
Keysight VXT PXIe
Vector Transceiver

This manual provides documentation for:
Keysight M9420A VXT Vector Transceiver

Keysight M9421A VXT Vector Transceiver

Programmer’s Guide

Notices

© Keysight Technologies, Inc.
2015-2016

No part of this manual may be
reproduced in any form or by any
means (including electronic storage
and retrieval or translation into a
foreign language) without prior
agreement and written consent from
Keysight Technologies, Inc. as
governed by United States and
international copyright laws.

Trademark Acknowledgments

Manual Part Number

M9420-90031

Edition

Edition 2, August 2016

Printed in Malaysia

Published by:
Keysight Technologies
No 116 Tianfu 4th Street
Chengdu, China 610041

Warranty

THE MATERIAL CONTAINED IN THIS
DOCUMENT IS PROVIDED “AS IS,”
AND IS SUBJECT TO BEING
CHANGED, WITHOUT NOTICE, IN
FUTURE EDITIONS. FURTHER, TO
THE MAXIMUM EXTENT PERMITTED
BY APPLICABLE LAW, KEYSIGHT
DISCLAIMS ALL WARRANTIES,
EITHER EXPRESS OR IMPLIED WITH
REGARD TO THIS MANUAL AND
ANY INFORMATION CONTAINED
HEREIN, INCLUDING BUT NOT
LIMITED TO THE IMPLIED
WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE.
KEYSIGHT SHALL NOT BE LIABLE
FOR ERRORS OR FOR INCIDENTAL
OR CONSEQUENTIAL DAMAGES IN
CONNECTION WITH THE
FURNISHING, USE, OR
PERFORMANCE OF THIS
DOCUMENT OR ANY INFORMATION
CONTAINED HEREIN. SHOULD
KEYSIGHT AND THE USER HAVE A
SEPARATE WRITTEN AGREEMENT
WITH WARRANTY TERMS

COVERING THE MATERIAL IN THIS
DOCUMENT THAT CONFLICT WITH
THESE TERMS, THE WARRANTY
TERMS IN THE SEPARATE
AGREEMENT WILL CONTROL.

Technology Licenses

The hardware and/or software
described in this document are
furnished under a license and may be
used or copied only in accordance
with the terms of such license.

U.S. Government Rights

The Software is “commercial
computer software,” as defined
by Federal Acquisition Regulation
(“FAR”) 2.101. Pursuant to FAR
12.212 and 27.405-3 and
Department of Defense FAR
Supplement (“DFARS”) 227.7202,
the U.S. government acquires
commercial computer software
under the same terms by which
the software is customarily
provided to the public.
Accordingly, Keysight provides
the Software to U.S. government
customers under its standard
commercial license, which is
embodied in its End User License
Agreement (EULA), a copy of
which can be found at
http://www.keysight.com/find/sweula
The license set forth in the EULA
represents the exclusive authority
by which the U.S. government
may use, modify, distribute, or
disclose the Software. The EULA
and the license set forth therein,
does not require or permit,
among other things, that
Keysight: (1) Furnish technical
information related to
commercial computer software
or commercial computer
software documentation that is
not customarily provided to the
public; or (2) Relinquish to, or
otherwise provide, the
government rights in excess of
these rights customarily provided
to the public to use, modify,
reproduce, release, perform,
display, or disclose commercial
computer software or
commercial computer software

documentation. No additional
government requirements
beyond those set forth in the
EULA shall apply, except to the
extent that those terms, rights, or
licenses are explicitly required
from all providers of commercial
computer software pursuant to
the FAR and the DFARS and are
set forth specifically in writing
elsewhere in the EULA. Keysight
shall be under no obligation to
update, revise or otherwise
modify the Software. With
respect to any technical data as
defined by FAR 2.101, pursuant
to FAR 12.211 and 27.404.2 and
DFARS 227.7102, the U.S.
government acquires no greater
than Limited Rights as defined in
FAR 27.401 or DFAR 227.7103-5
(c), as applicable in any technical
data.

Safety Notices

A CAUTION notice denotes a hazard. It
calls attention to an operating
procedure, practice, or the like that,
if not correctly performed or adhered
to, could result in damage to the
product or loss of important data. Do
not proceed beyond a CAUTION
notice until the indicated conditions
are fully understood and met.

A WARNING notice denotes a hazard.
It calls attention to an operating
procedure, practice, or the like that,
if not correctly performed or adhered
to, could result in personal injury or
death. Do not proceed beyond a
WARNING notice until the indicated
conditions are fully understood and
met.

 3

Where to Find the Latest Information

Documentation is updated periodically. For the latest information about these products, including instrument
software upgrades, application information, and product information, browse to one of the following URLs,
according to the name of your product:

http://www.keysight.com/find/m9420a

http://www.keysight.com/find/m9421a

To receive the latest updates by email, subscribe to Keysight Email Updates at the following URL:

http://www.keysight.com/find/emailupdates

Information on preventing instrument damage can be found at:

http://www.keysight.com/find/PreventingInstrumentRepair

Is your product software up-to-date?

Periodically, Keysight releases software updates to fix known defects and incorporate product enhancements.
To search for software updates for your product, go to the Keysight Technical Support website at:

http://www.keysight.com/find/techsupport

http://www.keysight.com/find/emailupdates
http://www.keysight.com/find/tips
http://www.keysight.com/find/PreventingInstrumentRepair
http://www.keysight.com/find/techsupport
http://www.keysight.com/find/techsupport
http://www.keysight.com/find/techsupport

 4

Contents

 5

1 Start Programming with IVI Driver

What You Will Learn In This Guide 10

Related Website 11

Related Documentation 12

Overall Process Flow 13

Preparation Before Programming 14

Hardware Installation 14

Software Installation 15

Function Verification 16

2 APIs Introduction

IVI Compliant or IVI Class Compliant 20

IVI Driver Types 21

IVI Driver Hierarchy 23

Instrument-Specific Hierarchies for VXT 24

When Using Visual Studio 25

Naming Conventions Used to Program IVI Drivers 26

General IVI Naming Conventions 26

IVI-COM Naming Conventions 26

3 Creating a Project with IVI-COM Using C-Sharp

What you will learn in this chapter 27

Example 1: CW Signal Power Test 28

Step 1 - Create a Console Application 29

Step 2 - Add References 29

Step 3 - Add Using Statements 30

Step 4 - Create Instances of the IVI-COM Drivers 31

Step 5 - Initialize the Driver Instances 31

Step 6 - Write the Program 33

Step 7 - Close the Driver 34

Step 8 - Build and Run a Complete Program 35

Example 2: Source - Generate LTE FDD Signal 36

6

Contents

Write the Measurement Program 37

Commands Summary 37

Get the Measurement Result 38

Example 3: CW Spectrum UI 39

Initialize Instance and Turn on Spectrum UI 40

Setup SCPI Programming Environment 40

Set Receiver to Observe Signal 41

Get the Measurement Result 41

Basic Concepts: Two VXT Control Method 42

Example 4: Channel Power Acquisition 45

Write the Measurement Program 46

Get the Measurement Result 48

Basic Concepts: 4 Receiver Acquisition Mode 48

Example 5: Spectrum Acquisition 49

Set VXT Receiver to Test Spectrum Data 50

Commands Summary 51

Get the Measurement Result 51

Example 6: FFT Acquisition 52

Set VXT Receiver 53

Get the Measurement Result 54

Example 7: IQ Acquisition 55

Write the Measurement Program 56

Get the Measurement Result 57

Example 8: Power Servo 58

Write the Measurement Program 59

Commands Summary 61

Get the Measurement Result 61

Example 9: Harmonics Test 62

Write the Measurement Program 63

Commands Summary 64

Get the Measurement Result 64

Example 10: ACPR Test 65

Contents

 7

Write the Measurement Program 66

Commands Summary 67

Get the Measurement Result 67

Example 11: Combined WCDMA Power Servo and ACPR Measurement 68

Example Program 3 - Pseudo -code 68

Source Code 69

8

Contents

9

Keysight VXT Vector Transceiver
M9420A, M9421A

Programmer’s Guide

1 Start Programming with IVI Driver

This programmer's guide is intended for individuals who write and run programs to
control test-and-measurement instruments. Specifically, in this programmer's
guide, you will learn how to use Visual Studio 2010 with the .NET Framework to
write IVICOM Console Applications in Visual C#. Knowledge of Visual Studio 2010
with the .NET Framework and knowledge of the programming syntax for Visual C#
is required.

Start Programming with IVI Driver
What You Will Learn In This Guide

10 Programmer’s Guide

What You Will Learn In This Guide

Our basic user programming model uses the IVI-COM driver directly and allows

customer code to:

• Access the IVI-COM driver at the lowest level

• Access IQ Acquisition Mode, Power Acquisition Mode, and Spectrum
Acquisition Mode

• Control the Keysight M9420A/M9421A VXT Vector Transceiver while
performing measurements

• Generate waveforms created by Signal Studio software (licenses are
required)

This guide provides the example programs below for your further use with the
VXT transceiver:

• Example Program 1: CW Signal Power Test

• Example Program 2: Source - Play Waveform

• Example Program 3: CW Spectrum UI

• Example Program 4: Channel Power Acquisition

• Example Program 5: Spectrum Acquisition

• Example Program 6: FFT Acquisition

• Example Program 7: IQ Acquisition

• Example Program 8: Power Servo

• Example Program 9: Harmonics Test

• Example Program 10: ACPR Test

• Example Program 11: Combined Power Servo and ACPR Measurement

Start Programming with IVI Driver
Related Website

Programmer’s Guide 11

Related Website

• Keysight PXIe and AXIe Modular Products

• Keysight IVI Drivers & Components Downloads

• Keysight I/O Libraries Suite

• Keysight GPIB, USB, & Instrument Control Products

• Keysight VEE Pro

• Keysight Technical Support, Manuals, & Downloads

• Contact Keysight

• IVI Foundation

• MSDN Online

http://www.keysight.com/find/modular
http://www.keysight.com/find/ivi
http://www.keysight.com/find/iosuite
http://www.keysight.com/find/io
http://www.keysight.com/find/vee
http://www.keysight.com/find/support
http://www.keysight.com/find/contactus
http://www.ivifoundation.org
http://msdn.microsoft.com

Start Programming with IVI Driver
Related Documentation

12 Programmer’s Guide

Related Documentation

To access documentation related to the Keysight M9420A/M9421A VXT Vector
Transceiver Programmer's Guide, use one of the following methods:

• If the product software is installed on your PC, the related documents are
also available in the software installation directory.

• The documentation listed above is also available on the product DVD.

• To find the very latest versions of the user documentation, go to the product
website (www.keysight.com/find/vxt) and download the files from the
Manual support page (go to Resource Center > Document Library >
Manuals):

Figure 1-1 Document Library Screenshootl

Table 1-1 Related Documentation

Document Description Format

Getting Started
Guide

Includes procedures to help you to unpack, inspect,
install (software and hardware), perform instrument
connections, and troubleshoot your product.

PDF

IVI Driver Reference
(Help System)

Provides detailed documentation of the IVI-COM and
IVI-C driver API functions, as well as information to help
you get started with using the IVI drivers in your
application development environment.

CHM
(Microsoft

Help Format)

X-series
Applications
Programmer’s Guide

Provides basic description about how to program VXT
using SCPI commands, and explains how to use the
programming documentation.

PDF

User’s and
Programmer’s
Reference

Describes the SCPI commands supported by the VXT
CHM

(Microsoft
Help Format)

Start Programming with IVI Driver
Overall Process Flow

Programmer’s Guide 13

Overall Process Flow
Perform the following steps:

1. Write source code using Microsoft Visual Studio 2010 with .NET Visual C#
running on Windows 7.

2. Compile source code using the .NET Framework Library.

3. Produce an Assembly.exe file – this file can run directly from Microsoft
Windows without the need for any other programs.

• When using the Visual Studio Integrated Development Environment
(IDE), the Console Applications you write are stored in conceptual
containers called Solutions and Projects.

• You can view and access Solution and Projects using the Solution
Explorer window (View > Solution Explorer).

Start Programming with IVI Driver
Preparation Before Programming

14 Programmer’s Guide

Preparation Before Programming
If you want to program VXT module to perform measurement, you need to have
the following hardwares and softwares:

1. VXT M9420A/M9421A modular

2. Chassis (such as Keysight M9018A)

3. Controller (such as Keysight M9037A)

4. Reference (such as Keysight M9300A)

5. VXT software

6. M9300A software

7. IO Libraries Suite (Keysight Connection Expert)

8. Visual Studio (C# or C++ etc) /Labview

Hardware Installation

You need install all the needed modulars into the chassis as first step of the
whole configuration.

1. Unpack and inspect all hardware.

2. Verify the shipment contents.

3. Install the modules and make cable connections. For detailed procedures,
please refer to VXT Getting Started Guide.

M9037A
Controller

M9420A/M9421A
VXT

M9300A
Reference

Start Programming with IVI Driver
Preparation Before Programming

Programmer’s Guide 15

4. Connect RF Output and RF Input port of VXT with a SMA cable.

5. Connect VXT 100M In port and M9300A 100M Out port.

Software Installation

You need install the following softwares before programming with VXT:

1. Install Microsoft Visual Studio with .NET Visual C# running on Windows 7.

2. Install Keysight IO Libraries Suite, this installation includes Keysight
Connection Expert.

3. Install the VXT software, Version 16.57 or newer. Driver software includes
all IVI-COM and IVI-C Drivers and documentation. All of these items may be
downloaded from the Keysight VXT product website.

4. Install the VXT licenses, if you purchased. Please refer to VXT Getting
Started Guide for further information.

5. Install the M9300A software. Please refer to M9300A Startup Guide for
further information.

The M9300A PXIe Reference must be included as part of the M9420A
configurations. The M9300A PXIe Reference must be initialized first so that
the other configurations that depend on the reference signal get the signal
they are expecting. If the configuration of modules that is initialized first
does not include the M9300A PXIe Reference, unlock errors will occur.

Once the software and hardware are installed and Self-Test has been
performed, they are ready to be programmatically controlled.

RF Output
Connect to
RF In

M9300A
100 MHz
Reference Out

Start Programming with IVI Driver
Function Verification

16 Programmer’s Guide

Function Verification
To make sure all the hardwares and softwares are ready for your programming,
please perform the following steps to generate a CW signal with VXT:

1. Connect VXT RF Output and RF Input with a SMA cable.

2. Power on the chassis and run M9300A software. The software window will
be pop up as below. The icon "Int Ref Locked" on the lower left corner
indicates the software runs properly.

RF Output
Connect to
RF Input

M9300 100 MHz
reference Out

Start Programming with IVI Driver
Function Verification

Programmer’s Guide 17

3. Run VXT software by click LaunchModularTRX.exe. Please refer to VXT
Getting Started Guide for the detailed procedure.

4. Set VXT source to generate a CW signal and use VXT receiver to observe
this signal.

1. Press Source > Amplitude > RF Power > - 20 dBm to set the signal
amplitude to -20 dBm

2. Press Return > Frequency > 1 GHz to set the signal frequency to 1 GHz.

3. Press RF Output to turn on the source output

4. Press FREQ Channel > Center Freq > 1 GHz to set the receiver center
frequency to 1 GHz.

If you observe the CW signal as figure above, it indicates the VXT is ready for
your programming, VXT supports multiple programming platform, such as
Visual C#, Visual Basic .Net, Visual C++, Keysight VEE pro, Labview and
MATLAB. In this guide, all the programming examples are programmed with
Visual C#.

Start Programming with IVI Driver
Function Verification

18 Programmer’s Guide

19

Keysight VXT Vector Transceiver
M9420A, M9421A

Programmer’s Guide

2 APIs Introduction

This chapter describes the Application Programming Interfaces (APIs) for the
Keysight VXT vector transceiver.

The following IVI driver terminology may be used when describing the Application
Programming Interfaces (APIs) for the VXT Vector Transceiver.

IVI[Interchangeable Virtual Instruments] - a standard instrument driver model
defined by the IVI Foundation that enables engineers to exchange instruments
made by different manufacturers without rewriting their code.

Currently, there are 13 IVI Instrument Classes defined by the IVI Foundation. The
VXT Vector Transceiver do not belong to any of these 13 IVI Instrument Classes
and are therefore described as "NoClass" modules.

• DC Power Supply

• AC Power Supply

• DMM

• Function Generator

• Oscilloscope

• Power Meter

• RF Signal Generator

• Spectrum Analyzer

• Upconverter

• Downconverter

• Digitizer

• Counter/Timer

APIs Introduction
IVI Compliant or IVI Class Compliant

20 Programmer’s Guide

IVI Compliant or IVI Class Compliant

The VXT Vector Transceiver is IVI Compliant, but not IVI Class Compliant; none
of these belongs to one of the 13 IVI Instrument Classes defined by the IVI
Foundation.

• IVI Compliant - means that the IVI driver follows architectural specification
for these categories:

— If an instrument is IVI Class Compliant, it is also IVI compliant

— Provides one of the 13 IVI Instrument Class APIs is in addtion to a
Custom API

— Custom API may be omitted (unusual)

— Simplifies exchanging instruments

• IVI Compliant - means that the IVI driver follows architectural specification
for these categories:

— If an instrument is IVI Class Compliant, it is also IVI compliant

— Provides one of the 13 IVI Instrument Class APIs is in addtion to a
Custom API

— Custom API may be omitted (unusual)

— Simplifies exchanging instruments

APIs Introduction
IVI Driver Types

Programmer’s Guide 21

IVI Driver Types

There are several types of IVI drivers as listed below:

Figure 2-1 IVI Driver Types

• IVI Driver

— Implements the Inherent Capabilities Specification

— Complies with all of the architecture specifications

— May or may not comply with one of the 13 IVI Instrument Classes

— Is either an IVI Specific Driver or an IVI Class Driver

• IVI Class Driver

— Is an IVI Driver needed only for interchangeability in IVI-C environments

— The IVI Class may be IVI-defined or customer-defined

• IVI Specific Driver

— Is an IVI Driver needed only for interchangeability in IVI-C environments

— The IVI Class may be IVI-defined or customer-defined

• IVI Class-Compliant Specific Driver

— IVI Specific Driver that complies with one (or more) of the IVI defined
class specifications

— Used when hardware independence is desired

APIs Introduction
IVI Driver Types

22 Programmer’s Guide

• IVI Custom Specific Driver

— Is an IVI Specific Driver that is not compliant with any one of the 13 IVI
defined class specifications

— Used when hardware independence is desired

This release is not binary compatible with prior releases of the IVI-Cdriver.
Programs using the C/C++ IVI-C driver must be recompiled for this version of the
driver. Similarly, programs compiled with this version of the driver will not be
compatible with older versions of the IVI-C driver. This incompatibility is due to

renumbering of attribute constants defined in the KtM9420.h include file.

APIs Introduction
IVI Driver Hierarchy

Programmer’s Guide 23

IVI Driver Hierarchy

When writing programs, you will be using the interfaces (APIs) available to the
IVICOM driver.

• The core of every IVI-COM driver is a single object with many interfaces.

• These interfaces are organized into two hierarchies: Class-Compliant
Hierarchy and Instrument-Specific Hierarchy – and both include the
IIviDriver interfaces.

— Class-Compliant Hierarchy - Since the VXT Vector Transceiver does not
belong to one of the 13 IVI Classes, there is noClass-Compliant
Hierarchy in their IVI Driver.

— Instrument-Specific Hierarchy

— The VXT Vector Transceiver’s instrument-specific hierarchy has
IKtM9420 at the root (where KtM9420 is the driver name).

— IKtM9420 is the root interface and contains references to child
interface, which in turn contain references to other child
interfaces. Collectively, these interfaces define the
Instrument-Specific Hierarchy.

— The IIviDriver interfaces are incorporated into both hierarchies: Class-
Compliant Hierarchy and Instrument-Specific Hierarchy.

The IIviDriver is the root interface for IVI Inherent Capabilities which are
what the IVI Foundation has established ass a set of functions and
attributes that all IVI drivers must include - irrespective of which IVI
instrument class the driver supports. These common functions and
attributes are called IVI inherent capabilities and they are documented in
IVI-3.2 -Inherent Capabilities Specification. Drivers that do not support
any IVI instrument class such as the VXT Vector Transceiver must still
include these IVI inherent capabilities.

Close

DriverOperation

Identity

Initialize

Initialized

Utility

APIs Introduction
Instrument-Specific Hierarchies for VXT

24 Programmer’s Guide

Instrument-Specific Hierarchies for VXT

The following table lists the instrument-specific hierarchy interfaces for
M9420A/M9421A VXT Vector Transceiver.

Figure 2-2 Keysight VXT Instrument-Specific Hierarchy

Keysight VXT Instrument-Specific Hierarchy

KtM9420 is the driver name

IKtM9420Ex is the root interface

All new code being created should use the IKtM9420Ex extended interfaces in
place of the IKtM9420 interfaces. New functionalities have been added to the
IKtM9420Ex extended interfaces. These new functionalities were not available in the
original IKtM9420 interfaces, and have been left unchanged to support previously

written code; this helps support backward code compatibility.

APIs Introduction
Instrument-Specific Hierarchies for VXT

Programmer’s Guide 25

When Using Visual Studio

To view interfaces available in VXT, right-click KtM9420Lib library file, in the
References folder, from the Solution Explorer window and select View in Object
Browser.

Figure 2-3 Keysight VXT Instrument-Specific Hierarchy

APIs Introduction
Naming Conventions Used to Program IVI Drivers

26 Programmer’s Guide

Naming Conventions Used to Program IVI Drivers

General IVI Naming Conventions

• All instrument class names start with "IVi"

Example: IviScope, IviDmm

• Function names

One or more words use PascalCasing

First word should be a verb

IVI-COM Naming Conventions

• Interface naming

Class compliant: Starts with "IIvi"

I<ClassNaming>

Example:IIviScope, IIviDmm

• Sub-interfaces add words to the base name that match the C hierarchy as
close as possible

Example: IIviFgenArbitrary, IIviFgenArbitraryWaveform

• Defined values

Enumerations and enum values are used to represent discrete values in
IVI-COM

<ClassName><descriptive words> Enum

Example: IviScopeTriggerCouplingEnum

• Enum values don’t end in "Enum" but use the last word to differentiate

Example: IviScopeTriggerCouplingAC AND
IviScopeTriggercouplingDC

27

Keysight VXT Vector Transceiver
M9420A, M9421A

Programmer’s Guide

3 Creating a Project with IVI-COM Using C-Sharp

What you will learn in this chapter

This tutorial will walk through the various examples to create a console
applications using Visual Studio and C#. It demonstrates how to instantiate driver
instance, set the resource names and various initialization values, initialize the
driver instance, print various driver properties to a console for each driver
instance, check drivers for errors and report the errors if any occur, and close both
drivers.

The project examples are listed below.

1. CW Signal Power Test

2. Source - Play Waveform

3. CW Spectrum UI

4. Channel Power Acquisition

5. Spectrum Acquisition

6. FFT Acquisition

7. IQ Acquisition

8. Power Servo

9. Harmonics Test

10. ACPR Test

11. Combined Power Servo and ACPR Measurement

All the example programs above are in the folder below after the VXT software is
installed.

C:\Program Files (x86)\IVI Foundation\IVI\Drivers\KtM9420\Examples\VS.Net\Cpp

Creating a Project with IVI-COM Using C-Sharp
Example 1: CW Signal Power Test

28 Programmer’s Guide

Example 1: CW Signal Power Test

This example introduces the programming procedure to perform a CW signal
power test as below with VXT using Visual Studio and C#.

• VXT source outputs a 1 GHz CW signal

• VXT receiver measures this signal power

Figure 3-1 VXT CW Signal Power Test Cable Connection

The programming procedure are listed as 8 steps as below:

Step 1. - Create a "Console Application"

Step 2. - Add References

Step 3. - Add Using Statements

Step 4. - Create an Instance

Step 5. - Initialize the Instance

Step 6. - Write the Program (Create a Signal or Perform a Measurement)

Step 7. - Close the Instance

Step 8. - Build and Run the Program

After the VXT software is installed, you will find the source code as below:

C:\Program Files (x86)\IVI Foundation\IVI\Drivers\KtM9420\Examples\
VS.Net\CSharp\CS_CWPowerTest.

Before programming, please connect VXT RF Output to RF Input port and
VXT 100 MHz Ref In port to M9300A’s 100 MHz Ref Out port.

RF Output
Connect to
RF Input

M9300 100 MHz
reference Out

Creating a Project with IVI-COM Using C-Sharp
Example 1: CW Signal Power Test

Programmer’s Guide 29

Step 1 - Create a Console Application

1. Launch Visual Studio and create a new Console Application in Visual C# by
selecting: File > New > Project and select a Visual C# Console Application.

2. Enter "CWPowerTest" as the Name of the project and click OK.

Step 2 - Add References
In order to access the VXT driver interfaces, references to their drivers (DLL)
must be created.

1. In Solution Explorer, right-click on References and select Add Reference.

2. From the Add Reference dialog, select the COM tab to find VXT’s library.

If you have not installed the IVI driver for the VXT product (as listed in
chapter 1, titled "Before Programming, Install Hardware, Software, and
Software Licenses"), the IVI drivers will not appear in this list.

Creating a Project with IVI-COM Using C-Sharp
Example 1: CW Signal Power Test

30 Programmer’s Guide

3. Select IVI KtM9420 1.6 Type Library and Click OK. The selected type
libraries appear under the Reference node, in Solution Explorer, as:

Now the IVI drivers are referenced and available for your use.

Step 3 - Add Using Statements

To allow your program to access the IVI drivers without specifying full path
names of each interface or enum, you need to add using statements to your
program.
All data types (interfaces and enums) are contained within namespaces. (A
namespace is a hierarchical naming scheme for grouping types into logical
categories of related functionality. Design tools, such as Visual Studio, can use
namespaces which makes it easier to browse and reference types in your
code.)The C# using statement allows the type name to be used directly.
Without the using statement, the complete namespace-qualified name must
be used. To allow your program to access the IVI driver without having to type
the full path of each interface or enum, type the following using statements
immediately below the other using statements.

When any of the references for the KtM9420A are added, the IVIDriver 1.0
Type Library is also automatically added. This is visible as IviDriverLib under
the project Reference; this reference houses the interface definitions for IVI
inherent capabilities which are located in the file IviDriverTypeLib.dll
(dynamically linked library).

Creating a Project with IVI-COM Using C-Sharp
Example 1: CW Signal Power Test

Programmer’s Guide 31

Step 4 - Create Instances of the IVI-COM Drivers

There are two ways to instantiate (create an instance of) the IVI-COM drivers:

• Direct Instantiation

• COM Session Factory

Since the VXT vector transceiver is considered NoClass module (because they
do not belong to one of the 13 IVI Classes), the COM Session Factory is not
used to create instances of their IVI-COM drivers. So, VXT vector transceiver
IVI-COM driver uses direct instantiation. Because direct instantiation is used,
their IVI-COM drivers may not be interchangeable with other modules.

To create driver instances, the new operator is used in C# as below.

IKtM9420 Driver = new KtM9420();

Step 5 - Initialize the Driver Instances
The Initialize() method is required when using any IVI driver. It establishes
a communication link (an "I/O session") with an instrument and it must be
called before the program can do anything with an instrument or work in
simulation mode.

The Initialize() method has a number of options that can be defined. In this
example, we prepare the Initialize() method by defining only a few of the
parameters, then we call the Initialize() method with the parameters
below.

To initialize the driver instances, the example code below is used in C#.

string options = "QueryInstrStatus=true, Simulate=false,
DriverSetup= AppStart = false";

driver.Initialize("PXI0::CHASSIS1::SLOT2::FUNC0::INSTR", true,

true, options);

Creating a Project with IVI-COM Using C-Sharp
Example 1: CW Signal Power Test

32 Programmer’s Guide

Initialize() Parameters.

The following tables describes options that are most commonly used with the
Initialize(VXTResourceName, IdQuery, Reset, VXTOptionString)

method.

Resource Names

You need to determine the Resource Name address string (VISA address string)
that is needed.

• Run VXT software (LaunchModularTRX.exe). The VXT modular’ VISA
address is listed in the software window as below.

Property Type and
Example Value

Description of Property

string ResourceName

= "PXI13::0::0::INSTR";

VxtResourceName – The driver is typically initialized using a physical resource name
descriptor, often a VISA resource descriptor. See the procedure in the Resource Names
section in the next page.

bool IdQuery = true; Setting the ID query to false prevents the driver from verifying that the connected
instrument is the one the driver was written for because if IdQuery is set to true, this will
query the instrument model and fail initialization if the model is not supported by the
driver.

bool Reset = true; Setting Reset to true instructs the driver to initially reset the instrument.

string OptionString =
"QueryInstrStatus=true,

OptionString - Setup the following initialization options:

Simulate=true, • QueryInstrStatus=true (Specifies whether the IVI specific driver queries the
instrumetn status at the end of each user operation.)

• Simulate=true (Setting Simulate to true instructs the driver to not to attempt to
connect to a physical instrument, but use a simulation of the instrument instead.)

• Cache=false (Specifies whether or not to cache the value of properties.)
• InterchangeCheck=false (Specifies whether the IVI specific driver performs

interchangeability checking.)
• RangeCheck=false (Specifies whether the IVI specific driver validates attribute values

and function parameters.)
• RecordCoercions=false (Specifies whether the IVI specific driver keeps a list of the

value coercions it makes for ViInt32 and ViReal64 attributes.)

DriverSetup="; • DriverSetup= (This is used to specify settings that are supported by the driver, but
not defined by IVI. If the Options String parameter (OptionString in this example)
contains an assignment for the Driver Setup attribute, the Initialize function assumes
that everything following 'DriverSetup=' is part of the assignment.)

Creating a Project with IVI-COM Using C-Sharp
Example 1: CW Signal Power Test

Programmer’s Guide 33

Please refer to VXT IVI Driver Help (Start > All programs > Keysight Instrument
Drivers > IVI-COM-C Drivers > KtM9420 > KtM9420x IVI Driver Help) as below for
further information.

Step 6 - Write the Program
At this point, you can add program steps that use the driver instances to
perform tasks.In this example, perform the following steps:

1. Set VXT source to generate a -10 dBm CW signal at 1 GHz.

2. Set VXT receiver to measure the power of the CW signal.

Set the VXT Source
To set the VXT source to generate a -10 dBm CW signal at 1 GHz, please refer
to the example code as below:

For more APIs about VXT source frequency settings, please refer to the VXT IVI
driver help as below.

driver.Source.RF.Frequency = 1e9;

//Set the source's center frequency.

driver.Source.RF.Level = ‐10;

//Set the source's RF power level.

driver.Source.RF.OutputPort = KtM9420PortEnum.KtM9420PortRFOutput;

//Select the source output port

driver.Source.RF.OutputEnable = true;

//Enable output.
driver.Apply();
//Apply the above setting to VXT source's hardware.

Creating a Project with IVI-COM Using C-Sharp
Example 1: CW Signal Power Test

34 Programmer’s Guide

Set the VXT Receiver
To measure the channel power in a bandwidth, please refer to the example
code below:

For more example codes of frequently used measurement cases, please refer to
the other examples introduced in this chapter.

Step 7 - Close the Driver
Calling Close() at the end of the program is required by the IVI specification
when using any IVI driver.

M9420Adriver.Close();

Close() may be the most commonly missed step when using an IVI driver.
Failing to do this could mean that system resources are not freed up and your
program may behave unexpectedly on subsequent executions.

driver.Receiver.RF.Frequency = 1e9; //Set Receiver's Center Freq

driver.Receiver.RF.Power = ‐5;

//the Receiver.RF.Power should be set equal to or little bigger than target

test value, to get exact test result

driver.Receiver.RF.PeakerToAverage = 3;

//Set Receiver's Peak to Average value. It's a important setting for digital

modulation signal test.

driver.AcquisitionMode =

KtM9420AcquisitionModeEnum.KtM9420AcquisitionModePower;//Choose Power

Acquisition Mode.

driver.PowerAcquisition.Bandwidth = 1e6;

driver.PowerAcquisition.Duration = 0.02;

driver.PowerAcquisition.ChannelFilter.Shape =

KtM9420ChannelFilterShapeEnum.KtM9420ChannelFilterShapeNone;

driver.PowerAcquisition.ChannelFilter.Alpha = 0.5;

driver.PowerAcquisition.ChannelFilter.Bandwidth = 1e5;//Set the channel

bandwidth.

driver.Apply();//Apply the above setting to VXT receiver's hardware.

driver.Arm();//Start the M9420A's receiver's measurement

driver.PowerAcquisition.ReadPower(CAPTURE_ID, ref power, ref overloaded);

//Read the power measurement result.

Creating a Project with IVI-COM Using C-Sharp
Example 1: CW Signal Power Test

Programmer’s Guide 35

Step 8 - Build and Run a Complete Program
Build your console application and run it to verify it works properly.

1. Open the solution file CWSignalTest.sln in Visual Studio.

2. Set the appropriate platform target. If the installed VXT software is 64-bit,
you need to set the active solution platform as X64 in configuration
manager.

3. Choose Project > CWSignalTest Properties and select Build/Rebuild
Solution. And the program file will be built out.

4. Run the program and you will get the test result as below.

Before running the program, please make sure the M9300A reference
software is turned on.

It will take several minutes to run the program as the VXT vector transceiver
need boot up before running this program.

For the most of the VXT programs, the step 1, 2, 3, 4, 7, 8 are same. The only
difference is in step 5, 6, you need program your own code.

From the example 2 to 10, we will just focus on step 6 - Write the Program.

Creating a Project with IVI-COM Using C-Sharp
Example 2: Source - Generate LTE FDD Signal

36 Programmer’s Guide

Example 2: Source - Generate LTE FDD Signal

This example introduces the programming procedure to output a LTE FDD
signal with M9420A/M9421A source using Visual Studio and C#.

Figure 3-2 VXT Source Play Waveform Cable Connection

The programming procedure are listed as 8 steps as below:

Step 1. - Create your project with Visual C#

Step 2. - Add References

Step 3. - Add Using Statements

Step 4. - Create an Instance

Step 5. - Initialize the Instance

Step 6. - Write the Program (Generate a LTE FDD signal with M9420A source)

Step 7. - Close the Instance

Step 8. - Build and Run the Program

For step 1, 2, 3, 4, 5, 7, 8, pleas refer to example 1 as those steps are similar.
This section will only introduce the example code for step 6.

After the VXT software is installed, you will find the source code as below:

C:\Program Files (x86)\IVI Foundation\IVI\Drivers\KtM9420\Examples\
VS.Net\CSharp\CS_Source_Play_Waveform.

N7624B Signal Studio for LTE/LTE-FDD is needed to play a LTE FDD signal
with VXT product.

Before programming, please connect VXT 100 MHz Ref In port to M9300A’s
100 MHz Ref Out port.

RF Output
Connect to
Spectrum
Analyzer M9300 100 MHz

reference Out

Creating a Project with IVI-COM Using C-Sharp
Example 2: Source - Generate LTE FDD Signal

Programmer’s Guide 37

Write the Measurement Program
To output a LTE FDD signal with M9420A source, please refer to the example
code as below:

The waveform file “LTE_UL_FDD_RMC_5MHz_16QAM.wfm” used in this example code
is attached in the project file. To play this waveform file, please copy it to the file path
set in the code. In this example, you need to copy it to “C:\Waveform”.

Commands Summary

• Driver.Apply() method is used to update all the parameter setting, for
VXT source and receiver. It is a frequently used method.

• The methods of Driver.Source.RF are used to set the basic RF
parameters, such as output signal freq, level, output port. If you don’t play
any waveform, it will generate a CW signal as example 1 does.

string filePath = "C:\\Waveform";

string fileName = "LTE_UL_FDD_RMC_5MHz_16QAM.wfm";

driver.Source.LoadWaveform(filePath, fileName); //load the wave form

driver.Source.Modulation.WaveformName = fileName; //choose the waveform to play

driver.Source.RF.Frequency = 1e9;//Set the source center frequency. In this

code it's set to 1e9Hz.

driver.Source.RF.Level = ‐5; //Set the source's RF power level.

driver.Source.RF.OutputPort = KtM9420PortEnum.KtM9420PortRFOutput;//Select

source output port

driver.Source.RF.OutputEnable = true; //Enable output.
driver.Apply(); //Apply the above setting to VXT source's hardware.

Creating a Project with IVI-COM Using C-Sharp
Example 2: Source - Generate LTE FDD Signal

38 Programmer’s Guide

• Driver.Source.LoadWaveform() is used to load waveform to VXT
memory, It allows you to load multiple waveform files into memory at the
same time.

• Driver.Source.Modulation.WaveformName is used to choose the
waveform.

Get the Measurement Result

Refer to the process of step 8 in example 1 to build and run your program to
get the result as below.

Before running the program, please make sure the M9300A reference software
is turned on.

It will take several minutes to run the program as the VXT vector transceiver
need boot up before running this program.

Creating a Project with IVI-COM Using C-Sharp
Example 3: CW Spectrum UI

Programmer’s Guide 39

Example 3: CW Spectrum UI

This example introduces the programming procedure to display a spectrum in
X series spectrum UI with M9420A/M9421A.

• VXT source outputs a 1 GHz CW signal

• Turn on the X series Spectrum UI and use SCPI command to set the receiver
display the spectrum

Figure 3-3 Example 3 - Cable Connection

The programming procedure are listed as 8 steps as below:

Step 1. - Create your project with Visual C#

Step 2. - Add references

Step 3. - Add using statements

Step 4. - Create and initialize the Instance

Step 5. - Set source to generate CW signal

Step 6. - Setup SCPI programming environment

Step 7. - Set receiver to observe the CW signal with X-series spectrum UI

Step 8. - Close the Instance

Step 9. - Build and Run the Program

For step 1, 2, 3, 4,5, 8, 9, pleas refer to example 1 as those steps are similar.
This section will only introduce the example code for step 6 and 7.

After the VXT software is installed, you will find the source code as below:

C:\Program Files (x86)\IVI Foundation\IVI\Drivers\KtM9420\Examples\
VS.Net\CSharp\CS_CW_Spectrum_UI.

Before programming, please connect VXT RF Output to RF Input port and
VXT 100 MHz Ref In port to M9300A’s 100 MHz Ref Out port.

RF Output
Connect to
RF In

M9300A
100 MHz
Reference Out

Creating a Project with IVI-COM Using C-Sharp
Example 3: CW Spectrum UI

40 Programmer’s Guide

Initialize Instance and Turn on Spectrum UI
To initialize the driver instance and turn on spectrum UI, please refer to the
example code as below:

DriverSetup= " is used to turn on the UI display, if you do not need UI display,
edit this setting as DriverSetup=AppStart=false".

Setup SCPI Programming Environment
To setup SCPI programming environment, please refer to the procedure below:

1. Install Keysight IO libraries suite.

2. Add file "agvisa32.cs" into your project. Select Add > Existing Item in Visual
Studio as below. The file "agvisa32.cs" is located at
C:\Program Files (x86)\IVI Foundation\VISA\WinNT\agvisa\include

3. Add the code below to your project to enable VISA connection with X series
application.

The VISA connection need hislip LAN address. Please run
LaunchModularTRX.exe to get the hislip address as below.

int rm = 0; int xApp;

AgVisa32.viOpenDefaultRM(out rm);

AgVisa32.viOpen(rm, “TCPIP0::localhost::hislip1::INSTR”, 0, 0, out xApp);

AgVisa32.viSetAttribute(xApp, AgVisa32.VI_ATTR_TMO_VALUE, 10000);

AgVisa32.viPrintf(xApp, ":SYST:ERR:VERB ON;\n"); //clear the system error

information

driver = new KtM9420();
string resource = "PXI0::CHASSIS1::SLOT2::FUNC0::INSTR";
String options = "QueryInstrStatus=true, Simulate=false, DriverSetup= ";
driver.Initialize(resource, true, true, options);

Creating a Project with IVI-COM Using C-Sharp
Example 3: CW Spectrum UI

Programmer’s Guide 41

Set Receiver to Observe Signal
To set VXT receiver to observe the CW signal, please refer to the example code
as below:

Get the Measurement Result

Refer to the process of step 8 in example 1 to build and run your program to
get the result as below.

AgVisa32.viPrintf(xApp, ":INST:SEL BASIC;\n");//Enter basic mode (IQ Analyzer)

//It will take several seconds to load or switch mode, so this below code to wait and check.
int tryTimes = 0; string queryResult;
do
{
AgVisa32.viPrintf(xApp, ":INST:SEL? \n");
AgVisa32.viRead(xApp, out queryResult, 1024);
tryTimes++;
}
while ((queryResult != "BASIC\n") && (tryTimes < 100));

AgVisa32.viPrintf(xApp, ":FREQ:CENT 1e9 Hz \n");//Set Frequency
AgVisa32.viPrintf(xApp, "INIT:CONT 1 \n"); //Set continuous sweep mode
AgVisa32.viPrintf(xApp, ":POW:RANG 10.0 \n");//Set Attenuator

Creating a Project with IVI-COM Using C-Sharp
Example 3: CW Spectrum UI

42 Programmer’s Guide

Before running the program, please make sure the M9300A reference software
is turned on.

It will take several minutes to run the program as the VXT vector transceiver
need boot up before running this program.

Basic Concepts: Two VXT Control Method
The VXT supports two method for remote control: by IVI driver and by SCPI
command. The example 1 and 2 use IVI driver method and example 3 uses
both methods.

IVI driver provides fast measurement speed and support power servo
measurement with VXT.

SCPI command programming provides more features and Keysight classic UI
display.

Figure 3-4 IVI driver and SCPI driver in VXT

The table below shows the supported measurement and features by IVI driver
and SCPI.

M9420A/M9421A

Features IVI Driver SCPI

Spectrum Analysis Supported Supported

FFT Analysis Supported Supported

IQ Data Acquisition Supported Supported

Channel Power Test Supported Supported

Power Servo Supported Not supported

ACPR Supported Supported

Creating a Project with IVI-COM Using C-Sharp
Example 3: CW Spectrum UI

Programmer’s Guide 43

SCPI Commands Control Method

There are two steps to use SCPI control method:

1. Setup VISA connection between PC and instrument

2. Send instrument SCPI command.

For example, AgVisa32.viPrintf(xApp, ":FREQ:CENT 1e9 Hz\n");//Set
receiver’s Center Freq is a command used in example 3. :FREQ:CENT 1e9 Hz
is a SCPI command.

To get a SCPI command, please refer to the online help system in VXT software

Harmonics Supported Supported

OBW Not supported Supported

Spectrum Emission Mask Not supported Supported

Marker Not supported Supported

Source (digital signal)* Supported Supported

Demod Digital Signal (EVM result) Not supported Supported

Keysight Classic Spectrum UI Not supported Supported

*. The VXT plays waveform file to produce digital signal.

Features IVI Driver SCPI

Creating a Project with IVI-COM Using C-Sharp
Example 3: CW Spectrum UI

44 Programmer’s Guide

Or download the corresponding mode’s User’s and Programmer’s Reference
from http://keysight.com/find/vxt

For further information about SCPI command programming, please refer to
X-Series Programmer’s Guide.

Creating a Project with IVI-COM Using C-Sharp
Example 4: Channel Power Acquisition

Programmer’s Guide 45

Example 4: Channel Power Acquisition

This example introduces the programming procedure to measure signal
channel power with VXT.

• VXT source outputs a LTE FDD signal

• VXT receiver measures the signal channel power

Before programming, please connect VXT RF Output to RF Input port and VXT
100 MHz Ref In port to M9300A’s 100 MHz Ref Out port. Please refer to Figure
3-1 for details.

The programming procedure are listed as 8 steps as below:

Step 1. - Create your project with Visual C#

Step 2. - Add References

Step 3. - Add Using Statements

Step 4. - Create an Instance

Step 5. - Initialize the Instance

Step 6. - Write the Program

Step 7. - Close the Instance

Step 8. - Build and Run the Program

For step 1, 2, 3, 4, 5, 7, 8, pleas refer to example 1 as those steps are similar.
This section will only introduce the example code for step 6 - Write the
Program.

After the VXT software is installed, you will find the source code in the directory
below:

C:\Program Files (x86)\IVI Foundation\IVI\Drivers\KtM9420\Examples\
VS.Net\CSharp\CS_CHPowerAcquisition.

N7624B Signal Studio for LTE/LTE-FDD is needed to play a LTE FDD signal
with VXT product.

Creating a Project with IVI-COM Using C-Sharp
Example 4: Channel Power Acquisition

46 Programmer’s Guide

Write the Measurement Program
To output a LTE FDD signal with M9420A source, please refer to step 5 of
example 2.

To set M9420A receiver to measure the channel power of the LTE signal, please
refer to the example code as below:

Commands Summary

• Arm() method is used to trigger the data capture of acquisition. In this
example, after all the hardware parameters are set, use Arm() to enable the
power measurement.

driver.Receiver.RF.Frequency = 1e9; //Set receiver center freq

driver.Receiver.RF.Power = ‐5;

driver.Receiver.RF.InputPort = KtM9420PortEnum.KtM9420PortRFInput;

double rmsvalue = ‐20 * Math.Log10(driver.Source.Modulation.ArbRmsValue) + 3;

driver.Receiver.RF.PeakerToAverage = rmsvalue; //Please refer to the

explanation below.

driver.Apply(); //Apply the above setting to VXT receiver hardware

driver.AcquisitionMode =

KtM9420AcquisitionModeEnum.KtM9420AcquisitionModePower;

//choose power acquisition mode to test power

driver.PowerAcquisition.Bandwidth = 10e6;

// PowerAcquisition.Bandwidth set to a value > DUT signal bandwidth

driver.PowerAcquisition.Duration = 0.02;

driver.PowerAcquisition.ChannelFilter.Shape = KtM9420ChannelFilter

ShapeEnum.KtM9420ChannelFilterShapeNone;

driver.PowerAcquisition.ChannelFilter.Alpha = 0.1;

driver.PowerAcquisition.ChannelFilter.Bandwidth = 6e6;

driver.Arm(); // Start the M9420A's receiver measurement

if (!driver.WaitForData((6000))) // It will take some time to change receiver

setting, so use WaitForData() method to wait for a while.

{

 throw new ApplicationException("WaitForData failed. No acquisition was

made.");

}

//Read the Channel Power Measurement Result from VXT memory

const int CAPTURE_ID = 0;

bool overloaded = false;

double power = 0;

driver.PowerAcquisition.ReadPower(CAPTURE_ID, ref power, ref overloaded);
//Read the channel power result

Creating a Project with IVI-COM Using C-Sharp
Example 4: Channel Power Acquisition

Programmer’s Guide 47

• After Arm()method to capture data, a time delay is set to wait for the
measurement. PowerAquisition.ReadPower() is used to get the result
from VXT memory.

• Bandwidth, Duration, Offsetfreq and ChannelFilter need to be
set in power acquisition mode.

• Receiver.RF is used to set the basic RF parameters such as: center
freq, power (level), input port, and peak to average. In all the
data acquisition modes, the commands to set those parameters are same.
For example, use commands below to set the receiver’s RF parameters:

• In benchtop spectrum analyzer, the reference, attenuator and pre-amplifier
is set to avoid mixer overload, or to control DANL. In VXT, only one
parameter RF.Power is used to set the power range of a receiver. Set
RF.Power value DUT signal to avoid mixer overload. In example 4, DUT
LTE signal is –5 dBm, RF.Power is set to -5 dBm. VXT will set attenuator
and pre-amp accordingly.

• Receiver.RF.PeakToAverage is very important to test a signal with high
peak to average value, such as some cellular digital modulation signal. To
test a -10 dBm LTE signal, the average channel power of this signal will be
-10 dBm, so set Receiver.RF.Power to -5 dBm. But this LTE signal may
have 8 dB Peak to Average value, which means the peak signal power of
this LTE signal should be -2 dBm. It exceeds -5 dBm Receiver.RF.Power
setting, then the mixer will overload. The setting of
Receiver.RF.PeakToAverage will help to optimize the attenuator and
level setting in the mixer to get correct measurement result.

In the source code below:

 A waveform is played to generate this LTE signal, VXT provides a method to
read an Arb Rms Value from the waveform, it is a peak to average volt ratio
value. It could be used to calculate power peak to average value in dB unit.
3 dB buffer is added in the example.

driver.Receiver.RF.Frequency = 1e9; //Set receiver’s center freq
driver.Receiver.RF.Power = ‐5; //Set receivers’ power range

driver.Receiver.RF.InputPort = KtM9420PortEnum.KtM9420PortRFInput;
//Set the receiver’s RF input port

double rmsvalue = ‐20 * Math.Log10(driver.Source.Modulation.ArbRmsValue) + 3;

driver.Receiver.RF.PeakerToAverage = rmsvalue;

Creating a Project with IVI-COM Using C-Sharp
Example 4: Channel Power Acquisition

48 Programmer’s Guide

Get the Measurement Result
Refer to the process of step 8 in example 1 to build and run your program to
get the result as below.

Before running the program, please make sure the M9300A reference software
is turned on.

It will take several minutes to run the program as the VXT vector transceiver
need boot up before running this program.

Basic Concepts: 4 Receiver Acquisition Mode

Keysight VXT M9420A/M9421A provides 4 receiver acquisition mode as below.

Keysight VXT M9420A/M9421A also provides 3 measurement mode: Power
Servo, ACPR, Harmonics. Please refer example 8, 9, and 10 for details.

Features Use Case Difference

Power Acquisition Get the channel power
directly

Fast power calculation

Spectrum
Acquisition

Get the spectrum data
based on span and RBW
setting

More data points than FFT acquisition
Lower DANL and better dynamic range

FFT Acquisition FFT method to get the spec-
trum data

Faster SA data capture speed than
spectrum acquisition
Up to 512 data points
Lower dynamic range

IQ Acquisition IQ data output Easy for post analysis

Creating a Project with IVI-COM Using C-Sharp
Example 5: Spectrum Acquisition

Programmer’s Guide 49

Example 5: Spectrum Acquisition

This example introduces the programming procedure to measure signal
spectrum data and search the maximum power point with VXT.

• VXT source outputs a 1 GHz CW signal

• VXT receiver tests the signal spectrum data and search the maximum power
point

Before programming, please connect VXT RF Output to RF Input port and VXT
100 MHz Ref In port to M9300A’s 100 MHz Ref Out port. Please refer to Figure
3-1 for details.

The programming procedure are listed as 8 steps as below:

Step 1. - Create your project with Visual C#

Step 2. - Add References

Step 3. - Add Using Statements

Step 4. - Create and initialize the Instance

Step 5. - Set VXT source to generate 1 GHz CW signal

Step 6. - Set VXT receiver to test signal spectrum data and search the
maximum power point.

Step 7. - Close the Instance

Step 8. - Build and Run the Program

For step 1, 2, 3, 4, 5, 7, 8, pleas refer to example 1 as those steps are similar.
This section will only introduce the example code for step 6 - Set VXT receiver.

After the VXT software is installed, you will find the source code in the directory
below:

C:\Program Files (x86)\IVI Foundation\IVI\Drivers\KtM9420\Examples\
VS.Net\CSharp\CS_SpectrumAcquisition.

Creating a Project with IVI-COM Using C-Sharp
Example 5: Spectrum Acquisition

50 Programmer’s Guide

Set VXT Receiver to Test Spectrum Data
To set VXT receiver to test the signal spectrum data and search the maximum
power point, please refer to the example code as below:

driver.Receiver.RF.Frequency = 1e9; //Set Receiver Center freq

driver.Receiver.RF.Power = ‐5; //Set power to ‐5 dBm

driver.Receiver.RF.InputPort = KtM9420PortEnum.KtM9420PortRFInput;

driver.Apply(); //Apply the changes to hardware.

driver.AcquisitionMode =

KtM9420AcquisitionModeEnum.KtM9420AcquisitionModeSpectrum;

//Switch to Spectrum Acquisition Mode

driver.SpectrumAcquisition.Span = 8e6; //Set Span of Spectrum

driver.SpectrumAcquisition.ResolutionBandwidth = 30000; //Set RBW

driver.SpectrumAcquisition.FFTWindowsShape =

KtM9420FFTWindowShapeEnum.KtM9420FFTWindowShapeFlatTop; //Set FFT Window Shape

driver.SpectrumAcquisition.Averaging.Mode =

KtM9420SpectrumAveragingEnum.KtM9420SpectrumAveragingTime;

//Set Average's Mode ‐ choose time based average

driver.SpectrumAcquisition.Averaging.Duration = 0.01; //Set average based time

driver.SpectrumAcquisition.Averaging.Overlap = 0.5; // Set overlap value

driver.Arm(); //Arm the digitizer to start measurement or data capture

const int CAPTURE_ID = 0; double fstart = 0; double fdelta = 0;

double[] spectrum = new double[driver.SpectrumAcquisition.Bins];

//Read the Spectrum data from VXT memory

driver.SpectrumAcquisition.ReadPowerSpectrum(CAPTURE_ID, ref spectrum, ref

overloaded,ref fstart,ref fdelta);

Search maximum data point. Source code:

int maxBin = FindMaximumAmplitude(ref spectrum);

private static int FindMaximumAmplitude(ref double[] vector)

{

 Double maxValue = Double.MinValue;

 int bin = ‐1;

 for (int i = 0; i < vector.Length; i++)

 {

 if (vector[i] > maxValue)

 {

 bin = i;

 maxValue = vector[i];

 }

 }

 return bin;
 }

Creating a Project with IVI-COM Using C-Sharp
Example 5: Spectrum Acquisition

Programmer’s Guide 51

Commands Summary

• driver.SpectrumAcquisition.Bins is used to get the number of
frequency points captured by the spectrum acquisition mode. When you
set the Span and RBW value, the VXT will set the frequency bins value
automatically. Increase span and decrease RBW will result in a larger Bin
value, which means more frequency points.

you program will assign enough space to save the spectrum data, based
on Bin’s value.

• driver.SpectrumAcquisition.ReadPowerSpectrum is used to read
spectrum acquisition. The default unit is dBm. The spectrum data
captured by FFT acquisition mode is in mW unit.

Get the Measurement Result

Refer to the process of step 8 in example 1 to build and run your program to
get the result as below.

Before running the program, please make sure the M9300A reference software
is turned on.

It will take several minutes to run the program as the VXT vector transceiver
need boot up before running this program.

Creating a Project with IVI-COM Using C-Sharp
Example 6: FFT Acquisition

52 Programmer’s Guide

Example 6: FFT Acquisition

This example introduces the programming procedure to measure signal
spectrum data and search the maximum power point with VXT.

• VXT source outputs a 1 GHz CW signal

• VXT receiver tests the signal spectrum data in FFT mode and search the
maximum power point

Before programming, please connect VXT RF Output to RF Input port and VXT
100 MHz Ref In port to M9300A’s 100 MHz Ref Out port. Please refer to figure
3-1 for details.

The programming procedure are listed as 8 steps as below:

Step 1. - Create your project with Visual C#

Step 2. - Add References

Step 3. - Add Using Statements

Step 4. - Create and initialize the Instance

Step 5. - Set VXT source to generate 1 GHz CW signal

Step 6. - Set VXT receiver to test signal spectrum data in FFT mode and search
the maximum power point.

Step 7. - Close the Instance

Step 8. - Build and Run the Program

For step 1, 2, 3, 4, 5, 7, 8, pleas refer to example 1 as those steps are similar.
This section will only introduce the example code for step 6 - Set VXT receiver.

After the VXT software is installed, you will find the source code in the directory
below:

C:\Program Files (x86)\IVI Foundation\IVI\Drivers\KtM9420\Examples\
VS.Net\CSharp\CS_FFTAcquisition.

Creating a Project with IVI-COM Using C-Sharp
Example 6: FFT Acquisition

Programmer’s Guide 53

Set VXT Receiver
To set VXT receiver to test the signal spectrum data in FFT mode and search
the maximum power point, please refer to the example code as below:

driver.Receiver.RF.Frequency = 1e9;

driver.Receiver.RF.Power = ‐5;

driver.Receiver.RF.InputPort = KtM9420PortEnum.KtM9420PortRFInput;

driver.Receiver.RF.PeakerToAverage = 3;

driver.Apply(); // Apply the changes to hardware

driver.AcquisitionMode = KtM9420AcquisitionModeEnum.KtM9420AcquisitionModeFFT;

driver.FFTAcquisition.Length =

KtM9420FFTAcquisitionLengthEnum.KtM9420FFTAcquisitionLength_512;

driver.FFTAcquisition.SampleRate = 5e6;
//Sample rate should be set to a value > 1.25 x Span.

driver.FFTAcquisition.WindowShape =

KtM9420FFTWindowShapeEnum.KtM9420FFTWindowShapeFlatTop;

driver.FFTAcquisition.Duration = 1e‐4;

driver.FFTAcquisition.ChannelFilter.Shape =

KtM9420ChannelFilterShapeEnum.KtM9420ChannelFilterShapeNone;

driver.FFTAcquisition.ChannelFilter.Bandwidth = 4e6;

driver.FFTAcquisition.ChannelFilter.Alpha = 0.1;

driver.Arm(); //Arm the digitizer

Double[] fftData = new Double[driver.FFTAcquisition.Samples];

driver.FFTAcquisition.ReadMagnitudeData(0, ref fftData, ref overloaded);

TodBm(ref fftData); //this method switch the FFT result into dBm value.

int maxBin = FindMaximumAmplitude(ref fftData); //This method find the peak

power value.

private static void TodBm(ref double[] vector)

 {

 for (int i = 0; i < vector.Length; i++)

 {

 vector[i] = 10 * Math.Log10(vector[i]);

 }
 }

Creating a Project with IVI-COM Using C-Sharp
Example 6: FFT Acquisition

54 Programmer’s Guide

Commands Summary

• driver.FFTAcquisition.Length is limited up to 512 points to get fast test
speed. To get more frequency points, please use spectrum acquisition mode.

• FFTAcquisition.ReadMagnitudeData is used to read spectrum acquisition.
The default unit is dBm. The spectrum data captured by FFT acquisition
mode is in mW unit.

Get the Measurement Result
Refer to the process of step 8 in example 1 to build and run your program to
get the result as below.

Before running the program, please make sure the M9300A reference software
is turned on.

It will take several minutes to run the program as the VXT vector transceiver
need boot up before running this program.

Creating a Project with IVI-COM Using C-Sharp
Example 7: IQ Acquisition

Programmer’s Guide 55

Example 7: IQ Acquisition

This example introduces the programming procedure to measure signal
channel power with M9420A/M9421A.

• VXT source outputs a LTE FDD signal

• VXT receiver captures signal’s IQ data

Before programming, please connect VXT RF Output to RF Input port and VXT
100 MHz Ref In port to M9300A’s 100 MHz Ref Out port. Please refer to figure
3-1 for details.

The programming procedure are listed as 8 steps as below:

Step 1. - Create your project with Visual C#

Step 2. - Add References

Step 3. - Add Using Statements

Step 4. - Create and initialize the Instance

Step 5. - Set VXT source to generate 1 GHz LTE FDD signal

Step 6. - Set VXT receiver to capture signal’s IQ data.

Step 7. - Close the Instance

Step 8. - Build and Run the Program

For step 1, 2, 3, 4, 5, 7, 8, pleas refer to example 1 as those steps are similar.
This section will only introduce the example code for step 6 - Capture IQ Data.

After the VXT software is installed, you can find the source code as below:

C:\Program Files (x86)\IVI Foundation\IVI\Drivers\KtM9420\Examples\
VS.Net\CSharp\CS_IQAcquisition.

The license key of N7624B Signal Studio is needed to play a LTE FDD signal
with VXT product.

Creating a Project with IVI-COM Using C-Sharp
Example 7: IQ Acquisition

56 Programmer’s Guide

Write the Measurement Program
To output a LTE FDD signal with M9420A source, please refer to Example 2.

To capture the IQ data of the LTE signal, please refer to the example code as
below:

• driver.IQAcquisition.Samples is used to set the sample points you want
to capture, so you can defined a number directly. Usually we can define it
according to IQAcquisition.SampleRate and Duration Time you want to
test. So in source code, it set as below,
driver.IQAcquisition.Samples = (int)(DURATION * SAMPLE_RATE);
//Set the IQ data acquisition sample number.

driver.Receiver.RF.Frequency = 1e9; //Set the Receiver's Center Freq.
driver.Receiver.RF.Power = 0;
driver.Receiver.RF.InputPort = KtM9420PortEnum.KtM9420PortRFInput;
//set the Receiver to RF input port.
double rmsvalue = ‐20 * Math.Log10(driver.Source.Modulation.ArbRmsValue) + 3;
// read the RMS value from waveform file and transfer it into Peak to Avearge
Ratio Value(PAR). Add 3 dB buffer to PAR to avoid receiver overload.
driver.Receiver.RF.PeakerToAverage = rmsvalue;
//Set the Peak to Average Ratio.

driver.AcquisitionMode = KtM9420AcquisitionModeEnum.KtM9420AcquisitionModeIQ;
//choose IQ Acquisition Mode
driver.IQAcquisition.SampleRate = 5000000; //Set Sample Rate
double DURATION = 1e‐3;
double SAMPLE_RATE = driver.IQAcquisition.SampleRate;
driver.IQAcquisition.Samples = (int)(DURATION * SAMPLE_RATE);
//Set the IQ data acquisition sample quantity, and it’s equal to Sample rate
multiple Duration.
int samples = driver.IQAcquisition.Samples;
driver.IQAcquisition.Units =
KtM9420IQUnitsEnum.KtM9420IQUnitsSquareRootMilliWatts; //Set the IQ data unit.
driver.IQAcquisition.ChannelFilter.Shape =
KtM9420ChannelFilterShapeEnum.KtM9420ChannelFilterShapeNone;
//Set the IQ Acquisition's channel filter shape

driver.Apply(); // Apply the changes to hardware.
driver.Arm(); //Arm the digitizer to start measurement or data capture.

double[] interleavedIqBlock = null; // Allocate enough room for 5,000 samples

Console.WriteLine("Start to Capture IQ data:");
driver.IQAcquisition.ReadIQData(0,0,samples,ref interleavedIqBlock,ref
overloaded);
//Read the captured IQ data from VXT.

//Add code to process this IQ data per your own requirement.
Console.WriteLine("Read {0,5} samples from VXT M9420A. IQ data capture
completed.", samples);

Creating a Project with IVI-COM Using C-Sharp
Example 7: IQ Acquisition

Programmer’s Guide 57

Get the Measurement Result
Refer to the process of step 8 in example 1 to build and run your program to
get the result as below.

Before running the program, please make sure the M9300A reference software
is turned on.

It will take several minutes to run the program as the VXT vector transceiver
need boot up before running this program.

Creating a Project with IVI-COM Using C-Sharp
Example 8: Power Servo

58 Programmer’s Guide

Example 8: Power Servo

This example introduces the programming procedure to perform power servo,
and DUT is only a cable.

Power Servo Loop
One of the key measurements for a power amplifier or chip set, is performing a
Servo Loop. Because when you measure a power amplifier or chip set, it is
typically specified at a specific output power level. It needs to adjust the source
input level until you measure the exact power level. To do this, you will
continually adjust the source until you achieve the specified output power
level.

Before programming, please connect VXT RF Output to RF Input port and VXT
100 MHz Ref In port to M9300A’s 100 MHz Ref Out port. Please refer to figure
3-1 for details.

The programming procedure are listed as 8 steps as below:

Step 1. - Create your project with Visual C#

Step 2. - Add References

Step 3. - Add Using Statements

Step 4. - Create and initialize the Instance

Step 5. - Set VXT source to generate 1 GHz WCDMA Uplink signal

Step 6. - Perform Power Servo operation.

Step 7. - Close the Instance

Step 8. - Build and Run the Program

For step 1, 2, 3, 4, 5, 7, 8, pleas refer to example 1 as those steps are similar.
This section will only introduce the example code for step 6 - Write the
Program.

After the VXT software is installed, you can find the source code as below:

C:\Program Files (x86)\IVI Foundation\IVI\Drivers\KtM9420\Examples\
VS.Net\CSharp\CS_PowerServo.

In this example, need to generate a WCDMA uplink signal with VXT’s source,
so the license key of N7600B Signal Studio is needed with VXT product.

Creating a Project with IVI-COM Using C-Sharp
Example 8: Power Servo

Programmer’s Guide 59

Write the Measurement Program
To output a WCDMA uplink signal with the M9420A source, please refer to
below source codes:

The waveform file “WCDMA_UL_DPCHH_2DPDCH_1C.wfm” used in this
example is attached in the project file. To play this waveform, please copy it to
the file path set in the code. In this example you need to copy it to
“C:\ARBdata”. You can set it to other address in Source.LoadWaveform().

driver.Source.RF.Frequency = 1e9; //set source center frequency

driver.Source.RF.Level = 3; //set source RF power level

driver.Source.RF.OutputPort = KtM9420PortEnum.KtM9420PortRFOutput;

driver.Source.RF.OutputEnable = true;

driver.Source.LoadWaveform("c:\\ARBdata", "WCDMA_UL_DPCHH_2DPDCH_1C.wfm");

\\ Please copy the waveform file ” WCDMA_UL_DPCHH_2DPDCH_1C.wfm” to “C:\ARBdata” of

your PC

double RmsValue = driver.Source.Modulation.ArbRmsValue;

driver.Source.Modulation.ArbPlayConfigure(WaveformName:

"WCDMA_UL_DPCHH_2DPDCH_1C.wfm", ArbPlayMode:

KtM9420ArbPlayModeEnum.KtM9420ArbPlayModePlayArb, ArbPlayDuration: 1e‐4);

\\Play wave form to output WCDMA signal
driver.Apply();

Creating a Project with IVI-COM Using C-Sharp
Example 8: Power Servo

60 Programmer’s Guide

To perform power servo operation, please refer to the example code as below:

//Setup Receiver

driver.Receiver.RF.Frequency = 1e9;

driver.Receiver.RF.Power = 5;

double RmsValue = ‐20 * Math.Log10(driver.Source.Modulation.ArbRmsValue) + 3;

driver.Receiver.RF.PeakerToAverage = RmsValue;

driver.Receiver.RF.InputPort = KtM9420PortEnum.KtM9420PortRFInput;

//Configure Power Servo

driver.Measurement.EnabledMeasurements =

(int)KtM9420MeasurementsEnum.KtM9420MeasurementsPowerServo;

driver.Measurement.PowerServo.AcqusitionMode =

KtM9420AcquisitionModeEnum.KtM9420AcquisitionModeFFT;

driver.FFTAcquisition.SampleRate = 30.72e6;

driver.FFTAcquisition.Length =

KtM9420FFTAcquisitionLengthEnum.KtM9420FFTAcquisitionLength_512;

driver.FFTAcquisition.Duration = 0.0001;

KtM9420ChannelFilterShapeEnum FilterType =

KtM9420ChannelFilterShapeEnum.KtM9420ChannelFilterShapeRaisedCosine;

double FilterAlpha = 0.22;

double FilterBw = 3840000.0;

driver.FFTAcquisition.ChannelFilter.Configure(FilterType, FilterAlpha,

FilterBw);
driver.FFTAcquisition.WindowShape =
KtM9420FFTWindowShapeEnum.KtM9420FFTWindowShapeGaussian;

double Level = 3;

double Gain = 0; //Because the DUT used in this example is a cable, not a

amplifier, so we use 0 dB gain.

driver.Measurement.PowerServo.InputPower = Level + Gain;

driver.Measurement.PowerServo.OutputPower = Level;

driver.Measurement.PowerServo.OutputPowerMargin = 0.05;

driver.Measurement.PowerServo.OverheadTime = 600e‐6;

driver.Measurement.PowerServo.MaximumOutputPower = 20;
driver.Apply();
//Power Servo Configuration Completed

driver.Measurement.Process(); //Active the measurement

double MeasuredPower = 0;

bool ServoPass = false; int ServoCount = 0; bool Overload = true;

//Read PowerServo Result
driver.Measurement.PowerServo.ReadPowerServo(ref MeasuredPower, ref ServoPass,
ref Overload, ref ServoCount);

Creating a Project with IVI-COM Using C-Sharp
Example 8: Power Servo

Programmer’s Guide 61

Commands Summary

• In this power servo example, the driver.Arm() method is not used to active
the measurement. We used the driver.measurement.process() method.

• The driver.Arm() method is mainly used for the 4 basic acquisition modes,
Power acquisition, FFT acquisition, spectrum acquisition and IQ acquisition.
It will enable the test without any time delay or waiting.

• The driver.measurement.process() is mainly used to active the test of 3
measurements, Power Servo, Harmonics and ACPR. It will include internal
waiting during the measurements.

• The 3 measurements items are tested based on 1 of 4 basic acquisition
modes, so it requires to choose the
Measurement.PowerServo.AcqusitionMode, and set related parameters in
this mode.

Get the Measurement Result

Refer to the process of step 8 in example 1 to build and run your program to
get the result as below.

 The measured power is 3.03 dBm, and the servo count is 3.

Before running the program, please make sure the M9300A reference software
is turned on.

It will take several minutes to run the program as the VXT vector transceiver
need boot up before running this program.

Creating a Project with IVI-COM Using C-Sharp
Example 9: Harmonics Test

62 Programmer’s Guide

Example 9: Harmonics Test

This example introduces the programming procedure to measure harmonics of
a CW signal with M9420A/M9421A.

• VXT source outputs a 1 GHz CW signal

• VXT receiver test harmonics of this signal

Before programming, please connect VXT RF Output to RF Input port and VXT
100 MHz Ref In port to M9300A’s 100 MHz Ref Out port. Please refer to figure
3-1 for details.

The programming procedure are listed as 8 steps as below:

Step 1. - Create your project with Visual C#

Step 2. - Add References

Step 3. - Add Using Statements

Step 4. - Create and initialize the Instance

Step 5. - Set VXT source to generate 1 GHz CW signal

Step 6. - Set VXT receiver to test the harmonics.

Step 7. - Close the Instance

Step 8. - Build and Run the Program

For step 1, 2, 3, 4, 5, 7, 8, pleas refer to example 1 as those steps are similar.
This section will only introduce the example code for step 6 - Set VXT receiver
to test harmonics.

After the VXT software is installed, you can find the source code as below:

C:\Program Files (x86)\IVI Foundation\IVI\Drivers\KtM9420\Examples\
VS.Net\CSharp\CS_Measurement_Harmonics.

Creating a Project with IVI-COM Using C-Sharp
Example 9: Harmonics Test

Programmer’s Guide 63

Write the Measurement Program
To output a CW signal with VXT source, please refer to Example 1.

To test the harmonics of this signal, please refer to below source codes:

driver.Receiver.RF.Frequency = 1e9;

driver.Receiver.RF.Power = 10;

//Set the Receiver.RF.Power a little bigger than target test signal to avoid

overload
valuedriver.Receiver.RF.PeakerToAverage =3;

driver.Receiver.RF.InputPort = KtM9420PortEnum.KtM9420PortRFInput;

driver.Measurement.Harmonics.AcquisitionMode =

KtM9420AcquisitionModeEnum.KtM9420AcquisitionModeSpectrum;

//Choose the Spectrum Acquisition Mode

driver.SpectrumAcquisition.Span = 1e6;

driver.SpectrumAcquisition.ResolutionBandwidth = 1e3;

driver.SpectrumAcquisition.FFTWindowsShape =

KtM9420FFTWindowShapeEnum.KtM9420FFTWindowShapeHann;

driver.SpectrumAcquisition.OffsetFrequency = 0;

driver.Apply(); // Apply the above setting to VXT receiver's hardware.

driver.Measurement.Harmonics.Configure(FundamentalFrequency:

driver.Source.RF.Frequency, MaximumHarmonicsNumber: 3);

driver.Measurement.EnabledMeasurements |=

(int)KtM9420MeasurementsEnum.KtM9420MeasurementsHarmonics;

driver.Measurement.Process(); // Active the Harmonics measurement

bool overload = false;

double[] harmData = new double[5];

bool[] overloads = new bool[5];

driver.Measurement.Harmonics.ReadHarmonics(Harmonics: ref harmData, Overload:

ref overload);

//Read Harmonics test result. The output is the power of main signal and

harmonics in dBm unit.

Creating a Project with IVI-COM Using C-Sharp
Example 9: Harmonics Test

64 Programmer’s Guide

Commands Summary

• Maximum Harmonics Number is to set the number of harmonics will be
tested, default vaule is 1. Please take note it includes the fundamental
frequency signal. For example, if you set the
driver.Measurement.Harmonics.MaxmumHarmonicsNumber to 3 to test a 1
GHz CW signal, it will test the power level of 1 GHz(fundamental freq), 2
GHz and 3 GHz signal.

• Measurement.Harmonics.ReadHarmonics() is used to read the Harmonics
test result, and the result is only in dBm unit. If you want to get the result in
dBc unit, such as 2nd Harmonics is XX dBc related to fundamental signal,
you need to calculate with your own code

• Because the Harmonics test usually requires high dynamic range, please
carefully adjust driver.receiver.RF.power to achieve a better result.

• IQ Acquisition mode is not supported by Harmonics measurement mode.

Get the Measurement Result

Refer to the process of step 8 in example 1 to build and run your program to
get the result as below.

Before running the program, please make sure the M9300A reference software
is turned on.

It will take several minutes to run the program as the VXT vector transceiver
need boot up before running this program.

Creating a Project with IVI-COM Using C-Sharp
Example 10: ACPR Test

Programmer’s Guide 65

Example 10: ACPR Test

This example introduces the programming procedure to measure ACPR of a
LTE FDD signal with M9420A/M9421A.

• VXT source outputs a LTE FDD signal

• VXT receiver test ACPR of this signal

Before programming, please connect VXT RF Output to RF Input port and VXT
100 MHz Ref In port to M9300A’s 100 MHz Ref Out port. Please refer to figure
3-1 for details.

The programming procedure are listed as 8 steps as below:

Step 1. - Create your project with Visual C#

Step 2. - Add References

Step 3. - Add Using Statements

Step 4. - Create an Instance

Step 5. - Initialize the Instance

Step 6. - Write the Program (Set VXT source to generate LTE FDD signal, and
set VXT receiver to test the ACPR of this signal)

Step 7. - Close the Instance

Step 8. - Build and Run the Program

For step 1, 2, 3, 4, 5, 7, 8, pleas refer to example 1 as those steps are similar.
This section will only introduce the example code for step 6 - Write the
Program.

After the VXT software is installed, you can find the source code as below:

C:\Program Files (x86)\IVI Foundation\IVI\Drivers\KtM9420\Examples\
VS.Net\CSharp\CS_Measurement_ACPR.

Creating a Project with IVI-COM Using C-Sharp
Example 10: ACPR Test

66 Programmer’s Guide

Write the Measurement Program
To output a CW signal with VXT source, please refer to Example 1.

To test the harmonics of this signal, please refer to below source codes:

driver.Receiver.RF.Frequency = 1e9;

driver.Receiver.RF.Power = 0; //set the Receiver.RF.Power a little larger the

target test value to avoid overload

double rmsvalue = ‐20 * Math.Log10(driver.Source.Modulation.ArbRmsValue) + 3;

//Read the RMS value from waveform file and transfer it into Peak to Avearge

Ratio Value(PAR). Add 3 dB buffer.

driver.Receiver.RF.PeakerToAverage = rmsvalue;//Set the Peak to Average Ratio

driver.Apply();

driver.Measurement.Acpr.UseChanPwrForRef = false; //Do not use Power Servo

result as carrier power to test ACPR result. Will introduce this in detail

later.

int numAcprMeas = 3;

//In this code, we will test 2 adjcent channels (1 lower and 1 upper), so 3

channel powers will be tested to get 2 ACPR results.

double[] AcprOffsetFreq = new double[] { 0, ‐5e6, 5e6 }; //Define the offset of

every channel. Carrier channel’s offset is 0.

double[] AcprSpan = new double[] { 4.5e6, 4.5e6, 4.5e6 }; //Define Span of every

channel

double[] AcprDuration = new double[] { 500e‐6, 500e‐6, 500e‐6 };

KtM9420ChannelFilterShapeEnum[] AcprFilterType = new

KtM9420ChannelFilterShapeEnum[numAcprMeas];

AcprFilterType[0] =

KtM9420ChannelFilterShapeEnum.KtM9420ChannelFilterShapeRectangular;

AcprFilterType[1] =
KtM9420ChannelFilterShapeEnum.KtM9420ChannelFilterShapeRectangular;

AcprFilterType[2] =

KtM9420ChannelFilterShapeEnum.KtM9420ChannelFilterShapeRectangular;

double[] AcprAlpha = new double[] { 0.01, 0.01, 0.01 };

double[] AcprBandWidth = new double[] { 4.5e6, 4.5e6, 4.5e6 };

driver.Measurement.Acpr.AcquisitionMode =

KtM9420AcquisitionModeEnum.KtM9420AcquisitionModePower;

driver.Measurement.Acpr.SetAcprParameter(OffsetFrequency: AcprOffsetFreq,

Span: AcprSpan, Duration: AcprDuration);

driver.Measurement.Acpr.AveragingNumber = 10;

driver.Measurement.Acpr.ConfigureFilter(Shape: AcprFilterType, Alpha:

AcprAlpha, Bandwidth: AcprBandWidth);

Creating a Project with IVI-COM Using C-Sharp
Example 10: ACPR Test

Programmer’s Guide 67

Commands Summary

• driver.Measurement.Acpr.UseChanPwrForRef is a special setting for VXT’s
ACPR measurement. If it set to true, VXT will use Power servo’s power
result as carrier channel’s power to perform ACPR test. Because VXT is
designed to perform high speed measurement. When customer test a
amplifier, it requires to perform power servo and ACPR for same DUT. VXT
support to use power servo’s power result as carrier channel’s power to
perform ACPR, so it will help to decrease the total measurement time.

• If you don’t need to perform Power Servo (such as transmitter or base
station test) before ACPR test, should set the
driver.Measurement.Acpr.UseChanPwrForRef to false. Current example is
this case.

• No matter UseChanPwrForRet is set to true or false, the
Measurement.Acpr.ReadAcpr result will NOT included the carrier chanel’s
channel power. Only the ACPR result – for example –xx dBc of 1st upper
adjacent channel vs. carrier channel’s power.

• Measurement.Acpr.ReadAcpr will get a AcprResultOverload value, and it
will help to check whether you have received correct result. If the
AcprResultOverload get true, the ACPR power result will be incorrect as the
VXT has already overloaded.

Get the Measurement Result

Refer to the process of step 8 in example 1 to build and run your program to
get the result as below.

VXT test the ACPR result as below:

Before running the program, please make sure the M9300A reference software
is turned on.

It will take several minutes to run the program as the VXT vector transceiver
need boot up before running this program.

Creating a Project with IVI-COM Using C-Sharp
Example 11: Combined WCDMA Power Servo and ACPR Measurement

68 Programmer’s Guide

Example 11: Combined WCDMA Power Servo and ACPR Measurement

When making a WCDMA Power Servo and ACPR measurement, Servo is
performed using "Baseband Tuning" to adjust the source amplitude and then
"Baseband Tuning" is used to digitally tune the center frequency in order to
make channel power measurements, at multiple offsets, using the Power Servo
interface of the VXT.

The following example code demonstrates how to instantiate driver instances,
set the resource names and various initialization values, initialize the driver
instances, and perform the other relevant tasks:

• Send source RF and LoadWaveform commands to the VXT driver

• Send receiver RF commands to the VXT driver

• Send measurement process command to run a Servo loop and ACPR
measurement

• Read the measurement result and close the driver

Before programming, please connect VXT RF Output to RF Input port and VXT
100 MHz Ref In port to M9300A’s 100 MHz Ref Out port. Please refer to figure
3-1 for details.

After the VXT software is installed, you can find the source code as below:

C:\Program Files (x86)\IVI Foundation\IVI\Drivers\KtM9420\Examples\
VS.Net\CSharp\CS_PowerServo_ACPR.

Example Program 3 - Pseudo -code

Initialize drivers for VXT and check for errors

Configure Source RF Settings:

Frequency

RF Level

RF Output Port and Enable On

Configure ARBPLAY Settings:

Load WCDMA Signal Studio File

Get RMS Value

Play ARB File

Configure Receiver RF Settings:

Frequency

Level

Peak to Average Ratio

Creating a Project with IVI-COM Using C-Sharp
Example 11: Combined WCDMA Power Servo and ACPR Measurement

Programmer’s Guide 69

Input Port

Configure Power Servo Settings

Enable Power Servo Measurement

Acquisition Mode

Acquisition Settings

Power Servo Settings

Configure ACPR Settings

Enable ACPR Measurement

ACPR Measurement Settings

Enable VXT Settings:

Source Settings

Receiver Settings

Apply All Above Settings and Measurements

Read Power Servo Results

Measured Power

Pass/Fail

Overload

Servo Count

Read ACPR Results

ACPR Values

Overload

Source Code

// Copy the following example code and compile it as a C# Console Application

#region Specify using Directives
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Ivi.Driver.Interop;
using Keysight.KtM9420.Interop;
#endregion

Creating a Project with IVI-COM Using C-Sharp
Example 11: Combined WCDMA Power Servo and ACPR Measurement

70 Programmer’s Guide

namespace PaServoAcpr

{

 class Program

 {

 static void Main(string[] args)

 {

 // Create driver instances

 KtM9420 driver = new KtM9420();

 try

 {

 #region Initialize Driver Instances

 string ResourceName = "PXI0::23‐0.0::INSTR";

 bool IdQuery = true;

 bool Reset = true;

 string OptionString = "QueryInstrStatus=true,

 Simulate=false,DriverSetup= ";

 driver.Initialize(ResourceName, IdQuery, Reset,OptionString);

 Console.WriteLine("Driver Initialized\n");

 #endregion

 #region Check Instrument Queue for Errors

 int errorcode = 0;

 string message = string.Empty;

 // Check instrument for errors

 do

 {

 driver.Utility.ErrorQuery(ref errorcode, ref message);

 if(errorcode != 0)

 {

 Console.WriteLine(message);

 }

 } while(errorcode != 0);

 #endregion

 #region Create Default Settings for WCDMA Uplink Signal

 // Source Settings

 double Frequency = 1000000000.0;

 double Level = 3;

 double Gain = 0;

 double PowerOutMargin = 0.05;

 double ServoOverheadTime = 600e‐6;

 // If a Signal Studio waveform file is used, it may require a

 software license.

 string ExamplesFolder = "C:\\Waveforms\\";

 string WaveformFile = "WCDMA_UL_DPCHH_2DPDCH_1C.wfm";

Creating a Project with IVI-COM Using C-Sharp
Example 11: Combined WCDMA Power Servo and ACPR Measurement

Programmer’s Guide 71

 // Receiver Settings

 double ChannelTime = 0.0001;

 double AdjacentTime = 0.0005;

 double IfBandwidth = 40000000.0;

 double MeasureBW = 5000000.0;

 KtM9420ChannelFilterShapeEnum FilterType =

KtM9420ChannelFilterShapeEnum.KtM9420ChannelFilterShapeRaisedCosine;

 double FilterAlpha = 0.22;

 double FilterBw = 3840000.0;

 double AcprFliterBw = 3840000.0;

 double AcprFilterAlpha = 0.22;

 KtM9420ChannelFilterShapeEnum AcprFilterType =

KtM9420ChannelFilterShapeEnum.KtM9420ChannelFilterShapeRaisedCosine;

 double[] FreqOffset = new double[] {‐5000000.0, 5000000.0, ‐

10000000.0, 10000000.0};

 double[] acprFilterAlpha = new double[4] {AcprFilterAlpha,

AcprFilterAlpha, AcprFilterAlpha, AcprFilterAlpha};

 double[] acprFilterBw = new double[4] {AcprFliterBw,

AcprFliterBw, AcprFliterBw, AcprFliterBw};

 KtM9420ChannelFilterShapeEnum[] acprFilterType = new

 KtM9420ChannelFilterShapeEnum[4] {AcprFilterType,

AcprFilterType, AcprFilterType, AcprFilterType};

 double AcprSpan = 30.72e6 / 1.25;

 double AcprDuration = AdjacentTime;

 double[] acprSpan = new double[4]{AcprSpan, AcprSpan,

AcprSpan, AcprSpan};

 double[] acprDuration = new double[4]{AcprDuration,

AcprDuration, AcprDuration, AcprDuration};

 double MeasuredPower = 0;

 bool ServoPass = false;

 int ServoCount = 0;

 bool Overload = true;

 double[] MeasuredACPR = new double[4];

 bool[] MeasuredACPROverload = new bool[4];

 double RmsValue = 0;

 #endregion

 #region Run Commands

 //Setup Source

 driver.Source.RF.Frequency = Frequency;

 driver.Source.RF.Level = Level;

 driver.Source.RF.OutputPort =

KtM9420PortEnum.KtM9420PortRFOutput;

 driver.Source.RF.OutputEnable = true;

Creating a Project with IVI-COM Using C-Sharp
Example 11: Combined WCDMA Power Servo and ACPR Measurement

72 Programmer’s Guide

 driver.Source.LoadWaveform(ExamplesFolder, WaveformFile);

 RmsValue = driver.Source.Modulation.ArbRmsValue;

 driver.Source.Modulation.ArbPlayConfigure(

 WaveformName: WaveformFile,

 ArbPlayMode:

KtM9420ArbPlayModeEnum.KtM9420ArbPlayModePlayArb,

 ArbPlayDuration: 1e‐4

);

 // Setup Receiver

 driver.Receiver.RF.Frequency = Frequency;

 driver.Receiver.RF.Power = Level;

 driver.Receiver.RF.PeakerToAverage = RmsValue;

 driver.Receiver.RF.InputPort =

KtM9420PortEnum.KtM9420PortRFInput;

 // Configure PowerServo

 driver.Measurement.EnabledMeasurements = (int)

KtM9420MeasurementsEnum.KtM9420MeasurementsPowerServo;

 driver.Measurement.PowerServo.AcqusitionMode =

KtM9420AcquisitionModeEnum.KtM9420AcquisitionModeFFT;

 driver.FFTAcquisition.SampleRate = MeasureBW*1.25;

 driver.FFTAcquisition.Length =

KtM9420FFTAcquisitionLengthEnum.KtM9420FFTAcquisitionLength_512;

 driver.FFTAcquisition.Duration = ChannelTime;

 driver.FFTAcquisition.ChannelFilter.Configure

(FilterType,FilterAlpha, FilterBw);

 driver.Measurement.PowerServo.InputPower = Level + Gain;

 driver.Measurement.PowerServo.OutputPower = Level;

 driver.Measurement.PowerServo.OutputPowerMargin =

PowerOutMargin;

 driver.Measurement.PowerServo.OverheadTime = ServoOverheadTime;

 driver.Measurement.PowerServo.MaximumOutputPower = 20;

 // Configure Acpr

 driver.Measurement.EnabledMeasurements |= (int)

KtM9420MeasurementsEnum.KtM9420MeasurementsAcpr;

 driver.Measurement.Acpr.AcquisitionMode =

KtM9420AcquisitionModeEnum.KtM9420AcquisitionModeFFT;

 driver.Measurement.Acpr.UseChanPwrForRef = true;

 driver.Measurement.Acpr.ConfigureFilter

(acprFilterType,acprFilterAlpha,acprFilterBw);

 driver.Measurement.Acpr.SetAcprParameter

(FreqOffset,acprSpan,acprDuration);

 //Setup all hardware in one time.

 driver.Measurement.EnabledMeasurements |= (int)

KtM9420MeasurementsEnum.KtM9420MeasurementsSetupVsa;

Creating a Project with IVI-COM Using C-Sharp
Example 11: Combined WCDMA Power Servo and ACPR Measurement

Programmer’s Guide 73

 driver.Measurement.EnabledMeasurements |= (int)

KtM9420MeasurementsEnum.KtM9420MeasurementsSetupVsaFrequency;

 driver.Measurement.EnabledMeasurements |= (int)

KtM9420MeasurementsEnum.KtM9420MeasurementsSetupVsg;

 driver.Measurement.EnabledMeasurements |= (int)

KtM9420MeasurementsEnum.KtM9420MeasurementsSetupVsgFrequency;

 string response = "y";

 while (string.Compare(response, "y") == 0)

 {

 Console.WriteLine("Press Enter to Run Test");

 Console.ReadLine();

 //Process measurement

 driver.Measurement.Process();

 // Check instrument for errors

 do

 {

 driver.Utility.ErrorQuery(ref errorcode, ref message);

 if(errorcode != 0)

 {

 Console.WriteLine(message);

 }

 } while(errorcode != 0);

 //Read PowerServo

 driver.Measurement.PowerServo.ReadPowerServo(ref

MeasuredPower,ref ServoPass, ref Overload, ref ServoCount);

 Console.WriteLine("Measured Power {0}dbm , Servo pass is {1},

Servo Count is {2}, Servo Overload is {3}",

 MeasuredPower, ServoPass, ServoCount, Overload);

 driver.Measurement.Acpr.ReadAcpr(ref MeasuredACPR, ref

MeasuredACPROverload);

 Console.WriteLine("ACPR1 L: {0} dBc, Overload is {1}",

MeasuredACPR[0], MeasuredACPROverload[0]);

 Console.WriteLine("ACPR1 U: {0} dBc, Overload is {1}",

MeasuredACPR[1], MeasuredACPROverload[1]);

 Console.WriteLine("ACPR2 L: {0} dBc, Overload is {1}",

MeasuredACPR[2], MeasuredACPROverload[2]);

 Console.WriteLine("ACPR2 U: {0} dBc, Overload is {1}",

MeasuredACPR[3], MeasuredACPROverload[3]);

 Console.WriteLine("Repeat? y/n");

 response = Console.ReadLine();

 }

 #endregion

 }

Creating a Project with IVI-COM Using C-Sharp
Example 11: Combined WCDMA Power Servo and ACPR Measurement

74 Programmer’s Guide

 catch (Exception ex)

 {

 Console.WriteLine("Exceptions for the drivers:\n");

 Console.WriteLine(ex.Message);

 }

 finally

 #region Close Driver Instances

 {

 if (driver != null && driver.Initialized)

 {

 // Close the driver

 driver.Close();

 Console.WriteLine("Driver Closed");

 }

 }

 #endregion

 Console.WriteLine("Done ‐ Press Enter to Exit");

 Console.ReadLine();

 }

 }

}

This information is subject to change
without notice.
© Keysight Technologies 2015-2016

Edition 2, August 2016

M9420-90031

www.keysight.com

	VXT PXIe Vector Transceiver Programmer's Guide
	Notices
	Where to Find the Latest Information
	Contents
	1 Start Programming with IVI Driver
	What You Will Learn In This Guide
	Related Website
	Related Documentation
	Overall Process Flow
	Preparation Before Programming
	Hardware Installation
	Software Installation

	Function Verification

	2 APIs Introduction
	IVI Compliant or IVI Class Compliant
	IVI Driver Types
	IVI Driver Hierarchy
	Instrument-Specific Hierarchies for VXT
	When Using Visual Studio

	Naming Conventions Used to Program IVI Drivers
	General IVI Naming Conventions
	IVI-COM Naming Conventions

	3 Creating a Project with IVI-COM Using C-Sharp
	What you will learn in this chapter
	Example 1: CW Signal Power Test
	Step 1 - Create a Console Application
	Step 2 - Add References
	Step 3 - Add Using Statements
	Step 4 - Create Instances of the IVI-COM Drivers
	Step 5 - Initialize the Driver Instances
	Step 6 - Write the Program
	Step 7 - Close the Driver
	Step 8 - Build and Run a Complete Program

	Example 2: Source - Generate LTE FDD Signal
	Write the Measurement Program
	Commands Summary
	Get the Measurement Result

	Example 3: CW Spectrum UI
	Initialize Instance and Turn on Spectrum UI
	Setup SCPI Programming Environment
	Set Receiver to Observe Signal
	Get the Measurement Result
	Basic Concepts: Two VXT Control Method

	Example 4: Channel Power Acquisition
	Write the Measurement Program
	Get the Measurement Result
	Basic Concepts: 4 Receiver Acquisition Mode

	Example 5: Spectrum Acquisition
	Set VXT Receiver to Test Spectrum Data
	Commands Summary
	Get the Measurement Result

	Example 6: FFT Acquisition
	Set VXT Receiver
	Get the Measurement Result

	Example 7: IQ Acquisition
	Write the Measurement Program
	Get the Measurement Result

	Example 8: Power Servo
	Write the Measurement Program
	Commands Summary
	Get the Measurement Result

	Example 9: Harmonics Test
	Write the Measurement Program
	Commands Summary
	Get the Measurement Result

	Example 10: ACPR Test
	Write the Measurement Program
	Commands Summary
	Get the Measurement Result

	Example 11: Combined WCDMA Power Servo and ACPR Measurement
	Example Program 3 - Pseudo -code
	Source Code

	Blank Page

