Agilent RF and Microwave Test Accessories

Detectors

Applications

Agilent Technologies broadband detectors span frequencies from 100 kHz to 50 GHz. These detectors are widely used on the design and production test bench, as well as for internal components of test system signal interface units. They find use in a variety of test and measurement applications.

- Power monitoring
- Source leveling
- Video detection
- Swept transmission and reflection measurements

Technology

Agilent detectors are available in two families – Silicon Low Barrier Schottky Diode (LBSD) and Gallium Arsenide Planar Doped Barrier Diode (GaAs PDBD) detectors. The Gallium Arsenide detector technology produces diodes with extremely flat frequency response to 50 GHz. Also, the GaAs PDB detector has a wider operating temperature range (-65 °C to +100 °C), and is less sensitive to temperature changes.

Key specifications:

- Frequency range
- Frequency response
- Open circuit voltage sensitivity
- Tangential sensitivity
- Output voltage versus temperature
- Rise time
- SWR
- Square-law response
- Input power

Frequency range

Frequency range can be one of the most important factors to consider when specifying detectors. In the past, broadband frequency coverage was equated with high performance. It is important to note that though broadband coverage may be desirable in multi-octave applications, a good octave range detector may be your best solution for non-swept applications. Broadband coverage saves you from the inconvenience of having to switch between detectors when making measurements, but you may be sacrificing SWR and frequency response flatness. All of Agilent’s 8474 family of coaxial detectors are available in both octave band and broadband versions. The guaranteed performance of the octave band models are characterized for frequency response flatness and SWR.

www.agilent.com/find/accessories
Open circuit voltage sensitivity

The open circuit voltage sensitivity (K) describes the slope of the transfer function of the detectors. This represents the conversion of RF/microwave power to a voltage at the output connector, typically specified in mV/mW. The value is an indication of the efficiency of the diode in converting the input power to a useful voltage.

Sensitivity is measured with the detector terminated in a high impedance. When used in video pulse applications, the sensitivity will appear to be much lower when terminated in 50 or 75 ohms for connection to an oscilloscope. Another factor, called the Figure of Merit, gives an indication of low-level sensitivity without consideration of a load circuit. It is useful for comparing detectors with different values of K and Rv. Figure of Merit equals K/√Rv, where Rv = internal video resistance.

Tangential sensitivity

Tangential sensitivity is the lowest input signal power level for which the detector will have an 8 dB signal-to-noise ratio at the output of a test video amplifier. Test amplifier gain is not relevant because it applies to both signal and noise. Agilent detectors are designed for optimal flatness and SWR. Figure 2 shows typical tangential sensitivity.

\[
P_{\text{tss}} (\text{watts}) = \frac{1.23 \times 10^{-10} \sqrt{B F R_v}}{K} @ 300 ^\circ \text{C}
\]

Where:
- B = Video amplifier bandwidth (Hz)
- F = Video amplifier noise factor = 10 (Noise figure/10)
- Rv = Video resistance (Ω)
- K = Open circuit voltage sensitivity (mV/mW)

Output voltage versus temperature

For applications such as power monitoring and leveling that require stable output voltage versus input power, the designer can choose a resistive termination that will optimize the transfer function over a wide temperature range. Figure 3 shows how sensitivity changes over temperature with different load resistances. In this case, a value between 1 kΩ and 10 kΩ will be optimum for 0 to 50 °C.

Rise time

In applications where the frequency response of another microwave device is being measured, or where a fast rise time response is required for accurate measurements, the rise time of the detector becomes very important. It is critical to note that the rise time is dependent upon the characteristics of the detector AND the test equipment.
Figure 4 shows the typical equivalent circuit of a test detector, and can help in devising the external terminations and cables to connect to an oscilloscope or other instrument. The following equation gives the approximate rise time for different conditions of load resistance and capacitance. Note that rise time can be improved (lowered) with a termination less than 50 Ω. This rise time improvement comes at the expense of lower pulse output voltage. The lower voltage can be overcome with the gain of a high performance oscilloscope.

Broadband match (SWR)

In many applications, the match (SWR) of the detector is of prime importance in minimizing the uncertainty of power measurement. If the input of the detector is not well matched to the source, simple and multiple mismatch errors will result, which reduces the accuracy of the measurement.

Figure 5 represents the mismatch error introduced by multiple reflections caused by mismatch between the detector and the source. For a detector SWR of 2.0 and source SWR of 2.0, this uncertainty is ±1.0 dB. For the LBSD and PDBD models, the integration of the diode with the 50 Ω matching resistor results in excellent broadband match. Both LBSD and PDBDs utilize thin-film technology which yields a precision matching circuit that minimizes stray reactance and yields very good performance. Figure 6 displays typical SWR for the Agilent 8473B,C LBSD detector and the Agilent 8473D PDBD detector.

\[
T_r (10\% \text{ to } 90\%) = \frac{2.2 \cdot R_v \cdot (C_L + C_b)}{R_L + R_v} \cdot BW = 0.35
\]

Where

- \(R_L \) = Load impedance
- \(R_v \) = Video impedance
- \(C_b \) = RF bypass capacitor
- \(C_L \) = Video capacitance
- \(C_L \) = RF bypass capacitor

Typical values:

- \(R_v \) (diode video impedance) = 1.5 kΩ
- \(C_b \) (RF bypass capacitor) = 27 pF nom.

1 @ 25 °C and \(P_{in} < -20 \) dBm. Extremely sensitive to power and temperature.
Square law performance

When detectors are used in reflectometer and insertion loss setups, the measurement uncertainty depends on the output voltage being proportional to input power. The term square law comes from the output voltage being proportional to the input power (input voltage squared). Most microwave detectors are inherently square law from the Ptss level up to about -15 dBm. Figure 7 shows this characteristic.

Figure 8 shows detector output in dB relative to $P_{in} = -20$ dBm. As P_{in} exceeds -20 dBm, the detector response deviates from square law. The user can select a load resistor that will extend the upper limit of the square law range beyond ±15 dBm. By choosing Option 002, 102 (optional square law load), the deviation from ideal square law response will be ±0.5 dB (although the sensitivity specification is decreased by a factor of 4).

Figure 7. Typical detector square law response (mV).

Figure 8. Typical detector square law response (dB).
Agilent Technologies' Test and Measurement Support, Services, and Assistance

Agilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. We strive to ensure that you get the test and measurement capabilities you paid for and obtain the support you need. Our extensive support resources and services can help you choose the right Agilent products for your applications and apply them successfully. Every instrument and system we sell has a global warranty. Support is available for at least five years beyond the production life of the product. Two concepts underlie Agilent’s overall support policy: “Our Promise” and “Your Advantage.”

Our Promise
Our Promise means your Agilent test and measurement equipment will meet its advertised performance and functionality. When you are choosing new equipment, we will help you with product information, including realistic performance specifications and practical recommendations from experienced test engineers. When you use Agilent equipment, we can verify that it works properly, help with product operation, and provide basic measurement assistance for the use of specified capabilities, at no extra cost upon request. Many self-help tools are available.

Your Advantage
Your Advantage means that Agilent offers a wide range of additional expert test and measurement services, which you can purchase according to your unique technical and business needs. Solve problems efficiently and gain a competitive edge by contracting with us for calibration, extra-cost upgrades, out-of-warranty repairs, and onsite education and training, as well as design, system integration, project management, and other professional engineering services. Experienced Agilent engineers and technicians worldwide can help you maximize your productivity, optimize the return on investment of your Agilent instruments and systems, and obtain dependable measurement accuracy for the life of those products.

Online Assistance:
www.agilent.com/find/assist
Product specifications and descriptions in this document subject to change without notice.
Printed in USA December, 2000

www.agilent.com/find/emailupdates
Get the latest information on the products and applications you select.

Agilent T&M Software and Connectivity
Agilent’s Test and Measurement software and connectivity products, solutions and developer network allows you to take time out of connecting your instruments to your computer with tools based on PC standards, so you can focus on your tasks, not on your connections. Visit www.agilent.com/find/connectivity for more information.

By internet, phone, or fax, get assistance with all your test & measurement needs

Phone or Fax

United States:
(tel) 800 452 4844

Canada:
(tel) 877 894 4414
(fax) 905 282 6495

China:
(tel) 800 810 0189
(fax) 800 820 2816

Europe:
(tel) (31 20) 547 2323
(fax) (31 20) 547 2390

Japan:
(tel) (81) 426 56 7832
(fax) (81) 426 56 7840

Korea:
(tel) (82 2) 2004 5004
(fax) (82 2) 2004 5115

Latin America:
(tel) (395) 269 7500
(fax) (395) 269 7599

Taiwan:
(tel) 0800 047 866
(fax) 0800 266 331

Other Asia Pacific Countries:
(tel) (65) 6375 8100
(fax) (65) 6838 0252
Email: tm_asia@agilent.com

www.agilent.com/find/connectivity