Industry’s First Spectrum Analyzer with a 14 Bit, 80 MHz Bandwidth Digitizer

The PSA Series, Agilent Technologies’ highest performing spectrum analyzers, set a new standard in data acquisition. Options 140 and 122 offer wide bandwidth measurements up to 80 MHz with excellent dynamic range using Agilent’s advanced digital IF technology. The result is digital I/Q conversion of complex wide-bandwidth signals.

Options 140 and 122 add a separate IF path, to provide an industry leading 200 MHz 14 bit digitizer with 40 or 80 MHz of analysis bandwidth and 78 dB of distortion-free dynamic range. Real-time calibration ensures optimum IF phase and amplitude flatness.

Option 123 allows the preselector to be bypassed, for improved performance above 3 GHz.

Technical Overview with Self-Guided Demonstration

- 40 MHz Bandwidth Digitizer, Option 140
- 80 MHz Bandwidth Digitizer, Option 122
- Switchable Preselector Bypass, Option 123*

* Required by E4446A/48A for Option 122/140 to operate

Agilent PSA Series Spectrum Analyzers 40 and 80 MHz Bandwidth Digitizers
Evaluate Your Broadband Designs With 40 and 80 MHz Bandwidth Digitizers

Analyze designs requiring measurement of wide bandwidth signals with high dynamic range and low levels of EVM.

Commercial and military communications are placing greater demands on data rates. Greater data rates translate to wider bandwidths. The PSA meets those needs with 40 and 80 MHz bandwidth digitizers, Options 140 and 122.

Extra bandwidth alone is not enough to analyze today’s broadband signals; they demand the performance of low residual EVM, including excellent amplitude and phase flatness, plus high dynamic range.

These measurements may include:

- Satellite communications with 72 MHz of bandwidth
- Analysis of pulse Doppler and chirp radar signals
- WiMAX 802.16d (OFDM) and 802.16e (OFDMA) with bandwidths up to 28 MHz
- WLAN requiring very low residual EVM analysis tools for fast data rate signal analysis up to 40 MHz bandwidth
- Multi-carrier power amplifiers requiring wide bandwidths (>60 MHz) and high dynamic range to perform predistortion and 3rd order intermodulation distortion measurements

40 and 80 MHz BW digitizer features

Agilent’s PSA (E4440A, E4443A, E4445A, E4446A, and E4448A) with its 200 Msample/sec, 14 bit digitizer and advanced digital IF technology captures and preserves the instantaneous phase and amplitude relationships on broadband signals with up to 80 MHz analysis bandwidth while providing 78 dB of distortion-free and 76 dB of image-free dynamic range.

Powerful on-board DSP hides the complexity of digitization and provides more useful and accurate I/Q data.

- Low residual EVM of 0.3 to 2% through extensive “real time” internal magnitude and phase corrections provides fully calibrated and accurate demodulation data for analysis in applications with critical EVM requirements.
- Fully image-protected IF minimizes confusion between desired and image signals. Image suppression is typically 68 to 82 dBc.
- Decimation with arbitrary resampling provides almost infinitely variable sample rates and analysis bandwidths from 10 Hz to 40 or 80 MHz to reduce the data analysis load or improve digitizer performance.

- Selectable channel filters with variable alpha and bandwidth enable over-sampling your signal and still allow for removal of unwanted signals or noise.
- The triggering suite includes external trigger for syncing with external clocks, periodic/frame trigger for vector averaging, pre-trigger for recording and playback, plus a video trigger for triggering on the IF envelope.
- Exceptionally fast vector hardware averaging with built-in periodic trigger can lower the noise floor up to 30 dB to uncover spurs and harmonics. Minimal repetitive trigger uncertainty (as low as ±1.5 ns) combined with contiguously sampled data blocks removes the dead time between periods to enhance measurement speed.
- 128 Msamples (512 MB) of deep memory capture with record and playback capabilities to closely examine transient events or signal anomalies that may otherwise go unnoticed.

1. Effective sample rate – Agilent’s 40/80 MHz digitizers utilize two 100 MHz ADC’s operating in tandem.
In-depth modulation analysis of the I/Q data

- Perform modulation analysis using either the PSA Option 241 Flexible Digital Modulation Analysis Measurement Personality or Agilent’s 89601A Vector Signal Analysis software in combination with the 40 or 80 MHz BW Digitizer options.

- Take advantage of these powerful tools for both pre- and post-demodulation analysis of broadband signals.

Additional capabilities to support your wide bandwidth needs

- When enabled, Option 123 allows the preselector to be bypassed providing improved bandwidth, phase and amplitude flatness and stability for measurements above 3 GHz (Option 123).

- When bypassing the preselector is not desirable, or improved flatness is required beyond the internal alignments, or when you want to include an external device in the calibration path, an external calibration wizard employing an external source is available through Agilent 89601A VSA or PSA Option 235 software.

1. For E4440A/43A/45A, Option 123 is recommended for measurements above 3 GHz; whereas for E4446A/48A, Option 123 is required for Option 122/144 to operate.
Demonstration preparation

All demonstrations use the PSA E4443A, E4445A, E4440A, E4446A, or E4448A spectrum analyzers and the E4438C ESG vector signal generator. Keystrokes surrounded by [] indicate front-panel hard keys. Keystrokes surrounded by { } indicate soft keys on display.

The listed options are required for the ESG and PSA in order to perform these demonstrations.

To configure these instruments, connect the ESG’s RF output to the PSA RF input with a 50 Ω cable. Connect the event 1 out of the ESG to external trigger in on the PSA front panel. Connect the 10 MHz time base out of the PSA to the ESG. Switch the PSA 10 MHz Out on by pressing [System], {Reference} and {10 MHz Out On}.

80 MHz bandwidth digitizer (Option 122) demonstrations

Spectrum measurement (page 5)
Waveform measurement (page 5)
Fast hardware averaging (page 7)
Wideband channel filtering (page 9)
Internal flexible digital modulation analysis with Option 241 (page 10)
External modulation analysis with 89601A VSA software (page 11)
Switchable preselector bypass (Option 123) (page 12)

<table>
<thead>
<tr>
<th>Product type</th>
<th>Model number</th>
<th>Required options</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESG</td>
<td>E4438C</td>
<td>503 or 504 or 506; 602 or 602 baseband generator, 400 W-CDMA</td>
</tr>
<tr>
<td>PSA</td>
<td>E4440A, E4443A, E4445A, E4446A, or E4448A</td>
<td>122 80 MHz bandwidth digitizer, 123 Switchable preselector bypass, 241 Flexible digital modulation analysis measurement personality</td>
</tr>
</tbody>
</table>

Spectrum and waveform measurements demonstration

Instructions

ESG setup: 4 carrier W-CDMA signal

- [Preset] [Frequency 1GHz] (Amplitude –30 dBm)
- [Mode] (W-CDMA) (Arb W-CDMA) [Mode]
- (W-CDMA) (Arb W-CDMA) (Multi carrier On)
- (W-CDMA Select) (4 Carriers) (W-CDMA On)
- [RF On] [Mod On]

PSA setup: Basic mode, spectrum measurement, 10 MHz BW digitizer

- [Preset] [Frequency 1 GHz] [Mode] (Basic)
- [Mode] [W-CDMA] (Arb W-CDMA) [Mode]
- [Zoom] [Meas Setup] [Res BW 50 kHz]
- (IF Path Narrow) [Amplitude] (Ref Value –32 dBm)

PSA

- Spectrum measurement, 80 MHz BW digitizer
- [Meas Setup] (IF Path Wide)
- ESG: Single carrier W-CDMA signal
- [Mode] (W-CDMA) (Arb W-CDMA) (Multicarrier Off)
- [Meas Setup] (IF Path Wide) (IF BW 80 MHz)
- PSA: Waveform measurement, 80 MHz BW digitizer
- [Meas Setup] (Waveform)
- [Meas Setup] (IF Path Wide) (IF BW 80 MHz)
- PSA: I/Q measurement with markers, 80 MHz digitizer
- [View/Trace] (I/Q Waveform)
- [Meas Setup] (Meas Time 2 us)
- [Amplitude] (Scale/Div 4 mV)
- [Marker] (Normal) (Trace) (I/Q Waveform)
Spectrum and Waveform Measurements

The standard 10 MHz BW digitizer and the optional 40/80 MHz BW digitizers can be accessed from the front panel through the basic mode. Measurements made in the basic mode capture complex vector time domain data from the RF signal contained within the selected digitizer span/BW at the analyzer’s fixed-tuned center frequency.

Within the basic mode, frequency domain, time domain and I/Q measurements are available as initial analytical tools.

The spectrum measurement provides a display of power versus frequency with current (yellow trace) and average (blue trace) data. In addition, an I/Q waveform is provided for the 40/80 MHz BW digitizers.

Observe the display of the 4-carrier W-CDMA signal using the 10 MHz BW digitizer (Fig. 4) compared to the 80 MHz BW digitizer (Fig. 5). The 10 MHz BW digitizer captures two of the four carriers while the 80 MHz BW digitizer captures all four carriers plus potential 2nd and 3rd order intermodulation distortion.

Figure 4: 10 MHz bandwidth digitizer (spectrum measurement).

Figure 5: 80 MHz bandwidth digitizer (spectrum measurement).
The waveform measurement provides a display of power versus time with metrics for mean and peak-to-mean power shown in the text window (Fig. 6). Waveform mode is used primarily for transferring complex I/Q data to external analysis software such as the Agilent 89601A Vector Signal Analyzer software.

The I/Q measurement provides a display of voltage versus time for the I and Q waveforms (Fig. 7). Markers are available to measure the individual values of I and Q.

Figure 6: Time domain display (waveform measurement).

Figure 7: I/Q display (waveform measurement).
Fast Hardware Averaging for Noise Reduction

Options 140 and 122 have the ability to decrease the effective noise density using vector time averaging. The noise reduction is accomplished using very accurate and stable periodic triggering. Get greater than 30 dB noise reduction, allowing for noise density reduction of more than 30 dB. The time bases of the source generating the test signal and the PSA must be tied together. Averaging is done real-time in DSP hardware 10 to several hundred times faster compared to other methods.

With the noise greatly reduced, you can view side bands spectral re-growth and other repetitive signals previously hidden in the noise.

The signal to be tested must be repetitive and the repetition rate must be known. In the demonstration the repetition rate is 10 ms. To determine the repetition rate of a signal, divide the sample rate by the number of points used to generate the signal in the arbitrary waveform generator.

Fast Hardware Averaging Demonstration

Instructions	**Keystrokes**
Connect the 10 MHz time base out to the ESG 10 MHz in and switch the PSA 10 MHz time base out to on | [System] (Reference) (10 MHz Out On)

ESG setup: W-CDMA signal | [Frequency 1 GHz] [Amplitude –20 dBm] [Mode (W-CDMA)] (Arb W-CDMA On) [RF On] [Mod On]

PSA setup: Basic mode, spectrum measurement, 80 MHz digitizer with 40 MHz span | [Preset] [Frequency 1 GHz] [Mode] (Basic) [Measure] (Spectrum) [Meas Setup] (IF Path Wide) (Res BW 50 kHz) [Span 40 MHz]

Trigger setup | [Meas Setup] (Trig Source) (Frame)

Frame period setup | [Trig] (Frame Timer) (Period 10 ms) [Amplitude] (Ref Value -35 dBm)

Zoom in on the spectrum window: | [View/Trace] (Spectrum) [Zoom] [View/Trace] (Trace Display) (Current)

Average the trace 100 times to reduce random noise by approximately 20 dB in less than 2 seconds | [Meas Setup] (Average) (Avg Number Off) (Time Avg Num 100) [Enter]

Figure 8: Noise density prior to fast hardware averaging.

Figure 9: Noise density reduction after 100 fast hardware averages.
Deep Memory Capture

This feature allows the user to view 128 Msamples of captured data on the display before transferring the data out of the PSA to analyze it using an external program for record and playback such as the 89601A Vector Signal Analyzer.

Deep memory capture demonstration

<table>
<thead>
<tr>
<th>Instructions</th>
<th>Keystrokes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESG setup: Frequency modulation</td>
<td>[Preset] [Frequency 1 GHz] [Amplitude -30 dBm] [FM] [FM On] [FM Dev 1 MHz] [FM Rate 10 kHz] [RF On] [Mod On]</td>
</tr>
<tr>
<td>PSA setup: Basic mode, spectrum measurement,</td>
<td>[Preset] [Frequency 1 GHz] [Mode] [Basic] [Measure] [Spectrum] [Meas Setup] [IF Path Wide] [Span 40 MHz] [Average] [Avg Number Off] [Amplitude] [Ref Value -20 dBm] [View/Trace] [I/Q Waveform] [Amplitude] [Scale/Div 4 mV]</td>
</tr>
<tr>
<td>80 MHz BW digitizer</td>
<td>[Meas Control] (Fill Capture)</td>
</tr>
</tbody>
</table>

Capture FM signal into memory (in this case 102.5 ms) Captured signal is in the playback mode. Disconnect the input to the PSA and the signal continues to be displayed.

| Pause signal | {Pause} |
| Exit capture mode | [Input/Output] (Data Source Input) |
Wideband Channel Filtering

In many instances, interfering signals or spurs are close to the signal of interest. However, it may be desirable to minimize the measurement impact of the interference, while maintaining the original measurement span, in order to over-sample the desired signal.

The PSA has a wideband channel filter available. The filter is adjustable about the center frequency, from full span to a fraction of full span. Choose from a wide range of filters including raised cosine, root raised cosine, Nyquist, root Nyquist, Gaussian, or no filter.

Wideband channel filtering demonstration

<table>
<thead>
<tr>
<th>Instructions</th>
<th>Keystrokes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESG setup:</td>
<td>[Preset]</td>
</tr>
<tr>
<td>Set the center frequency and amplitude</td>
<td>[Amplitude]</td>
</tr>
<tr>
<td>Configure a 2-carrier EDGE signal</td>
<td>[Mode]</td>
</tr>
<tr>
<td>Multicarrier On</td>
<td>(Multicarrier Define)</td>
</tr>
<tr>
<td>Select EDGE as the modulation format</td>
<td>{# of Carriers}</td>
</tr>
<tr>
<td>Freq Spacing</td>
<td>(1)</td>
</tr>
<tr>
<td>MHz</td>
<td>(Done)</td>
</tr>
<tr>
<td>Digital Modulation On</td>
<td>[Mod On]</td>
</tr>
<tr>
<td>Setup 2 carriers with 1 MHz spacing</td>
<td>[View/Trace]</td>
</tr>
<tr>
<td>[Amplitude]</td>
<td>{Scale/Div}</td>
</tr>
<tr>
<td>PSA setup: Setup Basic mode</td>
<td>[Preset]</td>
</tr>
<tr>
<td>[Meas Setup]</td>
<td>{Span}</td>
</tr>
<tr>
<td>[Meas Setup]</td>
<td>{Res BW}</td>
</tr>
<tr>
<td>[Meas Setup]</td>
<td>[Amplitude]</td>
</tr>
<tr>
<td>-25 dBm</td>
<td>[Amplitude]</td>
</tr>
<tr>
<td>Adjust the I/Q Waveform display</td>
<td>[View/Trace]</td>
</tr>
<tr>
<td>Configure the wideband filter</td>
<td>[Meas Setup]</td>
</tr>
<tr>
<td>(Wideband Filtering)</td>
<td>[Filter BW]</td>
</tr>
</tbody>
</table>

Note the filtering of adjacent channel and impact on I/Q waveform

Figure 10: Adjacent channel interference prior to wideband channel filtering.

Figure 11: Adjacent channel interference removed after wideband channel filtering.
Internal Flexible Digital Modulation Analysis with Option 241

Option 122 80 MHz bandwidth digitizer enables the analysis of digitally modulated signals with symbol rates in excess of 50 Msymbols/sec. This can be done within the PSA, using Option 241 Flexible Digital Modulation Analysis measurement personality, or externally with Agilent 89601A VSA software.

This demonstration shows a 16QAM signal with a symbol rate of 50 Msymbols/sec occupying over 70 MHz of bandwidth. Modulation analysis is first done using the internal flexible digital modulation analysis measurement personality, and later done using Agilent 89601A VSA software.

Internal flexible digital modulation analysis with Option 241 demonstration

<table>
<thead>
<tr>
<th>Instructions</th>
<th>Keyrokes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESG setup: 16 QAM, 50 Msymbol/sec wide bandwidth signal</td>
<td>[Preset] [Frequency 1.2 GHz] [Amplitude -20 dBm] [Mode] {Custom} [Real Time I/Q Baseband] [Modulation Type] {Select} [QAM] {16QAM} [Return] [Symbol Rate] {50 Msps} [Return] [Custom On] [RF On] [Mod On]</td>
</tr>
<tr>
<td>PSA setup: Demodulate and measure EVM on 16 QAM, 50 Msps wide bandwidth signal</td>
<td>[Preset] [Mode] {Digital Modulation} [Measure] [Modulation Analysis] [Frequency 1 GHz] [Meas Setup] (Demod) [Modulation Format] (More 1 of 4) {16QAM} (Alpha/BT 0.35) [Symbol Rate 50 MHz] [Meas Interval] {512} [Enter]</td>
</tr>
</tbody>
</table>

![Figure 12: 16QAM, 50 Msymbols/sec modulation showing less than 3% EVM with non-optimized source using Option 241 flexible digital modulation analysis.](image-url)
Open the Agilent IO Libraries Configuration window (blue IO icon). In the window there are two columns: Available Interface Types and Configured Interfaces. Select an interface of VISA Type TCPIP and click “Configure”. Click OK to close the Configured Interfaces area of the window. Next, highlight the configured TCPIP interface and select Edit VISA Config. Select Add Device in the window that appears and enter the IP address of your Configuration window.

Now start the 89600 Series software. If the hardware was not configured to link on startup, then click on Utilities->Hardware and select the PSA under the ADC1 tab. Now you are ready to capture I/Q data from the PSA.

PSA settings are controlled using 89601A software. If Option 122, 80 MHz bandwidth digitizer, is installed then the span is set to 80 MHz. Reduce the span to include the signal of interest but not the noise on either side.

The 89601A vector analyzer software is an extremely powerful tool for analyzing signal problems and uncovering their root cause.

Choose from a wide range of preset standards in cellular including 3G, wireless networking and video formats. The power is in the ability to analyze nonstandard formats. Select formats from QPSK to 256 QAM, bursted or nonburst, at very high symbol rates. Use compensation to improve EVM. Analyze the compensation filter to determine predistortion requirements

Modulation analysis with Option 241 demonstration

<table>
<thead>
<tr>
<th>Instructions</th>
<th>Keystrokes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESG setup:</td>
<td></td>
</tr>
<tr>
<td>Setup four carrier W-CDMA signal.</td>
<td>[Mode] (Custom) (Arb waveform generator)</td>
</tr>
<tr>
<td></td>
<td>(Digital mod define) (Modulation type 16 QAM)</td>
</tr>
<tr>
<td></td>
<td>(Symbol Rate 50 MHz)</td>
</tr>
<tr>
<td>Set frequency of 1 GHz and amplitude of –10 dBm.</td>
<td>[Amplitude –10 dBm] [Frequency 1 GHz]</td>
</tr>
</tbody>
</table>

| **PSA setup:** | |
| Setup the mode, frequency and the span.| [Mode] (Basic) [Frequency 1 GHz] [Span 50 MHz] |

Initiating and setting up 89601A software

Open up the VSA software. Click on the VSA icon, once the two window display appears, change the range to –17 dBm.

Setup the VSA to view constellation, EMV and spectrum. On the VSA software press measSetup, Demodulator, Digital Demodulator.

Setup the properties by pressing Demod Properties, Format 16 QAM, symbol rate 50 MHz. Then filter, measure, root raised; reference, raised cosine; alpha 0.35.

Go to four displays by pressing display dropdown window and selecting Grid 2x2.

![Impairment visible with error vector spectrum display](image)

Figure 13: Impaired QPSK 15 MSymbols/Sec indicating 5.0% EVM.
Wide Bandwidth Measurements Above 3 GHz

Switchable preselector bypass Option 123

The preselector is used to reject mixing images and prevent mixer overload.

However, preselectors are not completely predictable. They are susceptible to bandwidth, thermal drift and changes in phase and amplitude flatness versus tune frequency. For optimum performance, it is recommended that the preselector be bypassed for operation above 3 GHz. Option 123 gives the operator the choice of bypassing the preselector. To switch the preselector on or off, press [Input/output] and {uW/mmW preselector on/off}

PSA wide band calibration wizard, Option 235

The PSA has a preselector employed for frequencies above 3.05 GHz. Preselectors add magnitude and phase errors into the measurements. These errors can be calibrated out using an external calibration wizard and an external source.

In addition, the calibration wizard can be used to calibrate out errors caused by external devices such as amplifiers attached to the input of the PSA.

1. Unlike the E4440A/43A/45A, the architecture of E4446A/48A Option 122/140 requires Option 123 be installed to operate.
2. EVM will be approximately 4.5% without ESG source optimization.
PSA Series
Option 140/122
General Specifications

40/80 MHz bandwidth digitizer specifications

The following specifications apply to the listed PSA models, when using basic mode, and "Wide IF" is selected.

<table>
<thead>
<tr>
<th>Frequency range</th>
<th>10 MHz to 6.7 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>E4443A</td>
<td></td>
</tr>
<tr>
<td>E4445A</td>
<td></td>
</tr>
<tr>
<td>E4440A</td>
<td>10 MHz to 26.5 GHz</td>
</tr>
<tr>
<td>E4446A</td>
<td>10 MHz to 44 GHz</td>
</tr>
<tr>
<td>E4448A</td>
<td>10 MHz to 50 GHz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum analysis bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option 140</td>
</tr>
<tr>
<td>Option 122</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ADC resolution</th>
<th>14 bits</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Third order intermodulation distortion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual EVM</td>
</tr>
<tr>
<td>IF flatness (magnitude/phase)</td>
</tr>
<tr>
<td>Capture memory</td>
</tr>
</tbody>
</table>

2. Option 123 switchable preselector bypass is installed and enabled for maximum analysis bandwidth above center frequencies of 3 GHz.
PSA Series Ordering Information

For further information, refer to PSA Configuration Guide, 5989-2773EN

PSA Series spectrum analyzer
- E4433A 3 Hz to 6.7 GHz
- E4445A 3 Hz to 13.2 GHz
- E4440A 3 Hz to 26.5 GHz
- E4447A 3 Hz to 42.98 GHz
- E4446A 3 Hz to 44 GHz
- E4448A 3 Hz to 50 GHz

Options

To add options to a product, use the following ordering scheme:

Model E444xA (x = 0, 3, 5, 6, 7 or 8)

Example options: E4440A-B7J, E4448A-1DS

Warranty & Service

Standard warranty is three years.

R-51B-001-SC Warranty Assurance Plan, Return to Agilent, 5 years

Calibration

R-50C-011-3 Calibration Assurance Plan, Return to Agilent, 3 years

R-50C-011-5 Calibration Assurance Plan, Return to Agilent, 5 years

R-50C-016-3 Agilent Calibration + Uncertainties + Guardbanding, 3 years

R-50C-016-5 Agilent Calibration + Uncertainties + Guardbanding, 5 years

AMG Agilent Calibration + Uncertainties + Guardbanding (accredited cal)

A&D ANSI Z540-1-1994 Calibration

R-50C-021-3 ANSI Z540-1-1994 Calibration, 3 years

R-50C-021-5 ANSI Z540-1-1994 Calibration, 5 years

UK Commercial calibration certificate with data

E444xA-0BW To be ordered with PSA Service manual Calibration software and licensing (ordered with PSA)

N7810A PSA Series calibration application software (stand-alone order)

Measurement Personalities

- E444x-A-226 Phase noise
- E444x-A-219 Noise figure
- E444x-A-241 Flexible digital modulation analysis
- E444x-A-BAF W-CDMA
- E444x-A-210 HSDPA/HSUPA (for W-CDMA)
- E444x-A-202 GSM w/ EDGE
- E444x-A-B78 cdma2000
- E444x-A-214 1xEV-DV
- E444x-A-BAF W-CDMA
- E444x-A-122 80 MHz bandwidth digitizer
- E444x-A-140 40 MHz bandwidth digitizer
- E444x-A-123 Switchable M/W preselector bypass
- E444x-A-124 Y-axis video output
- E444x-A-AYZ External mixing
- E444x-A-107 Audio input 100 kΩ
- E444x-A-111 USB device side I/O interface
- E444x-A-115 512 MB user memory
- E444x-A-0BAB Replaces Type-N input connector
- E444x-A-H70 70 MHz IF output
- E444x-A-HYX 21.4 MHz IF output

Hardware

- E444x-A-1DS RF internal preamplifier (100 kHz to 3 GHz)
- E444x-A-110 RF/µW internal preamplifier (10 MHz to upper frequency limit of the PSA)
- E444x-A-B7J Digital demodulation hardware
- E444x-A-122 80 MHz bandwidth digitizer
- E444x-A-140 40 MHz bandwidth digitizer
- E444x-A-123 Switchable M/W preselector bypass
- E444x-A-124 Y-axis video output
- E444x-A-AYZ External mixing
- E444x-A-107 Audio input 100 kΩ
- E444x-A-111 USB device side I/O interface
- E444x-A-115 512 MB user memory
- E444x-A-0BAB Replaces Type-N input connector
- E444x-A-H70 70 MHz IF output
- E444x-A-HYX 21.4 MHz IF output

PC Software

- E444x-A-230 BenchLink Web Remote Control Software
- E444x-A-235 Wide BW digitizer external calibration wizard

Accessories

- E444x-A-1CM Rack mount kit
- E444x-A-1CN Front handle kit
- E444x-A-1CF Rack mount with handles
- E444x-A-1CR Rack slide kit
- E444x-A-015 6 GHz return loss measurement accessory kit
- E444x-A-045 Millimeter wave accessory kit
- E444x-A-0B1 Extra manual set including CD ROM

1. Options not available in all countries
Product Literature

<table>
<thead>
<tr>
<th>Publication Title</th>
<th>Publication Type</th>
<th>Publication Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selecting the Right Signal Analyzer for Your Needs</td>
<td>Selection Guide</td>
<td>5968-3413E</td>
</tr>
<tr>
<td>PSA Series</td>
<td>Brochure</td>
<td>5980-1283E</td>
</tr>
<tr>
<td>PSA Series</td>
<td>Data Sheet</td>
<td>5980-1284E</td>
</tr>
<tr>
<td>PSA Series</td>
<td>Configuration Guide</td>
<td>5989-2773EN</td>
</tr>
<tr>
<td>Self-Guided Demonstration for Spectrum Analysis</td>
<td>Product Note</td>
<td>5988-0735EN</td>
</tr>
<tr>
<td>Wide bandwidth and vector signal analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40/80 MHz Bandwidth Digitizer</td>
<td>Technical Overview</td>
<td>5989-1111EN</td>
</tr>
<tr>
<td>Using Extended Calibration Software for Wide Bandwidth Measurements, PSA Option 122 & 89600 VSA</td>
<td>Application Note 1443</td>
<td>5988-7814EN</td>
</tr>
<tr>
<td>PSA Series Spectrum Analyzer Performance Guide Using 89601A Vector Signal Analysis Software</td>
<td>Product Note</td>
<td>5988-5015EN</td>
</tr>
<tr>
<td>89650S Wideband VSA System with High Performance Spectrum Analysis</td>
<td>Technical Overview</td>
<td>5989-0871EN</td>
</tr>
<tr>
<td>Measurement personalities and applications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase Noise Measurement Personality</td>
<td>Technical Overview</td>
<td>5988-3698EN</td>
</tr>
<tr>
<td>Noise Figure Measurement Personality</td>
<td>Technical Overview</td>
<td>5988-7884EN</td>
</tr>
<tr>
<td>External Source Measurement Personality</td>
<td>Technical Overview</td>
<td>5989-2240EN</td>
</tr>
<tr>
<td>Flexible Modulation Analysis Measurement Personality</td>
<td>Technical Overview</td>
<td>5989-1111EN</td>
</tr>
<tr>
<td>W-CDMA and HSDPA/HSUPA Measurement Personalities</td>
<td>Technical Overview</td>
<td>5988-2388EN</td>
</tr>
<tr>
<td>GSM with EDGE Measurement Personality</td>
<td>Technical Overview</td>
<td>5988-2389EN</td>
</tr>
<tr>
<td>cdma2000 and 1xEV-DV Measurement Personalities</td>
<td>Technical Overview</td>
<td>5988-3694EN</td>
</tr>
<tr>
<td>1xEV-DQ Measurement Personality</td>
<td>Technical Overview</td>
<td>5988-4828EN</td>
</tr>
<tr>
<td>cdmaOne Measurement Personality</td>
<td>Technical Overview</td>
<td>5988-3695EN</td>
</tr>
<tr>
<td>WLAN Measurement Personality</td>
<td>Technical Overview</td>
<td>5989-2781EN</td>
</tr>
<tr>
<td>NADC/PDC Measurement Personality</td>
<td>Technical Overview</td>
<td>5988-3697EN</td>
</tr>
<tr>
<td>TD-SCDMA Measurement Personality</td>
<td>Technical Overview</td>
<td>5989-0056EN</td>
</tr>
<tr>
<td>Built-in Measuring Receiver Personality / Agilent N5531S Measuring Receiver</td>
<td>Technical Overview</td>
<td>5989-4795EN</td>
</tr>
<tr>
<td>BenchLink Web Remote Control Software</td>
<td>Product Overview</td>
<td>5988-2610EN</td>
</tr>
<tr>
<td>IntuiLink Software</td>
<td>Data Sheet</td>
<td>5980-3115EN</td>
</tr>
<tr>
<td>Programming Code Compatibility Suite</td>
<td>Technical Overview</td>
<td>5989-1111EN</td>
</tr>
<tr>
<td>EMI Measurement Receiver</td>
<td>Product Overview</td>
<td>5989-5807EN</td>
</tr>
<tr>
<td>Hardware options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSA Series Spectrum Analyzers Video Output (Option 124)</td>
<td>Technical Overview</td>
<td>5989-1118EN</td>
</tr>
<tr>
<td>PSA Series Spectrum Analyzers, Option H70,70 MHz IF Output</td>
<td>Product Overview</td>
<td>5988-5261EN</td>
</tr>
<tr>
<td>Spectrum analyzer fundamentals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimizing Dynamic Range for Distortion Measurements</td>
<td>Product Note</td>
<td>5980-3079EN</td>
</tr>
<tr>
<td>PSA Series Amplitude Accuracy</td>
<td>Product Note</td>
<td>5980-3080EN</td>
</tr>
<tr>
<td>PSA Series Swept and FFT Analysis</td>
<td>Product Note</td>
<td>5980-3081EN</td>
</tr>
<tr>
<td>PSA Series Measurement Innovations and Benefits</td>
<td>Product Note</td>
<td>5980-3082EN</td>
</tr>
<tr>
<td>Spectrum Analysis Basics</td>
<td>Application Note 150</td>
<td>5952-0292</td>
</tr>
<tr>
<td>Vector Signal Analysis Basics</td>
<td>Application Note 150-15</td>
<td>5989-1121EN</td>
</tr>
<tr>
<td>8 Hints for Millimeter Wave Spectrum Measurements</td>
<td>Application Note</td>
<td>5988-5808EN</td>
</tr>
<tr>
<td>Spectrum Analyzer Measurements to 325 GHz with the Use of External Mixers</td>
<td>Application Note 1453</td>
<td>5988-9414EN</td>
</tr>
<tr>
<td>EMI</td>
<td>Application Note 150-10</td>
<td>5968-3661E</td>
</tr>
</tbody>
</table>
myAgilent
www.agilent.com/find/myagilent
A personalized view into the information most relevant to you.

www.lxistandard.org
LAN eXtensions for Instruments puts the power of Ethernet and the Web inside your test systems. Agilent is a founding member of the LXI consortium.

Three-Year Warranty
www.agilent.com/find/ThreeYearWarranty
Beyond product specification, changing the ownership experience. Agilent is the only test and measurement company that offers three-year warranty on all instruments, worldwide

Agilent Assurance Plans
www.Agilent.com/find/AssurancePlans
Five years of protection and no budgetary surprises to ensure your instruments are operating to specifications and you can continually rely on accurate measurements.

www.agilent.com/quality
Agilent Electronic Measurement Group
DEKRA Certified ISO 9001:2008
Quality Management System

Agilent Channel Partners
www.agilent.com/find/channelpartners
Get the best of both worlds: Agilent’s measurement expertise and product breadth, combined with channel partner convenience.

For more information on Agilent Technologies’ products, applications or services, please contact your local Agilent office. The complete list is available at: www.agilent.com/find/contactus

Americas

Canada (877) 894 4414
Brazil (11) 4197 3600
Mexico 01800 5064 800
United States (800) 829 4444

Asia Pacific

Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 112 929
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Other AP Countries (65) 375 8100

Europe & Middle East

Belgium 32 (0) 2 404 93 40
Denmark 45 45 80 12 15
Finland 358 (0) 10 855 2100
France 0825 010 700*
*0.125 €/minute
Germany 49 (0) 7031 464 6333
Ireland 1890 924 204
Israel 972-3-9288-504/544
Italy 39 02 92 60 8484
Netherlands 31 (0) 20 547 2111
Spain 34 (91) 631 3300
Sweden 0200-88 22 55
United Kingdom 44 (0) 118 927 6201

For other unlisted countries: www.agilent.com/find/contactus

(BP-09-27-13)

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2013
Published in USA, November 25, 2013
5989-1115EN