Notice

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies, Inc. as governed by United States and international copyright laws.

Manual Part Number
35670-90067
Edition
Printed in Malaysia
Agilent Technologies, Inc.
3501 Stevens Creek Blvd.
Santa Clara, CA 95052 USA
Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation.

Software Revision
This guide is valid for the firmware that was installed in the instrument at the time of manufacture.

Warranty
The material contained in this document is provided “as is,” and is subject to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

Safety Notices

CAUTION
A CAUTION notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met.

WARNING
A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

Technology Licenses
The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

Restricted Rights Legend
U.S. Government Restricted Rights. Software and technical data rights granted to the federal government include only those rights customarily provided to end user customers. Agilent provides this customary commercial license in Software and technical data pursuant to FAR 12.211 (Technical Data) and 12.212 (Computer Software) and, for the Department of Defense, DFARS 252.227-7015 (Technical Data - Commercial Items) and DFARS 227.7202-3 (Rights in Commercial Computer Software or Computer Software Documentation).
In This Supplement

Purpose

The purpose of this supplement is to describe changes to the display of the Agilent 35670A. These changes apply only to instruments with a serial number higher than MY42506200 made after December 2002.

Most users of the Agilent 35670A will see few or no changes in the operation of the instrument. The changes apply to specific sections of the Agilent 35670A Operator's Guide, the Agilent 35670A Installation and Verification Guide, and the Agilent 35670A Service Guide.

How to Use This Supplement

You may use these supplement pages to mark up your other guides or you may place supplement pages in the appropriate locations in those guides. Each segment of this document indicates which section of the original guide is affected by the changes. Only content which has changed is presented here in order to avoid confusion.
Declaration of Conformity
According to ISO/IEC Guide 22 and EN 45014

Manufacturer's name: Agilent Technologies

Manufacturer’s address: Lake Stevens Site
8600 Soper Hill Road
Everett, Washington 98205-1209

declares that this product

Product Name: Dynamic Signal Analyzer

Model Number: Agilent 35670A

conforms to the following specifications, except as noted in
the Product Specifications:

EMC: CISPR 11:1990/EN55011 (1991): Group 1, Class A
IEC 801-2:1991/EN50082-1 (1992): 4kV-CD, 8kV-AD
IEC 801-3:1984/EN50082-1 (1992): 3V/m (1)

Supplementary Information:
The product herewith complies with the requirements of Low Voltage Directive 72/23/EEC
and the EMC Directive 89/336/EEC and carries the “CE” mark accordingly.

(1) In a 3V/m field, some degradation of the product performance occurs.

Everett, Washington - May 5, 2000

Kevin Johnson, Manufacturing Engineering Manager
Contents

1 Overview

Summary of Changes 8
Display 8
Rear panel 8
Board revisions 8

2 Installation and Verification Guide

Preparing the Analyzer for Use 10
To connect the analyzer to an external monitor 10

3 Operator’s Guide

Formatting the Display 12
To control the screen 12

4 Service Guide

Preparing the Analyzer for Use 14
AC Power Cable and Grounding Requirements 14
To connect the analyzer to an external monitor 15
Troubleshooting the Analyzer 16
To perform initial verification 16
To troubleshoot the power supply 19
To troubleshoot power-up failures 20
To troubleshoot CPU, memory and buses failures 21
To troubleshoot display failures 22
To troubleshoot IIC bus failures 24
To troubleshoot fast bus failures 26
To troubleshoot memory or battery failures 27
Adjusting the Analyzer 28
Adjusting the analyzer 28
To adjust the frequency reference 28
To adjust the display voltage 28

Replacing Assemblies 29
1 Overview

The changes to the Agilent 35670A Dynamic Signal Analyzer will not be noticeable to most users. The changes covered in the supplement include:

- new display
- new CPU board that also incorporates the memory and NVRAM boards
- memory options are now standard
- new external monitor interface which supports XGA resolution.
- DC-DC converter has been replaced by a power inverter
Summary of Changes

Display

Changes in the display will be imperceptible to most users. The changes are mainly at the assembly level and are addressed in the Service Guide.

Rear panel

The illustration below shows the new rear panel. The only change is in the location of the external monitor connection. This is the only place in this supplement that shows the new rear panel unless a detailed illustration is required.

![Rear panel illustration](image)

Figure 1 Rear panel

Board revisions

Throughout this supplement please note that the following is true for all instances of the following board numbers:

- A7 (CPU) is now A17
- A8 (memory) in now incorporated into A17
- A9 (NVRAM) in now incorporated into A17 and is no longer an option

These are global changes and will not be noted in each instance to avoid a large number of insignificant changes.
2
Installation and Verification Guide

The Agilent 35670A has incorporated a standard VGA monitor output and is now compatible with most monitors.
Preparing the Analyzer for Use

To connect the analyzer to an external monitor

The External Monitor is a standard 15-pin miniature connector that can interface with an external monitor. The monitor must be compatible with the 49.74 kHz line rate, 61.6 Hz frame rate, analog RGB signals, and TTL sync signals provided by the Agilent 35670A.

1. Set the analyzer’s power switch to on (\(\text{on}\)).
2. Set the monitor’s power switch to on.
3. Connect the external monitor’s input cable to the analyzer’s rear panel EXT MONITOR connector.
4. Press the following keys to enable external display mode:

```
[Disp Format]
[MORE]
[MORE]
[EXT MON ON OFF]
```

![Pin 1: red analog output](pin1)
![Pin 2: green analog output](pin2)
![Pin 3: blue analog output](pin3)
![Pin 4: not connected](pin4)
![Pin 5: Ground](pin5)

Figure 2 Rear panel showing external monitor connector

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal Name</th>
<th>Pin Number</th>
<th>Signal Name</th>
<th>Pin Number</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>red analog output</td>
<td>6</td>
<td>Ground</td>
<td>11</td>
<td>Not connected</td>
</tr>
<tr>
<td>2</td>
<td>green analog output</td>
<td>7</td>
<td>Ground</td>
<td>12</td>
<td>Not connected</td>
</tr>
<tr>
<td>3</td>
<td>blue analog output</td>
<td>8</td>
<td>Ground</td>
<td>13</td>
<td>TTL Horizontal Sync</td>
</tr>
<tr>
<td>4</td>
<td>not connected</td>
<td>9</td>
<td>Not connected</td>
<td>14</td>
<td>TTL Vertical Sync</td>
</tr>
<tr>
<td>5</td>
<td>Ground</td>
<td>10</td>
<td>Ground</td>
<td>15</td>
<td>Not connected</td>
</tr>
</tbody>
</table>
3
Operator’s Guide

Changes in this guide include display attributes (resolution, size, brightness) and external monitor connections.
Formatting the Display

To control the screen

Disregard item 2. Display brightness is no longer adjustable.
4

Service Guide

The CPU board has a new number (A17) and is a consolidation of the original CPU assembly (A7), memory assembly (A8) and the Non-Volatile RAM option board (A9). Memory options are now standard.

There is a new higher resolution display, and a power inverter to replace the dc-dc converter. The external monitor port is now a standard VGA interface with XGA output resolution.
Preparing the Analyzer for Use

AC Power Cable and Grounding Requirements

New power cable illustration shows new number for United Kingdom Option 900 cable.

Figure 3 Power cables
To connect the analyzer to an external monitor

The External Monitor is a standard 15-pin miniature connector that can interface with an external monitor. The monitor must be compatible with the 49.74 kHz line rate, 61.6 Hz frame rate, analog RGB signals, and TTL sync signals provided by the Agilent 35670A.

1. Set the analyzer’s power switch to on ().
2. Set the monitor’s power switch to on.
3. Connect the external monitor’s input cable to the analyzer’s rear panel EXT MONITOR connector.
4. Press the following keys to enable external display mode:

 [Disp Format]
 [MORE]
 [MORE]
 [EXT MON ON OFF]

Figure 4 Rear panel showing external monitor connector

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal Name</th>
<th>Pin Number</th>
<th>Signal Name</th>
<th>Pin Number</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>red analog output</td>
<td>6</td>
<td>Ground</td>
<td>11</td>
<td>Not connected</td>
</tr>
<tr>
<td>2</td>
<td>green analog output</td>
<td>7</td>
<td>Ground</td>
<td>12</td>
<td>Not connected</td>
</tr>
<tr>
<td>3</td>
<td>blue analog output</td>
<td>8</td>
<td>Ground</td>
<td>13</td>
<td>TTL Horizontal Sync</td>
</tr>
<tr>
<td>4</td>
<td>not connected</td>
<td>9</td>
<td>Not connected</td>
<td>14</td>
<td>TTL Vertical Sync</td>
</tr>
<tr>
<td>5</td>
<td>Ground</td>
<td>10</td>
<td>Ground</td>
<td>15</td>
<td>Not connected</td>
</tr>
</tbody>
</table>
Troubleshooting the Analyzer

To perform initial verification

Page in original guide 4-5

New illustrations for component locators show new test points and new connector locations:
Figure 5 A17 CPU board test point locator
Replace Step 7: Check signals required for power up.

- Using a logic probe, check the following signals.

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Test Location</th>
<th>TTL State</th>
<th>Probable Faulty Assembly</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVALID</td>
<td>TP202-1</td>
<td>High</td>
<td>A98 Power Supply</td>
</tr>
<tr>
<td>RSTn</td>
<td>P11-32</td>
<td>High</td>
<td>A17 CPU</td>
</tr>
<tr>
<td>ASn</td>
<td>P17-27</td>
<td>Toggling</td>
<td>A17 CPU</td>
</tr>
<tr>
<td>+5V</td>
<td>A17 TP212</td>
<td>High</td>
<td>A98 Power Supply</td>
</tr>
<tr>
<td>+3.3V</td>
<td>A17 TP216</td>
<td>High</td>
<td>A17</td>
</tr>
<tr>
<td>C20MHz</td>
<td>A17 TP1</td>
<td>Toggling</td>
<td>A17</td>
</tr>
<tr>
<td>PASn</td>
<td>TP205</td>
<td>Toggling</td>
<td>A17</td>
</tr>
<tr>
<td>DSACK1n</td>
<td>TP207</td>
<td>Toggling</td>
<td>A17</td>
</tr>
<tr>
<td>DSACK0n</td>
<td>TP206</td>
<td>Toggling</td>
<td>A17</td>
</tr>
<tr>
<td>PRW</td>
<td>TP210</td>
<td>Toggling</td>
<td>A17</td>
</tr>
<tr>
<td>PDSn</td>
<td>TP209</td>
<td>Toggling</td>
<td>A17</td>
</tr>
</tbody>
</table>

- Using a logic probe, check that A17 P10 pin B20 (SCL) and A17 P10 pin C11 (SDA) toggle TTL states at least twice just after power up.

- If the signals are correct, go to page 4-15, “To troubleshoot power-up failures.”
To troubleshoot the power supply

Step 5: Replace the bullet concerning reconnecting assemblies:

- Reconnect one assembly at a time in the following order:
 1. A17 CPU (A17 P10 to A99 J7)
 2. A102 Power Inverter (cable to A17 P13)
 3. A11 Keyboard Controller (Cable to A17 P1)
 4. A100 Disk Drive (cable to A17 P3)

The illustration for component locator shows new connector locations.

Figure 6 A17 CPU board connector locator, component side
To troubleshoot power-up failures

Replace the first five rows of the table:

<table>
<thead>
<tr>
<th>Failing Power-up Message</th>
<th>Probable Faulty Assembly or Next Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEDs</td>
<td>A17 CPU</td>
</tr>
<tr>
<td>MC68030 Processor</td>
<td></td>
</tr>
<tr>
<td>MC68882 Coprocessor</td>
<td></td>
</tr>
<tr>
<td>Bootrom</td>
<td></td>
</tr>
<tr>
<td>Display</td>
<td></td>
</tr>
<tr>
<td>Main RAM</td>
<td>A17 CPU</td>
</tr>
<tr>
<td>ProgramROM</td>
<td></td>
</tr>
<tr>
<td>DSP</td>
<td>A17 CPU</td>
</tr>
<tr>
<td>Fast bus</td>
<td>A17 CPU</td>
</tr>
<tr>
<td>MFP</td>
<td>A17 CPU</td>
</tr>
</tbody>
</table>
To troubleshoot CPU, memory and buses failures

Step 1: Disregard references to Memory Assembly and incorporate the related information into A17 CPU.

Step 2: Illustration for component locator shows new connector locations

![A17 CPU board connector locator, component side](image)

Figure 7 A17 CPU board connector locator, component side
To troubleshoot display failures

Replace entire section

Use this test to isolate display failures to the A101 Display assembly, A102 assembly, or the A17 CPU assembly

✔ Step 1. Check the power inverter assembly.
 • Set the power switch to off (O).
 • Remove the cable connected to P13 on the A17 assembly.
 • Set the power switch to on (|).
 • Measure voltage at P13 pin 1 on A17 assembly.
 • If voltage is not +5Vdc the A17 board may be faulty.
 • Set the power switch to off (O).
 • Reconnect the cable to P13.
 • Set the power switch to on (|).
 • Measure voltage at A17 P13 pin 1.
 • If voltage is not +5Vdc the power inverter assembly may be faulty.
 • If display backlight lamps do not light up, one or both of the lamps may be faulty.
 • If lamps are replaced and still do not light up, the power inverter may be faulty.

✔ Step 2. Check the CPU signals on the Display assembly.
 • Set the power switch to on (|).
 • Using a logic probe check that the following TTL signals are toggling:

<table>
<thead>
<tr>
<th>Test Location</th>
<th>Signal Name</th>
<th>In/Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>P14-31</td>
<td>VSYNCLCD</td>
<td>A17 Out</td>
</tr>
<tr>
<td>P14-33</td>
<td>HSYNCLCD</td>
<td>A17 Out</td>
</tr>
<tr>
<td>P14-24</td>
<td>CLK_LCD</td>
<td>A17 Out</td>
</tr>
</tbody>
</table>

 • If the signals are incorrect the A17 board may be faulty.
Step 3. Determine the probable faulty assembly by comparing the analyzer’s symptoms to the following table.

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Probable Faulty Assembly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical and horizontal scanning is occurring</td>
<td>CPU</td>
</tr>
<tr>
<td>Part of information is missing, for example only half letters</td>
<td></td>
</tr>
<tr>
<td>Blocks of information are missing</td>
<td></td>
</tr>
<tr>
<td>Information on the screen is scrambled or mixed up</td>
<td></td>
</tr>
<tr>
<td>Vertical or horizontal stripes appear across the screen</td>
<td>Display, Power inverter, Display backlights</td>
</tr>
<tr>
<td>Screen is blank</td>
<td>Display, A17</td>
</tr>
<tr>
<td>Screen is tilted, compressed, or distorted</td>
<td></td>
</tr>
<tr>
<td>Line across the screen</td>
<td></td>
</tr>
</tbody>
</table>
To troubleshoot IIC bus failures

A new illustration above step 2 shows new connector pin-outs:

![Figure 9](image)
Figure 9 A17 CPU motherboard (P10) connector pin locations

- Step 2. Check the serial clock (SCL).
 - Attach a logic probe to A17 P1-15 (SCL) or P10 pin B10.
 - Set the power switch to on (|).
 - Press S5 (reset switch) while monitoring A17 P10 pin B10 (SCL), the power-on LEDs, and the display.

NOTE
S5 (reset switch) is a normally open momentary switch. A press of the switch, S5, can be simulated by temporarily shorting TP214(RESET INn) to TP215 (DCOM).

The TTL logic level of the SCL signal should toggle continuously while *Booting System* is displayed. The following failure message should be displayed after *Booting System* and the display grid should appear about two minutes after power up.

Front Panel failure information:
keyboard IIC chip fails:
IIC: No Device Acknowledge
Key stuck: 32

A power-on test has failed. Refer servicing to qualified personnel.

Press Start key to attempt to continue Power-up.

- If the SCL signal does not toggle after S5 is pressed, the A17 CPU assembly is probably faulty.
If no error messages are displayed after **Booting System** or A17 DS101 (green run LED) is off, go to page 4-29, “To troubleshoot fast bus failures.”

![Figure 10](image)

Figure 10 Power-on LEDs and reset switch

- Step 3. Check the serial data line (SDA).
 - Attach the logic probe to A17 P10 pin C11 (SDA).
 - Press S5 while monitoring A17 P10 pin C11 (SDA), the power on LEDs and the display.

The TTL logic level of the SCL signal should toggle continuously while **Booting System** is displayed. The following failure message should be displayed after **Booting System** and the display grid should appear about two minutes after power up.

Front Panel failure information:
- keyboard IIC chip fails:
 - IIC: No Device Acknowledge
 - Key stuck: 32

A power-on test has failed. Refer servicing to qualified personnel.

Press Start key to attempt to continue Power-up.

- If the SCL signal does not toggle after S5 is pressed or the failure message is not displayed, the A17 CPU assembly is probably faulty.
To troubleshoot fast bus failures

New table:

<table>
<thead>
<tr>
<th>A17 P10 Pin</th>
<th>Signal Name</th>
<th>TTL Logic State in Test Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>B14, C14, B15, C15, B16</td>
<td>FA1 to FA5</td>
<td>Toggling</td>
</tr>
<tr>
<td>B22</td>
<td>ECLK</td>
<td>Toggling</td>
</tr>
<tr>
<td>B24</td>
<td>FSELA</td>
<td>Toggling</td>
</tr>
<tr>
<td>C12</td>
<td>BRESET</td>
<td>Low</td>
</tr>
<tr>
<td>C19</td>
<td>FRW</td>
<td>Toggling</td>
</tr>
<tr>
<td>C23</td>
<td>FIFOEN</td>
<td>High</td>
</tr>
<tr>
<td>C24</td>
<td>FSELS</td>
<td>Toggling</td>
</tr>
</tbody>
</table>

New illustration showing location of motherboard connector pins.

Figure 11 A17 CPU motherboard (P10) connector pin locations
To troubleshoot memory or battery failures

Replace the last five bulleted items:

- If the date is 01-01-01, the battery-backed-up memory is functioning correctly. Enter the current date. Go to page 4-13, “To perform self tests,” to continue troubleshooting.
- Set power switch to off (O)
- Check that the voltage at TP200 is 2.6Vdc to 3.1Vdc.
- If the voltage is correct, the memory is probably faulty.
- If the voltage is incorrect, replace the battery BT1.

Figure 12 Battery location
Adjusting the Analyzer

Adjusting the analyzer

Delete the first row of the table referring to frequency reference. The frequency is no longer adjustable.

To adjust the frequency reference

Disregard this section. The frequency reference is not adjustable.

To adjust the display voltage

Disregard this section. The display voltage is not adjustable.
Replacing Assemblies

What to do before replacing the CPU assembly

The EEPROM is now U111 on the A17 CPU assembly.

Figure 13 Location of U111
What to do after replacing an assembly

The rows referring to A7 CPU, A8 Memory, and A9 NVRAM are replaced with:

<table>
<thead>
<tr>
<th>Assembly Replaced</th>
<th>Required Adjustment</th>
<th>Required Performance Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>A17 CPU</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Note that the frequency adjustment is no longer needed.

Disregard the last two rows of the table referring to adjustments of the Display and the DC-DC Converter (now a Power Inverter). There are no adjustments for these items.
To remove CPU

New illustration in step 3 showing an additional cable:

Figure 14 Disconnect the cables from A17
To remove NVRAM

Page in original guide 6-12

Disregard this section. The NVRAM is now on the CPU board.

To remove memory

Page in original guide 6-13

Disregard this section. The memory in now on the CPU board.

To remove motherboard

Page in original guide 6-17

Disregard step 5.
Replaceable Parts

Assemblies

Reference designator A17 replaces A7, A8 and A9. There is also a replacement motherboard, bezel assembly, display assembly and DC-DC converter assembly.

<table>
<thead>
<tr>
<th>Ref Des</th>
<th>Agilent Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A17</td>
<td>35670-66517</td>
<td>CPU ASSEMBLY</td>
</tr>
<tr>
<td>A99</td>
<td>35670-66598</td>
<td>MOTHERBOARD</td>
</tr>
<tr>
<td>A14</td>
<td>35670-64320</td>
<td>BEZEL ASSEMBLY</td>
</tr>
<tr>
<td>A101</td>
<td>2090-0881</td>
<td>VGA DISPLAY ASSEMBLY</td>
</tr>
<tr>
<td>A102</td>
<td>35670-66525</td>
<td>INVERTER ASSEMBLY</td>
</tr>
</tbody>
</table>
Cables

Disregard Memory and NVRAM sections of block diagram.

Four new cables have been added:

<table>
<thead>
<tr>
<th>Agilent Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>35670-61626</td>
<td>EXTERNAL MONITOR CABLE</td>
</tr>
<tr>
<td>35670-61627</td>
<td>INVERTER CABLE</td>
</tr>
<tr>
<td>3670-61628</td>
<td>EXTENDER CABLE FOR CCFL TUBES</td>
</tr>
<tr>
<td>3670-61624</td>
<td>DISPLAY CABLE</td>
</tr>
</tbody>
</table>

Instrument Covers and Handles

Two parts have been replaced:

<table>
<thead>
<tr>
<th>Ref Des</th>
<th>Agilent Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP1</td>
<td>35670-64101</td>
<td>SHTF ASSY-COVER ALV</td>
</tr>
<tr>
<td>MP4</td>
<td>5063-5523</td>
<td>MOLD BUMPER SET 4PC FF CORNRS</td>
</tr>
</tbody>
</table>
Front Panel Parts

Three parts have been replaced and a new one added:

<table>
<thead>
<tr>
<th>Ref Des</th>
<th>Agilent Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP201</td>
<td>35670-22021</td>
<td>CSTG-FRT FRAME MACH&PAINTED</td>
</tr>
<tr>
<td>MP210</td>
<td>35670-29321</td>
<td>LNZ-FLTR RFI/OPTICAL</td>
</tr>
<tr>
<td>MP212</td>
<td>35670-44723</td>
<td>DISPLAY GASKET</td>
</tr>
<tr>
<td>MP211</td>
<td>8160-1502</td>
<td>4 RFI ELASTOMER STRIPS</td>
</tr>
</tbody>
</table>
Rear Panel Parts

One part has been replaced:

<table>
<thead>
<tr>
<th>Ref Des</th>
<th>Agilent Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP300</td>
<td>35670-00221</td>
<td>SHTF REAR PANEL W/SILKSCREEN</td>
</tr>
</tbody>
</table>

Chassis Parts

Two parts have been replaced:

<table>
<thead>
<tr>
<th>Ref Des</th>
<th>Agilent Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP400</td>
<td>35670-00122</td>
<td>SHTF-CHASSIS ASSY</td>
</tr>
<tr>
<td>MP401</td>
<td>35670-00123</td>
<td>SHTF WALL ASSY FRONT</td>
</tr>
</tbody>
</table>

Miscellaneous Parts

One part has been replaced and a new part has been added:

<table>
<thead>
<tr>
<th>Ref Des</th>
<th>Qty</th>
<th>Agilent Part Number</th>
<th>Description</th>
<th>Mfr Code</th>
<th>Mfr Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A17BT1</td>
<td>1</td>
<td>1420-0338</td>
<td>BATTERY - 3V LITIUM</td>
<td>08709</td>
<td>BR2/3EAE2P</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2090-0896</td>
<td>Backlight (CCFL) lamps</td>
<td>NEC</td>
<td>63LHS01</td>
</tr>
</tbody>
</table>
The Memory and NVRAM assemblies are now incorporated into the CPU assembly. The additional NVRAM option assembly is now standard and consolidated onto the CPU assembly.

The DC-DC Converter has been replaced with a Power Inverter which generates the display backlight voltage.
Figure 18 Four channel overall block diagram
A7 CPU

This is now the A17 CPU. Delete all references to A8 memory and A9 NVRAM as separate assemblies since they are now incorporated on the CPU board.

The A17 board now includes Non-Volatile Memory Storage operations among its tasks.

The Math Co-processor is 20 MHz rather than 40 MHz (error in previous documentation).

The 40 MHz oscillator is now a precision clock oscillator and is no longer adjustable.

Clock Circuits Provide the clocks for the CPU assembly and all other assemblies.

New block diagrams:
Figure 19 A17 CPU Block Diagram
Figure 20 CPU Block Diagram: Interface
Reset logic all references to S2 are changed to S5 and there is a new block diagram.

IIC (Inter_IC) controller the bullet referring to A8 memory is replaced:
- A17 CPU (Real time clock, EEPROM)

Disk Controller Disregard the final sentence referring to reversed operation.

Frame Memory Consists of four SRAM chips.
A8 Memory

Page in original guide 8-30,31

The memory has been incorporated into the CPU board. Therefore, the information in the sections on Memory Controller and FLASH ROM, DRAM, and SRAM is now added to the section on the A17 CPU. Disregard the rest of this section.

A9 NVRAM

Page in original guide 8-32

The NVRAM has been incorporated into the CPU board. Disregard this section.

A102 DC-DC Converter

Page in original guide 8-39

This is now a power inverter assembly which supplies the voltage for the LCD display backlights (CCFL).
The references in the table to A8 Memory and A9 NVRAM are deleted since the circuits are now consolidated onto the A17 CPU board.
Assembly Locations and Connections

Figure 22 Assembly locations
Figure 23 Assembly connections for two-channel analyzer
Figure 24 Assembly connections for four-channel analyzer
Power Supply Voltage Distribution

Page in original guide 9-6

In the table the references to paths to the A8 and A9 boards is deleted since the circuits are now on the A17 CPU board.

A8 Memory

Page in original guide 9-8 through 9-11

The memory is in now incorporated into the A17 CPU board and the following information should be transferred to the A17 signal descriptions:

BD16-31	Buffered Data Bus—This is the buffered processor data bus from the A17 CPU assembly. This bus is further buffered on the A17 CPU assembly to create the Device Data bus.
DSACK0n—	Data Strobe Acknowledge—During a write cycle, DSACK signals are set low when the device being addressed is ready to end the memory access cycle. When DSACK0n goes low and DSACK1n is low, 32 bits of data are valid. When DSACK0n goes low and DSACK1n is high, 8 bits of data are valid.
DSACK1n	
PA0—PA26	Processor Address Bus—This is the processor address bus from the CPU. PA0 and PA1 also operate with SIZE0 and SIZE1 to specify the alignment of the operand.
PASn	Processor Address Strobe—A low on this line starts a memory access cycle. This line pulses low when a valid address is on the processor address bus.
PD0—15	Processor Data Bus—This is the processor data bus.
PRW	Processor Read/Write—This line is high when the current memory cycle is a read, and low when the current memory cycle is a write.
SCL	Serial Clock—This is the serial clock for the IIC bus. The IIC controller on the CPU assembly generates this clock to synchronize the transfer of data on the IIC bus.
SDA	Serial Data—This is the IIC bus bidirectional data line.

Everything else in the section should be disregarded.
A9 NVRAM

The NVRAM is now incorporated into the A17 CPU board and the following information should be transferred to the A17 signal descriptions:

- **PROTCTn** Protect—A low on this line disables the battery-backed static RAM. This line is low during power-up and power-down, when the CPU assembly's microprocessor is externally reset, and when +5 volts is too low.
- **VBATT** Battery Voltage—This line provides the power to the battery-backed static RAM and real-time clock. When the analyzer is on, the +5 volts provides the power for this line. When the analyzer is off, the battery on the A17 board provides the power for this line. Since power is applied to the static RAM even when the analyzer is off, the static RAM is non-volatile.

Everything else in the section should be disregarded.

A99 Motherboard

Disregard the sections on HSYNC, VDATA, and VSYNC.
A101 Display

The following table lists signals routed between the A17 board and the LCD display assembly. All signals are generated on the A17 board and are used by the display assembly. A description of each signal follows the table. All data lines are LVDS.

<table>
<thead>
<tr>
<th>Signal Description</th>
<th>Pin Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLK +</td>
<td>6</td>
</tr>
<tr>
<td>CLK –</td>
<td>7</td>
</tr>
<tr>
<td>Pixel Data 2 +</td>
<td>9</td>
</tr>
<tr>
<td>Pixel Data 2 –</td>
<td>10</td>
</tr>
<tr>
<td>Pixel Data 1 +</td>
<td>12</td>
</tr>
<tr>
<td>Pixel Data 1 –</td>
<td>13</td>
</tr>
<tr>
<td>Pixel Data 0 +</td>
<td>15</td>
</tr>
<tr>
<td>Pixel Data 0 –</td>
<td>16</td>
</tr>
<tr>
<td>VCC</td>
<td>19,20</td>
</tr>
<tr>
<td>Gnd</td>
<td>1,2,3,4,5,8,11,14,17,18</td>
</tr>
</tbody>
</table>

CLK: LVDS pair carrying the 66.660MHz clock signal used by the LCD screen

Pixel Data 2: LVDS pair carrying blue pixel bits 4 to 7, Hsync, Vsync, and Data enable signals

Pixel Data 1: LVDS pair carrying green pixel bits 3 to 7, and blue pixels bits 2 to 3

Pixel Data 0: LVDS pair carrying red pixel bits 2 to 7, and green pixels bit 2.

VCC: 3.3 Volts.
This assembly is now a Power Inverter.

The following table lists signals routed between the A17 board and the A102 Power Inverter. A description of each signal follows the table:

<table>
<thead>
<tr>
<th>Signal</th>
<th>Pins</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>1,2</td>
</tr>
<tr>
<td>Gnd</td>
<td>3,4,7,8</td>
</tr>
<tr>
<td>BLight_ON</td>
<td>5</td>
</tr>
</tbody>
</table>

VCC: 5 Volts

BLight_ON: Generated by U135 to turn on and off the display backlights for power saver mode.