Waveguide Characteristics and Measurement Errors

Keith Anderson
Agilent Technologies
Agenda

• Background
• Characteristics
• Conclusion
Waveguide

• Waveguide = hollow metal pipe
• Rectangular, 2:1 aspect ratio

• Advantages
 – Conducts millimeter signals
 – Low loss
 – High power
 – Good shielding
 – Can "flare" end into horn antenna

• Disadvantages
 – Bandwidth < 1 octave
 – Rigid, heavy, large
 – Expensive
 – No DC connection
 – Dispersive

\[a = 2 \times b \]

Waveguide dimensions
Millimeter Bands

<table>
<thead>
<tr>
<th>Std Name</th>
<th>US EIA Name</th>
<th>P1785(1) Name</th>
<th>Fcutoff (GHz)</th>
<th>Fmin (GHz)</th>
<th>Fmax (GHz)</th>
<th>a(2) (inches)</th>
<th>b(2) (inches)</th>
<th>a(2) (um)</th>
<th>b(2) (um)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>WR-15</td>
<td>-</td>
<td>39.90</td>
<td>50</td>
<td>75</td>
<td>0.148</td>
<td>0.074</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E</td>
<td>WR-12</td>
<td>-</td>
<td>48.40</td>
<td>60</td>
<td>90</td>
<td>0.122</td>
<td>0.061</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>W</td>
<td>WR-10</td>
<td>WM-2540</td>
<td>59.014</td>
<td>75</td>
<td>110</td>
<td>0.100</td>
<td>0.050</td>
<td>2540</td>
<td>1270</td>
</tr>
<tr>
<td>F</td>
<td>WR-08</td>
<td>WM-2032</td>
<td>73.767</td>
<td>90</td>
<td>140</td>
<td>0.080</td>
<td>0.040</td>
<td>2032</td>
<td>1016</td>
</tr>
<tr>
<td>D</td>
<td>WR-06</td>
<td>WM-1651</td>
<td>90.790</td>
<td>110</td>
<td>170</td>
<td>0.065</td>
<td>0.0325</td>
<td>1651</td>
<td>825.5</td>
</tr>
<tr>
<td>G</td>
<td>WR-05</td>
<td>WM-1295</td>
<td>115.75</td>
<td>140</td>
<td>220</td>
<td>0.0510</td>
<td>0.0255</td>
<td>1295</td>
<td>647.5</td>
</tr>
<tr>
<td>H</td>
<td>WR-04</td>
<td>WM-1092</td>
<td>137.27</td>
<td>170</td>
<td>260</td>
<td>0.0430</td>
<td>0.0215</td>
<td>1092</td>
<td>546</td>
</tr>
<tr>
<td>J</td>
<td>WR-03</td>
<td>WM-864</td>
<td>173.49</td>
<td>220</td>
<td>330</td>
<td>0.0340</td>
<td>0.0170</td>
<td>864</td>
<td>432</td>
</tr>
<tr>
<td>-</td>
<td>WR-2.8</td>
<td>WM-710</td>
<td>211.12</td>
<td>260</td>
<td>400</td>
<td>0.0280</td>
<td>0.0140</td>
<td>710</td>
<td>355</td>
</tr>
<tr>
<td>Y</td>
<td>WR-2.2</td>
<td>WM-570</td>
<td>262.97</td>
<td>330</td>
<td>500</td>
<td>0.0220</td>
<td>0.0110</td>
<td>570</td>
<td>285</td>
</tr>
<tr>
<td>-</td>
<td>WR-1.9</td>
<td>WM-470</td>
<td>318.93</td>
<td>400</td>
<td>600</td>
<td>0.0190</td>
<td>0.0095</td>
<td>470</td>
<td>235</td>
</tr>
<tr>
<td>-</td>
<td>WR-1.5</td>
<td>WM-380</td>
<td>394.46</td>
<td>500</td>
<td>750</td>
<td>0.0150</td>
<td>0.0075</td>
<td>380</td>
<td>190</td>
</tr>
<tr>
<td>-</td>
<td>WR-1.2</td>
<td>WM-310</td>
<td>483.53</td>
<td>600</td>
<td>900</td>
<td>0.0120</td>
<td>0.0060</td>
<td>310</td>
<td>155</td>
</tr>
<tr>
<td>-</td>
<td>WR-1.0</td>
<td>WM-250</td>
<td>599.58</td>
<td>750</td>
<td>1100</td>
<td>0.0100</td>
<td>0.0050</td>
<td>250</td>
<td>125</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>WM-200</td>
<td>749.48</td>
<td>900</td>
<td>1400</td>
<td>-</td>
<td>-</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>WM-164</td>
<td>913.99</td>
<td>1100</td>
<td>1700</td>
<td>-</td>
<td>-</td>
<td>164</td>
<td>82</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>WM-130</td>
<td>1153.0</td>
<td>1400</td>
<td>2200</td>
<td>-</td>
<td>-</td>
<td>130</td>
<td>65</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>WM-106</td>
<td>1414.1</td>
<td>1700</td>
<td>2600</td>
<td>-</td>
<td>-</td>
<td>106</td>
<td>53</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>WM-86</td>
<td>1743.0</td>
<td>2200</td>
<td>3300</td>
<td>-</td>
<td>-</td>
<td>86</td>
<td>43</td>
</tr>
</tbody>
</table>

(1) Proposed naming convention, IEEE working group P1785
(2) US EIA series waveguide dimensions (in inches) and P1785 waveguide dimensions (in micrometers) vary by as much as 3% for waveguide smaller than WR-03 due to standards differences.
Propagation Modes

- Electromagnetic wave modes
 - TEM
 - TE & TM
 - Hybrid

- Rectangular waveguide
 - Supports TE and TM
 - For TE_{mn}, m & n give the "order" of mode
 - Mode propagates above its "cutoff frequency"
Waveguide Frequencies

- Standard millimeter waveguide is 2:1
- \(F_{\text{cutoff}1} = \frac{c}{2 \times a} \)
 - No propagation below \(F_{\text{cutoff}1} \)
 - TE10 propagates between \(F_{\text{cutoff}1} \) and \(2 \times F_{\text{cutoff}1} \)
 - Other modes propagate above \(2 \times F_{\text{cutoff}1} \)

- Operating range
 - \(F_{\text{min}} = 1.25 \times F_{\text{cutoff}1} \)
 - \(F_{\text{max}} = 1.89 \times F_{\text{cutoff}1} \)
 - \(F_{\text{LinearMean}} = 1.57 \times F_{\text{cutoff}1} \)
 - \(F_{\text{GeometricMean}} = 1.54 \times F_{\text{cutoff}1} \)
Dispersion

- Wave propagation depends on frequency
- Below F_{cutoff1}, no propagation
- Above F_{cutoff1}, the wave "ping-pongs"
Agenda

• Background
• Characteristics
• Conclusion
Propagation Velocity

- Wave velocity: Free space propagation
- Group velocity: Energy propagation
- Phase velocity: Phase propagation

\[
V_{\text{wave}} = c \\
V_{\text{group}} = c \sqrt{1 - \left(\frac{f_{\text{cutoff1}}}{f}\right)^2} \\
V_{\text{phase}} = \frac{c}{\sqrt{1 - \left(\frac{f_{\text{cutoff1}}}{f}\right)^2}} \\
c^2 = V_{\text{phase}} \times V_{\text{group}}
\]
Group Delay

\[
\text{GD} = \frac{\text{GD}_{\text{freespace}}}{\sqrt{1 - \left(\frac{F_{\text{cutoff1}}}{f}\right)^2}}
\]

\[
\text{GD} = \frac{\text{Physical Length}}{V_{\text{group}}}
\]

\[
\text{GD} = 1\text{ns / foot, in free space}
\]

- GD is infinite at \(F_{\text{cutoff1}}\) & approaches GD_{freespace}
Guide Wavelength

\[\lambda_{\text{guide}} = \frac{\lambda_{\text{freespace}}}{\sqrt{1 - \left(\frac{f}{F_{\text{cutoff1}}}\right)^2}} \]

\[\lambda_{\text{guide}} = \frac{V_{\text{phase}}}{f} \]

\[\lambda_{\text{freespace}} = 1\text{mm @ 300GHz} \]

- \(\lambda_{\text{guide}} \) is infinite at \(f_{\text{cutoff1}} \) & approaches \(\lambda_{\text{freespace}} \)
Impedance

\[Z_{TE} = \frac{Z_{freespace}}{\sqrt{1 - \left(\frac{F_{cutoff1}}{f}\right)^2}} \]

\[Z_{Freespace} = 377\,\Omega \]

- \(Z_{TE} \) is infinite at \(F_{cutoff1} \) & approaches \(Z_{freespace} \)
- Network analyzers assume \(Z_0 = "1" \)
Loss

Loss is due to skin effect & surface roughness
Agenda

• Background
• Characteristics
• Conclusion
Conclusion

- Waveguide is dispersive
- \(Zo = 444\Omega - 628\Omega \)
- Set \(Zo = "1" \) in VNA
- Group delay is 18~67% longer than free space
- Wavelength is 18~67% longer than free space
- Skin effect loss is high (6.5dB/meter for WR7)