Keysight HMMC-1015
DC–50 GHz Variable Attenuator
1GG7-8008

Data Sheet

Features

- Specified frequency range: DC to 26.5 GHz
- P_{in} (-1 dB): 27 dBm @ 500 MHz
- Return loss: 10 dB
- Minimum attenuation: 2.0 dB
- Maximum attenuation: 30.0 dB
Description

The HMMC-1015 is a monolithic, voltage variable, GaAs IC attenuator that operates from DC to 50 GHz. The distributed topology of the HMMC-1015 minimizes the parasitic effects of its series and shunt FETs, allowing the HMMC-1015 to exhibit a wide dynamic range across its full bandwidth. An on-chip DC reference circuit may be used to maintain optimum VSWR for any attenuation setting or to improve the attenuation versus voltage linearity of the attenuator circuit.

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameters/conditions</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DC-RF}</td>
<td>DC voltage to RF ports</td>
<td>-0.6</td>
<td>+1.6</td>
<td>Volts</td>
</tr>
<tr>
<td>V_1</td>
<td>V_1 control voltage</td>
<td>-10.5</td>
<td>+0.5</td>
<td>Volts</td>
</tr>
<tr>
<td>V_2</td>
<td>V_2 control voltage</td>
<td>-10.5</td>
<td>+0.5</td>
<td>Volts</td>
</tr>
<tr>
<td>V_{DC}</td>
<td>DC in/DC out</td>
<td>-0.6</td>
<td>+1.0</td>
<td>Volts</td>
</tr>
<tr>
<td>P_{in}</td>
<td>RF input power</td>
<td>17</td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>T_{mina}</td>
<td>Minimum ambient operating temperature</td>
<td>-55</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>T_{maxa}</td>
<td>Maximum ambient operating temperature</td>
<td>+125</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>T_{stg}</td>
<td>Storage temperature</td>
<td>-65</td>
<td>+165</td>
<td>°C</td>
</tr>
<tr>
<td>T_{max}</td>
<td>Maximum assembly temperature (for 60 seconds maximum)</td>
<td>+300</td>
<td></td>
<td>°C</td>
</tr>
</tbody>
</table>

1. Operation in excess of any one of these conditions may result in permanent damage to this device.
DC Specifications/Physical Properties

\((T_A = 25 \degree C)\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameters/conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{V1})</td>
<td>(V_1) control current, ((V_1 = \text{-10 V}))</td>
<td>5.0</td>
<td>5.9</td>
<td>7.1</td>
<td>mA</td>
</tr>
<tr>
<td>(I_{V2})</td>
<td>(V_2) control current, ((V_2 = \text{-10 V}))</td>
<td>5.0</td>
<td>5.9</td>
<td>7.1</td>
<td>mA</td>
</tr>
<tr>
<td>(V_p)</td>
<td>Pinch-off voltage</td>
<td>-6.75</td>
<td>-5.0</td>
<td>-3.75</td>
<td>Volts</td>
</tr>
</tbody>
</table>

Electrical Specifications\(^1\)

\((T_A = 25 \degree C, Z_0 = 50 \Omega)\)

<table>
<thead>
<tr>
<th>Parameters/conditions</th>
<th>Frequency (GHz)</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum attenuation, (</td>
<td>S_{21}</td>
<td>) ((V_1 = 0 \text{ V}, V_2 = \text{-10 V}))</td>
<td>1.5</td>
<td>1.0</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.4</td>
<td>2.4</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20.00</td>
<td>1.7</td>
<td>2.4</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26.5</td>
<td>2.0</td>
<td>2.4</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50.0</td>
<td>3.9</td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Input/output return loss @ minimum attenuation setting, ((V_1 = 0 \text{ V}, V_2 = \text{-10 V}))</td>
<td>(< 26.5)</td>
<td>10</td>
<td>16</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(< 50.0)</td>
<td>8</td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Maximum attenuation (</td>
<td>S_{21}</td>
<td>) ((V_1 = \text{-10 V}, V_2 = 0 \text{ V}))</td>
<td>1.5</td>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>27</td>
<td>38</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20.00</td>
<td>27</td>
<td>38</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26.5</td>
<td>27</td>
<td>40</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50.0</td>
<td>35</td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>(P_{-1 \text{dB}}) @ minimum attenuation</td>
<td>300 kHz</td>
<td>18.5</td>
<td></td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(> 500 \text{ MHz})</td>
<td>27</td>
<td></td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td>Input/output return loss @ maximum attention setting, ((V_1 = \text{-0 V}, V_2 = 0 \text{ V}))</td>
<td>(< 26.5)</td>
<td>8</td>
<td>10</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(< 50.0)</td>
<td>10</td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>DC power dissipation, ((V_1 = \text{-10.5 V}, V_2 = \text{-10.5 V})) (does not include input signals)</td>
<td></td>
<td>158</td>
<td></td>
<td>mW</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Attenuation is a positive number; whereas, \(S_{21}\) as measured on a network analyzer would be a negative number.
Applications

The HMMC-1015 is designed to be used as a gain control block in an ALC assembly. Because of its wide dynamic range and return loss performance, the HMMC-1015 may also be used as a broadband pulse modulator or single-pole single-throw, non-reflective switch.

Operation

The attenuation value of the HMMC-1002 is adjusted by applying negative voltage to V_2. At any attenuation setting, optimum VSWR is obtained by applying negative voltage to V_1. Applying negative voltage (V_2) to the gates of the shunt FETs sets the source-to-drain resistance and establishes the attenuation level. Applying negative voltage (V_1) to the gates of the series FETs optimizes the input and output match for different attenuation settings. In some applications, a single setting of V_1 may provide sufficient input and output match over the desired attenuation range (V_2). For any HMMC-1015 the values of V_1 may be adjusted so that the device attenuation versus voltage is monotonic for both V_1 and V_2; however, this will slightly degrade the input and output return loss.

The attenuation and input/output match of the HMMC-1015 may also be controlled using only a single input voltage by utilizing the on-chip DC reference circuit and the driver circuit shown in Figure 4. This circuit optimizes VSWR for any attenuation setting. Because of process variations, the values of V_{REF}, R_{REF}, and R_L are different for each wafer if optimum performance is required. Typical values for these elements are given. The ratio of the resistors R_1 and R_2 determines the sensitivity of the attenuation versus voltage performance of the attenuator. For more information on the performance of the HMMC-1015 and the driver circuits previously mentioned, see WPTC’s Application Note, HMMC-1021 Attenuator: Attenuation Control, literature number 5991-3555EN. For more S-parameter information, see WPTC’s Application Note, HMMC-1015 Attenuator: S-Parameters, literature number 5991-3556EN.

Assembly Techniques

GaAs MMICs are ESD sensitive. ESD preventive measures must be employed in all aspects of storage, handling, and assembly.

MMIC ESD precautions, handling considerations, die attach and bonding methods are critical factors in successful GaAs MMIC performance and reliability.

Keysight Technologies, Inc. application note, GaAs MMIC ESD, Die Attach and Bonding Guidelines, literature number 5991-3484EN, provides basic information on these subjects.
Figure 1. Schematic

Figure 2. Bonding pad locations

Figure 3. Assembly diagram

Notes:
1) All dimensions in microns and shown to center of bond pad.
2) DC_in, V_1, DC_out, and V_2 bonding pads are 75 x 75 microns.
3) RF input and output bonding pads are 60 x 70 microns.
4) Chip thickness: 127 ± 15 µm.
Typical Performance

1. Data obtained from on-wafer measurements. T_{chuck} = 25 °C.
Typical Temperature Performance

Figure 7. Attenuation vs. temperature @ minimum attenuation

Figure 8. Attenuation vs. temperature @ maximum attenuation

This data sheet contains a variety of typical and guaranteed performance data. The information supplied should not be interpreted as a complete list of circuit specifications. Customers considering the use of this, or other Keysight GaAs ICs, for their design should obtain the current production specifications from Keysight. In this data sheet the term typical refers to the 50th percentile performance. For additional information contact Keysight MMIC_Helpline@Keysight.com.

1. Data taken with the device mounted in connectorized package
Evolving Since 1939
Our unique combination of hardware, software, services, and people can help you reach your next breakthrough. We are unlocking the future of technology. From Hewlett-Packard to Agilent to Keysight.

myKeysight
myKeysight
www.keysight.com/find/mykeysight
A personalized view into the information most relevant to you.

http://www.keysight.com/find/emt_product_registration
Register your products to get up-to-date product information and find warranty information.

Keysight Services
www.keysight.com/find/service
Keysight Services can help from acquisition to renewal across your instrument’s lifecycle. Our comprehensive service offerings—one-stop calibration, repair, asset management, technology refresh, consulting, training and more—helps you improve product quality and lower costs.

Keysight Assurance Plans
www.keysight.com/find/AssurancePlans
Up to ten years of protection and no budgetary surprises to ensure your instruments are operating to specification, so you can rely on accurate measurements.

Keysight Channel Partners
www.keysight.com/find/channelpartners
Get the best of both worlds: Keysight’s measurement expertise and product breadth, combined with channel partner convenience.

For more information on Keysight Technologies’ products, applications or services, please contact your local Keysight office. The complete list is available at:
www.keysight.com/find/contactus

Americas
Canada (877) 894 4414
Brazil 55 11 3351 7010
Mexico 001 800 254 2440
United States (800) 829 4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 11 2626
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Other AP Countries (65) 6375 8100

Europe & Middle East
Austria 0800 001122
Belgium 0800 58580
Finland 0800 523252
France 0805 980333
Germany 0800 6270999
Ireland 1800 832700
Israel 1 809 343051
Italy 800 599100
Luxembourg +32 800 58580
Netherlands 0800 0233200
Russia 8800 5093286
Spain 800 000154
Sweden 0200 882255
Switzerland 0800 805363
Opt. 1 (DE)
Opt. 2 (FR)
Opt. 3 (IT)
United Kingdom 0800 0260637

For other unlisted countries:
www.keysight.com/find/contactus
(BP-9-9-17)

DEKRA Certified
ISO 9001:2015 Quality Management System

www.keysight.com/go/quality
Keysight Technologies, Inc.
DEKRA Certified ISO 9001:2015 Quality Management System

This information is subject to change without notice.
© Keysight Technologies, 2017
Published in USA, December 1, 2017
5989-6202EN
www.keysight.com