100BASE-TX Ethernet Cable
Agilent Method of Implementation (MOI) for 100BASE-TX Ethernet Cable Tests
Using Agilent E5071C ENA Option TDR
Table of Contents

1. Revision History .. 3
2. Purpose .. 3
3. References ... 3
4. Required Equipments .. 3
5. Test Procedure ... 5
 5.1. Outline of Test Procedure ... 5
 5.2. Instrument Setup ... 7
 5.2.1. Recalling a State File ... 7
 5.2.2. Saving a State File ... 8
 5.3. Calibration ... 9
 5.3.1. Time Domain Calibration ... 9
 5.3.2. Frequency Domain Calibration ... 11
 5.4. Measurement .. 14
 5.4.1. Differential Characteristic Impedance ... 14
 5.4.2. Insertion Loss .. 15
 5.4.3. Return Loss ... 16
 5.4.4. Differential Near-End Crosstalk (NEXT) ... 17
 6.1. Channel & Trace Setup ... 19
 6.2. Differential Characteristic Impedance ... 20
 6.3. Common Parameters Setup for Frequency-domain Measurements 21
 6.4. Insertion Loss .. 22
 6.5. Return Loss .. 22
 6.6. Differential Near-end Crosstalk (NEXT) .. 22
 6.7. Defining Limit Line Tables ... 23
1. Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Comments</th>
<th>Issue Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Initial Revision.</td>
<td>Sep-24, 2013</td>
</tr>
</tbody>
</table>

2. Purpose
This test procedure was written to explain how to use the Agilent ENA Option TDR to make the 100BASE-TX Ethernet cable measurements.

3. References
- IEEE 802.3-2008 Section 2 (Jun. 2010)

4. Required Equipments

<table>
<thead>
<tr>
<th>Description</th>
<th>Test Equipment</th>
<th>QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Analyzer</td>
<td>Agilent E5071C ENA Series Network Analyzer</td>
<td>1 ea.</td>
</tr>
<tr>
<td></td>
<td>➢ Option 440/445 (4.5 GHz) or 460/465 (6.5 GHz)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or 440/485 (8.5 GHz) or 4D5 (14 GHz) or 4K5 (20 GHz)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ Option TDR (Enhanced time domain analysis)</td>
<td></td>
</tr>
<tr>
<td>4-port ECaL</td>
<td>Agilent N4431B (for E5071C 4.5 / 6.5 / 8.5 GHz) or N4433A (for E5071C 14 / 20 GHz)</td>
<td>1 ea.</td>
</tr>
</tbody>
</table>
Agilent MOI for 100BASE-TX Ethernet Cable Tests

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 ohm terminator</td>
<td>To terminate unused differential pairs (ex. Agilent 909D-301)</td>
<td>12 ea.</td>
</tr>
</tbody>
</table>
5. Test Procedure

5.1. Outline of Test Procedure

1. Instrument Setup
 - Automatic setup by recalling a state file or manual setup.

2. Calibration
 - ECal Calibration and Fixture Compensation (Time-domain measurements)
 - ECal Calibration and Port Extension (Frequency-domain measurements)

3. Measurements
 - 4-1. Time-domain Measurements
 - Differential Characteristic Impedance
 - 4-2. Frequency-domain Measurements
 - Insertion Loss
 - Return Loss
 - Differential Near-end Crosstalk (NEXT)
Agilent MOI for 100BASE-TX Ethernet Cable Tests

Note: Hard Keys (Keys on the E5071C’s front panel) are displayed in Blue color and Bold. (Example: Avg, Analysis)

Note: Soft keys (Keys on the E5071C’s screen) are displayed in Bold. (Example: S11, Real, Transform)

Note: Buttons of the TDR software are displayed in Green color and Bold. (Example: Trace, Rise Time)

Note: Tabs of the TDR software are displayed in Brown color and Bold. (Example: Setup, Trace Control)
5.2. Instrument Setup
5.2.1. Recalling a State File
This section describes how to recall a state file of the E5071C that includes all the measurement settings for 100BASE-TX Ethernet cable tests. The state file can be downloaded at: www.agilent.com/find/ena-tdr_ethernet-cabcon
Copy the state file into the E5071C’s directory via USB mass storage device and recall the state file using the TDR software. Necessary parameters for testing are automatically set up in the E5071C. Refer to Appendix for the details about manual setup.
If TDR setup wizard is shown, click Close button in the TDR setup wizard main window.

1. Open Setup tab.
2. Click Advanced Mode to show the dialog box.
3. A dialog box appears requesting for confirmation. Then click Yes. (Uncheck “Use Advanced Calibration Methods”)
4. Click File and select Recall State to open the Recall State dialog box.
5. Specify a folder and a file name, and click Open.

The E5071C’s channel 1 is used for time-domain measurements by using the TDR software at the bottom of the E5071C’s screen. The channel 2 is used for frequency-domain measurements by using the soft key on the right side of the screen or hard key on the front
5.2.2. Saving a State File

All the measurement settings including calibration information can be saved in a state file (*.tdr). After performing calibration, all necessary calibration coefficients are saved in a state file and can be recalled for the next measurements.

1. Press **Save/Recall > Save Type** and select **State & Cal** as a state file type.
2. Click **File** of the TDR software.
3. Select “Save State”.
4. Enter file name and save the state file with calibration information.
5.3. Calibration
5.3.1. Time Domain Calibration
The purpose of this step is to calibrate the delay and loss of the RF cables (and test fixtures) by following the wizard of the E5071C TDR software. Full calibration is performed by using the 4-port ECal Module at the end of RF cables connected to the E5071C’s test ports. After connecting the test fixture to the cables, the effect of the fixture is removed by the fixture compensation function of the TDR software. This calibration is applied for time-domain measurements in Channel 1.

5.3.1.1. ECal Calibration & Fixture Compensation

Calibration for time-domain measurements is performed by the TDR software. The 4-port ECal Module (i.e. N4431B) connected to the USB port of the E5071C is necessary for the calibration procedure.

1. Press Channel Next to select Channel 1.
2. Open Setup tab of the TDR software.
3. Click ECal to launch calibration wizard.

![Calibration Wizard](image)

4. Connect all test cables to the ECal Module and click Calibrate. Once green check mark appears, click Next>.
5. Disconnect the ECal Module and connect the RF cables to the test fixtures. Click **Fixture Comp** to perform fixture compensation. Once green check mark appears, click **Finish** to complete the compensation.

6. Connect DUT to the test fixtures.

7. Open **Setup** tab.

8. Click **Auto** to launch the diagram.
9. Click **Measure** to specify DUT’s electrical length in the dialog box. Once green check mark appears, click **Finish**.

![DUT Length](image)

5.3.2. Frequency Domain Calibration

The purpose of this step is to calibrate out the RF effects (i.e. mismatch, loss or delay) of RF cables and test fixtures. Full calibration is performed by using the 4-port ECal Module at the end of RF cables connected to the E5071C’s test ports. And then the test fixtures are connected to the RF test cables, and the fixture’s effect will be eliminated by auto port extension function of the E5071C’s firmware.

The calibration is applied for frequency-domain measurements in Channel 2.

5.3.2.1. ECal Calibration

Calibration for the frequency-domain measurement is performed by selecting the E5071C’s
soft key. The 4-port ECal Module (i.e. N4431B) connected to the USB port of the E5071C is necessary for the calibration procedure.

1. Press **Channel Next** key to select Channel 2.
2. Connect all RF test cables to the ECal Module.
3. Press **Calibrate > ECal > 4-Port Cal.**

5.3.2.2. **Auto Port Extension**

The effect of the test fixtures (i.e. delay) are removed by auto port extension function of the E5071C’s firmware. The calibration plane (at the RF test cables by ECal calibration) is moved to the end of test fixtures by auto port extension.

1. Connect the RF cables to the test fixtures. The DUT is not connected to the test fixture (the fixture end is left open).

2. Press **Cal > Port Extension > Auto Port Extension > Select Ports** and check all ports (Port 1 to Port 4).
3. Press **Cal > Port Extension > Auto Port Extension > Measure Open** and select **All** to enable auto port extension.
5.4. Measurement

The procedures for time-domain and frequency-domain measurements are introduced in this section.

5.4.1. Differential Characteristic Impedance

1. Connect the DUT to the test fixtures to measure differential characteristic impedance of link segment #1. (Figure 5-2).

Note: Unused fixture ports should be terminated with 50 ohm terminators.

Figure 5-2 Differential Characteristic Impedance Test Setup (Link Segment #1)

2. Press Channel Next to select Channel 1 of the E5071C.

3. Select Trace 1. (Tdd11)

4. Press Stop Single.

5. Select Auto Scale and select X.

6. Confirm the nominal differential characteristic impedance at the near end of DUT is 100 ohm.

7. Select Trace 2 (Tdd22) and repeat the same operations of Step 5 to 6 at the far end of...
DUT.

8. Connect the E5071C ports to the test fixtures with the RF cables to measure differential characteristic impedance of link segment #2. (Figure 5-3).

<table>
<thead>
<tr>
<th>E5071C</th>
<th>Port 1</th>
<th>Port 2</th>
<th>Port 3</th>
<th>Port 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Fixture</td>
<td>TF1 DB+</td>
<td>TF1 DC-</td>
<td>TF2 DB+</td>
<td>TF2 DC-</td>
</tr>
</tbody>
</table>

Note: Unused fixture ports should be terminated with 50 ohm terminators.

Figure 5-3 Differential Characteristic Impedance Test Setup (Link Segment #2)

9. Repeat the same operation of Step 3 to Step 7.

5.4.2. Insertion Loss

1. Connect DUT to the test fixtures to measure insertion loss of link segment #1(Figure 5-2).
2. Press **Channel Next** to select Channel 2 of the E5071C.

3. Press **Trace Next** to select Trace 2 (Sdd21).

4. Press **Trigger > Single**.

5. Confirm the measured differential insertion loss is lower than the limit shown below.

\[
\text{Insertion Loss}(f) < 2.1f^{0.529} + 0.4/f \quad \text{(dB)}
\]

6. Press **Meas > Sdd12**.

7. Press **Trigger > Single**.

8. Confirm the measured differential insertion loss is lower than the limit of Step 5.

9. Connect the E5071C and the test fixtures with the RF cables to measure insertion loss of link segment #2. (Figure 5-3).

<table>
<thead>
<tr>
<th>E5071C</th>
<th>Port 1</th>
<th>Port 2</th>
<th>Port 3</th>
<th>Port 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Fixture</td>
<td>TF1 DA+</td>
<td>TF1 DA-</td>
<td>TF2 DA+</td>
<td>TF2 DA-</td>
</tr>
</tbody>
</table>

10. Repeat the same operation of Step 3 to Step 8.

5.4.3. **Return Loss**

1. Connect the E5071C and the test fixtures with the RF cables to measure return loss of link segment #1. (Figure 5-2)

<table>
<thead>
<tr>
<th>E5071C</th>
<th>Port 1</th>
<th>Port 2</th>
<th>Port 3</th>
<th>Port 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Fixture</td>
<td>TF1 DB+</td>
<td>TF1 DC-</td>
<td>TF2 DB+</td>
<td>TF2 DC-</td>
</tr>
</tbody>
</table>

2. Press **Trigger > Single**.

3. Press **Trace Next** to select Trace 1 (Sdd11).

4. Confirm the measured return loss is lower than the limit shown below.

\[
\text{Return Loss}(f) = \begin{cases}
15 & (1 - 20 \text{ MHz}) \\
15 - 10\log_{10}(f/20) & (20 - 100 \text{ MHz}) \\
\end{cases} \quad \text{(dB)}
\]
Where \(f \) is the frequency in MHz. The reference impedance shall be 100 ohm.

5. Press **Trace Next** to select Trace 4 (Sdd22).

6. Confirm the measured return loss is lower than the limit of Step 4.

7. Connect the E5071C and the test fixture with the RF cables to measure return loss of link segment #2. (Figure 5-3).

<table>
<thead>
<tr>
<th>E5071C</th>
<th>Port 1</th>
<th>Port 2</th>
<th>Port 3</th>
<th>Port 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Fixture</td>
<td>TF1 DB+</td>
<td>TF1 DC-</td>
<td>TF2 DB+</td>
<td>TF2 DC-</td>
</tr>
</tbody>
</table>

8. Repeat the same operation of Step 2 to Step 6.

5.4.4. **Differential Near-End Crosstalk (NEXT)**

The differential pair-to-pair near-end crosstalk (NEXT) between two pairs of link segments is specified.

1. Connect the E5071C’s ports (Port 1 to 4) and the test fixture with the RF cables to measure NEXT at the near end of DUT. (Figure 5-4)

<table>
<thead>
<tr>
<th>E5071C</th>
<th>Port 1</th>
<th>Port 2</th>
<th>Port 3</th>
<th>Port 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Fixture</td>
<td>TF1 DB+</td>
<td>TF1 DC-</td>
<td>TF1 DA+</td>
<td>TF1 DA-</td>
</tr>
</tbody>
</table>

![Figure 5-4 Differential Near-end Crosstalk (NEXT) Test Setup](image)
2. Press **Trace Next** to select Trace 3 (Sdd21).
3. Press **Trigger > Single**.
4. Confirm the measured differential near-end crosstalk is lower than the limit shown below.

\[
27.1 - 16.8\log_{10} \left(\frac{f}{100}\right) \text{ (dB)}
\]

Where \(f \) is the frequency over the range of 1 MHz to 100 MHz.
5. Press **Meas > Sdd12**.
6. Confirm the measured differential near-end crosstalk is lower than the limit in Step 4.
7. Connect the E5071C’s ports (Port 1 to 4) and the test fixture with the RF cables to measure NEXT at the far end of DUT.

<table>
<thead>
<tr>
<th>E5071C</th>
<th>Port 1</th>
<th>Port 2</th>
<th>Port 3</th>
<th>Port 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Fixture</td>
<td>TF2 DB+</td>
<td>TF2 DC-</td>
<td>TF2 DA+</td>
<td>TF2 DA-</td>
</tr>
</tbody>
</table>
8. Press **Meas > Sdd21**.
9. Press **Trigger > Single**.
10. Confirm the measured differential near-end crosstalk is lower than the limit in Step 4.
11. Press **Meas > Sdd12**.
12. Confirm the measured differential near-end crosstalk is lower than the limit in Step 4.

The procedures of manual setup for time-domain and frequency-domain measurements are introduced in the section. All the following parameters are saved in the E5071C’s state file, which is available at: www.agilent.com/find/ena-tdr_ethernet-cabcon

6.1. Channel & Trace Setup

If TDR setup wizard is shown when launching the TDR software, click Close button in the TDR setup wizard main window.

1. Open Setup tab in the TDR software.
2. Click Preset to preset the instrument. Click OK in a dialog box to continue.
3. Set DUT Topology to “Differential 2-Port”. Click OK in a dialog box.
4. Click Advanced Mode>>.
5. A dialog box appears requesting for confirmation. Then click Yes. (Clear the check box for “Use Advanced Calibration Methods”)

6. Click Stop Single.
7. Open TDR/TDT tab.
8. Click Trace Control tab.
9. Clear Time and Marker check box under Coupling.
Agilent MOI for 100BASE-TX Ethernet Cable Tests

10. Press **Display** > **Allocate Channels** >
11. Press **Display** > **Num of Traces** > 2.
12. Press **Display** > **Allocate Traces** > x2 (1 column by 2 rows).
13. Press **Channel Max** to maximize the screen of Channel 1.

6.2. Differential Characteristic Impedance
1. Select **Trace 1**.
2. Open **TDR/TDT** tab.
3. Open **Parameters** tab.
4. Select “Time Domain” and “Differential” for Measure.
5. Select Format to “Impedance”
6. Click **Tdd11**.
7. Click the box below the left knob under Vertical. Set the vertical scale to “10 Ohm/div”
in a dialog box.
8. Click the box below the right knob under Vertical. Set the vertical center to “50 Ohm”
in a dialog box.
9. Open **Trace Control** tab.
10. Click **Trace Settings Copy** to launch trace copy dialog box.
11. Select the Trace 1 in the From list.
12. Select the Trace 2 in the To list.
13. Click Copy.
14. Click Close.

15. Select Trace 2.
17. Click Tdd22.

6.3. Common Parameters Setup for Frequency-domain Measurements

1. Press Channel Next to select Channel 2.
2. Press Start > Set start value to “1 MHz”.
3. Press Stop > Set stop value to “200 MHz”.
 Note: The 100BASE-TX Ethernet cable is specified in the frequency range up to 100 MHz.
4. Press Analysis > Fixture Simulator and turn it ON.
5. Press Analysis > Fixture Simulator > Topology > Device > Bal-Bal
6. Press Analysis > Fixture Simulator > Topology > Port1 (bal) > 1-2
7. Press Analysis > Fixture Simulator > Topology > Port2 (bal) > 3-4
10. Press Analysis > Fixture Simulator > BalUn ON All Traces to enable mixed-mode
S-parameter (i.e. Sdd11) measurements on all traces.

11. Press **Display** > **Allocate Traces** > x4 (2 columns by 2 rows).

6.4. Insertion Loss

1. Press **Trace Next** to select Trace 2.
2. Press **Meas > Sdd21**.
3. Press **Scale > Set Scale/Div** to 10 dB/div.
4. Press **Scale > Set Reference Value** to -10 dB.

6.5. Return Loss

1. Press **Trace Next** to select Trace 1.
2. Press **Meas > Sdd11**.
3. Press **Scale > Set Scale/Div** to 10 dB/div.
4. Press **Scale > Set Reference Value** to -20 dB.
5. Press **Trace Next** to select Trace 4.
6. Press **Meas > Sdd22**.
7. Press **Scale > Set Scale/Div** to 10 dB/div.
8. Press **Scale > Set Reference Value** to -20 dB.

6.6. Differential Near-end Crosstalk (NEXT)

1. Press **Trace Next** to select Trace 3.
2. Press **Meas > Sdd21**.
3. Press **Scale > Set Scale/Div** to 10 dB/div.
4. Press **Scale > Set Reference Value** to -20 dB.
6.7. Defining Limit Line Tables

1. Press **Trace Next** to select trace to set the limit line table.

2. Press **Analysis > Limit Line** and turn it ON to display limit lines.

3. Press **Analysis > Edit Limit Line** to edit the limit line table.

4. Press **Analysis > Limit Test** and turn it ON.

5. Press **Analysis > Limit Test > Fail Sign** to switch the fail sign ON/OFF. When turned on, the Fail sign is displayed on the E5071C’s screen, if one or more failed traces are within the channel.

6. Press **System > Misc Setup > Beeper > Beep Warning** to turn ON/OFF the warning beeper.