All-in-One Solution for Acceleration of Wide-Bandgap (WBG) Power Device Characterization in a wide range of operating conditions: up to 1500 A/10 kV and a high temperature of +250 °C

A rapid and effective method is critical in accelerating WBG power devices development and improvement in power efficiency and reliability performance

- Faster time to market to meet growing demand for automotive power devices for Electric Vehicles applications
- Strong requirements and demand in achieving, high-power efficiency, high reliability and high-performance devices
- Accelerating the realization of next generation WBG power devices, based on new advance materials such as SiC, GaN and Ga2O3.

Challenges of WBG power device development

<table>
<thead>
<tr>
<th>Challenges</th>
<th>Needs</th>
<th>Problems Using Conventional Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased in device operating range to improve device performance.</td>
<td>High current and high voltage measurements with high accuracy results.</td>
<td>Curve Tracer alone is insufficient for accurate IV measurements due to its resolution limits and the self-heating effect from the wide pulse width</td>
</tr>
<tr>
<td>In addition to the current-voltage (I-V), the capacitance-voltage characteristics (C-V: Ciss, Coss, Crss), gate charge (Qg) and GaN current collapse are critical parameters to ensure the device performance.</td>
<td>Accurate narrow pulse measurements to prevent device self-heating effects.</td>
<td>C-V, Qg and GaN current collapse measurements under high current and high voltage conditions requires other additional measurement equipment.</td>
</tr>
<tr>
<td>Difficulty to evaluate devices safely, under severe temperature conditions, simulating the actual device applications conditions.</td>
<td>Safe operations on high current and high voltage measurements supporting extensive high temperature testing.</td>
<td>Custom-made system may have measurement errors, accuracy and reliability issues.</td>
</tr>
<tr>
<td>Capturing time to market opportunities and R&D efficiency.</td>
<td>Simplification and automation of measurement, data management and data analysis to improve R&D efficiency.</td>
<td>Time consuming in manual process operation of switching and wiring instruments.</td>
</tr>
<tr>
<td>On-wafer measurements with a faster feedback loop and test efficiency improvement.</td>
<td></td>
<td>Duration to perform measurements and analyzing the data.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Duration to package and set-up the device for measurements.</td>
</tr>
</tbody>
</table>

Learn more at: www.keysight.com
B1505A Power Device Analyzer/Curve Tracer solves these challenges and accelerates the power device development cycle

- Precision measurement across a wide range of operating conditions
 - Current and voltage range up to 1500 A/10 kV
 - Min. 10 µs narrow pulse to prevent self-heating effects
 - Sub-pA, µV, µΩ measurements capabilities
 - Oscilloscope view for pulse waveform verification and settings adjustment
 - Support both packaged device measurements and on-wafer measurements

- Advanced measurements beyond IV measurement
 - C-V (Ciss/Coss/Crss) up to 3k VDC bias
 - Gate charge (Qg) up to 3 kV/1500 A
 - GaN current collapse up to 3 kV/20 A with 20 µs switching

- Safety measurement under simulated harsh environments
 - Ensure the safety operation via an integrated interlock test fixture for test conditions up to 1500 A/10 kV
 - Thermal testing capability in the test fixture ranging from -50 °C to +250 °C

- Shorten device development cycle by an intuitive operation, automated test and efficient data analysis
 - EasyEXPERT group+ software supports intuitive measurements, automated test, data management and analysis
 - Real-time knob sweep control capability operation (similar to Curve Tracer operation)
 - Module selector and capacitance selector that enables automatic switching of measurement modules

Summary

- B1505A is an all-in-one solution for power device evaluation that can safely perform I-V/C-V/Qg/GaN current collapse measurements of both packaged and on-wafer devices in a single unit in a wide range of operating conditions (Max 1500 A/10 kV and +250 °C).

- B1505A enables faster power device development cycle, and realizes the development of next generation WBG power devices such as SiC, GaN and Ga2O3 with high efficiency and reliability performance.

Learn more at: www.keysight.com