Simulation with TE connectors

Agilent High Speed Digital Tour

Emmanuel LANCELOT
elancelot@te.com
+33 6 74 53 05 86

EVERY CONNECTION COUNTS
A WORLD LEADER IN CONNECTIVITY

- $13.3 billion global company
- Solving connectivity challenges with the broadest range of products
- Engineering driven, customer focused
- Leveraging technology innovations across industries
TE Connectivity: A World Leader Enabling Connectivity

Serving Large Attractive Markets

- Consumer
 - Transportation
 - Consumer Products
 - Communications
 - SubCom
- Industrial and Infrastructure
 - Energy
 - Industrial Equipment
 - Aerospace & Defense
 - Medical

With a Wealth of Technology Platforms

- Connectors
- Fiber Optics
- Circuit Protection
- Sealing & Protection
- Wireless
- Precision Wire & Cable

And Extensive Global Resources

- 7,000 Engineers Close to Our Customers
- 5,000 Salespeople Advising Our Customers
- 150 Countries Served
- ~90 Manufacturing Sites Serving Every Region

page 3
Some product capabilities

- Backplane Connectors
- Power Connectors
- Pluggable I/O
- RJ45 (Ethernet) Jacks
- Stacking Connectors
- Micro PGA and LGA Sockets
- Active Optical Cables
- Fiber Optics
- Coplanar Connectors
- Coax Connectors
- Relays
- Cable Assemblies
Agenda

• How to find an electrical model for a TE connector?

• Simulation versus Measurement

• Simulation, connector choice and cost optimization
How to find an electrical model for a TE connector?
• In the catalog http://www.te.com/ go to:
 – Resources
 – Electrical models
• Then choose the type and sub-section of the involved connector:
And then you reach the available models:

- USB 3.0 Standard A Connector (Applicable for P/N1932258-1 Only)

To learn more about TE models and connectors contact Circuits & Design Team.
Simulation versus Measurement
Case: TE TinMan System Evaluation Kit
Backplane Channel Configuration

5 inches of daughter card trace
5 mil, 100 Ohm differential traces
Nelco 4000-6 material 0.125”
daughter card thickness, non-counterbored

Standard right angle connector (x2)

4 inches of backplane trace
7 mil, 100 Ohm differential traces
Nelco 4000-13 material
Daughter Board in ADS Layout showing Momentum Meshing
Backplane in ADS 3D Viewer
ADS Simulation Test Bench

S-Parameter Models (provided by TE)

Momentum-Extracted Models
System Performance @ 6.25Gbps

Measurements

Simulations
Comparing data @ 6.25Gbps
Conclusion

- Measurement and simulation are showing equivalent eye opening

- Use of ADS and TE S-parameter models are delivering a reliable prediction of reality
Simulation, connector choice and cost optimization
Substrate / connector comparison

2mm HM in Red

TinMan in blue
FR4 10-in Backplane with 2HM Connectors

Tx

Bit Rate = 6 Gbps
Tx Interface

HM 2mm

ML2CTL_C

Length = 10 in
S = 10 mil
Layer = 2
PLGC_File =
ReusePLGC = no
W_File =

Rx

Rx_Diff
Rx_DIM
ExcludeLoad = no
EnableCTLE = no
EnableFFE = no
EnableDFE = no

<table>
<thead>
<tr>
<th>index</th>
<th>permute(Height)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.139</td>
</tr>
</tbody>
</table>

Density

0 0.1 0.2 0.3
0 100 200 300 400

page 21
RO4000 10-in Backplane with 2HM connector

<table>
<thead>
<tr>
<th>Index</th>
<th>permute(Height)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.204</td>
</tr>
</tbody>
</table>
FR4 10-in Backplane with TinMan Connectors
Backplane focus products

<table>
<thead>
<tr>
<th>Data Rate</th>
<th>STRADA Whisper Connector – Cable backplane</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1 Gb/s</td>
<td>STRADA Whisper Connector – PCB backplane</td>
</tr>
<tr>
<td>1-3 Gb/s</td>
<td>Impact Connector</td>
</tr>
<tr>
<td>3-6 Gb/s</td>
<td>Z-PACK Hm-Zd connector</td>
</tr>
<tr>
<td>6-10 Gb/s</td>
<td>Z-PACK Hm-Zd Plus connector</td>
</tr>
<tr>
<td>10-15 Gb/s</td>
<td>Z-Pack 2HM</td>
</tr>
<tr>
<td>15-20 Gb/s</td>
<td>Eurocard</td>
</tr>
<tr>
<td>20-25 Gb/s</td>
<td></td>
</tr>
<tr>
<td>25+ Gb/s</td>
<td></td>
</tr>
</tbody>
</table>

* Under development
Conclusion

• Using ADS and TE S-parameters models to make the right connector choice will allow you to push FR4 as far as possible

• Cost of system will be optimized by the simulation of various connectors with the same PCB material