Keysight Technologies
PNA Microwave Network Analyzers
The standard in microwave network analysis
Welcome to the world of PNAs –
The most popular microwave network analyzers

The PNA family builds on Keysight Technologies, Inc.’s 40-year legacy of excellence to deliver new standards in speed, accuracy, and versatility for microwave network analysis. The PNA’s architecture includes high quality, stable hardware and flexible software. The standard PNA is suitable for testing passive and active devices such as filters and amplifiers. Users can easily add options to test mixers, harmonics, intermodulation distortion (IMD), pulsed-RF, antennas and millimeter-wave (mmwave) components.

Key features

- Excellent performance
 - High dynamic range: 127 dB at 20 GHz at test port
 - Low trace noise: 0.002 dB rms at 1 kHz bandwidth
 - Fast measurement speed: 4.5 to 26 µsec/point
 - High stability: 0.05 dB/degrees Celsius
- State-of-the-art calibration capabilities and wide-range of ECal modules
- Advanced applications for mixer and pulse measurements
- Single-ended and balanced measurements
- 32 measurement channels, unlimited traces, and 32,001 points per channel
- Connectivity with Open Windows XP, USB connectors, LAN, and GPIB

PNA Family

<table>
<thead>
<tr>
<th>PNA-X</th>
<th>PNA</th>
<th>PNA-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 ports</td>
<td>300 kHz to 6 GHz</td>
<td></td>
</tr>
<tr>
<td>2, 4 ports</td>
<td>300 kHz to 13.5 GHz</td>
<td></td>
</tr>
<tr>
<td>2, 4 ports</td>
<td>10 MHz to 13.5 GHz</td>
<td></td>
</tr>
<tr>
<td>4 ports</td>
<td>300 kHz to 20 GHz</td>
<td></td>
</tr>
<tr>
<td>2 ports</td>
<td>10 MHz to 20 GHz</td>
<td></td>
</tr>
<tr>
<td>2 ports</td>
<td>10 MHz to 20 GHz</td>
<td></td>
</tr>
<tr>
<td>2, 4 ports</td>
<td>10 MHz to 26.5 GHz</td>
<td></td>
</tr>
<tr>
<td>2 ports</td>
<td>10 MHz to 40 GHz</td>
<td></td>
</tr>
<tr>
<td>2 ports</td>
<td>10 MHz to 40 GHz</td>
<td></td>
</tr>
<tr>
<td>2, 4 ports</td>
<td>10 MHz to 43.5 GHz</td>
<td></td>
</tr>
<tr>
<td>2 ports</td>
<td>10 MHz to 50 GHz</td>
<td></td>
</tr>
<tr>
<td>2 ports</td>
<td>10 MHz to 50 GHz</td>
<td></td>
</tr>
<tr>
<td>2, 4 ports</td>
<td>10 MHz to 50 GHz</td>
<td></td>
</tr>
<tr>
<td>2 ports</td>
<td>10 MHz to 67 GHz</td>
<td></td>
</tr>
<tr>
<td>2 ports</td>
<td>10 MHz to 67 GHz</td>
<td></td>
</tr>
<tr>
<td>2, 4 ports</td>
<td>10 MHz to 67 GHz</td>
<td></td>
</tr>
<tr>
<td>2, 4 ports</td>
<td>10 MHz to 1.05 THz</td>
<td></td>
</tr>
<tr>
<td>2 ports</td>
<td>10 MHz to 1.05 THz</td>
<td></td>
</tr>
<tr>
<td>2, 4 ports</td>
<td>10 MHz to 1.05 THz</td>
<td></td>
</tr>
</tbody>
</table>
Common features across the PNA family

- **Flexible user interface:** hard keys, soft keys, pull-down menus, and touch screen
- **Up to 10 markers per trace**
- **32 measurement channels and unlimited traces**
- **State-of-the-art calibration capabilities**
- **On-line Help**
- **Configurable test set available on all models**
- **Linear, log, power, CW, and segment sweep**
- **Equation editor and time-domain analysis**
- **Quick access for ECAl and other USB devices**

All PNA models integrate a high resolution display with a touch screen, which provides a crisp view and easy access to all data and traces. This enhanced user interface allows intuitive operation and helps you set up complex measurements quickly.
PNA-X – The premier-performance microwave network analyzer

The industry-leading performance and highly integrated configurable nature of the PNA-X make it the ideal solution to address active device measurement challenges. The PNA-X enables engineers to stay on the leading edge of component testing.

High quality synthesizers
- 10 MHz to 13.5, 26.5, 43.5, 50, or 67 GHz
- Internal 2nd source for IMD, hot-S22, and high speed swept-LO measurements
- High output power and wide power-sweep range for testing amplifiers
- Excellent harmonic performance for accurate harmonic and IMD measurements
- Accurate true-mode stimulus for balanced measurements

Sensitive and linear receivers
- High compression point for improved dynamic accuracy
- More sensitivity for pulsed S-parameter measurements

Friendly user interface
- Large 10.4 inch touch screen display
- Click-and-drag markers and zoom

Exceptional flexibility
- Built-in signal combiner for easy IMD and hot-S22 measurements
- Easy pulsed measurements with internal pulse modulators and pulse generators
- Flexible signal routing via internal switches for adding external filters, pre-amplifiers, and additional test equipment
- Optional noise figure measurement capability extends the suite of measurements available with a single connection and offers the industry’s highest accuracy
- Front-panel jumpers for direct access to test-port couplers and receivers
- Source and receiver attenuators for better measurement optimization
- Built-in bias-tees simplify amplifier evaluation
- Three sets of triggering lines for complex test systems
Mixer measurements

Checklist

- Conversion loss/gain, magnitude and phase
- Input match, output match, and LO match
- Isolation and compression
- The two internal independent synthesizers with +13 dBm power and < 60 dBc harmonics eliminate the need for external synthesizers or components.
- Advanced error correction
 - Patented vector-mixer calibration for measurement of absolute group delay
 - Scalar-mixer calibration (SMC) for match-corrected amplitude measurements
- Significantly faster speed for fixed-IF (20 to 30 times faster than with an external source)
- Easy-to-configure multi-stage converter measurements
- LO source control and LO power calibration
- Fast mixer swept-IMD
- The simple two-step SMC calibration provides match-corrected conversion loss, error-corrected input and output match
- Software tuning for embedded LO
The PNA-X is an ideal tool for measuring amplifier specifications, from gain and return loss, to harmonics and IMD.

Amplifier measurements

Checklist
- Gain, gain flatness, reverse isolation, and return loss
- Simple, fast, and accurate AM-AM and AM-PM compression measurements with the Gain Compression Application with 38 dB power sweep range at 20 GHz, +13 dBm output power
- Test harmonics accurately with < 60 dBc source harmonics. No need for external filters.
- Fast swept-IMD measurements using two internal sources and a built-in signal combiner. IMD application makes set up and calibration fast and simple. Improve test speeds by 100 times compared to spectrum-analyzer-based solutions.
- Source corrected noise figure measurements with exceptional accuracy
- Integrated source attenuators and receiver attenuators for measurement optimization
- Perform all of the above measurements with a single connection using the PNA-X.

Pulsed-RF measurements

Checklist
- Wideband and narrowband detection
- Up to four internal pulse generators
- Up to two internal pulse modulators
- Pulse widths as narrow as 33 ns
- Point-in-pulse, average pulse, pulse-to-pulse and pulse-profile capability
- No need for external components
The Keysight PNA-L is designed for your general-purpose network analysis needs and priced for your budget. With the same firmware as the PNA, the PNA-L offers the perfect balance of value and performance. PNA-L provides efficiency and flexibility in both manufacturing and R&D applications, for industries ranging from wireless LAN component production to aerospace and defense.

Use TRL calibration for accurate in-fixture, on-wafer, or waveguide measurements.

Basic measurements

Checklist

- Insertion loss, gain, return loss, isolation, group delay, compression, both magnitude and phase
- Connectorized, in-fixture, or on-wafer
- Fast and accurate
- Reliable and repeatable
- Affordable

On-wafer measurements

Checklist

- Class of TRL calibrations for accurate measurements
- Differential measurement capabilities with integrated multiport network analyzers
- Accurate power control and de-embedding algorithm for device characterization
- Compatibility with on-wafer calibration software for a total solution
PNA-L – Speed and accuracy you can count on – Balanced/differential measurements and multiport test

Easily measure single-ended, balanced, and mixed-mode S-parameters, in addition to ratioed and unratioed receiver measurements.

New multiport components require complicated test plans. Multiple port combinations must be tested over several frequency bands, resulting in lengthy tests. To reduce test time and lower costs, the PNA-L/PNA-X and test set combinations have been designed for high-speed measurements. To further simplify complex test requirements, up to 32 independent channels are available, eliminating the need for recalling instrument states.

Adding a 4-port test set expands the 4-port PNA-L to an 8-port system with full 8-port measurement capabilities.

Differential measurements

Checklist

- Single-ended, balanced, mixed-mode S-parameters
- Ratioed and unratioed measurements
- Mode-conversion analysis
- True-mode stimulus measurements

Multiport measurements

Checklist

- Multiport configurations optimized for your device, including full cross-bar
- Quick-Short-Open-Load-Thru (QSOLT) for fast, multiport cal
- N-port calibration for accuracy and ease-of-measurements
- Test-set control part of PNA firmware
- 32 independent channels for fast measurement speed
Millimeter-wave network analysis

Checklist

- Two- and four-port S-Parameter measurements from 10 MHz to 1.05 THz
- Single-sweep solutions from 10 MHz to 110 GHz with integrated Kelvin bias tee
- Compact frequency-extender designs for the highest stability measurement system
- Industry-leading calibration technology for measurements from 10 MHz to 1.05 THz
- Industry-leading dynamic range without additional external sources on the PNA-X based systems

Millimeter-wave Measurement Applications Checklist

- Full power-level control with receiver leveling capability
- True-mode differential measurements at millimeter-wave frequencies
- Fully integrated pulsed-RF measurement capability
- Fully calibrated scalar-mixer measurements capability
- Industry-leading power sweep capability enabling gain compression measurements
- Time-domain measurement capability enables high resolution measurements
PNA Series simplifies measurements –
When the requirements are difficult

Modeling, PLTS, Antenna, Materials test

High-frequency design and modeling

Checklist
– PNA drivers included in Connection Manager for easy connectivity
– Simple downloading of S-parameters into ADS for simulation
– Save “.s2p, .s4p, snp” files and import into ADS
– Modeling of devices using IC-CAP and PNA network analyzers

Physical Layer Test Systems (PLTS)

Checklist
– RLCG model extraction and eye-diagrams
– High-speed differential interconnect design
– Multiple aggressor differential crosstalk

Antenna measurements

Checklist
– 32,001 points per channel
– Fast measurement speed, 4.5 µs/pt
– Forward and reverse sweeps for near-field scans
– High-sensitivity

Materials measurements

Checklist
– Measurement of dielectric and magnetic properties
– Viewing of data in real, imaginary, loss tangent, and Cole-Cole formats
– Availability of a variety of techniques to meet your materials needs
PNA-L/PNA/PNA-X comparison table

<table>
<thead>
<tr>
<th>Device type</th>
<th>Required measurements</th>
<th>PNA-L</th>
<th>PNA</th>
<th>PNA-X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency-offset mode</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Conversion loss, isolation, and return loss</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Control of external source for mixer measurements</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Second internal source, used as LO on 2-port analyzer</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Second internal source, used as LO on 4-port analyzer</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Scalar calibrated converter measurements (SMC)</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Vector calibrated converter measurements (VMC)</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Software tuning for embedded LO</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>+13 dBm output power on 2-ports (for LO)</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Compression, AM-PM conversion</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Amplifiers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain, return loss, and reverse isolation</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Power sweep, compression, and AM-PM conversion</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Gain Compression Application</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Intermodulation Distortion Application</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Maximum output power level</td>
<td></td>
<td>Good</td>
<td>Good</td>
<td>Superb</td>
</tr>
<tr>
<td>Power-sweep range for compression test</td>
<td></td>
<td>Good</td>
<td>Good</td>
<td>Superb</td>
</tr>
<tr>
<td>Receiver compression point</td>
<td></td>
<td>Good</td>
<td>Good</td>
<td>Superb</td>
</tr>
<tr>
<td>Internal bias-tees</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Source attenuators</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Receiver attenuators</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Connection loop before reference path</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Connection loops for attenuators, etc.</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Harmonics measurements</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Analyzer source harmonics</td>
<td></td>
<td>Good</td>
<td>Good</td>
<td>Superb</td>
</tr>
<tr>
<td>Intermodulation distortion</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Second internal source for IMD on 2-port analyzer</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Second internal source for IMD on 4-port analyzer</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Internal combiner for IMD testing</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Hot-S22</td>
<td></td>
<td>Good</td>
<td>•</td>
<td>Superb</td>
</tr>
<tr>
<td>Noise figure</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Pulsed-RF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Built-in pulse generator and modulators</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Wideband detection</td>
<td></td>
<td>Good</td>
<td>•</td>
<td>Superb</td>
</tr>
<tr>
<td>Narrowband detection</td>
<td></td>
<td>Good</td>
<td>Superb</td>
<td></td>
</tr>
<tr>
<td>Pulse-profile</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Point-in-pulse</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Average pulse</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Pulse-to-pulse</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>

Legend

- • Solution available
- Blank Solution not available
- Good and superb Solution available, quality of solution qualified. For example, with maximum output power levels, all PNA-Xs have output power, but the PNA-X has the highest output power.

1. 4-port PNA-L has one source attenuator.
2. 4-port PNA-X has 4 source attenuators.
3. Applicable to high-power amplifier testing or integration of the external test equipment.
Calibrating network analyzers is critical for high accuracy measurements and can be particularly challenging in non-coaxial environments such as fixtures, wafers, or waveguides. Additionally, 3- and 4-port devices are more prevalent than ever and require more sophisticated calibration procedures. The need has never been greater for calibration tools that are more accurate and easier to use. The PNA’s state-of-the-art calibration techniques help solve these challenges, enhance ease-of-use, and improve accuracy.

PNA – State-of-the-art calibration capabilities

High-performance ECal modules
- High-performance ECal modules, 10 MHz to 26.5 GHz, 10 MHz to 67 GHz and more
- Nine connector types, mixed-connector modules
- User characterization for adding adapters

Calibration for non-insertable devices
- Unknown through calibration
- QSOLT and n-port calibration (6-port, 8-port, 12-port, etc) for multiport test systems
- Databased-model and expanded math calibrations for highest accuracy

In-fixture measurements
- Frequency response cal, 1-port cal, 2-port cal, enhanced response-cal, TRL/TRM cal and adapter-removal cal
- An easy-to-use uncertainty calculator, and a comprehensive application note on calibration standards
- Automatic port extension removes loss and delay for in-fixture devices

Advanced mixer and amplifier calibrations
- The patented vector mixer calibration and the popular scalar-mixer calibration
- De-embedding of attenuators and the new fast source power calibration technique for amplifier measurements
- De-embedding of probes and waveguides in mixer measurements
- Unique noise figure calibration removes the effects of imperfect system source match

Learn how to set up a custom calibration kit with application note 5989-4804EN, *Specifying Calibration Standards and Kits for Keysight Vector Network Analyzers*
PNA – The standard for accuracy

All the network analyzers in the PNA family are known for their high-levels of stability, contributing to accurate calibrations and measurements. With the PNA-X, users can benefit from exceptional levels of dynamic accuracy. For users in nonlinear environments, the PNA’s Scalar Mixer Calibration provides a higher level of measurement accuracy.

Stability of a 20 GHz PNA over a 30-hour period

It is clear that the more stable the hardware, the better the calibration, since it can correct the errors better. The calibration will remain stable as a function of time and temperature, and calibrations will not need to be updated as often.

Typical dynamic accuracy of a PNA-X, with –20 dBm power

If you are measuring a device with 20 dB insertion loss, the contribution of the dynamic accuracy error (receiver linearity) is less than 0.01 dB.

Scalar-mixer calibration versus a simple power meter/receiver calibration

Note the effects of mismatch that are corrected for by SMC.

110 GHz PNA drift over a 24-hour period

As you can see on the graph, the 110 GHz PNA drifts less than 0.7 dB, after 24 hours, at 110 GHz. Keysight’s 110 GHz PNA system is the most stable mmwave system in the industry.

1. Measurements made at 25 ± 1 degree Celcius.
Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>20 GHz 2-port</th>
<th>20 GHz 2-port</th>
<th>20 GHz 4-port</th>
<th>26.5 GHz 2-port</th>
<th>26.5 GHz 4-port</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNA-L</td>
<td>PNA-L</td>
<td>PNA-L</td>
<td>PNA-X</td>
<td>PNA-X</td>
<td>PNA-X</td>
</tr>
<tr>
<td>Frequency range</td>
<td>10 MHz to 20 GHz</td>
<td>10 MHz to 20 GHz</td>
<td>300 kHz to 20 GHz</td>
<td>10 MHz to 26.5 GHz</td>
<td>10 MHz to 26.5 GHz</td>
</tr>
<tr>
<td># of Ports</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Dynamic range</td>
<td>123 dB</td>
<td>108 dB</td>
<td>103 dB</td>
<td>127 dB</td>
<td>127 dB</td>
</tr>
<tr>
<td>Noise floor</td>
<td>-120 dBm</td>
<td>-105 dBm</td>
<td>-106 dBm</td>
<td>-114 dBm</td>
<td>-114 dBm</td>
</tr>
<tr>
<td>Max output power</td>
<td>+3 dBm</td>
<td>+3 dBm</td>
<td>-3 dBm</td>
<td>+13 dBm</td>
<td>+13 dBm</td>
</tr>
<tr>
<td>0.1 dB compression</td>
<td>-5 dBm input</td>
<td>+6 dBm input</td>
<td>+9 dBm input</td>
<td>+12 dBm input</td>
<td>+12 dBm input</td>
</tr>
<tr>
<td>Trace noise</td>
<td>0.006 dB rms</td>
<td>0.006 dB rms</td>
<td>0.010 dB rms</td>
<td>0.005 dB rms</td>
<td>0.005 dB rms</td>
</tr>
<tr>
<td>1 kHz IFBW</td>
<td>-5 dBm</td>
<td>-5 dBm</td>
<td>-5 dBm</td>
<td>-5 dBm</td>
<td>-5 dBm</td>
</tr>
<tr>
<td>Noise floor</td>
<td>-95 dBm</td>
<td>-114 dBm</td>
<td>-125 dBm</td>
<td>-13 dBm</td>
<td>-13 dBm</td>
</tr>
<tr>
<td>Max output power</td>
<td>-5 dBm</td>
<td>-4 dBm</td>
<td>+9 dBm</td>
<td>+13 dBm</td>
<td>+13 dBm</td>
</tr>
<tr>
<td>0.1 dB compression</td>
<td>-8.5 dBm</td>
<td>-12.5 dBm</td>
<td>+13 dBm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trace noise (1 kHz)</td>
<td>0.020 dB rms</td>
<td>0.006 dB rms</td>
<td>0.003 dBms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALC range</td>
<td>27 dB</td>
<td>23 dB</td>
<td>22 dB</td>
<td>38 dB</td>
<td>38 dB</td>
</tr>
<tr>
<td>Max IFBW</td>
<td>40 kHz</td>
<td>250 kHz</td>
<td>600 kHz</td>
<td>5 MHz</td>
<td>5 MHz</td>
</tr>
<tr>
<td>Speed</td>
<td>26 µs/pt</td>
<td>9 µs/pt</td>
<td>4.5 µs/pt</td>
<td>4.5 µs/pt</td>
<td>4.5 µs/pt</td>
</tr>
<tr>
<td>Display size, LCD</td>
<td>21.3 cm</td>
<td>21.3 cm</td>
<td>21.3 cm</td>
<td>26.4 cm</td>
<td>26.4 cm</td>
</tr>
<tr>
<td>Touch screen</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>40 GHz</th>
<th>40 GHz</th>
<th>43.5 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNA-L</td>
<td>PNA-L</td>
<td>PNA-L</td>
<td></td>
</tr>
<tr>
<td>N5230C Option 420</td>
<td>N5230C Option 240</td>
<td>N5244A Option 200</td>
<td></td>
</tr>
<tr>
<td>Frequency range</td>
<td>10 MHz to 40 GHz</td>
<td>10 MHz to 40 GHz</td>
<td>10 MHz to 43.5 GHz</td>
</tr>
<tr>
<td>Dynamic range</td>
<td>90 dB</td>
<td>110 dB</td>
<td>119 dB</td>
</tr>
<tr>
<td>Noise floor</td>
<td>-95 dBm</td>
<td>-114 dBm</td>
<td>-110 dBm</td>
</tr>
<tr>
<td>Max output power</td>
<td>-5 dBm</td>
<td>-4 dBm</td>
<td>+9 dBm</td>
</tr>
<tr>
<td>0.1 dB compression</td>
<td>-8.5 dBm</td>
<td>-12.5 dBm</td>
<td>+13 dBm</td>
</tr>
<tr>
<td>Trace noise (1 kHz)</td>
<td>0.020 dB rms</td>
<td>0.006 dB rms</td>
<td>0.003 dBms</td>
</tr>
<tr>
<td>ALC range</td>
<td>20 dB</td>
<td>20 dB</td>
<td>34 dB</td>
</tr>
<tr>
<td>Max IFBW</td>
<td>250 kHz</td>
<td>40 kHz</td>
<td>5 MHz</td>
</tr>
<tr>
<td>Speed</td>
<td>9 µs/pt</td>
<td>26 µs/pt</td>
<td>4.5 µs/pt</td>
</tr>
</tbody>
</table>

Outstanding performance

- **40 GHz PNA-L**: N5230C Option 420
- **40 GHz PNA**: E8363C
- **43.5 GHz PNA-X**: N5244A Option 200

N5242A Typical PNA-X source harmonics

N5242A Typical PNA-X output power

1. 20 GHz, test port, 10 Hz IFBW.
Completing the solution

Protect confidential data
The best method for maintaining security is to remove the hard disk drive. The PNA provides the removable hard disk drive as a standard feature, enabling you to easily remove the drive and keep it safe in a secure area.

Protect your software investment
Keysight protects your 8753, 8720 and 8510 software investment by providing migration tools to reduce your code conversion effort.
www.keysight.com/find/nadisco

Network analyzer forum
Visit the online network analyzer discussion forum where you can learn how your peers are solving some of their most challenging measurement problems.
www.keysight.com/find/keysight_naforum

Web resources
Visit our Web sites for additional product information and literature.

PNA-X microwave network analyzers
www.keysight.com/find/pna-x

PNA-L microwave network analyzers
www.keysight.com/find/pnal

PNA microwave network analyzers
www.keysight.com/find/pna

ENA RF network analyzers
www.keysight.com/find/ena

Physical layer test systems
www.keysight.com/find/plts

Multiport test solutions
www.keysight.com/find/multiport

Antenna test
www.keysight.com/find/antenna

Electronic calibration (ECal) modules
www.keysight.com/find/ecal

RF and microwave accessories
www.keysight.com/find/accessories

Mechanical and electronic calibration kits and pulsed-RF measurements
www.keysight.com/find/pulsedrf

Materials measurements:
www.keysight.com/find/materials
Evolving Since 1939

Our unique combination of hardware, software, services, and people can help you reach your next breakthrough. We are unlocking the future of technology. From Hewlett-Packard to Agilent to Keysight.

myKeysight
www.keysight.com/find/mykeysight
A personalized view into the information most relevant to you.

http://www.keysight.com/find/emt_product_registration
Register your products to get up-to-date product information and find warranty information.

Keysight Services
www.keysight.com/find/service
Keysight Services can help from acquisition to renewal across your instrument’s lifecycle. Our comprehensive service offerings—one-stop calibration, repair, asset management, technology refresh, consulting, training and more—helps you improve product quality and lower costs.

Keysight Assurance Plans
www.keysight.com/find/AssurancePlans
Up to ten years of protection and no budgetary surprises to ensure your instruments are operating to specification, so you can rely on accurate measurements.

Keysight Channel Partners
www.keysight.com/find/channelpartners
Get the best of both worlds: Keysight’s measurement expertise and product breadth, combined with channel partner convenience.

For more information on Keysight Technologies’ products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus

Americas
Canada (877) 894 4414
Brazil 55 11 3351 7010
Mexico 001 800 254 2440
United States (800) 829 4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 11 2626
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Other AP Countries (65) 6375 8100

Europe & Middle East
Austria 0800 001122
Belgium 0800 58580
Finland 0800 523252
France 0805 980333
Germany 0800 6270999
Ireland 1800 832700
Israel 1 809 343051
Italy 800 599100
Luxembourg +32 800 58580
Netherlands 0800 0233200
Russia 8800 5093286
Spain 800 000154
Sweden 0200 682255
Switzerland 0800 805363
Switzerland Opt. 1 (DE)
Switzerland Opt. 2 (FR)
Switzerland Opt. 3 (IT)
United Kingdom 0800 0260637

For other unlisted countries:
www.keysight.com/find/contactus
(BP-9-7-17)

DEKRA Certified
ISO 9001 Quality Management System
www.keysight.com/go/quality
Keysight Technologies, Inc.
DEKRA Certified ISO 9001:2015
Quality Management System

www.keysight.com/find/pna

This information is subject to change without notice.
© Keysight Technologies, 2017
Published in USA, December 2, 2017
5989-7604EN
www.keysight.com