A new method to determine Loss, PDL, GD, and DGD of passive optical components

Thomas Jensen, Eckart Witzel, Alexandre Paduch, Patrick Ziegler, E.U. Wagemann, and Oliver Funke

Agilent Technologies GmbH, Herrenberger Straße 130, 71034 Böblingen, Germany

NFOEC, Dallas 2002
Outline

• Optical Network Evolution
• Experimental Setup
• Measurement Principles for Loss, PD, GD, and DGD
• Accuracy Verification
• Measurement Examples
• Summary
Optical Network Evolution

Next Generation optical network facts:
- 40 Gb/s and beyond
- ultra dense WDM (≤10 Gb/s)
- transparent

Network performance strongly depends on both:

- amplitude (loss) and
- phase (dispersion)

characteristics of optical components
Complex component designs require an adequate all-parameter test method

Example: TFF-Design

Advanced components require high resolution and high accuracy for both loss and dispersion test

(G.Lenz et al., IEEE J. Quant. Electr., 1,390 (1998))
Experimental Setup

Swept homodyne interferometry
Loss & PDL Determination

• Application of four well-known polarization states to the DUT

• Transmission data are used to calculate the 1st row - Mueller matrix coefficients

• PDL is obtained from the Mueller matrix coefficients

accuracy comparable with polarization scanning method
GD & DGD Determination

Interferometric principle

\[P_{i,j}(\omega) = E_{LO}^2(\omega) + E_{dut}^2(\omega) + 2 E_{LO}(\omega) E_{dut}(\omega) \cos \varphi_{i,j}(\omega) \]

Polarization resolved measurement based on two orthogonal sweeps \(i \) and detections \(j \).
Calculation from Jones matrix

Transformation of the eigenvectors $\vec{x}_{1/2}$ of the DUT Jones matrix

$$\vec{y}_{1/2}(\omega) = \sigma_{1/2}(\omega) e^{i\delta_{1/2}(\omega)} \cdot \vec{x}_{1/2}(\omega) = U(\omega) \cdot \vec{x}_{1/2}(\omega)$$

$$\vec{x}_{1/2} = \left(\frac{1}{\sigma_{1/2}(\omega)} e^{-i\delta_{1/2}(\omega)} U(\omega) \right) \cdot \vec{x}_{1/2}$$

Eigenvectors do not depend on the wavelength

$$\frac{d\vec{x}_{1/2}}{d\omega} = 0 = \left(\frac{-\sigma_{1/2}'}{\sigma_{1/2}^2} e^{-i\delta_{1/2}} U - \frac{1}{\sigma_{1/2}} i\tau_{1/2} e^{-i\delta_{1/2}} U + \frac{1}{\sigma_{1/2}} e^{-i\delta_{1/2}} U' \right) \cdot \vec{x}_{1/2} .$$

Simplification to an eigenvalue relation

$$(\gamma_{1/2} U - U') \cdot \vec{x}_{1/2} = 0 \quad \text{, with } \gamma_{1/2} = \frac{\sigma'}{\sigma} + i \tau_{1/2}$$

Calculation of GD and DGD from the eigenvalues

$$DGD(\omega) = |\text{Im}(\gamma_1) - \text{Im}(\gamma_2)|$$

$$GD(\omega) = \frac{1}{2} \left(\text{Im}(\gamma_1) + \text{Im}(\gamma_2) \right)$$
Comparison of measured and theoretical GD curve of HCN gas cell peak

Theoretical curve reconstructed with Kramers-Kronig relation from amplitude response.

deviation below 1%
Comparison of DGD measurement with NIST

Averaged DGD results on NIST SRM 2518 / 029

NIST device consist of coupled waveplates.

DGD value is averaged over wavelength interval (PMD 1st order).
Measured DGD repeatability (i.e. TFF)
Noise contribution of setup

- **GD**

![Graph showing GD noise variation with averages and sliding window width]

- **DGD**

![Graph showing DGD noise variation with averages and sliding window width]

Number of averages and width of sliding window have to be set properly for required SNR and spectral resolution.
Measurement of Dispersion Compensator (FBG)

- Reflection

- Transmission
Measurement of Thin-Film Filter

- IL [dB]
- GD [ps]
- DGD [ps]

Wavelength [nm]

IL:
- 0 dB
- -10 dB
- -20 dB
- -30 dB
- -40 dB
- -50 dB

GD:
- -50 ps
- -40 ps
- -30 ps
- -20 ps
- -10 ps
- 0 ps

DGD:
- 1 ps
- 2 ps
- 3 ps
- 4 ps
- 5 ps
Measurement of AWG

- IL [dB]:
 - 0 dB
 - -10 dB
 - -20 dB
 - -30 dB
 - -40 dB
 - -50 dB
 - -60 dB

- GD [ps]:
 - -30 ps
 - -20 ps
 - -10 ps
 - 0 ps
 - 10 ps
 - 20 ps
 - 30 ps
 - 40 ps
 - 50 ps
 - 60 ps
 - 70 ps

- PDL [dB]:
 - 0 dB
 - 2 dB
 - 4 dB
 - 6 dB
 - 8 dB
 - 10 dB
 - 12 dB

- DGD [ps]:
 - 0 ps
 - 10 ps
 - 20 ps
 - 30 ps
 - 40 ps
 - 50 ps
 - 60 ps
 - 70 ps

- Wavelength [nm]:
 - 1552.8
 - 1553.2
 - 1553.6
 - 1554.0
 - 1554.4

Agilent Technologies
Measurement of EDFA

- **IL (dB)**: A plot showing insertion loss at various wavelengths.
- **GD (ps)**: A plot showing group delay as a function of wavelength, with a red line indicating data.
- **DGD (ps)**: A plot showing differential group delay with a blue line indicating data.

The diagrams cover a wavelength range from 1530 nm to 1570 nm.
Summary

• In this presentation we reported on a new measurement method for testing passive components for spectral loss, PDL, GD, and DGD.

• When moving to advanced networks (beyond 10G or ultra-dense) requirements to test all-parameters can be expected for many components.

• All-parameter test combines the state-of-the-art technique for Loss and PDL with a new high potential interferometric GD and DGD measurement.

• The new measurement method demonstrates its potential particularly when characterizing advanced network components.