Agilent Method of Implementation (MOI) for HDMI 1.4b Cable Assembly Test Using Agilent E5071C ENA Option TDR
Table of Contents
1. Modification Record .. 4
2. Purpose .. 4
3. References ... 4
4. Resource Requirements ... 5
5. Test Procedure ... 6
 5.1. Outline of Test Procedure ... 6
 5.2. Instrument Setup ... 7
 5.2.1. Recalling State File ... 7
 5.2.2. Running VBA macro program ... 8
 5.3. Screen Area and Cable Connection ... 10
 5.4. Calibration and Adjustment .. 13
 5.4.1. Time Domain Calibration .. 13
 5.4.2. Measure DUT Length ... 15
 5.4.3. Frequency Domain Calibration ... 16
 5.4.4. Perform Auto Port Extension .. 16
 5.5. Measurement and Data Analysis .. 17
 5.5.1. Data Eye Diagram ... 17
 5.5.2. Intra-Pair Skew ... 24
 5.5.3. Inter-Pair Skew ... 26
 5.5.4. Far End Crosstalk .. 28
 5.5.5. Attenuation and Phase .. 30
 5.5.6. Differential Impedance ... 34
6. Appendix ... 37
 6.1.1. Starting Setup ... 37
 6.1.2. Eye Diagram .. 37
 6.1.3. Intra-Pair Skew ... 38
6.1.4. Inter-Pair Skew ..40
6.1.5. Differential Impedance ..40

 6.2.1. Channel and Trace Settings ...43
 6.2.2. Attenuation ..44
 6.2.3. Phase ...44
 6.2.4. Far End Crosstalk ..45
 6.2.5. Expand Phase ..45

6.3. Limit Test Settings ..45
 6.3.1. Turning On/Off Fail Sign ...45
 6.3.2. Setting the Warning Beeper ...46
 6.3.3. Defining the Limit Line ...46
1. Modification Record

<table>
<thead>
<tr>
<th>Revision</th>
<th>Comments</th>
<th>Issue Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Initial release</td>
<td>Jun 01, 2011</td>
</tr>
<tr>
<td>1.01</td>
<td>Minor modification for errata</td>
<td>Jul 13, 2011</td>
</tr>
<tr>
<td>1.10</td>
<td>Added Data Eye Diagram</td>
<td>Jan 16, 2012</td>
</tr>
<tr>
<td>1.11</td>
<td>Updated Resource Requirements on N1080B HDMI fixtures</td>
<td>Jul 19, 2012</td>
</tr>
<tr>
<td>1.12</td>
<td>Minor modifications</td>
<td>Apr 24, 2013</td>
</tr>
</tbody>
</table>

2. Purpose

This document is intended to provide the measurement procedures for High-Definition Multimedia Interface (HDMI) cable assemblies with Agilent E5071C ENA Option TDR. The procedures are designed to perform tests equivalent to the methodologies defined in the HDMI Compliance Test Specification Version 1.4b (CTS). Devices under test are supposed to be passive HDMI cables. Active cables are out of the scope of this document.

3. References

High-Definition Multimedia Interface Specification Version 1.4b
High-Definition Multimedia Interface Compliance Test Specification Version 1.4b
4. **Resource Requirements**

1. E5071C ENA Series Network Analyzer with Enhanced Time Domain Analysis Option

 Note: Ensure that

 - Test set option is any one of 480/485/4D5/4K5
 - E5071C firmware revision A.10.05 or above is installed.
 - E5071C-TDR application software revision A.01.50 or above is installed.

2. Electronic Calibration Module N4431B (for 480/485) or N4433A (for 4D5/4K5)

3. 3.5 mm cables 8 GHz bandwidth or equivalent x4

4. Certified HDMI receptacle fixtures (ex. Agilent N1080B-H05) x2

5. Certified HDMI plug fixtures (ex. Agilent N1080B-H04) x1

 Note: The plug fixture is used for the jitter adjustment in the eye diagram test. It should have similar characteristics to the receptacle fixtures.

6. 50 Ohm terminators to terminate unused fixture connectors x12

7. Female to female adaptors to connect fixture and test cables (if necessary)
5. Test Procedure

5.1. Outline of Test Procedure

1. Instrument Setup

2. Calibration and Adjustment
 - Time domain calibration with the setup wizard in TDR application software
 - Frequency domain calibration with the VBA macro program

3. Measurements and Data Analysis

 Time Domain Measurements
 - Data Eye Diagram
 - Intra-pair Skew Measurements
 - Inter-pair Skew Measurements
 - Differential Impedance Measurements

 Frequency Domain Measurements
 - Far End Crosstalk Measurements
 - Attenuation and Phase Measurements

Note: Hard Keys (Keys located on the Front panel of E5071C) are displayed in Blue color and Bold. (Example: Avg, Analysis)

Note: Soft keys (Keys on the screen) are displayed in Bold. (Example: S11, Real, Transform)

Note: Buttons (in the TDR or VBA) are displayed in Green color and Bold. (Example: Trace, Rise Time)

Note: Tabs (in the TDR) are displayed in Brown color and Bold. (Example: Setup, Trace Control)
Agilent MOI for HDMI 1.4b Cable Assembly Test

5.2. Instrument Setup
This section describes procedures for recalling the state file and VBA macro that support the instrument setup. Download “HDMI cable assembly test package” from http://www.agilent.com/find/ena-tdr_hdmi-cabcon.

Extract the zip file and transfer the extracted files to the instrument with a USB flash memory.

5.2.1. Recalling State File
1. If TDR setup wizard appears, click Close button on the wizard.
2. Open Setup tab (item1).
3. Click More Function (item2).
4. Click Advanced Mode (item3).
5. A dialog box appears requesting for confirmation. Then click Yes. (Clear the check box for “Use Advanced Calibration Methods”)
6. Click File (item4) and select Recall State to open the Recall State dialog box.
7. Specify a folder and a file name, and click Open.

For manual measurement setup, refer to 6 Appendix.
5.2.2. Running VBA macro program

1. Installing the VBA macro program

Obtain the VBA macro program from Agilent and install it on the E5071C.

- Press **Save/Recall** on the front panel, then press the **Explorer** soft key.
- Using **Explorer**, copy the file to the “D:VBA” folder.
2. Running the VBA macro program

- Press **Macro Setup** button from the front panel, then click the **Load & Run** soft key.
- Select “HDMI1.4a_Cab…” from the soft key menu and click on it.
5.3. Screen Area and Cable Connection
This section explains the screen area of ENA Option TDR and the test cable connections. ENA Option TDR screen area consists of two channels as shown in Figure 5-1. Channel1 dedicated to time domain measurements is controlled by the TDR application software located at the bottom of the screen, and Channel2 dedicated to frequency domain measurements is controlled by the VBA macro program located at the upper right of the screen.

Figure 5-1 Screen area of ENA Option TDR
The cables and fixtures are connected to the instrument as shown in Figure 5-2, but do not connect fixtures and Cable DUT yet.

![Diagram of cable connections and fixtures](image)

Figure 5-2 Measurement setup example

Table 5-1 and Figure 5-3 show the cable connections and corresponding measurement areas on the screen, respectively. The measurement items of the same background color can be measured with the same cable connections.
Table 5-1 Cable and Fixture Connection

<table>
<thead>
<tr>
<th>ENA Port Number</th>
<th>Port1</th>
<th>Port2</th>
<th>Port3</th>
<th>Port4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data Eye Diagram</td>
<td>A D0+</td>
<td>A D0-</td>
<td>B D0+</td>
</tr>
<tr>
<td></td>
<td>Intra-Pair Skew</td>
<td>A D1+</td>
<td>A D1-</td>
<td>B D1+</td>
</tr>
<tr>
<td></td>
<td>Inter-Pair Skew</td>
<td>A D2+</td>
<td>A D2-</td>
<td>B D2+</td>
</tr>
<tr>
<td></td>
<td>Attenuation and Phase</td>
<td>A CLK+</td>
<td>A CLK-</td>
<td>B CLK+</td>
</tr>
<tr>
<td></td>
<td>Differential Impedance</td>
<td>A D0+</td>
<td>A D0-</td>
<td>B D1+</td>
</tr>
<tr>
<td></td>
<td>Far End Crosstalk</td>
<td>A D0+</td>
<td>A D0-</td>
<td>B D2+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A D0+</td>
<td>A D0-</td>
<td>B D2+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A D0+</td>
<td>A D0-</td>
<td>B D2+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A D1+</td>
<td>A D1-</td>
<td>B D2+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A D1+</td>
<td>A D1-</td>
<td>B D2+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A D2+</td>
<td>A D2-</td>
<td>B CLK+</td>
</tr>
</tbody>
</table>

Note: A and B represent each one of the test fixtures.

Figure 5-3 Measurement areas when Channel 1 is in TDR/TDT mode.
5.4. Calibration and Adjustment

5.4.1. Time Domain Calibration

1. Connect the cables and ECal module to the E5071C.
2. Press **Channel Next** key to select Channel1.
3. Open **Setup** tab (item1).
4. Click **ECal** (item2) to launch the Full Calibration (ECal) and Fixture Compensation wizard.

5. Connect all cables to the ECal module.
6. Click **Calibrate** (item3), then it will start the full calibration. Wait until the check-mark appears on the right of Calibrate button.
7. Click **Next** (item4).
8. Connect all cables to the test fixtures in accordance with the table below.

<table>
<thead>
<tr>
<th>ENA Port Number</th>
<th>Port1</th>
<th>Port2</th>
<th>Port3</th>
<th>Port4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixture PIN Number</td>
<td>A D0+</td>
<td>A D0-</td>
<td>B D0+</td>
<td>B D0-</td>
</tr>
</tbody>
</table>

Note: A and B represent each one of the test fixtures.

9. Click **Fixture Comp** (item5), then it will start the fixture compensation. Wait until the check-mark appears on the right of Fixture Comp button.

10. Click **Finish** (item6).
5.4.2. Measure DUT Length

1. Click Auto (item1) to measure the DUT Length.

2. Connect the DUT.

3. Click Measure (item2), then it will measure the DUT length. Wait until the check-mark appears on the right of Measure button.

4. Click Finish (item3).
5.4.3. Frequency Domain Calibration
1. Connect all cables to the ECal module.
2. Click ECal (item1) to perform the Full Calibration (ECal).

5.4.4. Perform Auto Port Extension
1. Connect the test fixtures as follows. Make the fixture ends open.

<table>
<thead>
<tr>
<th>ENA Port Number</th>
<th>Port1</th>
<th>Port2</th>
<th>Port3</th>
<th>Port4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixture PIN Number</td>
<td>A D0+</td>
<td>A D0-</td>
<td>B D0+</td>
<td>B D0-</td>
</tr>
</tbody>
</table>

Note: A and B represent each one of the test fixtures.

2. Click Auto Port Extention (item1) to perform the Auto Port Extention.
5.5. Measurement and Data Analysis

5.5.1. Data Eye Diagram

Data Rate and Rise Time Adjustment

1. Press **Channel Next** key to select Channel1.
2. Press **Channel Max** key to enlarge Channel1.
3. Open **Eye Mask** tab (item1).
4. Input appropriate **Data Rate** and **Rise Time** (item2) in accordance with your device category. Note that category 2 cables need to be tested with the two kinds of CLK frequencies.

<table>
<thead>
<tr>
<th>Category</th>
<th>CLK Frequency [MHz]</th>
<th>Data Rate [Mbps]</th>
<th>Rise Time [ps]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>74.25</td>
<td>742.5</td>
<td>450</td>
</tr>
<tr>
<td>2</td>
<td>165</td>
<td>1650</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>340</td>
<td>3400</td>
<td>60</td>
</tr>
</tbody>
</table>

Jitter Adjustment

Ensure that the mask files included in “HDMI cable assembly test package” are copied to the instrument.

1. Open **Eye/Mask** tab (item1).
2. Open **Scale/Mask** tab (item2).
3. Click **Mask Pattern** (item3), then Mask Pattern Editor appears.
4. Click **Load** (item4) and select an appropriate mask file in accordance with the CDF
field Cable_Configuration.

<table>
<thead>
<tr>
<th>Category</th>
<th>Configuration</th>
<th>Mask File</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Home</td>
<td>HDMI1.4b_TP1.msk</td>
</tr>
<tr>
<td></td>
<td>Automotive_EE</td>
<td>HDMI1.4b_TP1.msk</td>
</tr>
<tr>
<td></td>
<td>Automotive_AA</td>
<td>HDMI1.4b_TP1.msk</td>
</tr>
<tr>
<td></td>
<td>Automotive_EA</td>
<td>HDMI1.4b_TP5.msk</td>
</tr>
<tr>
<td>2</td>
<td>All</td>
<td>HDMI1.4b_TP1.msk</td>
</tr>
</tbody>
</table>

5. Click Close (item5).

6. Activate Mask Test checkbox (item6).

7. Connect the HDMI plug fixture (ex. N1080B Option H04) and receptacle fixture (ex. N1080B Option H05) to the test cables, and mate them as shown in Figure 5-4.
8. Select Trace2 (item7).
9. Click Advanced Waveform (item8), then a dialog box appears.
10. Adjust Magnitude value (item9) and activate Enable checkbox (item10).
11. Click OK (item11) to close the dialog box.
12. Click Draw Eye (item12).
13. Repeat the previous three steps while adjusting the jitter magnitude until the edge of the eye nearly touches both the left-most and right-most points of the eye mask but without causing the eye mask violation (Figure 5-5).
Figure 5-5 The eye diagram of cable input signal with adjusted jitter.

14. Open Scale/Mask tab (item2).
15. Click Mask Pattern (item3), then Mask Pattern Editor appears.
16. Click Load (item4) and select an appropriate mask file in accordance with the CDF field Cable_Configuration.
17. Click **Close** (item5).

Equalizer

If the CLK frequency is 340 MHz, apply the reference cable equalizer. If CDF field Cable_Configuration is “Automotive_EE” or “Automotive_EA”, also apply the reference equalizer. Ensure that the equalizer files included in “HDMI cable assembly test package” are copied to the instrument.

<table>
<thead>
<tr>
<th>Category</th>
<th>Configuration</th>
<th>Equalizer File</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Home</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Automotive_EE</td>
<td>HDMI1.4b_Cable-Equalizer_Automotive.csv</td>
</tr>
<tr>
<td></td>
<td>Automotive_AA</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Automotive_EA</td>
<td>HDMI1.4b_Cable-Equalizer_Automotive.csv</td>
</tr>
<tr>
<td>2</td>
<td>CLK rate = 340 MHz</td>
<td>HDMI1.4b_Cable-Equalizer.csv</td>
</tr>
</tbody>
</table>

1. Click **Advanced Waveform** (item1), then a dialog box appears.
2. Click **Equalization** (item2).
3. Select **File** under Type (item3).
4. Click **Load** (item4) and specify the equalizer file “HDMI1.4b_Cable-Equalizer.csv”.
5. Activate **Enable** checkbox (item5) and click **OK** (item6) to close the dialog.
Measurement

1. Open **Eye/Mask** tab.
2. Connect the receptacle fixtures (N1080B Option H05) as follows. Unused fixture pins should be terminated.

<table>
<thead>
<tr>
<th>ENA Port Number</th>
<th>Port1</th>
<th>Port2</th>
<th>Port3</th>
<th>Port4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixture PIN Number</td>
<td>A D0+</td>
<td>A D0-</td>
<td>B D0+</td>
<td>B D0-</td>
</tr>
<tr>
<td></td>
<td>A D1+</td>
<td>A D1-</td>
<td>B D1+</td>
<td>B D1-</td>
</tr>
<tr>
<td></td>
<td>A D2+</td>
<td>A D2-</td>
<td>B D2+</td>
<td>B D2-</td>
</tr>
<tr>
<td></td>
<td>A CLK+</td>
<td>A CLK-</td>
<td>B CLK+</td>
<td>B CLK-</td>
</tr>
</tbody>
</table>

Note: A and B represent each one of the test fixtures.

3. Connect the DUT (HDMI cable) to the test fixture.
4. Click **Stop Single**.
5. Click **Draw Eye**.
Data Analysis

Read the pass/fail sign on the eye diagram (item1 in Figure 5-6).

Note: After the measurements, turn off the equalizer function.
5.5.2. Intra-Pair Skew

1. Press **Channel Next** key to select Channel1.
2. Press **Channel Max** key to enlarge Channel1.
3. Open **TDR/TDT** tab.
4. Connect the test fixtures as follows. Unused fixture pins should be terminated.

<table>
<thead>
<tr>
<th>ENA Port Number</th>
<th>Port1</th>
<th>Port2</th>
<th>Port3</th>
<th>Port4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixture PIN Number</td>
<td>A D0+</td>
<td>A D0-</td>
<td>B D0+</td>
<td>B D0-</td>
</tr>
<tr>
<td>A D1+</td>
<td>A D1-</td>
<td>B D1+</td>
<td>B D1-</td>
<td></td>
</tr>
<tr>
<td>A D2+</td>
<td>A D2-</td>
<td>B D2+</td>
<td>B D2-</td>
<td></td>
</tr>
<tr>
<td>A CLK+</td>
<td>A CLK-</td>
<td>B CLK+</td>
<td>B CLK-</td>
<td></td>
</tr>
</tbody>
</table>

Note: A and B represent each one of the test fixtures.

5. Connect the DUT (HDMI cable) to the test fixture.
6. Click **Stop Single** for Time Domain measurement.
7. Select **Trace1**.
8. Click **Auto Scale** and **X** to show the overall step response.
9. Record the time at the transition point.
10. Set the horizontal scale to 100 ps/div and adjust the horizontal position based on the recorded time.
11. Apply the same horizontal scale settings to Trace5.
12. Click **Stop Single** for Time Domain measurement.
Data Analysis

Read the delta time between Trace1 and Trace5 (item1 in Figure 5-7). Check if the value is within the limit below.

<table>
<thead>
<tr>
<th>Category</th>
<th>Configuration</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Home</td>
<td>If the delta time <= 151 ps, then pass. Otherwise fail.</td>
</tr>
<tr>
<td></td>
<td>Automotive_EE</td>
<td>If the delta time <= 336 ps, then pass. Otherwise fail.</td>
</tr>
<tr>
<td></td>
<td>Automotive_AA</td>
<td>If the delta time <= 101 ps, then pass. Otherwise fail.</td>
</tr>
<tr>
<td></td>
<td>Automotive_EA</td>
<td>If the delta time <= 235 ps, then pass. Otherwise fail.</td>
</tr>
<tr>
<td>2</td>
<td>All</td>
<td>If the delta time <= 112 ps, then pass. Otherwise fail.</td>
</tr>
</tbody>
</table>
5.5.3. Inter-Pair Skew Measurement

1. Press **Channel Next** key to activate Channel1.
2. Press **Channel Max** key to enlarge Channel1.
3. Open **TDR/TDT** tab.
4. Connect the test fixtures as follows. Unused fixture pins should be terminated.

<table>
<thead>
<tr>
<th>ENA Port Number</th>
<th>Port1</th>
<th>Port2</th>
<th>Port3</th>
<th>Port4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixture PIN Number</td>
<td>A D0+</td>
<td>A D0-</td>
<td>B D0+</td>
<td>B D0-</td>
</tr>
</tbody>
</table>

Note: A and B represent each one of the test fixtures.

5. Click **Stop Single** for Time Domain measurement.
6. Select **Trace2**.
7. Click **Auto Scale** and **X** to show the overall step response.
8. Record the time at the transition point.
9. Set the horizontal scale to 100 ps/div and adjust the horizontal position based on the recorded time.
10. Click **Stop Single** for Time Domain measurement.
11. Record the Marker 1 value on trace 2 (item2 in Figure 5-7).
12. Connect the test fixtures as follows. Unused fixture pins should be terminated.

<table>
<thead>
<tr>
<th>ENA Port Number</th>
<th>Port1</th>
<th>Port2</th>
<th>Port3</th>
<th>Port4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixture PIN Number</td>
<td>A D1+</td>
<td>A D1-</td>
<td>B D1+</td>
<td>B D1-</td>
</tr>
</tbody>
</table>

13. Click **Stop Single** for Time Domain measurement.
14. Record the Marker 1 value on trace 2 (item2 in Figure 5-7).
15. Connect the test fixtures as follows. Unused fixture pins should be terminated.

<table>
<thead>
<tr>
<th>ENA Port Number</th>
<th>Port1</th>
<th>Port2</th>
<th>Port3</th>
<th>Port4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixture PIN Number</td>
<td>A D2+</td>
<td>A D2-</td>
<td>B D2+</td>
<td>B D2-</td>
</tr>
</tbody>
</table>

16. Click **Stop Single** for Time Domain measurement.
17. Record the Marker 1 value on trace 2 (item2 in Figure 5-7).
18. Connect the test fixtures as follows. Unused fixture pins should be terminated.

<table>
<thead>
<tr>
<th>ENA Port Number</th>
<th>Port1</th>
<th>Port2</th>
<th>Port3</th>
<th>Port4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixture PIN Number</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A D3+</td>
<td>A D3-</td>
<td>B D3+</td>
<td>B D3-</td>
<td></td>
</tr>
</tbody>
</table>

19. Click **Stop Single** for Time Domain measurement.

20. Record the Marker 1 value on trace 2 (item2 in Figure 5-7).

21. Connect the test fixtures as follows. Unused fixture pins should be terminated.

<table>
<thead>
<tr>
<th>ENA Port Number</th>
<th>Port1</th>
<th>Port2</th>
<th>Port3</th>
<th>Port4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixture PIN Number</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A CLK+</td>
<td>A CLK-</td>
<td>B CLK+</td>
<td>B CLK-</td>
<td></td>
</tr>
</tbody>
</table>

22. Click **Stop Single** for Time Domain measurement.

23. Record the Marker 1 value on trace 2 (item2 in Figure 5-7).

Data Analysis

1. Find the maximum and minimum value from 4 recorded data.

2. Inter-pair Skew = Absolute(maximum value – minimum value)

3. Check if the Inter-pair Skew is within the limit below.

<table>
<thead>
<tr>
<th>Category</th>
<th>Configuration</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Home</td>
<td>If the delta time <= 2.42 ns, then pass. Otherwise fail.</td>
</tr>
<tr>
<td></td>
<td>Automotive_EE</td>
<td>If the delta time <= 5.38 ns, then pass. Otherwise fail.</td>
</tr>
<tr>
<td></td>
<td>Automotive_AA</td>
<td>If the delta time <= 1.61 ns, then pass. Otherwise fail.</td>
</tr>
<tr>
<td></td>
<td>Automotive_EA</td>
<td>If the delta time <= 3.77 ns, then pass. Otherwise fail.</td>
</tr>
<tr>
<td>2</td>
<td>All</td>
<td>If the delta time <= 1.78 ns, then pass. Otherwise fail.</td>
</tr>
</tbody>
</table>
Agilent MOI for HDMI 1.4b Cable Assembly Test

5.5.4. Far End Crosstalk Measurement

1. Press **Channel Next** key to activate Channel2.
2. Press **Channel Max** key to enlarge Channel2.
3. Connect the test fixtures as follows. Unused fixture pins should be terminated.

Table 5-2 Port Connection

<table>
<thead>
<tr>
<th>ENA Port Number</th>
<th>Port1</th>
<th>Port2</th>
<th>Port3</th>
<th>Port4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A D0+</td>
<td>A D0-</td>
<td>B D1+</td>
<td>B D1-</td>
<td></td>
</tr>
<tr>
<td>A D0+</td>
<td>A D0-</td>
<td>B D2+</td>
<td>B D2-</td>
<td></td>
</tr>
<tr>
<td>A D0+</td>
<td>A D0-</td>
<td>B CLK+</td>
<td>B CLK-</td>
<td></td>
</tr>
<tr>
<td>A D1+</td>
<td>A D1-</td>
<td>B D2+</td>
<td>B D2-</td>
<td></td>
</tr>
<tr>
<td>A D2+</td>
<td>A D2-</td>
<td>B CLK+</td>
<td>B CLK-</td>
<td></td>
</tr>
</tbody>
</table>

Note: A and B represent each one of the test fixtures.

4. Connect the DUT (HDMI cable) to the test fixture.
5. Click **Stop Single** for Frequency Domain measurement.
Data Analysis

Read the pass/fail sign on Trace3 (item 1 in Figure 5-8).
5.5.5. Attenuation and Phase Measurement

1. Press **Channel Next** key to activate Channel2.
2. Press **Channel Max** key to enlarge Channel2.
3. Connect the test fixtures as follows. Unused fixture pins should be terminated.

<table>
<thead>
<tr>
<th>ENA Port Number</th>
<th>Port1</th>
<th>Port2</th>
<th>Port3</th>
<th>Port4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixture PIN Number</td>
<td>A D0+</td>
<td>A D0-</td>
<td>B D0+</td>
<td>B D0-</td>
</tr>
<tr>
<td></td>
<td>A D1+</td>
<td>A D1-</td>
<td>B D1+</td>
<td>B D1-</td>
</tr>
<tr>
<td></td>
<td>A D2+</td>
<td>A D2-</td>
<td>B D2+</td>
<td>B D2-</td>
</tr>
<tr>
<td></td>
<td>A CLK+</td>
<td>A CLK-</td>
<td>B CLK+</td>
<td>B CLK-</td>
</tr>
</tbody>
</table>

Note: A and B represent each one of the test fixtures.

4. Connect the DUT (HDMI) cable to the test fixture.
5. Select cable type in accordance with the DUT (item 1).

<table>
<thead>
<tr>
<th>Cable Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cat2 Equalized</td>
<td>Category2 Passive Equalizer Cable</td>
</tr>
<tr>
<td>Cat2 Passive</td>
<td>Category2 Non Equalized Cable</td>
</tr>
<tr>
<td>Cat1 Passive</td>
<td>Category1 Non Equalized Cable</td>
</tr>
</tbody>
</table>

6. Click **Stop Single** for Frequency Domain measurement.
Data Analysis

Attenuation

Read Pass/Fail sign on Trace1 (item1 in Figure 5-9).

Phase (Equalized cable only)

Read Pass/Fail sign on Trace2 (item2 in Figure 5-9).

Expand Phase (Not used in the pass/fail test)

This measurement is only used for the phase measurement calculation (item3 in Figure 5-9).

Description of Phase Measurement

The phase characteristic is plotted as the difference between the linear expanded phase line and the calculated linear approximated value by using “Ordinary least Squares”.
In general, phase response is measured as a linear response shown in Figure 5-10. The phase tolerance is defined as a difference value of measured linear expanded phase and calculated approximated first order line. The approximation model is “Ordinary Least Squares” of $y = mx$. (Here, “y” is the linear expanded phase value, “x” is frequency corresponding, and “m” is an incline parameter to be calculated. The frequency range used for calculation of “m” is from 300 kHz to 1.7 GHz).
Figure 5-11 Cat2 equalized cable phase limits
5.5.6. Differential Impedance Measurement

1. Press **Channel Next** key to select Channel1.
2. Press **Channel Max** key to enlarge Channel1.
3. Open **TDR/TDT** tab.
4. Connect the test fixtures as follows. Unused fixture pins should be terminated.

<table>
<thead>
<tr>
<th>ENA Port Number</th>
<th>Port1</th>
<th>Port2</th>
<th>Port3</th>
<th>Port4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixture PIN Number</td>
<td>A D0+</td>
<td>A D0-</td>
<td>B D0+</td>
<td>B D0-</td>
</tr>
<tr>
<td></td>
<td>A D1+</td>
<td>A D1-</td>
<td>B D1+</td>
<td>B D1-</td>
</tr>
<tr>
<td></td>
<td>A D2+</td>
<td>A D2-</td>
<td>B D2+</td>
<td>B D2-</td>
</tr>
<tr>
<td></td>
<td>A CLK+</td>
<td>A CLK-</td>
<td>B CLK+</td>
<td>B CLK-</td>
</tr>
</tbody>
</table>

Note: A and B represent each one of the test fixtures.

5. Connect the DUT (HDMI) cable to the test fixture.
6. Click **Stop Single** for Time Domain measurement.

Data Analysis

The result must meet following criteria.

Cable:
If (Cable_Low < 90 ohm) or (Cable_Hi > 110 ohm) then Fail.

Connector:
If (Conn1_Low < 75 ohm) or (Conn1_Hi > 125 ohm) then Fail.

If (Conn2_Low < 85 ohm) or (Conn2_Hi > 115 ohm) then

if the duration of violation (t) is 250 psec or longer or there is more than one excursion then Fail.

6. Read Pass/Fail sign on Trace3 and Trace7, and find an overall result from the table in the next page.
Agilent MOI for HDMI 1.4b Cable Assembly Test

<table>
<thead>
<tr>
<th>Trace3 (Trace4)</th>
<th>Trace7 (Trace8)</th>
<th>Overall Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
</tr>
<tr>
<td>Pass</td>
<td>Fail</td>
<td>Check the duration of violation.</td>
</tr>
<tr>
<td>Fail</td>
<td>Fail</td>
<td>Fail</td>
</tr>
</tbody>
</table>

7. If Trace3 is pass and Trace7 is fail (item3 in Figure 5-7), confirm if the excursion is only one time and the duration of violation is within 250 psec.

Duration of violation = (Marker4 - Marker3) or (Marker6 – Marker5).

8. Repeat the same test with Trace4 and Trace8 (item4 in Figure 5-7).

![Figure 5-12 Connector and Cable limits for Differential Impedance](image)
Figure 5-13 Example for Impedance Judgment
6. Appendix

6.1.1. Starting Setup

1. If TDR setup wizard was appeared, click Close button in the TDR setup wizard.
2. Open Setup tab (item1).
3. Click Preset (item2).
4. A dialog box appears requesting for confirmation. Then click OK.
5. Set DUT Topology (item3) to “Differential 2-port”.
6. Open More Functions tab (item4).
7. Click Advanced Mode (item5).
8. A dialog box appears requesting for confirmation. Then click Yes. (Clear the check box for “Use Advanced Calibration Methods”)

6.1.2. Eye Diagram

1. Click Stop Single.
2. Open Eye/Mask tab.
3. Set Stimulus Type to “Statistical”.
4. Set One Lv. to 200 mV
5. Set Zero Lv. to -200 mV.
6. Set **Data Rate** to 3.4 Gb/s
7. Set **Rise Time** to 60 ps (10-90%)
8. Click **Advanced Waveform**, then a dialog box appears.
9. Activate **Enable** checkbox.
10. Set **Frequency** to 500 kHz.
11. Click **OK** to close the dialog box.

![Advanced Waveform](image)

6.1.3. Intra-Pair Skew

6.1.3.1. Measurement Setup

1. Open **TDR/TDT** tab.
2. Select **Trace1**.
3. Open **Parameters** tab.
4. Set **Measure** to “Time Domain” and “Single-Ended”.
5. Set **Format** to Volt.
6. Set **Rise Time** to 200 psec (10-90%).
7. Click **T31** in the table.
8. Click the box below the left knob under Horizontal.
9. Input 1 nsec/div with the Entry dialog box.
10. Click the box below the right knob under Horizontal.
11. Input 0 sec with the Entry dialog box.
12. Click the box below the left knob under Vertical.
13. Input 50 mV/div with the Entry dialog box
14. Click the box below the right knob under Vertical.
15. Input 100 mV with the Entry dialog box
16. Open Trace Control tab.
17. Clear Time and Marker check box under Coupling.
18. Click Trace Settings Copy button. Then Trace Settings Copy dialog box appears.
19. Select Trace1 in the From list.
20. Select Trace5 in the To list.
21. Click Copy.
22. Click Close.
23. Select Trace5.
24. Open Parameters tab.
25. Click T42 in the table.
26. Select Trace1.
27. Click Marker Search and select Δ Time. Then Delta Time dialog box appears.
28. Check the Δ Time check box.
29. Select Trace5 (T42) for Target (Stop).
30. Input Position (%) to 50.
31. Click OK.

6.1.3.2. Crosstalk Compensation
1. Select Trace1.
2. Press Display > Equation Editor… > Enter an equation “Intra+= S31-S32”.
3. Check Equation Enabled check box.
4. Click Apply.
5. Click Close.
6. Select Trace5.
Agilent MOI for HDMI 1.4b Cable Assembly Test

7. Press **Display > Equation Editor… >** Enter an equation “**Intra-** = S42-S41”.
8. Check **Equation Enabled** check box.
9. Click **Apply**.
10. Click **Close**.

6.1.4. Inter-Pair Skew
1. Select **Trace2**.
2. Open **Parameters** tab.
3. Set **Measure** to “**Time Domain**”.
4. Set **Format** to Volt.
5. Set **Rise Time** to 10-90 % and input value to 200 psec.
6. Click **Tdd21** in the table.
7. Click the box below the left knob under Horizontal.
8. Input 1 nsec/div with the Entry dialog box.
9. Click the box below the right knob under Horizontal.
10. Input 0 sec with the Entry dialog box.
11. Click the box below the left knob under Vertical.
12. Input 100 mV/div with the Entry dialog box.
13. Click the box below the right knob under Vertical.
14. Input 200 mV with the Entry dialog box.
15. Press **Marker Search > Target**, and set **Target Value** to 200 m.
16. Select **Trace6**.
17. Click **Data Mem** and select **Off**.

6.1.5. Differential Impedance
1. Open **TDR/TDT** tab.
2. Open **Parameters** tab.
3. Select **Trace3**.
4. Set **Format** to Impedance.
5. Set **Rise Time** to 200 psec (10-90%).
6. Click **Tdd11** in the table.
7. Click the box below the left knob under Horizontal.
8. Input 250 psec/div with the Entry dialog box.
9. Click the box below the right knob under Horizontal.
10. Input 0 nsec with the Entry dialog box.
11. Click the box below the left knob under Vertical.
12. Input 10 Ohm/div with the Entry dialog box.
13. Click the box below the right knob under Vertical.
14. Input 50 Ohm with the Entry dialog box.
15. Open **Trace Control** tab.
16. Click **Trace Settings Copy** button. Then Trace Settings Copy dialog box appears.
17. Select **Trace3** in the From list.
18. Select **Trace4, Trace7** and **Trace8** in the To list.
19. Click **Copy**.
20. Click **Close**.
21. Open **Parameters** tab.
22. Select **Trace4**.
23. Click **Tdd22** in the table.
24. Select **Trace8**.
25. Click **Tdd22** in the table.
26. Select **Trace7**.
27. Press **Marker Search > Search Range**, and set **Start** to 0 and **Stop** to 1n.
28. Click **Search Range** to turn it **ON**.
29. Click **Couple** to turn it **OFF**.
30. Click **Return**.
31. Click **Marker** menu and select **1**.
32. Press **Marker Search** > **Max**.
33. Click **Marker** menu and select 2.
34. Press **Marker Search** > **Min**.
35. Click **Marker** menu and select 3.
36. Press **Marker Search** > **Target**, and set **Target Value** to 115.¹
37. Click **Target Transition** > **Positive**.
38. Click **Return**.
39. Click **Marker** menu and select 4.
40. Press **Marker Search** > **Target**, and set **Target Value** to 115.¹
41. Click **Target Transition** > **Negative**.
42. Click **Return**.
43. Click **Marker** menu and select 5.
44. Press **Marker Search** > **Target**, and set **Target Value** to 85.¹
45. Click **Target Transition** > **Negative**.
46. Click **Return**.
47. Click **Marker** menu and select 6.
48. Press **Marker Search** > **Target**, and set **Target Value** to 85.¹
49. Click **Target Transition** > **Positive**.
50. Click **Return**.
51. Click **Tracking** to turn it **ON**.
52. Select **Trace8**.
53. Press **Marker Search** > **Search Range**, and set **Start** to 0 and **Stop** to 1n.
54. Click **Search Range** to turn it **ON**.
55. Click **Couple** to turn it **OFF**.
56. Click **Return**.
57. Click **Marker** menu and select 1.

¹ Ignore the Target value not found message.
58. Click Marker Search > Max.
59. Click Maker menu and select 2.
60. Click Marker Search > Min.
61. Click Marker menu and select 3.
62. Press Marker Search > Target, and set Target Value to 115.¹
63. Click Target Transition > Positive.
64. Click Return.
65. Click Marker menu and select 4.
66. Press Marker Search > Target, and set Target Value to 115.¹
67. Click Target Transition > Negative.
68. Click Return.
69. Click Marker menu and select 5.
70. Press Marker Search > Target, and set Target Value to 85.¹
71. Click Target Transition > Negative.
72. Click Return.
73. Click Marker menu and select 6.
74. Press Marker Search > Target, and set Target Value to 85.¹
75. Click Target Transition > Positive.
76. Click Return.
77. Click Tracking to turn it ON.

6.2.1. Channel and Trace Settings

1. Press Display.
2. Click Allocate Channels > .
3. Press Channel Next.
4. Click Num of Traces > 4.
5. Click Allocate Traces > 📊.

6.2.2. Attenuation
1. Press Trace Next to select Trace1.
2. Press Sweep Setup > Sweep Type > Lin Freq.
3. Set Points to 1601.
4. Press Start > Set start value to 300 kHz.
5. Press Stop > Set stop value to 5.1 GHz.
6. Press Avg > Set IF Bandwidth to 70 kHz.
7. Press Analysis > Fixture Simulator > Fixture Simulator to turn it ON.
8. Click Topology > Device > Bal-Bal.
9. Click Port1 (bal) > 1-2.
10. Click Port2 (bal) > 3-4.
11. Click Return.
12. Click BalUn ON All Traces.
15. Press Marker > Marker1 > Set marker value to 825 MHz.
16. Press Scale.
17. Set Scale/Div to 5 dB/div.
18. Set Reference position to 9 Div.

6.2.3. Phase
1. Press Trace Next to select Trace2.
3. Press Format > Phase.
4. Press Scale.
5. Set Scale/Div to 20°/div.
6. Set Reference position to 5 Div.

6.2.4. Far End Crosstalk
1. Press Trace Next to select Trace3.
4. Press Scale.
5. Set Scale/Div to 5 dB/div.
6. Set Reference position to 9 Div.

6.2.5. Expand Phase
This measurement is used for the phase measurement calculation.
1. Press Trace Next to select Trace4.
3. Press Format > Expand Phase.
4. Press Scale.
5. Set Scale/Div to 5 °/div.
6. Set Reference position to 9 Div.

6.3. Limit Test Settings
The E5071C-TDR provides a capability of setting limit lines to perform pass/fail test on each measurement.

6.3.1. Turning On/Off Fail Sign
If this option is turned on, a fail sign appears when one or more measurement items violate the limit lines. It is useful to check overall test result.
1. Press Analysis > Limit Test > Fail Sign to switch the fail sign ON/OFF.
6.3.2. Setting the Warning Beeper

If this option is turned on, a beep is generated when one or more measurement items violate the limit lines.

1. Press **System** > **Misc Setup** > **Beeper** > **Beep Warning** to switch the warning beeper ON/OFF.

6.3.3. Defining the Limit Line

Set limit lines to perform pass/fail tests on the following measurement items.

- Differential Impedance (Trace3, 4, 7, 8 in Channel1)
- Attenuation (Trace1 in Channel2)
- Phase (Trace2 in Channel2)
- Far End Crosstalk (Trace2 in Channel2)

Note: If using the VBA, appropriate limit lines are automatically selected for Attenuation and Phase in accordance with the DUT cable type.

1. Press **Channel Next** key and **Trace Next** key to activate the trace on which limit lines should be set.

2. Press **Analysis** > **Limit Test** > **Edit Limit Line** to display the limit table shown below (Initially, no segments are entered in the limit table). Using the limit table, create/edit a segment.

<table>
<thead>
<tr>
<th>Type</th>
<th>Begin Stimulus</th>
<th>End Stimulus</th>
<th>Begin Response</th>
<th>End Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 s</td>
<td>600 ps</td>
<td>105 U</td>
<td>104 U</td>
</tr>
<tr>
<td>2</td>
<td>0 s</td>
<td>600 ps</td>
<td>75 U</td>
<td>75 U</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Enter the limit line data following the tables below.

4. Click **Return**.
5. Click **Limit Line** and turn it **ON**.
6. Click **Limit Test** and turn it **ON**.
7. Repeat 1 to 6 for each Measurement items.

Differential Impedance

<table>
<thead>
<tr>
<th>Type</th>
<th>Begin Stimulus</th>
<th>End Stimulus</th>
<th>Begin Response</th>
<th>End Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>0 s</td>
<td>1 ns</td>
<td>125 Ohm</td>
<td>125 Ohm</td>
</tr>
<tr>
<td>Max</td>
<td>1 ns</td>
<td>2.5 ns</td>
<td>110 Ohm</td>
<td>110 Ohm</td>
</tr>
<tr>
<td>Min</td>
<td>0 s</td>
<td>1 ns</td>
<td>75 Ohm</td>
<td>75 Ohm</td>
</tr>
<tr>
<td>Min</td>
<td>1 ns</td>
<td>2.5 ns</td>
<td>90 Ohm</td>
<td>90 Ohm</td>
</tr>
</tbody>
</table>
Agilent MOI for HDMI 1.4b Cable Assembly Test

Attenuation (Cat2 Equalized)

<table>
<thead>
<tr>
<th>Type</th>
<th>Begin Stimulus</th>
<th>End Stimulus</th>
<th>Begin Response</th>
<th>End Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>300 kHz</td>
<td>825 MHz</td>
<td>-10 dB</td>
<td>-10 dB</td>
</tr>
<tr>
<td>Min</td>
<td>825 MHz</td>
<td>2.475 GHz</td>
<td>-10 dB</td>
<td>-12 dB</td>
</tr>
<tr>
<td>Min</td>
<td>2.475 GHz</td>
<td>4.125 GHz</td>
<td>-12 dB</td>
<td>-20 dB</td>
</tr>
<tr>
<td>Max</td>
<td>125 MHz</td>
<td>825 MHz</td>
<td>-5 dB</td>
<td>-5 dB</td>
</tr>
</tbody>
</table>

Note: The limit value depends on the value of at 825 MHz.

Attenuation (Cat2 Passive)

<table>
<thead>
<tr>
<th>Type</th>
<th>Begin Stimulus</th>
<th>End Stimulus</th>
<th>Begin Response</th>
<th>End Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>300 kHz</td>
<td>825 MHz</td>
<td>-5 dB</td>
<td>-5 dB</td>
</tr>
<tr>
<td>Min</td>
<td>825 MHz</td>
<td>2.475 GHz</td>
<td>-5 dB</td>
<td>-12 dB</td>
</tr>
<tr>
<td>Min</td>
<td>2.475 GHz</td>
<td>4.125 GHz</td>
<td>-12 dB</td>
<td>-20 dB</td>
</tr>
<tr>
<td>Min</td>
<td>4.125 GHz</td>
<td>5.1 GHz</td>
<td>-20 dB</td>
<td>-25 dB</td>
</tr>
</tbody>
</table>

Attenuation (Cat1 Passive)

<table>
<thead>
<tr>
<th>Type</th>
<th>Begin Stimulus</th>
<th>End Stimulus</th>
<th>Begin Response</th>
<th>End Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>300 kHz</td>
<td>825 MHz</td>
<td>-8 dB</td>
<td>-8 dB</td>
</tr>
<tr>
<td>Min</td>
<td>825 MHz</td>
<td>2.475 GHz</td>
<td>-21 dB</td>
<td>-21 dB</td>
</tr>
<tr>
<td>Min</td>
<td>2.475 GHz</td>
<td>4.125 GHz</td>
<td>-30 dB</td>
<td>-30 dB</td>
</tr>
</tbody>
</table>

Phase (Only for Cat2 Equalized)

<table>
<thead>
<tr>
<th>Type</th>
<th>Begin Stimulus</th>
<th>End Stimulus</th>
<th>Begin Response</th>
<th>End Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>300 kHz</td>
<td>1.7 GHz</td>
<td>18°</td>
<td>18°</td>
</tr>
<tr>
<td>Max</td>
<td>1.7 GHz</td>
<td>2.72 GHz</td>
<td>18°</td>
<td>28.8°</td>
</tr>
<tr>
<td>Min</td>
<td>300 kHz</td>
<td>1.7 GHz</td>
<td>-18°</td>
<td>-18°</td>
</tr>
<tr>
<td>Min</td>
<td>1.7 GHz</td>
<td>2.72 GHz</td>
<td>-18°</td>
<td>-28.8°</td>
</tr>
</tbody>
</table>
Agilent MOI for HDMI 1.4b Cable Assembly Test

Far End Crosstalk

<table>
<thead>
<tr>
<th>Type</th>
<th>Begin Stimulus</th>
<th>End Stimulus</th>
<th>Begin Response</th>
<th>End Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>300 kHz</td>
<td>5 GHz</td>
<td>-20 dB</td>
<td>-20 dB</td>
</tr>
</tbody>
</table>