Phase Noise
Signal Source Analyzer E5052B (+E5053A)
Single side band noise spectrum: \(L(f) \)

SSB is extracted from the frequency domain signal:

\[
L(f) = \frac{1}{2P_c} \frac{\Delta P(f)}{\Delta f} = \frac{\text{Power density of one phase modulation sideband}}{\text{Carrier Power}} \quad \text{dBc/Hz}
\]

\[
\log(L(f)) = \log(P) - \log(f - f_c)
\]

\(f_c \) is the carrier frequency, and \(f \) is the frequency of the signal.
The SSB spectrum and the phase spectral density

\[L(f) = \frac{1}{2P_c} \frac{\Delta P(f_{\phi})}{\Delta f_{\phi}} \]

\[= \frac{1}{\Delta f_{\phi}} \frac{1}{2} \frac{\Delta v_{\text{Noise rms}}}{v_{\text{Carrier}}} / R \]

\[= \frac{1}{2\Delta f_{\phi}} \frac{\Delta v_{\text{Noise rms}}}{v_{\text{Carrier}}} \]

\[= \frac{\Delta v_{\text{rms}}^2}{2\Delta f} = \frac{1}{2} S_v(f) \approx \frac{\Delta \phi_{\text{rms}}^2}{2\Delta f_{\phi}} = \frac{1}{2} S_{\phi}(f_{\phi}) \]

(if \(|\Delta \phi|\) is small enough.)

Voltage Spectral Density
\[S_v(f) = \frac{\Delta v_{\text{rms}}^2(f)}{\Delta f} \left[\frac{v^2}{\text{Hz}} \right] \]

Phase Spectral Density
\[S_{\phi}(f_{\phi}) = \frac{\Delta \phi_{\text{rms}}^2(f_{\phi})}{\Delta f_{\phi}} \left[\frac{\text{rad}^2}{\text{Hz}} \right] \]
Signal Source Analyzer E5052B (+E5053A)

ALL-IN-ONE instrument: 6 basic functions in one box.

- **PM Noise**
- **RF input**
- **VCO Test**
- **RF input**
- **V control**
- **V supply**
- **AM Noise**
- **RF input**
- **Baseband Noise**
- **BB input**

- **Spectrum Monitoring (~Δ15MHz)**
- **RF input**
- **Transient Meas.**
- **RF input**

~ 26.5GHz
“Normal” PN / PLL method (Direct Homodyne)

Basic theory of operation (for a single channel of E5052B)

\[f_{LO} = f_{RF} \]

and the phase difference between two signals is kept at 90 deg \((\pi/2\) rad) by PLL operation.
VCO Phase Noise - 800 MHz Band GSM VCO -

-166 to -167 dBC/Hz @ 20 MHz offset
Phase Noise - 1GHz Carrier
Phase Noise - 2.5Ghz Carrier
Phase Noise - 1.75Ghz Carrier

Integrated Noise and Jitter Conversion

Band marker function is available for setting trace integration range (start/stop offset frequencies)

- Integ Noise: dBC/Hz
- RMS Noise: Rad, Deg
- RMS Jitter: sec
SSA Block Diagrams and Signal Paths

The Signal Source Analyzer’s advanced architecture brings phase noise measurement to a new level.
Correlation technique for noise floor reduction

Two-channel Cross-Correlation Technique

\[N_{\text{meas}} = N_{S.U.T.} + \left(N_1 + N_2 \right) / \sqrt{M} \]

Assuming \(N_1 \) and \(N_2 \) are uncorrelated.

<table>
<thead>
<tr>
<th>(M) (number of correlation)</th>
<th>10</th>
<th>100</th>
<th>1,000</th>
<th>10,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise reduction on ((N_1+N_2))</td>
<td>-5dB</td>
<td>-10dB</td>
<td>-15dB</td>
<td>-20dB</td>
</tr>
</tbody>
</table>
E5052B SSB-PN Sensitivity Improvement by Correlation @1 GHz

SSB phase noise [dBc/Hz]

1 10 100 1k 10k 100k 1M 10M 100M

corr. = 1
corr. = 10
corr. = 100
- 184 dBc/Hz @ 10 MHz, 70 MHz Carrier

Effect of cross-correlation example
Signal Generators @ 640MHz
Crystal Oscillator @10MHz

Without Cross-Correlation

With Cross-Correlation
Signal Generators @ 232MHz
“Wide” PN / Heterodyne (digital) discriminator method

Basic theory of operation (for a single channel of the E5052B)
AM noise measurement

Basic theory of operation (for a single channel of the E5052B)

![Diagram of AM noise measurement process]

Note that a main signal still exists at this point!
“Normal” PN / PLL method (E5053A + E5052B)

Basic theory of operation (for a single channel of E5053A + E5052B)

A very stable L.O.

(frequency down converter)

(E5053A)

(E5052B)

The phase difference between two signals is kept at 90 deg (π/2 rad) due to PLL operation.
Agilent Technologies

E5053A Microwave down-converter

LO out
IF in
IF out
LO in
RF
IF amp.

(3 to 10 GHz)

Fundamental or 3rd harmonic mixing

3 GHz to 26.5 GHz Input

E5052B Signal Source Analyzer

(10 MHz to 7 GHz)

D-PLL
ADC
FFT
DSP (Correlation)
Display

RF in
RF out

10 MHz to 3 GHz Input

CH 1

RF in
RF out

CH 2

ADC
D-PLL
FFT

October 20, 2011
Radar Seminar
E5052B + E5053A System SSB-PN Sensitivity (SPD)

SSB phase noise [dBc/Hz]

Offset frequency [Hz]

1 10 100 1k 10k 100k 1M 10M 100M

- 3 GHz
- 10 GHz
- 18 GHz
- 26.5 GHz
mmWave Unstable Source Measurement Setup

- **11970 Harmonic Mixer**
- **mmWave Source**
- **E5053A Microwave Downconverter**
 - LO: 3 to 10 GHz, 50 MHz step +16 dBm
- **Bias1**
- **Bias2**
- **IF Gain 0 to 36 dB**

Agilent Technologies

33A Microwave Expansion

September 2009

E5063A IF Freq: 250 M to 1250 MHz

8447D IF AMP

Freq. Divider

To E5062A

To E5062A
Baseband noise measurement

Basic theory of operation

Min. frequency: 1Hz / 1kHz
Max. frequency: 100MHz

DC cut off filter (Low/High) capacitors (1410uF/10uF)
50 Ohm Input Impedance

Baseband input port (BNC)

Caution!

“Discharge DC Block Capacitor”
when reconnecting to low-voltage devices.

LPF → ADC

250MHz sampling

IF Gain

DSP (FFT)
VCO Freq, Power, DC Current Tester Mode Measurement Results - 800 MHz Band GSM VCO -
PLL Synthesizer Measurement Result
- 1.75 GHz Synthesizer -