VESPA DisplayPort
PHY Compliance test Standard Version 1 Revision 2b
Agilent Method of Implementation (MOI) for DisplayPort
Cable Compliance Tests
Using Agilent E5071C ENA Option TDR
Table of Contents

1. Modification Record .. 4
2. Purpose .. 4
3. References .. 4
4. Resource Requirements .. 4
5. Test Procedure .. 5
 5.1. Outline of Test Procedure ... 5
 5.2. Instrument Setup ... 6
 5.3. Connection Configuration ... 7
 5.4. Calibration ... 10
 5.4.1. Time Domain Calibration ... 10
 5.4.2. Frequency Domain Calibration .. 14
 5.4.3. Set System Impedance (Optional) ... 16
 5.5. Measurement and Data Analysis .. 17
 5.5.1. Bulk Cable and Connector Impedance ... 17
 5.5.2. Intra-Pair Skew ... 18
 5.5.3. Insertion Loss .. 19
 5.5.4. Return Loss .. 20
 5.5.5. Inter-pair Skew .. 21
 5.5.6. Near End Noise (NEN) ... 22
 5.5.7. Far End Noise (FEN) .. 23
6. Appendix .. 28
 6.1. Defining a calibration Kit ... 28
 6.2.1. Starting Setup ... 31
 6.2.2. Bulk Cable and Connector Impedance Measurements (Normative) 32
 6.2.3. Intra-Pair Skew Measurement (Normative) ... 33
 6.2.4. Inter-pair Skew Measurements (Normative) .. 35
 6.3.1. Channel and Trace Settings .. 35
 6.3.2. Common Settings ... 36
 6.3.3. Far End Noise (FEN) Measurement (Normative) 36
 6.3.4. Return Loss Measurement (Normative) .. 37
 6.3.5. Insertion Loss Measurement (Normative) .. 37
 6.3.6. Near End Noise (NEN) Measurement ... 37
6.4. Limit Test Settings .. 38
 6.4.1. Displaying Judgment Result of Test .. 38
 6.4.2. Setting the Warning Beeper .. 38
 6.4.3. Defining the Limit Line .. 38
6.5. Calculating formula for Limit Line .. 39
 6.5.1. Bulk Cable and Connector Impedance ... 39
 6.5.2. Insertion Loss .. 41
 6.5.3. Return Loss .. 42
 6.5.4. Near End Noise (NEN) ... 44
 6.5.5. Far End Noise (FEN) ... 44
1. Modification Record

<table>
<thead>
<tr>
<th>Revision</th>
<th>Comments</th>
<th>Issue Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Initial Release.</td>
<td>Dec 15, 2008</td>
</tr>
<tr>
<td>2.00</td>
<td>Revised measurement procedure for the option TDR</td>
<td>Nov 1, 2010</td>
</tr>
<tr>
<td>3.00</td>
<td>Updated for the measurements requirements of Compliance</td>
<td>Jan 31, 2013</td>
</tr>
<tr>
<td></td>
<td>Test Specification Ver.1.2b</td>
<td></td>
</tr>
<tr>
<td>3.01</td>
<td>Update the model number of required test fixture.</td>
<td>Feb 18, 2013</td>
</tr>
</tbody>
</table>

2. Purpose
This test procedure was written to explain how to use the Agilent E5071C ENA Option TDR to make the measurements required per VESA DisplayPort Standard Version 1, Revision 2a.

3. References
VESA DisplayPort Standard Version 1, Revision 2a
VESA DisplayPort PHY Compliance Test Specification Version 1.2b

4. Resource Requirements
1. E5071C Network Analyzer with option TDR and option 4D5 or 4K5
2. Display Port test fixtures. BitifEye BIT-1050-0001-0, or an equivalent set of fixtures and standards.
3. Four 3.5 mm cables 20 GHz bandwidth or equivalent
 (Cables of equal length and characteristics must be used for all test ports)
4. 50 Ohm terminators to terminate unused channels (ex. Agilent 909D-301)
5. Test Procedure
5.1. Outline of Test Procedure
1. Connect 3.5 mm test cables to every test ports on the instrument.
2. Set measurement conditions.
3. Perform Calibration
4. Measurements and Data Analysis
 Time Domain Measurements
 - Bulk Cable and Connector Impedance Measurements (Normative).
 - Intra-pair Skew Measurements (Normative).
 - Inter-pair Skew Measurements (Normative).
 Frequency Domain Measurements
 - Insertion Loss Measurements (Normative).
 - Return Loss Measurements (Normative).
 - Far End Noise (FEN) Measurements (Normative).

Note: Hard Keys (Keys located on the Front panel of E5071C) are displayed in Blue color and Bold. (Example: Avg, Analysis)
Note: Soft keys (Keys on the screen) are displayed in Bold. (Example: S11, Real, Transform)
Note: Buttons (in the TDR) are displayed in Green color and Bold. (Example: Trace, Rise Time)
Note: Tabs (in the TDR) are displayed in Brown color and Bold. (Example: Setup, Trace Control)
5.2. Instrument Setup
This section describes how to recall a state file for DisplayPort compliance test settings.
The state file can be downloaded from www.agilent.com/find/ena-tdr_dp-cabcon.
If you use your local PC to download, save the state file to a USB mass storage device in
order to move it to E5071C. Connect the USB mass storage device into the front USB port
of the E5071C. For manual settings, refer to Appendix.

1. If TDR setup wizard appears, click Close button on the wizard.
2. Open Setup tab (item 1).
3. Click Advanced Mode (item 2).
4. A dialog box appears requesting for confirmation. Then click Yes. (Clear the check box
 for “Use Advanced Calibration Methods”)
5. Click File (item 3) and select Recall State to open the Recall State dialog box.
6. Specify a folder and a file name, and click Open.
5.3. Connection Configuration

This Section describes the screen configuration of the E5071C-TDR and the cable connection.

![Figure 5-1: Measurement screen description.](image)

Channel 1 for time domain measurement is controlled by the TDR user interface at the bottom of the screen and Channel 2 for frequency domain measurement is controlled by the soft-key on the right-side of the screen and hard-key on the instrument front panel.
Figure 5-2: Cable connection

The cables and fixtures should be connected to the instrument as shown in the figure above. Table 5-1 shows the cable connection for each measurement item. The measurement items of the same cable connection can be done simultaneously.

Table 5-1 Cable and Fixture Connection

<table>
<thead>
<tr>
<th>ENA Port Number</th>
<th>Port1</th>
<th>Port2</th>
<th>Port3</th>
<th>Port4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixture PIN Number</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulk Cable and Connector Impedance</td>
<td>A ML0+</td>
<td>A ML0-</td>
<td>B ML0+</td>
<td>B ML0-</td>
</tr>
<tr>
<td>Intra-pair Skew</td>
<td>A ML1+</td>
<td>A ML1-</td>
<td>B ML1+</td>
<td>B ML1-</td>
</tr>
<tr>
<td>Insertion Loss</td>
<td>A ML2+</td>
<td>A ML2-</td>
<td>B ML2+</td>
<td>B ML2-</td>
</tr>
<tr>
<td>Return Loss</td>
<td>A ML3+</td>
<td>A ML3-</td>
<td>B ML3+</td>
<td>B ML3-</td>
</tr>
<tr>
<td>Inter-pair Skew</td>
<td>A AUX+</td>
<td>A AUX-</td>
<td>B AUX+</td>
<td>B AUX-</td>
</tr>
<tr>
<td>Near End Noise (NEN)</td>
<td>A: Source Side</td>
<td></td>
<td>B: Sink Side</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A ML3+</td>
<td>A ML3-</td>
<td>B ML3+</td>
<td>B ML3-</td>
</tr>
<tr>
<td></td>
<td>A AUX+</td>
<td>A AUX-</td>
<td>B AUX+</td>
<td>B AUX-</td>
</tr>
<tr>
<td></td>
<td>A ML0+</td>
<td>A ML0-</td>
<td>A AUX+</td>
<td>A AUX-</td>
</tr>
<tr>
<td></td>
<td>A ML1+</td>
<td>A ML1-</td>
<td>A AUX+</td>
<td>A AUX-</td>
</tr>
<tr>
<td></td>
<td>A ML2+</td>
<td>A ML2-</td>
<td>A AUX+</td>
<td>A AUX-</td>
</tr>
<tr>
<td></td>
<td>A ML3+</td>
<td>A ML3-</td>
<td>A AUX+</td>
<td>A AUX-</td>
</tr>
<tr>
<td></td>
<td>B AUX+</td>
<td>B AUX-</td>
<td>B ML0+</td>
<td>B ML0-</td>
</tr>
<tr>
<td></td>
<td>B AUX+</td>
<td>B AUX-</td>
<td>B ML1+</td>
<td>B ML1-</td>
</tr>
<tr>
<td></td>
<td>B AUX+</td>
<td>B AUX-</td>
<td>B ML2+</td>
<td>B ML2-</td>
</tr>
<tr>
<td></td>
<td>B AUX+</td>
<td>B AUX-</td>
<td>B ML3+</td>
<td>B ML3-</td>
</tr>
<tr>
<td>Far End Noise¹ (FEN)</td>
<td>A ML1+</td>
<td>A ML1-</td>
<td>B ML0+</td>
<td>B ML0-</td>
</tr>
<tr>
<td></td>
<td>A AUX+</td>
<td>A AUX-</td>
<td>B ML1+</td>
<td>B ML1-</td>
</tr>
<tr>
<td></td>
<td>A ML0+</td>
<td>A ML0-</td>
<td>B ML2+</td>
<td>B ML2-</td>
</tr>
<tr>
<td></td>
<td>A ML2+</td>
<td>A ML2-</td>
<td>B ML3+</td>
<td>B ML3-</td>
</tr>
<tr>
<td></td>
<td>A ML3+</td>
<td>A ML3-</td>
<td>B AUX+</td>
<td>B AUX-</td>
</tr>
<tr>
<td></td>
<td>A ML0+</td>
<td>A ML0-</td>
<td>B AUX+</td>
<td>B AUX-</td>
</tr>
</tbody>
</table>

¹ Switch the Display Port cable end and repeat the same measurement for the opposite direction.
Description of Measurement Window

Background colors coincide with the table in the previous page.

5.4. Calibration

5.4.1. Time Domain Calibration

5.4.1.1. Deskew & Loss Compensation Calibration

1. Press **Channel Next** key to select Channel 1.
2. Open **Setup** tab (item 1).
3. Click **Deskew&Loss** (item 2) to launch the Deskew & Loss Compensation wizard.
4. Click **Options** (item3), then Deskew Options dialog box appears.
5. Select **standard type** (item 4) to Short.

6. Connect “Short” standard to Port1.

7. Click **Port 1** (item 5). Wait until the check-mark appears under Port1.

8. Connect “Short” standard to Port2.

9. Click **Port 2** (item 6). Wait until the check-mark appears under Port2.

10. Connect “Short” standard to Port3.

11. Click **Port 3** (item 7). Wait until the check-mark appears under Port3.

12. Connect “Short” standard to Port4.

13. Click **Port 4** (item 8). Wait until the check-mark appears under Port4.

14. Click **OK** (item 9).

15. Click **Next**.

16. Connect “Thru” standard between Port 1 and Port 3.
17. Click **Measure** (item 10).

18. Click **Next** (item 11).

20. Click **Measure** (item12).

21. Click **Next** (item13).

22. Connect “Load” standard to Port 1.
23. Click **Port 1** (item 14). Wait until the check-mark appears under Port 1.
25. Click **Port 2** (item 15). Wait until the check-mark appears under Port 2.
27. Click **Port 3** (item 16). Wait until the check-mark appears under Port 3.
29. Click **Port 4** (item 17). Wait until the check-mark appears under Port 4.
30. Click **Apply** (item 18).
31. Click **Finish** (item 19).

5.4.1.2. Set DUT Length

1. Click **Auto** (item 1) to measure the DUT length.

2. Connect the test fixture and DUT as follows.
Agilent MOI for DisplayPort Cable & Connector Compliance Tests

<table>
<thead>
<tr>
<th>ENA Port Number</th>
<th>Port1</th>
<th>Port2</th>
<th>Port3</th>
<th>Port4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixture Pin Number</td>
<td>A MLI+</td>
<td>A ML0</td>
<td>B ML0+</td>
<td>B ML0-</td>
</tr>
</tbody>
</table>

A: Source Side, B: Sink Side

3. Click Measure (item 1).

4. Click Finish (item 2).

5.4.2. Frequency Domain Calibration

5.4.2.1. Define Cal kit

The cal kit definition file shall be provided by the fixture supplier or created according to 6.1 Defining a calibration Kit.

1. Press Cal key to select channel 2.

2. Click Cal Kit, then select a User.

3. Click Modify Cal Kit > Import Cal Kit... to open the dialog box.

4. Specify a folder, enter a file name, and click Open.
5.4.2.2. TRL Calibration

1. Press **Channel Next** key to select channel 2.
2. Press **Cal** key.
3. Click **Cal kit** and select Cal kit which you previously defined.
4. Click **Calibrate > 4-Port TRL Cal**.
5. Click **Thru/Line**.
 a) Connect “Thru” standard between Port 1 and Port 2.
 b) Click **1-2 Thru/Line**.
 c) Connect “Thru” standard between Port 1 and Port 3.
 d) Click **1-3 Thru/Line**.
 e) Connect “Thru” standard between Port 3 and Port 4.
 f) Click **3-4 Thru/Line**.
 g) Click **Return**.
6. Click **Reflect**.
 a) Connect “Short” or “Open” standard defined at subclass setting to Port 1.
 b) Click **Port1 Reflect**.
 c) Connect “Short” or “Open” standard defined at subclass setting to Port 2.
 d) Click **Port2 Reflect**.
 e) Connect “Short” or “Open” standard defined at subclass setting to Port 3.
 f) Click **Port3 Reflect**.
 g) Connect “Short” or “Open” standard defined at subclass setting to Port 4.
 h) Click **Port4 Reflect**.
 i) Click **Return**.
7. Click **Line/Match**
 a) Click **1-2 Line/Match**.
 b) Connect “Load” standard between Port 1 and Port 2.
 c) Click **Line/Match 1[Load]**.
 d) Connect “Line1” standard between Port 1 and Port 2.
e) Click **Line/Match 2 [Line 1]**.

f) Connect “Line2” standard between Port 1 and Port 2.

g) Click **Line/Match 3 [Line 2]**.

h) Connect “Line3” standard between Port 1 and Port 2.

i) Click **Line/Match 4 [Line 3]**.

j) Connect “Line4” standard between Port 1 and Port 2.

k) Click **Line/Match 4 [Line 4]**.

l) Click **Return**.

m) Click **1-3 Line/Match** and repeat step b) to l).

n) Click **3-4 Line/Match** and repeat step b) to l).

o) Click **Return**.

8. Click **Done** to finish TRL 4-port calibration. At this point, the calibration coefficient is calculated and saved. The error correction function is automatically turned on.

Note: Refer to “4-port TRL Calibration” in ENA online help for the detail.

5.4.3. Set System Impedance (Optional)

In case that Load standard is not 50 ohm, system impedance must be set to the actual Load impedance.

1. Press **Cal > Set Z0** to actual impedance of the Load standard.

2. Click **Return**.
5.5. Measurement and Data Analysis

5.5.1. Bulk Cable and Connector Impedance

5.5.1.1. Load Limit File

Using limit line files distributed on www.agilent.com/find/ena-trd_dp-cabcon, the ENA automatically performs pass/fail test. Since pass/fail criteria vary depending on the Bit rate, cable category or connector type, appropriate limit line files should be loaded prior to making measurements.

1. Select a trace on which a limit line should be set.
2. Press Analy sis > Limit Test > Edit Limit Line > Import from CSV File… to display the Open dialog box.
3. Select an appropriate limit file according to the table for each measurement item.
4. Click Return.

Table 5-2: Impedance Limit File for Trace 1 and Trace 5 in Channel 1

<table>
<thead>
<tr>
<th>Bit Rate</th>
<th>Cable Category</th>
<th>Connector Type</th>
<th>File Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>All</td>
<td>Full-size DP</td>
<td>DP_ImpedanceProfile_Fu ll.CSV</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>Mini DP</td>
<td>DP_ImpedanceProfile_Mini.CSV</td>
</tr>
</tbody>
</table>

5.5.1.2. Measurement

1. Connect the test fixture to the test cables according to Table 5-3. Unused test ports should be terminated.

Table 5-3 Impedance, Intra-pair Skew, Insertion Loss and Return Loss Connection

<table>
<thead>
<tr>
<th>ENA Port Number</th>
<th>Port1</th>
<th>Port2</th>
<th>Port3</th>
<th>Port4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixture PIN Number</td>
<td>A ML0+</td>
<td>A ML0-</td>
<td>B ML0+</td>
<td>B ML0-</td>
</tr>
<tr>
<td>A ML1+</td>
<td>A ML1-</td>
<td>B ML1+</td>
<td>B ML1-</td>
<td></td>
</tr>
<tr>
<td>A ML2+</td>
<td>A ML2-</td>
<td>B ML2+</td>
<td>B ML2-</td>
<td></td>
</tr>
<tr>
<td>A ML3+</td>
<td>A ML3-</td>
<td>B ML3+</td>
<td>B ML3-</td>
<td></td>
</tr>
<tr>
<td>A AUX+</td>
<td>A AUX-</td>
<td>B AUX+</td>
<td>B AUX-</td>
<td></td>
</tr>
</tbody>
</table>
A: Source Side, B: Sink Side

2. Connect Display Port cable to the test fixture.

3. Press **Channel Next** key to select Channel 1.

4. Press **Channel Max** key to enlarge Channel 1.

5. Click **Stop Single** for Time Domain measurement.

5.5.1.3. Data Analysis

Read Pass/Fail signs on Trace 1 and Trace 5. (item 1 in Figure 5-3)

![Figure 5-3: Time Domain Measurement Example](image)

5.5.2. Intra-Pair Skew

5.5.2.1. Measurement

Refer to 5.5.1.2.

5.5.2.2. Data Analysis

Read the delta time between Trace 2 and Trace 6. (item 2 in Figure 5-3).
Intra-pair Skew Upper Limit for High Bit Rate Cable Assembly

<table>
<thead>
<tr>
<th>Cable Category</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable Assembly</td>
<td>delta time <= 50 ps, then Pass. Otherwise Fail.</td>
</tr>
<tr>
<td>Resizing Adaptor</td>
<td>delta time <= 10 ps, then Pass. Otherwise Fail.</td>
</tr>
<tr>
<td>Extension Cable</td>
<td>delta time <= 35 ps, then Pass. Otherwise Fail.</td>
</tr>
</tbody>
</table>

Intra-pair Skew Upper Limit for Reduced Bit Rate Cable Assembly

<table>
<thead>
<tr>
<th>Cable Category</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any</td>
<td>delta time <= 250 ps, then Pass. Otherwise Fail.</td>
</tr>
</tbody>
</table>

5.5.3. Insertion Loss

5.5.3.1. Load Limit file

Refer to 5.5.1.1.

Table 5-4 Insertion Loss Limit Line File for Trace 3 in Channel 2

<table>
<thead>
<tr>
<th>Bit Rate</th>
<th>Cable Category</th>
<th>Connector Type</th>
<th>File Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBR</td>
<td>Cable</td>
<td>All</td>
<td>DP_HBR_InsertionLoss_Cable.CSV</td>
</tr>
<tr>
<td></td>
<td>Resizing Adaptor</td>
<td>All</td>
<td>DP_HBR_InsertionLoss_Adapter.CSV</td>
</tr>
<tr>
<td></td>
<td>Extension Cable</td>
<td>All</td>
<td>DP_HBR_InsertionLoss_ExtCable.CSV</td>
</tr>
<tr>
<td>RBR</td>
<td>All</td>
<td>All</td>
<td>DP_RBR_InsertionLoss.CSV</td>
</tr>
</tbody>
</table>

5.5.3.2. Measurement

1. Connect the test fixture to the test cables according to the Table 5-3. Unused test ports should be terminated.
2. Connect Display Port cable to the test fixture.
3. Press **Channel Next** key to select Channel 1.
4. Press **Channel Max** key to enlarge Channel 1.
5. Press **Trigger > Single** for frequency domain measurement.
5.5.3.3. Data Analysis

Read Pass/Fail signs on Trace 3. (item 1 in Figure 5-4).

![Graph Example](image)

Figure 5-4: Frequency Domain Measurement Example

5.5.4. Return Loss

5.5.4.1. Load Limit File

Refer to 5.5.1.1.

Table 5-5 Return Loss Limit Line File for Trace 2 and Trace 6 in Channel 2

<table>
<thead>
<tr>
<th>Bit Rate</th>
<th>Cable Category</th>
<th>Connector Type</th>
<th>File Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBR</td>
<td>All</td>
<td>All</td>
<td>DP_HBR_ReturnLoss.CSV</td>
</tr>
<tr>
<td>RBR</td>
<td>All</td>
<td>All</td>
<td>DP_RBR_ReturnLoss.CSV</td>
</tr>
</tbody>
</table>

5.5.4.2. Cable Connection

Refer to 5.5.1.2.
5.5.4.3. Data Analysis

Read Pass/Fail signs on Trace 3. (item 2 in Figure 5-4).

5.5.5. Inter- pair Skew Measurement

1. Connect the test fixture to the test cables according to Table 5-3. Unused test ports should be terminated.
2. Connect Display Port cable to the test fixture.
3. Press **Channel Next** key to select Channel 1.
4. Press **Channel Max** key to enlarge Channel 1.
5. Click **Stop Single** for Time Domain measurement.
6. Read the propagation delay (item 3 in Figure 5-3), and write it down.
7. Repeat step 1 to step 6 for every channel.

5.5.5.1. Data Analysis

Find the maximum and minimum value among the measured propagation delay. Then, Inter-pair Skew = \(\text{Absolute}(\text{maximum value} - \text{minimum value})\)

Inter-pair Skew Upper Limit for High Bit Rate Cable Assembly

<table>
<thead>
<tr>
<th>Types</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable Assembly</td>
<td>delta time <= 2 UI, then Pass. Otherwise Fail.</td>
</tr>
<tr>
<td>Resizing Adaptor</td>
<td>delta time <= 0.2 UI, then Pass. Otherwise Fail.</td>
</tr>
<tr>
<td>Extension Cable</td>
<td>delta time <= 1 UI, then Pass. Otherwise Fail.</td>
</tr>
</tbody>
</table>

Inter-pair Skew Upper Limit for Reduced Bit Rate Cable Assembly

<table>
<thead>
<tr>
<th>Types</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>delta time <= 2 UI, then Pass. Otherwise Fail.</td>
</tr>
</tbody>
</table>
Note: UI (Unit Interval) is the reciprocal of the bit rate. At 5.4 Gbps, the UI = 185 ps. At 2.7 Gbps, the UI = 370.4 ps. At 1.62 Gbps, the UI = 617 ps.

5.5.6. Near End Noise (NEN)

5.5.6.1. Load Limit File

Refer to 5.5.1.1.

Table 5-6 Near End Noise Limit File for Trace 4 in Channel 2

<table>
<thead>
<tr>
<th>Bit Rate</th>
<th>Cable Category</th>
<th>Connector Type</th>
<th>File Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBR</td>
<td>All</td>
<td>All</td>
<td>DP_HBR_NearEndNoise.CSV</td>
</tr>
<tr>
<td>RBR</td>
<td>All</td>
<td>All</td>
<td>DP_RBR_NearEndNoise.CSV</td>
</tr>
</tbody>
</table>

5.5.6.2. Measurement

1. Connect the test fixture to the test port cables according to Table 5-7. Unused test ports should be terminated.

Table 5-7: Near End Noise Connection

<table>
<thead>
<tr>
<th>ENA Port Number</th>
<th>Port1</th>
<th>Port2</th>
<th>Port3</th>
<th>Port4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixture PIN Number</td>
<td>A ML0+</td>
<td>A ML0-</td>
<td>A AUX+</td>
<td>A AUX-</td>
</tr>
<tr>
<td></td>
<td>A ML1+</td>
<td>A ML1-</td>
<td>A AUX+</td>
<td>A AUX-</td>
</tr>
<tr>
<td></td>
<td>A ML2+</td>
<td>A ML2-</td>
<td>A AUX+</td>
<td>A AUX-</td>
</tr>
<tr>
<td></td>
<td>A ML3+</td>
<td>A ML3-</td>
<td>A AUX+</td>
<td>A AUX-</td>
</tr>
<tr>
<td></td>
<td>B AUX+</td>
<td>B AUX-</td>
<td>B ML0+</td>
<td>B ML0-</td>
</tr>
<tr>
<td></td>
<td>B AUX+</td>
<td>B AUX-</td>
<td>B ML1+</td>
<td>B ML1-</td>
</tr>
<tr>
<td></td>
<td>B AUX+</td>
<td>B AUX-</td>
<td>B ML2+</td>
<td>B ML2-</td>
</tr>
<tr>
<td></td>
<td>B AUX+</td>
<td>B AUX-</td>
<td>B ML3+</td>
<td>B ML3-</td>
</tr>
</tbody>
</table>

A: Source Side, B: Sink Side

2. Connect Display Port cable to the test fixture.
3. Press **Channel Next** key to select Channel 2.
4. Press **Channel Max** key to enlarge Channel 2.
5. Press **Trigger > Single** for Frequency Domain measurement.

5.5.6.3. Data Analysis

Read Pass/Fail sign on Trace 4 (item 1 in Figure 5-5).

![Near End Noise Measurement Example](image)

Figure 5-5: Near End Noise Measurement Example.

5.5.7. Far End Noise (FEN)

The Power Sum Equal Level Far-End Noise (PSELFEN) represents the difference between cable insertion loss and the total power sum far end noise from aggressor cable lanes. Prior to measuring the far-end noise between the victim and aggressor channels, the insertion loss of the victim channel must be measured on Trace 3, and saved to the trace memory.
Since the number of aggressor channels depends on the victim channel, use an appropriate trace for each test according to the Table 5-8. For test number 2 to 4 (dual aggressor test), the crosstalk measurements need to be performed separately on each combination of victim-aggressor, and combine the results to calculate Far End Noise. For instance, to obtain Far End Noise for test 3, measure S_{dd21} between Main Link(0) and Main Link(1) crosstalk, then measure S_{dd21} between Main Link(2) and Main Link(1).

Table 5-8 Victims and Aggressors

<table>
<thead>
<tr>
<th>Test #</th>
<th>Aggressor(s) Channel(s) (Source Side)</th>
<th>Victim Channel (Sink Side)</th>
<th>Trace#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Main Link(2)</td>
<td>Main Link(3)</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Main Link(1) + Main Link(3)</td>
<td>Main Link(2)</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Main Link(0) + Main Link(2)</td>
<td>Main Link(1)</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Main Link(1) + AUX Ch.</td>
<td>Main Link(0)</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Main Link(0)</td>
<td>AUX Ch.</td>
<td>1</td>
</tr>
</tbody>
</table>

5.5.7.1. Load Limit File

Refer to 5.5.1.1.

Table 5-9 Far End Noise Limit Line File for Trace 1 and Trace 5 in Channel 2

<table>
<thead>
<tr>
<th>Bit Rate</th>
<th>Cable Category</th>
<th>Connector Type</th>
<th>File Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBR</td>
<td>All</td>
<td>All</td>
<td>DP_HBR_FarEndNoise.CSV</td>
</tr>
<tr>
<td>RBR</td>
<td>All</td>
<td>All</td>
<td>DP_RBR_FarEndNoise.CSV</td>
</tr>
</tbody>
</table>
5.5.7.2. Insertion Loss Measurement of Victim channel

1. Connect the test cables to the victim channel according to Table 5-10. Unused test ports should be terminated.
2. Select trace 3.

Table 5-10 Insertion Loss Connection of Victim Channel

<table>
<thead>
<tr>
<th>ENA Port Number</th>
<th>Test#</th>
<th>Port1</th>
<th>Port2</th>
<th>Port3</th>
<th>Port4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixture PIN Number</td>
<td>1</td>
<td>A ML3+</td>
<td>A ML3-</td>
<td>B ML3+</td>
<td>B ML3-</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>A ML2+</td>
<td>A ML2-</td>
<td>B ML2+</td>
<td>B ML2-</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>A ML1+</td>
<td>A ML1-</td>
<td>B ML1+</td>
<td>B ML1-</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>A ML0+</td>
<td>A ML0-</td>
<td>B ML0+</td>
<td>B ML0-</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>A AUX+</td>
<td>A AUX-</td>
<td>B AUX+</td>
<td>B AUX-</td>
</tr>
</tbody>
</table>

5.5.7.3. Measurement Setup for Single-Aggressor

1. Connect the test fixture to the test port cables according to Table 5-11. Unused test ports should be terminated.

Table 5-11 Far End Noise Connection for Single Aggressor

<table>
<thead>
<tr>
<th>ENA Port Number</th>
<th>Test#</th>
<th>Port1</th>
<th>Port2</th>
<th>Port3</th>
<th>Port4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixture PIN Number</td>
<td>1</td>
<td>A ML2+</td>
<td>A ML2-</td>
<td>B ML3+</td>
<td>B ML3-</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>A ML0+</td>
<td>A ML0-</td>
<td>B AUX+</td>
<td>B AUX-</td>
</tr>
</tbody>
</table>

A: Source Side, B: Sink Side

2. Select trace 1.
4. Press Display > Equation to turn it ON.
5.5.7.4. Measurement Setup for Dual-Aggressor

1. Connect the test fixture to the test port cables according to Table 5-12. Unused test ports should be terminated.

Table 5-12 Far End Noise Connection for Dual Aggressor 1

<table>
<thead>
<tr>
<th>ENA Port Number</th>
<th>Test#</th>
<th>Port1</th>
<th>Port2</th>
<th>Port3</th>
<th>Port4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixture PIN Number</td>
<td>2</td>
<td>A ML1+</td>
<td>A ML1-</td>
<td>B ML2+</td>
<td>B ML2-</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>A ML0+</td>
<td>A ML0-</td>
<td>B ML1+</td>
<td>B ML1-</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>A ML1+</td>
<td>A ML1-</td>
<td>B ML0+</td>
<td>B ML0-</td>
</tr>
</tbody>
</table>

A: Source Side, B: Sink Side

5. Select trace 5.

6. Press Display > Equation to turn it OFF.

9. Connect the test fixture to the test port cables according to Table 5-13. Unused test ports should be terminated.

Table 5-13 Far End Noise Connection for Dual Aggressor 2

<table>
<thead>
<tr>
<th>ENA Port Number</th>
<th>Test#</th>
<th>Port1</th>
<th>Port2</th>
<th>Port3</th>
<th>Port4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixture PIN Number</td>
<td>2</td>
<td>A ML3+</td>
<td>A ML3-</td>
<td>B ML2+</td>
<td>B ML2-</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>A ML2+</td>
<td>A ML2-</td>
<td>B ML1+</td>
<td>B ML1-</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>A AUX+</td>
<td>A AUX-</td>
<td>B ML0+</td>
<td>B ML0-</td>
</tr>
</tbody>
</table>

A: Source Side, B: Sink Side

11. Press Display > Equation to turn it ON.

5.5.7.5. Data Analysis

For Single Aggressor, read Pass/Fail signs on Trace 1.

For Dual Aggressor, read Pass/Fail signs on Trace 5.
Note: Once you finish the measurement, switch the Display Port cable end and repeat the same measurement for the opposite direction.

Figure 5-6: Far End Noise Measurement Example.
6. Appendix

6.1. Defining a calibration Kit

To change the definition of a calibration kit, follow the procedure below.

1. Press Cal key.
2. Click Cal Kit > User
3. Click Modify Kit > Label Kit [User], then type in a name you want.
4. Click Define STDs >
 a) 1. No Name >

 Label: ”Thru”

 1. **STD Type**: Delay/Thru
 2. **Offset Delay**: Value defined by the fixture
 3. **Offset Z0**: Value defined by the fixture
 4. **Offset Loss**: Value defined by the fixture
 5. **Min. Frequency**: Value defined by the fixture
 6. **Max. Frequency**: Value defined by the fixture
 7. Return

 b) 2. No Name >

 1. **Label**: ”Short”
 2. **STD Type**: Short
 3. **Offset Delay**: Value defined by the fixture
 4. **Offset Z0**: Value defined by the fixture
 5. **Offset Loss**: Value defined by the fixture
 6. **Min. Frequency**: Value defined by the fixture
 7. **Max. Frequency**: Value defined by the fixture
 8. Return

 c) 3. No Name >

 1. **Label**: ”Open”
 2. **STD Type**: Open
3. **Offset Delay**: Value defined by the fixture
4. **Offset Z0**: Value defined by the fixture
5. **Offset Loss**: Value defined by the fixture
6. **Min. Frequency**: Value defined by the fixture
7. **Max. Frequency**: Value defined by the fixture
8. **Return**

d) **4. No Name >**

 1. **Label**: "Load"
 2. **STD Type**: Load
 3. **Offset Delay**: Value defined by the fixture
 4. **Offset Z0**: Value defined by the fixture
 5. **Offset Loss**: Value defined by the fixture
 6. **Min. Frequency**: Value defined by the fixture
 7. **Max. Frequency**: Value defined by the fixture
 8. **Return**

 e) **5. No Name >**

 1. **Label**: "Line1"
 2. **STD Type**: Delay/Thru
 3. **Offset Delay**: Value defined by the fixture
 4. **Offset Z0**: Value defined by the fixture
 5. **Offset Loss**: Value defined by the fixture
 6. **Min. Frequency**: Value defined by the fixture
 7. **Max. Frequency**: Value defined by the fixture
 8. **Return**

 f) **6. No Name >**

 1. **Label**: "Line2"
 2. **STD Type**: Delay/Thru
 3. **Offset Delay**: Value defined by the fixture
4. **Offset Z0** : Value defined by the fixture
5. **Offset Loss** : Value defined by the fixture
6. **Min. Frequency** : Value defined by the fixture
7. **Max. Frequency** : Value defined by the fixture
8. **Return**

g) **7. No Name** >
 1. **Label** : "Line3"
 2. **STD Type** : Delay/Thru
 3. **Offset Delay** : Value defined by the fixture
 4. **Offset Z0** : Value defined by the fixture
 5. **Offset Loss** : Value defined by the fixture
 6. **Min. Frequency** : Value defined by the fixture
 7. **Max. Frequency** : Value defined by the fixture
 8. **Return**

5. Click **Return**.

6. Click **Specify CLSs** >

 h) **Sub Class 1** >
 1. **TRL Thru** > Set All > Thru > Return
 2. **TRL Reflect** > Short or Open
 3. **TRL Line/Match** > Set All > Line1 > Return

 i) **Sub Class 2** >
 4. **TRL Line/Match** > Set All > Line2 > Return

 j) **Sub Class 3** >
 5. **TRL Line/Match** > Set All > Line3 > Return

7. Click **Return**

8. Click **Export Cal Kit**... to open the dialog box and Save user Calkit.

9. Specify a folder, enter a file name, and click **Save**.

Note: Refer to “Modifying Calibration Kit Definition” in ENA online help for the detail.

6.2.1. Starting Setup
1. If TDR setup wizard was appeared, click Close button in the TDR setup wizard.
2. Open Setup tab (item 1).
3. Click Preset (item 2) under Basic to preset the E5071C.
4. A dialog box appears requesting for confirmation. Then click OK.
5. Set DUT Topology (item 3) to “Differential 2-port”.
6. Click Advanced Mode (item 4).
7. A dialog box appears requesting for confirmation. Then click Yes. (Clear the check box for “Use Advanced Calibration Methods”)
6.2.2. Bulk Cable and Connector Impedance Measurements (Normative)

6.2.2.1. Measurement Setup

1. Click Stop Single.
2. Open TDR/TDT tab.
3. Click Trace Control tab.
4. Clear Time and Marker check box under Coupling.
5. Open Parameters tab.
7. Select Rise Time to 20-80 % and input value to 130 psec.
8. Click the box below the left knob under Horizontal. Then Entry dialog box appear.
9. Input horizontal scale to 150 ps/div.
10. Click the box below the right knob under Horizontal. Then Entry dialog box appear.
11. Input horizontal position to -360 ps.
12. Click the box below the left knob under Vertical. Then Entry dialog box appear.
13. Input vertical scale to 5 ohm/div.
14. Click the box below the right knob under Vertical. Then Entry dialog box appear.
15. Input vertical position to 75 ohm.
16. Open Trace Control tab.
17. Click Trace Settings Copy.
18. Trace Settings Copy dialog box appears.
19. Select the Trace 1 in the From list.
20. Select the Trace 5 in the To list.
21. Click Copy.
22. Click Close.
23. Select Trace 5.
24. Open Parameters tab.
25. Click Tdd22.

6.2.3. Intra-Pair Skew Measurement (Normative)

6.2.3.1. Measurement Setup

1. Select Trace 2.
2. Open Parameters tab.
3. Select Measure to Time Domain and Single-Ended (item 1).
4. Select Format to Volt.
5. Click T31.
6. Select Rise Time to 10-90 % and input value to 50 psec.
7. Click the box below the left knob under Horizontal. Then Entry dialog box appear.
8. Input horizontal scale to 5 ns/div.
9. Click the box below the right knob under Horizontal. Then Entry dialog box appear.
10. Input horizontal position to 0 ns.
11. Click the box below the left knob under Vertical. Then Entry dialog box appear.
12. Input vertical scale to 50 mV/div.
13. Click the box below the right knob under Vertical. Then Entry dialog box appear.
14. Input vertical position to 100 mV.
15. Open Trace Control tab.
16. Click Trace Settings Copy.
17. Trace Settings Copy dialog box appears.
18. Select the Trace 2 in the From list.
19. Select the Trace 6 in the To list.
20. Click Copy.
21. Click Close.
22. Select Trace 6.
23. Open Parameters tab.
24. Click T42.
25. Select Trace 2.
26. Click Marker Search and select Δ Time.
28. Check the Δ Time check box.
29. Select Target (Stop) to Trace 6 (T42).
30. Input Position (%) to 15.
31. Click OK.

6.2.3.2. Crosstalk Compensation
1. Select Trace 2.
2. Press Display > Equation Editor… > Enter an equation “Intra+= S31-S32”.
3. Check Equation Enabled check box.
4. Click Apply.
5. Click Close.
7. Press Display > Equation Editor… > Enter an equation “Intra-= S42-S41”.
8. Check Equation Enabled check box.
9. Click Apply.
10. Click Close.
6.2.4. Inter-pair Skew Measurements (Normative)

6.2.4.1. Measurement Setup

1. Select **Trace 3**.
2. Open **Parameters** tab.
3. Select **Rise Time** to 10-90 % and input value to 50 psec.
4. Click the box below the left knob under **Horizontal**. Then Entry dialog box appear.
5. Input horizontal scale to 5 ns/div.
6. Click the box below the right knob under **Horizontal**. Then Entry dialog box appear.
7. Input horizontal position to 0 s.
8. Click the box below the left knob under **Vertical**. Then Entry dialog box appear.
9. Input vertical scale to 100 mV/div.
10. Click the below the right knob under vertical. Then Entry dialog box appear.
11. Input vertical scale to 200 mV.
12. Press **Marker Search > Target** > Target Value and enter “60 mUnits”.
13. Click **Return**.
14. Click **Tracking** to turn it on.
15. Select **Trace 4**.
16. Click **Data Mem** and select **OFF**.
17. Repeat step15 to step16 for **Trace 7** and **Trace 8**.

6.3. Manual Setup for Frequency Domain Measurement

6.3.1. Channel and Trace Settings

1. Press **Display**.
2. Click **Allocate Channels >** .
3. Press **Channel Next**.
4. Click **Num of Traces > 6**.
5. Click **Allocate Traces >** .
6.3.2. Common Settings

1. Press **Sweep Setup** > **Sweep Type** > **Log Freq**.
2. Set **Points** to 201.
3. Press **Start** > Set start value to 10 MHz.
4. Press **Stop** > Set stop value to 8.1 GHz.
5. Press **Avg** > Set **IF Bandwidth** to 70 kHz.
6. Press **Analysis** > **Fixture Simulator** > **Fixture Simulator** and turn it ON.
7. Click **Topology** > **Device** > **Bal-Bal**.
8. Click **Port 1 (bal)** > **1-2**.
9. Click **Port 2 (bal)** > **3-4**.
10. Click **Return**.

6.3.3. Far End Noise (FEN) Measurement (Normative)

1. Select Trace 1.
2. Press **Analysis**.
3. Click **Fixture Simulator** > **BalUn** and turn it ON.
4. Click **Measurement** > **Sdd21**.
5. Press **Format** > **Real**.
6. Press **Scale** > Set **Divisions** to 10.
7. Set **Scale/Div** to 5 dB/div.
8. Set **Reference position** to 10 Div.
9. Set **Reference Value** to 0 dB.
10. Press **Display** > **Equation Editor**… > Enter an equation
 “Single Aggressor=20*log10(mag(data))-20*log10(mag(mem(3)))”
11. Select Trace 5.
12. Repeat from step 2 to step 9.
13. Press **Display** > **Equation Editor**… > Enter an equation
 “DualAggressor=10*log10(mag(data)^2+mag(mem)^2)-20*log10(mag(mem(3)))”
6.3.4. Return Loss Measurement (Normative)

1. Select Trace 2.
2. Press **Analysis**.
3. Click **Fixture Simulator > BalUn** and turn it **ON**.
4. Click **Measurement > Sdd11**.
5. Press **Scale > Set Divisions** to 10.
6. Set **Scale/Div** to 5 dB/div.
7. Set **Reference position** to 10 Div.
8. Set **Reference Value** to 0 dB.
10. Press **Analysis**.
11. Click **Fixture Simulator > BalUn** and turn it **ON**.
12. Click **Measurement > Sdd22**.
13. Repeat from step 5 to step 8.

6.3.5. Insertion Loss Measurement (Normative)

1. Select Trace 3.
2. Press **Analysis**.
3. Click **Fixture Simulator > BalUn** and turn it **ON**.
4. Click **Measurement > Sdd21**.
5. Press **Scale > Set Divisions** to 10.
6. Set **Scale/Div** to 5 dB/div.
7. Set **Reference position** to 10 Div.
8. Set **Reference Value** to 0 dB.

6.3.6. Near End Noise (NEN) Measurement

1. Select Trace 4.
2. Press **Analysis**.
3. Click **Fixture Simulator > BalUn** and turn it ON.
4. Click **Measurement > Sdd21**.
5. Press **Scale > Set Divisions** to 10.
6. Set **Scale/Div** to 5 dB/div.
7. Set **Reference position** to 10 Div.
8. Set **Reference Value** to 0 dB.

6.4. Limit Test Settings

6.4.1. Displaying Judgment Result of Test

If a channel has a judgment result of fail, the fail message appears on the screen. It will be judged as failed if one or more unsatisfactory trace exists within the channel.

Follow the procedure below.

1. Press **Analysis > Limit Test > Fail Sign** to switch the fail sign ON/OFF.

6.4.2. Setting the Warning Beeper

Beep sound that occurs when the judgment result is fail.

Follow the procedure below.

1. Press **System > Misc Setup > Beeper > Beep Warning** to switch the warning beeper ON/OFF.

6.4.3. Defining the Limit Line

Set limit lines to perform pass/fail tests on the following measurement items.

1. Bulk Cable and Connector Impedance (Trace 1, 5 in Channel 1)
2. Insertion Loss (Trace 3 in Channel 2)
3. Return Loss (Trace 2, 6 in Channel 2)
4. Near End Noise (Trace 4 in Channel 2)
5. Far End Noise (Trace 1, 5 in Channel 2)
1. Press **Channel Next** key and **Trace Next** key to activate the trace on which limit lines should be set.

2. Press **Analysis > Limit Test > Edit Limit Line** to display the limit table shown below (Initially, no segments are entered in the limit table). Using the limit table, create/edit a segment.

<table>
<thead>
<tr>
<th>Type</th>
<th>Begin Stimulus</th>
<th>End Stimulus</th>
<th>Begin Response</th>
<th>End Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>0 s</td>
<td>600 ps</td>
<td>105 U</td>
<td>105 U</td>
</tr>
<tr>
<td>Min</td>
<td>0 s</td>
<td>600 ps</td>
<td>75 U</td>
<td>75 U</td>
</tr>
</tbody>
</table>

3. Enter the limit line data following the tables below.

4. Click **Return**.

5. Click **Limit Line** and turn it **ON**.

6. Click **Limit Test** and turn it **ON**.

7. Repeat 1 to 6 for each Measurement items.

6.5. Calculating formula for Limit Line

6.5.1. Bulk Cable and Connector Impedance

6.5.1.1. Impedance Profile

Impedance Profile Through Full-size DisplayPort Connector

<table>
<thead>
<tr>
<th>Segment</th>
<th>Differential Impedance Value</th>
<th>Maximum Tolerance</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixture</td>
<td>100 ohm</td>
<td>+10 %</td>
<td>Fixture should have trace lengths of no more than 50 mm (2-inches)</td>
</tr>
</tbody>
</table>
Agilent MOI for DisplayPort Cable & Connector Compliance Tests

<table>
<thead>
<tr>
<th>Component</th>
<th>Impedance Value</th>
<th>Tolerance</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector</td>
<td>100 ohm</td>
<td>+10%</td>
<td>Transition from +10% to +/5% must have a slope of 5 ohm/80ps</td>
</tr>
<tr>
<td>Wire management</td>
<td>100 ohm</td>
<td>+10%</td>
<td></td>
</tr>
<tr>
<td>Cable</td>
<td>100 ohm</td>
<td>-5%</td>
<td></td>
</tr>
</tbody>
</table>

Impedance Profile Measurement Impedance Limits & Connector Profile Example

Impedance Profile Through Mini DisplayPort Connector

<table>
<thead>
<tr>
<th>Segment</th>
<th>Differential Impedance Value</th>
<th>Maximum Tolerance</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixture</td>
<td>100 ohm</td>
<td>+/- 10%</td>
<td>Fixture should have trace lengths of no more than 50 mm (2-inches)</td>
</tr>
<tr>
<td>Connector</td>
<td>100 ohm</td>
<td>+/- 15%</td>
<td>Transition from +/15% to +/-10% and transition from +/-10% to +/-5% shall</td>
</tr>
<tr>
<td>Wire Management</td>
<td>100 ohm</td>
<td>+/-10%</td>
<td>have a slope of 10ohm/200ps</td>
</tr>
<tr>
<td>Cable</td>
<td>100 ohm</td>
<td>+/-5%</td>
<td></td>
</tr>
</tbody>
</table>
6.5.2. Insertion Loss

Insertion Loss Lower Limit for High Bit Rate Cable Assembly

\[IL_{\text{min}} [dB] = \begin{cases}
-8.7 \times \sqrt{\frac{f}{f_0}} - 0.072 & 0.1 < f \leq \frac{f_0}{5} \\
5.68 \sqrt{f - 5.3^* f - 6.52} & \frac{f_0}{3} < f \leq 8.1
\end{cases} \]

Where:
- \(f \) is given in GHz
- \(f_0 = 1.35 \text{GHz} \)

Insertion Loss Lower Limit for High Bit Rate Resizing Adaptors
Agilent MOI for DisplayPort Cable & Connector Compliance Tests

\[
IL_{\text{min}}[\text{dB}] = \begin{cases}
-1.6 \times \sqrt{\frac{f}{f_0}} & 0.1 < f \leq \frac{f_0}{3} \\
1.75 \sqrt{f} - 1.65 \times f - 1.3 & \frac{f_0}{3} < f \leq 8.1
\end{cases}
\]

Where:

\(\hat{f} \) is given in GHz

\(f_0 = 1.35 \text{GHz} \)

Insertion Loss Lower Limit for Extension Cable

\[
IL_{\text{min}}[\text{dB}] = \begin{cases}
-5.22 \times \sqrt{\frac{f}{f_0}} - 0.043 & 0.1 < f \leq \frac{f_0}{3} \\
3.41 \sqrt{f} - 3.18 \times f - 3.9 & \frac{f_0}{3} < f \leq 8.1
\end{cases}
\]

Where:

\(\hat{f} \) is given in GHz

\(f_0 = 1.35 \text{GHz} \)

Insertion Loss Lower Limit for Reduced Bit Rate Cable Assembly

\[
IL_{\text{min}}[\text{dB}] = \begin{cases}
-1 - 13.5 \times \sqrt{\frac{f}{f_0}} & 0.01 < f \leq \frac{f_0}{3} \\
-2.1 - [12(f - \frac{f_0}{3}) + 6.8] & \frac{f_0}{3} < f \leq 4
\end{cases}
\]

Where:

\(\hat{f} \) is given in GHz

\(f_0 = 0.825 \text{GHz} \)

6.5.3. Return Loss

Return Loss Upper Limit for High Bit Rate Cable Assembly/Adaptor (full-size DP
connector)

\[RL_{\text{max.}} \, [dB] = \begin{cases}
-15; & 0.1 < f \leq \frac{f_0}{2} \\
-15 + 12.3 \log_{10} \left(\frac{2f}{f_0} \right); & \frac{f_0}{2} < f \leq 8.1
\end{cases} \]

Where:
\(f \) is given in GHz
\(f_0 = 1.35 \text{GHz} \)

Return Loss Upper Limit for High Bit Rate Cable Assembly/Adaptor/Extension Cable (mini DP connector)

\[RL_{\text{max.}} \, [dB] = \begin{cases}
-15; & 0.1 < f \leq \frac{f_0}{2} \\
-15 + 12.3 \log_{10} \left(\frac{2f}{f_0} \right); & \frac{f_0}{2} < f \leq 8.1
\end{cases} \]

Where:
\(f \) is given in GHz
\(f_0 = 1.35 \text{GHz} \)

Return Loss Upper Limit Reduced Bit Rate Cable Assembly

\[RL_{\text{max.}} \, [dB] = \begin{cases}
-15; & 0.1 < f \leq \frac{f_0}{2} \\
-15 + 12 \log_{10} \left(\frac{2f}{f_0} \right); & \frac{f_0}{2} < f \leq 4
\end{cases} \]

Where:
\(f \) is given in GHz
\(f_0 = 0.8 \text{GHz} \)
6.5.4. Near End Noise (NEN)

Near End Noise Upper Limit for High Bit Rate Cable Assembly

\[
Isolation_{\text{max}}[dB] = \begin{cases}
-26 & : 0.1 < f \leq f_0 \\
-26 + 15 \log_{10}\left(\frac{f}{f_0}\right) & : f_0 < f \leq 8.1
\end{cases}
\]

Where:
- \(f \) is given in GHz
- \(f_0 = 1.35 \text{GHz} \)

Near End Noise Upper Limit for Reduced Bit Rate Cable Assembly

\[
Isolation_{\text{max}}[dB] = \begin{cases}
-26 & : 0.1 < f \leq f_0 \\
-26 + 15 \log_{10}\left(\frac{f}{f_0}\right) & : f_0 < f \leq 4
\end{cases}
\]

Where:
- \(f \) is given in GHz
- \(f_0 = 0.8 \text{GHz} \)

6.5.5. Far End Noise (FEN)

The Power Sum Equal Level Far End Noise specification applies to all cable assembly types. The Power Sum Equal Level Far End Noise represents the difference between cable insertion loss and the total power sum far end noise from aggressor cable lanes.
Agilent MOI for DisplayPort Cable & Connector Compliance Tests

\[PSFEN(f) = 10 \times \log \sum_{n=1}^{\infty} 10^{- \left(\frac{FEN_n(f)}{10} \right)} \]

\[PSELFEN(f) = PSFEN(f) - IL(f) \]

Where:
- \(FEN_n(f) \) is the far-end noise in dB
- \(IL(f) \) is the victim lane insertion loss in dB

Far End Noise Upper Limit for High Bit Rate Cable Assembly

\[
PSELFEN_{\text{max}}[dB] = \begin{cases}
-22 + 6\log_{10} \left(\frac{f}{f_0} \right) & 0.1 < f \leq f_0 \\
-22 + 40\log_{10} \left(\frac{f}{f_0} \right) & f_0 < f \leq 8.1
\end{cases}
\]

Where:
- \(f \) is given in GHz
- \(f_0 = 2.7 \text{GHz} \)

Far End Noise Upper Limit for Reduced Bit Rate Cable Assembly

\[PSELFEN_{\text{max}}[dB] = -26 \]