LTE-Advanced Physical Layer Design and Test Challenges: Carrier Aggregation

Presented by
Agilent Technologies
Agenda

• Overview of carrier aggregation
 - Carrier aggregation modes
 - Operating bands
 - Cell configuration
 - Deployment scenarios
 - Layer 1 and 2 structure
 - Resource scheduling
• Design and test challenges
• Summary/Agilent solutions
• Resources
LTE Major Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access modes</td>
<td>FDD & TDD</td>
</tr>
<tr>
<td>Channel BW (1RB = 12 subcarriers = 180 kHz)</td>
<td>1.4 MHz</td>
</tr>
</tbody>
</table>
| **Transmission Scheme** | Downlink: OFDMA *(Orthogonal Frequency Division Multiple Access)*
Uplink: SC-FDMA *(Single Carrier Frequency Division Multiple Access)* |
| **Modulation Schemes** | QPSK, 16QAM, 64QAM |
| **MIMO Technology** | Downlink: Tx diversity, Rx diversity, Single-User MIMO *(up to 4x4)*, beamforming
Uplink: Multi-User MIMO |
| **Peak Data Rates** | Downlink: 150 Mbps *(2x2 MIMO, 20 MHz, 64QAM)*; 300 Mbps *(4x4 MIMO, 20 MHz, 64QAM)*
Uplink: 75 Mbps @ 20 MHz BW, 64QAM |
| **Bearer services** | Packet only – no circuit switched voice or data services are supported ➔ voice must use VoIP |
| **Transmission Time Interval** | 1 ms |

March, 2014
Release 10 and Beyond Proposals
Radio Aspects

1. Carrier aggregation

2. Enhanced uplink multiple access
 a) Clustered SC-FDMA
 b) Simultaneous Control and Data

3. Enhanced multiple antenna transmission
 a) Downlink 8 antennas, 8 streams
 b) Uplink 4 antennas, 4 streams

4. Relaying

5. Home eNB mobility enhancements

6. Heterogeneous network support

7. Self Optimizing networks (SON)

8. Coordinated Multipoint (CoMP)
What is Carrier Aggregation?

- Extends the maximum transmission bandwidth, up to 100 MHz, by aggregating up to five LTE carriers – also known as component carriers (CCs)
- Lack of sufficient contiguous spectrum forces use of carrier aggregation to meet peak data rate targets:
 - 1 Gbps in the downlink and 500 Mbps in the uplink
- Motivation:
 - Achieve wide bandwidth transmissions
 - Facilitate efficient use of fragmented spectrum
 - Efficient interference management for control channels in heterogeneous networks
Carrier Aggregation Modes

Component Carrier (CC): max 20 MHz

- **Intra-band contiguous allocation**
- **Intra-band non-contiguous allocation**
- **Inter-band allocation**

- e.g. W-CDMA carriers
Release 10:
- Signaling to support up to 5 CCs
- Scenarios limited to 2 CCs
- Maximum aggregated bandwidth is 40MHz
- TDD inter-band with same DL-UL configurations
- Prioritized support intra band contiguous and inter band
- Rest of scenarios were postponed to later Releases

Intra-band Contiguous CA

<table>
<thead>
<tr>
<th>E-UTRA CA Band</th>
<th>E-UTRA operating Band</th>
<th>Uplink (UL) band</th>
<th>Downlink (DL) band</th>
<th>Duplex mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>UE transmit / BS receive</td>
<td>Channel BW MHz</td>
<td>UE receive / BS transmit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F_{UL_low} (MHz) – F_{UL_high} (MHz)</td>
<td></td>
<td>F_{DL_low} (MHz) – F_{DL_high} (MHz)</td>
</tr>
<tr>
<td>CA_40</td>
<td>40</td>
<td>2300 – 2400</td>
<td>[40<sup>1)</sup>]</td>
<td>2300 – 2400</td>
</tr>
<tr>
<td>CA_1</td>
<td>1</td>
<td>1920 – 1980</td>
<td>40</td>
<td>2110 – 2170</td>
</tr>
</tbody>
</table>

^{[1)} For the first phase of LTE TDD CA for UE side, with eventual goal for 50MHz

Inter-band Non-Contiguous CA

<table>
<thead>
<tr>
<th>E-UTRA CA Band</th>
<th>E-UTRA operating Band</th>
<th>Uplink (UL) band</th>
<th>Downlink (DL) band</th>
<th>Duplex mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>UE transmit / BS receive</td>
<td>Channel BW MHz</td>
<td>UE receive / BS transmit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F_{UL_low} (MHz) – F_{UL_high} (MHz)</td>
<td></td>
<td>F_{DL_low} (MHz) – F_{DL_high} (MHz)</td>
</tr>
<tr>
<td>CA_1-5</td>
<td>1</td>
<td>1920 – 1980</td>
<td>10<sup>1)</sup></td>
<td>2110 – 2170</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>824 – 849</td>
<td>10<sup>1)</sup></td>
<td>869 – 894</td>
</tr>
</tbody>
</table>

¹⁾ Only one uplink component carrier is used in any of the two frequency bands at any time.
Release 11:
- Maximum aggregated bandwidth is 40MHz
- Support multiple timing advances (required for UL CA)
- TDD inter-band with different DL-UL configurations
- Core requirements for intra-band non-cont
- Performance requirements for new inter-band and intra-band combinations

Rel-11 inter-band Carrier Aggregation

<table>
<thead>
<tr>
<th>Carrier Aggregation</th>
<th>Rapporteur</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTE Advanced Carrier Aggregation of Band 7 & Band 20</td>
<td>Huawei</td>
</tr>
<tr>
<td>LTE Advanced Carrier Aggregation of Band 2 & Band 17</td>
<td>AT&T</td>
</tr>
<tr>
<td>LTE Advanced Carrier Aggregation of Band 4 & Band 5</td>
<td>AT&T</td>
</tr>
<tr>
<td>LTE Advanced Carrier Aggregation of Band 3 & Band 20</td>
<td>Vodafone</td>
</tr>
<tr>
<td>LTE Advanced Carrier Aggregation of Band 3 & Band 5</td>
<td>SK Telecom</td>
</tr>
<tr>
<td>LTE Advanced Carrier Aggregation of Band 1 & Band 18</td>
<td>KDDI</td>
</tr>
<tr>
<td>LTE Advanced Carrier Aggregation of Band 1 & Band 19</td>
<td>NTT DOCOMO</td>
</tr>
<tr>
<td>LTE Advanced Carrier Aggregation of Band 4 & Band 13</td>
<td>Ericsson</td>
</tr>
<tr>
<td>LTE Advanced Carrier Aggregation of Band 3 & Band 5</td>
<td>SK Telecom</td>
</tr>
<tr>
<td>LTE Advanced Carrier Aggregation of Band 4 & Band 17</td>
<td>AT&T</td>
</tr>
<tr>
<td>LTE Advanced Carrier Aggregation of Band 4 & Band 12</td>
<td>Cox Communications</td>
</tr>
<tr>
<td>LTE Advanced Carrier Aggregation of Band 3 & Band 8</td>
<td>KT</td>
</tr>
<tr>
<td>LTE Advanced Carrier Aggregation of Band 3 & Band 7</td>
<td>TeliaSonera</td>
</tr>
<tr>
<td>LTE Advanced Carrier Aggregation of Band 5 & Band 12</td>
<td>US Cellular</td>
</tr>
<tr>
<td>LTE Advanced Carrier Aggregation of Band 1 & Band 7</td>
<td>China Telecom</td>
</tr>
<tr>
<td>LTE Advanced Carrier Aggregation of Band 4 & Band 7</td>
<td>Rogers Wireless</td>
</tr>
<tr>
<td>LTE Advanced Carrier Aggregation of Band 5 & Band 17</td>
<td>AT&T</td>
</tr>
<tr>
<td>LTE Advanced Carrier Aggregation of Band 8 & Band 20</td>
<td>Vodafone</td>
</tr>
<tr>
<td>LTE Advanced Carrier Aggregation of Band 11 & Band 18</td>
<td>KDDI</td>
</tr>
<tr>
<td>LTE Advanced Carrier Aggregation of Band 1 & Band 21</td>
<td>NTT DOCOMO</td>
</tr>
</tbody>
</table>
Release 12:
- Core requirements uplink CA in inter-band
- Performance requirements for intra-band non-contiguous
- Core analysis for 3 component carriers in inter-band
- Maximum aggregated bandwidth is 50MHz

CA Band Combinations

Rel.10
- 3 CA Band Combinations
 1. Inter-band
 2. Intra-band cont

Rel.11
- 25 CA Band Combinations
 1. Inter-band
 2. Intra-band cont
 3. Intra non-cont

Rel.12
- 95 CA Band Combinations
 1. Inter-band
 2. Intra-band cont
 3. Intra non-cont
 4. Inter 3 CC

Rel.13
- 13 new configs so far
New UE Categories

<table>
<thead>
<tr>
<th>UE Category</th>
<th>Data Rate DL/UL (Mbps)</th>
<th>Downlink</th>
<th>Uplink</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Max number of layers</td>
<td>Max number of layers</td>
</tr>
<tr>
<td>1</td>
<td>10 / 5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>50 / 25</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>100 / 50</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>150 / 50</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>300 / 75</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>300 / 50</td>
<td>2 or 4</td>
<td>1 or 2</td>
</tr>
<tr>
<td>7</td>
<td>300 / 100</td>
<td>2 or 4</td>
<td>1 or 2</td>
</tr>
<tr>
<td>8</td>
<td>3000 / 1500</td>
<td>8</td>
<td>4</td>
</tr>
</tbody>
</table>
Carrier Aggregation - Cell Configuration

- **PCell (primary serving cell):** handles the RRC connection establishment/re-establishment

- **SCell (secondary serving cell):** configured after connection establishment, to provide additional radio resources

- **PCell:**
 - PDCCH/PDSCH/PUSCH/PUCCH can be transmitted
 - Measurement and mobility procedure are based on PCell
 - Random access procedure is performed over PCell
 - Can not be deactivated
 - DL PCell and UL PCell are linked via SIB2

- **SCell:**
 - PDCCH/PDSCH/PUSCH can be transmitted (not PUCCH)
 - Can be deactivated by higher layer
 - Can be cross scheduled
TDD Carrier Aggregation with Different Subframe Configuration – 3GPP Release 11

- Release 10 only allowed same UL/DL configuration in all component carriers
- Release 11 different UL/DL configuration can be used – the UE is required to transmit and receive in parallel in some subframes
- TDD UEs would need duplex filter similar to FDD UEs to be able to transmit and receive simultaneously
- If UE doesn’t have duplex filter, it would follow the UL/DL configuration of PCC and conflicting subframes in SCC are not used by the UE

<table>
<thead>
<tr>
<th>PCC UL/DL Config #1</th>
<th>#0</th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
<th>#5</th>
<th>#6</th>
<th>#7</th>
<th>#8</th>
<th>#9</th>
</tr>
</thead>
<tbody>
<tr>
<td>DL</td>
<td></td>
<td></td>
<td>UL</td>
<td>DL</td>
<td>DL</td>
<td>DL</td>
<td></td>
<td>UL</td>
<td>DL</td>
<td>DL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SCC UL/DL Config #2</th>
<th>#0</th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
<th>#5</th>
<th>#6</th>
<th>#7</th>
<th>#8</th>
<th>#9</th>
</tr>
</thead>
<tbody>
<tr>
<td>DL</td>
<td></td>
<td></td>
<td>UL</td>
<td>UL</td>
<td>DL</td>
<td>DL</td>
<td></td>
<td>UL</td>
<td>UL</td>
<td>DL</td>
</tr>
</tbody>
</table>

Subframes 3 and 8 of SCC can only be used by full-duplex UEs
Carrier Aggregation Deployment Scenarios (1 of 2)

Scenario #1:
• F1 and F2 cells are co-located and overlaid, providing same coverage.
• Likely scenario when F1 and F2 are of the same band.

Scenario #2:
• F1 and F2 cells are co-located and overlaid, but F2 has smaller coverage
• Only F1 provides sufficient coverage and F2 is used to improve throughput.
• Likely scenario when F1 and F2 are of different bands

Scenario #3:
• F1 and F2 cells are co-located but F2 antennas are directed to the cell boundaries of F1 so that cell edge throughput is increased.
• F1 provides sufficient coverage but F2 potentially has holes
• Likely scenario when F1 and F2 are of different bands
Scenario #4:
- F1 provides macro coverage and on F2 Remote Radio Heads (RRHs) are used to improve throughput at hot spots.
- Likely scenario when F1 and F2 are of different bands,

Scenario #5:
- Similar to scenario #2, but frequency selective repeaters are deployed to extend coverage for one of the frequencies.
Layer 2 Structure for Carrier Aggregation

- Data aggregation happens in MAC layer, changes to protocol layer is kept to a minimum except some new RRC messages to add, remove or reconfigure SCC
- The MAC layer divides the data between different CCs and separate HARQ processes for each CC
MAC to Physical Layer Mapping for Carrier Aggregation

- There is one transport block, up to two in case of spatial multiplexing, and one HARQ entity per scheduled component carrier.
- A UE can be scheduled over multiple component carriers simultaneously.

Example of 5 component carriers each with different modulation format.
Resources can be assigned to a user equipment (UE) in two ways:

- Same-carrier scheduling
- Cross-carrier scheduling
Same Carrier Scheduling

- Separate PDCCH for each CC
- Resource scheduling are on the same component carrier (Downlink assignments/ Uplink grants)
- Reusing Release 8/9 PDCCH structure and DCI (Downlink Control Information) formats for backward compatibility
- Each component carrier can be analyzed individually

PDCCH (Physical Downlink Control Channel) carries the uplink and downlink resource grant.
Cross Carrier Scheduling

- Common PDCCH (on PCell) for multiple CC
- Resource scheduling are NOT on the same component carrier (downlink assignments/ uplink grants)
- New carrier indicator field (CIF) in DCI
- Analysis of one carrier depends on another carrier

![Diagram of LTE Advanced Carrier Aggregation](image)
Cross-Carrier Scheduling:
Interference management for control channels in heterogeneous networks

- Cross-carrier scheduling provides interference management for control channels known as Inter-Cell Interference Coordination (ICIC) for PDCCH.
- In this example, CC1 of Macro Cell would cause high interference to CC1 of pico cell, therefore pico cell uses CC2 for PDCCH messages to schedule PDSCH transmission on CC1.
- Macro cell uses CC1 to schedule PDSCH transmission on both CC1 and CC2.

Cross-carrier scheduling avoids control channel interference.
An Example Configuration of Cross Carrier Scheduling

CC#1
10 MHz
ServCellIndex: 0 (Pcell)

CC#2
10 MHz
ServCellIndex: 1 (Scell)

Same Carrier scheduled PDSCH:
- “PDSCH start” symbol is obtained by decoding PCFICH (PCFICH carries how many PDCCH symbols are transmitted)
- PDSCH allocation is defined in PDCCH(DCI) in CC#1

Cross carrier scheduled PDSCH:
- “PDSCH start” symbol is given by a higher layer parameter
- PDSCH allocation is defined in PDCCH(DCI) in CC#1
Enhancement of Uplink Control Information (UCI) for Carrier Aggregation

Updated UCI to support up to 5 downlink CCs

New PUCCH format 3
- Convey large ACK/NACK payload (48 coded bits)
- QPSK modulation
- Not based on Zadoff-Chu sequences, uses **DFT-S-OFDM** similar to PUSCH transmissions

Enhanced PUCCH format 1b with channel selection
- Supports up to 4 ACK/NACK bits for 2 CCs

Update control data bits on PUSCH
- The number of HARQ-ACK, RI and CQI/PMI bits are **increased**
Agenda

• Overview of carrier aggregation
 - Carrier aggregation modes
 - Operating bands
 - Cell configuration
 - Deployment scenarios
 - Layer 1 and 2 structure
 - Resource scheduling

• Design and test challenges

• Agilent solutions

• Resources
UE Transmitter Architecture for Various Intra-Band Aggregation Scenarios

Scenario A

- Multiplexer 1 and 2 BB
- IFFT
- D/A
- RF PA
- RF filter

Single (baseband + IFFT + DAC + mixer + PA)
Aggregation Scenario: Intra-band contiguous

Scenario B

- Multiplexer 1 BB
- IFFT
- D/A
- RF PA
- RF filter

- Multiplexer 2 BB
- IFFT
- D/A
- RF PA

Multiple (baseband + IFFT + DAC), single (stage-1 IF mixer + combiner @ IF + stage-2 RF mixer + PA)
Aggregation Scenarios: Intra-band contiguous and non-contiguous

Scenario C

- Multiplexer 1 BB
- IFFT
- D/A
- RF PA
- RF filter

- Multiplexer 2 BB
- IFFT
- D/A
- RF PA

Multiple (baseband + IFFT + DAC + mixer), low-power combiner @ RF, and single PA
Aggregation Scenarios: Intra-band contiguous and non-contiguous

Reference: 3GPP TR 36.912 v.10.0.0. Figure 11.3.2.1-1
UE Receiver Architecture

Rx Characteristics

<table>
<thead>
<tr>
<th>Option</th>
<th>Description (Rx architecture)</th>
<th>Intra Band aggregation</th>
<th>Inter Band aggregation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Contiguous (CC)</td>
<td>Non contiguous (CC)</td>
</tr>
<tr>
<td>A</td>
<td>Single (RF + FFT + baseband) with BW>20MHz</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Multiple (RF + FFT + baseband) with BW≤20MHz</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Option A

Single wideband-capable (i.e., >20MHz) RF front end (i.e., mixer, AGC, ADC) and a single FFT, or alternatively multiple "legacy" RF front ends (<=20MHz) and FFT engines.

Option B

In the case non adjacent Inter band separate RF front end are necessary.

Reference: 3GPP TR 36.912.
Design Challenges – Intra-Band CA

- Several technical challenges, especially for a UE
- From RF perspective, intra-band contiguous aggregated carriers have similar properties as a corresponding wider carrier being transmitted and received
- Release 10 requires more stringent linearity requirements on the power amplifier than Release 8/9
 - UE will need to use less transmitter power for the amplifier to remain in the linear region
- Use of multiple CC on UL should be optional and only used for cases where UEs are not at the cell edge
- For the base station, it has less impact - similar to multi-carrier configuration already supported in earlier releases

Example of CCDF plot using N7624B LTE/LTE-Advanced Signal Studio software
Design Challenges - Inter-band CA

Major challenges for the UE

• Multiple simultaneous receive chains
• Multiple simultaneous transmit chains

Challenging radio environment

• In terms of intermodulation and cross-modulation within the UE device.
• Need to design front-end components that help reduce harmonics, and other intermodulation products, which meet 3GPP requirements.
• Simultaneous transmit or receive with MIMO support add significantly to the challenge of antenna design

Less impact for the base station

• Similar to current base stations supporting multi-bands

Reference:
3GPP TR 36.912 v.10.0.0. Figure 11.3.2.1-1
SystemVue LTE-Advanced Carrier Aggregation

<table>
<thead>
<tr>
<th>Scenario number</th>
<th>Deployment scenario</th>
<th>Transmission BWs of LTE-A carriers</th>
<th># of LTE-A component carriers</th>
<th>Duplex modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Single-band contiguous spec. alloc. @ 3.5GHz band for FDD</td>
<td>UL: 40 MHz DR: 80 MHz</td>
<td>UL: Contiguous 2x20 MHz CCs DR: Contiguous 4x20 MHz CCs</td>
<td>FDD</td>
</tr>
<tr>
<td>2</td>
<td>Single-band contiguous spec. alloc. @ Band 40 for TDD</td>
<td>100 MHz</td>
<td>Contiguous 5x20 MHz CCs</td>
<td>TDD</td>
</tr>
<tr>
<td>4</td>
<td>Single-band, non-contiguous spec. alloc. @ 3.5GHz band for FDD</td>
<td>UL: 40 MHz DR: 80 MHz</td>
<td>UL: Non-contiguous 1x20 + 1x20 MHz CCs DR: Non-contiguous 2x20 + 2x20 MHz CCs</td>
<td>FDD</td>
</tr>
</tbody>
</table>

![Diagram](image-url)
Test Challenges: Power Amplifier Characterization

Test Challenge: Characterizing the LTE-Advanced UE or eNB power amplifier presents RF challenge. The different carrier aggregation configurations will stress the amplifier in different ways since each will have different peak-to-average ratios.

Agilent Solution:
- Signal Studio software generates LTE-Advanced signals compliant to 3GPP standard to test power and modulation characteristics of components and transmitters.
- Supports up to 5 component carriers within up to 160 MHz I/Q bandwidth with MXG vector signal generator
- CCDF curve to get insight into the waveform power statistics as system parameters are varied
Test Challenges: Analyze eNB Unwanted Emissions inside Sub-Block Gap

Test Challenge: For Release 11, there is new RF conformance testing required for base station transmitters to measure unwanted emissions inside sub-block gap contributed from carriers on both sides of the gap.

Agilent Solutions:
- X-Series LTE-Advanced measurement application (N9080B/N9082B)
- Supports LTE-Advanced RF conformance testing per 3GPP Release 10/11 for both UE and eNB
- Supports the new cumulative ACLR (CACLR) and cumulative SEM requirement inside sub-block gap

Depending on sub-block gap, one or both inner offsets can overlap resulting in CACLR.

Refer to “LTE-Advanced Base Station RF Conformance Testing” paper for full detail on RF conformance testing.
Test Challenges: Inter-Band Carrier Aggregation Analysis

Test Challenge: acquiring truly simultaneous events across carriers is important in device verification and troubleshooting tasks but in inter-band case, this would require signal analyzer with bandwidth that spans multiple frequency bands (ex. 800 MHz and 2100 MHz)

Agilent Solution:
- Dual input hardware, fully synchronized, plus 89600 VSA software. VSA software acquires all the CCs simultaneously, demodulate the captured signals, and analyze them all simultaneously.

Images of dual signal analyzers and VSA software screenshots displaying 2 CCs at 800 MHz and 3 CCs at 2100 MHz.
Test Challenges: Analyze Time Alignment Error between Multiple Component Carriers

Test Challenge: In order for the UE to properly receive the multiple component carriers from the eNB, the timing offset between the component carriers must be kept at a minimum - 155 ns for intra-band contiguous; 285 ns for non-contiguous & inter-band

Agilent Solutions:

89600 VSA software

- Both simultaneous and sequential demodulation of component carriers to perform time alignment error (TAE) measurement

X-Series Measurement Application

- Sequential acquisition of the multiple component carriers. Use frame trigger or external trigger for accurate TAE measurement

89600 VSA Cross-carrier Summary trace providing TAE across all CCs
Test Challenges: Simultaneous Analysis of Inter-Band Aggregation plus Downlink MIMO

Test Challenge: when inter-band carrier aggregation is combined with spatial multiplexing MIMO, it requires test tools that has a minimum of 4 inputs (two inputs per CC).

Agilent Solution:
• N7109A multi-channel signal analysis system: 2, 4 or 8 channels, 40 MHz demodulation BW per channel

Example of 2x2 MIMO and inter-band carrier aggregation with two component carriers
Test Challenges: LTE-Advanced eNB Receiver Test

Test Challenge: Test eNB ability to decode UCI transmissions with feedback for multiple component carriers.

Agilent Solution

- Create either FDD or TDD signals
- PUCCH format 3 and 1b enable generation of feedback for multiple component carriers
- PUSCH UCI multiplexing enhanced for feedback of up to 5 component carriers
- Predefined configuration of LTE-Advanced conformance tests with randomized HARQ-ACK in PUCCH
Agenda

- Overview of carrier aggregation
 - Carrier aggregation modes
 - Operating bands
 - Cell configuration
 - Deployment scenarios
 - Layer 1 and 2 structure
 - Resource scheduling
- Design and test challenges
- Summary/Agilent solutions
- Resources
Summary

• Carrier aggregation is one of the most important features for LTE-Advanced enabling:
 - Higher data rates
 - Facilitate efficient use of fragmented spectrum
 - Interference management in heterogeneous networks
• It is introduced in LTE Release 10 with enhancements in Release 11 and more improvements planned in Rel. 12 and beyond
• It introduces various design challenges, especially for UE
• New test challenges for both UE and eNB
• Agilent was first to market with LTE-Advanced solution addressing system simulation, signal generation and analysis tools
Agilent LTE and LTE-Advanced Portfolio

First LTE-A

SystemVue (BB) ADS/GG (RF/A)
Signal creation software

Signal Generators
Baseband Generator and Channel Emulator

RF Module Development
RF Proto → RF Chip/module

BTS and Mobile BB Chipset Development
L1/PHY
FPGA and ASIC

Protocol Development
L2/L3

RF and BB Design Integration
L1/PHY
DigRF v4

BTS or Mobile

System Design Validation
System Level RF Testing

Pre-Conformance

Conformance

Manufacturing

Network Deployment

Anticipate Accelerate Achieve

Agilent Technologies

March, 2014
LTE/LTE-Advanced Signal Studio Software
For RF Transmitter & Receiver Tests

Physical layer-coded signals for Transmitter amplifier test (Basic option)
Transport layer-coded signals for Receiver BLER test (Advanced option)

- User-friendly, parameterized, and reconfigurable setup
- Real-time uplink LTE FDD / TDD signal creation
- Create multi-carrier signals in one waveform
- Create MIMO precoding with embedded multi-path fading
- Supports multiple signal-generator platforms:

- X-Series MXG/EXG
- PXB
- EXM
- 1st generation MXG
- ESG-C / PSG
- M9381A VSG
- SystemVue EDA software
Signal Studio LTE and LTE-Advanced
Version 12.0 (Released March 2014)

- **Uplink MIMO** (Advanced R10, Option TFP/TTP)
 - 2x and 4x ANT
 - Spatial Multiplexing for PUSCH
 - OCC for PUSCH DMRS
 - SORTD for PUCCH
 - PUCCH wizard to support uplink MIMO tests (8.3.7, 8.3.8)

- **Other LTE-A uplink features**
 - Carrier Aggregation
 - PUCCH format 3, 1b with channel selection
 - Clustered PUSCH
 - Simultaneous PUSCH/PUCCH

- **Downlink**
 - Downlink Control Information (DCI) updates
 - DCI format 4 is added
 - Other DCI formats also updated
 - Carrier Aggregation
N7649B Test Case Manager
Now Supports Receiver Performance Tests

• Simple and easy to use user interface
 - Provides minimum set of parameters and configure instruments according to the standard requirements
• TS36.141 Receiver Test for FDD and TDD
 - Clause 7 Receiver Characteristics (Rel-10)
 - Clause 8 Receiver Performance (Rel-9)
 - eNB Type selection
 • Wide Area, Local Area, Home BS
• Supported Platforms
 - Clause 7: MXG-B, EXG-B, MXG-A, ESG-C, PXB
 - Clause 8: MXG-B(*), EXG-B(*), PXB
 • * Requires external fader
• Graphic to show how carriers are positioned
• SCPI log to assist remote automation
• 30 days free trial license is available

Visit www.agilent.com/find/TCM to find out more!
LTE/LTE-Advanced Signal Analysis Applications

For RF Transmitter Test

Scalable transmitter test solutions

- Tailor capability & performance from SISO to MIMO/beamforming

- Use 89600 VSA with varieties of demodulation result traces/capabilities for deep-dive analysis in R&D, design validation, troubleshooting, etc.

- Use X-Series measurement applications with ease-of-use presets, demodulation and power/ spectrum measurements for manual & automated tests in QA, conformance testing, manufacturing, etc.

Co-reside with multi-formats in one box

- W-CDMA/HSPA+, GSM/EDGE, cdma2000, 1xEV-DO, WLAN…

X-Series Signal Analyzer

(EXA/MXA/PXA)

89600B VSA Software

Ultimate analysis flexibility for R&D

N9080B/82B Software

One-button measurements for conformance testing

Agilent Technologies
Carrier Aggregation: Simultaneous demodulation of up to 5 CCs.

- DL (OFDMA) & UL (SC-FDMA) in a single option
- All LTE/LTE-A modulation types: BPSK, QPSK, 16QAM, 64QAM, CAZAC (Zadoff-Chu)
- FDD/TDD 4x4 DL MIMO analysis & TDD 8x2 DL Beamforming analysis
- 8x8 DL MIMO analysis for LTE-Advanced FDD & TDD
- UL MIMO single channel analysis for LTE-Advanced
- 89600 WLA: MAC, RRC, RLC layer add-on to the 89600 VSA for UL & DL LTE FDD
- Rich varieties of modulation analysis results & traces with full PHY channel-based color coding
- Supports multiple platforms: Systemvue EDA simulation SW, X-Series signal analyzers, Oscilloscopes, logic analyzers, PXI VSAs, N7109A multi-channel signal analyzer
Output power level tests
- Channel power
- Transmit ON/OFF power (TDD base station only)

Transmitted signal quality
- EVM, frequency error, I/Q offset...
- Time alignment error
- Comprehensive list of EVM measurements and color-coded displays to troubleshoot errors

Unwanted emissions
- Spectrum emissions mask (SEM)
- Adjacent channel leakage ratio (ACLR)
- Cumulative ACLR (CACLR) and cumulative SEM for non-contiguous CA
- Occupied bandwidth
- Spurious emissions
- Transmitter intermodulation

All measurements support LTE and LTE-A with up to 5 component carriers, both contiguous and non-contiguous carrier aggregation (CA)
Chapters in this 600 plus page book include:
- LTE Introduction
- Air Interface Concepts
- Physical Layer
- Upper Layer Signaling
- System Architecture Evolution
- Design and Verification Challenges
- Conformance Test and Acceptance Testing
- Looking Towards 4G: LTE-Advanced

Agilent LTE-Advanced solution information:
www.agilent.com/find/lteadvanced

3GPP specification:
http://www.3gpp.org/DynaReport/36-series.htm
Thank you for listening!