Test Quality Assessment
I Need A Test For This Board!

- What can be tested?
- What WILL be tested?
- How will it be tested?
- How do I quantify the test quality?
A “Good” Test

- **Meets your test objectives** with the fewest number of measurements possible

- Does not necessarily need to make every possible measurement
“I know that you believe you understand what you think I said, but I'm not sure you realize that what you heard is not what I meant.”

Robert McCloskey
Specification – Statement of Work

• Standard Test Practices
 – Unpowered Tests.
 – Powered Tests.

• Custom Tests and Device Programming

• Fixture Configuration

• Acceptance Criteria
Acceptance Criteria

• How do you know if you specified a good test?
 – High yield at functional test?
 – Few field failures?

• How do you know you received what you specified?
 – Multiple PASS indications for the golden board?
 – High yield on prototypes or first production run?
Evaluate The Test

1. Look at the test coverage number.
Test Coverage:
What can be tested vs. what will be tested

Consider a board with 97 testable and 3 non-testable components:

- If 97 components are tested, is that 97% coverage or 100% coverage?
- If a test tolerance is ten times the part tolerance, the part has coverage, but is it really tested?
- How do I know from a coverage number if tests are effective at finding faults?
Evaluate The Test

1. Look at the test coverage number.
2. Examine the test plan.
Test Execution: What tests are actually run?

In the testplan:

- test “analog/c23”
- test “analog/r1”
- test “analog/r2”

In the test:

- connect s to nodes “A”
- connect i to nodes “B”
- resistor 10k, 10.2, 10.3, re3, ar100m
- !DUT: R1 test

In the testorder:

- test “analog/c23”
- skip “analog/r1”
- test “analog/r2”
Evaluate The Test

1. Look at the test coverage number.
2. Examine the testplan.
3. Look at the grading report.
Test Grading Report:

What is the CpK?

Number of test runs (in config.bdg): 10
Number of tests: 98

Report Flags:
- **F** = Test failed
- **M** = Mean not centered 66.67%
- **C** = Coefficient of producibility too small 10.00

<table>
<thead>
<tr>
<th>Designator</th>
<th>Programmed</th>
<th>Computed</th>
<th># Flg</th>
<th>Com</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nom Low High Mean StdDev CPK CP Bad Ref</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c1</td>
<td>878p 702p 1.05n 893p 4e-13 152 167 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c2</td>
<td>878p 702p 1.05n 893p 5e-13 104 114 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c3</td>
<td>4.70n 4.18n 5.29n 4.46n 1.40p 66.2 131 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c4</td>
<td>4.70n 4.18n 5.29n 4.74n 1.67p 110 110 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c5</td>
<td>470n 266n 530n 508n 519p 14.0 84.5 0 M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c6</td>
<td>470n 315n 624n 517n 492p 72.4 105 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c7</td>
<td>235u 177u 288u 222u 60.3n 249 305 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c8</td>
<td>100n 89.4n 111n 92.5n 52.0p 20.1 68.2 0 M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c23</td>
<td>130n 97.5n 163n 119n 194p 37.1 55.8 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c20</td>
<td>100n 89.0n 111n 91.9n 60.1p 16.1 60.5 0 M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c29</td>
<td>100n 89.1n 111n 109n 22.4p 27.5 161 0 M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c29</td>
<td>100n 87.4n 113n 90.6n 42.4p 24.8 99.4 0 M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c30</td>
<td>100n 86.6n 114n 94.1n 22.5p 111 201 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c32</td>
<td>100n 48.0n 128n 88.3n 53.7p 245 247 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c39</td>
<td>200n 179n 221n 183n 101p 15.3 70.1 0 M</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evaluate The Test

1. Look at the test coverage number.
2. Examine the test plan.
3. Look at the grading report.
4. Audit the Test Program.
General Audit Tactics

- Determine which components:
 - have a running test
 - have their tests disabled
 - do not have a test

- Grade the effectivity of running tests
 - Examine test tolerances
 - Determine “pin-activity”

- Analyze Results
 - Examine ineffective and non-running tests
 - Determine test criticality
Analyze Results
Unpowered Tests

- CPk tends to increase as test tolerances increase

- Test effectivity decreases as test tolerances increase

- Lower effectivity is acceptable for non-critical components
Analyze Results
Vectorless Tests

- Vectorless test detects only solder defects

- Alone, test effectivity can never be 100%

- Vectorless test can supplement library or boundary scan testing to increase overall device test effectivity
Analyze Results
Powered Tests

- Cause & Effect analysis may be impossible
- Examine each output for a measureable signal or a state change
- Examine each input for a stimulus
- Test effectivity increases more for each additional output measured than for each additional input stimulated
Analyze Results
Boundary Scan Tests

• Connect tests can be analyzed for input and output transitions, but every input affects an output – TDO

• Interconnect and buswire tests are written to work together to test all states on all boundary-scan device pins on each tested node

• Connect, interconnect, and/or buswire coverage can supplement library test coverage to increase the effective test quality of a powered device

• Powered shorts can supplement the unpowered shorts test to increase the effective quality of shorts testing
Conclusions

• Effective tests are a balance of:
 – test speed
 – test accuracy
 – test tolerance
 – test stability

• There is no absolute standard to gauge the effectivity of a device test.

• Device test effectivity analysis is “relative”.

• Ineffective tests are better than no test at all – ONLY if you know they are ineffective!
Summary

- Develop test programs in accordance with a set of requirements.
- Determine the test coverage.
- Determine the test stability.
- Determine the test effectivity and improve it where appropriate.
Questions?