HSPA+ and LTE Test Challenges for Multiformat UE Developers

Presented by: Jodi Zellmer, Agilent Technologies
Agenda

- Introduction
- FDD Technology Evolution
- Technology Overview
- Market Overview
- The Future for Multiformat UE Developers
- Conclusions
Agenda

- Introduction
- FDD Technology Evolution
- Technology Overview
- Market Overview
- The Future for Multiformat UE Developers
- Conclusions
HSPA+ and LTE: Living Together?

HSPA+ and LTE - exciting today

- Higher data throughput
- More applications

What about tomorrow?

HSPA+

LTE

HSPA
Agenda

- Introduction
- FDD Technology Evolution
- Technology Overview
- Market Overview
- The Future for Multiformat UE Developers
- Conclusions
3GPP Standards Evolution – FDD

- **Rel-99**
 - **W-CDMA**
 - DL: 384 kbps
 - UL: 384 kbps

- **Rel-5**
 - **HSDPA**
 - DL: 14.4 Mbps
 - UL: 384 kbps

- **Rel-6**
 - **HSUPA**
 - DL: 14.4 Mbps
 - UL: 5.8 Mbps

- **Rel-7**
 - **HSUPA+, MIMO**
 - DL: 28.8 Mbps
 - UL: 11 Mbps

- **Rel-8**
 - **DC-HSDPA**
 - DL: 42 Mbps
 - UL: 11 Mbps
 - LTE 2 x 2
 - 150 Mbps
 - 51 Mbps

- **Rel-9**
 - **DC+MIMO, DC-HSUPA**
 - DL: 84 Mbps
 - UL: 23 Mbps
 - LTE 4 x 4 MIMO
 - 303 Mbps
 - 86 Mbps

- **Rel-10**
 - **4C-HSDPA**
 - DL: 168 Mbps
 - UL: 23 Mbps
 - LTE-Advanced
 - 1.2 Gbps
 - 600 Mbps

- **Rel-11**
 - **HSPA+ Advanced**
 - DL: 336+ Mbps
 - UL: 46+ Mbps
 - LTE-Advanced
 - 1.2+ Gbps
 - 600+ Mbps
Agenda

- Introduction
- FDD Technology Evolution
- Technology Overview
- Market Overview
- The Future for Multiformat UE Developers
- Conclusions
HSPA and HSPA+ Overview

WCDMA
Wideband CDMA Rel-99
- DL 384 kbps
- UL 384 kbps

HSPA
High-speed packet access Rel-5 and Rel-6
- DL 14.4 Mbps
- UL 5.6 Mbps

HSPA+
Enhanced HSPA Rel-7
- DL 21 Mbps
- UL 11 Mbps

- HSDPA and HSUPA (DL and UL)
- 2 ms vs. 10 ms transmission times
- New DL modulation type: 16QAM
- UE Acknowledgements and CQI
- MAC real-time scheduling
- Flexible UL power grants

- New DL modulation type: 64QAM
- New UL modulation type: 16QAM
- DL flexible packet sizes
MIMO and Multi-Carrier Overview

MIMO
- Two DL data streams, 2 DL antennas
- Two UL antennas
- One 5 MHz channel

HSPA+ Rel-7
- Multiple input multiple output

Two to four carriers
- DC is two carriers
- Multiple 5 MHz channels
- DL and/or UL
- Multiple antennas not required

Technology	3GPP	DL	UL
HSPA+ | R7 | 21 | |
MIMO | R7/8 | 42 | |
2C HSDPA | R9 | 42 | |
4C HSDPA | R10 | 84 | |
2C + MIMO | R9 | 84 | |
4C + MIMO | R10 | 168 | |
DC-HSUPA | R9 | 23 | |

HSPA+ Rel-7 to Rel-10
2 to 4 carriers

Mbps
HSPA+ Advanced: Overview

Five to eight carriers
- Up to 40 MHz aggregate bandwidth
- Downlink only
- Can be combined with MIMO

Multi-point transmission
- Data sent from multiple cells
- Requires multiple carriers
- UE must support Rx diversity
- Can be combined with MIMO

<table>
<thead>
<tr>
<th>Technology</th>
<th>3GPP</th>
<th>DL</th>
<th>UL</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSPA+ R7</td>
<td>R7</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>MIMO R7/8</td>
<td></td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>2C HSDPA R9</td>
<td></td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>4C HSDPA R10</td>
<td></td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>2C + MIMO R9</td>
<td></td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>4C + MIMO R10</td>
<td></td>
<td>168</td>
<td></td>
</tr>
<tr>
<td>8C HSDPA R11</td>
<td></td>
<td>168</td>
<td></td>
</tr>
<tr>
<td>8C + MIMO R11</td>
<td></td>
<td>336</td>
<td></td>
</tr>
<tr>
<td>DC-HSUPA R9</td>
<td></td>
<td>23</td>
<td></td>
</tr>
</tbody>
</table>

Mbps
LTE Overview

Rel-8 and Rel-9

Long Term Evolution of UMTS

- **RB** = 0.5 ms in 180 kHz

DL OFDMA

- **UL SC-FDMA**

EPC is all-IP

Subcarriers

- **MIMO**

DL 100 to 303 Mbps

- **UL 51 to 86 Mbps**

EPC is all-IP
Enhanced MIMO
- Up to 8x8 in the DL
- Up to 4x4 in the UL
- Multi-user MIMO (MU-MIMO)

Carrier Aggregation
- Component carriers (CCs)
- Use any existing bandwidth
- Up to 5 CCs in the DL and UL
- Can be combined with MIMO

Carrier Aggregation
- Component carriers (CCs)
- Use any existing bandwidth
- Up to 5 CCs in the DL and UL
- Can be combined with MIMO
Agenda

- Introduction
- FDD Technology Evolution
- Technology Overview
- Market Overview
- The Future for Multiformat UE Developers
- Conclusions
Strong Industry Support

FAST FACTS – January 5, 2012

Mobile broadband network deployments
- 424 commercial HSPA operators launched in 165 countries
- 304 networks support peak DL speed of at least 7.2 Mbps

HSPA+ is mainstream
- 211 HSPA+ network commitments; 152 HSPA+ networks launched
- GSA forecasts ~180 commercial HSPA+ networks by end 2011
- 49 commercial 42 Mbps DC-HSPA+ networks launched

LTE is the industry direction
- 285 operators investing in LTE; 49 commercial networks launched
- 226 network commitments in 76 countries + 59 pre-commitment trials

Mobile broadband business is profitable & growing
- Strong wireless data traffic and revenue growth with HSPA/HSPA+
systems consistently reported by operators around the world
- 822.4m WCDMA subs incl. 469m HSPA (2011), Informa Telecoms & Media

Global eco-system established
- Thousands of GSM user devices; unprecedented economies of scale
- Being repeated for HSPA
 - 3,227 devices launched (264 suppliers) - includes 182 HSPA+
- 62% devices support at least 7.2 Mbps peak DL
- 663 UMTS900 devices (supporting HSPA or HSPA+)
- 197 LTE user devices launched
 - includes 118 dual-mode HSPA/LTE devices

100% of WCDMA operators have launched HSPA

HSPA+ is mainstream

49 commercial LTE networks launched
- 45 = LTE FDD
- 3 = LTE TDD
- 1 = LTE FDD and TDD

GSA forecasts 119 commercial LTE networks by end 2012

197 LTE user devices launched
It’s All About Data Rates…Especially in the Downlink

<table>
<thead>
<tr>
<th>Bandwidth (MHz)</th>
<th>HSPA+</th>
<th>LTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 MHz</td>
<td>168 Mbps</td>
<td>172 Mbps</td>
</tr>
<tr>
<td>10 MHz</td>
<td>84 Mbps</td>
<td>73 Mbps</td>
</tr>
<tr>
<td>5 MHz</td>
<td>42 Mbps</td>
<td>37 Mbps</td>
</tr>
</tbody>
</table>

Using 2x2 MIMO
LTE Wins - Later

Annual Handset Shipments by Technology

Source: Deutsche Bank, July 2011

- CDMA
- GSM
- WCDMA
- HSPA
- TD
- LTE
- WiMAX

Greater insight.
Greater confidence.

Accelerate next-generation wireless.
HSPA+ and LTE - Now

A wary truce?

Or a comfortable balance?

Either way, more challenges for wireless developers
Agenda

- Introduction
- FDD Technology Evolution
- Technology Overview
- Market Overview
- The Future for Multiformat UE Developers
- Conclusions
The Future for Device Developers

A successful multiple-technology device must balance cost and flexibility.

- **Cost**
 - Time to market
 - Consumer price

- **Flexibility**
 - Usage time
 - Inter-RAT
 - Voice quality
 - Faster data apps

Technologies:
- WCDMA
- WiFi
- GSM
- HSPA+
- LTE

Accelerate next-generation wireless.

Greater insight. Greater confidence.
So many tests, so little time…

Greater insight. Greater confidence.
Accelerate next-generation wireless.
Challenge: Data Throughput Validation
UE Functional and Performance Test

Graphical results are useful for observing throughput performance over time

But statistics are useful too, to observe the UE’s perceived channel quality

DC-HSDPA Information

<table>
<thead>
<tr>
<th></th>
<th>Summary</th>
<th>Serving Cell</th>
<th>Secondary Serving Cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block Error Ratio:</td>
<td>0 %</td>
<td>0 %</td>
<td>0 %</td>
</tr>
<tr>
<td>Throughput (kbps):</td>
<td>42023</td>
<td>21090</td>
<td>20927</td>
</tr>
<tr>
<td>Blocks Transmitted:</td>
<td>15000</td>
<td>8000</td>
<td>8000</td>
</tr>
<tr>
<td>ACKs Received:</td>
<td>14940</td>
<td>7998</td>
<td>7440</td>
</tr>
<tr>
<td>NACKs Received:</td>
<td>62</td>
<td>2</td>
<td>60</td>
</tr>
<tr>
<td>statDtxs Received:</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Count of Rep CQI Lim:</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Last Received CQI:</td>
<td>20</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Max Allowed CQI:</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Test Mode User Def TBS:</td>
<td>42192</td>
<td>42192</td>
<td></td>
</tr>
<tr>
<td>PS Data User Def TBS:</td>
<td>7298</td>
<td>7298</td>
<td></td>
</tr>
<tr>
<td>Last Sig Neas Pur Offs (dB):</td>
<td>6 1317011456</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Greater insight.
Greater confidence.

Accelerate next-generation wireless.
Challenge: Data Throughput Validation
Automated Test

Data rate decreases sharply for high cell power

Data rate drop-outs

Greater insight. Greater confidence.
Accelerate next-generation wireless.
Challenge: Voice and Data Continuity Across Technologies

UE Design Validation - Inter-RAT Test

Many types of handovers defined between all technologies

LTE / 3G example
Challenge: Simultaneous UE Activities
UE Design Validation – Stress Test

- Failure caused by SMS buffer limitations in UE
- Failure caused by unique combination of activities
Challenges: Inter-RAT, Battery Drain, Inter-Operability
Operator Acceptance Test
Agilent: A Full Portfolio for the Wireless UE life-cycle

Fast, High-Performance Instruments

Results You Can Trust

8960 (E5515E)

Complete LTE R&D

New Power Unleashed for 2G / 3G / 3.5G R&D

EXT (E6607A)

Industry Benchmark for 2G/3G/3.5G

8960 (E5515C)

2G/3G/LTE DVT & RCT

PXT (E6621A)

Greater insight.
Greater confidence.

Accelerate next-generation wireless.

Next Generation Manufacturing

Anticipate — Accelerate — Achieve

Agilent Technologies

© 2012 Agilent Technologies
Agenda

- Introduction
- FDD Technology Evolution
- Technology Overview
- Market Overview
- The Future for Multiformat UE Developers
- Conclusions
Conclusions

Tomorrow: more mobile than fixed?

More LTE, still HSPA+

Optimal test efficiency

More data applications

Flexible
Repeatable
Reliable

TEST

Anticipate Accelerate Achieve

References

4G Mobile Broadband Evolution: 3GPP Release 10 and Beyond, February 2011, 4G Americas, http://www.4gamericas.org/documents/4G%20Americas_3GPP_Rel-10_Beyond_2.1.11%20.pdf

Overview of 3GPP Release 10 V0.1.3 (2012-01), 3GPP, http://www.3gpp.org/ftp/Information/WORK_PLAN/Description_Releases/Rel-10_description_20120124.zip

Overview of 3GPP Release 11 V0.0.9 (2012-01), 3GPP, http://www.3gpp.org/ftp/Information/WORK_PLAN/Description_Releases/Rel-11_description_20120124.zip

Agilent Product References

E5515E (8960) and E6703H W-CDMA/HSPA lab application software with 42 Mbps DC-HSDPA throughput
www.agilent.com/find/e5515e
www.agilent.com/find/e6703h

E6621A PXT combined with 8960 for reliable inter-RAT handovers between all technologies
www.agilent.com/find/pxt

Interactive functional test (IFT) software for stress tests with simultaneous UE activities and operator acceptance tests
www.agilent.com/find/ift
Enabling Market Drivers – HSPA+ Advanced

Existing HSPA Network

LTE Spectrum

HSPA+ Advanced Network

More data

Less voice

Simple upgrades

Less battery drain

Greater insight.
Greater confidence.

Anticipate Accelerate Achieve

Wireless Communications © 2012 Agilent Technologies
Enabling Market Drivers – LTE-Advanced

Existing LTE Network

LTE-Advanced Network

Mobile performance like fixed Internet

Higher data rates

More user capacity

Greater insight.
Greater confidence.

Accelerate next-generation wireless.
Benefits and Goals from 3GPP

HSPA+ (Rel-7, 8, 9, 10)

<table>
<thead>
<tr>
<th>Benefit</th>
<th>MC</th>
<th>MIMO</th>
<th>CPC</th>
<th>ECF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improved spectral efficiency</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>More capacity</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher data rates</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Improved user experience</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Improved battery life</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

HSPA+ Advanced (Rel-11)

<table>
<thead>
<tr>
<th>Benefit</th>
<th>RxD</th>
<th>LB</th>
<th>MP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improved spectral efficiency</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>More capacity when needed</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Enhanced user experience</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

LTE (Rel-8, 9)

- Competitive 3G system
- IP-only data traffic
- 4x increased spectral efficiency
- 10x users per cell
- DL / UL data rates: > 100 Mbps / 50 Mbps
- Latency comparable with fixed broadband Internet
- Interworking with other radio access systems
- Flexible frequency band allocations

LTE-Advanced (Rel-10)

- Align with the requirements of IMT-Advanced
- Global functionality and roaming
- Interworking with other radio access systems
- Enhanced peak data rates: 100 Mbps for high mobility and 1 Gbps for low mobility

MC: Multi-carrier, CPC: Continuous Packet Connectivity, ECF: Enhanced CELL_FACH, RxD: 4 Receiver Diversity, LB: Load Balancing between NodeBs, MP: Multipoint transmission
Deployment Challenges

HSPA+ Advanced

- Continuous add-ons to improve existing technologies sometimes result in more complex technical implementation due to the need for backwards compatibility with existing network behavior
- Several improvements beyond HSPA are required before data rates comparable to LTE are achievable
- Existing backhaul can limit actual data rates

LTE-Advanced

- Capital to build new infrastructure
- Spectrum bundles > 10 MHz
- Learning curve for a new technology
- Interworking with existing technologies (i.e. inter-RAT handovers)
Market Predictions

HSPA+ and LTE

Past Now Future

HSPA+ LTE