Wireless Seminar:

Testing Mobile WiMAX

Agilent E6474A NiXT Drive Test
Agenda

Overview of Mobile WiMAX

- Mobile WiMAX Charts and Views in E6474A
- Assessing 4G Services with Video Mos Tests
- W1314A Receiver WiMAX measurements
- Supplement: List of WiMAX measurements
Mobile WiMAX (IEEE 802.16e-2005)

• New technology based on OFDMA (expected to be used for all 4G)
• TDD operation - TX and RX using one RF Carrier
• Standard calls for up to 70 Mbps at up to 120Kmph
• 10 Mbps devices currently available today
• Facilitates new services (two-way video file-sharing, two-way VoIP) with integrated QOS (not implemented yet)
• Approved as a IMT-2000 “3G” technology by ITU - this opens up existing Cellular and PCS Frequencies for use
• First commercial deployments in 2008
WiMAX Network Reference Architecture

AP – Access Point (Base Station)
MS – Mobile Station
GW – GateWay
ASN – Access Service Network
CSN – Connectivity Service Network
NAP – Network Access Provider
NSP – Network Service Provider

R2 = Logical Interface – Authentication and Configuration Management

See next slide for details.
WiMAX Network Reference Architecture

Flat ALL IP Architecture

- NAP
- ASN
- ASN GW (FA)
- R1
- R6
- AP
- MS
- VT
- VOIP
- Video
- PS
- SMS
- SMSC
- Internet
- PSTN
- CS
- VOIP
- Video
- VT

CS – Circuit Switch Services
VOIP – VoIP Services
VS – Video Services
PS – Packet Switch Services
SMS – Short Message Services
E6474A WiMAX - Basics

Every Sector has:

• A Center Frequency
• A Common Bandwidth
• A Preamble Index offset
• A BSID
• An associated group of Neighbor Sectors with this same information
Each Sector also has a set of Key PHY Parameters:

- RSSI (Server and Neighbors)
- CINR (Server and Neighbors)
- TX Power (Server only)

For the Server the complete MAC Messaging Dialog is captured and displayed in real-time
Summary of WiMAX – R1 Link

Mobile WiMAX
802.16e-2005 -- OFDMA

- **RF Bands**
 - 2.3-2.4GHz (Asia)
 - 2.5-2.7GHz (US, Japan, some ROW)
 - 3.4-3.8 GHz (LAR , EMEA, Asia)
 - 2.3-2.4 uses 7 Mhz and 8.75Mhz BW
 - 2.5-2.7 uses 5 MHz and 10MHz BW
 - 3.4-3.8 uses 7 Mhz and 8.75Mhz BW
 - 1.25 MHz and 20MHz BW allowed
- **OFDMA** with 128, 512, 1024, or 2048 carriers in respective allocated BWs
- Multiple Modulation Coding Schemes are used concurrently
- **HARQ Processes**

(Wave 1)

Today

(Wave 2)

2008

- **MIMO** (Multiple Input Multiple Output)
 - 2x2 initially evolving to 4x4
- **STC** (Space Time Coding)
- **Adaptive Antennas**
 - Beam Forming
- **Wave 2 Enhancements** Focused on Capacity improvements and Throughput performance

Bottom Line: 802.16e-2005 is significantly more complex than WLAN or Fixed WiMAX or Today’s 3G
NiXT Architecture Overview
RF Coverage, Quality and Capacity measurements

Single Platform air-interface measurement system for:
• GSM/GPRS/EDGE/UMTS/HSxPA
• CDMA/cdma2000/1xEVDO
• WiMAX, iDEN, TD-SCDMA

Platform features include:
• Database logging and Playback
• Integral GPS/Real time mapping
• Alerts/alarms/Events
• Flexible time chart
• Protocol message decode
• File export
• Link phone & receiver

Post Processing
• Fast fault analysis
• Summary KPI reports
• Flexible export
• Open interface

Phones Support:
• Key network measurements
• Protocol capture/decode
• Multi-vendor support
• Cover multiple chipsets

Data Services testing:
• Data service testing (e.g. FTP, HTTP, Email, Video Telephony, Video Streaming /w MOS etc), MMS, SMS, WAP. Including commercial mobile interface and with content validation

Network Independent Receiver functionality:
• BCH/SC/Pilot analyzer
• Interference analyzer
• Spectrum & CW analyzer
• Cover multiple technologies
• Uplink and downlink
• Integral GPS & USB Hub

Data testing:
• End to End, client-server ‘pipe’ testing – UDP or TCP data geometry

Voice Quality testing:
• ITU P.862.1 PESQ-LQO Support
• Uplink and downlink

NiXT Architecture Overview
Network Independent Receiver functionality:
• BCH/SC/Pilot analyzer
• Interference analyzer
• Spectrum & CW analyzer
• Cover multiple technologies
• Uplink and downlink
• Integral GPS & USB Hub
E6474A-656 WiMAX Phone Measurements

- **E6474A-656** option providing WiMAX phone measurements.
- Currently supports Beceem chipset devices.
 - MS120 PC Cards (Wave 1)
 - BCS200 PC Cards (Wave 2)
- New! Intel Baxter Peak and Echo Peak Chipsets support (11.3 – May 08)
- Roadmap to Add Runcom RNA200 Chipset support (11.4 – in Aug 08)
- Roadmap to add Ethernet and USB support (11.4 – in Aug 08) Beceem 120/200
- Others TBD on Business Case
Agenda

Overview of Mobile WiMAX

Mobile WiMAX Charts and Views in E6474A

Assessing 4G Services with Video Mos Tests

W1314A Receiver WiMAX measurements

Supplement: List of WiMAX measurements
Default Views – Server and Neighbors

Displays the current call processing status of the WiMAX PC Card

- Serving Channel and Preamble Index to identify the serving sector
- The Serving RSSI to show signal coverage
- Serving CINR value to determine signal quality
- TX Power to assess power control performance

Neighbor Information: Preamble Index and associated RSSI and CINR values

- UL and DL MAC Throughput Rates in Kbps to show current traffic flow

CQICH TX gives indication of uplink power control messaging volume
Default Views – MAC Protocol Decoder

Displays the current MAC Protocol dialog between the PC Card and the Access Point.

Like L3 Protocol in 3G technologies this provides a top level message flow display, the ability to notify on a filtered set of specific messages as well as complete decode of each individual message.

Messages are color coded to help highlight different network transactions:

- **Downlink** – Navy
- **Uplink** - Light Blue
- **DL or UL** – Purple
- **Authentication** – Yellow
- **Handover Request** – Red
- **HO Response** – Gold
- **HO Indication** - Magenta
Default Views - Map

Visualize in Real-Time:
- Handover performance
- Coverage (RSSI)
- Interference (CINR)
- MAC Throughput
- User Experience (VMOS)
 - Video and Audio MOS
- Application Throughput
 - Video Streaming, FTP, PUT/GET, HTTP Downloads etc.
Agenda

Overview of Mobile WiMAX
Mobile WiMAX Charts and Views in E6474A
Assessing 4G Services with Video Mos Tests
W1314A Receiver WiMAX measurements
Supplement: List of WiMAX measurements
Video Streams with MOS
(Assess Users actual 4G multimedia experience)

• Understand how customers see the WiMAX Service
• Content can be on Internal or Public Video Server
• Supports the following Formats:
 Windows Media, Real Player, Quick Time, Mpeg4, 3GPP
• Measure every 300ms - correlate to RF conditions
 Audio MOS, Video MOS, %Jerkiness, %Bluriness, %Blockiness
Streaming Video with MOS

- Integrated Test
- Automates traffic generation
- Easy to Configure
- Can be used with other application data tests

- Video and Audio can be replayed with collected data
WiMAX Drive Test with Video MOS
Agenda

Overview of Mobile WiMAX
Mobile WiMAX Charts and Views in E6474A
Assessing 4G Services with Video Mos Tests

W1314A Receiver WiMAX measurements
Supplement: List of WiMAX measurements
E6474A-655 WiMAX Receiver Measurements

- **E6474A-655** option providing WiMAX Receiver measurements.

- Currently supports:
 - Preamble RSSI/CINR measurements
 - Preamble Decodes
 - CW, Spectrum Analysis
W1314A Models that support WiMAX Bands

W1314A-600 Supports WiMAX 2.5GHZ
(includes 850 and 1900 MHz downlink band support)

W1314A-603 Supports WiMAX 2.5GHZ

W1314A-623 Supports WiMAX 2.3 Ghz
(includes 2.1GHZ downlink band support)

W1314A-E01 Supports WiMAX 2.3/2.5/3.5 GHz
W1314A Models that support WiMAX Bands

W1314A-E02 Supports WiMAX 2.5GHZ
(includes 850/1900/2100/iden 800/ iden900 MHz downlink band support)

W1314A-E03 Supports WiMAX 2.5GHZ
(includes 850/1900/2100* MHz Up and downlink band support)

W1314A-E04 Supports WiMAX 3.5GHZ
(includes 900/1800/2100 MHz downlink band support)

W1314A-E05 Supports WiMAX 3.5GHZ
(includes 850/900/1800/1900 MHz downlink band support)

W1314A-E06 Supports WiMAX 2.5GHZ
(includes 800/900/1700/2100 MHz downlink band support)

* 2100 uplink is 1700Mhz AWS band support for US only
W1314A Receiver Performance Enhancements – Individual Technology

<table>
<thead>
<tr>
<th>Mobile WiMAX</th>
<th>Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Scan (preamble-RSSI)</td>
<td>7 channels / sec (10 MHz BW)</td>
</tr>
<tr>
<td>Power Scan (preamble-RSSI)</td>
<td>15 channels / sec (5 MHz BW)</td>
</tr>
<tr>
<td>Preamble decode</td>
<td>Minimum 7 up to 15 decodes / sec<sup>a</sup></td>
</tr>
</tbody>
</table>

^a Can be multiple preamble decodes for each RF carrier.
Agenda

Overview of Mobile WiMAX
Mobile WiMAX Charts and Views in E6474A
Assessing 4G Services with Video Mos Tests
W1314A Receiver WiMAX measurements

Supplement: List of WiMAX measurements
<table>
<thead>
<tr>
<th>Agilent Restricted</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Device Configuration</th>
<th>Power work mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>RSSI deviation</td>
</tr>
<tr>
<td>ESN</td>
<td>Num of BRTH</td>
</tr>
<tr>
<td>RF Log Intvl Distance</td>
<td>Connection index</td>
</tr>
<tr>
<td>RF Log Intvl Time</td>
<td>Transport CD</td>
</tr>
<tr>
<td>Call Duration</td>
<td>Wimax Sync Status</td>
</tr>
<tr>
<td>Noisy Call Threshold</td>
<td>Phys Sync Status</td>
</tr>
<tr>
<td>Device Mode</td>
<td>Base Station ID</td>
</tr>
<tr>
<td>Device Type</td>
<td>Presamble ID</td>
</tr>
<tr>
<td>Label</td>
<td>Mean CINR</td>
</tr>
<tr>
<td>Device Description</td>
<td>CINR Deviation</td>
</tr>
<tr>
<td>Software Version</td>
<td>Mean RSSI</td>
</tr>
<tr>
<td>IMEI</td>
<td>RSSI Deviation</td>
</tr>
<tr>
<td></td>
<td>Modern Center Freq</td>
</tr>
<tr>
<td></td>
<td>Modern BW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wimax SS Statistics</th>
<th>Wimax Link State Ex</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS Stats Size</td>
<td>Avg CINR</td>
</tr>
<tr>
<td>Num of Frames Rcvd</td>
<td>Std CINR Deviation</td>
</tr>
<tr>
<td>Num of PDUs Rcvd Per MCS</td>
<td>Max Tx Power</td>
</tr>
<tr>
<td>Num of PDUs Sent Per MCS</td>
<td>Freamble Index</td>
</tr>
<tr>
<td>Modern State</td>
<td>DL ID Cell</td>
</tr>
<tr>
<td>Centre Frequency</td>
<td>UL Cell ID</td>
</tr>
<tr>
<td>Frame Number</td>
<td>IR Code End Value</td>
</tr>
<tr>
<td>DL Rate</td>
<td>IR Code Start Value</td>
</tr>
<tr>
<td>UL Rate</td>
<td>Current Tx Power</td>
</tr>
<tr>
<td>Current Offset BS</td>
<td>Tx Headroom</td>
</tr>
<tr>
<td>Phys Sync Failures</td>
<td>BF End Value</td>
</tr>
<tr>
<td>Network Entry Failures</td>
<td>BF Start Value</td>
</tr>
<tr>
<td></td>
<td>FR End Value</td>
</tr>
<tr>
<td></td>
<td>FR Start Value</td>
</tr>
<tr>
<td></td>
<td>HR End Value</td>
</tr>
<tr>
<td></td>
<td>HR Start Value</td>
</tr>
<tr>
<td></td>
<td>Base Station ID</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wimax CP Stats</th>
<th>Wimax DP Stats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Num UL Chnl marked unusable</td>
<td>Num of SDU rcvd</td>
</tr>
<tr>
<td>Num DL Chnl marked unusable</td>
<td>Num of SDU sent</td>
</tr>
<tr>
<td>Num of Sync Failures</td>
<td>Num of non-data SDU rcvd</td>
</tr>
<tr>
<td>BW Flst from MS</td>
<td>Num of non-data SDU sent</td>
</tr>
<tr>
<td>DL CH chg changes</td>
<td>Num of PDU rcvd</td>
</tr>
<tr>
<td>UL CH chg changes</td>
<td>Num of PDU sent</td>
</tr>
<tr>
<td>LCD Rx count</td>
<td>Num of PDU rcd</td>
</tr>
<tr>
<td>DCD Rx count</td>
<td>Num of Mgmt Plks sent</td>
</tr>
<tr>
<td>Invalid SBC Rcvd</td>
<td>Num of SDU rejected</td>
</tr>
<tr>
<td>Auth Failures</td>
<td>Total Bytes rcvd</td>
</tr>
<tr>
<td></td>
<td>Total Bytes sent</td>
</tr>
<tr>
<td></td>
<td>Total num of UL conn</td>
</tr>
<tr>
<td></td>
<td>Total num of DL conn</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wimax Device Config</th>
<th>Wimax Physical State Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC Address</td>
<td>DLMAP FEC Scheme</td>
</tr>
<tr>
<td>Library Version</td>
<td>UL burst data (FEC)</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>DL burst data zone</td>
</tr>
<tr>
<td>Driver Version</td>
<td>UL burst data zone</td>
</tr>
<tr>
<td>Baseband Chip Version</td>
<td>Frame number</td>
</tr>
<tr>
<td>RF Chip Version</td>
<td>Local frame number</td>
</tr>
<tr>
<td>Calibration Status</td>
<td>UL burst duration</td>
</tr>
<tr>
<td>Antenna Calibration</td>
<td>DL burst duration</td>
</tr>
<tr>
<td>Antenna Gain Offset</td>
<td>UL burst size</td>
</tr>
<tr>
<td>Tx Power Offset</td>
<td>DL burst size</td>
</tr>
<tr>
<td>Wimax Modern State Info</td>
<td>UL ranging speed</td>
</tr>
<tr>
<td>Network Entry Status</td>
<td>UL burst data CID</td>
</tr>
<tr>
<td>Base Station ID</td>
<td>DL burst data CID</td>
</tr>
<tr>
<td></td>
<td>DL burst data CID</td>
</tr>
<tr>
<td></td>
<td>DL burst data DIC</td>
</tr>
<tr>
<td></td>
<td>DL burst data DIUC</td>
</tr>
<tr>
<td></td>
<td>UL burst data DIUC</td>
</tr>
</tbody>
</table>

| | UL burst data UUIC |
Video Streaming MOS test