16-bit applications */

return FALSE;

}

itimeout (scope, IO TIMEOUT) ; /* set device timeout */
iclear(scope); /* perform Selected Device Clear on oscilloscope */

return TRUE;

2b6-17

Waveform Commands
DATA

/***

*
*
*
*
*
*
*

Function name: WriteIO
Parameters: char *buffer which is a pointer to the character
string to be output
Return value: none
Description: This routine outputs strings to the oscilloscope device
session using SICL commands.

***/

void WriteIO(char *buffer)

{

}

unsigned long actualcnt;
unsigned long BytesToRead;
int send end = 1;

BytesToRead = strlen(buffer);

iwrite(scope, buffer, BytesToRead, send end, &actualcnt);

/***

*
*
*
*
*
*
*
*
*

Function name: ReadByte
Parameters: char *buffer which is a pointer to the array to store
the read bytes
unsigned long BytesToRead which indicates the maximum
number of bytes to read
Return value: integer which indicates the actual number of bytes read
Description: This routine inputs strings from the scope device session
using SICL commands.

***/

unsigned long ReadByte(char *buffer, unsigned long BytesToRead)

{

unsigned long BytesRead;
int reason;

BytesRead = BytesToRead;
iread(scope, buffer, BytesToRead, &reason, &BytesRead) ;

return BytesRead;

256-18

Waveform Commands
DATA

/***

*
*
*
*
*
*
*
*
*

Function name: ReadWord
Parameters: short *buffer which is a pointer to the word array
to store the bytes read
unsigned long BytesToRead which indicates the maximum
number of bytes to read
Return value: integer which indicates the actual number of bytes read
Description: This routine inputs an array of short values from the
oscilloscope device session using SICL commands.

***/

unsigned long ReadWord(short *buffer, unsigned long BytesToRead)

{

}

long BytesRead;
int reason;

BytesRead = BytesToRead;
iread(scope, (char *) buffer, BytesToRead, &reason, &BytesRead);

return BytesRead;

/***

*
*
*
*
*
*

Function name: ReadDouble
Parameters: double *buffer which is a pointer to the float value to read
Return value: none
Description: This routine inputs a float value from the oscilloscope
device session using SICL commands.

***/

void ReadDouble(double *buffer)

{
}

iscanf (scope, "%1f", buffer);

256-19

Waveform Commands
DATA

/***

* Function name: close IO

* Parameters: none

* Return value: none

* Description: This routine closes device and interface sessions for the
* SICL environment, and calls the routine siclcleanup

*
*

which de-allocates resources used by the SICL environment.
***/

void CloseIO(void)

{

iclose(scope); /* close device session */
iclose(bus) ; /* close interface session */
_siclcleanup() ; /* required for 16-bit applications */

/**

oscilloscope settings.
***/

* Function name: AcquireData

* Parameters: none

* Return value: none

* Description: This routine acquires data using the current
*

*

void AcquireData(void)

{

/
The root level :DIGitize command is recommended for acquiring new
waveform data. It initialize’s the oscilloscope’s data buffers,
acquires new data, and ensures that acquisition criteria are met
before the acquisition is stopped. Note that the display is
automatically turned off when you use this form of the :DIGitize
command and must be turned on to view the captured data on screen.

* % ok X X kX

~

WriteIO(":DIGitize CHANnell") ;
WriteIO(":CHANnell:DISPlay ON") ;

256-20

Waveform Commands
DATA

/***
* Function name: GetVoltageConversionFactors

* Parameters: double yInc which is the voltage difference represented by

* adjacent waveform data digital codes.

* double yOrg which is the voltage value of digital code 0.
* double yRef which is the reference point for yOrg.

* Return value: none

* Description: This routine reads the conversion factors used to convert
*
*

waveform data to volts.
***/

void GetVoltageConversionFactors(double *yInc, double *yOrg, double *yRef)

{

/* Read values which are used to convert data to voltage values */

WriteIO(":WAVeform:YINCrement?") ;
ReadDouble (yInc) ;

WriteIO(":WAVeform:YORigin?") ;
ReadDouble (yOrg) ;

WriteIO(":WAVeform:YREFerence?") ;
ReadDouble (yRef);

25-21

Waveform Commands
DATA

/***

*
*
*
*
*
*

Function name: SetupDataTransfer
Parameters: none
Return value: Number of bytes of waveform data to read.
Description: This routine sets up the waveform data transfer and gets
the number of bytes to be read.

***/

unsigned long SetupDataTransfer (void)

{

unsigned long BytesToRead;
char header str(8];

char cData;

unsigned long BytesRead;

WriteIO(":WAVeform:DATA?"); /* Request waveform data */

/* Find the # character */

do {
ReadByte (&cData, 1L);
} while (cData != '#’');

/* Read the next byte which tells how many bytes to read for the number
* of waveform data bytes to transfer wvalue.

*/

ReadByte (&cData, 1L);
BytesToRead = cData - '0’; /* Convert to a number */

/* Reads the number of data bytes that will be transfered */
BytesRead = ReadByte(header str, BytesToRead);
header str[BytesRead] = "\0’;

BytesToRead = atoi(header_str);

return BytesToRead;

25-22

Waveform Commands
DATA

/***
* Function name: GetTimeConversionFactors

* Parameters: double xInc which is the time between consecutive

* sample points.

* double xOrg which is the time value of the first data point.
* double xRef which is the reference point for xOrg.

* Return value: none

* Description: This routine transfers the waveform conversion

*
*

factors for the time values.
***/

void GetTimeConversionFactors(double *xInc, double *xOrg, double *xRef)

{

/* Read values which are used to create time values */

WriteIO(":WAVeform:XINCrement?") ;
ReadDouble (xInc);

WriteIO(":WAVeform:XORigin?") ;
ReadDouble (x0rg) ;

WriteIO(":WAVeform:XREFerence?") ;
ReadDouble (xRef) ;

2b-23

Waveform Commands
DATA

/**

*
*
*
*
*
*
*
*
*
*
*
*
*
*

Function name:
Parameters:

Return value:
Description:

CreateTimeData
double xInc which is the time between consecutive
sample points
double xOrg which is the time value of the first data point
double xRef which is the reference point for xOrg
unsigned long AcquiredLength which is the number of
data points
double TimeValues is a pointer to the array where time
values are stored
none
This routine converts the data to time values using
the values that describe the waveform. These values are
stored in global variables.

***/

void CreateTimeData (double xInc, double xOrg, double xRef,

unsigned long AcquiredLength, double *TimeValues)

unsigned long i;

for (i = 0; i < AcquiredLength; i++) {
TimeValues[i] =((i - xRef) * xInc) + xOrg; /* calculate time values */

2b-24

Waveform Commands
DATA

/***

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Function name:
Parameters:

Return value:
Description:

ConvertWordDataToVolts
short *wordData which is a pointer to the array
of read word values
double *wordvVolts which is a pointer to the array of
calculated voltages
unsigned long AcquiredLength which is the number of data
bytes read
double yInc which is the voltage difference represented
by adjacent waveform data digital codes.
double yOrg which is the voltage value of digital code 0.
double yRef which is the reference point for yOrg.
none
This routine converts the word format waveform data to
voltage values using values that describe the waveform.
These values are stored in global arrays for use by
other routines.

***/

void ConvertWordDataToVolts(short *wordData, double *wordVolts,

unsigned long

for (i = 0; i

unsigned long AcquiredLength,
double yInc, double yOrg, double yRef)

i;

< AcquiredLength/2; i++) {

/* calculate voltage values */
wordVolts[i] = ((wordDatal[i] - yRef) * yInc) + yOrg;

2b-25

Waveform Commands
DATA

/***

* Function name: ConvertByteDataToVolts
* Parameters: short *byteData which is a pointer to the array of
read byte values
double *byteVolts which is a pointer to the array of
calculated voltages
unsigned long AcquiredLength which is the number of data
bytes read
double yInc which is the voltage difference represented
by adjacent waveform data digital codes.
double yOrg which is the voltage value of digital code 0.
double yRef which is the reference point for yOrg.
Return value: none
Description: This routine converts the byte format waveform data to
voltage values using the values that describe the

waveform. These values are stored in global variables.
***/

void ConvertByteDataToVolts(char *byteData, double *byteVolts,
unsigned long AcquiredLength,
double yInc, double yOrg, double yRef)

{

unsigned long 1i;

for (i = 0; i < AcquiredLength; i++) {
/* calculate voltage values */
bytevVolts[i] = ((byteDatal[i]l - yRef) * yInc) + yOrg;

}

25-26

Waveform Commands

DATA

/***

*
*
*
*
*
*
*
*
*
*
*
*
*
*

Function name: WriteCsvToFile
Parameters: double *TimeValues which is a pointer to an array of
calculated time values
double *wordvVolts which is a pointer to an array of
calculated word format voltage wvalues
double *byteVolts which is a pointer to an array of
calculated byte format voltage wvalues
unsigned long AcquiredLength which is the number of data
points read
Return value: none
Description: This routine stores the time and voltage information about
the waveform as time, word format voltage, and byte format
voltage separated by commas to a file.

void WriteCsvToFile(double *TimeValues, double *wordVolts,

{

double *byteVolts, unsigned long AcquiredLength)

FILE *fp;
unsigned long 1i;

fp = fopen("pairs.csv", "wb"); /* Open file in binary mode - clear file
if it already exists */

if (fp != NULL) {
fprintf (fp, "Time,Word Volts,Byte Volts\n");
for (i = 0; i < AcquiredLength; i++) {

fprintf (fp, "%e,%f,%f\n", TimeValues[i], wordvVolts[i], bytevVolts[i]
}

fclose(fp);

}

else {
printf ("Unable to open file ’'pairs.csv’\n");
}

***/

)i

2b-27

Analog-to-digital
Conversion Basics

Figure 25-1

Waveform Commands
DATA

Understanding WORD and BYTE Formats

Before you can understand how the WORD and BYTE downloads work, it is
necessary to understand how Infiniium creates waveform data.

The input channel of every digital sampling oscilloscope contains an
analog-to-digital converter (ADC) as shown in Figure 25-1. The 8-bit ADC in
Infiniium consists of 256 voltage comparators. Each comparator has two inputs.
One input is connected to a reference dc voltage level and the other input is
connected to the channel input. When the voltage of the waveform on the
channel input is greater than the dc level, then the comparator output is a 1
otherwise the output is a 0. Each of the comparators has a different reference
dc voltage. The output of the comparators is converted into an 8-bit integer by
the encoder.

Vref
Channel Input
+
+
Encoder -
8 bits
+
+
-Vref
Block Diagram of an ADC

25-28

Waveform Commands
DATA

All ADCs have non-linearity errors which, if not corrected, can give less accurate
vertical measurement results. For example, the non-linearity error for a 3-bit
ADC is shown in the following figure.

Figure 25-2
Ideal ADC Conversion Non-ideal ADC Conversion
************** pal - T TS
s | - - /s . |
1M — 1M Nonlinearity e
110 e ‘ . 110 Errors Al ‘
g] / | | g] \ s | |
£ A0 S S
= % | = | |
£ 100 e S 100 I
g | | | ‘ ! g 7 | | ‘ ‘ !
= 0 N = 0 < o
£ 0o 10 g A
S — — : by a 010 ‘ ‘ : N
| . |
oot | o
[| | 4 [| |
e o A s 00—
e PP L e e e GO VG O R R R v 1
€ & 8 & & S S ® ® ® © 8 8 B
= & o F 6 S = FS =the full scale = & o §F ©5 & =
Normalized Analog Input voltage of the ADC Normalized Analog Input

ADC Non-linearity Errors for a 3-hit ADC

The graph on the left shows an ADC which has no non-linearity errors. All of
the voltage levels are evenly spaced producing output codes that represent
evenly spaced voltages. In the graph on the right, the voltages are not evenly
spaced with some being wider and some being narrower than the others.

25-29

Waveform Commands
DATA

When you calibrate your Infiniium, the input to each channel, in turn, is
connected to the Aux Out connector. The Aux Out is connected to a 16-bit
digital-to-analog convertor (DAC) whose input is controlled by Infiniium’s CPU.
There are 65,536 dc voltage levels that are produced by the 16-bit DAC at the
Aux Out. At each dc voltage value, the output of the ADC is checked to see if
a new digital code is produced. When this happens, a 16-bit correction factor
is calculated for that digital code and this correction factor is stored in a
Calibration Look-up Table.

Figure 25-3
Stream of
8 bit
ASCII Characters

D, Format

DG

D

Analog 5 . .
Channel In to s Cfggf‘ﬁ'sn WORD
| .. 3 -
‘ Digital | —p, Table | 16 bits Format | 16 bits
w Converter |,
1 Do
| BYTE
‘ Format 8 bits
|
: Calibration
: Aux Out Digital
— to CPU
Analog 16 bits
Converter

Data Flow in Infiniium

This process continues until all 256 digital codes are calibrated. The calibration
process removes most of the non-linearity error of the ADC which yields more
accurate vertical voltage values.

During normal operation of the oscilloscope, the output of the ADC is used as
an address to the Calibration Look-up Table which produces 16-bit data for the
oscilloscope to process and display. The output of the ADC is a signed 8-bit
integer and the output of the Calibration Look-up Tableis a signed 16-bit integer.
If the amplitude of the input waveform is larger than the maximum dc reference
level of the ADC, the ADC will output the maximum 8-bit value that it can (255).
This condition is called ADC clipping. When the 255 digital code is applied to
the Calibration Look-up Table, a 16-bit value, such as 26,188 could be produced
which represents an ADC clipped value. This number will vary from one
oscilloscope to the next.

25-30

Waveform Commands
DATA

WORD and BYTE When downloading the waveform data in WORD format, the 16-bit signed
Data Formats integer value for each data point is sent in two consecutive 8-bit bytes over
GPIB. Whether the least significant byte (LSB) or the most significant byte
(MSB) is sent first depends on the byte order determined by the BYTeorder
command.

Before downloading the waveform data in BYTE format, each 16-bit signed
integer is converted into an 8-bit signed integer. Because there are more
possible 16-bit integers than there are 8-bit integers, a range of 16-bit integers
is converted into single 8-bit numbers. For example, the following 16-bit
numbers are all converted into one 8-bit number.

16-bit integers

26,200 .

96.188 8-bit integer
’ 104

26,160

26,100

This conversion is what makes the BYTE download format less accurate than
the WORD format.

26-31

Waveform Commands
FORMat

Command

ASCii

FORMat

:WAVeform: FORMat {ASCii | BYTE | LONG | WORD}

The :WAVeform:FORMat command sets the data transmission mode for
waveform data output. This command controls how the data is formatted when
it is sent from the oscilloscope, and pertains to all waveforms. The default
format is ASCii.

Selecting a Format

Type Advantages Disadvantages

ASCii Datais returned as voltage values and does Very slow data download rate.
notneed to be converted and is as accurate

as WORD format.
BYTE Data download rate is twice as fast as the Dataislessaccurate thanthe WORD format.
WORD format.
WORD Data is the most accurate. Data download rate takes twice as long as
the BYTE format
LONG This format is only used to download Cannot be used to download WMEMory,
HISTogram sources. FUNCtion, or CHANnel sources.

ASCii-formatted data consists of waveform data values converted to the
currently selected units, such as volts, and are output as a string of ASCII
characters with each value separated from the next value by a comma. The
values are formatted in floating point engineering notation. For example:

8.0836E+2,8.1090E+2,...,-3.1245E-3

The ASCii format does not send out the header information indicating the
number of bytes being downloaded.

In ASCii format:

e The value “99.999E+36” represents a hole value. A hole can occur when
you are using the equivalent time sampling mode when during a single
acquisition not all of the acquisition memory locations contain sampled
waveform data. It can take several acquisitions in the equivalent time
sampling mode to fill all of the memory locations.

256-32

BYTE

WORD

LONG

Example

Waveform Commands
FORMat

BYTE-formatted data is formatted as signed 8-bit integers. If you use BASIC,
you need to create a function to convert these signed bits to signed integers.
In BYTE format:

e The value 125 represents a hole value. A hole can occur when you are
using the equivalent time sampling mode when during a single acquisition
not all of the acquisition memory locations contain sampled waveform
data. It can take several acquisitions in the equivalent time sampling mode
to fill all of the memory locations.

The waveform data values are converted from 16-bit integers to 8-bit integers
before being downloaded to the computer. For more information see
“Understanding WORD and BYTE Formats” on page 25-28.

WORD-formatted data is transferred as signed 16-bit integers in two bytes. If
:WAVeform:BYTeorder is set to MSBFirst, the most significant byte of each word
is sent first. If the BYTeorder is LSBFirst, the least significant byte of each word
is sent first. In WORD format:

e The value 31232 represents a hole level. A hole can occur when you are
using the equivalent time sampling mode when during a single acquisition
not all of the acquisition memory locations contain sampled waveform
data. It can take several acquisitionsin the equivalent time sampling mode
to fill all of the memory locations.

For more information see “Understanding WORD and BYTE Formats” on page
25-28.

LONG-formatted data can only be used when the SOURCce is set to HISTogram
and is transferred as signed 32-bit integers in four bytes. If
:WAVeform:BYTeorder is set to MSBFirst, the most significant byte of each long
word is sent first. If the BYTeorder is LSBFirst, the least significant byte of each
long word is sent first. In LONG format:

e The value 2046820352 represents a hole level. A hole can occur when you
are using the equivalent time sampling mode when during a single
acquisition not all of the acquisition memory locations contain sampled
waveform data. It can take several acquisitions in the equivalent time
sampling mode to fill all of the memory locations.

This example selects the WORD format for waveform data transmission.

10 OUTPUT 707;" :WAVEFORM:FORMAT WORD"
20 END

256-33

Query

Returned Format

Example

Waveform Commands
FORMat

:WAVeform: FORMat?

The :WAVeform:FORMat? query returns the current output format for
transferring waveform data.

[:WAVeform:FORMat] {ASCii | BYTE | LONG | WORD}<NL>

This example places the current output format for data transmission in the
string variable, Mode$, then prints the contents of the variable to the computer’s

screen.

10 DIM Mode$ [50] !Dimension variable
20 OUTPUT 707;" :WAVEFORM: FORMAT?"
30 ENTER 707;Mode$

40 PRINT Mode$

50 END

256-34

Waveform Commands
POINts?

Query

Returned Format

<pointss>

Example

See Also

POINts?

:WAVeform: POINts?

The :WAVeform:POINts? query returns the points value in the current waveform
preamble. The points value is the number of time buckets contained in the
waveform selected with the :WAVeform:SOURce command.

[:WAVeform:POINts] <points><NL>

Aninteger. Valuesrange from 1 to 262144. See the :ACQuire:POINts command
for more information.

This example places the current acquisition length in the numeric variable,
Length, then prints the contents of the variable to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;" :WAVEFORM:POINTS?"

30 ENTER 707;Length

40 PRINT Length

50 END

Turn Headers Off

When you are receiving numeric data into numeric variables, you should turn the
headers off. Otherwise, the headers may cause misinterpretation of returned data.

The :ACQuire:POINts command in the ACQuire Commands chapter.

256-35

Waveform Commands

PREamble
PREamble
Command :WAVeform: PREamble <preamble datax>
The :WAVeform:PREamble command sends a waveform preamble to the
previously selected waveform memory in the oscilloscope. The preamble
contains the scaling and other values used to describe the data. The waveform
memory is specified with the :WAVeform:SOURce command. Only waveform
memories may have waveform data sent to them.
The preamble can be used to translate raw data into time and voltage values.
The following lists the elements in the preamble.
<preamble <format>, <type>, <points>, <count> ,
data> <X increment>, <X origin>, < X reference>,

<Y increment>, <Y origin>, <Y reference>,
<coupling>,
<X display range>, <X display origin>,
<Y display range>, <Y display origin>,
<date>, <time>,
<frame model #>,
<acquisition mode>, <completion>,
<X units>, <Y units>,
<max bandwidth limit>, <min bandwidth limit>

<date> A string containing the date in the format DD MMM YYYY, where DD is the day,
1 to 31; MMM is the month; and YYYY is the year.

<time> A string containing the time in the format HH:MM:SS:TT, where HH is the hour,
0 to 23, MM is the minute, 0 to 59, SS is the second, 0 to 59, and TT is the
hundreds of seconds, 0 to 99.

<frame A string containing the model number and serial number of the frame in the
model #> format MODEL#:SERIAL#.
<formats> 0 for ASCii format.

1 for BYTE format.
2 for WORD format.
3 for LONG format.

25-36

<type>

<acquisition
_mode>

<coupling>

<x_units>
<y unitss>

1 for RAW type.

2 for AVERage type.

3 VHIStogram.

4 HHIStogram.

5 for VERSUS type.

6 for INTERPOLATE type.
7 not used.

8 for CGRade type.

9 not used.

10 PDETect.

0 for RTIMe mode.
1 for ETIMe mode.
2 not used.
3 PDETect.

0 for AC coupling,.

1 for DC coupling.

2 for DCFIFTY coupling.

3 for LFREJECT coupling,

0 for UNKNOWN units.
1 for VOLT units.

2 for SECOND units.

3 for CONSTANT units.
4 for AMP units.

5 for DECIBEL units.

Waveform Commands
PREamble

See Table 25-1 for descriptions of all the waveform preamble elements.

HP BASIC Image Specifiers

#is an HP BASIC image specifier that suppresses the automatic output of the EOL
sequence following the last output item.

K'is an HP BASIC image specifier that outputs a number or string in standard form
with no leading or trailing blanks.

25-37

Query

Returned Format

Example

Waveform Commands
PREamble

:WAVeform: PREamble?

The :WAVeform:PREamble? query outputs a waveform preamble to the
computer from the waveform source, which can be a waveform memory or
channel buffer.

[:WAVeform: PREamble] <preamble data><NL>

This example outputs the current waveform preamble for the selected source
to the string variable, Preamble$.

10 DIM Preamble$[250] !Dimension variable

20 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
30 OUTPUT 707;" :WAVEFORM: PREAMBLE?"

40 ENTER 707 USING "-K";Preamble$

50 END

Placing the Block in a String

-K'is an HP BASIC image specifier that places the block data in a string, including
carriage returns and line feeds, until EOl is true, or when the dimensioned length of
the string is reached.

256-38

Waveform Commands
PREamble

Table 25-1 Waveform Preamble Elements

Element Description

Format The format value describes the data transmission mode for waveform data
output. This command controls how the data is formatted when it is sent
from the oscilloscope. (See :WAVeform:FORMat.)

Type This value describes how the waveform was acquired.

(See also the :WAVeform:TYPE? query.)

Points The number of data points or data pairs contained in the waveform data.
(See :ACQuire:POINts.)

Count For the AVERAGE waveform type, the count value is the minimum count or
fewest number of hits for all time buckets. This value may be less than or
equal to the value requested with the :ACQuire:AVERage:COUNt command.
For NORMAL, RAW, INTERPOLATE, and VERSUS waveform types, this value
is0or 1. The countvalue is ignored when itis sentto the oscilloscope in the
preamble. (See :WAVeform:TYPE and :ACQuire:COUNLt.)

X Increment The Xincrement is the duration between data points on the X axis.

For time domain waveforms, this is the time between points.
(See the :WAVeform:XINCrement? query.)
X Origin The X origin is the X-axis value of the first data point in the data record.

X Reference

Y Increment

Y Origin

Y Reference

Coupling

X Display Range

X Display Origin

For time domain waveforms, it is the time of the first point. This value is
treated as a double precision 64-bit floating point number.
(See the :WAVeform:X0ORigin? query.)

The X reference is the data point associated with the X origin. It is at this
data point that the X origin is defined. In this oscilloscope, the value is
always zero. (See the :WAVeform:XREFerence? query.)

The Yincrement is the duration between Y-axis levels. For voltage
waveforms, it is the voltage corresponding to one level.
(See the :WAVeform:YINCrement? query.)

The Y origin is the Y-axis value atlevel zero. For voltage waveforms, itis the
voltage at level zero. (See the :WAVeform:YORigin? query.)

The Y reference is the level associated with the Y origin. Itis at this level
thatthe Y origin is defined. In this oscilloscope, this value is always zero.
(See the :WAVeform:YREFerence? query.)

The input coupling of the waveform. The coupling value is ignored when
sent to the oscilloscope in the preamble. (See the :WAVeform:COUPling?
query.)

The X display range is the X-axis duration of the waveform that s displayed.

For time domain waveforms, it is the duration of time across the display.
(See the :WAVeform:XRANge? query.)

The X display origin is the X-axis value at the left edge of the display.
For time domain waveforms, it is the time at the start of the display.
This value is treated as a double precision 64-bit floating point number.
(See the :WAVeform:XDISplay? query.)

256-39

See Also

Waveform Commands

PREamble

Element
Y Display Range

Y Display Origin

Date
Time
Frame Model #

Acquisition Mode

Description

TheY displayrangeisthe Y-axis duration of the waveform whichis displayed.
For voltage waveforms, it is the amount of voltage across the display. (See
the :WAVeform:YRANge? query.)

The Y-display origin is the Y-axis value at the center of the display.
For voltage waveforms, it is the voltage at the center of the display.
(See the :WAVeform:YDISplay? query.)

The date that the waveform was acquired or created.
The time that the waveform was acquired or created.

The model number of the frame that acquired or created this waveform.
The frame model number is ignored when itis sent to an oscilloscope in the
preamble.

The acquisition sampling mode of the waveform. (See :ACQuire:MODE.)

Complete The complete value is the percent of time buckets that are complete. The
completevalue isignored whenitis sentto the oscilloscope inthe preamble.
(See the :WAVeform:COMPlete? query.)

X Units The X-axis units of the waveform. (See the :WAVeform:XUNits? query.)

Y Units The Y-axis units of the waveform. (See the :WAVeform:YUNits? query.)

Band Pass The band pass consists of two values that are an estimation of the maximum
and minimum bandwidth limits of the source waveform. The bandwidth limit
is computed as a function of the selected coupling and filter mode.
(See the :WAVeform:BANDpass? query.)

:WAVeform:DATA

25-40

Waveform Commands
SOURce

Command

<N>

Example

Query

Returned Format

Example

SOURce

:WAVeform: SOURce {WMEMory<N> | FUNCtion<N> |
CHANnel<N> | HISTogram}

The :WAVeform:SOURce command selects a channel, function, waveform
memory, or histogram as the waveform source.

CHANnel<N> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.

An integer, 1 - 4, for all other Infiniium Oscilloscope models.
FUNCtion<N> and WMEMory<N> are:

Integers, 1 - 4, representing the selected function or waveform memory.

This example selects channel 1 as the waveform source.

10 OUTPUT 707;":WAVEFORM:SOURCE CHANNEL1"
20 END

:WAVeform: SOURce?

The :WAVeform:SOURce? query returns the currently selected waveform
source.

[:WAVeform:SOURce] {WMEMory<N> | FUNCtion<N> | CHANnel<N>
|HISTogram}<NL>

This example places the current selection for the waveform source in the string
variable, Selection$, then prints the contents of the variable to the computer’s
screen.

10 DIM Selection$[50] !Dimension variable
20 OUTPUT 707;" :WAVEFORM: SOURCE?"

30 ENTER 707;Selection$

40 PRINT Selection$

50 END

25-41

Waveform Commands
TYPE?

Query

RAW

INTerpolate

AVERage

VERSus

COLorgrade

HHIStogram

VHIStogram

Returned Format

TYPE?

:WAVeform: TYPE?

The :WAVeform:TYPE? query returns the current acquisition data type for the
currently selected source. The type returned describes how the waveform was
acquired. The waveform type may be RAW, INTerpolate, AVERage,
COLorgrade, HHIStogram, VHISTogram, or VERSus.

RAW data consists of one data point in each time bucket with no interpolation.

In the INTerpolate acquisition type, the last data point in each time bucket is
stored, and additional data points between the acquired data points are filled
by interpolation.

AVERage data consists of the average of the first » hits in a time bucket, where
7 is the value in the count portion of the preamble. Time buckets that have
fewer than 7 hits return the average of the data they contain. If the
:ACQuire:COMPlete parameter is set to 100%, then each time bucket must
contain the number of data hits specified with the :ACQuire:AVERage:COUNt
command.

VERSus data consists of two arrays of data: one containing the X-axis values,
and the other containing the Y-axis values. Versus waveforms can be generated
using the FUNCtion subsystem commands.

The color grade database is transferred using unsigned values in the word
format. The database is transferred as a block of data representing a
two-dimensional array of 256 rows by 451 columns. The database may be
generated using the DISplay:CGRade command.

The datais a horizontal histogram. Histograms are transferred using the LONG
format. They can be generated using the Histogram subsystem commands.

The data is a vertical histogram. Histograms are transferred using the LONG
format. They can be generated using the Histogram subsystem commands.

[:WAVeform:TYPE] {RAW | INTerpolate | AVERage |
VERSus | COLorgrade | HHIStogram | VHIStogram}<NL>

25-42

Example

Waveform Commands
TYPE?

This example places the current acquisition data type in the string variable,
Type$, then prints the contents of the variable to the computer’s screen.

10
20
30
40
50

DIM Type$[50] !Dimension variable
OUTPUT 707;" :WAVEFORM: TYPE?"
ENTER 707;Types

PRINT Types

END

25-43

Waveform Commands
VIEW

Command

Channels

Memories

Functions

Example

VIEW

:WAVeform:VIEW {ALL | MAIN | WINDow}

The :WAVeform:VIEW command selects which view of the waveform is selected
for data and preamble queries. You can set the command to ALL, MAIN, or
WINDow. The view has different meanings depending upon the waveform
source selected. The default setting for this command is ALL.

For channels, you may select ALL, MAIN, or WINDow views. If you select ALL,
all of the data in the waveform record is referenced. If you select MAIN, only
the data in the main time base range is referenced. The first value corresponds
to the first time bucket in the main time base range, and the last value
corresponds to the last time bucket in the main time base range. If WINDow is
selected, only data in the delayed view is referenced. The first value
corresponds to the first time bucket in the delayed view and the last value
corresponds to the last time bucket in the delayed view.

For memories, if you specify ALL, all the data in the waveform record is
referenced. WINDow and MAIN refer to the data contained in the memory time
base range for the particular memory. The first value corresponds to the first
time bucket in the memory time base range, and the last value corresponds to
the last time bucket in the memory time base range.

For functions, ALL, MAIN, and WINDow refer to all of the data in the waveform
record.
Table 25-2 summarizes the parameters for this command for each source.

This example sets up the oscilloscope to view all of the data.

10 OUTPUT 707;" :WAVEFORM:VIEW ALL"
20 END

25-44

Table 25-2

Query

Returned Format

Example

Waveform Commands
VIEW

Waveform View Parameters

Source/Parameter ALL MAIN WINDow
CHANNEL All data Main time base Delayed time base
MEMORY All data Memory time base Memory time base
FUNCTION All data All data All data

:WAVeform:VIEW?

The :WAVeform:VIEW? query returns the currently selected view.

[:WAVeform:VIEW] {ALL | MAIN | WINDow}<NL>

This example returns the current view setting to the string variable, Setting$,
then prints the contents of the variable to the computer’s screen.

10
20
30
40
50

DIM Setting$[50] |IDimension variable
OUTPUT 707;" :WAVEFORM:VIEW?"

ENTER 707;Setting$

PRINT Setting$

END

25-45

Waveform Commands
XDISplay?

Query

Returned Format

XDISplay?

:WAVeform:XDISplay?

The :WAVeform:XDISplay? query returns the X-axis value at the left edge of the
display. For time domain waveforms, it is the time at the start of the display.
For VERSus type waveforms, it is the value at the center of the X-axis of the
display. This value is treated as a double precision 64-bit floating point number.

[:WAVeform:XDISplay] <value><NL>

<value> A real number representing the X-axis value at the left edge of the display.

Example

This example returns the X-axis value at the left edge of the display to the
numeric variable, Value, then prints the contents of the variable to the
computer’s screen.

10
20
30
40
50

OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
OUTPUT 707;" :WAVEFORM: XDISPLAY?"

ENTER 707;Value

PRINT Value

END

25-46

Waveform Commands
XINCrement?

Query

Returned Format

<value>

Example

See Also

XINCrement?

:WAVeform: XINCrement?

The :WAVeform:XINCrement? query returns the duration between consecutive
data points for the currently specified waveform source. For time domain
waveforms, this is the time difference between consecutive data points. For
VERSus type waveforms, this is the duration between levels on the X axis. For
voltage waveforms, this is the voltage corresponding to one level.

[:WAVeform:XINCrement] <value><NL>

A real number representing the duration between data points on the X axis.

This example places the current X-increment value for the currently specified
source in the numeric variable, Value, then prints the contents of the variable
to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off

20 OUTPUT 707;":WAVEFORM:XINCREMENT?"

30 ENTER 707;Value

40 PRINT Value

50 END

You can obtain the X-increment value through the :WAVeform:PREamble?
query.

2b-47

Waveform Commands
XORigin?

Query

Returned Format

<value>

Example

See Also

XORigin?
:WAVeform:XORigin?

The :WAVeform:XORigin? query returns the X-axis value of the first data point
in the datarecord. For time domain waveforms, it is the time of the first point.
For VERSus type waveforms, it is the X-axis value at level zero. For voltage
waveforms, it is the voltage at level zero. The value returned by this query is
treated as a double precision 64-bit floating point number.

[:WAVeform:XORigin] <value><NL>

A real number representing the X-axis value of the first data point in the data
record.

This example places the current X-origin value for the currently specified
source in the numeric variable, Value, then prints the contents of the variable
to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;" :WAVEFORM:XORIGIN?"

30 ENTER 707;Value

40 PRINT Value

50 END

You can obtain the X-origin value through the :WAVeform:PREamble? query.

25-48

Waveform Commands
XRANge?

Query

Returned Format

XRANge?

:WAVeform:XRANge?

The :WAVeform:XRANge? query returns the X-axis duration of the displayed
waveform. For time domain waveforms, it is the duration of the time across the
display. For VERSus type waveforms, it is the duration of the waveform that is
displayed on the X axis.

[:WAVeform:XRANge] <value><NL>

<value> A real number representing the X-axis duration of the displayed waveform.

Example

This example returns the X-axis duration of the displayed waveform to the
numeric variable, Value, then prints the contents of the variable to the
computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;" :WAVEFORM: XRANGE?"

30 ENTER 707;Value

40 PRINT Value

50 END

25-49

Waveform Commands
XREFerence?

XREFerence?

Query :WAVeform:XREFerence?

The :WAVeform:XREFerence? query returns the data point or level associated
with the X-origin data value. It is at this data point or level that the X origin is
defined. In this oscilloscope, the value is always zero.

Returned Format [:WAVeform:XREFerence] O0<NL>

Example This example places the current X-reference value for the currently specified
source in the numeric variable, Value, then prints the contents of the variable
to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;" :WAVEFORM: XREFERENCE?"

30 ENTER 707;Value

40 PRINT Value

50 END

See Also You can obtain the X-reference value through the :WAVeform:PREamble? query.

256-50

Waveform Commands
XUNits?

Query

Returned Format

Example

XUNits?

:WAVeform:XUNits?

The :WAVeform:XUNits? query returns the X-axis units of the currently selected
waveform source. The currently selected source may be a channel, function,
or waveform memory.

[:WAVeform:XUNits] {UNKNown | VOLT | SECond | CONStant | AMP
| DECibels | HERTz | WATT}<NL>

This example returns the X-axis units of the currently selected waveform source
to the string variable, Unit$, then prints the contents of the variable to the
computer’s screen.

10
20
30
40
50

DIM Unit$[50] !Dimension variable
OUTPUT 707;" :WAVEFORM:XUNITS?"
ENTER 707;Unit$

PRINT Unit$

END

25-51

Waveform Commands
YDISplay?

YDISplay?

Query :WAVeform:YDISplay?

The :WAVeform:YDISplay? query returns the Y-axis value at the center of the
display. For voltage waveforms, it is the voltage at the center of the display.

Returned Format [:WAVeform:YDISplay] <values><NL>

<value> A real number representing the Y-axis value at the center of the display.

Example This example returns the current Y-display value to the numeric variable, Value,
then prints the contents of the variable to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;"" :WAVEFORM:YDISPLAY?"

30 ENTER 707;Value

40 PRINT Value

50 END

256-52

Waveform Commands
YINCrement?

Query

Returned Format

<real value>

Example

See Also

YINCrement?

:WAVeform: YINCrement?

The :WAVeform:YINCrement? query returns the y-increment voltage value for
the currently specified source. This voltage value is the voltage difference
between two adjacent waveform data digital codes. Adjacent digital codes are
codes that differ by one least significant bit. For example, the digital codes
24680 and 24681 vary by one least significant bit.

e For BYTE and WORD data, and voltage waveforms, it is the voltage
corresponding to one least significant bit change.

e For ASCii data format, the YINCrement is the full scale voltage range
covered by the A/D converter.

[:WAVeform:YINCrement] <real value><NL>

A real number in exponential format.

This example places the current Y-increment value for the currently specified
source in the numeric variable, Value, then prints the contents of the variable
to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off

20 OUTPUT 707;":WAVEFORM:YINCREMENT?"

30 ENTER 707;Value

40 PRINT Value

50 END

For more information on BYTE and WORD formats see “Understanding WORD
and BYTE Formats” on page 25-28.

You can also obtain the Y-increment value through the :WAVeform:PREamble?
query.

25-53

Waveform Commands
YORigin?

Query

Returned Format

<real value>

Example

See Also

YORigin?
:WAVeform:YORigin?

The :WAVeform:YORigin? query returns the y-origin voltage value for the
currently specified source. The voltage value returned is the voltage value
represented by the waveform data digital code 00000.
e For BYTE and WORD data, and voltage waveforms, it is the voltage at
digital code zero.
e For ASCii data format, the YORigin is the Y-axis value at the center of the
data range. Data range is returned in the Y increment.

[:WAVeform:YORigin] <real value><NL>

A real number in exponential format.

This example places the current Y-origin value in the numeric variable, Center,
then prints the contents of the variable to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off

20 OUTPUT 707;":WAVEFORM:YORIGIN?"

30 ENTER 707;Center

40 PRINT Center

50 END

For more information on BYTE and WORD formats see “Understanding WORD
and BYTE Formats” on page 25-28.

You can obtain the Y-origin value through the :WAVeform:PREamble? query.

256-54

Waveform Commands
YRANge?

Query

Returned Format

YRANge?

:WAVeform: YRANge?

The :WAVeform:YRANge? query returns the Y-axis duration of the displayed
waveform. For voltage waveforms, it is the voltage across the entire display.

[:WAVeform:YRANge] <value><NL>

<value> A real number representing the Y-axis duration of the displayed waveform.

Example

This example returns the current Y-range value to the numeric variable, Value,
then prints the contents of the variable to the computer’s screen.

10
20
30
40
50

OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
OUTPUT 707;" :WAVEFORM: YRANGE?"

ENTER 707;Value

PRINT Value

END

25-65

Waveform Commands
YREFerence?

YREFerence?

Query :WAVeform: YREFerence?

The :WAVeform:YREFerence? query returns the y-reference voltage value for
the currently specified source. It is at this level that the Y origin is defined. In
this oscilloscope, the value is always zero.

Returned Format [:WAVeform:YREFerence] <integer value><NL>

<integer value> Always 0.

Example This example places the current Y-reference value for the currently specified
source in the numeric variable, Value, then prints the contents of the variable
to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;" :WAVEFORM: YREFERENCE?"

30 ENTER 707;Value

40 PRINT Value

50 END

See Also For more information on BYTE and WORD formats see “Understanding WORD
and BYTE Formats” on page 25-28.

You can obtain the Y-reference value through the :WAVeform:PREamble? query.

25-56

Waveform Commands
YUNits?

Query

Returned Format

Example

YUNits?

:WAVeform:YUNits?

The :WAVeform:YUNits? query returns the Y-axis units of the currently selected
waveform source. The currently selected source may be a channel, function,
or waveform memory.

[:WAVeform:YUNits] {UNKNown | VOLT | SECond | CONStant | AMP
| DECibels}<NL>

This example returns the Y-axis units of the currently selected waveform source
to the string variable, Unit$, then prints the contents of the variable to the
computer’s screen.

10
20
30
40
50

DIM Unit$[50] !Dimension variable
OUTPUT 707;" :WAVEFORM:YUNITS?"
ENTER 707;Unit$

PRINT Unit$

END

25-57

25-58

26

Waveform Memory Commands

Waveform Memory Commands

The Waveform Memory Subsystem commands let you save and display
waveforms, memories, and functions. These Waveform Memory
commands and queries are implemented in the Infiniium Oscilloscopes:
e DISPlay

e LFFile

e LOAD

e SAVE

e XOFFset

e XRANge

e YOFFset

e YRANge

<N> in WMEMory<N> Indicates the Waveform Memory Number

In Waveform Memory commands, the <N> in WMEMory<N> represents the
waveform memory number (1-4).

26-2

Waveform Memory Commands
DISPlay

Command

<N>

Example

Query

Returned Format

DISPlay

:WMEMory<N>:DISPlay {{oN|1} | {OFF|0}}

The :WMEMory<N>:DISPlay command enables or disables the viewing of the
selected waveform memory.

The memory number is an integer from 1 to 4.

This example turns on the waveform memory 1 display.

10 OUTPUT 707;":WMEMORY1:DISPLAY ON"
20 END

:WMEMory<N>:DISPlay?

The :-WMEMory<N>:DISPlay? query returns the state of the selected waveform
memory.

[:-WMEMory<N>:DISPlay] {1 | 0}<NL>

26-3

Waveform Memory Commands
LOAD

Command

<N>

<file names>

Examples

Related Commands

LOAD

:WMEMory<N>:LOAD <file name>

:WMEMory<N>:LFFile <file name>

:WMEMory<N>: LOADFROMFILE <file name>

The :WMEMory<N>:LOAD command loads an oscilloscope waveform memory
location with a waveform from a file that has an internal waveform format
(extension .wfm) or a verbose/yvalues waveform format (extension .txt). You
can load the file from either the c: or a: drive. See the examples below.

The oscilloscope assumes that the default path for waveforms is c:\scope\data.
To use a different path, specify the path and file name completely.
The memory number is an integer from 1 to 4.

A quoted string which specifies the file to load, and has either a .wfm or .txt
extension.

This example loads waveform memory 4 with a file that has the internal
waveform format.

10 OUTPUT 707;":WMEMORY4:LOAD ""c:\scope\data\waveform.wfm"""
20 END

This example loads waveform memory 3 with a file that has the internal
waveform format and is stored on the floppy drive.

10 OUTPUT 707;":WMEMORY3:LOAD ""a:\waveform.wfm"""
20 END

:DISK:LOAD, :DISK:STORe
:-WMEMory<N>:LoadFromFile <file_name>

26-4

Waveform Memory Commands
SAVE

Command

<N>

Example

SAVE

:WMEMory<N>:SAVE {CHANnel<N> | WMEMory<N> |
FUNCtion<N>}

The :WMEMory<N>:SAVE command stores the specified channel, waveform
memory, or function to the waveform memory. The channel or function must
be displayed (DISPlay must be set to ON) or an error status is returned. You
can save waveforms to waveform memories regardless of whether the waveform
memory is displayed or not.

CHANnel<N> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<N> and WMEMory<N> are:
Integers, 1 - 4, representing the selected function or waveformm memory.

This example saves channel 1 to waveform memory 4.

10 OUTPUT 707;":WMEMORY4:SAVE chanl"
20 END

26-5

Waveform Memory Commands
XOFFset

Command

<N>

<offset value>

Example

Query

Returned Format

XOFFset

:WMEMory<N>:XOFFset <offset value>

The :WMEMory<N>:XOFFset command sets the x-axis, horizontal position for
the selected waveform memory’s display scale. The position is referenced to
center screen.

The memory number is an integer from 1 to 4.

A real number for the horizontal offset (position) value.

This example sets the X-axis, horizontal position for waveform memory 3 to 0.1
seconds (100 ms).

10 OUTPUT 707;":WMEMORY3:XOFFSET 0.1"
20 END

: WMEMory<N>: XOFFset ?

The :WMEMory<N>:XOFFset? query returns the current X-axis, horizontal
position for the selected waveform memory.

[:WMEMory<N>:XOFFset] <offset value><NL>

26-6

Waveform Memory Commands
XRANge

Command

<N>

XRANge

:WMEMory<N>:XRANge <range value>

The :WMEMory<N>:XRANge command sets the X-axis, horizontal range for the
selected waveform memory’s display scale. The horizontal scale is the
horizontal range divided by 10.

The memory number is an integer from 1 to 4.

<range value> A real number for the horizontal range value.

Example

Query

Returned Format

This example sets the X-axis, horizontal range of waveform memory 2 to
435 microseconds.

10 OUTPUT 707;":WMEMORY2 :XRANGE 435E-6"
20 END

:WMEMory<N>: XRANge?

The :WMEMory<N>:XRANge? query returns the current X-axis, horizontal
range for the selected waveform memory.

[:WMEMory<N>:XRANge] <range value><NL>

26-7

Waveform Memory Commands
YOFFset

Command

<N>

<offset value>

Example

Query

Returned Format

YOFFset

:WMEMory<N>:YOFFset <offset value>

The :-WMEMory<N>:YOFFset command sets the Y-axis (vertical axis) offset for
the selected waveform memory.

The memory number is an integer from 1 to 4.

A real number for the vertical offset value.

This example sets the Y-axis (vertical) offset of waveform memory 2 to 0.2V.

10 OUTPUT 707;":WMEMORY2:YOFFSET 0.2"
20 END

:WMEMory<N>: YOFFset?

The :WMEMory<N>:YOFFset? query returns the current Y-axis (vertical) offset
for the selected waveform memory.

[:WMEMory<N>:YOFFset] <offset value><NL>

26-8

Waveform Memory Commands
YRANge

Command

<N>

<range_value>

Example

Query

Returned Format

YRANge

:WMEMory<N>:YRANge <range value>

The :WMEMory<N>:YRANge command sets the Y-axis, vertical range for the
selected memory. The vertical scale is the vertical range divided by 8.

The memory number is an integer from 1 to 4.

A real number for the vertical range value.

This example sets the Y-axis (vertical) range of waveform memory 3 to 0.2 volts.

10 OUTPUT 707;":WMEMORY3:YRANGE 0.2"
20 END

:WMEMory<N>:YRANge?

The :WMEMory<N>:YRANge? query returns the Y-axis, vertical range for the
selected memory.

[:WMEMory<N>:YRANge] <range value><NL>

26-9

26-10

27

Infiniium and HP 547XX Digitizing
Oscilloscopes Language Compatibility

Infiniium and HP 547XX Digitizing
Oscilloscopes Language Compatibility

When developing new programs, you should use the Infiniium

(HP 548XX) command language, as documented in the chapters in this
manual. When using existing programs (that you do not want to modify)
with Infiniium Oscilloscopes, the HP 547XX and HP 545XX command
sets are provided as built-in languages. See “Some HP 547XX
Commands are New” on the next page.

e This chapter describes language compatibility with HP 547XX
oscilloscopes.

e Chapter 26 describes language compatibility with HP 545XX
oscilloscopes.

The built-in command languages make your use of the Infiniium
Oscilloscopes compatible with previously designed oscilloscopes — ones
that you may already be used to operating. Being able to choose another
command language is beneficial if you want to use existing programs on
Infiniium Oscilloscopes without having to modify your programs.

The built-in HP 547XX and HP 545XX languages can also be helpful if
you are familiar with one or both of them, and want to continue using
that language on Infiniium Oscilloscopes.

Selecting a Command Language

Use the :SYSTem:LANGuage command to select either the HP 548XX,
HP 547XX, or HP 545XX command language built into the Infiniium
Oscilloscopes. The HP 548XX command language is the default.

Command Language Tables

There are some differences between the built-in command languages.
The tables in this chapter show these differences (if any exist), and the
relationships between the command languages for HP 548XX Infiniium
Oscilloscopes and HP 547XX Digitizing Oscilloscopes. If a command is
supported only on the 54846A, 54845A, and 54835A, it is noted.

27-2

Infiniium and HP 547XX Digitizing Oscilloscopes Language Compatibility

Some HP 547XX Commands are New

Some HP 547XX commands are new. That is, they were not in the
original command language, but they have been added to the HP 547XX
language support for HP 548XX Oscilloscopes.

What the * Symbol Means

In the command tables, the “ * ” symbol after a command indicates the
command is newly supported.

See Also See Chapter 26 for language compatibility between Infiniium and
HP 545XX Oscilloscopes.

27-3

Infiniium and HP 547XX Digitizing Oscilloscopes Language Compatibility
To select a command language

To select a command language

In Infiniium Oscilloscopes, you can select one of the supported command
languages either over the GPIB or from the oscilloscope front panel.

To select one of the command languages over the GPIB, enter the
appropriate command for the oscilloscope type you are using:
:SYSTem:LANGuage HP547XX
:SYSTem:LANGuage HP548XX
(This chapter describes the HP 547XX and HP 548XX command language
compatibility.)
:SYSTem:LANGuage HP545XX
(Use the information in Chapter 26 for the HP 545XX Oscilloscopes
command language compatibility.)

To select one of the command languages from the oscilloscope front
panel, select Utilities, Remote Interface, and Select Language. Then
choose HP545XX, HP547XX, or HP548XX.

27-4

Infiniium and HP 547XX Digitizing Oscilloscopes Language Compatibility
Acquisition System Command Language Compatibility

Acquisition System Command Language Compatibility

HP 548XX and HP 547XX ACQuire Commands

HP 548XX HP 547XX
:ACQuire:AVERage Note
:ACQuire:AVERage:COUNTt Note
:ACQuire:BWLimit :ACQuire:BWLimit
:ACQuire:COMPlete :ACQuire:COMPlete
:ACQuire:COMPlete:STATe :ACQuire:COMPlete:STATe
:ACQuire:CONFig (54846/45A/35A only) :ACQuire:CONFig *
:ACQuire:COUNt :ACQuire:COUNt
:ACQuire:INTerpolate :ACQuire:INTerpolate
:ACQuire:MODE :ACQuire:MODE
:ACQuire:POINts :ACQuire:POINts
:ACQuire:SRATe :ACQuire:SRATe
Note :ACQuire:TYPE

Note: Command not supported on this oscilloscope.

27-5

Infiniium and HP 547XX Digitizing Oscilloscopes Language Compatibility
Calibration Command Language Compatibility

Calibration Command Language Compatibility

HP 548XX and HP 547XX CALibrate Commands

HP 548XX HP 547XX

Note :CALibrate:BEST:CANCel
Note :CALibrate:BEST:CONTinue
Note :CALibrate:BEST:-DATA

Note :CALibrate:BEST:STARt

Note :CALibrate:BEST:STATus?
:CALibrate:CANCel Note

:CALibrate:CONTinue Note

Note :CALibrate:FRAMe:CANCel
Note :CALibrate:FRAMe:CONTinue
Note :CALibrate:FRAMe:DATA
Note :CALibrate:FRAMe:DONE?
Note :CALibrate:FRAMe:LABel
Note :CALibrate:FRAMe:STARt
Note :CALibrate:FRAMe:MEMory?
:CALibrate:MPRotect Note

:CALibrate:OUTPut :CALibrate:OUTPut

Note :CALibrate:PLUGIn: TIME?
Note :CALibrate:PLUGin:CANCel
Note :CALibrate:PLUGIin:CONTinue
Note :CALibrate:PLUGIn:DONE?
Note :CALibrate:PLUGin:MEMory?
Note :CALibrate:PLUGIn:STARt
Note :CALibrate:PLUGIn: TIME?
:CALibrate:SDONe? Note

:CALibrate:SKEW :CALibrate:SKEW
:CALibrate:STARt Note

:CALibrate:STATus? :CALibrate:STATus?

Note: Command not supported on this oscilloscope.

27-6

Infiniium and HP 547XX Digitizing Oscilloscopes Language Compatibility

Channel Command Language Compatibility

Channel Command Language Compatibility

HP 548XX and HP 547XX CHANnel Commands

HP 548XX HP 547XX
:CHANnel<N>:BWLimit :CHANnel<N>:BWLimit
:CHANnel<N>:DISPlay :CHANnel<N>:DISPlay
:CHANnel<N>:ECL :CHANnel<N>:ECL *
:CHANnel<N>:INPut :CHANnel<N>:INPut
:CHANnel<N>:OFFSet :CHANnel<N>:OFFSet
:CHANnel<N>:PROBe :CHANnel<N>:PROBe
Note :PROBe:INPut

:CHANnel<N>:PROBe:EGAin

:CHANnel<N>:PROBe:EGAin *

:CHANnel<N>:PROBe:EOFFset

:CHANnel<N>:PROBe:EOFFset *

:CHANnel<N>:PROBe:SKEW

:CHANnel<N>:PROBe:SKEW *

:CHANnel<N>:PROTection?

:CHANnel<N>:PROTection? *

(54846/45A/35A only) (54846A/45A/35A only)
:CHANnel<N>:PROTection:CLEar :CHANnel<N>:PROTection:CLEar *
(54846A/45A/35A only) (54846A/45A/35A only)
:CHANnel<N>:RANGe :CHANnel<N>:RANGe

Note :CHANnel<N>:SCALe
:CHANnel<N>:TTL :CHANnel<N>:TTL *

:CHANnel<N>:UNITs

:CHANnel<N>:UNITs

Note: Command not supported on this oscilloscope.

27-7

Infiniium and HP 547XX Digitizing Oscilloscopes Language Compatibility

Disk Command Language Compatibility

Disk Command Language Compatibility

HP 548XX and HP 547XX DISK Commands

HP 548XX HP 547XX
:DISK:CDIRectory :DISK:CDIRectory *
:DISK:DELete :DISK:DELete
:DISK:DIRectory? :DISK:DIRectory?
:DISK:GetFILe? :DISK:GetFILe? *
:DISK:LOAD :DISK:LOAD
:DISK:MDIRectory :DISK:MDIRectory *
:DISK:PWD? :DISK:PWD7?7 *
:DISK:STORe :DISK:STORe

27-8

Infiniium and HP 547XX Digitizing Oscilloscopes Language Compatibility
Display Command Language Compatibility

Display Command Language Compatibility

HP 548XX and HP 547XX DISPlay Commands

HP 548XX

HP 547XX

:DISPlay:COLumn

:DISPlay:COLumn

:DISPlay:CONNect

:DISPIay:CONNect *

:DISPlay:DATA? :DISPlay:DATA
:DISPIay:DCOLor :DISPlay:DCOLor
Note :DISPlay:DWAVetform

:DISPlay:GRATicule

:DISPlay:GRATicule

:DISPlay:GRATicule:INTensity

:DISPlay:GRATicule:INTensity *

:DISPlay:LAYout:MBAR

:DISPlay:LAYout:MBAR *

:DISPlay:LAYout:MRESults

:DISPlay:LAYout:MRESults *

:DISPlay:LINE

:DISPlay:LINE

:DISPIay:PERSistence

:DISPlay:PERSistence

:DISPIay:PERSistence:TIME

:DISPlay:PERSistence: TIME

:DISPlay:ROW

:DISPlay:ROW

:DISPlay:SCOLor

:DISPIay:SCOLor

:DISPlay:SSAVer

:DISPlay:SSAVer *

:DISPIay:SSAVer:AAFTer

:DISPlay:SSAVer:AAFTer *

:DISPIay:STRing

:DISPlay:STRing

:DISPlay: TEXT

:DISPlay: TEXT

Note: Command not supported on this oscilloscope.

27-9

Infiniium and HP 547XX Digitizing Oscilloscopes Language Compatibility
External Command Language Compatibility

External Command Language Compatibility

HP 548XX and HP 547XX EXTernal Commands

HP 548XX

HP 547XX

:EXTernal:BWLimit

:EXTernal:BWLimit *

:EXTernal:INPut

:EXTernal:INPut *

:EXTernal:PROBe

:EXTernal:PROBe *

:EXTernal:PROBe:EGAin

:EXTernal:PROBe:EGAin *

:EXTernal:PROBe:EOFFset

:EXTernal:PROBe:EOFFset *

:EXTernal:PROBe:SKEW

:EXTernal:PROBe:SKEW *

:EXTernal:RANGe

:EXTernal:RANGe *

:EXTernal:UNITs

:EXTernal:UNITs *

27-10

Infiniium and HP 547XX Digitizing Oscilloscopes Language Compatibility
FFT Command Language Compatibility

FFT Command Language Compatibility

Note: For HP 547XX Oscilloscopes, FFT is now FUNCtions.
This subsystem is not implemented for HP 548XX Oscillscopes.

HP 547XX FFT Commands

HP 548XX HP 547XX

Nofe Note: FFT is now FUNCtion3
Note :FFT:DISPlay

Note :FFT:FREQuency

Note :FFT:OFFSet

Note :FFT:RANGe

Note :FFT:SOURCce

Note :FFT:SPAN

Note :FFT:WINDow

Note: Command not supported on this oscilloscope.

27-11

Infiniium and HP 547XX Digitizing Oscilloscopes Language Compatibility
Function Command Language Compatibility

Function Command Language Compatibility

HP 548XX and HP 547XX FUNCtion Commands

HP 548XX HP 547XX
:FUNCtion<N>? :FUNCtion<N>7 *
:FUNCtion<N>:ADD :FUNCtion<N>:ADD
:FUNCtion<N>:DIFF :FUNCtion<N>:DIFF
:FUNCtion<N>:DISPlay :FUNCtion<N>:DISPIay
:FUNCtion<N>:DIVide :FUNCtion<N>:DIVide

:FUNCtion<N>:FFT:FREQuency

:FUNCtion<N>:FFT:FREQuency

:FUNCtion<N>:FFT:RESolution?

:FUNCtion<N>:FFT:RESolution

Note

:FUNCtion<N>:FFT:SPAN

:FUNCtion<N>:FFT:-WINDow

:FUNCtion<N>:FFT:-WINDow

:FUNCtion<N>:FFTMagnitude

:FUNCtion<N>:FFTMagnitude

:FUNCtion<N>:HORizontal

:FUNCtion<N>:HORizontal

:FUNCtion<N>:HORizontal:POSition

:FUNCtion<N>:HORizontal:POSition

:FUNCtion<N>:HORizontal:RANGe

:FUNCtion<N>:HORizontal: RANGe

:FUNCtion<N>:INTegrate

:FUNCtion<N>:INTegrate

:FUNCtion<N>:INVert :FUNCtion<N>:INVert
:FUNCtion<N>:MAGNify :FUNCtion<N>:MAGNify
:FUNCtion<N>:MAXimum :FUNCtion<N>:MAXimum
:FUNCtion<N>:MINimum :FUNCtion<N>:MINimum
:FUNCtion<N>:MULTiply :FUNCtion<N>:MULTiply
:FUNCtion<N>:OFFSet :FUNCtion<N>:OFFSet
Note :FUNCtion<N>:ONLY
:FUNCtion<N>:RANGe :FUNCtion<N>:RANGe
:FUNCtion<N>:SUBTract :FUNCtion<N>:SUBTract
:FUNCtion<N>:VERSus :FUNCtion<N>:VERSus

:FUNCtion<N>:VERTical

:FUNCtion<N>:VERTical

:FUNCtion<N>:VERTical:OFFSet

:FUNCtion<N>:VERTical:OFFSet

:FUNCtion<N>:VERTical:RANGe

:FUNCtion<N>:VERTical: RANGe

Note: Command not supported on this oscilloscope.

27-12

Infiniium and HP 547XX Digitizing Oscilloscopes Language Compatibility
Hardcopy Command Language Compatibility

Hardcopy Command Language Compatibility

HP 548XX and HP 547XX HARDcopy Commands

HP 548XX

HP 547XX

:HARDcopy:AREA

:HARDcopy:AREA

:HARDcopy:DPRinter

:HARDcopy:DPRinter *

:HARDcopy:FACTors

:HARDcopy:FACTors

:HARDcopy:IMAGe

:HARDcopy:IMAGe *

:HARDcopy:PRINters?

:HARDcopy:PRINters? *

27-13

Infiniium and HP 547XX Digitizing Oscilloscopes Language Compatibility
Limit Test Command Language Compatibility

Limit Test Command Language Compatibility

Limit TESt commands do not apply to HP 548XX Oscilloscopes.

27-14

Infiniium and HP 547XX Digiti

zing Oscilloscopes Language Compatibility
Marker Command Language Compatibility

Marker Command Language Compatibility

HP 548XX and HP 547XX MARKer Commands
HP 548XX HP 547XX
:MARKer:CURSor? :MARKer:CURSor?
:MARKer:MEASurement:READout :MARKer:MEASurement:READout
:MARKer:-MODE :MARKer:-MODE
:MARKer:TDELta? :MARKer: TDELta?
:MARKer: TSTArt :MARKer: TSTArt
:MARKer:TSTOp :MARKer:TSTOp
:MARKer:VDELta? :MARKer:VDELta?
:MARKer:VSTATrt :MARKer:VSTATrt
:MARKer:VSTOp :MARKer:VSTOp
:MARKer:XTPosition :MARKer:XTPosition
:MARKer:XTY Isource :MARKer:X1Y Isource
:-MARKer:X2Position :MARKer:X2Position
:-MARKer:X2Y2Zsource :MARKer:X2Y?2Z2source
:MARKer:XDELta? :MARKer:XDELta?
:MARKer:YTPosition :MARKer:YTPosition
:MARKer:Y2Position :MARKer:Y2Position
:MARKer:YDELta? :MARKer:YDELta?

Sources for MARKer Commands

Sources for the MARKer commands can be CHANnel<N>, FUNCtion<N>, or

WMEMory<N>.

<N> CHANnel<N> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<N> and WMEMory<N> are:

Integers, 1 - 4, representing the selected function or waveform memory.

27-15

Infiniium and HP 547XX Digitizing Oscilloscopes Language Compatibility
Measure Command Language Compatibility

Measure Command Language Compatibility

HP 548XX and HP 547XX MEASure Commands

HP 548XX HP 547XX

:MEASure:ALL? :MEASure:ALL7 *
:MEASure:CLEar :MEASure:CLEar ¥
:MEASure:DEFine :MEASure:DEFine
:MEASure:DELTatime :MEASure:DELTatime
:MEASure:DUTYcycleIDUT :MEASure:DUT YcycleIDUT
:MEASure:FALLtime :MEASure:FALLtime
:MEASure:FFT:DFRequency :MEASure:FFT:DFRequency
:MEASure:FFT:DMAGnitude :MEASure:FFT:DMAGnitude
:MEASure:FFT:FREQuency :MEASure:FFT:FREQuency
:MEASure:FFT:-MAGN:itude :MEASure:FFT:MAGN:itude
:MEASure:FFT:PEAKT :MEASure:FFT:PEAKI
:MEASure:FFT:PEAK?2 :MEASure:FFT:PEAK?2
:MEASure:FFT-THReshold :MEASure:FFT:THReshold
:MEASure:FREQuency :MEASure:FREQuency
:MEASure:NWIDth :MEASure:NWIDth

:MEASure:OVERSshoot

:MEASure:OVERSshoot

:MEASure:PERiod

:MEASure:PERiod

:MEASure:PREShoot :MEASure:PREShoot
:MEASure:PWIDth :MEASure:PWIDth
:MEASure:RESults? :MEASure:RESults?
:MEASure:RISetime :MEASure:RISetime

:MEASure:SCRatch

:MEASure:SCRatch

:MEASure:SENDvalid

:MEASure:SENDvalid

:MEASure:SOURce

:MEASure:SOURCce

:-MEASure:STATistics

:MEASure:STATistics

:MEASure:TEDGe :MEASure:TEDGe
:MEASure: TMAX :MEASure: TMAX
:-MEASure: TMIN :MEASure: TMIN
:MEASure: TVOLt :MEASure:TVOLt
:MEASure: VAMPIitude :MEASure: VAMPIitude

:MEASure: VAVerage

:MEASure:VAVerage

:MEASure:VBASe

:MEASure:VBASe

:MEASure: VLOWer

:MEASure:VLOWer

:-MEASure:VMAX

:MEASure:VMAX

:MEASure:VMIDdIe

:MEASure:VMIDdIe

:MEASure:VMIN

:MEASure:VMIN

:-MEASure: VPP

:MEASure: VPP

:MEASure:VRMS

:MEASure:VRMS

:MEASure:VTIMe

:MEASure:VTIMe

:MEASure:VTOP

:MEASure:VTOP

:MEASure:VUPPer

:MEASure:VUPPer[VUP

27-16

Infiniium and HP 547XX Digitizing Oscilloscopes Language Compatibility
Multiple Memory Command Language Compatibility

Multiple Memory Command Language Compatibility

Multiple MEMory commands do not apply to HP 548XX or HP 547XX
Oscilloscopes.

27-17

Infiniium and HP 547XX Digitizing Oscilloscopes Language Compatibility
Memory Test Command Language Compatibility

Memory Test Command Language Compatibility

Memory TESt commands do not apply to HP 548XX Oscilloscopes.

27-18

Infiniium and HP 547XX Digitizing Oscilloscopes Language Compatibility
Pixel Memory Command Language Compatibility

Pixel Memory Command Language Compatibility

Pixel MEMory commands do not apply to HP 548XX or HP 547XX
Oscilloscopes.

27-19

Infiniium and HP 547XX Digitizing Oscilloscopes Language Compatibility
Self-Test Command Language Compatibility

Self-Test Command Language Compatibility

HP 548XX and HP 547XX SELFtest Commands

HP 548XX HP 547XX
:SELFtest:ASET :SELFtest:ASET *
:SELFtest:SCOPETEST :SELFtest:SCOPETEST *

27-20

Infiniium and HP 547XX Digitizing Oscilloscopes Language Compatibility
Sequential Command Language Compatibility

Sequential Command Language Compatibility

SEQuential commands do not apply to HP 548XX or HP 547XX Oscilloscopes.

27-21

Infiniium and HP 547XX Digitizing Oscilloscopes Language Compatibility
System Command Language Compatibility

System Command Language Compatibility

HP 548XX and HP 547XX SYSTem Commands

HP 548XX HP 547XX
SYSTem:DATE SYSTem:DATE
SYSTem:DEBug :SYSTem:DEBug *
:SYSTem:DSP :SYSTem:DSP
:SYSTem:ERRor? :SYSTem:ERRor?

:SYSTem:HEADer

:SYSTem:HEADer

:SYSTem:HELP:HEADers?

:SYSTem:HELP:HEADers? *

:SYSTem:HPIB:ADDRess?

:SYSTem:HPIB:ADDRess? *

SYSTem:LANGuage

:SYSTem:LANGuage

:SYSTem:LONGform

:SYSTem:LONGform

:SYSTem:SETup

:SYSTem:SETup

SYSTem: TIME

SYSTem: TIME

27-22

Infiniium and HP 547XX Digitizing Oscilloscopes Language Compatibility
Time Base Command Language Compatibility

Time Base Command Language Compatibility

HP 548XX and HP 547XX TIMebase Commands

HP 548XX HP 547XX
:TIMebase:DELay ‘TIMebase:DELay
‘TIMebase:POSition ‘TIMebase:POSition
‘TIMebase:RANGe ‘TIMebase:RANGe
‘TIMebase:REFerence ‘TIMebase:REFerence

‘TIMebase:SCALe

‘TIMebase:SCALe

:TIMebase:SETup?

‘TIMebase:SETup? *

‘TIMebase:VIEW

‘TIMebase: VIEW

‘TIMebase: WINDow:DELay

‘TIMebase: WINDow:DELay

‘TIMebase: WINDow:POSition

‘TIMebase: WINDow:POSition

‘TIMebase: WINDow:RANGe

‘TIMebase: WINDow:RANGe

‘TIMebase: WINDow:SCALe

‘TIMebase:WINDow:SCALe

‘TIMebase: WINDow:SOURCce

‘TIMebase: WINDow:SOURCce

27-23

Infiniium and HP 547XX Digitizing Oscilloscopes Language Compatibility
Trigger Command Language Compatibility

Trigger Command Language Compatibility

HP 548XX and HP 547XX TRIGger Commands

HP 548XX HP 547XX
‘TRIGger:ADVanced Note
:DELay:EDLY:ARM:SLOPe Note
:DELay:EDLY:ARM:SOURCce Note
:DELay:EDLY:EVENt:DELay Note
:DELay:EDLY:EVENt:SLOPe Note
:DELay:EDLY:EVENt:SOURce Note
:DELay:EDLY:TRIGger:SLOPe Note
:DELay:EDLY:TRIGger:SOURce Note
:DELay:MODE Note
:DELay:TDLY:ARM:SLOPe Note
:DELay: TDLY:ARM:SOURce Note
:DELay: TDLY:DELay Note
:DELay:TDLY:TRIGger:SLOPe Note
:DELay: TDLY:TRIGger:SOURce Note
:MODE Note
:PATTern:CONDition Note
:PATTern:LOGic Note
:STATe:CLOCKk Note
:STATe:CONDition Note
:STATe:LOGic Note
:STATe:LTYPe Note
:STATe:SLOPe Note
‘TV:MODE Note
‘TV:STV.FIELd Note
TV:STV:LINE Note
TV:STV:SOURce Note
TV:STV:SPOLarity Note
TV:STV:STANdard Note
TV.UDTV:EDGE Note
-TV:UDTV:ENUMber Note
TV:UDTV:PGTHan Note
TV:UDTV:PLTHan Note
:-TV:UDTV:POLarity Note
TV:UDTV:SOURce Note

:VIOLation:MODE

:VIOLation:MODE *

:VIOLation:PWIDth:DIRection

:VIOLation:PWIDth:DIRection *

:VIOLation:PWIDth:POLarity

:VIOLation:PWIDth:POLarity *

:VIOLation:PWIDth:SOURCce

:VIOLation:PWIDth:SOURCce *

:VIOLation:PWIDth:WIDTh

:VIOLation:PWIDth:WIDTh *

:VIOLation:RUNT:DIRection

:VIOLation:RUNT:DIRection *

:VIOLation:RUNT:SOURce:HTHReshold

:VIOLation:RUNT:SOURce:HTHReshold *

:VIOLation:RUNT:SOURCce:LTHReshold

:VIOLation:RUNT:SOURce:LTHReshold *

:VIOLation:RUNT:TQUalified

:VIOLation:RUNT:TQUalified *

:VIOLation:SETup:HOLD:CSOurce:EDGE

:VIOLation:SETup:HOLD:CSOurce:EDGE *

27-24

Infiniium and HP 547XX Digitizing Oscilloscopes Language Compatibility

Trigger Command Language Compatibility

:VIOLation:SETup:HOLD:CSOurce:LE Vel

:VIOLation:SETup:HOLD:CSOurce:LEVel *

:VIOLation:SETup:HOLD:DSOurce:HTHReshold

:VIOLation:SETup:HOLD:DSOurce:HTHReshold *

:VIOLation:SETup:HOLD:DSOurce:LTHReshold

:VIOLation:SETup:HOLD:DSOurce:LTHReshold *

:VIOLation:SETup:HOLD:TIME

:VIOLation:SETup:HOLD:TIME *

:VIOLation:SETup:MODE

:VIOLation:SETup:MODE *

:VIOLation:SETup:SETup:CSOurce:EDGE

:VIOLation:SETup:SETup:CSOurce:EDGE *

:VIOLation:SETup:SETup:CSOurce:LE Vel

:VIOLation:SETup:SETup:CSOurce:LEVel *

:VIOLation:SETup:SETup:DSOurce:HTHReshold

:VIOLation:SETup:SETup:DSOurce:HTHReshold *

:VIOLation:SETup:SETup:DSOurce:LTHReshold

:VIOLation:SETup:SETup:DSOurce:LTHReshold *

:VIOLation:SETup:SETup:TIME

:VIOLation:SETup:SETup:TIME *

:VIOLation:SETup:SHOLd:CSOurce:EDGE

:VIOLation:SETup:SHOLd:CSOurce:EDGE *

:VIOLation:SETup:SHOLd:CSOurce:LE Vel

:VIOLation:SETup:SHOLd:CSOurce:LEVel *

:VIOLation:SETup:SHOLd:DSOurce:HTHReshold

:VIOLation:SETup:SHOLd:DSOurce:HTHReshold ¥

:VIOLation:SETup:SHOLd:DSOurce:LTHReshold

:VIOLation:SETup:SHOLd:DSOurce:LTHReshold *

:VIOLation:SETup:SHOLd:HOLDTIME

:VIOLation:SETup:SHOLd:HOLDTIME *

:VIOLation:SETup:SHOLd:HTIMe

:VIOLation:SETup:SHOLd:HTIMe *

:VIOLation:SETup:SHOLd:SETUPTIME

:VIOLation:SETup:SHOLd:SETUPTIME *

:VIOLation:SETup:SHOLd:STIMe

:VIOLation:SETup:SHOLd:STIMe *

:VIOLation: TRANSsition: GTHan

:VIOLation: TRANSsition:GTHan ¥

:VIOLation:TRANSsition:LTHan

:VIOLation:TRANSsition:LTHan *

:VIOLation: TRANSsition: SOURce:HTHReshold

:VIOLation: TRANsition: SOURce:HTHReshold *

:VIOLation:TRANSsition: SOURCce:LE Vel

:VIOLation:TRANSsition:SOURce:LEVel *

:VIOLation: TRANSsition:SOURce:LTHReshold

:VIOLation: TRANSsition:SOURce:LTHReshold *

:VIOLation: TRANsition: TYPE

:VIOLation: TRANsition: TYPE *

Note :TRIGger:DEVents:ARM:SLOPe
Note ‘TRIGger:DEVents:ARM:SOURCce
Note ‘TRIGger:DEVents:EVENt:DELay
Note ‘TRIGger:DEVents:EVENt:SLOPe
Note "TRIGger:DE Vents:EVENt:SOURce
Note ‘TRIGger:DEVents: TRIGger:SLOPe
Note "TRIGger:DEVents: TRIGger:SOURce
Note ‘TRIGger:DTIMe: ARM:SLOPe
Note "TRIGger:DTIMe:ARM:SOURce
Note ‘TRIGger:DTIMe:DELay

Note ‘TRIGger:DTIMe: TRIGger:SLOPe
Note ‘TRIGger:DTIMe: TRIGger:SOURce
‘TRIGger:EDGE:COUPIling Note

"TRIGger:EDGE:SLOPe Note

TRIGger:EDGE:SOURCce Note

‘TRIGger:GLITch:POLarity "TRIGger:GLITch:POLarity
‘TRIGger:GLITch:SOURce "TRIGger:GLITch:SOURCce
TRIGger:GLITch:WIDTh ‘TRIGger:GLITch:WIDTh
‘TRIGger:HOLDoif ‘TRIGger:HOLDoff
"TRIGger:HTHReshold ‘TRIGger:HTHReshold *
‘TRIGger:HTHReshold:LIMits? ‘TRIGger:HTHReshold:LIMits? *
‘TRIGger:HY STeresis ‘TRIGger:HY STeresis
TRIGger:LEVel "TRIGger:LEVel
TRIGger:LEVel:LIMits? "TRIGger:LEVel:LIMits7 *
"TRIGger:LTHReshold ‘TRIGger:LTHReshold *
TRIGger:MODE "TRIGger:MODE

Note ‘TRIGger:PATTern: CONDition

27-25

Infiniium and HP 547XX Digitizing Oscilloscopes Language Compatibility
Trigger Command Language Compatibility

Note ‘TRIGger:PATTern:LOGic

Note "TRIGger:SLOPe

Note "TRIGger:SOURce

Note ‘TRIGger:STATe:CLOCKk

Note ‘TRIGger:STATe:CONDition
Note ‘TRIGger:STATe:LOGic

Note "TRIGger:STATe:SLOPe

Note ‘TRIGger:STV:FIELd

Note ‘TRIGger:STV:LINE

Note "TRIGger:STV:SOURCce

Note "TRIGger:STV:SPOLarity

Note ‘TRIGger:STV:STANdard
‘TRIGger:SWEep "TRIGger:SWEep

Note ‘TRIGger:TDLY:ARM:SLOPe *
Note ‘TRIGger:TDLY:ARM:SOURce *
Note ‘TRIGger:TDLY:DELay *

Note ‘TRIGger:TDLY:TRIGger:SLOPe *
Note ‘TRIGger:TDLY: TRIGger:SOURce *
Note ‘TRIGger:UDTV:ENUMber

Note ‘TRIGger:UDTV:PGTHan

Note ‘TRIGger:UDTV:PLTHan

Note ‘TRIGger:UDTV:SLOPe

Note ‘TRIGger:UDTV:SOURce

Note ‘TRIGger:UDTV:STATe

Note ‘TRIGger:BWLimit *

Note ‘TRIGger:PROBe *

27-26

Infiniium and HP 547XX Digitizing Oscilloscopes Language Compatibility
Waveform Command Language Compatibility

Waveform Command Language Compatibility

HP 548XX and HP 547XX WAVeform Commands

HP 548XX

HP 547XX

:WAVeform:BANDpass?

:WAVeform:BANDpass?

:WAVetform:BY Teorder

:WAVeform:BY Teorder

:WAVeform:CLIPped?

:WAVeform:CLIPped? *

:WAVeform:COMPlete?

:WAVeform:COMPlete?

:WAVetform: COUNt?

:WAVeform:COUNTt?

:WAVeform:COUPIing?

:WAVeform:COUPIing?

:WAVeform:DATA :WAVeform:DATA
:WAVetform:FORMat :WAVeform:FORMat
:WAVeform:POINts? :WAVeform:POINts?
:WAVeform:PREamble :WAVeform:PREamble
:WAVeform:SOURCce :WAVeform:SOURCce
:WAVeform:TYPE? ‘WAVeform:TYPE?

:WAVeform:VIEW

:WAVeform:VIEW

:WAVetorm: XDISplay?

:WAVetform: XDISplay?

:WAVeform:XINCrement?

:WAVeform:XINCrement?

:WAVeform:XORigin?

:WAVeform:XORigin?

:WAVeform:XRANge?

:WAVeform: XRANge?

:WAVeform:XREFerence?

:WAVeform:XREFerence?

:WAVeform: XUNits?

:WAVeform: XUNits?

:WAVetform:YDISplay?

:WAVetform: YDISplay?

:WAVeform:YINCrement?

:WAVeform:YINCrement?

:WAVeform:YORigin?

:WAVeform:YORigin?

:WAVeform: YRANge?

:WAVeform: YRANge?

:WAVeform:YREFerence?

:WAVeform:YREFerence?

:WAVeform:YUNits?

:WAVeform:YUNits?

27-27

Infiniium and HP 547XX Digitizing Oscilloscopes Language Compatibility
Waveform Memory Command Language Compatibility

Waveform Memory Command Language Compatibility

HP 548XX and HP 547XX Waveform MEMory Commands

HP 548XX HP 547XX
:WMEMory<N>:DISPIlay :WMEMory<N>:DISPlay
:WMEMory<N>:LoadFromkFile :WMEMory<N>:LoadFromFile *
:WMEMory<N>:SAVE :WMEMory<N>:SAVE
:WMEMory<N>:XOFFset :WMEMory<N>:XOFFset
:WMEMory<N>:XRANge :WMEMory<N>:XRANge
:WMEMory<N>:YOFFset :WMEMory<N>:YOFFset
:WMEMory<N>:YRANge :WMEMory<N>:YRANge

Note: Command not supported on this oscilloscope.

27-28

Infiniium and HP 547XX Digitizing Oscilloscopes Language Compatibility

Root Command Language Compatibility

Root Command Language Compatibility

HP 548XX and HP 547XX Root Commands

HP 548XX HP 547XX
:AER? :AER?
:AUToscale :AUToscale
:BLANKk :BLANKk
:CDISplay :CDISplay
:DIGitize :DIGitize
:MODel? :MODel?
:OPEEnable :OPEEnable
:OPERegister? :OPERegister?

:OVLEnable (54846A/45A735A only)

:OVLEnable * (54846A7/45A/35A only)

:OVLRegister? (54846A7/45A/35A only)

:OVLRegister? * (54846A/45A/35A

only)
:PRINt :PRINt
:RECall:SETup :RECall:SETup
:RUN :RUN
:SERial :SERial
:SINGIe :SINGIe
:STOP :STOP
:STORe:SETup :STORe:SETup
:STORe:WAVeform :STORe:WAVeform
‘TERegister? ‘TERegister?
:VIEW :VIEW

27-29

Infiniium and HP 547XX Digitizing Oscilloscopes Language Compatibility
Common Command Language Compatibility

Common Command Language Compatibility

HP 548XX and HP 547XX Common Commands

HP 548XX HP 547XX
*CLS *CLS
*ESE *ESE
FESRY *ESR?
*IDN? *IDN?
*LRNY *LRN?Y
FOPC *OPC
*OPT? *OPT?
*RCL *RCL
FRST *RST
EIN\V/ *SAV
*SRE *SRE
*STRY *STB?
*TRG *TRG
FTST? FTST?
FWAI FWAI

27-30

28

Infiniium and HP 545XX Oscilloscopes
Language Compatibility

Infiniium and HP 545XX Oscilloscopes
Language Compatibility

When developing new programs, you should use the Infiniium

(HP 548XX) command language, as documented in the chapters in this
manual. When using existing programs (that you do not want to modify)
with Infiniium Oscilloscopes, the HP 547XX and HP 545XX command
sets are provided as built-in languages. See “Some HP 545XX
Commands are New” on the next page.

e This chapter describes language compatibility with HP 545XX
oscilloscopes.

e Chapter 25 describes language compatibility with HP 547XX
oscilloscopes.

The built-in command languages make your use of the Infiniium
Oscilloscopes compatible with previously designed oscilloscopes — ones
that you may already be used to operating. Being able to choose another
command language is beneficial if you want to use existing programs on
Infiniium Oscilloscopes without having to modify your programs.

The built-in HP 547XX and HP 545XX languages can also be helpful if
you are familiar with one or both of them, and want to continue using
that language on Infiniium Oscilloscopes.

Selecting a Command Language

Use the :SYSTem:LANGuage command to select either the HP 548XX,
HP 547XX, or HP 545XX command language built into the Infiniium
Oscilloscopes. The HP 548XX command language is the default.

Command Language Tables

There are some differences between the built-in command languages.
The tables in this chapter show these differences (if any exist), and the
relationships between the command languages for HP 548XX Infiniium
Oscilloscopes and HP 545XX Oscilloscopes. If a command is supported
only on the 54846S, 54845A, and 548354, it is noted.

28-2

Infiniium and HP 545XX Oscilloscopes Language Compatibility

Some HP 545XX Commands are New

Some HP 545XX commands are new. That is, they were not in the
original command language, but they have been added to the HP 545XX
language support for HP 548XX Oscilloscopes.

What the * Symbol Means

In the command tables, the “ * ” symbol after a command indicates the
command is newly supported.

See Also See Chapter 25 for language compatability between Infiniium and
HP 547XX Oscilloscopes.

28-3

Infiniium and HP 545XX Oscilloscopes Language Compatibility
To select a command language

To select a command language

In Infiniium Oscilloscopes, you can select one of the supported command
languages either over the GPIB or from the oscilloscope front panel.

To select one of the command languages over the GPIB, enter the
appropriate command for the oscilloscope type you are using:
:SYSTem:LANGuage HP545XX
:SYSTem:LANGuage HP548XX
(This chapter describes the HP 545XX and HP 548XX command language
compatibility.)
:SYSTem:LANGuage HP547XX

(Use the information in Chapter 25 for the HP 547XX Digitizing Oscilloscopes
command language compatability.)

To select one of the command languages from the oscilloscope front
panel, select Utilities, Remote Interface, and Select Language. Then
choose HP545XX, HP547XX, or HP548XX.

28-4

Infiniium and HP 545XX Oscilloscopes Language Compatibility
Acquisition System Command Language Compatibility

Acquisition System Command Language Compatibility

HP 548XX and HP 545XX ACQuire Commands

HP 548XX HP 545XX
:ACQuire:AVERage Nofe
:ACQuire:AVERage:COUNt Nofe

ACQuire:BWLImMit

ACQuire:BWLIMit *

:ACQuire:COMPlete

:ACQuire:COMPlete (COMPlete:STATe
is on when this feature is selected)

:ACQuire:COMPlete:STATe

:ACQuire:COMPlete:STATe *

:ACQuire:CONFig (b4846A7/45A/35A
only)

:ACQuire:CONFig * (b4846A/45A735A
only)

:ACQuire:COUNE

:ACQuire:COUNT

:ACQuire:INTerpolate

:ACQuire:INTerpolate ¥

:ACQuire:MODE Note
:ACQuire:POINts :ACQuire:POINts
:ACQuire:SRATe Note

Note

ACQuire: TYPE

Note: Command not supported on this oscilloscope.

28-5

Infiniium and HP 545XX Oscilloscopes Language Compatibility
Calibration Command Language Compatibility

Calibration Command Language Compatibility

HP 548XX and HP 545XX CALibrate Commands

HP 548XX HP 545XX
:CALibrate:CANCel Nofte
:CALibrate:CONTInue Note

Note :CALibrate:DATA:ASCIi?
:CALibrate:MPRotect Nofte
:CALibrate:OUTPut Note
:CALibrate:SDONe? Note

:CALibrate:SKEW Nofe

:CALibrate:START Note
:CALibrate:STATus? Nofte

Nofe

:CALibrate:TNULI <value>

Note: Command not supported on this oscilloscope.

28-6

Infiniium and HP 545XX Oscilloscopes Language Compatibility

Channel Command Language Compatibility

Channel Command Language Compatibility

HP 548XX and HP 545XX CHANnel Commands

HP 548XX HP 545XX
:CHANnel<N>:BWLImit Note
Note :CHANnNel<N>:COUPIIng

:CHANnel<N>:DISPlay

:CHANnel<N>:DISPlay

:CHANnel<N>:ECL

-CHANNel<N>ECL

Note

:CHANnel<N>:HFReject

:CHANnel<N>:INPut

:CHANnel<N>:INPut *

:CHANnel<N>:OFFSet

:CHANnel<N>:OFFSet

:CHANnel<N>:PROBe

:CHANnel<N>:PROBe

:CHANnel<N>:PROBe:EGAIn

:CHANnel<N>:PROBe:EGAIn *

:CHANnel<N>:PROBe:EOFFset

:CHANnel<N>:PROBe:EOFFset *

:CHANnel<N>:PROBe:SKEW

:CHANnel<N>:PROBe:SKEW *

:CHANnel<N>:PROTection?

Note

(54846A/45A/35A only)

:CHANnel<N>:PROTection:CLEar Note
(54846A/45A/35A only)

:CHANnel<N>:RANGe :CHANnel<N>:RANGe
Note :CHANnel<N>:SETup?

:CHANnel<N>TTL

:CHANnel<N>TTL

:CHANnel<N>:UNITS

:CHANnel<N>:UNITs *

28-7

Infiniium and HP 545XX Oscilloscopes Language Compatibility
Disk Command Language Compatibility

Disk Command Language Compatibility

HP 548XX and HP 545XX DISK Commands

HP 548XX HP 545XX
:DISK:CDIRectory :DISK:CDIRectory
:DISK:DELete :DISK:DELete
:DISK:DIRectory? :DISK:DIRectory?
:DISK:GetFILe? :DISK:GetFILe? *
:DISK:LOAD :DISK:LOAD
:DISK:MDIRectory :DISK:MDIRectory
:DISK:PWD? :DISK:PWD?

Nofe :DISK:SIMage
:DISK:STORe :DISK:STORe

Note: Command not supported on this oscilloscope.

28-8

Infiniium and HP 545XX Oscilloscopes Language Compatibility

Display Command Language Compatibility

Display Command Language Compatibility

HP 548XX and HP 545XX DISPlay Commands

HP 548XX HP 545XX
:DISPlay:COLumn :DISPlay:COLumn
:DISPIlay:CONNect :DISPIlay:CONNect
:DISPlay:DATA? :DISPlay:DATA
:DISPIlay:DCOLor :DISPlay:DCOLor *

Nofe :DISPlay:FORMat
:DISPlay:GRATicule :DISPlay:GRATicule
:DISPlay:GRATicule:INTensity :DISPlay:GRATicule:INTensity *
Nofe :DISPlay:INVerse
:DISPlay:LAYout:MBAR :DISPlay:LAYout:MBAR *
:DISPlay:LAYout:MRESults :DISPlay:LAYout:MRESults *
:DISPlay:LINE :DISPlay:LINE
:DISPlay:PERSistence :DISPlay:PERSIistence
:DISPlay:PERSistence: TIME Note

:DISPlay:ROW :DISPlay:ROW
:DISPlay:SCOLor :DISPlay:SCOLor *

Note :DISPlay:SETup?
:DISPlay:SSAVer :DISPlay:SSAVer *
:DISPlay:SSAVer:AAFTer :DISPlay:SSAVer:AAFTer *
:DISPlay:STRIng :DISPlay:STRing
:DISPlay:TEXT :DISPlay: TEXT

Note :DISPlay:MARKerTTMARKerTlVMARKker

Note: Command not supported on this oscilloscope.

28-9

Infiniium and HP 545XX Oscilloscopes Language Compatibility
External Command Language Compatibility

External Command Language Compatibility

HP 548XX and HP 545XX EXTernal Commands

HP 548XX HP 545XX
:EXTernal:BWLimit Note

Nofe :EXTernal:COUPIIng
Nofe :EXTernal:HFReject
:EXTernal.INPut Nofe
:EXTernal:PROBe :EXTernal:PROBe

:EXTernal: PROBe:EGAIn

:EXTernal: PROBe:EGAIn *

:EXTernal:PROBe:EOFFset

:EXTernal:PROBe:EOFFset *

:EXTernal: PROBe:SKEW

:EXTernal: PROBe:SKEW *

:EXTerna:RANGe

:EXTernal: RANGe

Nofe

:EXTernal:SETup?

:EXTernal:UNITs

:EXTernal:UNITs *

Note: Command not supported on this oscilloscope.

28-10

Infiniium and HP 545XX Oscilloscopes Language Compatibility
FFT Command Language Compatibility

FFT Command Language Compatibility

This subsystem is not implemented for HP 548XX or HP 545XX Oscillscopes.

28-11

Infiniium and HP 545XX Oscilloscopes Language Compatibility
Function Command Language Compatibility

Function Command Language Compatibility

HP 548XX and HP 545XX FUNCtion Commands

HP 548XX HP 545XX
:FUNCTion<N>7 :FUNCtion<N>7 ¥
:FUNCtion<N>:ADD :FUNCtion<N>:ADD

:FUNCtion<N>:DIFF

:FUNCtion<N>:DIFF

:FUNCtion<N>:DISPIay

:FUNCtion<N>:DISPlay

:FUNCtion<N>:DIVide

:FUNCtion<N>:DIVide *

Note

FUNCtion<N>:FFT

:FUNCtion<N>:FFT:FREQuency

:FUNCtion<N>:FREQuency

:FUNCtion<N>:FFT:RESolution?

Note

:FUNCtion<N>:FFT:WINDow

Note

:FUNCtion<N>:FFTMagnitude

Note

:FUNCtion<N>:HORizontal

:FUNCTtion<N>:HORizontal

:FUNCtion<N>:HORizontal:POSition

:FUNCtion<N>:HORIizontal:POSifion

:FUNCTion<N>:HORizontal. RANGe

:FUNCtion<N>:HORizontal:RANGe

:FUNCtion<N>:INTegrafe

:FUNCtion<N>:INTegrate

:FUNCtion<N>:INVert

:FUNCtion<N>:INVert

Nofe

:FUNCtion<N>:LE Vel

:FUNCtion<N>:MAGNIify

:FUNCtion<N>:MAGNIify

:FUNCtion<N>:MAXimum

FUNCtion<N>:MAXimum *

:FUNCTion<N>:MINImum

:FUNCtion<N>:MINIimum ¥

Note

:FUNCtion<N>:MODE?

:FUNCtion<N>:MULTiply

:FUNCtion<N>:MULTiply

:FUNCTion<N>:0OFFSet

:FUNCtion<N>:OFFSet

Note :FUNCtion<N>:ONLY
Note :FUNCTion<N>:PEAK
:FUNCtion<N>:RANGe FUNCTion<N>:RANGe
Note :FUNCtion<N>:SETup?

:FUNCtion<N>:SUBTract

:FUNCtion<N>:SUBTract

:FUNCTion<N>:VERSus

:FUNCtion<N>:VERSus

:FUNCtion<N>:VERTical

:FUNCtion<N>:VERTical

:FUNCtion<N>:VERTical:OFFSet

:FUNCtion<N>:VERTical:OFFSet

:FUNCtion<N>:VERTica:RANGe

:FUNCtion<N>:VERTical: RANGe

Note

:FUNCtion<N>:WINDow

Note: Command not supported on this oscilloscope.

28-12

Infiniium and HP 545XX Oscilloscopes Language Compatibility

Hardcopy Command Language Compatibility

Hardcopy Command Language Compatibility

HP 548XX and HP 545XX HARDcopy Commands

HP 548XX HP 545XX
:-HARDcopy:AREA :HARDcopy:AREA ¥
:-HARDcopy:DPRinter :HARDcopy:DPRinter *
:-HARDcopy:FACTors :HARDcopy:FACTors *
:-HARDcopy:IMAGe :-HARDcopy:IMAGe *
:HARDcopy:PRINters? :HARDcopy:PRINters? *

28-13

Infiniium and HP 545XX Oscilloscopes Language Compatibility
Limit Test Command Language Compatibility

Limit Test Command Language Compatibility

Limit TESt commands do not apply to HP 548XX or HP 545XX Oscilloscopes.

28-14

Infiniium and HP 545XX Oscilloscopes Language Compatibility

Marker Command Language Compatibility

Marker Command Language Compatibility

HP 548XX and HP 545XX MARKer Commands

HP 548XX HP 545XX

:-MARKer:CURSor? :MARKer:CURSor? *

Nofe :MARKer:DISPlay
:-MARKer:-MEASurement:READout :MARKer:-MEASurement:READout *
:-MARKer:MODE :MARKer:MODE

Nofe :MARKer:SETup?
:-MARKer:TDELta? :MARKer:TDELta? ¥

:-MARKer: TSTArt :MARKer:TSTArt ¥

:MARKer:TSTOp

:MARKer:TSTOp *

:MARKer:VDELta?

:-MARKer:VDELta? *

:MARKer:VSTArt :MARKer:VSTArt *
:-MARKer:VSTOp :MARKer:VSTOp *
:-MARKer:XIPosifion :MARKer:XIPosition
:-MARKer:XIYIsource :-MARKer:XIYIsource
:MARKer:XZ2Position :MARKer:XZPosition
:MARKer:X2YZsource :MARKer:XZYZsource
:MARKer:XDELta? :MARKer:XDELta?
:MARKer:YIPosition :MARKer:YIPosition
:MARKer:YZPosition :MARKer:YZPosition
:MARKer:YDELta? :MARKer:YDELta?

Note: Command not supported on this oscilloscope.

Sources for MARKer Commands

Sources for the MARKer commands can be CHANnel<N>, FUNCtion<N>, or

WMEMory<N>.
<N> CHANnel<N> is:

An integer, 1 - 2, for 54810/54820 Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<N> and WMEMory<N> are:
Integers, 1 - 4, representing the selected function or waveform memory.

28-15

Infiniium and HP 545XX Oscilloscopes Language Compatibility
Measure Command Language Compatibility

Measure Command Language Compatibility

HP 548XX and HP 545XX MEASure Commands

HP 548XX

HP 545XX

:MEASure:ALL?

:MEASure:ALL?

:MEASure:CLEar

:MEASure:CLEar *

:-MEASure:DEFIne

:-MEASure:DEFine

:MEASure:DELTatime

:MEASure:DELTafime *

:-MEASure:DUTYcycle :MEASure:DUTYcycle
:MEASure:FFALLTime :MEASure:FALLTime
:-MEASure:FFT:DFRequency Nofte
:MEASure:FFT:DMAGnitude Note
:MEASure:FFT:FREQuency Note
:-MEASure:FFT:-MAGNitude Nofte
:MEASure:FFT:PEAKIT Note
:-MEASure:FFT:PEAKZ Nofte
:-MEASure:FFT:THReshold Nofe

:-MEASure:FREQuency

:MEASure:FREQuency

:MEASure:NWIDth

:MEASure:NWIDth

:MEASure:OVERshoot

:MEASure:OVERshoot

:MEASure:PERiod

:MEASure:PERiod

:-MEASure:PREShoot

:MEASure:PREShoot

:MEASure:PWIDth

:MEASure:PWIDth

:MEASure:RESults?

:MEASure:RESults?

:MEASure:RISetime

:MEASure:RISetime

:-MEASure:SCRatch

:-MEASure:SCRatch

:MEASure:SENDvalid

:MEASure:SENDvalid ¥

:MEASure:SOURce

:MEASure:SOURce

:MEASure:STATisfics

:MEASure:STATistics

:MEASure:TEDGe

:MEASure:TEDGe *

:MEASure:TMAX

:-MEASure:TMAX

:MEASure:TMIN

:MEASure:TMIN

Note :MEASure:TSTArt
Nofe :MEASure:TSTOp
:MEASure:TVOLT :MEASure:TVOLL
Note :MEASure:UNITs
Note :MEASure:UPPer
Nofe :MEASure:VACRmMs

:-MEASure:VAMPIitude

:MEASure:VAMPIitude

:MEASure:VAVerage

:-MEASure:VAVerage

:MEASure:VBASe

:MEASure:VBASe

Note :MEASure:VDCRms
Note :MEASure:VDELta?”
Nofe :-MEASure:VFIFty

:-MEASure:VLOWer

:MEASure:VLOWer *

:MEASure:VMAX

:-MEASure:VMAX

:MEASure:VMIDdIe

:-MEASure:VMIDdIe *

:MEASure:VMIN

:-MEASure:VMIN

28-16

Infiniium and HP 545XX Oscilloscopes Language Compatibility

Measure Command Language Compatibility

:-MEASure:VPP

:MEASure:VPP

Note :MEASure:VRELafive
Nofe :-MEASure:VSTArt
Nofe :MEASure:VSTOp

:MEASure:VRMS

:MEASure:VRMS *

:MEASure:VTIMe

:MEASure:VTIMe *

:MEASure:VTOP

:MEASure:VTOP

:MEASure:VUPPer

:MEASure:VUPPer ¥

Note: Command not supported on this oscilloscope.

28-17

Infiniium and HP 545XX Oscilloscopes Language Compatibility
Multiple Memory Command Language Compatibility

Multiple Memory Command Language Compatibility

Multiple MEMory commands do not apply to HP 548 XX Oscilloscopes.

28-18

Infiniium and HP 545XX Oscilloscopes Language Compatibility
Memory Test Command Language Compatibility

Memory Test Command Language Compatibility

Memory TESt commands do not apply to HP 548XX or HP 545XX Oscilloscopes.

28-19

Infiniium and HP 545XX Oscilloscopes Language Compatibility
Pixel Memory Command Language Compatibility

Pixel Memory Command Language Compatibility

Pixel MEMory commands do not apply to HP 548XX Oscilloscopes.

28-20

Infiniium and HP 545XX Oscilloscopes Language Compatibility
Self-Test Command Language Compatibility

Self-Test Command Language Compatibility

HP 548XX and HP 545XX SELFtest Commands

HP 548XX HP 545XX
:SELFtest:ASET :SELFtest:ASET *
:SELFtest:SCOPETEST :SELFtest:SCOPETEST *

28-21

Infiniium and HP 545XX Oscilloscopes Language Compatibility
Sequential Command Language Compatibility

Sequential Command Language Compatibility

SEQuential commands do not apply to HP 548XX Oscilloscopes.

28-22

Infiniium and HP 545XX Oscilloscopes Language Compatibility

System Command Language Compatibility

System Command Language Compatibility

HP 548XX and HP 545XX SYSTem Commands

HP 548XX HP 545XX
:SYSTem:DATE :SYSTem:DATE
:SYSTem:DEBug :SYSTem:DEBug *
SYSTem:DSP :SYSTem:DSP
:SYSTem:ERRor? :SYSTem:ERRor?
:SYSTem:HEADer :SYSTem:HEADer

SYSTem:HELP:HEADers?

SYSTem:HELP:HEADers? *

:SYSTem:HPIB:ADDRess?

:SYSTem:HPIB:ADDRess? *

SYSTem:LANGuage SYSTem:LANGuage *
SYSTem:LONGIorm SYSTem:LONGIorm
:SYSTem:SETup :SYSTem:SETup

:SYSTem: TIME

:SYSTem: TIME

28-23

Infiniium and HP 545XX Oscilloscopes Language Compatibility
Time Base Command Language Compatibility

Time Base Command Language Compatibility

HP 548XX and HP 545XX TIMebase Commands

HP 548XX HP 545XX
‘TIMebase:DELay ‘TIMebase:DELay
Nofe ‘"TIMebase:MODE

‘"TIMebase:POSition

‘TIMebase:POSition *

‘TIMebase:RANGe

‘TIMebase:RANGe

‘TIMebase:REFerence

‘TIMebase:REFerence

Note ‘TIMebase:RLENgth

Nofe ‘"TIMebase:SAMPle

Note ‘TIMebase:SAMPIe:CLK
Nofe ‘"TIMebase:SAMPIe:CLOCk

‘TIMebase:SCALe

Nofte

:TIMebase:SETup?

‘TIMebase:SETup?

:TIMebase:VIEW

‘TIMebase:VIEW *

‘TIMebase:WINDow:DELay

‘TIMebase:WINDow:DELay *

"TIMebase:WINDow:POSition

‘TIMebase:WINDow:POSition ¥

‘TIMebase:WINDow:RANGe

‘TIMebase:WINDow:RANGe *

‘TIMebase:WINDow:SCALe

Note

"TIMebase:WINDow:SOURce

‘TIMebase:WINDow:SOURce *

28-24

Infiniium and HP 545XX Oscilloscopes Language Compatibility
Trigger Command Language Compatibility

Trigger Command Language Compatibility

HP 548XX and HP 545XX TRIGger Commands

HP 548XX HP 545XX

"TRIGger:ADVanced Note
:DELay:EDLY:ARM:SLOPe Nofe
:DELay:EDLY:ARM:SOURce Nofe
:DELay:EDLY:EVENT:DELay Nofe
:DELay:EDLY:EVENT:SLOPe Nofe
:DELay:EDLY:EVENT:SOURce Nofe
:DELay:EDLY:TRIGger:SLOPe Nofe
:DELay:EDLY:TRIGger:SOURce Nofe
:DELay:MODE Nofe
:DELay:TDLY:ARM:SLOPe Nofe
:DELay: TDLY:ARM:SOURce Nofe
:DELay: TDLY:DELay Nofe
:DELay: TDLY:TRIGger:SLOPe Nofe
:DELay: TDLY: TRIGger:SOURce Nofe
:MODE Note
:PATTern:CONDition Nofe
:PATTern:LOGic Note
:STATe:CLOCk Nofte
:STATe:CONDition Nofe
:STATe:LOGIc Note
:STATe:LTYPe Nofe
:STATe:SLOPe Nofe
"TV:.MODE Nofe
TV.STV.FIELd Nofe
TV.STV.LINE Nofe
TV:STV:SOURce Nofe
TV:STV:SPOLarity Note
TV:.STV:STANdard Nofe
TV.UDTV:EDGE Nofe
TV.UDTV:ENUMber Nofe
TV.UDTV:PGTHan Nofe
TV.UDTV:PLTHan Nofe
TV:UDTV:POLarity Nofe
TV:UDTV:SOURce Nofte
:VIOLation:MODE :VIOLation:MODE
:VIOLafion:PWIDth:DIRection :VIOLafion:PWIDth:DIRection *
:VIOLation:PWIDth:POLarity :VIOLation:PWIDth:POLarity *
:VIOLation:PWIDth:SOURce :VIOLation:PWIDth:SOURce *
:VIOLation:PWIDth:WIDTh :VIOLation:PWIDTh:WIDTh *
:VIOLation:RUNT:DIRection :VIOLation:RUNT:DIRection *
:VIOLation:RUNT:SOURce:HTHReshold :VIOLalion:RUNT-SOURce:HTHReshold *
:VIOLation:RUNT:SOURce:LTHReshold :VIOLation:RUNT:SOURce:LTHReshold *
:VIOLation:RUNT-TQUalified :VIOLation:RUNT-TQUalified *
:VIOLation:SETup:HOLD:CSOurce:EDGE :VIOLation:SETup:HOLD:CSOurce: EDGE ¥

28-25

Infiniium and HP 545XX Oscilloscopes Language Compatibility
Trigger Command Language Compatibility

:VIOLation:SETup:HOLD:CSOurce:LE Vel

:VIOLation:SETup:HOLD:CSOurce:LEVel *

:VIOLation:SETup:HOLD:DSOurce:HTHReshold

:VIOLation:SETup:HOLD:DSOurce:HTHReshold ¥

:VIOLation:SETup:HOLD:DSOurce:LTHReshold

:VIOLation:SETup:HOLD:DSOurce:LTHReshold

:VIOLation:SETup:HOLD:TIME

:VIOLation:SETup:HOLD:TIME ¥

:VIOLation:SETup:MODE

:VIOLation:SETup:MODE *

:VIOLation:SETup:SETup:CSOurce: EDGE

:VIOLation:SETup:SETup:CSOurce: EDGE *

:VIOLafion:SETup:SETup:CSOurce:LE Vel

:VIOLation:SETup:SETup:CSOurce:LEVel *

:VIOLation:SETup:SETup:DSOurce:HTHReshold

:VIOLation:SETup:SETup:DSOurce:HTHReshold

:VIOLation:SETup:SETup:DSOurce:LTHReshold

:VIOLation:SETup:SETup:DSOurce:LTHReshold ¥

:VIOLation:SETup:SETup:TIME

:VIOLation:SETup:SETup:TIME *

:VIOLation:SETup:SHOLd:CSOurce: EDGE

:VIOLation:SETup:SHOLd:CSOurce: EDGE *

:VIOLation:SETup:SHOLd:CSOurce:LE Vel

:VIOLation:SETup:SHOLd:CSOurce:LEVel *

:VIOLation:SETup:SHOLd:DSOurce:HTHReshold

:VIOLation:SETup:SHOLd:DSOurce:HTHReshold

:VIOLation:SETup:SHOLd:DSOurce:LTHReshold

:VIOLation:SETup:SHOLd:DSOurce:LTHReshold

:VIOLation:SETup:SHOLd:HOLDTIME

:VIOLation:SETup:SHOLd:HOLDTIME™ *

:VIOLation:SETup:SHOLd:HTIMe

:VIOLation:SETup:SHOLd:HTIMe *

:VIOLation:SETup:SHOLd:SETUPTIME

:VIOLation:SETup:SHOLd:SETUPTIME *

:VIOLation:SETup:SHOLd:STIMe

:VIOLation:SETup:SHOLd:STIMe *

:VIOLafion:TRANsition:GTHan

:VIOLation: TRANsition:GTHan ¥

:VIOLation: TRANsition:LTHan

:VIOLation: TRANsition:LTHan *

:VIOLation: TRANsition:SOURce:HTHReshold

:VIOLation:TRANsition:SOURce:HTHReshold *

:VIOLafion: TRANsition:SOURce:LE Vel

:VIOLation: TRANsition:SOURce:LEVel *

:VIOLation: TRANsition:SOURce:LTHReshold

:VIOLation: TRANsition:SOURce:LTHReshold *

:VIOLation: TRANsition: TYPE

:VIOLation:TRANsition:TYPE *

Note "TRIGger:CENTered

Nofe "TRIGger:CONDition

Note "TRIGger:COUPIIng

Note ‘TRIGger:DELay

Nofe TRIGger:DELay:SLOPe
Nofe TRIGger:DELay:SOURce
"TRIGger:EDGE:COUPIing Note
TRIGger:EDGE:SLOPe Note
TRIGger:EDGE:SOURce Nofte

Nofe "TRIGger:FIELd

Note "TRIGger:GLITch:CENTered
Note TRIGger:GLITch:HOLDoIT
Nofe ‘TRIGger:GLITch:LE Vel
"TRIGger:GLITch:POLarity TRIGger:GLITch:POLarity *
"TRIGger:GLITch:SOURce "TRIGger:GLITch:SOURce
"TRIGger:GLITch:WIDTh "TRIGger:GLITch:WIDTh
"TRIGger:HOLDoff "TRIGger:HOLDoff

Note "TRIGger:LEVel
"TRIGger:HTHReshold Note
"TRIGger:HTHReshold:LIMits? Nofe

"TRIGger:HYSTeresis Nofe

"TRIGger:LEVel Nofte
TRIGger:LEVel:LIMits? Nofe

28-26

Infiniium and HP 545XX Oscilloscopes Language Compatibility
Trigger Command Language Compatibility

Note TRIGger:LINE

Nofte TRIGger:LOGic
"TRIGger:LTHReshold "TRIGger:LTHReshold *
"TRIGger:MODE "TRIGger:-MODE

Nofe TRIGger:NREJect

Nofe TRIGger:OCCurrence

Nofe "TRIGger:OCCurrence:SLOPe
Nofe TRIGger:OCCurrence:SOURce
Note TRIGger:PATH

Note "TRIGger:POLarity

Nofe TRIGger:QUALIfy

Note TRIGger:SETup?

Note "TRIGger:SLOPe

Nofe TRIGger:SOURce

Nofe TRIGger:STANdard
"TRIGger:SWEep

28-27

Infiniium and HP 545XX Oscilloscopes Language Compatibility
Waveform Command Language Compatibility

Waveform Command Language Compatibility

HP 548XX and HP 545XX WAVeform Commands

HP 548XX HP 545XX
:-WAVeform:BANDpass? Note
:‘WAVeform:BYTeorder Note
:WAVeform:CLIPped? :WAVetform:CLIPped? *
:-WAVeTorm:COMPlete? :-WAVelform:COMPlete?
:-WAVeform:COUNTt? ‘WAVeform:COUNTt?
:-WAVetorm:COUPIng? Note

‘WAVeform:DATA ‘WAVeform:DATA
:-WAVeform:FORMat :‘WAVeform:FORMat
:-WAVeform:POINTs? :WAVeform:POIN{TS?
‘WAVeform:PREamble :-WAVelorm:PREamble
:-WAVeform:SOURce :WAVeform:SOURCce
:-WAVelorm:TYPE? ‘WAVelorm:TYPE?
‘WAVeform:VIEW Nofe
:WAVeform:XDISplay? Nofte
:WAVelorm:XINCrement? :WAVeform: XINCrement?
:-WAVelorm:XORigin? :-WAVeform: XORigin?
:WAVeform:XRANge? Nofe
:-WAVelform:XREFerence? :WAVeform:XREFerence?
:-WAVeTorm: XUNIts? Nofe
:-WAVeform:YDISplay? Nofe

:WAVelorm:YINCrement?

:WAVelorm:YINCrement?

:-WAVeform:YORiIgin?

:-WAVelorm:YORIgin?

:WAVeform:YRANge?

Note

:WAVelorm:YREFerence?

:WAVelorm:YREFerence?

‘WAVeform:YUNIts?

Nofe

28-28

Infiniium and HP 545XX Oscilloscopes Language Compatibility

Waveform Memory Command Language Compatibility

Waveform Memory Command Language Compatibility

HP 548XX and HP 545XX Waveform MEMory Commands

HP 548XX

HP 545XX

:-WMEMory<N>:DISPlay

:-WMEMory<N>:DISPlay

:-WMEMory<N>:LoadFromlFile

‘WMEMory<N>:LoadFromFile *

:-WMEMory<N>:SAVE

‘WMEMory<N>:SAVE *

:-WMEMory<N>:XOFFset

:-WMEMory<N>:XOFFset

:‘WMEMory<N>:XRANge

‘WMEMory<N>:XRANge

:-WMEMory<N>:YOFFset

‘WMEMory<N>:YOFFset

:-WMEMory<N>:YRANge

:‘WMEMory<N>:YRANge

28-29

Infiniium and HP 545XX Oscilloscopes Language Compatibility

Root Command Language Compatibility

Root Command Language Compatibility

HP 548XX and HP 545XX Root Commands

HP 548XX HP 545XX
:AER? AER7 %
:AUToscale :AUToscale
:BLANk :BLANk
:CDISplay :CDISplay *
:DIGitize :DIGitize
:MODeI? :MODeI7 ¥
:OPEEnable :OPEEnable ¥
:OPERegister? :OPERegister? *

:OVLEnable (54846A/45A/35A only)

:OVLEnable * (64846A/45A/35A only)

:OVLRegister? (54846A/45A/35A only)

:OVLRegister? * (54846A7/45A/3bA

only)
:PRINT :PRINT
:RECall:SETup :RECall:SETup *
:RUN :RUN
:SERial :SERial
:SINGIe :SINGIe *
Note :STATus?
:STOP :STOP
:STORe:SETup Note
:STORe:WAVeform Nofe
Note :STORe
"TERegister? "TERegister?
:VIEW :VIEW

28-30

Infiniium and HP 545XX Oscilloscopes Language Compatibility
Common Command Language Compatibility

Common Command Language Compatibility

HP 548XX and HP 545XX Common Commands

HP 548XX HP 545XX
*CLS *CLS
*ESE *ESE
*ESRY? *ESRY
*IDN? *IDN?
*LRN? *LRN?
*OPC *OPC
*OPT? *OPT?
*RCL *RCL
*RST *RST
*SAV *SAV
*SRE *SRE
*STB? *STB?
*TRG FTRG
FTST? FTST?
FWAI FWAI

28-31

28-32

29

Error Messages

Error Messages

This chapter describes the error messages and how they are generated.
The possible causes for the generation of the error messages are also
listed in the following table.

29-2

Error Messages
Error Queue

Error Queue

As errors are detected, they are placed in an error queue. This queue is first in,
first out. If the error queue overflows, the last error in the queue is replaced
with error -350, “Queue overflow.” Anytime the error queue overflows, the
oldest errors remain in the queue, and the most recent error is discarded. The
length of the oscilloscope's error queue is 30 (29 positions for the error
messages, and 1 position for the “Queue overflow” message). Reading an error
from the head of the queue removes that error from the queue, and opens a
position at the tail of the queue for a new error. When all errors have been read
from the queue, subsequent error queries return 0, “No error.”

The error queue is cleared when any of the following occur:
e the instrument is powered up,

a *CLS command is sent,

the last item from the queue is read, or

the instrument is switched from talk only to addressed mode on the front
panel.

29-3

Error Messages
Error Numbers

Error Numbers

The error numbers are grouped according to the type of error that is detected.
¢ +(indicates no errors were detected.
e -100 to -199 indicates a command error was detected

-200 to -299 indicates an execution error was detected.

-300 to -399 indicates a device-specific error was detected.

-400 to -499 indicates a query error was detected.

+1 to +32767 indicates an oscilloscope specific error has been detected.

29-4

Error Messages
Command Error

Command Error

An error number in the range -100 to -199 indicates that an IEEE 488.2 syntax
error has been detected by the instrument’s parser. The occurrence of any error
in this class sets the command error bit (bit 5) in the event status register and
indicates that one of the following events occurred:

e AnIEEE 488.2 syntax error was detected by the parser. That is, a computer-
to-oscilloscope message was received that is in violation of the IEEE 488.2
standard. This may be a data element that violates the oscilloscope's listening
formats, or a data type that is unacceptable to the oscilloscope.

e An unrecognized header was received. Unrecognized headers include
incorrect oscilloscope-specific headers and incorrect or unimplemented
IEEE 488.2 common commands.

e A Group Execute Trigger (GET) was entered into the input buffer inside of
an IEEE 488.2 program message.

Events that generate command errors do not generate execution errors,
oscilloscope-specific errors, or query errors.

29-5

Error Messages
Execution Error

Execution Error

An error number in the range -200 to -299 indicates that an error was detected
by the instrument’s execution control block. The occurrence of any error in this
class causes the execution error bit (bit 4) in the event status register to be set.
It also indicates that one of the following events occurred:

e The program data following a header is outside the legal input range or is
inconsistent with the oscilloscope's capabilities.

e A valid program message could not be properly executed due to some
oscilloscope condition.

Execution errors are reported by the oscilloscope after expressions are
evaluated and rounding operations are completed. For example, rounding a
numeric data element will not be reported as an execution error. Events that
generate execution errors do not generate command errors, oscilloscope
specific errors, or query errors.

29-6

Error Messages
Device- or Oscilloscope-Specific Error

Device- or Oscilloscope-Specific Error

An error number in the range of -300 to -399 or +1 to +32767 indicates that the
instrument has detected an error caused by an oscilloscope operation that did
not properly complete. This may be due to an abnormal hardware or firmware
condition. For example, this error may be generated by a self-test response
error, or a full error queue. The occurrence of any error in this class causes the
oscilloscope-specific error bit (bit 3) in the event status register to be set.

29-7

Error Messages
Query Error

Query Error

An error number in the range -400 to -499 indicates that the output queue
control of the instrument has detected a problem with the message exchange
protocol. An occurrence of any error in this class should cause the query error
bit (bit 2) in the event status register to be set. An occurrence of an error also
means one of the following is true:

e Anattemptis being made toread data from the output queue whenno output
is either present or pending.

e Data in the output queue has been lost.

29-8

Error Messages
List of Error Messages

List of Error Messages

Figure 29-

1 is a list of the error messages that are returned by the parser on

this oscilloscope.

Figure 29-1

Error Messages

0

-100

-101
-102
-103
-104

-105
-108
-109
-112
-13

-121

-123
-124

-128

-131

-138
-141

-144
-148

-150

-151

No error
Command error

Invalid character
Syntax error
Invalid separator
Data type error

GET not allowed
Parameter not allowed
Missing parameter

The error queue is empty. Every errorinthe queue has beenread (SYSTEM:ERROR?
query) or the queue was cleared by power-up or *CLS.

Thisisthe generic syntax error used ifthe oscilloscope cannotdetectmore specific
errors.

A syntactic element contains a character that is invalid for that type.
An unrecognized command or data type was encountered.
The parser was expecting a separator and encountered an illegal character.

The parser recognized a data element different than one allowed. For example,
numeric or string data was expected but block data was received.

A Group Execute Trigger was received within a program message.
More parameters were received than expected for the header.
Fewer parameters were received than required for the header.

Program mnemonic too long The header or character data element contains more than twelve characters.

Undefined header
Invalid character in number

Numeric overflow
Too many digits

Numeric data not allowed
Invalid suffix

Suffix not allowed
Invalid character data

Character data too long
Character data not allowed

String data error

Invalid string data

The header is syntactically correct, but it is undefined for the oscilloscope. For
example, *XYZ is not defined for the oscilloscope.

Aninvalid characterfor the data type being parsed was encountered. For example,
a “9” in octal data.

Number is too large or too small to be represented internally.

The mantissa of a decimal numeric data element contained more than 255 digits
excluding leading zeros.

Alegal numeric data element was received, but the oscilloscope does not accept
one in this position for the header.

The suffix does not follow the syntax described in IEEE 488.2 or the suffix is
inappropriate for the oscilloscope.

A suffix was encountered after a numeric element that does not allow suffixes.

Either the character data element contains an invalid character or the particular
element received is not valid for the header.

A legal character data element was encountered where prohibited by the
oscilloscope.

This error can be generated when parsing a string data element. This particular
error message is used if the oscilloscope cannot detect a more specific error.

Asstring data element was expected, but was invalid for some reason. For example,
an END message was received before the terminal quote character.

29-9

-158

-160

-161
-168

-170

-
-178

-200

-212
-213
-214
-215
-220
-221
-222

-223

-224
-230
-231
-240
-241
-250
-251
-252
-253
-254
-255
-256
-257
-258
-260

Error Messages
List of Error Messages

String data not allowed
Block data error

Invalid block data
Block data not allowed

Expression error

Invalid expression

A string data element was encountered but was not allowed by the oscilloscope
at this point in parsing.

This error can be generated when parsing a block data element. This particular
error message is used if the oscilloscope cannot detect a more specific error.

Alegal block data element was encountered but was not allowed by the
oscilloscope at this point in parsing.

This error can be generated when parsing an expression data element. It is used
if the oscilloscope cannot detect a more specific error.

Expression data not allowed Expression data was encountered but was not allowed by the oscilloscope at this

Execution error

Arm ignored
Initignored
Trigger deadlock
Arm deadlock
Parameter error
Settings conflict
Data out of range

Too much data

lllegal parameter value
Data corrupt or stale
Data questionable
Hardware error
Hardware missing
Mass storage error
Missing mass storage
Missing media
Corrupt media

Media full

Directory full

File name not found
File name error
Media protected
Expression error

pointin parsing.

This is a generic syntax error which is used if the oscilloscope cannot detect more
specific errors.

Indicates that a legal program data element was parsed but could not be executed
because the interpreted value is outside the legal range defined by the
oscilloscope.

Indicatesthatalegal program data element of block, expression, or string type was
received that contained more data than the oscilloscope could handle due to
memory or related oscilloscope-specific requirements.

29-10

-261
-300
-310
-3
-312
-313
-314
-315
-321
-330
-350

-370

-371

-372

-373

-374

-375

-400
-410
-420
-430
-440

Math error in expression
Device specific error

System error Indicates that a system error occurred.

Memory error

PUD memory error
Calibration memory lost
Save/recall memory lost
Configuration memory lost
Out of memory

Self-test failed

Error Messages
List of Error Messages

Queue overflow Indicates that there is no room in the error queue and an error occurred but was

not recorded.

No sub tests are defined for
the selected self test

Self Test status is corrupt or
no self test has been
executed

This product configuration
does not support the
requested self test

This product configuration
does not support the
requested source

The requested self test log
file could not be found

Attenuator relay actuation
counts can only be modified
during factory service

Query error This is the generic query error.

Query INTERRUPTED
Query UNTERMINATED
Query DEADLOCKED

Query UNTERMINATED
after indefinite response

29-11

29-12

Index

Symbols
Ellipsis 1-5

Numerics
707 1-19

A
Aborting a digitize operation 2-9
aborting a digitize operation 1-17
absolute voltage
and VMAX 20-92
and VMIN 20-95
accuracy and probe calibration 11-4
Acquire Commands 10-2
AllowMaxSR 10-3
AVERage 10-4
BWLimit 10-6
COMPlete 10-7
COMPlete STATe 10-9
CONFig 10-10
COUNt 10-5
INTerpolate 10-11
MODE 10-12
POINts 10-13
POINts AUTO 10-15
SRATe 10-16
SRATe AUTO 10-18
acquired data flow 5-3
acquisition
ACQuire AVER and completion 10-7
points 10-13
record length 10-13
sample program 6-7
sample rate 10-16
active probes and calibration 11-4
ADD 16-5
address, GPIB default 2-7
advanced
COMM triggering 24-25
delay trigger modes 24-43, 24-52
delay triggering 24-44, 24-53
logic triggering 24-32, 24-36
pattern triggering 24-33
state triggering 24-37
TV commands 24-59, 24-65
advanced trigger violation modes 24-75
pulse width violation mode 24-77

setup violation mode 24-83
transition violation mode 24-109
advisory line, reading and writing to 9-2
AER? 8-3
algebraic sum of functions 16-5
ALIGn 21-4
AlignFIT 21-5
ALL, and VIEW 25-44
AllowMaxSR 10-3
alphanumeric
characters in embedded string 1-12
strings 1-10
AMPS as vertical units 12-23, 15-17
AREA 17-3, 20-6
Arm Event Register
ARM bit 7-21
Arming the trigger 2-9
ASCII
and FORMat 25-32
character 32 1-5
linefeed 1-12
AttenSET?
in self-test commands 22-3
attenuation factor for probe 11-4, 12-7,
15-5
AUTO 10-18, 21-15
automatic measurements
sample program 6-8
AUToscale 8-4
during initialization 1-14
in sample program 6-17
availability of measured data 4-2
AVERage 10-4, 16-6, 21-16
and acquisition completion 10-7
and count 10-5,21-17
AXIS 18-4

B
BANDpass query 25-5
bandwidth limit 25-5
filter 10-6
basic command structure 1-15
basic operations 1-2
BASIC sample programs 6-2
BIND
in MTESt SCALe command 21-34
Bit Definitions in Status Reporting 4-3
BLANk 8-5

and VIEW 8-24
blanking the user text area 14-21
block data 1-4, 1-20
and DATA 25-11
in learnstring 1-4
Block Diagram
Status Reporting Overview 4-3
Braces 1-5
Brackets
Square 1-5
buffer, output 1-9, 1-18
buffered responses 5-13
Bus Activity, Halting 2-9
Bus Commands 2-9
BWIDth
in TRIG ADV COMM 24-26
BWLimit 10-6, 12-3, 15-3
BYTE
and FORMat 25-33
Understanding the format 25-28
BYTeorder 25-6
and DATA 25-13

C
C sample programs 6-2
Calibration Commands 11-2, 11-5

CANCel 11-6

CONTinue 11-7

MPRotect 11-8

OUTPut 11-9

SDONe? 11-10

SKEW 11-11

STARt 11-12

STATus? 11-13
calibration status 11-13
CANCel 11-6

in self-test command 22-4
CDIRectory 13-3
CDISplay (Clear DISplay) 8-6
center screen voltage 12-6
CGRade 14-3
Channel Commands 12-2

BWLimit 12-3

DISPlay 12-4

EADapter 12-10

ECoupling 12-12

INPut 12-5

OFFSet 12-6

Index-1

Index

PROBe 12-7
PROBe ATTenuation 12-9
PROBe EGAin 12-14
PROBe EOFFset 12-15
PROBe GAIN 12-16, 15-13
PROBe ID? 12-17
PROBe PROTection CLEar 12-19
PROBe PROTection? 12-20
PROBe SKEW 12-18
RANGe 12-21
SCALe 12-22
UNITs 12-23
CHANnel PROBe ID? 12-17
channels, and VIEW 25-44
channel-to-channel skew factor 11-11
character program data 1-10
CLEar 20-13
Clearing
Buffers 2-9
Pending Commands 2-9
clearing
error queue 4-17, 29-3
registers and queues 4-18
Standard Event Status Register 4-11,
-7
status data structures 7-4
TRG bit 4-10, 4-17
CLIPped query 25-7
clipped waveforms, and measurement
error 20-5
CLOCk
and STATe 24-38
in TRIG ADV STATe 24-38
*CLS (Clear Status) 7-4
CME bit 7-6, 7-8
COLumn 14-7
combining
commands in same subsystem 1-7
long- and short-form headers 1-10
combining compound and simple
commands 1-13
Command

EADapter 12-10, 15-7
ECoupling 12-12, 15-9
*ESE 7-5
ADD 16-5
AER? 8-3

ALIGn 21-4
AlignFIT 21-5
AMASk CREate 21-7
AMASKk SAVEISTORe 21-9
AMASKk SOURce 21-8
AMASKk UNITs 21-10
AMASk XDELta 21-11
AMASK YDELta 21-13
AREA 17-3, 20-6
AttenSET? 22-3
AUTO 21-15
AUToscale 8-4
AVERage 10-3, 10-4, 16-6, 21-16
AVERage COUNt 21-17
AXIS 18-4
BLANk 8-5
BWLimit 10-6, 12-3, 15-3
CANCel 11-6, 22-4
CDIRectory 13-3
CDISplay 8-6
CGRade 14-3

LEVels? 14-5
CGRade CROSsing 20-7
CGRade DCDistortion 20-8
CGRade EHEight 20-9
CGRade EWIDth 20-10
CGRade JITTer 20-11
CGRade QFACtor 20-12
CHANnel PROBe ID? 12-17
CLEar 20-13
CLear Status 7-4
COLumn 14-7
COMPlete 10-7
COMPlete STATe 10-9
CONFig 10-10
CONNect 14-8
CONTinue 11-7
COUNt 10-5
COUNt FAILures? 21-18
COUNt FWAVeforms? 21-19
COUNt WAVeforms? 21-20
CTClitter 20-14
CURSor? 19-3
DATA? 14-9
DATE 9-3
DCOLor 14-10
DEBug 9-4
DEFine 20-16

DELay 23-3

DELete 13-4, 21-21
DELTatime 20-20

DIFF 16-7

DIGitize 1-16, 8-7
DIRectory? 13-5

DISPlay 12-4, 16-8, 26-3
DIVide 16-9

DPRinter 17-4

DSP 9-6

DUTYcycle 20-22

ENABIle 21-22

ERRor? 9-7

Event Status Enable 7-5
EXT PROBe 15-5

EXT PROBe ATTenuation 15-6
EXT PROBe EGAin 15-11
EXT PROBe EOFFset 15-12
EXT PROBe GAIN 15-13
EXT PROBe ID? 15-14
EXT PROBe SKEW 15-15
FACTors 17-6

FALLtime 20-24

FFT DFRequency 20-26
FFT FREQuency 16-10, 20-28
FFT MAGNitude 20-29
FFT PEAK1 20-30

FFT PEAK2 20-31

FFT RESolution 16-11
FFT THReshold 20-32
FET WINDow 16-12
FFTMagnitude 16-14
FFTPhase 16-15
FREQuency 20-33

GPIB Mode 2-6
GRATicule 14-11
GRATicule INTensity 14-11
HAMPlitude 21-23
HEADer 9-8

HISTogram HITS 20-35
HISTogram M1S 20-41
HISTogram M2S 20-43
HISTogram M3S 20-45
HISTogram MEAN 20-37
HISTogram MEDian 20-39
HISTogram PEAK 20-47
HISTogram PP 20-49
HISTogram STDDev 20-51

Index-2

Index

HORizontal 16-16
HORizontal POSition 16-17
HORizontal RANGe 16-18
IMAGe 17-7

IMPedance 21-24

INPut 12-5, 15-4
INTegrate 16-19
INTerpolate 10-11

INVert 16-20, 21-26
JITTer:DIRection 20-53
JITTer:STATistics 20-55
LAMPIlitude 21-27
LANGuage 9-12

LINE 14-13

LOAD 13-6, 21-28, 26-4
LONGform 9-13

MAGN:ify 16-21

MAXimum 16-22
MDIRectory 13-7
MEASure FFT DMAGnitude 20-27
MEASurement 16-23
MEASurement READout 19-4
MINimum 16-25

MODE 10-12, 18-5, 19-5
MODel? 8-10

MPRotect 11-8

MTEE 8-8

MULTiply 16-26
NREGions? 21-29

NWIDth 20-57

OFFSet 12-6, 16-27

OPEE 8-11

OPER? 8-12

Operation Complete (*OPC) 7-12
Option (*OPT) 7-13
OUTPut 11-9

OVERshoot 20-59
OVLenable 8-13
OVLRegister? 8-14

PERiod 20-61

PERSistence 14-14

PHASe 20-63

POINts 10-13

POINts AUTO 10-15
POSition 23-5

Power-on Status Clear (*PSC) 7-14
PREShoot 20-65

PRINt 8-15

PRINters? 17-8
PROBe 12-7, 15-5
PROBe ATTenuation 12-9
PROBe EGAin 12-14
PROBe EOFFset 12-15
PROBe GAIN 12-16
PROBe IMPedance? 21-30
PROBe PROTection CLEar 12-19
PROBe PROTection? 12-20
PROBe SKEW 12-18, 15-15
PWD? 13-8
PWIDth 20-67
RANGe 12-21, 15-16, 16-28, 23-6
Recall (*RCL) 7-15
RECall SETup 8-16
REFerence 23-7
Reset (*RST) 7-16
RESults? 20-69
RISetime 20-72
ROW 14-15
RUMode 21-31

SOFailure 21-33
RUN 8-17
SAVE 26-5
SCALe 12-22, 23-8
SCALe BIND 21-34
SCALe SIZE 18-6
SCALe X1 21-35
SCALe XDELta 21-36
SCALe Y1 21-37
SCALe Y2 21-38
SCOLor 14-16
SCOPETEST 22-5
SCRatch 20-74
SDONe? 11-10
SENDvalid 20-75
SERial 8-18
Service Request Enable (*SRE) 7-18
SETup 9-15
SIMage 13-9
SINGle 8-19
SKEW 11-11
SOURce 20-76, 21-39
SRATe 10-16
SRATe AUTO 10-18
SSAVer 14-19
SSAVer AAFTer 14-19
STARt 11-12

STARt | STOP 21-40

STATistics 20-77

STATus? 11-13

STIMe 21-41, 21-43

STOP 8-20

STORe 13-10
WAVEform 8-22

STORe SETup 8-21

STRing 14-20

SUBTract 16-29

TDELta? 19-6

TEDGe 20-78

TER? 8-23

TEXT 14-21

TIME 9-17

TITLe? 21-42

TMAX 20-80

TMIN 20-82

TRIG ADV COMM BWID 24-26

TRIG ADV COMM ENCode 24-27

TRIG ADV COMM LEVel 24-28

TRIG ADV COMM PATTern 24-29

TRIG ADV COMM POLarity 24-30

TRIG ADV COMM SOURce 24-31

TRIG ADV EDLY ARM SLOPe 24-46

TRIG ADV EDLY ARM SOURce
24-45

TRIG ADV EDLY EVENt DELay
24-47

TRIG ADV EDLY EVENt SLOPe
24-49

TRIG ADV EDLY EVENt SOURce
24-48

TRIG ADV EDLY TRIG SLOPe 24-51

TRIG ADV EDLY TRIG SOURce
24-50

TRIG ADV PATT CONDition 24-34

TRIG ADV PATT LOGic 24-35

TRIG ADV STATe CLOCk 24-38

TRIG ADV STATe CONDition 24-39

TRIG ADV STATe LOGic 24-40

TRIG ADV STATe LTYPe 24-41

TRIG ADV STATe SLOPe 24-42

TRIG ADV STV FIELd 24-61

TRIG ADV STV LINE 24-62

TRIG ADV STV SOURce 24-63

TRIG ADV STV SPOLarity 24-64

TRIG ADV TDLY ARM SLOPe 24-55

Index-3

Index

TRIG ADV TDLY ARM SOURce
24-b4

TRIG ADV TDLY DELay 24-56

TRIG ADV TDLY TRIG SLOPe 24-58

TRIG ADV TDLY TRIG SOURce
24-67

TRIG ADV UDTV EDGE 24-68

TRIG ADV UDTV ENUMber 24-69

TRIG ADV UDTV PGTHan 24-70

TRIG ADV UDTV PLTHan 24-71

TRIG ADV UDTV POLarity 24-72

TRIG ADV UDTV SOURce 24-73

TRIG ADV VIOL MODE 24-76

TRIG ADV VIOL PWID DIR 24-81

TRIG ADV VIOL PWID POL 24-80

TRIG ADV VIOL PWID WIDT 24-82

TRIG ADV VIOL PWIDth 24-79

TRIG ADV VIOL SET HOLD DSO
24-97

TRIG ADV VIOL SET HOLD DSO
HTHR 24-98

TRIG ADV VIOL SET HOLD DSO
LTHR 24-99

TRIG ADV VIOL SET HOLD TIME
24-100

TRIG ADV VIOL SET MODE 24-86

TRIG ADV VIOL SET SET CSO 24-87

TRIG ADV VIOL SET SET CSO
EDGE 24-89

TRIG ADV VIOL SET SET CSO LEV
24-88

TRIG ADV VIOL SET SET DSO 24-90

TRIG ADV VIOL SET SET DSO
HTHR 24-91

TRIG ADV VIOL SET SET DSO
LTHR 24-92

TRIG ADV VIOL SET SET TIME?
24-93

TRIG ADV VIOL SET SHOL CSO
24-101

TRIG ADV VIOL SET SHOL CSO
EDGE 24-103

TRIG ADV VIOL SET SHOL CSO
LEV 24-102

TRIG ADV VIOL SET SHOL DSO
24-104

TRIG ADV VIOL SET SHOL DSO
HTHR 24-105

TRIG ADV VIOL SET SHOL DSO
LTHR 24-106

TRIG ADV VIOL SET SHOL HTIMe
24-108

TRIG ADV VIOL SET SHOL STIMe
24-107

TRIG ADV VIOL TRAN 24-111

TRIG ADV VIOL TRAN SOUR 24-112

TRIG ADV VIOL TRAN SOUR HTHR
24-113

TRIG ADV VIOL TRAN SOUR LTHR
24-114

TRIG ADV VIOL TRAN TYPE 24-115

TRIG EDGE COUPling 24-17

TRIG EDGE SLOPe 24-18

TRIG EDGE SOURce 24-19

TRIG GLITch POLarity 24-22

TRIG GLITch SOURce 24-23

TRIG GLITch WIDTh 24-24

TRIG HOLDoff 24-9

TRIG HTHR 24-10

TRIG HYSTeresis 24-11

TRIG LEVel 24-12

TRIG LTHR 24-13

TRIG SWEep 24-14

Trigger (*TRG) 7-22

TRIGger EDGE SLOPe 24-15

TRIGger EDGE SOURce 24-15

TRIGger MODE 24-6, 24-8

TSTArt 19-7

TSTOp 19-9

TVOLt 20-83

UNITs 12-23, 15-17

VAMPlitude 20-85

VAVerage 20-87

VBASe 20-89

VDELta? 19-11

VERSus 16-30

VERTical 16-31

VIEW 8-24, 23-9

VIOL SET HOLD CSO 24-94

VIOL SET HOLD CSO EDGE 24-96

VIOL SET HOLD CSO LEV 24-95

VLOWer 20-91

VMAX 20-92

VMIDdle 20-94

VMIN 20-95

VPP 20-97

VRMS 20-99
VSTArt 19-12
VSTOp 19-14
VTIMe 20-101
VTOP 20-102
VUPPer 20-104
Wait-to-Continue (*WAI) 7-24
WAVeform BYTeorder 25-6
WAVeform DATA 25-11
WAVeform FORMat 25-32
WAVeform PREamble 25-36
WAVeform SOURce 25-41
WAVeform VIEW 25-44
WINDow DEFault 18-7
WINDow DELay 23-10
WINDow POSition 23-12
WINDow RANGe 23-13
WINDow SCALe 23-14
WINDow SOURce 18-8
WINDow X1PositionlLLIMit 18-9
WINDow X2Position/RLIMit 18-10
WINDow Y1Position/ TLIMit 18-11
WINDow Y2Position/BLIMit 18-12
X1Position 19-16
X1Ylsource 19-18
X2Position 19-17
X2Y2source 19-19
XOFF'set 26-6
XRANge 26-7
Y1Position 19-21
Y2Position 19-22
YOFFset 26-8
YRANge 26-9
command
execution and order 3-4
structure 1-15
Command and Data Concepts
GPIB 2-6
Command Error 29-5
Status Bit 4-3
command language
HP 545XX Oscilloscopes 28-2
HP 547XX Oscilloscopes 27-2
Command Tree 5-6, 5-8, 5-9, 5-11
Command Types 5-6
commands
SYSTem LANGuage 27-2, 28-2
commands embedded in program

Index-4

Index

messages 1-13
commas and spaces 1-5
comma-separated
variable file format 6-15
Common Command Header 1-7
Common Commands 7-2
Clear Status (*CLS) 7-4
Event Status Enable (*ESE) 7-5
Event Status Register (FESR) 7-7
Identification Number (¥*IDN) 7-9
Learn (*LRN) 7-10
Operation Complete (*OPC) 7-12
Option (*OPT?) 7-13
Power-on Status Clear (*PSC?) 7-14
Recall (*RCL) 7-15
Reset (*RST) 7-16
Save (*SAV) 7-17
Service Request Enable (*SRE) 7-18
Status Byte (*STB?) 7-20
Test (*TST?) 7-23
Trigger (*TRG) 7-22
Wait-to-Continue (*WAI) 7-24
within a program message 7-3
Communicating Over the GPIB Interface
2-7
Communicating Over the LAN Interface
2-8
COMPlete 10-7
COMPlete query 25-8
COMPlete STATe 10-9
compound command header 1-6
compound queries 3-4
Computer Code and Capability 2-5
concurrent commands 5-13
CONDition
and STATe 24-39
in TRIG ADV PATTern 24-34
in TRIG ADV STATe 24-39
CONFig 10-10
CONNect 14-8
CONTinue 11-7
conventions of programming 5-2
converting waveform data
from data value to Y-axis units 25-4
sample program 6-14
COUNt 10-5
in MTESt AVERage command 21-17
COUNt query 25-9

COUPling

in TRIGger EDGE 24-17
COUPling query 25-10
coupling, input 12-5, 15-4
CREate

in MTESt AMASk command 21-7
CROSsing

in MEASure CGRade command 20-7
CTClitter

in MEASure command 20-14
CURSor? 19-3

D
DATA 25-11
data
acquisition 25-3
conversion 25-4
flow 5-3
data in a learnstring 1-4
data in a program 1-5
Data Mode
GPIB 2-6
Data Structures
and Status Reporting 4-5
data transmission mode
and FORMat 25-32
DATA? 14-9
DATE 9-3
DCDistortion
in MEASure CGRade command 20-8
DCOLor 14-10
DDE bit 7-6, 7-8
DEBug 9-4
decimal 32 (ASCII space) 1-5
Decision Chart for Status Reporting 4-19
DEFault
in HISTogram WINDow command
18-7
Default
GPIB Address 2-7
Startup Conditions 2-4
Default Startup Conditions 2-4
DEFine 20-16
defining functions 16-2
def-length block response data 1-20
DELay 23-3
in TRIG ADV EDLY EVENt 24-47
in TRIG ADV TDLY 24-56

delay
and WINDow DELay 23-10
delay trigger modes 24-43, 24-52
DELete 13-4, 21-21
deleting files 13-4
DELTatime 20-20
and DEFine 20-16
derivative of functions 16-7
Device Address
GPIB 2-7
LAN 2-8
device address 1-3, 1-4
Device Clear (DCL) 2-9
Device Clear Code and Capability 2-5
Device Dependent Error (DDE), Status
Bit 4-4
Device- or Oscilloscope-Specific Error
29-7
Device Trigger Code and Capability 2-5
device-dependent data 1-20
DFREQuency
in MEASure FFT command 20-26
DIFF 16-7
digital bandwidth limit filter 10-6
DIGitize 8-7
setting up for execution 10-2
Digitize
Aborting 2-9
DIRectory? 13-5
Disabling Serial Poll 2-9
discrete derivative of functions 16-7
Disk Commands 13-2
CDIRectory 13-3
DELete 13-4
DIRectory? 13-5
LOAD 13-6
MDIRectory 13-7
PWD? 13-8
SIMage 13-9
STORe 13-10
DISPlay 12-4, 16-8, 26-3
DISPlay Commands
CGRade 14-3
CGRADE LEVels? 14-5
CGRade LEVels? 14-5
Display Commands 14-2
COLumn 14-7
CONNect 14-8

Index-5

Index

DATA? 14-9
DCOLor 14-10
GRATicule 14-11
GRATicule INTensity 14-11
LINE 14-13
PERSistence 14-14
ROW 14-15
SCOLor 14-16
SSAVer 14-19
SSAVer AAFTer 14-19
STRing 14-20
TEXT 14-21
display persistence 14-14
DIVide 16-9
dividing functions 16-9
DMAGnitude
in MEASure FFT command 20-27
DPRinter 17-4
Driver Electronics Code and Capability
2-5
DSP (display) 9-6
duplicate mnemonics 1-8
DUTYcycle 20-22

E
EADapter 12-10, 15-7
ECoupling 12-12, 15-9
EDGE

in TRIG ADV UDTV 24-68

trigger mode 24-15
EDGE trigger commands 24-15
EHEight

in MEASure CGRade command 20-9
Ellipsis

.. 1-5
embedded

commands 1-13

strings 1-3, 1-4, 1-12
ENABIle 21-22
Enable Register 7-3
ENCode

in TRIG ADV COMM 24-27
End Of String (EOS) 1-12
End Of Text (EOT) 1-12
End-Or-Identify (EOI) 1-12
ENUMber

in TRIG ADV UDTV 24-69
EOI and IEEE 488.2 5-13

equipment for calibration 11-3
equivalent time mode 10-12
error
in measurements 20-4
messages 29-2
numbers 29-4
query interrupt 1-9, 1-18
error checking
sample program 6-10
Error Messages table 29-9
error queue 29-3
and status reporting 4-17
overflow 29-3
ERRor? 9-7
errors
exceptions to protocol 3-4
ESB (Event Status Bit) 4-4, 7-19, 7-21
ESB (Event Summary Bit) 7-5
*ESE (Event Status Enable) 7-5
ESR (Standard Event Status Register)
4-11
ETIMe 10-12
event monitoring 4-2
Event Registers Default 2-4
Event Status Bit (ESB) 4-4
Event Status Enable (*ESE)
Status Reporting 4-12
Event Summary Bit (ESB) 7-5
EWIDth
in MEASure CGRade command
20-10
EWINdow, and DEFine 20-17
Example Program 1-15
in initialization 1-15
example programs
C and BASIC 6-2
exceptions to protocol 3-4
EXE bit 7-6, 7-8
executing DIGITIZE 10-2
execution
errors, and command errors 29-5
of commands and order 3-4
Execution Error 29-6
Execution Error (EXE), Status Bit 4-3
exponential notation 1-11
exponents 1-11
External Channel Commands 15-2
BWLimit 15-3

INPut 15-4
PROBe 15-5
PROBe SKEW 15-15
RANGe 15-16
UNITs 15-17
External Commands
EADapter 15-7
PROBe EGAin 15-11
PROBe EOFFset 15-12
PROBe ID? 15-14
EXTernal PROBe ID? 15-14

F
FACTors 17-6
FAlLures?

in MTESt COUNt command 21-18
fall time measurement setup 20-4
FALLtime 20-24
FFT Commands 20-4
FFTMagnitude 16-14
FFTPhase 16-15
FIELd

in TRIG ADV STV 24-61
filter, internal low-pass 12-3, 15-3
filtering 10-6
flow of acquired data 5-3
FORMat 25-32

and DATA 25-13
formatting query responses 9-2
fractional values 1-11
FREQuency 20-33

in FUNCtion FFT command 16-10

in MEASure FF'T command 20-28
frequency measurement setup 20-4
full-scale vertical axis 12-21
FUNCtion 16-4
function

and vertical scaling 16-28

time scale 16-3
Function Commands 16-2

ADD 16-5

AVERage 16-6

DIFF 16-7

DISPlay 16-8

DIVide 16-9

FFT FREQuency 16-10

FFT RESolution 16-11

FFT WINDow 16-12

Index-6

Index

FFTMagnitude 16-14
FFTPhase 16-15
FUNCtion? 16-4
HORizontal 16-16
HORizontal POSition 16-17
HORizontal RANGe 16-18
INTegrate 16-19

INVert 16-20

MAGNIify 16-21
MAXimum 16-22
MEASurement 16-23
MINimum 16-25
MULTiply 16-26

OFFSet 16-27

RANGe 16-28

SUBTract 16-29

VERSus 16-30

hardcopy of the screen 17-2
hardcopy output and message
termination 3-4
HEADer 9-8
header
stripped 6-13
within instruction 1-4
headers 1-4
types 1-6
HELP HEADers 9-10
Histogram Commands 18-2
AXIS 18-4
MODE 18-5
SCALe SIZE 18-6
WINDow DEFault 18-7
WINDow SOURce 18-8
WINDow X1Position|LLIMit 18-9

VERTical 16-31
functional elements of protocol 3-3
functions

WINDow X2Position/RLIMit 18-10
WINDow Y1Position| TLIMit 18-11
WINDow Y2PositionIBLIMit 18-12

Memory Test (n/a) 28-19

Multiple Memory (n/a) 28-18

Pixel Memory (n/a) 28-20

Root 28-30

Self-Test 28-21

Sequential (n/a) 28-22

System 28-23

Time Base 28-24

Trigger 28-25

Waveform 28-28

Waveform Memory 28-29
HP 547XX Commands

Acquire 27-5

Calibrate 27-6

Channel 27-7

Common 27-30

Disk 27-8

Display 27-9

External 27-10

FFT 27-11

Function 27-12
Hardcopy 27-13

and VIEW 25-44 HITS
combining in instructions 1-7 in MEASure HISTogram command

FWAVeforms? 20-35 Limit Test (n/a) 27-14
in MTESt COUNt command 21-19 HOLDoff Marker 27-15
in TRIGger 24-9 Measure 27-16
G HORizontal 16-16 Memory Test (n/a) 27-18
horizontal Multiple Memory (n/a) 27-17

gain and offset of a probe 11-4
generating service request
sample program 6-16, 6-18, 6-19
GLITch range, and XRANge 26-7
trigger mode 24-21 scaling and functions 16-3
glitch HORizontal POSition 16-17
trigger mode 24-20 HORizontal RANGe 16-18
GPIB Host language 1-4
HP 545XX Commands

Pixel Memory (n/a) 27-19
Root 27-29

Self-Test 27-20
Sequential (n/a) 27-21
System 27-22

Time Base 27-23

Trigger 27-24

Waveform 27-27

functions, controlling 23-2
offset, and XOFF'set 26-6

Interface Connector 2-3

GRATicule 14-11
HARDcopy AREA 17-3
Group Execute Trigger (GET) 2-9

H
Halting bus activity 2-9
HAMPlitude 21-23
Hardcopy Commands 17-2
AREA 17-3
DPRinter 17-4
FACTors 17-6
IMAGe 17-7
PRINters? 17-8

Acquire 28-5
Calibrate 28-6
Channel 28-7
Common 28-31
Disk 28-8
Display 28-9
External 28-10
FFT (n/a) 28-11
Function 28-12
Hardcopy 28-13
Limit Test (n/a) 28-14
Marker 28-15
Measure 28-16

Waveform Memory 27-28
HP BASIC 5.0 1-2
HTHReshold 24-10
hue 14-17
HYSTeresis

in TRIGger 24-11

I
*IDN? (Identification Number) 7-9
IEEE 488.1 3-2

and IEEE 488.2 relationship 3-2
IEEE 488.2 3-2

compliance 3-2

Index-7

Index

conformity 1-2

Standard 1-2

Standard Status Data Structure

Model 4-2

IMAGe 17-7
image specifier, -K 9-16
image specifiers

and DATA 25-11

and PREamble 25-37
IMPedance 21-24
impedance, input 12-5, 15-4
IMPedance?

in MTESt PROBe command 21-30
individual commands language 1-2
Infinity Representation 5-13
initialization 1-14

event status 4-2

10 routine 6-5

sample program 6-4
initializing oscilloscope

sample program 6-6, 6-17
INPut 12-5, 15-4
Input Buffer

Clearing 2-9
input buffer 3-3

default condition 3-4
input coupling

and COUPling? 25-10
instruction headers 1-4
Instrument Address

GPIB 2-7
instrument status 1-21
integer definition 1-11
INTegrate 16-19
intensity 14-11
Interface

Capabilities 2-5

Clear (IFC) 2-9

GPIB Select Code 2-7
interface

functions 2-2
interface, initializing 1-14
internal low-pass filter 12-3, 15-3
INTerpolate 10-11
interpreting commands, parser 3-3
interrupted query 1-9, 1-18
Introduction to Programming 1-2
INVert 16-20, 21-26

inverting functions 16-20

J
JITTer
in MEASure CGRade command
20-11
JITTer:DIRection 20-53
JITTer:STATistics 20-565

K
-K 9-16
K, and DATA 25-11

L
LAMPIlitude 21-27
LANGuage 9-12
language

HP 545XX Oscilloscopes 28-2

HP 547XX Oscilloscopes 27-2
language for program examples 1-2
Learn (*LRN) 7-10
learnstring block data 1-4
LEVel

in TRIG ADV COMM 24-28

in TRIGger 24-12
LEVels?

in DISPlay CGRade command 14-5
LF/HF reject, input 12-5, 15-4
LINE 14-13

in TRIG ADV STV 24-62
linefeed 1-12
List of Error Messages 29-9
Listener Code and Capability 2-5
Listeners, Unaddressing All 2-9
LOAD 13-6, 21-28, 26-4
loading and saving 13-2
LOGic

and STATe 24-40

in TRIG ADV PATT 24-35

in TRIG ADV STATe 24-40
LONG

and FORMat 25-33
LONGform 9-13
long-form headers 1-10
lowercase 1-10

headers 1-10
low-pass filter, internal 12-3, 15-3
*LRN (Learn) 7-10

*LRN?

and SYSTem SETup? 9-16
LSBFirst, and BYTeorder 25-6
LTHReshold 24-13
LTYPe

and STATe 24-41

in TRIG ADV STATe 24-41
luminosity 14-17

M
M1S
in MEASure HISTogram command
20-41
M2S
in MEASure HISTogram command
20-43
M3S
in MEASure HISTogram command
20-45
MAGN:ify 16-21
MAGNitude
in MEASure FFT command 20-29
MAIN, and VIEW 25-44
making measurements 20-4
Marker Commands 19-2
CURSor? 19-3
MEASurement READout 19-4
MODE 19-5
TDELta? 19-6
TSTArt 19-7
TSTOp 19-9
VDELta? 19-11
VSTArt 19-12
VSTOp 19-14
X1Position 19-16
X1Ylsource 19-18
X2Position 19-17
X2Y2source 19-19
XDELta? 19-20
Y1Position 19-21
Y2Position 19-22
YDELta? 19-23
Mask Test Commands 21-2
ALIGn 21-4
AlignFIT 21-5
AMASk CREate 21-7
AMASKk SAVEISTORe 21-9
AMASk SOURce 21-8

Index-8

Index

AMASKk UNITs 21-10
AMASKk XDELta 21-11
AMASk YDELta 21-13
AUTO 21-15
AVERage 21-16
AVERage COUNt 21-17
COUNt FAILures? 21-18
COUNt FWAVeforms? 21-19
COUNt WAVeforms? 21-20
DELete 21-21
ENABIle 21-22
HAMPIlitude 21-23
IMPedance 21-24
INVert 21-26
LAMPIitude 21-27
LOAD 21-28
NREGions? 21-29
PROBe IMPedance? 21-30
RUMode 21-31
RUMode SOFailure 21-33
SCALe

BIND 21-34

Y1 21-37
SCALe X1 21-35
SCALe XDELta 21-36
SCALe Y1 21-37
SCALe Y2 21-38
SOURce 21-39
STARt | STOP 21-40
STIMe 21-41, 21-43
TITLe? 21-42

mask, Service Request Enable Register

7-18

Master Summary Status (MSS)

and *STB 7-20
Status Bit 4-4

MAV (Message Available) 4-4

bit 7-19, 7-21

MAXimum 16-22
MDIRectory 13-7
MEAN

in MEASure HISTogram command
20-37

MEASure

RESults and statistics 20-77

Measure Commands 20-2

AREA 20-6
CGRade CROSsing 20-7

CGRade DCDistortion 20-8
CGRade EHEight 20-9
CGRade EWIDth 20-10
CGRade JITTer 20-11
CGRade QFACtor 20-12
CLEar 20-13

CTClitter 20-14

DEFine 20-16
DELTatime 20-20
DUTYcycle 20-22
FALLtime 20-24

FFT DFRequency 20-26
FFT DMAGnitude 20-27
FFT FREQuency 20-28
FFT MAGNitude 20-29
FFT PEAK1 20-30

FFT PEAK2 20-31

FFT THReshold 20-32
FREQuency 20-33
HISTogram HITS 20-35
HISTogram M1S 20-41
HISTogram M2S 20-43
HISTogram M3S 20-45
HISTogram MEAN 20-37
HISTogram MEDian 20-39
HISTogram PEAK 20-47
HISTogram PP 20-49
HISTogram STDDev 20-51
JITTer:DIRection 20-53
JITTer:STATistics 20-55
NWIDth 20-57
OVERshoot 20-59
PERiod 20-61

PHASe 20-63

PREShoot 20-65
PWIDth 20-67

RESults? 20-69
RISetime 20-72
SCRatch 20-74
SENDvalid 20-75
SOURce 20-76
STATistics 20-77
TEDGe 20-78

TMAX 20-81

TMIN 20-82

TVOLt 20-83
VAMPIlitude 20-85
VAVerage 20-87

VBASe 20-89
VLOWer 20-91
VMAX 20-92
VMIDdle 20-94
VMIN 20-95
VPP 20-97
VRMS 20-99
VTIMe 20-101
VTOP 20-102
VUPPer 20-104
MEASurement 16-23
measurement
error 20-4
readout 19-4
setup 20-4
source 20-76
MEDian
in MEASure HISTogram command
20-39
memories, and VIEW 25-44
message
queue 4-18
termination with hardcopy 3-4
Message (MSG), Status Bit 4-4
Message Available (MAV)
and *OPC 7-12
Status Bit 4-4
Message Communications and System
Functions 3-2
Message Event Register 4-10
message exchange protocols
of IEEE 488.2 3-3
MIN 16-25
Mnemonic Truncation 5-5
MODE 10-12, 18-5, 19-5
in TRIGger MODE 24-6, 24-8
MODel? 8-10
monitoring events 4-2
MPRotect 11-8
MSBFirst, and BYTeorder 25-6
MSG
bit in the status register 4-10
MSG bit 7-19, 7-21
MSS bit and *STB 7-20
MTEE 8-8
multiple
program commands 1-13
queries 1-21

Index-9

Index

subsystems 1-13
Multiple numeric variables 1-21
MULTiply 16-26

N

NL (New Line) 1-12

NREGions? 21-29

NTSC TV trigger mode 24-59

numeric
program data 1-11
variable example 1-19
variables 1-19

NWIDth 20-57

o
OFFSet 12-6, 16-27
offset and gain of a probe 11-4
*OPC (Operation Complete) 7-12
OPC bit 7-6, 7-8
OPEE 8-11
OPER bit 7-19, 7-21
OPER query 8-12
operands and time scale 16-3
operating the disk 13-2
Operation Complete (*OPC) 7-12
Status Bit 4-4
operation status 4-2
*OPT (Option) 7-13
Options, Program Headers 1-10
order of commands and execution 3-4
oscilloscope
trigger modes and commands 24-6
Oscilloscope Default GPIB Address 2-7
OUTPut 11-9
output buffer 1-9, 1-18
Output Command 1-4
Output Queue
Clearing 2-9
output queue 1-9, 4-17
default condition 3-4
definition 3-3
OUTPUT statement 1-3
overlapped and sequential commands
5-13
OVERshoot 20-59
OVLenable 8-13
OVLRegister query 8-14

P
PAL-M TV trigger mode 24-59
Parallel Poll Code and Capability 2-5
parametric measurements 20-2
Parser

Resetting 2-9
parser 1-14, 3-3

default condition 3-4

definition 3-3
passing values across the bus 1-9
passive probes and calibration 11-4
PATTern

in TRIG ADV COMM 24-29
PDETect 10-12
PEAK

in MEASure HISTogram command

20-47

PEAK1

in MEASure FFT command 20-30
PEAK2

in MEASure FFT command 20-31
peak-to-peak voltage, and VPP 20-97
Pending Commands, Clearing 2-9
PERiod 20-61
period measurement setup 20-4
PERsistence 14-14
PGTHan

in TRIG ADV UDTV 24-70
PHASe 20-63
PLTHan

in TRIG ADV UDTV 24-71
POINts 10-13
POINts AUTO 10-15
POINts query 25-35
POLarity

and GLITch 24-22

in TRIG ADV COMM 24-30

in TRIG ADV UDTV 24-72

in TRIGger GLITch 24-22
PON bit 7-8
POSition 23-5
position

and WINDow POSition 23-12
pound sign (#) and block data 1-20
Power On (PON) status bit 4-3, 7-6
Power-up Condition 2-4
PP

in MEASure HISTogram command

20-49

PREamble 25-36

and DATA 25-13
PREShoot 20-65
PRINt 8-15
PRINters? 17-8
printing

specific screen data 17-3

the screen 17-2
PROBe 12-7, 15-5
PROBe ATTenuation 12-9, 15-6
probe attenuation factor 11-4
Probe Calibration 11-4
PROBe EGAin 12-14, 15-11
PROBe EOFFset 12-15, 15-12
PROBe GAIN 12-16, 15-13
PROBe PROTection CLEar 12-19
PROBe PROTection? 12-20
PROBe SKEW 12-18, 15-15
program data 1-5
Program example 1-15
Program Header Options 1-10
program message terminator 1-12
program overview

initialization example 1-15
programming basics 1-2
Programming Conventions 5-2
programming examples language 1-2
Programming Getting Started 1-13
protocol

exceptions and operation 3-4
*PSC (Power-on Status Clear) 7-14
pulse width measurement setup 20-4
pulse width violation mode 24-77
PWD? 13-8
PWIDth 20-67

Q

QFACtor
in MEASure CGRade command

20-12

Query
*SRE? 7-18

quantization levels 6-14

Query 1-4, 1-9
*ESE? (Event Status Enable) 7-5
*ESR? (Event Status Register) 7-7
*STB? (Status Byte) 7-20

Index-10

Index

AER? 8-3

AREA? 17-3

AttenSET? 22-3
AVERage? 10-4
BANDpass? 25-5
BWLimit? 10-6, 12-3, 15-3
BYTeorder? 25-6
CHANnel PROBe ID? 12-17
CLIPped? 25-7

COLumn? 14-7

COMPlete STATe? 10-9
COMPlete? 10-8, 25-8
CONFig? 10-10

CONNect? 14-8

COUNt? 10-5, 21-17, 25-9
COUPling? 25-10
CURSor? 19-3

DATA? 14-9, 25-12
DATE? 9-3

DEBug? 9-5

DELay? 23-4

DELTatime? 20-21
DIRectory? 13-5

DISPlay? 12-4, 16-8, 26-3
DPRinter? 17-5

DSP? 9-6

DUTYcycle? 20-23
EADapter? 12-11
ECoupling? 12-13, 15-10
ERRor? 9-7

EXT INPut? 15-4

EXT PROBe ATTenuation? 15-6
EXT PROBe EADapter? 15-8
EXT PROBe EGAIn? 15-11
EXT PROBe EOFFset? 15-12
EXT PROBe ID? 15-14
EXT PROBe SKEW? 15-15
EXT PROBe? 15-5

EXT RANGe? 15-16

EXT UNITs? 15-17
FACTors? 17-6
FALLtime? 20-25

FFT RESolution? 16-11
FORMat? 25-34
FREQuency? 20-34
FUNCtion? 16-4
GRATicule? 14-12
HEADer 9-8

HELP HEADers? 9-10

HORizontal POSition? 16-17
HORizontal RANGe? 16-18
HORizontal? 16-16

Identification Number (*IDN?) 7-9
IMAGe? 17-7

INPut? 12-5

INTerpolate? 10-11
JITTer:DIRection? 20-53
JITTer:STATistics? 20-56
LANGuage? 9-12

Learn (*LRN?) 7-10

LONGform? 9-13

MEASure FALLtime? 20-25
MEASure FFT DFRequency? 20-26
MEASure FFT DMAGnitude? 20-27
MEASure FFT FREQuency? 20-28
MEASure FFT MAGNitude? 20-29
MEASure FFT PEAK1? 20-30
MEASure FFT PEAK2? 20-31
MEASure FFT THReshold? 20-32
MEASurement? 16-24

MODE? 10-12, 19-5

MODel? 8-10

MPRotect? 11-8

NWIDth? 20-58

OFFSet? 12-6, 16-27

Option (*OPT?) 7-13

OUTPut? 11-9

OVERshoot? 20-60

PERiod? 20-62

PERSistence? 14-14

PHASe? 20-64

POINts AUTO? 10-15

POINts? 10-14, 25-35

POSition? 23-5

Power-on Status Clear (*PSC?) 7-14
PREamble? 25-38

PREShoot? 20-66

PRINters? 17-8

PROBe ATTenuation? 12-9
PROBe EGAin? 12-14

PROBe EOFFset? 12-15

PROBe GAIN? 12-16, 15-13
PROBe SKEW? 12-18

PROBe? 12-8

PWD? 13-8

PWIDth? 20-68

RANGe? 12-21, 16-28, 23-6

REFerence? 23-7

RESults? 20-69

RISetime? 20-73

ROW? 14-15

SCALe? 12-22, 23-8

SCOLor? 14-18

SCOPETEST? 22-5

SDONe? 11-10

SENDvalid? 20-75

SETup? 9-15

SKEW? 11-11

SOURce? 20-76, 25-41

SRATe AUTO? 10-18

SRATe? 10-17

SSAVer AAFTer? 14-19

SSAVer? 14-19

STATistics? 20-77

Status Byte (*STB) 7-20

STATus? 11-13

TDELta? 19-6

TEDGe? 20-79

TER? 8-23

Test (*TST?) 7-23

TMAX? 20-81

TMIN? 20-82

TRIG ADV COMM BWID? 24-26

TRIG ADV COMM ENCode? 24-27

TRIG ADV COMM LEVel? 24-28

TRIG ADV COMM PATTern? 24-29

TRIG ADV COMM POLarity? 24-30

TRIG ADV COMM SOURce? 24-31

TRIG ADV EDLY ARM SLOPe? 24-46

TRIG ADV EDLY ARM SOURce
24-45

TRIG ADV EDLY EVENt DELay?
24-47

TRIG ADV EDLY EVENt SLOPe?
24-49

TRIG ADV EDLY EVENt SOURce?
24-48

TRIG ADV EDLY TRIG SLOPe?
24-51

TRIG ADV EDLY TRIG SOURce?
24-50

TRIG ADV PATT COND? 24-34

TRIG ADV PATT LOGic? 24-35

TRIG ADV STATe CLOCK? 24-38

Index-11

Index

TRIG ADV STATe CONDition? 24-39

TRIG ADV STATe LOGic? 24-40

TRIG ADV STATe LTYPe? 24-41

TRIG ADV STATe SLOPe? 24-42

TRIG ADV STV FIELd? 24-61

TRIG ADV STV LINE? 24-62

TRIG ADV STV SOURce? 24-63

TRIG ADV STV SPOLarity? 24-64

TRIG ADV TDLY ARM SLOPe? 24-55

TRIG ADV TDLY ARM SOURce?
24-54

TRIG ADV TDLY DELay? 24-56

TRIG ADV TDLY TRIG SLOPe?
24-68

TRIG ADV TDLY TRIG SOURce?
24-67

TRIG ADV UDTV EDGE? 24-68

TRIG ADV UDTV ENUMber? 24-69

TRIG ADV UDTV PGTHan? 24-70

TRIG ADV UDTV PLTHan? 24-71

TRIG ADV UDTV POLarity? 24-72

TRIG ADV UDTV SOURce? 24-74

TRIG ADV VIOL MODE? 24-76

TRIG ADV VIOL PWID DIR? 24-81

TRIG ADV VIOL PWID POL? 24-80

TRIG ADV VIOL PWID WIDT? 24-82

TRIG ADV VIOL PWIDth? 24-79

TRIG ADV VIOL SET HOLD CSO
EDGE? 24-96

TRIG ADV VIOL SET HOLD CSO
LEV? 24-95

TRIG ADV VIOL SET HOLD CSO?
24-94

TRIG ADV VIOL SET HOLD DSO
HTHR? 24-98

TRIG ADV VIOL SET HOLD DSO
LTHR? 24-99

TRIG ADV VIOL SET HOLD DSO?
24-97

TRIG ADV VIOL SET HOLD TIME?
24-100

TRIG ADV VIOL SET MODE? 24-86

TRIG ADV VIOL SET SET CSO
EDGE? 24-89

TRIG ADV VIOL SET SET CSO LEV?
24-88

TRIG ADV VIOL SET SET CSO?
24-87

TRIG ADV VIOL SET SET DSO
HTHR? 24-91

TRIG ADV VIOL SET SET DSO
LTHR? 24-92

TRIG ADV VIOL SET SET DSO?
24-90

TRIG ADV VIOL SET SET TIME?
24-93

TRIG ADV VIOL SET SHOL CSO
EDGE? 24-103

TRIG ADV VIOL SET SHOL CSO
LEV? 24-102

TRIG ADV VIOL SET SHOL CSO?
24-101

TRIG ADV VIOL SET SHOL DSO
HTHR? 24-105

TRIG ADV VIOL SET SHOL DSO
LTHR? 24-106

TRIG ADV VIOL SET SHOL DSO?
24-104

TRIG ADV VIOL SET SHOL HTIMe?
24-108

TRIG ADV VIOL SET SHOL STIMe?
24-107

TRIG ADV VIOL TRAN SOUR
HTHR? 24-113

TRIG ADV VIOL TRAN SOUR LTHR?
24-114

TRIG ADV VIOL TRAN SOUR?
24-112

TRIG ADV VIOL TRAN TYPE?
24-115

TRIG ADV VIOL TRAN? 24-111

TRIG EDGE COUPling? 24-17

TRIG EDGE SLOPe? 24-18

TRIG EDGE SOURce? 24-19

TRIG GLITch POLarity? 24-22

TRIG GLITch SOURce? 24-23

TRIG HOLDoff? 24-9

TRIG HTHR? 24-10

TRIG HYSTeresis? 24-11

TRIG LEVel? 24-12

TRIG LTHR? 24-13

TRIG SWEep? 24-14

TRIGger GLITch WIDTh? 24-24

TRIGger MODE? 24-8

TSTArt? 19-7

TSTOp? 19-10

TVOLt? 20-83
TYPE? 25-42
UNITs? 12-23
VAMPlitude? 20-86
VAVerage? 20-88
VBASe? 20-90
VDELta? 19-11
VIEW? 23-9, 25-45
VLOWer? 20-91
VMAX? 20-93
VMIDdle? 20-94
VMIN? 20-96

VPP? 20-98
VRMS? 20-100
VSTArt? 19-12
VSTOp? 19-14
VTIMe? 20-101
VTOP? 20-103
VUPPer? 20-105
WINDow DELay? 23-11

WINDow POSition? 23-12

WINDow RANGe? 23-13
WINDow SCALe? 23-14
X1Position? 19-16
X1Yl1source? 19-18
X2Position? 19-17
X2Y2source? 19-19
XDELta? 19-20
XDISplay? 25-46
XINCrement? 25-47
XOFFset? 26-6
XORigin? 25-48
XRANge? 25-49, 26-7
XREFerence? 25-50
XUNits? 25-51
Y1Position? 19-21
YDELta? 19-23
YDISplay? 25-52
YINCrement? 25-53
YOFFset? 26-8
YORigin? 25-54
YRANge? 25-55, 26-9
YREFerence? 25-56
YUNits? 25-57

query

headers 1-9
interrupt 1-9
response 1-18

Index-12

Index

responses, formatting 9-2
Query Error 29-8
QYE Status Bit 4-4
query interrupt 1-18
question mark 1-9
queue, output 1-9
quoted strings 14-13
quotes, with embedded strings 1-12
QYE bit 7-6, 7-8

R
RANGe 12-21, 15-16, 16-28, 23-6
range
and WINDow RANGe 23-13
*RCL (Recall) 7-15
README file
for sample programs 6-20
real number definition 1-11
real time mode 10-12
and interpolation 10-11
RECall 8-16
Receiving Common Commands 7-3
Receiving Information from the
Instrument 1-18
REFerence 23-7
register
save/recall 7-15, 7-17
Standard Event Status Enable 4-12
reliability of measured data 4-2
Remote Local Code and Capability 2-5
remote programming basics 1-2
REPetitive 10-12
representation of infinity 5-13
Request Control (RQC)
Status Bit 4-4
Request Service (RQS)
Default 2-4
status bit 4-4
Reset (*RST) 7-16
Resetting the Parser 2-9
RESolution
in FUNCtion FFT command 16-11
response
data 1-20
generation 5-13
responses, buffered 5-13
result state code, and SENDvalid 20-75
RESults? 20-69

Returning control to system computer
2-9
rise time measurement setup 20-4
RISetime 20-72
RMS voltage, and VRMS 20-99
Root level commands 8-2
AER? 8-3
AUToscale 8-4
BLANk 8-5
CDISplay 8-6
DIGitize 8-7
MODel? 8-10
MTEE 8-8
OPEE 8-11
OPER? 8-12
OVLenable 8-13
OVLEnable? 8-13
OVLRegister? 8-14
PRINt 8-15
RECall 8-16
RUN 8-17
SERial 8-18
SINGle 8-19
STOP 8-20
STORe 8-21
STORe WAVEform 8-22
TER? 8-23
VIEW 8-24
ROW 14-15
RQC (Request Control) 4-4
bit 7-6, 7-8
RQS (Request Service) 4-4
and *STB 7-20
Default 2-4
RQS/MSS bit 7-21
*RST (Reset) 6-17, 7-16
RTIMe 10-12
rule of truncation 5-5
rules of traversal 5-7
RUMode 21-31
RUN 8-17
and GET relationship 2-9

S

sample programs 6-2
segments 6-3

sample rate 10-16
and bandwidth limit 10-6

sampling mode 10-12
saturation 14-17
*SAV (Save) 7-17
SAVE 26-5
save/recall register 7-15, 7-17
SAVEISTORe
in MTESt AMASk command 21-9
saving and loading 13-2
SCALe 12-22,23-8
Y121-37
SCOLor 14-16
SCOPETEST
in self-test commands 22-5
SCRatch 20-74
SCReen
HARDcopy AREA 17-3
SDONe? 11-10
segments of sample programs 6-3
Selected Device Clear (SDC) 2-9
Selecting Multiple Subsystems 1-13
self test 7-23
Self-Test Commands 22-2
AttenSET? 22-3
CANCel 22-4
SCOPETEST 22-5
semicolon usage 1-7
sending compound queries 3-4
SENDvalid 20-75
separator 1-5
Sequential and Overlapped Commands
5-13
SERial (SERial number) 8-18
Serial Poll
Disabling 2-9
serial poll
(SPOLL) in example 4-9
of the Status Byte Register 4-9
serial prefix, reading 7-9
Service Request
Code and Capability 2-5
sample program 6-16
Service Request Enable
(*SRE) 7-18
Register (SRE) 4-10
Register Bits 7-19
Register Default 2-4
setting
bits in the Service Request Enable

Index-13

Index

Register 4-10
horizontal tracking 16-16
Standard Event Status Enable
Register bits 4-12
time and date 9-17
TRG bit 4-10
voltage and time markers 19-2
setting up
for programming 1-13
service request 6-18
the instrument 1-14
SETup 9-15
setup recall 7-15
setup violation mode 24-83
setup, storing 13-10
Short form 1-10
short-form headers 1-10
short-form mnemonics 5-5
SIMage 13-9
simple command header 1-6
SINGle 8-19
SIZE
in HISTogram SCALe command 18-6
SKEW, in CALibrate command 11-11
SLOPe
and STATe 24-42
in TRIG ADV EDLY ARM 24-46
in TRIG ADV EDLY EVENt 24-49
in TRIG ADV EDLY TRIGger 24-51
in TRIG ADV STATe 24-42
in TRIG ADV TDLY ARM 24-55
in TRIG ADV TDLY TRIGger 24-58
in TRIGger EDGE 24-18
SOFailure
in MTESt RUMode command 21-33
software version, reading 7-9
SOURce 20-76, 21-39, 25-41
and GLITch 24-23
and measurements 20-5
in HISTogram WINDow command
18-8
in MTEST AMASk command 21-8
in TRIG ADV COMM 24-31
in TRIG ADV EDLY ARM 24-45
in TRIG ADV EDLY EVENt 24-48
in TRIG ADV EDLY TRIGger 24-50
in TRIG ADV STV 24-63
in TRIG ADV TDLY ARM 24-54

in TRIG ADV TDLY TRIGger 24-567
in TRIG ADV UDTV 24-73
in TRIGger EDGE 24-19
in TRIGger GLITch 24-23
spaces and commas 1-5
spelling of headers 1-10
SPOLarity
in TRIG ADV STV 24-64
SPOLL example 4-9
Square Brackets 1-5
SRATe 10-16
*SRE (Service Request Enable) 7-18
SRE (Service Request Enable Register)
4-10
SSAVer 14-19
Standard Event Status Enable Register
(SESER) 4-12
Bits 7-6
Default 2-4
Standard Event Status Register
bits 7-8
Standard Event Status Register (ESR)
4-11
Standard Status Data Structure Model
4-2
STARt 11-12
STARt I STOP 21-40
STATistics 20-77
status 1-21
of an operation 4-2
Status Byte
(*STB) 7-20
Status Byte Register 4-8, 4-9
and serial polling 4-9
bits 7-21
Status Registers 1-21, 7-3
Status Reporting 4-2
Bit Definitions 4-3
Data Structures 4-5
Status Reporting Decision Chart 4-19
STATus, in CALibrate command 11-13
*STB (Status Byte) 7-20
STDDev
in MEASure HISTogram command
20-51
STIMe 21-41, 21-43
STOP 8-20
STORe 8-21, 13-10

STORe WAVEform 8-22
storing waveform
sample program 6-15
STRing 14-20
string variables 1-19
example 1-19
string, quoted 14-13
strings, alphanumeric 1-10
STV commands 24-60
SUBTract 16-29
suffix multipliers 1-11, 3-5
suffix units 3-5
summary bits 4-8
SWEep
in TRIGger 24-14
syntax error 29-5
SYSTem
SETup and *LRN 7-11
System Commands 9-2
DATE 9-3
DEBug 9-4
DSP 9-6
ERRor? 9-7
HEADer 9-8
HELP HEADers 9-10
LANGuage 9-12
LONGform 9-13
SETup 9-15
TIME 9-17
System Computer
Returning control to 2-9

T
Talker
Code and Capability 2-5
Unaddressing 2-9
TDELta? 19-6
TEDGe
in MEASure command 20-78
temperature and calibration 11-3
TER? (Trigger Event Register) 8-23
termination of message during hardcopy
3-4
Terminator 1-12
Test (*TST) 7-23
TEXT 14-21
THReshold
in MEASure FFT command 20-32

Index-14

Index

THReshold, and DEFine 20-16, 20-17
TIME 9-17
time and date, setting 9-2
Time Base Commands 23-2
DELay 23-3
POSition 23-5
RANGe 23-6
REFerence 23-7
SCALe 23-8
VIEW 23-9
WINDow DELay 23-10
WINDow RANGe 23-13
time base reference
and DELay 23-3
time buckets
and POINts? 25-35
time difference between markers 19-6
time information
of waveform 6-15
time interval, and DELay 23-3
time scale
operands and functions 16-3
TIMebase POSition
and DELay 23-4
TITLe? 21-42
TMAX 20-80
TMIN 20-82
TOPBase, and DEFine 20-16, 20-18
transferring waveform data 25-2
sample program 6-12
transition violation mode 24-109
transmission mode
and FORMat 25-32
traversal rules 5-7
Tree Traversal
Examples 5-12
Rules 5-7
*TRG (Trigger) 7-22
TRG
bit 7-19, 7-21
bit in the status byte 4-10
Event Enable Register 4-4
Trigger
(*TRG) 7-22
*TRG status bit 4-4
Trigger Commands 24-2
TRIG ADV COMM BWID 24-26
TRIG ADV COMM ENCode 24-27

TRIG ADV COMM LEVel 24-28
TRIG ADV COMM PATTern 24-29
TRIG ADV COMM POLarity 24-30
TRIG ADV COMM SOURce 24-31
TRIG ADV EDLY ARM SLOPe 24-46
TRIG ADV EDLY ARM SOURce
24-45
TRIG ADV EDLY EVENt DELay
24-47
TRIG ADV EDLY EVENt SLOPe
24-49
TRIG ADV EDLY EVENt SOURce
24-48
TRIG ADV EDLY TRIG SLOPe 24-51
TRIG ADV EDLY TRIG SOURce
24-50
TRIG ADV PATT CONDition 24-34
TRIG ADV PATT LOGic 24-35
TRIG ADV STATe CLOCk 24-38
TRIG ADV STATe CONDition 24-39
TRIG ADV STATe LOGic 24-40
TRIG ADV STATe LTYPe 24-41
TRIG ADV STATe SLOPe 24-42
TRIG ADV STV FIELd 24-61
TRIG ADV STV LINE 24-62
TRIG ADV STV SOURce 24-63
TRIG ADV STV SPOLarity 24-64
TRIG ADV TDLY ARM SLOPe 24-55
TRIG ADV TDLY ARM SOURce
24-b4
TRIG ADV TDLY DELay 24-56
TRIG ADV TDLY TRIG SLOPe 24-58
TRIG ADV TDLY TRIG SOURce
24-67
TRIG ADV UDTV EDGE 24-68
TRIG ADV UDTV ENUMber 24-69
TRIG ADV UDTV PGTHan 24-70
TRIG ADV UDTV PLTHan 24-71
TRIG ADV UDTV POLarity 24-72
TRIG ADV UDTV SOURce 24-73
TRIG ADV VIOL MODE 24-76
TRIG ADV VIOL PWID DIR 24-81
TRIG ADV VIOL PWID POL 24-80
TRIG ADV VIOL PWID WIDT 24-82
TRIG ADV VIOL PWIDth 24-79
TRIG ADV VIOL SET HOLD CSO
24-94
TRIG ADV VIOL SET HOLD CSO

EDGE 24-96

TRIG ADV VIOL SET HOLD CSO
LEV 24-95

TRIG ADV VIOL SET HOLD DSO
24-97

TRIG ADV VIOL SET HOLD DSO
HTHR 24-98

TRIG ADV VIOL SET HOLD DSO
LTHR 24-99

TRIG ADV VIOL SET HOLD TIME
24-100

TRIG ADV VIOL SET MODE 24-86

TRIG ADV VIOL SET SET CSO 24-87

TRIG ADV VIOL SET SET CSO
EDGE 24-89

TRIG ADV VIOL SET SET CSO LEV
24-88

TRIG ADV VIOL SET SET DSO 24-90

TRIG ADV VIOL SET SET DSO
HTHR 24-91

TRIG ADV VIOL SET SET DSO
LTHR 24-92

TRIG ADV VIOL SET SET TIME?
24-93

TRIG ADV VIOL SET SHOL CSO
24-101

TRIG ADV VIOL SET SHOL CSO
EDGE 24-103

TRIG ADV VIOL SET SHOL CSO
LEV 24-102

TRIG ADV VIOL SET SHOL DSO
24-104

TRIG ADV VIOL SET SHOL DSO
HTHR 24-105

TRIG ADV VIOL SET SHOL DSO
LTHR 24-106

TRIG ADV VIOL SET SHOL HTIMe
24-108

TRIG ADV VIOL SET SHOL STIMe
24-107

TRIG ADV VIOL TRAN 24-111

TRIG ADV VIOL TRAN SOUR 24-112

TRIG ADV VIOL TRAN SOUR HTHR
24-113

TRIG ADV VIOL TRAN SOUR LTHR
24-114

TRIG ADV VIOL TRAN TYPE 24-115

TRIG EDGE COUPling 24-17

Index-15

Index

TRIG EDGE SLOPe 24-18
TRIG EDGE SOURce 24-19
TRIG GLITch POLarity 24-22
TRIG GLITch SOURce 24-23
TRIG GLITch WIDTh 24-24
TRIG HOLDoff 24-9
TRIG HTHR 24-10
TRIG HYSTeresis 24-11
TRIG LEVel 24-12
TRIG LTHR 24-13
TRIG SWEep 24-14
TRIGger MODE 24-8
TRIGger EDGE SLOPe 24-15
TRIGger EDGE SOURCce 24-15
Trigger Event Register (TRG) 4-10
trigger mode 24-6
ADVanced 24-6
advanced delay 24-43, 24-52
advanced TV 24-59, 24-65
COMM 24-25
delay 24-44, 24-53
EDGE 24-15, 24-16
GLITch 24-20, 24-21
NTSC TV 24-59
PAL-M TV 24-59
pattern 24-33
state 24-37
User Defined TV 24-65
valid commands 24-7
violation types 24-75
triggering
for User Defined TV mode 24-67
truncating numbers 1-11
Truncation Rule 5-5
*TST (Test) 7-23
TSTArt 19-7
TSTOp 19-9
TVOLt 20-83
TYPE query 25-42

U
UDTV commands 24-66
Unaddressing all listeners 2-9
UNITs 12-23, 15-17

in MTESt AMASk command 21-10
units, vertical 12-23, 15-17
UNKnown vertical units 12-23, 15-17
uppercase 1-10

headers 1-10

letters and responses 1-10
URQ bit (User Request) 7-5
User Request (URQ) status bit 4-3
User Request Bit (URQ) 7-5
User-Defined Measurements 20-4
Using the Digitize Command 1-16
USR bit 7-19, 7-21

A%

VAMPIlitude 20-85

VAVerage 20-87

VBASe 20-89

VDELta? 19-11

version of software, reading 7-9

VERSus 16-30

VERTical 16-31

vertical
axis control 12-2, 15-2
axis offset, and YRANge 26-8
scaling and functions 16-3
scaling, and YRANge 26-9

vertical axis, full-scale 12-21

vertical units 12-23, 15-17

VIEW 8-24, 23-9, 25-44

VIEW and BLANk 8-5

VIOLation MODE 24-76

violation modes for trigger 24-75

VIOLation PWIDth DIRection 24-81

VIOLation PWIDth POLarity 24-80

VIOLation PWIDth SOURce 24-79

VIOLation PWIDth WIDTh 24-82

VIOLation SETup HOLD CSOurce 24-94

VIOLation SETup HOLD CSOurce
EDGE 24-96

VIOLation SETup HOLD CSOurce
LEVel 24-95

VIOLation SETup HOLD DSOurce 24-97

VIOLation SETup HOLD DSOurce
HTHReshold 24-98

VIOLation SETup HOLD DSOurce
LTHReshold 24-99

VIOLation SETup HOLD TIME 24-100

VIOLation SETup MODE 24-86

VIOLation SETup SETup CSOurce
24-87

VIOLation SETup SETup CSOurce
EDGE 24-89

VIOLation SETup SETup CSOurce
LEVel 24-88

VIOLation SETup SETup DSOurce
24-90

VIOLation SETup SETup DSOurce
HTHReshold 24-91

VIOLation SETup SETup DSOurce
LTHReshold 24-92

VIOLation SETup SETup TIME 24-93

VIOLation SETup SHOLd CSOurce
24-101

VIOLation SETup SHOLd CSOurce
EDGE 24-103

VIOLation SETup SHOLd CSOurce
LEVel 24-102

VIOLation SETup SHOLd DSOurce
24-104

VIOLation SETup SHOLd DSOurce
HTHReshold 24-105

VIOLation SETup SHOLd DSOurce
LTHReshold 24-106

VIOLation SETup SHOLd HoldTIMe
24-108

VIOLation SETup SHOLd SetupTIMe
24-107

VIOLation TRANsition 24-111

VIOLation TRANsition SOURce 24-112

VIOLation TRANsition SOURce
HTHReshold 24-113

VIOLation TRANsition SOURce
LTHReshold 24-114

VIOLation TRANsition TYPE 24-115

VLOWer 20-91

VMAX 20-92

VMIDdle 20-94

VMIN 20-95

voltage at center screen 12-6

voltage information
of waveform 6-15

VOLTS as vertical units 12-23, 15-17

VPP 20-97

VRMS 20-99

VSTArt 19-12

VSTOp 19-14

VTIMe 20-101

VTOP 20-102

VUPPer 20-104

Index-16

Index

w
W, and DATA 25-11
*WAI (Wait-to-Continue) 7-24
Wait-to-Continue (*WAI) 7-24
WATTS as vertical units 12-23, 15-17
waveform
COUNT and COMPlete? 25-8
data and preamble 25-3
SOURce and DATA 25-11
storing 13-10
storing time and voltage 6-15
time and voltage information 6-15
view parameters 25-45
Waveform Commands 25-2
BANDpass? 25-5
BYTeorder 25-6
CLIPped? 25-7
COMPlete? 25-8
COUNt? 25-9
COUPling? 25-10
DATA 25-11
FORMat 25-32
POINts? 25-35
PREamble 25-36
TYPE? 25-42
VIEW 25-44
WAVeform SOURce 25-41
XDISplay? 25-46
XINCrement? 25-47
XORigin? 25-48
XRANge? 25-49
XREFerence? 25-50
XUNits? 25-51
YDISplay? 25-52
YINCrement? 25-53
YORigin? 25-54
YRANge? 25-55
YREFerence? 25-56
YUNits? 25-57
waveform memory
and DATA 25-11
Waveform Memory Commands 26-2
DISPlay 26-3
LOAD 26-4
SAVE 26-5
XOFF'set 26-6
XRANge 26-7
YOFFset 26-8

YRANge 26-9
waveform type

and COMPlete? 25-8

and COUNt? 25-9

and TYPE? 25-42
WAVeforms?

in MTEST COUNt command 21-20
white space (separator) 1-5
WIDTh

and GLITch 24-24

in TRIGger GLITch 24-24
WINDow

and VIEW 25-44

DELay 23-10

in FUNCtion FFT command 16-12

POSition 23-12

RANGe 23-13

SCALe 23-14
WINDow and VIEW 23-9
WORD

and FORMat 25-33

Understanding the format 25-28
writing

quoted strings 14-13

text to the screen 14-20

X
X axis, controlling 23-2
XvsY 16-30
X1
in MTESt SCALe command 21-35
X1Position 19-16
X1Position/LLIMit
in HISTogram WINDow command
18-9
X1Ylsource 19-18
X2Position 19-17, 19-22
X2Position/RLIMit
in HISTogram WINDow command
18-10
X2Y2source 19-19
X-axis
offset, and XOFFset 26-6
range, and XRANge 26-7
units and XUNits 25-51
x-axis duration
and XRANge? 25-49
XDELta

in MTESt AMASk command 21-11
in MTESt SCALE command 21-36

XDELta? 19-20

XDISplay query 25-46

XINCrement query 25-47

XOFF'set 26-6

XORigin query 25-48

XRANge 26-7

XRANge query 25-49

XREFerence? 25-50

XUNits query 25-51

Y
Y1
in MTESt SCALe command 21-37
Y1Position 19-21
in HISTogram WINDow command
18-11
Y2
in MTESt SCALe command 21-38
Y2Position
in HISTogram WINDow command
18-12
Y-axis control 12-2, 15-2
YDELta
in MTESt AMASk command 21-13
YDELta? 19-23
YDISplay? 25-52
YINCrement query 25-53
YOFFset 26-8
YORigin query 25-54
YRANge 26-9
YRANge query 25-55
YREFerence query 25-56
YUNits query 25-57

Index-17

Index

Index-18

© Copyright Agilent
Technologies 1997-2002. All
Rights Reserved.

Reproduction, adaptation, or
translation without prior
written permission is
prohibited, except as allowed
under the copyright laws.

Restricted Rights Legend.

Use, duplication or disclosure
by the U.S. Government is
subject to restrictions as set
forth in subparagraph (c¢) (1)
(i) of the Rights in Technical
Data and Computer Software
clause at DFARS
252.227-7013 for DOD
agencies, and subparagraphs
(¢) (1) and (c) (2) of the
Commercial Computer
Software Restricted Rights
clause at FAR 52.227-19 for
other agencies.

Agilent Technologies
3000 Hanover Street

Palo Alto, California 94304
U.S.A.

Document Warranty

The information contained in
this document is subject to
change without notice.

Agilent Technologies makes
no warranty of any kind with
regard to this material,
including, but not limited to,
the implied warranties of
merchantability or fitness for
a particular purpose.

Agilent Technologies shall not
be liable for errors contained
herein or for damages in
connection with the
furnishing, performance, or
use of this material.

Safety

This apparatus has been
designed and tested in
accordance with IEC
Publication 1010, Safety
Requirements for Measuring
Apparatus, and has been
supplied in a safe condition.
This is a Safety Class I
instrument (provided with
terminal for protective
earthing). Before applying
power, verify that the correct
safety precautions are taken
(see the following warnings).
In addition, note the external
markings on the instrument
that are described under
"Safety Symbols."

Warning

e Before turning on the
instrument, you must connect
the protective earth terminal
of the instrument to the
protective conductor of the
(mains) power cord. The
mains plug shall only be
inserted in a socket outlet
provided with a protective
earth contact. You must not
negate the protective action
by using an extension cord
(power cable) without a
protective conductor
(grounding). Grounding one
conductor of a two-conductor
outlet is not sufficient
protection.

¢ Only fuses with the required
rated current, voltage, and
specified type (normal blow,
time delay, etc.) should be
used. Do not use repaired
fuses or short-circuited
fuseholders. To do so could
cause a shock of fire hazard.

¢ Service instructions are for
trained service personnel. To
avoid dangerous electric
shock, do not perform any
service unless qualified to do
so. Do not attempt internal
service or adjustment unless
another person, capable of
rendering first aid and
resuscitation, is present.

e [f you energize this
instrument by an auto
transformer (for voltage
reduction), make sure the
common terminal is
connected to the earth
terminal of the power source.

e Whenever it is likely that
the ground protection is
impaired, you must make the
instrument inoperative and
secure it against any
unintended operation.

* Do not operate the
instrument in the presence of
flammable gasses or fumes.
Operation of any electrical
instrument in such an
environment constitutes a
definite safety hazard.

* Do not install substitute
parts or perform any
unauthorized modification to
the instrument.

e Capacitors inside the
instrument may retain a
charge even if the instrument
is disconnected from its
source of supply.

e Use caution when exposing
or handling the CRT.
Handling or replacing the CRT
shall be done only by qualified
maintenance personnel.

Safety Symbols

A

Instruction manual symbol:
the product is marked with
this symbol when it is
necessary for you to refer to
the instruction manual in
order to protect against
damage to the product.

)

Hazardous voltage symbol.

Earth terminal symbol: Used
to indicate a circuit common
connected to grounded
chassis.

WARNING

The Warning sign denotes a
hazard. It calls attention to a
procedure, practice, or the
like, which, if not correctly
performed or adhered to,
could result in personal
injury. Do not proceed
beyond a Warning sign until
the indicated conditions are
fully understood and met.

CAUTION

The Caution sign denotes a
hazard. It calls attention to an
operating procedure, practice,
or the like, which, if not
correctly performed or
adhered to, could result in
damage to or destruction of
part or all of the product. Do
not proceed beyond a Caution
symbol until the indicated
conditions are fully
understood or met.

Agilent Technologies
P.O. Box 2197

1900 Garden of the Gods Road

Colorado Springs, CO 80901

Product Warranty

This Agilent Technologies
product has a warranty
against defects in material
and workmanship for a period
of three years from date of
shipment. During the
warranty period, Agilent
Technologies will, at its
option, either repair or
replace products that prove to
be defective. For warranty
service or repair, this product
must be returned to a service
facility designated by Agilent
Technologies. For products
returned to Agilent
Technologies for warranty
service, the Buyer shall
prepay shipping charges to
Agilent Technologies and
Agilent Technologies shall pay
shipping charges to return the
product to the Buyer.
However, the Buyer shall pay
all shipping charges, duties,
and taxes for products
returned to Agilent
Technologies from another
country. Agilent Technologies
warrants that its software and
firmware designated by
Agilent Technologies for use
with an instrument will
execute its programming
instructions when properly
installed on that instrument.
Agilent Technologies does not
warrant that the operation of
the instrument software, or
firmware will be
uninterrupted or error free.

Limitation of Warranty

The foregoing warranty shall
not apply to defects resulting
from improper or inadequate
maintenance by the Buyer,
Buyer- supplied software or
interfacing, unauthorized
modification or misuse,
operation outside of the
environmental specifications
for the product, or improper
site preparation or
maintenance.

No other warranty is
expressed or implied. Agilent
Technologies specifically
disclaims the implied
warranties of merchantability
or fitness for a particular
purpose.

Exclusive Remedies

The remedies provided herein
are the buyer’s sole and
exclusive remedies. Agilent
Technologies shall not be
liable for any direct, indirect,
special, incidental, or
consequential damages,
whether based on contract,
tort, or any other legal theory.

Assistance

Product maintenance
agreements and other
customer assistance
agreements are available for
Agilent Technologies
products. For any assistance,
contact your nearest Agilent
Technologies Sales Office.

Certification

Agilent Technologies certifies
that this product met its
published specifications at the
time of shipment from the
factory. Agilent Technologies
further certifies that its
calibration measurements are
traceable to the United States
National Institute of
Standards and Technology, to
the extent allowed by the
Institute’s calibration facility,
and to the calibration facilities
of other International
Standards Organization
members.

About this edition

This is the third edition of the
Infiniium Oscilloscopes
Programmer’s Reference.

Publication number
54810-97076, Mar. 2002

Print history is as follows:
54810-97001, Sept. 1997
54810-97016, Sept. 1998
54810-97031, May 1999
54810-97043, Sept. 1999
54810-97056, January 2000
54810-97059, March 2000
54810-97063, Oct. 2000
54810-97064, Feb. 2001
54810-97076, Mar. 2002

New editions are complete
revisions of the manual. Many
product updates do not
require manual changes; and,
conversely, manual
corrections may be done
without accompanying
product changes. Therefore,
do not expect a one-to-one
correspondence between
product updates and manual
updates.

	Programming Command Set
	In This Book
	Introduction to Programming
	Communicating with the Oscilloscope
	Output Command
	Device Address
	Instructions
	Instruction Header
	White Space (Separator)
	Braces
	Ellipsis
	Square Brackets
	Program Data
	Header Types
	Duplicate Mnemonics
	Query Headers
	Program Header Options
	Character Program Data
	Numeric Program Data
	Embedded Strings
	Program Message Terminator
	Common Commands within a Subsystem
	Selecting Multiple Subsystems
	Programming Getting Started
	Initialization
	Example Program using HP Basic
	Using the DIGITIZE Command
	Receiving Information from the Oscilloscope
	String Variable Example
	Numeric Variable Example
	Definite-Length Block Response Data
	Multiple Queries
	Oscilloscope Status

	LAN and GPIB Interfaces
	LAN Interface Connector
	GPIB Interface Connector
	Default Startup Conditions
	Interface Capabilities
	GPIB Command and Data Concepts
	Communicating Over the GPIB Interface
	Communicating Over the LAN Interface
	Bus Commands

	Message Communication and System Functions
	Protocols

	Status Reporting
	Status Reporting Data Structures
	Status Byte Register
	Service Request Enable Register
	Message Event Register
	Trigger Event Register
	Standard Event Status Register
	Standard Event Status Enable Register
	Operation Status Register
	Operation Status Enable Register
	Mask Test Event Register
	Mask Test Event Enable Register
	Trigger Armed Event Register
	Error Queue
	Output Queue
	Message Queue
	Clearing Registers and Queues

	Programming Conventions
	Data Flow
	Truncation Rule
	The Command Tree
	Infinity Representation
	Sequential and Overlapped Commands
	Response Generation
	EOI

	Sample Programs
	Sample C Programs
	gpibdecl.h Sample Header
	srqagi.c Sample Program
	learnstr.c Sample Program
	sicl_IO.c Sample Program
	natl_IO.c Sample Program
	init.bas Sample Program
	srq.bas Sample Program
	lrn_str.bas Sample Program

	Common Commands
	*CLS (Clear Status)
	*ESE (Event Status Enable)
	*ESR? (Event Status Register)
	*IDN? (Identification Number)
	*LRN? (Learn)
	*OPC (Operation Complete)
	*OPT? (Option)
	*PSC (Power-on Status Clear)
	*RCL (Recall)
	*RST (Reset)
	*SAV (Save)
	*SRE (Service Request Enable)
	*STB? (Status Byte)
	*TRG (Trigger)
	*TST? (Test)
	*WAI (Wait)

	Root Level Commands
	AER? (Arm Event Register)
	AUToscale
	BLANk
	CDISplay
	DIGitize
	MTEE
	MTER?
	MODel?
	OPEE
	OPER?
	OVLEnable
	OVLRegister?
	PRINt
	RECall:SETup
	RUN
	SERial (Serial Number)
	SINGle
	STOP
	STORe:SETup
	STORe:WAVeform
	TER? (Trigger Event Register)
	VIEW

	System Commands
	DATE
	DEBug
	DSP
	ERRor?
	HEADer
	HELP:HEADers
	LANGuage
	LONGform
	SETup
	TIME

	Acquire Commands
	AllowMaxSR
	AVERage
	AVERage:COUNt
	BWLimit
	COMPlete
	COMPlete:STATe
	CONFig
	INTerpolate
	MODE
	POINts
	POINts:AUTO
	SRATe (Sample RATe)
	SRATe:AUTO

	Calibration Commands
	Oscilloscope Calibration
	Probe Calibration
	CANCel
	CONTinue
	MPRotect
	OUTPut
	SDONe?
	SKEW
	STARt
	STATus?

	Channel Commands
	BWLimit
	DISPlay
	INPut
	OFFSet
	PROBe
	PROBe:ATTenuation
	PROBe:EADapter
	PROBe:ECoupling
	PROBe:EGAin
	PROBe:EOFFset
	PROBe:GAIN
	PROBe:ID?
	PROBe:SKEW
	PROTection:CLEar
	PROTection?
	RANGe
	SCALe
	UNITs

	Disk Commands
	CDIRectory
	DELete
	DIRectory?
	LOAD
	MDIRectory
	PWD?
	SIMage
	STORe

	Display Commands
	CGRade
	CGRade:LEVels?
	COLumn
	CONNect
	DATA?
	DCOLor
	GRATicule
	LINE
	PERSistence
	ROW
	SCOLor
	SSAVer
	STRing
	TEXT

	External Channel Commands
	BWLimit
	INPut
	PROBe
	PROBe:ATTenuation
	PROBe:EADapter
	PROBe:ECoupling
	PROBe:EGAin
	PROBe:EOFFset
	PROBe:GAIN
	PROBe:ID?
	PROBe:SKEW
	RANGe
	UNITs

	Function Commands
	FUNCtion<N>?
	ADD
	AVERage
	DIFF (Differentiate)
	DISPlay
	DIVide
	FFT:FREQuency
	FFT:RESolution?
	FFT:WINDow
	FFTMagnitude
	FFTPhase
	HORizontal
	HORizontal:POSition
	HORizontal:RANGe
	INTegrate
	INVert
	MAGNify
	MAXimum
	MEASurement
	MINimum
	MULTiply
	OFFSet
	RANGe
	SUBTract
	VERSus
	VERTical
	VERTical:OFFSet
	VERTical:RANGe

	Hardcopy Commands
	AREA
	DPRinter
	FACTors
	IMAGe
	PRINters?

	Histogram Commands
	AXIS
	MODE
	SCALe:SIZE
	WINDow:DEFault
	WINDow:SOURce
	WINDow:X1Position | LLIMit
	WINDow:X2Position | RLIMit
	WINDow:Y1Position | BLIMit
	WINDow:Y2Position | TLIMit

	Marker Commands
	CURSor?
	MEASurement:READout
	MODE
	TDELta?
	TSTArt
	TSTOp
	VDELta?
	VSTArt
	VSTOp
	X1Position
	X2Position
	X1Y1source
	X2Y2source
	XDELta?
	Y1Position
	Y2Position
	YDELta?

	Measure Commands
	AREA
	CGRade:CROSsing
	CGRade:DCDistortion
	CGRade:EHEight
	CGRade:EWIDth
	CGRade:JITTer
	CGRade:QFACtor
	CLEar
	CTCJitter
	DEFine
	DELTatime
	DUTYcycle
	FALLtime
	FFT:DFRequency
	FFT:DMAGnitude
	FFT:FREQuency
	FFT:MAGNitude
	FFT:PEAK1
	FFT:PEAK2
	FFT:THReshold
	FREQuency
	HISTogram:HITS
	HISTogram:MEAN
	HISTogram:MEDian
	HISTogram:M1S
	HISTogram:M2S
	HISTogram:M3S
	HISTogram:PEAK
	HISTogram:PP
	HISTogram:STDDev
	JITTer:DIRection
	JITTer:STATistics
	NWIDth
	OVERshoot
	PERiod
	PHASe
	PREShoot
	PWIDth
	RESults?
	RISetime
	SCRatch
	SENDvalid
	SOURce
	STATistics
	TEDGe
	TMAX
	TMIN
	TVOLt
	VAMPlitude
	VAVerage
	VBASe
	VLOWer
	VMAX
	VMIDdle
	VMIN
	VPP
	VRMS
	VTIMe
	VTOP
	VUPPer

	Mask Test Commands
	ALIGn
	AlignFIT
	AMASk:CREate
	AMASk:SOURce
	AMASk:SAVE | STORe
	AMASk:UNITs
	AMASk:XDELta
	AMASk:YDELta
	AUTO
	AVERage
	AVERage:COUNt
	COUNt:FAILures?
	COUNt:FWAVeforms?
	COUNt:WAVeforms?
	DELete
	ENABle
	HAMPlitude
	IMPedance
	INVert
	LAMPlitude
	LOAD
	NREGions?
	PROBe:IMPedance?
	RUMode
	RUMode:SOFailure
	SCALe:BIND
	SCALe:X1
	SCALe:XDELta
	SCALe:Y1
	SCALe:Y2
	SOURce
	STARt | STOP
	STIMe
	TITLe?
	TRIGger:SOURce

	Self-Test Commands
	AttenSET?
	CANCel
	SCOPETEST

	Time Base Commands
	DELay
	POSition
	RANGe
	REFerence
	SCALe
	VIEW
	WINDow:DELay
	WINDow:POSition
	WINDow:RANGe
	WINDow:SCALe

	Trigger Commands
	Trigger Modes
	HOLDoff
	HTHReshold
	HYSTeresis
	LEVel
	LTHReshold
	SWEep
	EDGE:COUPling
	EDGE:SLOPe
	EDGE:SOURce
	GLITch:POLarity
	GLITch:SOURce
	GLITch:WIDTh
	COMM:BWIDth
	COMM:ENCode
	COMM:LEVel
	COMM:PATTern
	COMM:POLarity
	COMM:SOURce
	PATTern:CONDition
	PATTern:LOGic
	STATe:CLOCk
	STATe:CONDition
	STATe:LOGic
	STATe:LTYPe
	STATe:SLOPe
	EDLY:ARM:SOURce
	EDLY:ARM:SLOPe
	EDLY:EVENt:DELay
	EDLY:EVENt:SOURce
	EDLY:EVENt:SLOPe
	EDLY:TRIGger:SOURce
	EDLY:TRIGger:SLOPe
	TDLY:ARM:SOURce
	TDLY:ARM:SLOPe
	TDLY:DELay
	TDLY:TRIGger:SOURce
	TDLY:TRIGger:SLOPe
	STV:FIELd
	STV:LINE
	STV:SOURce
	STV:SPOLarity
	UDTV:EDGE
	UDTV:ENUMber
	UDTV:PGTHan
	UDTV:PLTHan
	UDTV:POLarity
	UDTV:SOURce
	VIOLation:MODE
	VIOLation:PWIDth:SOURce
	VIOLation:PWIDth:POLarity
	VIOLation:PWIDth:DIRection
	VIOLation:PWIDth:WIDTh
	VIOLation:SETup:MODE
	VIOLation:SETup:SETup:CSOurce
	VIOLation:SETup:SETup:CSOurce:LEVel
	VIOLation:SETup:SETup:CSOurce:EDGE
	VIOLation:SETup:SETup:DSOurce
	VIOLation:SETup:SETup:DSOurce:HTHReshold
	VIOLation:SETup:SETup:DSOurce:LTHReshold
	VIOLation:SETup:SETup:TIME
	VIOLation:SETup:HOLD:CSOurce
	VIOLation:SETup:HOLD:CSOurce:LEVel
	VIOLation:SETup:HOLD:CSOurce:EDGE
	VIOLation:SETup:HOLD:DSOurce
	VIOLation:SETup:HOLD:DSOurce:HTHReshold
	VIOLation:SETup:HOLD:DSOurce:LTHReshold
	VIOLation:SETup:HOLD:TIME
	VIOLation:SETup:SHOLd:CSOurce
	VIOLation:SETup:SHOLd:CSOurce:LEVel
	VIOLation:SETup:SHOLd:CSOurce:EDGE
	VIOLation:SETup:SHOLd:DSOurce
	VIOLation:SETup:SHOLd:DSOurce:HTHReshold
	VIOLation:SETup:SHOLd:DSOurce:LTHReshold
	VIOLation:SETup:SHOLd:SetupTIMe (STIMe)
	VIOLation:SETup:SHOLd:HoldTIMe (HTIMe)
	VIOLation:TRANsition
	VIOLation:TRANsition:SOURce
	VIOLation:TRANsition:SOURce:HTHReshold
	VIOLation:TRANsition:SOURce:LTHReshold
	VIOLation:TRANsition:TYPE

	Waveform Commands
	BANDpass?
	BYTeorder
	CLIPped?
	COMPlete?
	COUNt?
	COUPling?
	DATA
	FORMat
	POINts?
	PREamble
	SOURce
	TYPE?
	VIEW
	XDISplay?
	XINCrement?
	XORigin?
	XRANge?
	XREFerence?
	XUNits?
	YDISplay?
	YINCrement?
	YORigin?
	YRANge?
	YREFerence?
	YUNits?

	Waveform Memory Commands
	DISPlay
	LOAD
	SAVE
	XOFFset
	XRANge
	YOFFset
	YRANge

	Infiniium and HP�547XX Digitizing Oscilloscopes Language Compatibility
	To select a command language
	Acquisition System Command Language Compatibility
	Calibration Command Language Compatibility
	Channel Command Language Compatibility
	Disk Command Language Compatibility
	Display Command Language Compatibility
	External Command Language Compatibility
	FFT Command Language Compatibility
	Function Command Language Compatibility
	Hardcopy Command Language Compatibility
	Limit Test Command Language Compatibility
	Marker Command Language Compatibility
	Measure Command Language Compatibility
	Multiple Memory Command Language Compatibility
	Memory Test Command Language Compatibility
	Pixel Memory Command Language Compatibility
	Self-Test Command Language Compatibility
	Sequential Command Language Compatibility
	System Command Language Compatibility
	Time Base Command Language Compatibility
	Trigger Command Language Compatibility
	Waveform Command Language Compatibility
	Waveform Memory Command Language Compatibility
	Root Command Language Compatibility
	Common Command Language Compatibility

	Infiniium and HP�545XX Oscilloscopes Language Compatibility
	To select a command language
	Acquisition System Command Language Compatibility
	Calibration Command Language Compatibility
	Channel Command Language Compatibility
	Disk Command Language Compatibility
	Display Command Language Compatibility
	External Command Language Compatibility
	FFT Command Language Compatibility
	Function Command Language Compatibility
	Hardcopy Command Language Compatibility
	Limit Test Command Language Compatibility
	Marker Command Language Compatibility
	Measure Command Language Compatibility
	Multiple Memory Command Language Compatibility
	Memory Test Command Language Compatibility
	Pixel Memory Command Language Compatibility
	Self-Test Command Language Compatibility
	Sequential Command Language Compatibility
	System Command Language Compatibility
	Time Base Command Language Compatibility
	Trigger Command Language Compatibility
	Waveform Command Language Compatibility
	Waveform Memory Command Language Compatibility
	Root Command Language Compatibility
	Common Command Language Compatibility

	Error Messages
	Error Queue
	Error Numbers
	Command Error
	Execution Error
	Device- or Oscilloscope-Specific Error
	Query Error
	List of Error Messages

