Universal Serial Bus Type-C Specification Revision 1.0
Keysight Method of Implementation (MOI) for USB Type-C Connectors and Cables Assemblies Compliance Tests Using Keysight E5071C ENA Option TDR

For Type-C to Type-C Passive Cable Assemblies

Note: The final USB Type-C Connectors and Cable Assemblies Compliance Document (Revision 1.0) is not yet released. Test coverage and requirements are based on an early draft test specification and will be updated when the final test specification is complete.
Table of Contents

1. Revision History ... 4
2. Purpose .. 4
3. References ... 4
4. Required Equipment ... 4
5. Test Procedure ... 5
5.1. Outline of Test Procedure .. 5
5.2. Setup .. 7
5.2.1. Recalling a State File .. 7
5.2.2. Saving a State File .. 8
5.3. Calibration ... 9
5.3.1. ECAL Calibration and De-embedding 9
5.3.2. TRL Calibration ... 12
5.3.3. Adjustment of Effective Rise Time 14
5.4. Measurement (SuperSpeed Signal Pairs and D+/D- Signal Pair) .. 17
5.4.1. D+/D- Impedance ... 17
5.4.2. D+/D- Intra-Pair Skew ... 18
5.4.3. D+/D- Propagation Delay .. 18
5.4.4. D+/D- Pair Attenuation .. 19
5.4.5. ILfitatNq, IMR, IXT, IRL, Differential to Common-Mode Conversion ... 20
5.4.6. Shielding Effectiveness .. 22
5.4.7. [Raw Cable] Characteristic Impedance (Informative) 23
5.4.8. [Raw Cable] Intra-Pair Skew (Informative) 24
5.4.9. [Raw Cable] Differential Insertion Loss (Informative) 24
5.4.10. [Mated Connector] Differential Impedance (Informative) .. 25
5.4.11. [Mated Connector] Differential Insertion Loss (Informative) .. 25
5.4.12. [Mated Connector] Differential Return Loss (Informative) .. 25
5.4.13. [Mated Connector] Differential NEXT & FEXT between SS Signal Pairs (Informative) 26
5.4.15. [Mated Connector] Differential to Common-Mode Conversion (Informative) .. 27
5.4.16. Differential Insertion Loss (Informative) 28
5.4.17. Differential Return Loss (Informative) 28
5.4.18. Differential NEXT & FEXT between SS Signal Pairs (Informative) .. 29
5.4.19. Differential NEXT & FEXT between D+/D- Pair and SS Signal Pairs (Informative) .. 29
5.5. Measurement (Low Speed Signal) 30
5.5.1. [Low Speed Signal] Characteristic Impedance ... 30
5.5.2. [Low Speed Signal] Coupling between CC and USB D+/D- / VBUS Coupling to SBU_A/SBU_B, CC, and USB D+/D- / Coupling between SBU_A/SBU_B and CC, SBU_A/SBU_B and USB D+/D-, and SBU_A and SBU_B .. 30

 6.1.1. Channel & Trace Setup ... 31
 6.1.2. D+/D- Impedance ... 32
 6.1.3. D+/D- Intra-Pair Skew ... 33
 6.1.4. [Raw Cable] Characteristic Impedance (Informative) 35
 6.1.5. [Mated Connector] Differential Impedance (Informative) 35
 6.1.6. Common Parameters Setup for Frequency-domain Measurements 35
 6.1.7. D+/D- Pair Attenuation .. 36
 6.1.8. ILfitatNq, IMR, IXT, IRL, Differential to Common-Mode Conversion 36
 6.1.9. Shielding Effectiveness .. 36
 6.1.10. [Raw Cable] Differential Insertion Loss (Informative) 37
 6.1.11. [Mated Connector] Differential to Common-Mode Conversion (Informative) .. 37
 6.1.15. [Mated Connector] Differential NEXT & FEXT between D+/D- Pair and SS Signal Pairs (Informative) .. 37
 6.1.16. Differential Insertion Loss (Informative) ... 38
 6.1.17. Differential Return Loss (Informative) ... 38
 6.1.18. Differential NEXT & FEXT between SS Signal Pairs (Informative) 38
 6.1.20. Defining Limit Line Tables .. 38
6.2. Manual Setup (Low Speed Signal) ... 39
 [Appendix] Defining TRL Calibration Kit .. 40
7. [Appendix] De-embedding File Creation using PLTS AFR 44
 7.1. 2x Thru Standard Measurement .. 44
 7.2. De-embedding File Creation ... 44
1. Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Comments</th>
<th>Issue Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.90</td>
<td>Draft Revision.</td>
<td>Feb. 06, 2015</td>
</tr>
</tbody>
</table>

2. Purpose

This test procedure was written to explain how to use the Keysight ENA Option TDR to make the connectors and cable assemblies measurements required per USB Type-C Cable and Connector Specification Revision 1.0 and Connectors and Cable Assemblies Compliance Document Draft.

This test procedure is for Type-C to Type-C Passive Cable Assemblies.

3. References

- Universal Serial Bus Type-C Cable and Connector Specification Revision 1.0 (August 11, 2014)
- Universal Serial Bus Type-C Connectors and Cable Assemblies Compliance Document (Draft)

4. Required Equipment

<table>
<thead>
<tr>
<th>Description</th>
<th>Test Equipment</th>
<th>QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Analyzer</td>
<td>Keysight E5071C ENA Series Network Analyzer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ Option 4K5 (20 GHz)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ Option TDR (Enhanced time domain analysis)</td>
<td>1 ea.</td>
</tr>
<tr>
<td>4-port ECal</td>
<td>Keysight N4433A (4-port, 20 GHz)</td>
<td>1 ea.</td>
</tr>
<tr>
<td>Test Fixture</td>
<td>USB Type-C official test fixtures and calibration standards</td>
<td>1 ea.</td>
</tr>
<tr>
<td>Adapter</td>
<td>83059B coaxial adapter for E5071C ports</td>
<td>4 ea.</td>
</tr>
<tr>
<td>RF cable</td>
<td>3.5 mm or SMA cables of 20 GHz bandwidth or more</td>
<td>4 ea.</td>
</tr>
</tbody>
</table>

Note: Fixtures for testing USB 3.1/Type-C connectors and cable assemblies are available for purchase through Luxshare-ICT.

5. Test Procedure

5.1. Outline of Test Procedure

1. Setup
 - Automatic setup by recalling a state file or manual setup

2. Calibration
 - EC al Calibration and De-embedding
 - TRL Calibration
 - Adjustment of Effective Rise Time

3. Measurements

4.1. Time-domain Measurements
 - D+/D- Impedance
 - D+/D- Intra-Pair Skew
 - D+/D- Propagation Delay
 - [Raw Cable] Characteristic Impedance (Informative)
 - [Raw Cable] Intra-Pair Skew (Informative)
 - [Mated Connector] Differential Impedance (Informative)

4.2. Frequency-domain Measurements
 - D+/D- Pair Attenuation
 - ILfitatNq, IMR, IXT, IRL, Differential to Common-Mode Conversion
 - Shielding Effectiveness
 - [Raw Cable] Differential Insertion Loss (Informative)
 - [Mated Connector] Differential Insertion Loss (Informative)
 - [Mated Connector] Differential Return Loss (Informative)
 - [Mated Connector] Differential NEXT & FEXT between SS Signal Pairs (Informative)
 - [Mated Connector] Differential NEXT & FEXT between D+/D- Pair and SS Signal Pairs (Informative)
 - [Mated Connector] Differential to Common-Mode Conversion (Informative)
 - Differential Insertion Loss (Informative)
 - Differential Return Loss (Informative)
 - Differential NEXT & FEXT between SS Signal Pairs (Informative)
 - Differential NEXT & FEXT between D+/D- Pair and SS Signal Pairs (Informative)

4.3. Low Speed Signal Measurements
 - [Low Speed Signal] Characteristic Impedance
 - [Low Speed Signal] Coupling between CC and USB D+/D-
 - [Low Speed Signal] \(V_{BUS} \) Coupling to SBU_A/SBU_B, CC, and USB D+/D-
 - [Low Speed Signal] Coupling between SBU_A/SBU_B and CC, SBU_A/SBU_B and USB D+/D-, and SBU_A and SBU_B
Normative & Informative Measurement Parameters (SS and D+/D-)

Note: Hard keys (Keys on the E5071C’s front panel) are displayed in Blue color and Bold.
(Example: Avg, Analysis)

Note: Soft keys (Keys on the E5071C’s screen) are displayed in Bold.
(Example: S11, Real, Transform)

Note: Buttons of the TDR software are displayed in Green color and Bold.
(Example: Trace, Rise Time)

Note: Tabs of the TDR software are displayed in Brown color and Bold.
(Example: Setup, Trace Control)
5.2. Setup

5.2.1. Recalling a State File
This section describes how to recall a state file of the E5071C that includes all the measurement settings for USB Type-C connectors and cable assemblies compliance tests. The state file can be downloaded at: http://www.keysight.com/find/ena-tdr_compliance
Copy the state file into the E5071C’s directory via USB mass storage device and recall the state file using the TDR software. Necessary parameters for testing are automatically set up in the E5071C. Refer to Appendix for the details about manual setup. If TDR setup wizard is shown, click Close button in the TDR setup wizard main window.

1. Open Setup tab.
2. Click Advanced Mode to show the dialog box.
3. A dialog box appears requesting for confirmation. Then click Yes. (Uncheck “Use Advanced Calibration Methods”)
4. Click File and select Recall State.
5. Specify a folder and a file name, and click Open.

The E5071C’s channel 1 is used for time-domain measurements by using the TDR software displayed at the bottom of the E5071C’s screen. The channel 2 is used for frequency-domain measurements by using the hard keys on the front panel and the soft keys on the right side of the screen.
5.2.2. Saving a State File
All the measurement settings including calibration information can be saved in a state file (*.tdr). After performing calibration, all necessary calibration coefficients are saved in a state file and can be recalled for the next measurements.

1. Press **Save/Recall > Save Type** and select **State & Cal** as a state file type.
2. Click **File** of the TDR software and select **Save State**.
3. Enter file name and save the state file with calibration information.
5.3. Calibration
The purpose of this step is to calibrate the RF effects such as delay, loss or mismatch of RF cables and test fixture traces before measurements. In order to remove the fixture trace effect, two calibration methods (ECal calibration & de-embedding or TRL calibration) are available with the E5071C firmware for the USB Type-C connectors and cable assemblies compliance tests.

5.3.1. ECal Calibration and De-embedding
Full calibration is performed by using the 4-port ECal Module (i.e. N4433A) at the end of RF cables connected to the E5071C’s test ports. The effect of the fixture is removed by de-embedding the fixture traces with S-parameter Touchstone files. Refer to Appendix for the details about de-embedding file creation.

5.3.1.1. Time-Domain Measurements
ECal calibration and de-embedding for time-domain measurements are performed by the TDR software.

1. ECal Calibration
 a) Press Channel Next to select Channel 1.
 b) Click Setup tab.
 c) Click ECal to launch the TDR Setup Wizard.
 d) Connect the E5071C ports (port 1 to 4) to the ECal module with RF cables.
 e) Click Calibrate to perform ECal Calibration.
 f) Click Next >.
Keysight MOI for USB Type-C Connectors & Cable Assemblies Compliance Tests
(Type-C to Type-C Passive Cable Assemblies)

2. De-embedding
 a) Click **Adv Waveform** tab
 b) Click **De-embedding** to launch Advanced Waveform wizard.
 c) Click De-embedding box to set the Touchstone file. 2-port files (*.s2p) for single-ended lines or 4-port files (*.s4p) for differential lines can be selected for the de-embedding function.
 d) Load the Touchstone file.

g) Click **Finish** to complete ECal calibration.
Keysight MOI for USB Type-C Connectors & Cable Assemblies Compliance Tests
(Type-C to Type-C Passive Cable Assemblies)

e) Enable the de-embedding function.
f) Click OK.

Note: For more details about the de-embedding function, refer to the E5071C ENA help below.
http://ena.support.keysight.com/e5071c/manuals/webhelp/eng/measurement/fixture_simulator/obtaining_characteristics_after_embedding_de_embedding_4_port.htm

5.3.1.2. Frequency-Domain Measurements
Ecal calibration and de-embedding for frequency-domain measurements are performed by the E5071C firmware.

1. Ecal Calibration
 a) Press Channel Next to select Channel 2.
 b) Connect the E5071C ports (port 1 to 4) to the ECal module with RF cables.
 c) Press Cal > ECal > 4-Port Cal.

2. De-embedding (In case of 2-port file)
 a) Press Analysis > Fixture Simulator > De-Embedding > Select Port > and select E5071C’s Port (1 to 4) to de-embed fixture trace.
 b) Press Analysis > Fixture Simulator > De-Embedding > User File and specify a 2-port de-embedding file (*.s2p).
 c) Press Analysis > Fixture Simulator > De-Embedding > Select Type to set to User.
 d) Continue the same for the other ports of the E5071C.
 e) Press Analysis > Fixture Simulator > De-Embedding to turn on De-Embedding.

3. De-embedding (In case of 4-port file)
 a) Press Analysis > Fixture Simulator > De-Embedding SnP > Topology > Select Topology > C.

c) Press Analysis > Fixture Simulator > De-Embedding SnP > Topology > User File (nwk1)... and specify a 4-port de-embedding file (*.s4p).

d) Press Analysis > Fixture Simulator > De-Embedding SnP > Topology > Type (nwk1) > De-Embed.

e) Press Analysis > Fixture Simulator > De-Embedding SnP > Topology > User File (nwk2)... and specify a 4-port de-embedding file (*.s4p).

f) Press Analysis > Fixture Simulator > De-Embedding SnP > Topology > Type (nwk2) > De-Embed.

g) Press Analysis > Fixture Simulator > De-Embedding SnP > De-Embedding SnP to turn on.

Note: For more details about the de-embedding function, refer to the E5071C ENA help below.

http://ena.support.keysight.com/e5071c/manuals/webhelp/eng/measurement/fixture_simulator/obtaining_characteristics_after_embedding_de_embedding_4_port.htm

5.3.2. TRL Calibration
TRL calibration is performed to remove the RF effects (i.e. mismatch, loss or delay) of RF cables and test fixtures. The definition file of TRL calibration standards is imported to the E5071C, and TRL calibration is performed with the E5071C firmware by measuring the TRL calibration standards such as Thru, Short, Lines or Load.

The calibration can be applied for the both channels, channel 1 for time domain measurements and channel 2 for frequency-domain measurements.

5.3.2.1. Selecting TRL Cal Kit
1. Press Channel Next to select Channel 1 or Channel 2
2. Press Cal > Cal Kit and select User.
3. Press Cal > Modify Cal Kit > Import Cal Kit and select the cal kit definition file (*.ckx) and click Open.
4. Confirm that the imported cal kit is set for the selected channel by pressing Cal > Cal Kit.

5.3.2.2. Performing TRL Calibration
1. Thru measurement
 a) Connect Thru standard of USB Type-C TRL calibration kit to the E5071C port 1 and port 2 with the RF cable.
 b) Press Cal > Calibrate > 4-port TRL Cal > Thru/Line > 1-2 Thru/Line.
 c) Connect Thru standard of USB Type-C TRL calibration kit to the E5071C port 1 and port 3 with the RF cable.
d) Press Cal > Calibrate > 4-port TRL Cal > Thru/Line > 1-3 Thru/Line.
e) Connect Thru standard of USB Type-C TRL calibration kit to the E5071C port 3 and port 4 with the RF cable.
f) Press Cal > Calibrate > 4-port TRL Cal > Thru/Line > 3-4 Thru/Line.

2. Reflect measurement
a) Connect Short standard of USB Type-C TRL calibration kit to the E5071C port 1 with the RF cable.
b) Press Cal > Calibrate > 4-port TRL Cal > Reflect > Port1 Reflect.
c) Connect Short standard of USB Type-C TRL calibration kit to the E5071C port 2 with the RF cable.
d) Press Cal > Calibrate > 4-port TRL Cal > Reflect > Port2 Reflect.
e) Connect Short standard of USB Type-C TRL calibration kit to the E5071C port 3 with the RF cable.
f) Press Cal > Calibrate > 4-port TRL Cal > Reflect > Port3 Reflect.
g) Connect Short standard of USB Type-C TRL calibration kit to the E5071C port 4 with the RF cable.
h) Press Cal > Calibrate > 4-port TRL Cal > Reflect > Port4 Reflect.

3. Line/Match measurement
a) Connect Line 1 standard of USB Type-C TRL calibration kit to the E5071C port 1 and port 2 with the RF cable.
b) Press Cal > Calibrate > 4-port TRL Cal > Line/Match > 1-2 Line/Match > Line/Match 1 (Line1).
c) Connect Line 2 standard of USB Type-C TRL calibration kit to the E5071C port 1 and port 2 with the RF cable.
d) Press Cal > Calibrate > 4-port TRL Cal > Line/Match > 1-2 Line/Match > Line/Match 2 (Line2).
e) Connect Line 3 standard of USB Type-C TRL calibration kit to the E5071C port 1 and port 2 with the RF cable.
f) Press Cal > Calibrate > 4-port TRL Cal > Line/Match > 1-2 Line/Match > Line/Match 3 (Line3).
g) Connect Load standard of USB Type-C TRL calibration kit to the E5071C port 1 and port 2 with the RF cable.
h) Press Cal > Calibrate > 4-port TRL Cal > Line/Match > 1-2 Line/Match > Line/Match 4 (Load).
i) Press Cal > Calibrate > 4-port TRL Cal > Line/Match > 1-3 Line/Match and repeat step a) to step h) by connecting line and load standards to the E5071C port 1 and port 3 with the RF cable.
j) Press Cal > Calibrate > 4-port TRL Cal > Line/Match > 3-4 Line/Match...
and repeat step a) to step h) by connecting line and load standards to the E5071C port 3 and port 4 with the RF cable.

4. Press **Cal > Calibrate > 4-port TRL Cal > Done** to complete calibration. The calibration coefficients are calculated and the error correction is automatically turned on.

5. Repeat the above TRL calibration for another channel after confirming that the imported cal kit is set for the channel by pressing **Cal > Cal Kit**.

5.3.3. Adjustment of Effective Rise Time

After performing the calibration, the effective rise time entering the USB Type-C connector pins is adjusted for the specification in time-domain measurements (Table 5-1).

1X Thru standard is connected to the E5071C port with RF cables. DUT is disconnected during the adjustment procedure.

Table 5-1 Specification of Effective Rise Time

<table>
<thead>
<tr>
<th>Trace</th>
<th>Test Items</th>
<th>Rise Time %</th>
<th>Target Rise Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tr 1 & 5</td>
<td>D+/D- Impedance</td>
<td>20 – 80 %</td>
<td>400 ps</td>
</tr>
<tr>
<td>Tr 1</td>
<td>D+/D- Propagation Delay</td>
<td>20 – 80 %</td>
<td>400 ps</td>
</tr>
<tr>
<td>Tr 2 & 6</td>
<td>D+/D- Intra-Pair Skew</td>
<td>20 – 80 %</td>
<td>400 ps</td>
</tr>
<tr>
<td>Tr 3 & 7</td>
<td>[Raw Cable] Characteristic Impedance</td>
<td>10 – 90 %</td>
<td>200 ps</td>
</tr>
<tr>
<td>Tr 4 & 8</td>
<td>[Mated Connector] Differential Impedance</td>
<td>20 – 80 %</td>
<td>40 ps</td>
</tr>
</tbody>
</table>

1. Press **Channel Next** to select Channel 1.
2. Press **Trace Max** to maximize the selected trace in the screen.
3. Open **TDR/TDT** tab.
4. Adjust effective rise time for each trace with the following procedure.

- **Trace 1 (Trace 5)** (Adjust effective rise time for Trace 1 then Trace 5)
 a) Connect 1X Thru standard to the E5071C port 1 (port 3) with the RF cable.
 b) Click **Trace 1 (Trace 5)**.
 c) Click **Parameter** tab.
 d) Select Measure to “Time Domain” and “Single-Ended”.
 e) Select Format to “Volt”.
 f) Click **Marker Search** and select “Rise Time (20–80%)”.
 g) Click **T11 (T33)**.
 h) Click **Run** to measure the rise time on the screen.
 i) Click **Auto Scale** and select “X&Y”.
 j) Enter rise time until the measured rise time is close to the specified value (400 ps).
 k) Click **Marker Search** and select “Rise Time (20–80%)” to turn off the marker.
l) Select Measure to “Time Domain” and “Differential”.
m) Select Format to “Impedance”.
n) Click Tdd11 (Tdd22).

- Trace 2 (Trace 6) (Adjust effective rise time for Trace 2 then Trace 6)
 a) Connect 1X Thru standard to the E5071C port 1 (port 2) with the RF cable.
b) Click Trace 2 (Trace 6).
c) Click Parameter tab.
d) Select Measure to “Time Domain” and “Single-Ended”.
e) Select Format to “Volt”.
f) Click Marker Search and select “Rise Time (20–80%)”.
g) Click T11 (T22).
h) Press Display > Equation to turn off the equation editor.
i) Click Run to measure the rise time on the screen.
j) Click Auto Scale and select “X&Y”.
k) Enter rise time until the measured rise time is close to the specified value (400 ps).
l) Click Marker Search and select “Rise Time (20–80%)” to turn off the marker.
m) Click T31 (T42).
n) Press Display > Equation to turn on the equation editor.
Keysight MOI for USB Type-C Connectors & Cable Assemblies Compliance Tests
(Type-C to Type-C Passive Cable Assemblies)

- Trace 3 (Trace 7) (Adjust effective rise time for Trace 3 then Trace 7)
 a) Connect 1X Thru standard to the E5071C port 1 (port 3) with the RF cable.
 b) Click Trace 3 (Trace 7).
 c) Click Parameter tab.
 d) Select Measure to “Time Domain” and “Single-Ended”.
 e) Select Format to “Volt”.
 f) Click Marker Search and select “Rise Time (10–90%)”.
 g) Click T11 (T33).
 h) Click Run to measure the rise time on the screen.
 i) Click Auto Scale and select “X&Y”.
 j) Enter rise time until the measured rise time is close to the specified value (200 ps).
 k) Click Marker Search and select “Rise Time (10–90%)” to turn off the marker.
 l) Select Measure to “Time Domain” and “Differential”.
 m) Select Format to “Impedance”.
 n) Click Tdd11 (Tdd22).

- Trace 4 (Trace 8) (Adjust effective rise time for Trace 4 then Trace 8)
 a) Connect 1X Thru standard to the E5071C port 1 (port 3) with the RF cable.
 b) Click Trace 4 (Trace 8).
 c) Click Parameter tab.
 d) Select Measure to “Time Domain” and “Single-Ended”.
 e) Select Format to “Volt”.
 f) Click Marker Search and select “Rise Time” (20–80 %).
 g) Click T11 (T33).
 h) Click Run to measure the rise time on the screen.
 i) Click Auto Scale and select “X&Y”.
 j) Enter rise time until the measured rise time is close to the specified value (40 ps).
 k) Click Marker Search and select “Rise Time” (20–80 %) to turn off the marker.
 l) Select Measure to “Time Domain” and “Differential”.
 m) Select Format to “Impedance”.
 n) Click Tdd11 (Tdd22).
5.4. Measurement (SuperSpeed Signal Pairs and D+/D- Signal Pair)

The connections for Type-C to Type-C cable assembly, raw cable and mated connector are assumed as follows (Note: TF stands for Test Fixture).

[Type-C to Type-C Cable Assembly (SuperSpeed Signal Pairs and D+/D- Signal Pair)]

<table>
<thead>
<tr>
<th>TF A Side</th>
<th>Cable Assembly</th>
<th>TF B Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type-C (Receptacle)</td>
<td>Type-C (Plug)</td>
<td>Type-C (Plug)</td>
</tr>
<tr>
<td>D+/D-</td>
<td>⇔</td>
<td>Rx1+/Rx1-</td>
</tr>
<tr>
<td>Tx1+/Tx1-</td>
<td>⇔</td>
<td>Tx1+/Tx1-</td>
</tr>
<tr>
<td>Rx1+/Rx1-</td>
<td>⇔</td>
<td>Tx2+/Tx2-</td>
</tr>
<tr>
<td>Tx2+/Tx2-</td>
<td>⇔</td>
<td>Tx2+/Tx2-</td>
</tr>
<tr>
<td>Rx2+/Rx2-</td>
<td>⇔</td>
<td>Tx2+/Tx2-</td>
</tr>
</tbody>
</table>

[Raw Cable]

<table>
<thead>
<tr>
<th>A Side</th>
<th>Raw Cable</th>
<th>B Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>D+/D-</td>
<td>⇔</td>
<td>D+/D-</td>
</tr>
<tr>
<td>Tx1+/Tx1-</td>
<td>⇔</td>
<td>Tx1+/Tx1-</td>
</tr>
<tr>
<td>Rx1+/Rx1-</td>
<td>⇔</td>
<td>Tx2+/Tx2-</td>
</tr>
<tr>
<td>Tx2+/Tx2-</td>
<td>n/a</td>
<td>Rx2+/Rx2-</td>
</tr>
<tr>
<td>Rx2+/Rx2-</td>
<td>n/a</td>
<td>Rx2+/Rx2-</td>
</tr>
</tbody>
</table>

[Mated Connector]

<table>
<thead>
<tr>
<th>TF1</th>
<th>Mated Connector</th>
<th>TF2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type-C (Receptacle)</td>
<td>Type-C (Plug)</td>
<td></td>
</tr>
<tr>
<td>D+/D-</td>
<td>⇔</td>
<td>D+/D-</td>
</tr>
<tr>
<td>Tx1+/Tx1-</td>
<td>⇔</td>
<td>Tx1+/Tx1-</td>
</tr>
<tr>
<td>Rx1+/Rx1-</td>
<td>⇔</td>
<td>Rx1+/Rx1-</td>
</tr>
<tr>
<td>Tx2+/Tx2-</td>
<td>⇔</td>
<td>Tx2+/Tx2-</td>
</tr>
<tr>
<td>Rx2+/Rx2-</td>
<td>⇔</td>
<td>Rx2+/Rx2-</td>
</tr>
</tbody>
</table>

5.4.1. D+/D- Impedance

Multiple reflections from impedance mismatches cause noise at the receiver. Therefore, the impedance profile provides an indication of multiple reflection induced noise.

1. Connect the E5071C ports (port 1 to 4) to the test fixture ports with RF cables.

<table>
<thead>
<tr>
<th>E5071C</th>
<th>Port 1</th>
<th>Port 2</th>
<th>Port 3</th>
<th>Port 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Fixtures</td>
<td>A Side D+</td>
<td>A Side D-</td>
<td>B Side D+</td>
<td>B Side D-</td>
</tr>
</tbody>
</table>

Note: Unused fixture pots should be terminated with 50 ohm terminators.

2. Press Channel Next to select Channel 1.
3. Press Channel Max to maximize Channel 1 on the screen.
4. Press Trace Max to maximize the selected trace on the screen.
5. Select Trace 1 (Tdd11).
6. Click Stop Single.
7. Confirm the measured characteristic impedance is within 75 ohm min and 105 ohm max.
8. Select Trace 5 (Tdd22) and repeat step 7 for the far end of DUT.

5.4.2. D+/D- Intra-Pair Skew
The intra-pair skew measurement ensures that the signal on both the D+ and D- lines of cable assembly arrive at the receiver at the same time.
1. Connect the E5071C ports (port 1 to port 4) to the test fixture ports with RF cables.

<table>
<thead>
<tr>
<th>E5071C</th>
<th>Port 1</th>
<th>Port 2</th>
<th>Port 3</th>
<th>Port 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Fixtures</td>
<td>A Side D+</td>
<td>A Side D-</td>
<td>B Side D+</td>
<td>B Side D-</td>
</tr>
</tbody>
</table>

2. Select Trace 2 (T31).
3. Click Stop Single.
4. Read Delta Time (Tr6) on the E5071C screen.
5. Confirm the measured intra-pair skew of D+/D- pair is lower than 100 psec.

5.4.3. D+/D- Propagation Delay
The propagation delay measurement is to verify the end-to-end propagation of the D+/D- lines of the cable assembly.
1. Connect the E5071C ports (port 1 to port 4) to the test fixture ports with RF cables.
Keysight MOI for USB Type-C Connectors & Cable Assemblies Compliance Tests
(Type-C to Type-C Passive Cable Assemblies)

<table>
<thead>
<tr>
<th>Test Fixtures</th>
<th>A Side D+</th>
<th>A Side D-</th>
<th>B Side D+</th>
<th>B Side D-</th>
</tr>
</thead>
</table>

2. Select **Trace 1 (Tdd1)**.
3. Open **TDR/TDT** tab.
4. Open **Parameters** tab.
5. Select Formant to “Volt”.
6. Click **Tdd21**.
7. Input vertical scale (100 mV/div) and vertical position (200 mV).
8. Press **Marker Search > Target > Target Value** and enter 200 mU.
9. Press **Marker Search** and turn on **Tracking**.
10. Click **Stop Single**.

11. Read marker value of Trace 1 on the screen.
12. Confirm the measured propagation delay at the rising edge is less than 20 nsec.
13. Press **Marker Search** and turn off **Tracking**.
14. Click **Marker** and select “1” to turn off the marker.
15. Open **Parameters** tab.
16. Select Formant to “Impedance”.
17. Click **Tdd11**.

5.4.4. D+/D- Pair Attenuation
1. Connect the E5071C ports (port 1 to 4) to the test fixture ports with RF cables.

<table>
<thead>
<tr>
<th>E5071C</th>
<th>Port 1</th>
<th>Port 2</th>
<th>Port 3</th>
<th>Port 4</th>
</tr>
</thead>
</table>

19
Keysight MOI for USB Type-C Connectors & Cable Assemblies Compliance Tests
(Type-C to Type-C Passive Cable Assemblies)

<table>
<thead>
<tr>
<th>Test Fixtures</th>
<th>A Side D+</th>
<th>B Side D+</th>
<th>A Side D-</th>
<th>B Side D-</th>
</tr>
</thead>
</table>

2. Press **Channel Next** to select Channel 2.
3. Press **Trace Next** to select Trace 1 (Sdd21).
4. Press **Trace Max** to maximize the selected trace on the screen.
5. Press **Trigger > Single**.
6. Confirm the measured attenuation of D+/D- pair is within the limit shown below.

<table>
<thead>
<tr>
<th>Start Frequency</th>
<th>Stop Frequency</th>
<th>Start Limit</th>
<th>Stop Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 MHz</td>
<td>100 MHz</td>
<td>-1.02 dB</td>
<td>-1.43 dB</td>
</tr>
<tr>
<td>100 MHz</td>
<td>200 MHz</td>
<td>-1.43 dB</td>
<td>-2.40 dB</td>
</tr>
<tr>
<td>200 MHz</td>
<td>400 MHz</td>
<td>-2.40 dB</td>
<td>-4.35 dB</td>
</tr>
</tbody>
</table>

5.4.5. ILfitatNq, IMR, IXT, IRL, Differential to Common-Mode Conversion
ILfitatNq, IMR, IXT, IRL, Differential to Common-Mode Conversion are checked with a standard tool (*CableComp Tool*) provided by USB-IF. Fifteen 4-port Touchstone files (*.s4p) are measured and saved by the E5071C firmware, and then imported by the compliance tool to conduct cable assembly compliance tests.

1. Connect the E5071C ports (port 1 to 4) to the test fixture ports with RF cables.
6. Launch compliance test tool and import fifteen 4-port Touchstone files (*.s4P) for pass/fail judgement.

7. Connect the E5071C ports with test fixture ports shown below and repeat step 3 to step 4 to save all necessary Touchstone files (*.s4p) in the E5071C, then repeat step 6 for Tx2/Rx2 pairs.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NEXT: Tx == Rx, SDD13/SDD31</td>
<td>A Side Tx2+</td>
<td>A Side Rx2+</td>
<td>A Side Tx2-</td>
<td>A Side Rx2-</td>
</tr>
<tr>
<td>NEXT: Tx == Rx, SDD24/SDD42</td>
<td>B Side Rx2+</td>
<td>B Side Tx2+</td>
<td>B Side Rx2-</td>
<td>B Side Tx2-</td>
</tr>
<tr>
<td>NEXT: Tx == D+/D-, SDD15/SDD51</td>
<td>A Side Tx2+</td>
<td>A Side D+</td>
<td>A Side Tx2-</td>
<td>A Side D-</td>
</tr>
<tr>
<td>NEXT: Rx == D+/D-, SDD35/SDD53</td>
<td>A Side Rx2+</td>
<td>A Side D+</td>
<td>A Side Rx2-</td>
<td>A Side D-</td>
</tr>
<tr>
<td>NEXT: Tx == D+/D-, SDD26/SDD62</td>
<td>B Side Rx2+</td>
<td>B Side D+</td>
<td>B Side Rx2-</td>
<td>B Side D-</td>
</tr>
<tr>
<td>NEXT: Rx == D+/D-, SDD46/SDD64</td>
<td>B Side Tx2+</td>
<td>B Side D+</td>
<td>B Side Tx2-</td>
<td>B Side D-</td>
</tr>
<tr>
<td>FEXT: Tx == Rx, SDD14/SDD41</td>
<td>A Side Tx2+</td>
<td>B Side Tx2+</td>
<td>A Side Tx2-</td>
<td>B Side Tx2-</td>
</tr>
<tr>
<td>FEXT: Tx == Rx, SDD23/SDD32</td>
<td>B Side Rx2+</td>
<td>A Side Rx2+</td>
<td>B Side Rx2-</td>
<td>A Side Rx2-</td>
</tr>
<tr>
<td>FEXT: Tx == D+/D-, SDD52/SDD25</td>
<td>A Side D+</td>
<td>B Side Rx2+</td>
<td>A Side D-</td>
<td>B Side Rx2-</td>
</tr>
<tr>
<td>FEXT: Rx == D+/D-, SDD54/SDD45</td>
<td>A Side D+</td>
<td>B Side Tx2+</td>
<td>A Side D-</td>
<td>B Side Tx2-</td>
</tr>
<tr>
<td>FEXT: Tx == D+/D-, SDD61/SDD16</td>
<td>B Side D+</td>
<td>A Side Tx2+</td>
<td>B Side D-</td>
<td>A Side Tx2-</td>
</tr>
<tr>
<td>FEXT: Rx == D+/D-, SDD63/SDD36</td>
<td>B Side D+</td>
<td>A Side Rx2+</td>
<td>B Side D-</td>
<td>A Side Rx2-</td>
</tr>
</tbody>
</table>

5.4.6. Shielding Effectiveness

1. Connect the E5071C ports (port 1 to 3) to the RFI test fixture ports with RF cables.

<table>
<thead>
<tr>
<th>E5071C</th>
<th>Port 1 (SE)</th>
<th>Port 2 (Bal+)</th>
<th>Port 3 (Bal-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Fixtures</td>
<td>SE</td>
<td>Tx1+</td>
<td>Tx1-</td>
</tr>
</tbody>
</table>

2. Press Analysis > Fixture Simulator > Topology > Device > SE-Bal.
3. Press Analysis > Fixture Simulator > Topology > Port1(se) > 1.
5. Press Analysis > Fixture Simulator > De-Embedding to turn off De-Embedding.
6. Press Trace Next to select Trace 3.
8. Press Trace Next to select Trace 11.
Keysight MOI for USB Type-C Connectors & Cable Assemblies Compliance Tests
(Type-C to Type-C Passive Cable Assemblies)

10. Press **Trigger > Single**.

11. Confirm the measured S_{ds21}/S_{cs21} is within the limit shown below.

<table>
<thead>
<tr>
<th>Type</th>
<th>Start Frequency</th>
<th>Stop Frequency</th>
<th>Start Limit</th>
<th>Stop Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Model</td>
<td>1 MHz</td>
<td>1.6 GHz</td>
<td>-60 dB</td>
<td>-60 dB</td>
</tr>
<tr>
<td></td>
<td>1.6 GHz</td>
<td>4 GHz</td>
<td>-55 dB</td>
<td>-55 dB</td>
</tr>
<tr>
<td></td>
<td>5 GHz</td>
<td>6 GHz</td>
<td>-55 dB</td>
<td>-55 dB</td>
</tr>
<tr>
<td>Common Model</td>
<td>1 MHz</td>
<td>1.6 GHz</td>
<td>-40 dB</td>
<td>-40 dB</td>
</tr>
<tr>
<td></td>
<td>1.6 GHz</td>
<td>4 GHz</td>
<td>-35 dB</td>
<td>-35 dB</td>
</tr>
<tr>
<td></td>
<td>5 GHz</td>
<td>6 GHz</td>
<td>-35 dB</td>
<td>-35 dB</td>
</tr>
</tbody>
</table>

12. Repeat the same operation of step 10 to step 11 for all the following combinations to confirm the measured S_{ds21}/S_{cs21} is within the specification.

<table>
<thead>
<tr>
<th>E5071C Test Fixtures</th>
<th>Port 1 (SE)</th>
<th>Port 2 (Bal+)</th>
<th>Port 3 (Bal-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE</td>
<td>Rx1+</td>
<td>Rx1-</td>
<td></td>
</tr>
<tr>
<td>SE</td>
<td>D+</td>
<td>D-</td>
<td></td>
</tr>
<tr>
<td>SE</td>
<td>Tx2+</td>
<td>Tx2-</td>
<td></td>
</tr>
<tr>
<td>SE</td>
<td>Rx2+</td>
<td>Rx2-</td>
<td></td>
</tr>
</tbody>
</table>

13. Press **Analysis > Fixture Simulator > Topology > Device > Bal-Bal**.

14. Press **Analysis > Fixture Simulator > Topology > Port1(bal) > 1-3**.

15. Press **Analysis > Fixture Simulator > Topology > Port2(bal) > 2-4**.

16. Press **Analysis > Fixture Simulator > De-Embedding** to turn on De-Embedding.

Informative electrical performance targets are provided for raw cables, mated connectors, and mated cable assemblies. These targets are not part of the USB Type-C compliance requirements, but provided for the purpose of design guidelines and manufacturing control.

5.4.7. [Raw Cable] Characteristic Impedance (Informative)

1. Connect the E5071C ports (port 1 to 4) to the test fixture ports with RF cables.

<table>
<thead>
<tr>
<th>E5071C RF Connection</th>
<th>Port 1 (A Side)</th>
<th>Port 2 (A Side)</th>
<th>Port 3 (B Side)</th>
<th>Port 4 (B Side)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Side Tx1+</td>
<td>A Side Tx1-</td>
<td>B Side Tx1+</td>
<td>B Side Tx1-</td>
<td></td>
</tr>
</tbody>
</table>

2. Press **Channel Next** to select Channel 1.

3. Select **Trace 3 (Tdd11)**.

4. Click **Stop Single**.

5. Confirm the measured characteristic impedance is within the limit shown below.

<table>
<thead>
<tr>
<th>Type</th>
<th>Limit</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shielded Differential Pair (SDP)</td>
<td>90 + 5</td>
<td>Ohm</td>
</tr>
<tr>
<td>Single-ended coaxial SS+ signal wires</td>
<td>45 + 3</td>
<td>Ohm</td>
</tr>
</tbody>
</table>
6. Select **Trace 7 (Tdd22)** and repeat step 5 for the impedance measurement at the device-end of DUT.

7. Repeat the same operation of step 3 to step 6 for all the following combinations to confirm the measured impedance is within the specification.

<table>
<thead>
<tr>
<th>E5071C</th>
<th>Port 1</th>
<th>Port 2</th>
<th>Port 3</th>
<th>Port 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Connection</td>
<td>A Side Rx1+</td>
<td>A Side Rx1-</td>
<td>B Side Rx1+</td>
<td>B Side Rx1-</td>
</tr>
<tr>
<td></td>
<td>A Side Tx2+</td>
<td>A Side Tx2-</td>
<td>B Side Tx2+</td>
<td>B Side Tx2-</td>
</tr>
<tr>
<td></td>
<td>A Side Rx2+</td>
<td>A Side Rx2-</td>
<td>B Side Rx2+</td>
<td>B Side Rx2-</td>
</tr>
</tbody>
</table>

5.4.8. **[Raw Cable] Intra-Pair Skew (Informative)**

1. Connect the E5071C ports (port 1 to 4) to the test fixture ports with RF cables.

<table>
<thead>
<tr>
<th>E5071C</th>
<th>Port 1</th>
<th>Port 2</th>
<th>Port 3</th>
<th>Port 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Connection</td>
<td>A Side Tx1+</td>
<td>A Side Tx1-</td>
<td>B Side Tx1+</td>
<td>B Side Tx1-</td>
</tr>
<tr>
<td></td>
<td>A Side Tx2+</td>
<td>A Side Tx2-</td>
<td>B Side Tx2+</td>
<td>B Side Tx2-</td>
</tr>
<tr>
<td></td>
<td>A Side Rx2+</td>
<td>A Side Rx2-</td>
<td>B Side Rx2+</td>
<td>B Side Rx2-</td>
</tr>
</tbody>
</table>

2. Select **Trace 2 (T31)**.

3. Click **Stop Single**.

4. Confirm the measured intra-pair skew is less than 10 ps/m.

5. Repeat the same operation of step 3 to step 4 for all the following combinations to confirm the measured skew is within the specification.

<table>
<thead>
<tr>
<th>E5071C</th>
<th>Port 1</th>
<th>Port 2</th>
<th>Port 3</th>
<th>Port 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Connection</td>
<td>A Side Rx1+</td>
<td>A Side Rx1-</td>
<td>B Side Rx1+</td>
<td>B Side Rx1-</td>
</tr>
<tr>
<td></td>
<td>A Side Tx2+</td>
<td>A Side Tx2-</td>
<td>B Side Tx2+</td>
<td>B Side Tx2-</td>
</tr>
<tr>
<td></td>
<td>A Side Rx2+</td>
<td>A Side Rx2-</td>
<td>B Side Rx2+</td>
<td>B Side Rx2-</td>
</tr>
</tbody>
</table>

5.4.9. **[Raw Cable] Differential Insertion Loss (Informative)**

1. Connect the E5071C ports (port 1 to 4) to the test fixture ports with RF cables.

<table>
<thead>
<tr>
<th>E5071C</th>
<th>Port 1</th>
<th>Port 2</th>
<th>Port 3</th>
<th>Port 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Connection</td>
<td>A Side Tx1+</td>
<td>B Side Tx1+</td>
<td>A Side Tx1-</td>
<td>B Side Tx1-</td>
</tr>
<tr>
<td></td>
<td>A Side Tx2+</td>
<td>B Side Tx2+</td>
<td>A Side Tx2-</td>
<td>B Side Tx2-</td>
</tr>
<tr>
<td></td>
<td>A Side Rx2+</td>
<td>B Side Rx2+</td>
<td>A Side Rx2-</td>
<td>B Side Rx2-</td>
</tr>
</tbody>
</table>

2. Press **Channel Next** to select Channel 2.

3. Press **Trace Next** to select Trace 4 (Sdd21).

4. Press **Trigger > Single**.

5. Confirm the measured differential insertion loss is xx.

6. Repeat the same operation of step 4 to step 5 for all the following combinations to confirm the measured insertion loss is within the specification.

<table>
<thead>
<tr>
<th>E5071C</th>
<th>Port 1</th>
<th>Port 2</th>
<th>Port 3</th>
<th>Port 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Connection</td>
<td>A Side Rx1+</td>
<td>B Side Rx1+</td>
<td>A Side Rx1-</td>
<td>B Side Rx1-</td>
</tr>
<tr>
<td></td>
<td>A Side Tx2+</td>
<td>B Side Tx2+</td>
<td>A Side Tx2-</td>
<td>B Side Tx2-</td>
</tr>
<tr>
<td></td>
<td>A Side Rx2+</td>
<td>B Side Rx2+</td>
<td>A Side Rx2-</td>
<td>B Side Rx2-</td>
</tr>
</tbody>
</table>
5.4.10. [Mated Connector] Differential Impedance (Informative)
1. Connect the E5071C ports (port 1 to 4) to the test fixture ports with RF cables.

<table>
<thead>
<tr>
<th>E5071C</th>
<th>Port 1</th>
<th>Port 2</th>
<th>Port 3</th>
<th>Port 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Fixtures</td>
<td>TF1 Tx1+</td>
<td>TF1 Tx1-</td>
<td>TF2 Tx1+</td>
<td>TF2 Tx1-</td>
</tr>
</tbody>
</table>

2. Press **Channel Next** to select Channel 1.
3. Select **Trace 4 (Tdd11)**.
4. Click **Stop Single**.
5. Confirm the measured characteristic impedance is within the limit, 85 +/- 9 ohm.
6. Select **Trace 8 (Tdd22)** and repeat step 5 for the far end of DUT.
7. Repeat the same operation of step 3 to step 6 for all the following combinations to confirm the measured impedance is within the specification.

<table>
<thead>
<tr>
<th>E5071C</th>
<th>Port 1</th>
<th>Port 2</th>
<th>Port 3</th>
<th>Port 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Fixtures</td>
<td>TF1 Rx1+</td>
<td>TF1 Rx1-</td>
<td>TF2 Rx1+</td>
<td>TF2 Rx1-</td>
</tr>
<tr>
<td></td>
<td>TF1 Tx2+</td>
<td>TF1 TX2-</td>
<td>TF2 Tx2+</td>
<td>TF2 Tx2-</td>
</tr>
<tr>
<td></td>
<td>TF1 Rx2+</td>
<td>TF1 Rx2-</td>
<td>TF2 Rx2+</td>
<td>TF2 Rx2-</td>
</tr>
</tbody>
</table>

5.4.11. [Mated Connector] Differential Insertion Loss (Informative)
1. Connect the E5071C ports (port 1 to 4) to the test fixture ports with RF cables.

<table>
<thead>
<tr>
<th>E5071C</th>
<th>Port 1</th>
<th>Port 2</th>
<th>Port 3</th>
<th>Port 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Fixtures</td>
<td>TF1 Tx1+</td>
<td>TF2 Tx1+</td>
<td>TF1 Tx1-</td>
<td>TF2 Tx1-</td>
</tr>
</tbody>
</table>

2. Press **Channel Next** to select Channel 2.
3. Press **Trace Next** to select Trace 5 (Sdd21).
4. Press **Trigger > Single**.
5. Confirm the measured differential insertion loss is within the limit shown below.

<table>
<thead>
<tr>
<th>Start Frequency</th>
<th>Stop Frequency</th>
<th>Start Limit</th>
<th>Stop Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 MHz</td>
<td>2.5 GHz</td>
<td>-0.25 dB</td>
<td>-0.35 dB</td>
</tr>
<tr>
<td>2.5 GHz</td>
<td>5 GHz</td>
<td>-0.35 dB</td>
<td>-0.45 dB</td>
</tr>
<tr>
<td>5 GHz</td>
<td>10 GHz</td>
<td>-0.45 dB</td>
<td>-0.75 dB</td>
</tr>
<tr>
<td>10 GHz</td>
<td>15 GHz</td>
<td>-0.75 dB</td>
<td>-1.85 dB</td>
</tr>
</tbody>
</table>

6. Repeat the same operation of step 4 to step 5 for all the following combinations to confirm the measured insertion loss is within the specification.

<table>
<thead>
<tr>
<th>E5071C</th>
<th>Port 1</th>
<th>Port 2</th>
<th>Port 3</th>
<th>Port 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Fixtures</td>
<td>TF1 Rx1+</td>
<td>TF2 Rx1+</td>
<td>TF1 Rx1-</td>
<td>TF2 Rx1-</td>
</tr>
<tr>
<td></td>
<td>TF1 Tx2+</td>
<td>TF2 Tx2+</td>
<td>TF1 TX2-</td>
<td>TF2 TX2-</td>
</tr>
<tr>
<td></td>
<td>TF1 Rx2+</td>
<td>TF2 Rx2+</td>
<td>TF1 Rx2-</td>
<td>TF2 Rx2-</td>
</tr>
</tbody>
</table>

5.4.12. [Mated Connector] Differential Return Loss (Informative)
1. Connect the E5071C ports (port 1 to 4) to the test fixture ports with RF cables.
Keysight MOI for USB Type-C Connectors & Cable Assemblies Compliance Tests
(Type-C to Type-C Passive Cable Assemblies)

<table>
<thead>
<tr>
<th>Test Fixtures</th>
<th>TF1 Tx1+</th>
<th>TF2 Tx1+</th>
<th>TF1 Tx1-</th>
<th>TF2 Tx1-</th>
</tr>
</thead>
</table>

2. Press **Trace Next** to select Trace 13 (Sdd11).
3. Press **Trigger > Single**.
4. Confirm the measured differential insertion loss is within the limit shown below.

<table>
<thead>
<tr>
<th>Start Frequency</th>
<th>Stop Frequency</th>
<th>Start Limit</th>
<th>Stop Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 MHz</td>
<td>5 GHz</td>
<td>-20 dB</td>
<td>-20 dB</td>
</tr>
<tr>
<td>5 GHz</td>
<td>10 GHz</td>
<td>-20 dB</td>
<td>-13 dB</td>
</tr>
<tr>
<td>10 GHz</td>
<td>15 GHz</td>
<td>-13 dB</td>
<td>-6 dB</td>
</tr>
</tbody>
</table>

5. Repeat the same operation of step 3 to step 4 for all the following combinations to confirm the measured return loss is within the specification.

<table>
<thead>
<tr>
<th>E5071C Port 1</th>
<th>Port 2</th>
<th>Port 3</th>
<th>Port 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>TF1 Rx1+</td>
<td>TF2 Rx1+</td>
<td>TF1 Rx1-</td>
<td>TF2 Rx1-</td>
</tr>
<tr>
<td>TF1 Tx2+</td>
<td>TF2 Tx2+</td>
<td>TF1 TX2-</td>
<td>TF2 Tx2-</td>
</tr>
<tr>
<td>TF1 Rx2+</td>
<td>TF2 Rx2+</td>
<td>TF1 Rx2-</td>
<td>TF2 Rx2-</td>
</tr>
</tbody>
</table>

5.4.13. [Mated Connector] Differential NEXT & FEXT between SS Signal Pairs (Informative)

1. Connect the E5071C ports (port 1 to 4) to the test fixture ports with RF cables.

<table>
<thead>
<tr>
<th>E5071C Port 1</th>
<th>Port 2</th>
<th>Port 3</th>
<th>Port 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>TF1 Tx1+</td>
<td>TF1 Rx1+</td>
<td>TF1 Tx1-</td>
<td>TF1 Rx1-</td>
</tr>
</tbody>
</table>

2. Press **Trace Next** to select Trace 6 (Sdd21).
3. Press **Trigger > Single**.
4. Confirm the measured differential crosstalk is within the limit shown below.

<table>
<thead>
<tr>
<th>Start Frequency</th>
<th>Stop Frequency</th>
<th>Start Limit</th>
<th>Stop Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 MHz</td>
<td>5 GHz</td>
<td>-40 dB</td>
<td>-40 dB</td>
</tr>
<tr>
<td>5 GHz</td>
<td>10 GHz</td>
<td>-40 dB</td>
<td>-36 dB</td>
</tr>
<tr>
<td>10 GHz</td>
<td>15 GHz</td>
<td>-36 dB</td>
<td>-30 dB</td>
</tr>
</tbody>
</table>

5. Repeat the same operation of step 3 to step 4 for all the following combinations to confirm the measured crosstalk is within the specification.

<table>
<thead>
<tr>
<th>E5071C Port 1</th>
<th>Port 2</th>
<th>Port 3</th>
<th>Port 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>TF1 Tx1+</td>
<td>TF2 Rx1+</td>
<td>TF1 Tx1-</td>
<td>TF2 Rx1-</td>
</tr>
<tr>
<td>TF1 Rx1+</td>
<td>TF2 Tx1+</td>
<td>TF1 Rx1-</td>
<td>TF2 Tx1-</td>
</tr>
<tr>
<td>TF2 Tx1+</td>
<td>TF2 Tx1+</td>
<td>TF2 Rx1-</td>
<td>TF2 Tx1-</td>
</tr>
<tr>
<td>TF1 Tx2+</td>
<td>TF2 Rx2+</td>
<td>TF1 Tx2-</td>
<td>TF2 Rx2-</td>
</tr>
<tr>
<td>TF1 Tx2+</td>
<td>TF2 Tx2+</td>
<td>TF1 Rx2-</td>
<td>TF2 Tx2-</td>
</tr>
<tr>
<td>TF1 Rx2+</td>
<td>TF2 Tx2+</td>
<td>TF1 Rx2-</td>
<td>TF2 Tx2-</td>
</tr>
<tr>
<td>TF2 Rx2+</td>
<td>TF2 Tx2+</td>
<td>TF2 Rx2-</td>
<td>TF2 Tx2-</td>
</tr>
</tbody>
</table>

5.4.14. [Mated Connector] Differential NEXT & FEXT between D+/D-
Keysight MOI for USB Type-C Connectors & Cable Assemblies Compliance Tests
(Type-C to Type-C Passive Cable Assemblies)

Pair and SS Signal Pairs (Informative)
1. Connect the E5071C ports (port 1 to 4) to the test fixture ports with RF cables.

<table>
<thead>
<tr>
<th>E5071C</th>
<th>Port 1</th>
<th>Port 2</th>
<th>Port 3</th>
<th>Port 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Fixtures</td>
<td>TF1 D+</td>
<td>TF1 Tx1+</td>
<td>TF1 D-</td>
<td>TF1 Tx1-</td>
</tr>
</tbody>
</table>

2. Press Trace Next to select Trace 14 (Sdd21).
4. Confirm the measured differential crosstalk is within the limit shown below.

<table>
<thead>
<tr>
<th>Start Frequency</th>
<th>Stop Frequency</th>
<th>Start Limit</th>
<th>Stop Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 MHz</td>
<td>5 GHz</td>
<td>-40 dB</td>
<td>-40 dB</td>
</tr>
<tr>
<td>5 GHz</td>
<td>7.5 GHz</td>
<td>-40 dB</td>
<td>-36 dB</td>
</tr>
</tbody>
</table>

5. Repeat the same operation of step 3 to step 4 for all the following combinations to confirm the measured crosstalk is within the specification.

<table>
<thead>
<tr>
<th>E5071C</th>
<th>Port 1</th>
<th>Port 2</th>
<th>Port 3</th>
<th>Port 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Fixtures</td>
<td>TF1 D+</td>
<td>TF2 Tx1+</td>
<td>TF1 D-</td>
<td>TF2 Tx1-</td>
</tr>
<tr>
<td>TF1 D+</td>
<td>TF2 Ex1+</td>
<td>TF1 D-</td>
<td>TF2 Ex1-</td>
<td></td>
</tr>
<tr>
<td>TF1 D+</td>
<td>TF1 Tx2+</td>
<td>TF1 D-</td>
<td>TF1 Tx2-</td>
<td></td>
</tr>
<tr>
<td>TF1 D+</td>
<td>TF1 Tx1+</td>
<td>TF1 D-</td>
<td>TF1 Tx1-</td>
<td></td>
</tr>
<tr>
<td>TF1 D+</td>
<td>TF1 Tx2+</td>
<td>TF1 D-</td>
<td>TF1 Tx2-</td>
<td></td>
</tr>
<tr>
<td>TF1 D+</td>
<td>TF2 Tx1+</td>
<td>TF1 D-</td>
<td>TF2 Tx1-</td>
<td></td>
</tr>
<tr>
<td>TF1 D+</td>
<td>TF2 Tx1+</td>
<td>TF1 D-</td>
<td>TF2 Tx1-</td>
<td></td>
</tr>
<tr>
<td>TF1 D+</td>
<td>TF2 Tx1+</td>
<td>TF1 D-</td>
<td>TF2 Tx1-</td>
<td></td>
</tr>
<tr>
<td>TF2 D+</td>
<td>TF1 Tx2+</td>
<td>TF2 D-</td>
<td>TF2 Tx2-</td>
<td></td>
</tr>
<tr>
<td>TF2 D+</td>
<td>TF2 Tx1+</td>
<td>TF2 D-</td>
<td>TF2 Tx1-</td>
<td></td>
</tr>
<tr>
<td>TF2 D+</td>
<td>TF2 Tx2+</td>
<td>TF2 D-</td>
<td>TF2 Tx2-</td>
<td></td>
</tr>
<tr>
<td>TF2 D+</td>
<td>TF2 Tx2+</td>
<td>TF2 D-</td>
<td>TF2 Tx2-</td>
<td></td>
</tr>
<tr>
<td>TF2 D+</td>
<td>TF1 Tx2+</td>
<td>TF2 D-</td>
<td>TF1 Tx2-</td>
<td></td>
</tr>
</tbody>
</table>

5.4.15. [Mated Connector] Differential to Common-Mode Conversion (Informative)
1. Connect the E5071C ports (port 1 to 4) to the test fixture ports with RF cables.

<table>
<thead>
<tr>
<th>E5071C</th>
<th>Port 1</th>
<th>Port 2</th>
<th>Port 3</th>
<th>Port 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Fixtures</td>
<td>TF1 Tx1+</td>
<td>TF2 Tx1+</td>
<td>TF1 Tx1-</td>
<td>TF2 Tx1-</td>
</tr>
</tbody>
</table>

2. Press Trace Next to select Trace 12 (Scd21).
4. Confirm the measured differential to common-mode conversion is within the limit shown below.

<table>
<thead>
<tr>
<th>Start Frequency</th>
<th>Stop Frequency</th>
<th>Start Limit</th>
<th>Stop Limit</th>
</tr>
</thead>
</table>
Keysight MOI for USB Type-C Connectors & Cable Assemblies Compliance Tests
(Type-C to Type-C Passive Cable Assemblies)

<table>
<thead>
<tr>
<th>100 MHz</th>
<th>6 GHz</th>
<th>-30 dB</th>
<th>-30 dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 GHz</td>
<td>10 GHz</td>
<td>-30 dB</td>
<td>-25 dB</td>
</tr>
</tbody>
</table>

5. Repeat the same operation of step 3 to step 4 for all the following combinations to confirm the measured differential to common-mode conversion is within the specification.

<table>
<thead>
<tr>
<th>E5071C</th>
<th>Port 1</th>
<th>Port 2</th>
<th>Port 3</th>
<th>Port 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Fixtures</td>
<td>TF1 Rx1+</td>
<td>TF2 Rx1+</td>
<td>TF1Rx1-</td>
<td>TF2 Rx1-</td>
</tr>
<tr>
<td></td>
<td>TF1 Tx2+</td>
<td>TF2 Tx2+</td>
<td>TF1 Tx2-</td>
<td>TF2 Tx2-</td>
</tr>
<tr>
<td></td>
<td>TF1 Rx2+</td>
<td>TF2 Rx2+</td>
<td>TF1 Rx2-</td>
<td>TF2 Rx2-</td>
</tr>
</tbody>
</table>

5.4.16. Differential Insertion Loss (Informative)

1. Connect the E5071C ports (port 1 to 4) to the test fixture ports with RF cables.

<table>
<thead>
<tr>
<th>E5071C</th>
<th>Port 1</th>
<th>Port 2</th>
<th>Port 3</th>
<th>Port 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Fixtures</td>
<td>A Side Tx1+</td>
<td>B Side Rx1+</td>
<td>A Side Tx1-</td>
<td>B Side Rx1-</td>
</tr>
<tr>
<td></td>
<td>A Side Tx2+</td>
<td>B Side Rx2+</td>
<td>A Side Tx2-</td>
<td>B Side Rx2-</td>
</tr>
<tr>
<td></td>
<td>A Side Rx1+</td>
<td>B Side Tx1+</td>
<td>A Side Rx1-</td>
<td>B Side Tx1-</td>
</tr>
<tr>
<td></td>
<td>A Side Rx2+</td>
<td>B Side Tx2+</td>
<td>A Side Rx2-</td>
<td>B Side Tx2-</td>
</tr>
</tbody>
</table>

2. Press Trace Next to select Trace 7 (Sdd21).

4. Confirm the measured differential insertion loss is within the limit shown below.

<table>
<thead>
<tr>
<th>Start Frequency</th>
<th>Stop Frequency</th>
<th>Start Limit</th>
<th>Stop Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 MHz</td>
<td>5 GHz</td>
<td>-18 dB</td>
<td>-18 dB</td>
</tr>
<tr>
<td>5 GHz</td>
<td>10 GHz</td>
<td>-18 dB</td>
<td>-12 dB</td>
</tr>
</tbody>
</table>

5. Repeat the same operation of step 3 to step 4 for all the following combinations to confirm the measured insertion loss is within the specification.

<table>
<thead>
<tr>
<th>E5071C</th>
<th>Port 1</th>
<th>Port 2</th>
<th>Port 3</th>
<th>Port 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Fixtures</td>
<td>A Side Tx1+</td>
<td>B Side Rx1+</td>
<td>A Side Tx1-</td>
<td>B Side Rx1-</td>
</tr>
<tr>
<td></td>
<td>A Side Tx2+</td>
<td>B Side Rx2+</td>
<td>A Side Tx2-</td>
<td>B Side Rx2-</td>
</tr>
</tbody>
</table>

5.4.17. Differential Return Loss (Informative)

1. Connect the E5071C ports (port 1 to 4) to the test fixture ports with RF cables.

<table>
<thead>
<tr>
<th>E5071C</th>
<th>Port 1</th>
<th>Port 2</th>
<th>Port 3</th>
<th>Port 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Fixtures</td>
<td>A Side Tx1+</td>
<td>B Side Rx1+</td>
<td>A Side Tx1-</td>
<td>B Side Rx1-</td>
</tr>
</tbody>
</table>

2. Press Trace Next to select Trace 15 (Sdd11).

4. Confirm the measured differential insertion loss is within the limit shown below.

<table>
<thead>
<tr>
<th>Start Frequency</th>
<th>Stop Frequency</th>
<th>Start Limit</th>
<th>Stop Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 MHz</td>
<td>5 GHz</td>
<td>-18 dB</td>
<td>-18 dB</td>
</tr>
<tr>
<td>5 GHz</td>
<td>10 GHz</td>
<td>-18 dB</td>
<td>-12 dB</td>
</tr>
</tbody>
</table>
5. Repeat the same operation of step 3 to step 4 for all the following combinations to confirm the measured return loss is within the specification.

<table>
<thead>
<tr>
<th>E5071C</th>
<th>Port 1</th>
<th>Port 2</th>
<th>Port 3</th>
<th>Port 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Fixtures</td>
<td>A Side Tx2+</td>
<td>B Side Rx2+</td>
<td>A Side Tx2-</td>
<td>B Side Rx2-</td>
</tr>
<tr>
<td></td>
<td>A Side Rx1+</td>
<td>B Side Tx1+</td>
<td>A Side Rx1-</td>
<td>B Side Tx1-</td>
</tr>
<tr>
<td></td>
<td>A Side Rx2+</td>
<td>B Side Tx2+</td>
<td>A Side Rx2-</td>
<td>B Side Tx2-</td>
</tr>
</tbody>
</table>

5.4.18. Differential NEXT & FEXT between SS Signal Pairs (Informative)

1. Connect the E5071C ports (port 1 to 4) to the test fixture ports with RF cables.

<table>
<thead>
<tr>
<th>E5071C</th>
<th>Port 1</th>
<th>Port 2</th>
<th>Port 3</th>
<th>Port 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Fixtures</td>
<td>A Side Tx1+</td>
<td>A Side Rx1+</td>
<td>A Side Tx1-</td>
<td>A Side Rx1-</td>
</tr>
</tbody>
</table>

2. Press **Trace Next** to select Trace 8 (Sdd21).

3. Press **Trigger > Single**.

4. Confirm the measured differential crosstalk is within the limit shown below.

<table>
<thead>
<tr>
<th>Start Frequency</th>
<th>Stop Frequency</th>
<th>Start Limit</th>
<th>Stop Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 MHz</td>
<td>5 GHz</td>
<td>-37 dB</td>
<td>-37 dB</td>
</tr>
<tr>
<td>5 GHz</td>
<td>10 GHz</td>
<td>-37 dB</td>
<td>-32 dB</td>
</tr>
<tr>
<td>10 GHz</td>
<td>15 GHz</td>
<td>-32 dB</td>
<td>-25 dB</td>
</tr>
</tbody>
</table>

5. Repeat the same operation of step 3 to step 4 for all the following combinations to confirm the measured crosstalk is within the specification.

<table>
<thead>
<tr>
<th>E5071C</th>
<th>Port 1</th>
<th>Port 2</th>
<th>Port 3</th>
<th>Port 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Fixtures</td>
<td>A Side Tx1+</td>
<td>B Side Tx1+</td>
<td>A Side Tx1-</td>
<td>B Side Tx1-</td>
</tr>
<tr>
<td></td>
<td>A Side Rx1+</td>
<td>B Side Rx1-</td>
<td>A Side Rx1-</td>
<td>B Side Rx1-</td>
</tr>
<tr>
<td></td>
<td>B Side Tx1+</td>
<td>B Side Rx1-</td>
<td>A Side Tx1-</td>
<td>B Side Rx1-</td>
</tr>
<tr>
<td></td>
<td>A Side Tx2+</td>
<td>A Side Rx2+</td>
<td>A Side Tx2-</td>
<td>A Side Rx2-</td>
</tr>
<tr>
<td></td>
<td>A Side Tx2+</td>
<td>B Side Tx2+</td>
<td>A Side Tx2-</td>
<td>B Side Rx2-</td>
</tr>
<tr>
<td></td>
<td>A Side Rx2+</td>
<td>B Side Rx2+</td>
<td>A Side Tx2-</td>
<td>B Side Rx2-</td>
</tr>
<tr>
<td></td>
<td>B Side Tx2+</td>
<td>B Side Rx2+</td>
<td>B Side Tx2-</td>
<td>B Side Rx2-</td>
</tr>
</tbody>
</table>

5.4.19. Differential NEXT & FEXT between D+/D- Pair and SS Signal Pairs (Informative)

1. Connect the E5071C ports (port 1 to 4) to the test fixture ports with RF cables.

<table>
<thead>
<tr>
<th>E5071C</th>
<th>Port 1</th>
<th>Port 2</th>
<th>Port 3</th>
<th>Port 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Fixtures</td>
<td>A Side D+</td>
<td>A Side Tx1+</td>
<td>A Side D-</td>
<td>A Side Tx1-</td>
</tr>
</tbody>
</table>

2. Press **Trace Next** to select Trace 16 (Sdd21).

3. Press **Trigger > Single**.

4. Confirm the measured differential crosstalk is within the limit shown below.

<table>
<thead>
<tr>
<th>Start Frequency</th>
<th>Stop Frequency</th>
<th>Start Limit</th>
<th>Stop Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 GHz</td>
<td>15 GHz</td>
<td>-37 dB</td>
<td>-37 dB</td>
</tr>
<tr>
<td>5 GHz</td>
<td>10 GHz</td>
<td>-37 dB</td>
<td>-32 dB</td>
</tr>
<tr>
<td>10 GHz</td>
<td>15 GHz</td>
<td>-32 dB</td>
<td>-25 dB</td>
</tr>
</tbody>
</table>
5. Repeat the same operation of step 3 to step 4 for all the following combinations to confirm the measured crosstalk is within the specification.

<table>
<thead>
<tr>
<th>E5071C Test Fixtures</th>
<th>Port 1</th>
<th>Port 2</th>
<th>Port 3</th>
<th>Port 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Side D+</td>
<td>A Side Rx1+</td>
<td>A Side D-</td>
<td>A Side Rx1-</td>
<td></td>
</tr>
<tr>
<td>A Side D+</td>
<td>B Side Tx1+</td>
<td>A Side D-</td>
<td>B Side Tx1-</td>
<td></td>
</tr>
<tr>
<td>A Side D+</td>
<td>B Side Rx1+</td>
<td>A Side D-</td>
<td>B Side Rx1-</td>
<td></td>
</tr>
<tr>
<td>A Side D+</td>
<td>A Side Tx2+</td>
<td>A Side D-</td>
<td>A Side Tx2-</td>
<td></td>
</tr>
<tr>
<td>A Side D+</td>
<td>A Side Rx2+</td>
<td>A Side D-</td>
<td>A Side Rx2-</td>
<td></td>
</tr>
<tr>
<td>A Side D+</td>
<td>B Side Tx2+</td>
<td>A Side D-</td>
<td>B Side Tx2-</td>
<td></td>
</tr>
<tr>
<td>A Side D+</td>
<td>B Side Rx2+</td>
<td>A Side D-</td>
<td>B Side Rx2-</td>
<td></td>
</tr>
<tr>
<td>B Side D+</td>
<td>B Side Tx1+</td>
<td>B Side D-</td>
<td>B Side Tx1-</td>
<td></td>
</tr>
<tr>
<td>B Side D+</td>
<td>B Side Rx1+</td>
<td>B Side D-</td>
<td>B Side Rx1-</td>
<td></td>
</tr>
<tr>
<td>B Side D+</td>
<td>A Side Tx1+</td>
<td>B Side D-</td>
<td>A Side Tx1-</td>
<td></td>
</tr>
<tr>
<td>B Side D+</td>
<td>A Side Rx1+</td>
<td>B Side D-</td>
<td>A Side Rx1-</td>
<td></td>
</tr>
<tr>
<td>B Side D+</td>
<td>B Side Tx2+</td>
<td>B Side D-</td>
<td>B Side Tx2-</td>
<td></td>
</tr>
<tr>
<td>B Side D+</td>
<td>B Side Rx2+</td>
<td>B Side D-</td>
<td>B Side Rx2-</td>
<td></td>
</tr>
<tr>
<td>B Side D+</td>
<td>A Side Tx2+</td>
<td>B Side D-</td>
<td>A Side Tx2-</td>
<td></td>
</tr>
<tr>
<td>B Side D+</td>
<td>A Side Rx2+</td>
<td>B Side D-</td>
<td>A Side Rx2-</td>
<td></td>
</tr>
</tbody>
</table>

5.5. Measurement (Low Speed Signal)
To be added in a future revision.

5.5.1. [Low Speed Signal] Characteristic Impedance

5.5.2. [Low Speed Signal] Coupling between CC and USB D+/D- / VBUS
Coupling to SBU_A/SBU_B, CC, and USB D+/D- / Coupling between SBU_A/SBU_B and CC, SBU_A/SBU_B and USB D+/D-, and SBU_A and SBU_B

The procedures of manual setup for time-domain and frequency-domain measurements are introduced in the section. All the following parameters are saved in the E5071C’s state file, which is available at: http://www.keysight.com/find/ena-tdr_usbtype-c-cabcon

6.1.1. Channel & Trace Setup

If TDR setup wizard is shown when launching the TDR software, click Close button in the TDR setup wizard main window.
1. Open Setup tab in the TDR software.
2. Click Preset to preset the instrument. Click OK in a dialog box to continue.
3. Set DUT Topology to “Differential 2-Port”. Click OK in a dialog box.
4. Click Advanced Mode>>.
5. A dialog box appears requesting for confirmation. Then click Yes. (Clear the check box for “Use Advanced Calibration Methods”)
6. Click Stop Single.
7. Set DUT Length to “16 ns”.
8. Open TDR/TDT tab.
9. Click Trace Control tab.
10. Clear Time and Marker check box under Coupling.
11. Press **Display > Allocate Channels**

12. Press **Channel Max** to maximize the screen of channel 1.

6.1.2. D+/D- Impedance

1. Select **Trace 1**.
2. Open **Parameters** tab.
4. Select Format to “Impedance”
5. Select **Rise Time** to 20-80% and input value (400 ps).
6. Click **Tdd11**.
7. Input vertical scale (10 Ohm/div) and vertical position (40 Ohm).

8. Open **Trace Control** tab.
9. Click **Trace Settings Copy** to launch trace copy dialog box.
10. Select the Trace 1 in the From list.
11. Select the Trace 5 in the To list.
12. Click **Copy**.
13. Click **Close**.

14. Select **Trace 5**.
15. Open Parameter tab.
16. Click Tdd22.

6.1.3. D+/D- Intra-Pair Skew

6.1.3.1. Parameter Setup
1. Select Trace 2.
2. Open Parameters tab.
4. Select Formant to “Volt”.
5. Select Rise Time to 20-80% and input value (400 ps).
6. Click T31.
7. Open Trace Control tab.
8. Click Trace Settings Copy to launch trace copy dialog box.
9. Select Trace 2 in the From list.
10. Select Trace 6 in the To list.
11. Click Copy.
12. Click Close.
15. Click T42.
16. Select Trace 2 (T31).
17. Click Marker Search and select Δ Time.
18. Check Δ Time.
19. Select Target (Stop) to Trace 6 and click OK.
6.1.3.2. Crosstalk Compensation

1. Select Trace 2.
2. Press Display > Equation Editor… > Enter an equation “S31-S32”.
3. Check Enabled to enable the equation on trace.
4. Click Apply.
5. Click Close.

7. Press Display > Equation Editor… > Enter an equation “S42-S41”.
8. Check Enabled to enable the equation on trace.
9. Click Apply.
10. Click Close.
6.1.4. [Raw Cable] Characteristic Impedance (Informative)
1. Select Trace 3.
2. Open Parameters tab.
4. Select Format to “Impedance”
5. Select Rise Time to 10-90% and input value (200 ps).
6. Click Tdd11.
7. Input vertical scale (10 Ohm/div) and vertical position (40 Ohm).
8. Open Trace Control tab.
9. Click Trace Settings Copy to launch trace copy dialog box.
10. Select the Trace 3 in the From list.
11. Select the Trace 7 in the To list.
12. Click Copy.
13. Click Close.
15. Open Parameter tab.
16. Click Tdd22.

6.1.5. [Mated Connector] Differential Impedance (Informative)
1. Select Trace 4.
2. Open Parameters tab.
4. Select Format to “Impedance”
5. Select Rise Time to 20-80% and input value (40 ps).
6. Click Tdd11.
7. Input vertical scale (10 Ohm/div) and vertical position (35 Ohm).
8. Open Trace Control tab.
9. Click Trace Settings Copy to launch trace copy dialog box.
10. Select the Trace 4 in the From list.
11. Select the Trace 8 in the To list.
12. Click Copy.
13. Click Close.
15. Open Parameters tab.
16. Click Tdd22.

6.1.6. Common Parameters Setup for Frequency-domain Measurements
1. Press Channel Next to select Channel 2.
2. Press Sweep Setup > Points and set to “1,601”.
3. Press Start > Set start value to “1 MHz”.

35
4. Press **Stop** > Set stop value to “15 GHz”.
5. Press **Avg** > Set IF Bandwidth to “1 kHz”.
6. Press **Analysis** > **Fixture Simulator** and turn it ON.
7. Press **Analysis** > **Fixture Simulator** > **Topology** > **Device** > **Bal-Bal**
8. Press **Analysis** > **Fixture Simulator** > **Topology** > **Port1 (bal) > 1-3**
9. Press **Analysis** > **Fixture Simulator** > **Topology** > **Port2 (bal) > 2-4**
10. Press **Display** > **Num of Traces** > 16.

11. Press **Display** > **Allocate Traces** >

12. Press **Analysis** > **Fixture Simulator** > **BalUn ON All Traces** to enable mixed-mode
S-parameters (i.e. Sdd21) measurements on all traces.
13. Press **Analysis** > **Fixture Simulator** > **Port ZConversion** > **Port1 Z0 Real** and set
the port impedance to “42.5 ohm”.
14. Press **Analysis** > **Fixture Simulator** > **Port ZConversion** > **Port2 Z0 Real** and set
the port impedance to “42.5 ohm”.
15. Press **Analysis** > **Fixture Simulator** > **Port ZConversion** > **Port3 Z0 Real** and set
the port impedance to “42.5 ohm”.
16. Press **Analysis** > **Fixture Simulator** > **Port ZConversion** > **Port4 Z0 Real** and set
the port impedance to “42.5 ohm”.
17. Press **Analysis** > **Fixture Simulator** > **Port ZConversion** > **Port ZConversion** and
turn ON.

6.1.7. D+/D- Pair Attenuation
1. Press **Trace Next** to select Trace 1.
2. Press **Meas** > **Sdd21**.
3. Press **Scale** > **Scale/Div** to 1 dB/div.
4. Press **Scale** > **Reference Value** to -4 dB.

6.1.8. I\(L\)\(f\)itNq, IMR, IXT, IRL, Differential to Common-Mode Conversion
1. Press **Trace Next** to select Trace 2.
2. Press **Meas** > **Sdd21**.
3. Press **Scale** > **Scale/Div** to 10 dB/div.
4. Press **Scale** > **Reference Value** to -40 dB.
5. Press **Save/Recall** > **Save SnP** > **SnP Format** > **Real/Imaginary**.

6.1.9. Shielding Effectiveness
1. Press **Trace Next** to select Trace 3.
2. Press **Scale** > **Scale/Div** to 10 dB/div.
3. Press **Scale** > **Reference Value** to -40 dB.
4. Press **Trace Next** to select Trace 11.
5. Press **Scale > Scale/Div** to 10 dB/div.
6. Press **Scale > Reference Value** to -40 dB.

6.1.10. [Raw Cable] Differential Insertion Loss (Informative)
1. Press **Trace Next** to select Trace 4.
2. Press **Meas > Sdd21**.
3. Press **Scale > Scale/Div** to 5 dB/div.
4. Press **Scale > Reference Value** to -6 dB.

6.1.11. [Mated Connector] Differential to Common-Mode Conversion (Informative)
1. Press **Trace Next** to select Trace 12.
2. Press **Meas > Scd21**.
3. Press **Scale > Scale/Div** to 5 dB/div.
4. Press **Scale > Reference Value** to -30 dB.

1. Press **Trace Next** to select Trace 5.
2. Press **Meas > Sdd21**.
3. Press **Scale > Scale/Div** to 1 dB/div.
4. Press **Scale > Reference Value** to -2 dB.

1. Press **Trace Next** to select Trace 13.
2. Press **Meas > Sdd11**.
3. Press **Scale > Scale/Div** to 5 dB/div.
4. Press **Scale > Reference Value** to -20 dB.

1. Press **Trace Next** to select Trace 6.
2. Press **Meas > Sdd21**.
3. Press **Scale > Scale/Div** to 5 dB/div.
4. Press **Scale > Reference Value** to -40 dB.

6.1.15. [Mated Connector] Differential NEXT & FEXT between D+/D- Pair and SS Signal Pairs (Informative)
1. Press **Trace Next** to select Trace 14.
2. Press **Meas > Sdd21**.
3. Press **Scale** > **Scale/Div** to 5 dB/div.
4. Press **Scale** > **Reference Value** to -40 dB.

6.1.16. Differential Insertion Loss (Informative)
1. Press **Trace Next** to select Trace 7.
2. Press **Meas** > **Sdd21**.
3. Press **Scale** > **Scale/Div** to 2 dB/div.
4. Press **Scale** > **Reference Value** to -10 dB.

6.1.17. Differential Return Loss (Informative)
1. Press **Trace Next** to select Trace 15.
2. Press **Meas** > **Sdd11**.
3. Press **Scale** > **Scale/Div** to 5 dB/div.
4. Press **Scale** > **Reference Value** to -20 dB.

6.1.18. Differential NEXT & FEXT between SS Signal Pairs (Informative)
1. Press **Trace Next** to select Trace 8.
2. Press **Meas** > **Sdd21**.
3. Press **Scale** > **Scale/Div** to 5 dB/div.
4. Press **Scale** > **Reference Value** to -40 dB.

1. Press **Trace Next** to select Trace 16.
2. Press **Meas** > **Sdd21**.
3. Press **Scale** > **Scale/Div** to 5 dB/div.
4. Press **Scale** > **Reference Value** to -40 dB.

6.1.20. Defining Limit Line Tables
1. Press **Trace Next** to select trace to set the limit line table.
2. Press **Analysis** > **Limit Test** > **Limit Line** and turn it ON to display limit lines.
3. Press **Analysis** > **Limit Test** > **Edit Limit Line** to edit the limit line table.

<table>
<thead>
<tr>
<th>Type</th>
<th>Begin Stimulus</th>
<th>End Stimulus</th>
<th>Begin Response</th>
<th>End Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Max</td>
<td>600 ps</td>
<td>105 u</td>
<td>105 u</td>
</tr>
<tr>
<td>2</td>
<td>Min</td>
<td>600 ps</td>
<td>75 u</td>
<td>75 u</td>
</tr>
</tbody>
</table>

4. Press **Analysis** > **Limit Test** > **Limit Test** and turn it ON.
5. Press **Analysis** > **Limit Test** > **Fail Sign** to switch the fail sign ON/OFF. When turned on, the Fail sign is displayed on the E5071C’s screen, if one or more failed traces are within the channel.

6. Press **System** > **Misc Setup** > **Beeper** > **Beep Warning** to turn ON/OFF the warning beeper.

6.2. **Manual Setup (Low Speed Signal)**
To be added in a future revision.
[Appendix] Defining TRL Calibration Kit

The TRL calibration kit file is defined with the E5071C before TRL calibration. Refer to the values defined by the fixture.

1. Create a new cal kit file.
 A) Press Cal > Cal Kit and select User to setup a cal kit definition file.
 B) Press Cal > Modify Cal Kit > Label Kit (User) and enter name of new cal kit file. (i.e. USB Type-C TRL).

2. Define thru standard.
 A) Press Cal > Modify Cal Kit > Define STDs > 1.No Name > Label and enter “Thru”.
 B) Press Cal > Modify Cal Kit > Define STDs > 1.Thru > STD Type and select Delay/Thru.
 C) Press Cal > Modify Cal Kit > Define STDs > 1.Thru > Offset Delay and enter the value of thru standard. (i.e. 0.0000 s)
 D) Press Cal > Modify Cal Kit > Define STDs > 1.Thru > Offset Z0 and enter the value of the thru standard. (i.e. 50.000 ohm)
 E) Press Cal > Modify Cal Kit > Define STDs > 1.Thru > Offset Loss and enter the value of the thru standard. (i.e. 0.0000 ohm/s)
 F) Press Cal > Modify Cal Kit > Define STDs > 1.Thru > Min. Frequency and enter the value of the thru standard. (i.e. 0.0000 Hz)
 G) Press Cal > Modify Cal Kit > Define STDs > 1.Thru > Max. Frequency and enter the value of the thru standard. (i.e. 20.000 GHz)
 H) Press Cal > Modify Cal Kit > Define STDs > 1.Thru > Media and select Coaxial.

 A) Press Cal > Modify Cal Kit > Define STDs > 2.No Name > Label and enter “Short”.
 B) Press Cal > Modify Cal Kit > Define STDs > 2.Short > STD Type and select Short.
 C) Press Cal > Modify Cal Kit > Define STDs > 2.Short > Offset Delay and enter the value of short standard. (i.e. 0.0000 s)
 D) Press Cal > Modify Cal Kit > Define STDs > 2.Short > Offset Z0 and enter the value of the short standard. (i.e. 50.000 ohm)
 E) Press Cal > Modify Cal Kit > Define STDs > 2.Short > Offset Loss and enter the value of the short standard. (i.e. 0.0000 ohm/s)
 F) Press Cal > Modify Cal Kit > Define STDs > 2.Short > Min. Frequency and enter the value of the short standard. (i.e. 0.0000 Hz)
 G) Press Cal > Modify Cal Kit > Define STDs > 2.Short > Max. Frequency and
Keysight MOI for USB Type-C Connectors & Cable Assemblies Compliance Tests
(Type-C to Type-C Passive Cable Assemblies)

enter the value of the short standard. (i.e. 20.000 GHz)

H) Press Cal > Modify Cal Kit > Define STDs > 2.Short > Media and select Coaxial.

4. Define open standard.
 A) Press Cal > Modify Cal Kit > Define STDs > 3.No Name > Label and enter “Open”.
 B) Press Cal > Modify Cal Kit > Define STDs > 3.Open > STD Type and select Open.
 C) Press Cal > Modify Cal Kit > Define STDs > 3.Open > Offset Delay and enter the value of the open standard. (i.e. 0.0000 s)
 D) Press Cal > Modify Cal Kit > Define STDs > 3.Open > Offset Z0 and enter the value of the open standard. (i.e. 50.000 ohm)
 E) Press Cal > Modify Cal Kit > Define STDs > 3.Open > Offset Loss and enter the value of the open standard. (i.e. 0.0000 ohm/s)
 F) Press Cal > Modify Cal Kit > Define STDs > 3.Open > Min. Frequency and enter the value of the open standard. (i.e. 0.0000 Hz)
 G) Press Cal > Modify Cal Kit > Define STDs > 3.Open > Max. Frequency and enter the value of the open standard. (i.e. 20.000 GHz)
 H) Press Cal > Modify Cal Kit > Define STDs > 3.Open > Media and select Coaxial.

5. Define load standard.
 A) Press Cal > Modify Cal Kit > Define STDs > 4.No Name > Label and enter “Load”.
 B) Press Cal > Modify Cal Kit > Define STDs > 4.Load > STD Type and select Load.
 C) Press Cal > Modify Cal Kit > Define STDs > 4.Load > Offset Delay and enter the value of load standard. (i.e. 0.0000 s)
 D) Press Cal > Modify Cal Kit > Define STDs > 4.Load > Offset Z0 and enter the value of the load standard. (i.e. 50.000 ohm)
 E) Press Cal > Modify Cal Kit > Define STDs > 4.Load > Offset Loss and enter the value of the load standard. (i.e. 0.0000 ohm/s)
 F) Press Cal > Modify Cal Kit > Define STDs > 4.Load > Min. Frequency and enter the value of the load standard. (i.e. 0.0000 Hz)
 G) Press Cal > Modify Cal Kit > Define STDs > 4.Load > Max. Frequency and enter the value of the load standard. (i.e. 200.00 MHz)
 H) Press Cal > Modify Cal Kit > Define STDs > 4.Load > Media and select Coaxial.
 I) Press Cal > Modify Cal Kit > Define STDs > 4.Load > Length Type and select Fixed.

6. Define line 1 standard.
Keysight MOI for USB Type-C Connectors & Cable Assemblies Compliance Tests
(Type-C to Type-C Passive Cable Assemblies)

7. Define line 2 standard.
A) Press Cal > Modify Cal Kit > Define STDs > 6.No Name > Label and enter “Line2”.
B) Press Cal > Modify Cal Kit > Define STDs > 6.Line2 > STD Type and select Delay/Thru.
C) Press Cal > Modify Cal Kit > Define STDs > 6.Line2 > Offset Delay and enter the value of line2 standard. (i.e. 84.782 ps)
D) Press Cal > Modify Cal Kit > Define STDs > 6.Line2 > Offset Z0 and enter the value of the line2 standard. (i.e. 50.000 ohm)
E) Press Cal > Modify Cal Kit > Define STDs > 6.Line2 > Offset Loss and enter the value of the line2 standard. (i.e. 0.0000 ohm/s)
F) Press Cal > Modify Cal Kit > Define STDs > 6.Line2 > Min. Frequency and enter the value of the line2 standard. (i.e. 850 MHz)
G) Press Cal > Modify Cal Kit > Define STDs > 6.Line2 > Max. Frequency and enter the value of the line2 standard. (i.e. 4.25 GHz)

8. Define line 3 standard.
A) Press Cal > Modify Cal Kit > Define STDs > 7.No Name > Label and enter “Line3”.
B) Press Cal > Modify Cal Kit > Define STDs > 7.Line3 > STD Type and select Delay/Thru.
C) Press Cal > Modify Cal Kit > Define STDs > 7.Line3 > Offset Delay and enter the value of line3 standard. (i.e. 59.449 ps)
D) Press Cal > Modify Cal Kit > Define STDs > 7.Line3 > Offset Z0 and enter the value of the line3 standard. (i.e. 50.000 ohm)
E) Press Cal > Modify Cal Kit > Define STDs > 7.Line3 > Offset Loss and enter the value of the line3 standard. (i.e. 0.0000 ohm/s)
F) Press Cal > Modify Cal Kit > Define STDs > 7.Line3 > Min. Frequency and enter the value of the line3 standard. (i.e. 4 GHz)
G) Press Cal > Modify Cal Kit > Define STDs > 7.Line3 > Max. Frequency and enter the value of the line3 standard. (i.e. 20 GHz)

9. Specify sub class of cal kit.
 A) Press Cal > Modify Cal Kit > Specify CLSs > Sub Class > Sub Class 1.
 B) Press Cal > Modify Cal Kit > Specify CLSs > TRL Thru > Set All > 1.Thru.
 C) Press Cal > Modify Cal Kit > Specify CLSs > TRL Reflect > 2.Short.
 D) Press Cal > Modify Cal Kit > Specify CLSs > TRL Line/Match > Set All > 5.Line1.
 E) Press Cal > Modify Cal Kit > Specify CLSs > Sub Class > Sub Class 2.
 G) Press Cal > Modify Cal Kit > Specify CLSs > Sub Class > Sub Class 3.
 H) Press Cal > Modify Cal Kit > Specify CLSs > TRL Line/Match > Set All > 7.Line3.
 I) Press Cal > Modify Cal Kit > Specify CLSs > Sub Class > Sub Class 4.

10. Press Cal > Modify Cal Kit and select Export Cal Kit... to Save Cal Kit File (*.ckx).
7. [Appendix] De-embedding File Creation using PLTS AFR

The procedure to create the de-embedding files using the Keysight Physical Layer Test System (PLTS) Automatic Fixture Removal (AFR) function and 2x Thru standard is introduced in the section.

7.1. 2x Thru Standard Measurement
1. Recall the state file as described in 5.2.1. Recalling a State File.
2. Perform the calibration using ECal as described in 5.3.1.2 Frequency-Domain Measurements > 1. ECal Calibration.
3. Connect the E5071C ports (port 1 to 4) to 2x Thru standard with RF cables as shown below (1, 2, 3, 4 are E5071C port numbers).

![Diagram of 2x Thru connection]

3. Press Channel Max to maximize Channel 2 on the screen.
4. Press Trace Next to select Trace 7 (Sdd21).
5. Press Trace Max to maximize the selected trace on the screen.
6. Press Analysis > Fixture Simulator > Port ZConversion > Port ZConversion and turn OFF.
8. Press Save/Recall > Save SnP > S4P > [1-2-3-4]...
9. Enter file name and save the 4-port Touchstone file (*.s4P).
10. Press Analysis > Fixture Simulator > Port ZConversion > Port ZConversion and turn ON.

7.2. De-embedding File Creation
1. Launch PLTS software.
2. Click Utilities > Automatic Fixture Removal > Wizard.
3. Select Differential/4-Ports > Next.

4. Check 2X Thru > Next.
5. Load the Touchstone file for 2x Thru > **Next**.

6. **Click Next**.
7. Select **PNA Format** > enter file name > Click **Save Fixture Files** to create two fixture files > Exit.