3488 Mode Supplement

This manual describes the Agilent 3499A/B/C Switch/Control System when used in the 3488 mode of operation. This manual is a supplement to the Agilent 3499A/B/C Switch/Control System User’s Manual (shipped with the instrument). Adobe Acrobat (PDF) versions of the user’s manual are available at www.agilent.com.
Agilent 3499A/B/C at a Glance

The Agilent Technologies 3499A/B/C Switch/Control System provides a convenient mechanical and programming environment for a variety of plug-in modules. With appropriate plug-in modules, the Switch/Control System provides high density/high speed switching and digital I/O capability.

Switch/Control System Features

• Intuitive and easy-to-use user interface
• GPIB (IEEE 488) or RS-232 interface control
• External triggering capability
• Built-in 4-bit digital I/O port
• Store and recall up to 50 customized instrument setups
• SCPI (Standard Commands for Programmable Instruments) compatibility
• Relay cycle count information for preventive maintenance
• Downloadable firmware upgrades

Agilent 3499A Features

• Five plug-in slots
• Full rack width

Agilent 3499B Features

• Two plug-in slots
• Half rack width

Agilent 3499C Features

• Nine plug-in slots
• Full rack width

Note: Unless otherwise indicated, this manual applies to all Serial Numbers.
Plug-in Modules at a Glance

The Agilent 3499A/B/C mainframes support a variety of plug-in modules to make test system configuration easy.

Multiplexer Modules
- N2260A 40-Channel MUX Module (armature relays)
- N2266A 40-Channel MUX Module (reed relays)
- N2270A 10-Channel High Voltage MUX Module
- 44470A 10-Channel MUX Module
- 44470D 20-Channel MUX Module

General Purpose Relay Modules
- N2261A 40-Channel GP Relay Module
- N2267A 8-Channel High Current GP Module
- 44471A 10-Channel GP Relay Module
- 44471D 20-Channel GP Relay Module
- 44477A 7-Channel Form-C Relay Module

Matrix Modules
- N2262A 4 x 8 Matrix Module
- 44473A 4 x 4 Matrix Module

High Frequency Switching Modules
- N2268A 50Ω 3.5GHz Dual 4-to-1 MUX Module
- N2272A 1 GHz RF 1-to-9 MUX Module
- N2276A/B Dual 1-to-6 (4) Microwave MUX/Attenuator Module
- 44472A Dual 4-Channel VHF Switch Module
- 44478A/B 50Ω/75Ω 1.3 GHz Multiplexer
- 44476A 3-Channel 18 GHz Switch Module
- 44476B 2-Channel Microwave Switch Module

Optical Switch Modules
- N2280A Optical Switch Quad 1-to-2 MUX Module
- N2281A Optical Switch Dual 1-to-4 MUX Module
- N2282A Optical Switch 1-to-8 MUX Module

Digital I/O Modules
- N2263A 32-Bit Digital I/O Module
- 44474A 16-Bit Digital I/O Module

Multifunction/Special Purpose Modules
- N2264A 12-Channel GP & 3-Channel High-current GP & 16-Bit Digital I/O
- N2265A 4 x 4 Matrix & 16-Bit Digital I/O Module
- 44475A Breadboard Module

\(^1\) These modules are NOT supported in the 3488 Mode of operation.
The Front Panel at a Glance

1. Power On/Standby
2. Reset Module/Instrument
3. Shift/Local
4. Store/Recall Instrument State
5. Monitor Channel/Port/Module
6. View Menu
7. Mode Menu
8. Scan Keys (see page 78)
9. Main Menu
10. Open/Close Relay Channels
11. Enter a Value/Confirm Selection
12. Read/Write Digital I/O Ports
13. Knob
14. Navigation Arrow Keys

Note: The front panel shown above is the Agilent 3499B. The 3499A and 3499C front panels are similar and have identical functionality.
The Display at a Glance

The display is divided into several areas. The channel and slot number is always displayed on the right corner of the display. The main area, which is in the center of the display, is primarily used to display channel status (open or closed), information messages, menu items, prompt information, error messages, and so on. Around the display are annunciators to indicate various states of the instrument operation. The annunciators are summarized below.

<table>
<thead>
<tr>
<th>Annunciator</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCAN</td>
<td>Scan is initiated.</td>
</tr>
<tr>
<td>MON</td>
<td>Instrument is in monitor mode.</td>
</tr>
<tr>
<td>VIEW</td>
<td>Scan list, errors or relay cycle counts are being viewed.</td>
</tr>
<tr>
<td>CONFIG</td>
<td>Any configuration key has been pressed.</td>
</tr>
<tr>
<td>*</td>
<td>Instrument is advancing a scan step.</td>
</tr>
<tr>
<td>ADRS</td>
<td>Instrument is active on the remote interface.</td>
</tr>
<tr>
<td>RMT</td>
<td>Instrument is in remote mode.</td>
</tr>
<tr>
<td>ERROR</td>
<td>Error queue is not empty.</td>
</tr>
<tr>
<td>EXT</td>
<td>Scan is waiting for external trigger source.</td>
</tr>
<tr>
<td>SHIFT</td>
<td>Shift key has been pressed.</td>
</tr>
</tbody>
</table>

Other annunciators in the display are not used in the Agilent 3499A/B/C system.
The Rear Panel at a Glance

The figure below shows the Agilent 3499A rear panel.

The figure below shows the Agilent 3499B rear panel.
The figure below shows the Agilent 3499C rear panel. Option FP1 (1-slot) and FP2 (2-slot) filler panels can be ordered to cover any unused slots.

WARNING
For protection from electrical shock, the power cord ground must not be defeated.

The Mini DIN Connector

The rear panel mini DIN connector is used to make connections to external triggers and the built-in digital I/O port. An Agilent N2289A cable (mini DIN to D9) can be ordered to assist connections to external devices. The figure below shows the pins used in the mini DIN connector.

<table>
<thead>
<tr>
<th>Pins</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DIO 091</td>
</tr>
<tr>
<td>2</td>
<td>DIO 082</td>
</tr>
<tr>
<td>3</td>
<td>DIO 083</td>
</tr>
<tr>
<td>4</td>
<td>DIO 094</td>
</tr>
<tr>
<td>5</td>
<td>GROUND (TRIG)</td>
</tr>
<tr>
<td>6</td>
<td>GROUND (DIO)</td>
</tr>
<tr>
<td>7</td>
<td>Ext. Trig. In</td>
</tr>
<tr>
<td>8</td>
<td>Ext. Trig. Out</td>
</tr>
</tbody>
</table>
In This Book

Quick Start Chapter 1 prepares the switch/control system for use and helps you get familiar with a few of its front-panel features.

Front-Panel Menu Operation Chapter 2 introduces you to the front-panel menu and describes some of the switch/control system’s menu features.

System Overview Chapter 3 gives an overview of a switch/control system, describes how parts of the system work together, and describes the channel addressing scheme used.

Features and Functions Chapter 4 gives a detailed description of the switch/control system’s capabilities and operation. This chapter is useful for operating the switch/control system from the front panel or the remote interface.

Remote Interface Reference Chapter 5 contains the 3488 mode language reference used to program the switch/control system over a remote interface.

Error Messages Chapter 6 lists the error messages that may appear as you are working with the instrument.

Application Programs Chapter 7 contains several remote interface application programs to help you develop programs for your switch/control system.

Note

This manual does not describe the plug-in modules except in a general way. Use the Agilent 3499A/B/C User’s Manual (shipped with the instrument) for complete details. A PDF version is also available at www.agilent.com.

If you have questions relating to the operation of the Agilent 3499A/B/C, call 1-800-452-4844 in the United States, or contact your nearest Agilent Technologies Sales Office.

If your 3499A/B/C fails within one year of purchase, Agilent will either repair or replace it free of charge. Call 1-877-447-7278 in the United States (and ask for “Agilent Express”) or contact your local Agilent Technologies Sales Office.
Contents

Chapter 1 Quick Start 11
To Prepare the Instrument for Use 13
To Install a Module in the 3499A/B/C 15
Basic Operation 17
To Rack Mount the 3499A/B/C 21
Filler Panels 24

Chapter 2 Front-Panel Operation 25
To Power On the Instrument 27
To Select the System Mode 27
To Monitor a Channel or a Slot 28
To Use a Digital I/O Port 30
To View Instrument Errors 35
Scanning Operation 37
To Pair Two Modules Together 40
To Configure for External Trigger 41
To Configure the Power-on State 43
To Configure the Remote Interface 45
To Perform a Self-test 47
To Query the Firmware Revision 48
To Query the Serial Number 49
Local/Remote Control 50

Chapter 3 System Overview 51
Agilent 3499A/B/C Switch/Control System 53
Mainframes Overview 54
Firmware and Control Module Description 55
3488 Mode Differences 57
Plug-in Modules Overview 58
Channel and Slot Addressing 67
Factory Default and Reset States 71
Contents

Chapter 4 Features and Functions 73
Monitoring a Channel or a Slot 75
Switching a Relay Channel 77
Scanning 78
Digital I/O Operation 84
State Storage 94
Error Conditions 96
Self-Test 96
Display Control 97
Relay Cycle Counts 98

Chapter 5 Remote Interface Reference 99
Command Syntax 101
3488 Mode Command Quick Reference 102
3488 Mode Commands 104

Chapter 6 Error Messages 135
Error Messages 136
Self Test Errors 136

Chapter 7 Application Programs 137
Visual C++ Example Program 139
Visual BASIC Example Program 141
BASIC Example Program 143

Index 145
Quick Start
Quick Start

This chapter describes the procedure to install the plug-in modules into an Agilent 3499A/B/C mainframe and mount the mainframe onto a system rack. The basic operations of the Agilent 3499A/B/C Switch/Control System is also described. The chapter contents include:

- To Prepare the Instrument for Use, on page 13
- To Install a Module in the 3499A/B/C, on page 15
- Basic Operation, on page 17
- To Rack Mount the 3499A/B/C, on page 21
To Prepare the Instrument for Use

1 **Check the list of supplied items**

Verify that you have received the following items with your Agilent 3499A/B/C mainframe:

- One power cord;
- This User’s Manual;
- One Quick Reference Guide;
- One Tie Down Clip 03499-21002 (for Agilent 3499B only);
- Any plug-in modules that you ordered are delivered in separate shipping containers.

2 **Connect the power cord and turn on the instrument**

1. Connect the 3499A/B/C to an AC power source with the supplied power cord.

2. Push the **Power** switch located on the lower left side of the front panel.

3. On power-up, every segment in the display will light up briefly, including all annunciators. Following this “starburst” display, the internal self-test will begin.

4. If the self-test passes\(^1\), the default system mode and the GPIB address are displayed, together with a “beep” sound. Then the display shows the instrument model number and the active slot (slot 0).

```
SCPI GPIB 9

3499 0
```

\(^1\) If the self-test failed, the failure will be displayed on the front panel. For details of all self-test errors, refer to “Error Messages” starting on page 135.
Chapter 1 Quick Start

To Prepare the Instrument for Use

When shipped from the factory, the SCPI mode and the GPIB interface address of “9” are used. Slot 0 refers to the built-in controller board of the switch/control system.

If the Instrument Does Not Turn On

1. Verify that the power cord is firmly plugged into the power receptacle on the rear panel of the 3499A/B/C.

2. Make sure that the power source the 3499A/B/C is plugged into is energized.

3. Verify that the 3499A/B/C is turned on.

Note

If the 3499A/B/C DOES NOT turn on after you perform the above procedure, contact your nearest Agilent Service Center (see page 8).
To Install a Module in the 3499A/B/C

The plug-in modules you ordered were not installed in the mainframe. The figure on page 16 shows how to install a plug-in module into the 3499B mainframe. Other mainframes use similar procedures.

WARNING

Disconnect the power cord from the rear panel of the mainframe prior to installing or removing any modules.

Caution

Use anti-static procedures when configuring, installing or removing any plug-in modules. To prevent contamination to the modules that could degrade performance, handle the modules by the side edges or shields only. Do not touch the board surfaces or components.

Each plug-in module may have terminal block(s) and/or the cables for wiring to external circuits. These terminations are also shipped separately.

For more details about terminal blocks, cables, and connections, see the Agilent 3499A/B/C User’s Manual (shipped with the instrument) or visit www.agilent.com.

Module Removal

To remove a plug-in module from the Agilent 3499A/B/C mainframe, reverse the procedures shown on page 16.
STEP 1

1. Face the mainframe rear panel toward you.
2. Select a slot in which the module is to be installed.

STEP 2

1. Hold the sides of the module, component side down, by the metal shields.
2. Insert the module into the slot guides and slide the module toward the front of the instrument.
3. Push firmly until the module “snaps” into place.
4. Push both plastic levers inward to lock the module.

STEP 3 (for modules with terminal blocks)

1. Wire the screw terminal block (module dependent).
2. Attach the screw terminal block to the plug-in module.

STEP 4 (for modules with terminal blocks)

1. Push firmly until the terminal block “snaps” into place.
2. Secure the screw terminal block with the two screws (Torque < 8 in-lbs).

Module installation
Basic Operation

An Agilent 3499A/B/C Switch/Control System can be easily operated from the front-panel, or programmed with SCPI commands over the remote interface.

The following sections are only intended to show the basic front-panel operation. For detailed front-panel operation, refer to the “Front-Panel Operation” chapter on page 25. For more information about programming the instrument, refer to the “Remote Interface Reference” chapter on page 99.

Channel Addressing

A channel refers to an individual relay on a switching module, or an individual bit/port on a digital I/O module. The channel address is in the form of snn, where s represents slot number and nn represents a channel number.

For all mainframes, slot 0 refers to the 3499 controller board. Valid slot numbers are:

<table>
<thead>
<tr>
<th>Mainframe</th>
<th>Slot Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>3499A</td>
<td>0 through 5</td>
</tr>
<tr>
<td>3499B</td>
<td>0 through 2</td>
</tr>
<tr>
<td>3499C</td>
<td>0 through 9</td>
</tr>
</tbody>
</table>

The channel number, nn, is plug-in module dependent. For additional information about channel numbers of individual plug-in modules, refer to the table beginning on page 67.
Chapter 1 Quick Start
Basic Operation

To Select a Slot and Channel

When the instrument is first turned on, the display shows the model number and the slot number of the controller board.

![Display showing model number and slot number]

Use the knob to select a channel on the active slot. For example, with the display shown above, turning the knob to the right will select the first of the individual built-in digital I/O ports.

![Display showing channel selection]

The “DIN” indicates the port is set for a digital input operation. As the knob is turned, the additional ports are displayed followed by any installed plug-in modules.

If you have installed one or more plug-in modules, you can select the module by pressing the right arrow key. For example, if an N2260A (40-channel MUX module) is installed in slot 1, pressing the right arrow key will show the module name and slot number.

![Display showing module selection]

Turning the knob will then step through the individual channels on that module.

![Display showing channel selection]

To Open or Close a Channel

When a channel is selected, you can open or close the channel using the front panel keys. For example, with an N2260A 40-channel MUX installed in slot 1, select channel 00 as described on the previous page.

Press the **CLOSE** key to close the channel.

```
MUX CLOSED 100
```

Press the **OPEN** key to open the channel.

```
MUX OPEN 100
```

In this manner, you can select and control as many channels as you need. The N2260A has 40 channels numbered 0 through 39 (in slot 1, 100 through 139). You may also select additional plug-in modules and channels by turning the knob.
Chapter 1 Quick Start
Basic Operation

To Open All Channels on a Module

You can open individual channels on a module one at a time as described above. There are times, however, when it would be more expedient to open all channels on a module at once.

Use the arrow keys to select the module to work with. You cannot have an individual channel selected for this operation. For example, select the module in slot 1 (using the N2260A as an example) to show a display similar to this:

| N2260A | 1 |

Press and hold the card reset key. When you first press the key, the display shows:

HOLD TO RESET

When the card has been reset, the display briefly shows:

RESET CARD

and then returns to:

| N2260A | 1 |

To Reset All Modules

You can reset all channels on all modules in the mainframe at once. Press the shift key and then press and hold the reset key. The display shows:

HOLD TO RESET

When the mainframe has been reset, the display will briefly show the reset and then return to the slot or channel display.

RESET . . .
To Rack Mount the 3499A/B/C

You can mount the Agilent 3499A/B/C on a standard 19-inch EIA rack cabinet with the optional rack-mounting kits. The instructions and mounting hardware are included with each rack-mounting kit.

Agilent 3499A

To rack mount a 3499A, the full-rack-width mainframe, order either:

- Rack-mount kit with handles, part number 5183-7170, or
- Rack-mount kit without handles, part number 5183-7171.
Chapter 1 Quick Start
To Rack Mount the 3499A/B/C

Agilent 3499B

To rack mount a single 3499B, order either:

- Adapter kit, part number 5183-7172 (includes the flange and filler panel).

To Rack Mount a Single Agilent 3499B with Adapter kit 5183-7172

OR

- A Support Shelf, part number 5063-9255,
- A slide kit, part number 1494-0015,
- And a filler panel, part number 5002-3999.

To Rack Mount a Single Agilent 3499B on a support shelf
To rack mount two Agilent 3499B’s side-by-side (or any System II instrument next to an Agilent 3499B), order:

- A Support Shelf, part number 5063-9255,
- And a slide kit, part number 1494-0015.

To Rack Mount Two Agilent 3499B’s Side-by-side
Agilent 3499C

To rack mount an Agilent 3499C, order either:

- Adapter kit without handles, part number 5063-9216, or
- Adapter kit with handles, part number 5063-9223.

Filler Panels

Order filler panels to cover any unused slots in an Agilent 3499A/B/C.

- 1-slot filler panel, part number 03499-00023 (option FP1)
- 2-slot filler panel, part number 03499-00024 (option FP2)
Front-Panel Operation
Front-Panel Operation

The Agilent 3499A/B/C mainframes all operate the same from the front-panel. This chapter does not give a detailed description of every possible front-panel operation. It does, however, give you a good overview of the front-panel menus and front-panel keys. See the “Features and Functions” chapter on page 73 for additional discussions of the instrument’s capabilities and operation. This chapter contents include:

- To Power On the Instrument, on page 27
- To Select the System Mode, on page 27
- To Monitor a Channel or a Slot, on page 28
- To Use a Digital I/O Port, on page 30
- To View Instrument Errors, on page 35
- Scanning Operation, on page 37
- To Pair Two Modules Together, on page 40
- To Configure for External Trigger, on page 41
- To Configure the Power-on State, on page 43
- To Configure the Remote Interface, on page 45
- To Perform a Self-test, on page 47
- To Query the Firmware Revision, on page 48
- To Query the Serial Number, on page 49
- Local/Remote Control, on page 50

The following conventions are used for the front-panel operation.

- All keys on the front-panel keyboard are expressed in bold font and normally associated with a “press”. For example, press Mon.
- All the front panel display annunciators are expressed in bold font followed by an “annunciator”. For example, MON annunciator.
- The information shown on the front panel display is enclosed within a pair of quotation marks.
To Power On the Instrument

To power on the instrument, press the power switch on the front panel. If the instrument is powered up for the first time, the instrument will use the factory default settings as shown on page 71. Otherwise, the instrument will power on to the state specified. Refer to "To Configure the Power-on State", on page 43 for more details.

To Select the System Mode

The instrument can be operated in either SCPI mode or 3488A mode (except Firmware REV 3.0, see page 55 for more details). When shipped from the factory, the instrument is set to the SCPI mode. Perform the following procedure to select the desired system mode for the instrument before any operation.

1. Press Menu, the CONFIG annunciator lights up. Turn the knob until “SYSTEM MODE” is displayed, then press Enter.

2. Turn the knob until the desired system mode (i.e. 3488A MODE) is displayed, then press Enter.

3. The instrument will be reset if the system mode has been changed. Otherwise, it retains the current mode and you can press Menu again to exit this operation.

Note

Switching between SCPI mode and 3488A mode will reset the instrument to the factory default settings, except the GPIB address which will retain its last setting.

This manual describes programming in the 3488 mode. For information about the SCPI programming mode please refer to the User’s Manual shipped with the Agilent 3499A/B/C, or visit www.agilent.com.
To Monitor a Channel or a Slot

You can continuously monitor the current status of a particular switching channel, a digital I/O port, or an entire plug-in module. Monitoring from the front panel is especially useful when developing and debugging remote interface commands.

1. Press the monitor key, the MON annunciator lights up to indicate the instrument is in the monitoring state.

2. Select the slot or the channel/port to be monitored. The displayed information depends on the selected module type. Typical displays are shown in the table on page 76.

3. If only part of the channel status on the module can be displayed at one time, press Enter to display the next part.

 For multiplexer modules and GP Relay modules, 10 channels can be displayed at one time; for matrix modules, one Row or one Column can be displayed at one time; for digital I/O modules, two 8-bit ports can be displayed at one time. For multifunction modules, the first function on the module is displayed, then the next.

4. Press the monitor key again to end monitoring (the MON annunciator turns off).

 The built-in digital I/O bits/port (on the controller module) can be monitored either individually as bit channels (numbered 091 through 094) or as a 4-bit port (numbered 090). However, the individual bit channels on a digital I/O or multifunction module (with a DIO function) cannot be monitored.
Chapter 2 Front-Panel Operation

To Monitor a Channel or a Slot

<table>
<thead>
<tr>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:0,,,,,6,,9. 2</td>
<td>The display for a multiplexer or a GP relay module. This display indicates that the monitored module is in Slot 2 and channels 10, 16, and 19 are closed.</td>
</tr>
<tr>
<td>ROW 3:1,3,,6,7 3
0;,,3,COL 3, 3</td>
<td>The display for a matrix module. The top is the row information, indicating that the relays on Row 3, Columns 1, 3, 6 and 7 of the module (in Slot 3) are closed. The lower display is the column information, indicating that relays on column 3, row 0 and 3 are closed.</td>
</tr>
<tr>
<td>00:H255 L254. 4</td>
<td>The display for a digital I/O module. The first 2 digits on the left (“00” in this case) represents the “L” 8-bit port address. Adding one to this value, the “H” 8-bit port address is obtained. Data with a trailing decimal point indicates that the last operation on that port was a WRITE, data without a trailing decimal point indicates that the last operation on that port was a READ. This display shows that the data last read from Port 401 is 255 and the data last written to Port 400 is 254.</td>
</tr>
<tr>
<td>DIO 12 090
DOUT 0 091</td>
<td>The top display is for the built-in digital I/O Port 090 (control module) and the data from the last operation. The lower display indicates that data last written to the bit channel 091 is 0.</td>
</tr>
<tr>
<td>ROW 0;1,,3, 5
00:H255 L254. 5</td>
<td>For a multifunction module, the first function on the module is displayed, then the next. This display is an example of a multifunction module with matrix and DIO functions (in slot 5).</td>
</tr>
</tbody>
</table>
To Use a Digital I/O Port

You can work with a digital I/O module as a port (all eight bits) or as individual bits.

Reading a Digital I/O Port

You can read data from the built-in 4-bit digital I/O port, or any one of the 8-bit ports on a digital I/O or multifunction module (with a DIO function). You can read the entire port (all bits) when you select the slot (for example, the built-in port is channel 090). Alternately, you can read an individual bit by selecting the channel (for example the first bit in the built-in port is channel 091).

Perform the following procedure to read from a port:

1. Select a digital I/O port. Use the knob to select the slot and channel number. The channel number is in the form of snn, where s is the slot number and nn is the channel number.

2. Read the data read from the selected port. For example, the display below shows the data read from port 401.

 ![Data Display](image)

 - Decimal format (default): DIN 255 401
 - Binary format: DIN 11111111 401

The data display format of individual 8-bit ports can be specified either in binary or decimal formats (as described on page 33). Once specified, the format applies to all input and output operations on the same port.
Writing to a Digital I/O Port

You can write data to the built-in digital I/O port (numbered 090) or to one of the built-in digital I/O port bits (numbered 091 through 094), or any one of the 8-bit ports on a digital I/O or multifunction module (with a DIO function). To write to a port:

1. Select a digital I/O port. Use the knob to select the slot and channel number. The channel number is in the form of snn, where s is the slot number and nn is the channel number. In the display, “DIN” indicates that the last operation on the port was a READ, and “DOUT”, a WRITE.

2. Press the Write key. “DOUT” is displayed to indicate the port is now an output port. The current port value is displayed.

3. Edit the value. Use the arrow keys to select the to-be-edited bit (the digit to be edited is set to half bright in the display).

4. When the value is the one desired, press Enter to output the data to the selected port.

5. Press Write again to cancel the current write operation.

Note: Data display format of individual 8-bit ports can be specified either in binary or decimal values (refer to the procedure on page 33). Once specified, the format applies to all input and output operations on the same port.
Chapter 2 Front-Panel Operation

To Use a Digital I/O Port

To Configure a Digital I/O Module

Digital I/O modules can be configured for handshake modes and control line, flag line, and I/O line polarity. Use the Mode menu to configure digital I/O parameters. See “Digital I/O Operation” on page 84 for detailed descriptions of the operating modes. Only plug-in modules can be configured this way, the built-in digital I/O port (control module) can only be configured at the port level (see page 33).

The following procedure configures a plug-in digital I/O module to use a two line digital handshake mode (mode 5) for data transfers.

1. Select the slot in which a digital I/O or multifunction module is installed. The channel number is in the form of snn, where s is the slot number and nn is the channel number.

 N2263A 4

2. Press the Mode key. The CONFIG annunciator lights up in the display and the first-level menu is shown.

 CONFIG DIO 4

3. Press Enter to begin the configuration. The display shows the second-level menu choice.

 MODE 1 4

4. Turn the knob until the desired flow control mode (i.e., MODE 5) is displayed. The displayed mode is half-bright.

 MODE 5 4
5. Press **Enter** to select the new mode. The display changes to show the next menu level.

 ![Enter]

<table>
<thead>
<tr>
<th>CONT POL POS</th>
<th>4</th>
</tr>
</thead>
</table>

6. You may change other configuration parameters as desired using the same procedure. When all desired configurations have been made, press the **Mode** key to exit the configuration menu. The **CONFIG** annunciator turns off.

To Configure a DIO Port

You can configure an individual digital I/O port to change the data polarity and the display format. The following procedure changes the built-in digital I/O port to display in binary number format.

1. Select a digital I/O port (i.e., port 090). The channel number is in the form of snn, where s is the slot number and nn is the channel number.

 ![DIN]

 | DIN | 090 |

2. Press the **Mode** key. The **CONFIG** annunciator lights up in the display. The first level menu is shown:

 ![Mode]

 | DATA POLARITY | 090 |

3. Turn the knob to select the second menu level

 ![Mode]

 | DISP FORMAT | 090 |

4. Press **Enter** to select the format parameter.

 ![Enter]

 | DECIMAL | 090 |
Chapter 2 Front-Panel Operation
To Use a Digital I/O Port

5. Turn the knob until the desired data display format (i.e., BINARY) is displayed.

 | BIN\text{ARY} | 090 |

6. Press \texttt{Enter} to make the change and return to the first level of the \texttt{Mode} menu.

 | \texttt{DISP FORMAT} | 401 |

7. Press \texttt{Mode} again to exit the current configuration, the \texttt{CONFIG} annunciator turns off.

\textbf{Note}
Once you have selected the data display format for a port, it applies to both input and output operations on that port.
To View Instrument Errors

You can view errors from the front panel. This feature is especially useful when developing remote instrument control. If an error occurs, the ERROR annunciator in the display will light. Errors are stored in the error queue in the order they occur. You read the errors in the same order. After all errors have been read, the queue is empty and the ERROR annunciator turns off. To view instrument errors:

1. Press the View key. The VIEW annunciator lights up and the display shows the first menu level.

2. Press Enter to view the first error.

 a. If no error is in the error queue (the ERROR annunciator is off), the display shows "NO ERROR" and then automatically returns to the first level of the View menu.

 b. If there are errors (the ERROR annunciator is on), the first error in the error queue is displayed.

 Press the right arrow key to scroll the display to show the entire error message.
Chapter 2 Front-Panel Operation

To View Instrument Errors

3. Turn the knob to view other errors in the error queue (if any).

4. Press Enter to return to the first level of the View menu, the ERROR annunciator turns off.

5. Press View again to exit the View menu operation, the VIEW annunciator turns off.

Note

All errors are cleared, and the ERROR annunciator turns off, once the error queue is viewed. See the “Error Messages” chapter on page 135 for a complete list of error messages.
Scanning Operation

The instrument allows you to combine an external measurement device such as a Digital Multimeter (DMM) with multiplexer channels to create a scan. During a scan, the instrument closes the configured multiplexer channels one at a time to allow a measurement to be made on that channel.

Before initiating a scan, a scan list must be set up. You can also specify an arm source, a trigger source, and the number of sweeps (a sweep is one pass through the scan list) to control the scan process. All these can be done from the S.List menu. The procedure in this chapter describes a simple scan from the front panel. For more information about scanning and using the parameters to control a scan, see page 78.

To Create a Scan List

1. Press the S.List key to enter the scan list menu. The CONFIG annunciator lights up and the first level of the menu is displayed.

 ADD TO SCAN 101

2. Press Enter to begin the channel selection.

 SELECT 101

3. Turn the knob to select the first channel for the list (e.g., 103).

 SELECT 103

4. Press Enter to add the channel into the scan list. The starburst character lights in the display to indicate the channel is now a part of the scan list.

 SELECT * 103
Chapter 2 Front-Panel Operation

Scanning Operation

5. Repeat step 3 and 4 to add additional channels to the list.

6. When the desired channels have been added, press the S.List key again to return to the first level of the menu.

 ADD TO SCAN

7. Press S.List again to exit the menu. The CONFIG annunciator turns off.

To Perform Scanning

After the scan configuration is complete, the actual scan can be performed.

1. Press the Step key to close the first channel in the scan list.

2. Press the Step key again to open the first channel and close the next channel in the list.

This procedure shows a simple way to scan, one channel at a time for each press of a front panel key. You can also press the Scan key to scan all channels in the list according to the various scan parameters set. In the default parameter state, pressing the Scan key will cause all the channels in the list to cycle through at the maximum possible speed. While this occurs, the SCAN annunciator is lighted. For details about the scan parameters, see page 78.

To Clear a Scan List

You can clear a scan list once it has been configured.

1. Press the Shift key and then the S.List key. The display will briefly show:

 CLR SCAN LIST

 and then return to normal operation.
To View a Scan List

You can view which channels are included in a scan list. This example assumes that channels 103 through 107 are included in the scan list.

1. Press the View key. The VIEW annunciator lights up and the display shows the first level menu.

 ![View]

 ERROR 101

2. Turn the knob until “SCAN LIST” is displayed.

 ![Enter]

 SCAN LIST 101

3. Press Enter. The first channel in the scan list is displayed on the channel area.

 ![Enter]

 001 OF 005 103

 Turn the knob to view other channels in the scan list.

 ![Enter]

 002 OF 005 104

4. Press Enter to return to the first level of the View menu.

 ![Enter]

 SCAN LIST 107

5. Press View again to exit the View menu. The VIEW annunciator turns off.
Chapter 2 Front-Panel Operation
To Pair Two Modules Together

You can pair two modules together so that they operate as a single unit. The two modules to be paired must be identical (that is, they must have the same model number) and be installed in the same mainframe. When two modules are paired together, any operation on a channel of one module will be duplicated on the corresponding channel of the other module. The example below pairs modules installed in slots 2 and 5.

1. Press the Menu key. The CONFIG annunciator lights up and “CARD PAIR” is displayed.

2. Press Enter.

When “FIRST SLOT x” is displayed, turn the knob to select the first slot to be paired (i.e., Slot 2).

 FIRST SLOT 2

3. Press Enter.

When “SECOND SLOT x” is displayed, turn the knob to select the second slot to be paired (i.e., Slot 5).

 SECOND SLOT 5

4. Press Enter to return to the first level of the Menu menu.

 CARD PAIR

5. Press Menu again to exit the Menu menu. The CONFIG annunciator turns off.

 Menu
To Configure for External Trigger

You can use one of two modules for an external trigger. The built-in rear panel TRIG IN and TRIG OUT pair (on the control module) or the EI (External Increment) and the CC (Channel Closed) pair on a 44474A module. Only one pair can be used at a time. You can specify which pair to use and whether a trigger out pulse is sent out when a relay is closed during scanning operations. Refer to “Scanning” on page 78 for more details.

1. Press the **Menu** key. The **CONFIG** annunciator lights up and the display shows the first level menu.

 CARD PAIR

2. Turn the knob to show the second menu item, “CONF EXT TRIG”.

 CONF EXT TRIG

3. Press **Enter**. The display shows the next level menu.

 TRIG SLOT 0
Chapter 2 Front-Panel Operation

To Configure for External Trigger

4. Turn the knob to select the slot for the external trigger. Slot 0 (control module) is the built-in external trigger (available at the rear panel mini DIN connector, see page 7). If a 44474A is not installed, only slot 0 will be shown. Press Enter. The display shows the current setting for the external trigger.

 DISABLE

5. Turn the knob to show the alternate choice.

 ENABLE

6. Press Enter to accept the choice and return to the first level menu.

 CONF EXT TRIG

7. Press the Menu key to exit the menu. The CONFIG annunciator turns off.
Chapter 2 Front-Panel Operation

To Configure the Power-on State

Firmware Rev 4.0 ONLY. To read your firmware version, see the procedure on page 48. For more information about firmware revisions, see “Firmware and Control Module Description” on page 55.

An instrument with Firmware REV 4.0 or later can be set to power on to the reset state (see “Factory Default and Reset States” on page 71) or to a state previously stored in a specified memory location. The instrument will return to the specified state the next time it is turned on.

1. Press the Menu key. The CONFIG annunciator lights up and the display shows the first menu level.

 ![Menu](CARD PAIR)

2. Turn the knob until “POWER ON SET” is displayed.

 ![PWR ON RESET]

3. Press Enter to show the second level menu.

4. To set the instrument power-on to the reset state, press Enter. The instrument will return to the first level menu.

 Alternately, to set the instrument power-on to a stored state: Turn the knob until “USER SET UP” is displayed.

 ![USER SET UP]

5. Press Enter to select the stored state to use.

 ![POWER ON 05]
Chapter 2 Front-Panel Operation

To Configure the Power-on State

6. Turn the knob to select the desired memory location (i.e., 08).

 POWER ON 08

7. Press Enter to accept the stored state and return to the first level menu. More information about storing states is given on page 94 of this manual.

 POWER ON SET

8. Press the Menu key again to exit the Menu menu. The CONFIG annunciator turns off.

Note If the instrument is set to power on to a previously stored setup that is no longer valid, it will automatically power on to the reset state and “RECALL FAILED” will be displayed.
To Configure the Remote Interface

In 3488 mode, the instrument can communicate with a computer over the GPIB interface. When shipped from the factory, the GPIB interface is selected and its address is set to “9”.

Note

The RS-232 interface can be configured and used only in SCPI mode.

GPIB Interface

Each device on the GPIB interface must have a unique address.

• When shipped from the factory, the GPIB interface is selected and its address is set to “9”. The GPIB address of the instrument can be set to any value between 0 and 30.

• The GPIB address is stored in non-volatile memory, and does not change when the instrument is turned off or reset.

• Switching between SCPI mode and 3488A mode causes the 3499A/B/C to select the GPIB interface and its address setting.

To set the GPIB interface:

1. Press the Menu key. The CONFIG annunciator lights up and the first level menu is shown.

 CARD PAIR

2. Turn the knob to select “INTERFACE” in the menu.

 INTERFACE

3. Press Enter to show the second level menu. The active interface is shown. If necessary, turn the knob until “GPIB/488” is displayed.

 GPIB/488
Chapter 2 Front-Panel Operation

To Configure the Remote Interface

4. Press **Enter** to select the interface and show the first parameter.

 ![ADDRESS 09]

5. Turn the knob to set GPIB address (i.e., 07). Valid addresses range from 00 to 30.

 ![ADDRESS 07]

6. Press **Enter** to show the second parameter.

 ![SRQ ON]

7. Press **Enter** to enable the instrument to assert the SRQ line when powered up. If the computer is so configured, this can be used to interrupt the system computer.

 To disable this feature, turn the knob to select “SRQ OFF” and press **Enter**. The instrument returns to the first level of the menu.

8. Press **Menu** again to exit the menu. The **CONFIG** annunciator turns off.

46
To Perform a Self-test

The self-test feature of the instrument provides you with a method of verifying proper instrument operation.

1. Press the **Menu** key. The **CONFIG** annunciator lights up and the first level menu is shown.

 ![CARD PAIR]

2. Turn the knob to select “SELFTEST”.

 ![SELFTEST]

3. Press **Enter**. The self test will begin. The display will briefly show a “starburst” pattern (all display segments lit). Following the pattern, the display indicates:

 ![TEST...]

 while the internal tests are being performed. The self-test takes several seconds to complete.

 If the self-test is successful, “PASSED” will be displayed. Otherwise, the reason of the failure will be displayed. For details on self-test failures, refer to “The errors listed below indicate failures that may occur during a self-test (in 3488A mode).” on page 136.

 ![PASSED]

4. Press **Enter** to return to the first level of the menu.

 ![SELFTEST]

5. Press **Menu** again to exit the Menu menu, the **CONFIG** annunciator turns off.
To Query the Firmware Revision

Perform the following procedure to query the 3499A/B/C firmware and revision. For a description of the firmware and hardware revisions, see “Firmware and Control Module Description” on page 55.

1. Press the **Menu** key. The **CONFIG** annunciator lights up and the first level menu is shown.

 CARD PAIR

2. Turn the knob to select “REVISION INFO”.

 REVISION INFO

3. Press **Enter**. The system firmware revision number will be displayed.

 REVISION 4.0 2.0

4. Press **Enter** to return to the first level of the Menu menu.

 REVISION INFO

5. Press **Menu** again to exit the Menu menu, the **CONFIG** annunciator turns off.
To Query the Serial Number

Perform the following procedure to query the 3499A/B/C serial number.

1. Press the Menu key. The CONFIG annunciator lights up and the first level menu is shown.

 CARD PAIR

1. Turn the knob to select “SERIAL NO”.

 SERIAL NO

2. Press Enter. The Agilent 3499A/B/C serial number is displayed.

 MY12345678

3. Press Enter again to return to the first level of the Menu menu.

 SERIAL NO

4. Press Menu again to exit the Menu menu, the CONFIG annunciator turns off.
Local/Remote Control

The instrument operates in two data entry modes, local and remote. In local mode, all keys on the front panel are fully functional. In remote mode, some front panel keys are locked (exception are: Local, Mon, View, Enter, the arrow keys, and the knob).

The instrument will enter the remote state upon receipt of any command over the remote interface. The RMT annunciator lights.

You can regain control of the front panel keys when the instrument is in remote by pressing the Shift (Local) key. The RMT annunciator turns off and the instrument return to local mode.

Note

If the front panel keys are locked through either the SYSTem:RWLock command on the RS-232 interface or a LOCAL LOCKOUT command on the GPIB interface, the local key will not function. You can restore the front panel operation by cycling power the instrument or by sending a SYSTem:LOCal command on the RS-232 interface, or a LOCAL command on the GPIB interface.
System Overview
System Overview

An Agilent 3499A/B/C Switch/Control System is composed of a mainframe and a set of Plug-in modules. This chapter provides a typical configuration of a test system using the 3499A/B/C for switching and control, followed by a description of the three mainframes and all the Plug-in modules. The following sections are included in this chapter:

- Agilent 3499A/B/C Switch/Control System, on page 53
- Mainframes Overview, on page 54
- Firmware and Control Module Description, on page 55
- 3488 Mode Differences, on page 57
- Plug-in Modules Overview, on page 58
- Channel and Slot Addressing, on page 67
- Factory Default and Reset States, on page 71
Agilent 3499A/B/C Switch/Control System

The Agilent 3499A/B/C Switch/Control System provides high density and high speed switching for routing test signals to and from your DUTs (devices under test) and test instruments such as external DMMs, scopes, counters, power supplies, etc. Whether you are involved in a large production test system or a small R&D bench top system, the Agilent 3499A/B/C provides an ideal combination of price/performance solution. With a wide variety of available plug-in modules, you can configure your test system much more easily and flexibly. The figure below shows the typical configuration of a test system.
Mainframes Overview

Three mainframes are available:

<table>
<thead>
<tr>
<th></th>
<th>Slots Available</th>
<th>Rack Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>3499A</td>
<td>5</td>
<td>full width</td>
</tr>
<tr>
<td>3499B</td>
<td>2</td>
<td>half width</td>
</tr>
<tr>
<td>3499C</td>
<td>9¹</td>
<td>full width</td>
</tr>
</tbody>
</table>

¹ The 3499C is designed to accommodate multiple width plug-in modules and has 9 logical slots but 14 mechanical slots. Slots 1 through 6 are 1-slot wide, slot 7 is 2-slots wide, and slots 8 and 9 are each 3-slots wide. See the figure on page 7 for more information.

All mainframes can be either operated from the front-panel or programmed over a remote interface (GPIB or RS-232).

The mainframes can be operated in either of two system modes: SCPI mode or 3488A mode. The SCPI mode allows the full realization of performance potentials and advanced features, such as parallel operation of multiple relays on multiple modules. The 3488A mode is included for backward compatibility with the legacy Agilent 3488A system. This manual documents the 3488 mode of operation.

For information about the SCPI programming mode please refer to the User’s Manual shipped with your Agilent 3499A/B/C, or visit www.agilent.com.
Firmware and Control Module Description

The Agilent 3499A/B/C and this manual support two versions of the Agilent 3499A/B/C control module and four versions of firmware.

Firmware revisions and control module versions can be queried from the front-panel. See page 48 for a procedure to read the revision from the front-panel.

From the front-panel:

<table>
<thead>
<tr>
<th>Control Module Revision</th>
<th>Firmware Revision</th>
<th>Typical Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>REVISION 1.0</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>REVISION 2.0</td>
</tr>
<tr>
<td>1.0</td>
<td>3.0</td>
<td>REVISION 3.0</td>
</tr>
<tr>
<td>2.0</td>
<td>4.0</td>
<td>REV 4.0 2.0</td>
</tr>
</tbody>
</table>

The table on the next page lists the differences between firmware and control module revisions.
Chapter 3 System Overview

Firmware and Control Module Description

<table>
<thead>
<tr>
<th>Firmware Version</th>
<th>Control Module Version</th>
<th>State Storage</th>
<th>Plug-in module Support</th>
<th>Programming Modes</th>
<th>Firmware Upgrade Needed?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>Stored setups are cleared if power is cycled.</td>
<td>Must upgrade hardware and firmware.</td>
<td>Not Applicable</td>
<td>YES</td>
</tr>
<tr>
<td>2.0</td>
<td>1.0</td>
<td>Stored setups are cleared if power is cycled.</td>
<td>Supports all modules except: N2272A, N2276A/B, N2282A</td>
<td>Firmware Version 2.0 allows programming in both SCPI Mode and 3488A Mode.</td>
<td>Upgrade to Firmware Revision 3.0 ONLY if using N2272A, N2276A/B, or N2282A.</td>
</tr>
<tr>
<td>3.0</td>
<td>1.0</td>
<td>Stored setups are cleared if power is cycled.</td>
<td>SCPI Mode supports all modules. 3488A Mode supports all modules except: N2272A, N2276A/B, or N2282A</td>
<td>Firmware Version 3.0 limits programming to either SCPI Mode or 3488A Mode (not both)</td>
<td>Upgrade to firmware revision 4.0 ONLY if control board revision is upgraded to 2.0.</td>
</tr>
<tr>
<td>4.0(^1)</td>
<td>2.0</td>
<td>Stored setups are saved. Instrument can be programmed to power up in a set state.</td>
<td>SCPI Mode supports all modules. 3488A Mode supports all modules except: N2272A, N2276A/B, or N2282A.</td>
<td>Firmware Version 4.0 allows programming in both SCPI Mode and 3488A Mode.</td>
<td>NO</td>
</tr>
</tbody>
</table>

1 Upgrading to firmware revision 4.0 requires the control module be upgraded to revision 2.0. Control module revision 1.0 **does not** support firmware revision 4.0.
3488 Mode Differences

This manual describes using the Agilent 3499A/B/C in the 3488 mode of operation. In general, the SCPI mode of operation is recommended. All the features and functions of 3499A/B/C system and plug-in modules are supported in SCPI mode. The 3488 mode is a subset and does not support all available features.

Some of the major differences in 3488 mode of operation are summarized below:

- The RS-232 interface is not supported in 3488 mode. You must use the GPIB interface for remote programming.
- The 3488 mode does not provide as much control over the scanning process as SCPI mode. You cannot use the arm and trigger layers of scan control.
- The 3488 mode only provides access to the status byte register. You cannot use the Standard Event or Operation Status registers.
- With firmware revision 4.0, you can store up to 40 setups (50 setups in SCPI mode).
- Scan lists are not saved after cycling power.
- The relay cycle count feature is only available from the front-panel.
- The N2260A and N2266A can only be used in 40-channel 2-wire mode.
- The 3488 Mode does not support the following plug-in modules: N2272A, N2276A/B, or N2282A.
- Port numbering for Digital I/O modules is different.
Plug-in Modules Overview

The Agilent 3499A/B/C mainframes support multiple Plug-in modules, including all the existing 3488A modules (4447XX modules), as well as several new ones (N22XXX modules). Based on their functions, the modules can be divided into five classes:

- Multiplexer (MUX) modules
- General Purpose Relay (GP) modules
- Matrix modules
- Digital I/O (DIO) modules
- Multifunction modules
- Optical Modules

Note

Refer to the Agilent 3499A/B/C User’s Manual (shipped with the instrument) or visit www.agilent.com for the details of the individual Plug-in modules.
Chapter 3 System Overview
Plug-in Modules Overview

MUX Modules

A MUX (multiplexer) module switches one signal to multiple DUTs (devices under test), or multiple signals to one device, one at a time. Example applications include capacitor leakage, connector/switch contact, and insulation resistance test systems. To expand switching capacity or build special configurations, the multiplexer switching modules can also be used with matrix or other switching modules. The figure below shows a simple 1 x 4 Multiplexer.

![Simple Multiplexer Switching](image)

Simple Multiplexer Switching

Multiplexers are available in several types:

- One-Wire (Single-Ended) Multiplexer for common LO measurements
- Two-Wire Multiplexer for floating measurements
- Four-Wire Multiplexer for resistance and RTD measurements
- Very High Frequency (VHF) / Microwave Multiplexer for switching frequencies up to microwave (26.5 GHz).

The table on the next page lists the available MUX modules.
<table>
<thead>
<tr>
<th>Model Number</th>
<th>Module Name</th>
<th>Mainframe Slots Required</th>
<th>Relay Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N2260A</td>
<td>40-Channel MUX Module</td>
<td>1</td>
<td>Latching</td>
<td>In 3488 mode, a 40-channel 2-wire multiplexer, switches both HI and LO inputs (200V, 1 A) with DPST relays.</td>
</tr>
<tr>
<td>N2266A</td>
<td>40-Channel MUX Module</td>
<td>1</td>
<td>Reed non-latching</td>
<td>In 3488 mode, a 40-channel 2-wire multiplexer.</td>
</tr>
<tr>
<td>N2268A</td>
<td>50Ω 3.5 GHz Dual 4-to-1 MUX Module</td>
<td>1</td>
<td>Latching</td>
<td>Consists of two independent 1-to-4 MUX switches which can switch up to 30VDC or peak AC at frequencies from DC to 3.5 GHz.</td>
</tr>
<tr>
<td>N2270A</td>
<td>10-Channel High Voltage MUX Module</td>
<td>2</td>
<td>Non-latching</td>
<td>10-channel 2-wire High Voltage MUX module with maximum switching voltage 1000V peak and maximum switching power 10W.</td>
</tr>
<tr>
<td>44470A/D</td>
<td>10/20-Channel MUX Module</td>
<td>1</td>
<td>Latching</td>
<td>The 10/20 DPST (Double-pole Single-throw) relays switch both HI and LO inputs up to 250V, 2A with low differential offsets for accurate measurements.</td>
</tr>
<tr>
<td>44472A</td>
<td>Dual 4-Channel VHF Switch Module</td>
<td>1</td>
<td>Latching</td>
<td>The two independent groups of bidirectional 1x4 switches with 50Ω characteristic impedance can be used for signals from DC to 300 MHz.</td>
</tr>
<tr>
<td>44478A/B</td>
<td>50Ω/75Ω 1.3 GHz Multiplexer</td>
<td>1</td>
<td>Latching</td>
<td>The two independent groups of bidirectional 1x4 switches with 50Ω/75Ω characteristic impedance can be used for signals from DC to 1.3 GHz.</td>
</tr>
</tbody>
</table>
GP Modules

The GP (General Purpose) relay modules often consist of independent latching or non-latching relays. They are useful for creating additional isolation between circuits, providing safety interlocks, actuating other relays or circuits, or building special topologies such as binary ladders and tree structures. A simple 4-channel SPST (Single-pole Single-throw) GP switch is shown below.

A Simple General Purpose Switch

The table below lists the available GP relay modules.

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Module Name</th>
<th>Mainframe Slots Required</th>
<th>Relay Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N2261A</td>
<td>40-Channel GP Relay Module</td>
<td>1</td>
<td>Latching</td>
<td>The 40 independent SPST relays provide quality connections for low level signals. Can also switch signals up to 200V, 1A.</td>
</tr>
<tr>
<td>N2267A</td>
<td>8-Channel High Current GP Module</td>
<td>1</td>
<td>Non-latching</td>
<td>An 8-channel High Current GP module which can switch up to 8A 250VAC or 5A 30VDC, with decreasing current to 1A at 125VDC.</td>
</tr>
<tr>
<td>44471A</td>
<td>10-Channel GP Relay Module</td>
<td>1</td>
<td>Latching</td>
<td>The 10 independent SPST (Single-pole Single-throw) relays provide quality connections for low level signals. Can also switch signals up to 250V, 2A.</td>
</tr>
</tbody>
</table>
Plug-in Module Overview

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Module Name</th>
<th>Mainframe Slots Required</th>
<th>Relay Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>44471D</td>
<td>20-Channel GP Relay Module</td>
<td>1</td>
<td>Latching</td>
<td>The 20 independent SPST (Single-pole Single-throw) relays provide quality connections for low level signals. Can also switch signals up to 250V, 1A.</td>
</tr>
<tr>
<td>44475A</td>
<td>Breadboard Module</td>
<td>1</td>
<td>NA</td>
<td>Use the breadboard for custom circuits and special purpose functions in your test system.</td>
</tr>
<tr>
<td>44476A</td>
<td>3-Channel 18 GHz Switch Module</td>
<td>1</td>
<td>Latching</td>
<td>The 3 independent 50Ω SPDT (Single-pole Double-throw) coaxial switches with SMA connectors provide high isolation, low insertion loss, and low VSWR for switching signals up to 18 GHz.</td>
</tr>
<tr>
<td>44476B</td>
<td>2-Channel Microwave Switch Module</td>
<td>1</td>
<td>NA</td>
<td>Similar to the 44476A but does not have the coaxial switches installed. A variety of coaxial switches can be mounted onto the module to provide 3-, 4-, or 5-port switching up to 26.5 GHz.</td>
</tr>
<tr>
<td>44477A</td>
<td>7-Channel Form-C Relay Module</td>
<td>1</td>
<td>Latching</td>
<td>7 independent, break-before-make, SPDT Form-C relays for general purpose switching and control of external devices up to 250V, 2A.</td>
</tr>
</tbody>
</table>
Matrix Modules

A matrix switch is the most versatile type of system switching. Any input can be connected to any output, individually or in combination. This helps minimize the need for complex wiring, and can simplify the DUT interface. In addition, a matrix module can be used in conjunction with other modules to provide a wide variety of switching combinations. A matrix is arranged in rows and columns and a simple 4 x 4 matrix switch is shown below.

Matrix Switching

The table below lists the available matrix modules.

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Module Name</th>
<th>Mainframe Slots Required</th>
<th>Relay Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N2262A</td>
<td>4 x 8 Matrix Module</td>
<td>1</td>
<td>Latching</td>
<td>Each crosspoint or node of the 4 x 8 matrix module uses a DPST (Double-pole Single-throw) relay to switch two wires (Hi & Lo) for signals up to 200V, 1A.</td>
</tr>
<tr>
<td>44473A</td>
<td>4 x 4 Matrix Module</td>
<td>1</td>
<td>Latching</td>
<td>Each crosspoint or node of the 4 x 4 matrix module uses a DPST (Double-pole Single-throw) relay to switch two wires (Hi & Lo) for signals up to 250V, 2A.</td>
</tr>
</tbody>
</table>
Digital I/O Modules

The digital I/O modules provide high-density digital input/output capabilities in an easy-to-control form. The independent TTL-compatible inputs and outputs make it well-suited for monitoring and controlling devices compactly and cost-effectively. Typically, the digital outputs are used to provide drive for relatively high current devices such as solenoids, relays and small motors. The digital inputs are used to monitor devices such as micro-switches. A simplified schematic of a single digital input and output line is shown below.

A Simple Digital I/O Circuit

The table below lists the available digital I/O modules.

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Module Name</th>
<th>Mainframe Slots Required</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>N2263A</td>
<td>32-Bit Digital I/O Module</td>
<td>1</td>
<td>The module offers 32-bidirectional I/O lines and three handshake lines for sensing and control of external devices up to 42 V, 600 mA. All lines are TTL-compatible.</td>
</tr>
<tr>
<td>44474A</td>
<td>16-Bit Digital I/O Module</td>
<td>1</td>
<td>The module offers 16-bidirectional I/O lines and four handshake lines for sensing and control of external devices up to 30 V, 125 mA. All lines are TTL-compatible.</td>
</tr>
</tbody>
</table>
Multifunction Modules

A multifunction module combines two or more functions such as MUX, GP, Matrix, Digital I/O or DAC onto a single module, making it possible to implement a complicated switching application with fewer modules. Therefore, the cost is reduced by minimizing the number of mainframes and modules required.

Each separate function on a multifunction module can be operated independently. For example, an Agilent N2265A can be used as both a 4 x 4 matrix module and a 16-bit digital I/O module.

The table below lists the available multifunction modules.

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Module Name</th>
<th>Mainframe Slots Required</th>
<th>Relay Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N2264A</td>
<td>12-Channel GP + 3-Channel High-current GP + 16-Bit Digital I/O Module</td>
<td>1</td>
<td>Non-latching</td>
<td>The module provides 12-channel SPST (Single-pole Single-throw) GP relays for signals up to 200 V, 1 A, 3-channel high-current GP relays for signals up to 125 V, 5 A, and 16-bit digital I/O for sensing and control of external devices up to 42 V, 600 mA.</td>
</tr>
<tr>
<td>N2265A</td>
<td>4 x 4 Matrix + 16-Bit Digital I/O Module</td>
<td>1</td>
<td>Latching</td>
<td>The module provides 4 x 4 2-wire matrix for signals up to 200V, 1A, and 16-bit digital I/O for sensing and control of external devices up to 42 V, 600 mA.</td>
</tr>
</tbody>
</table>
Optical Modules

The Agilent N2280A and N2281A are optical switch modules. The table below lists the information about these three optical modules.

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Module Name</th>
<th>Mainframe Slots Required</th>
<th>Relay Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N2280A</td>
<td>Optical Switch Quad 1-to-2 MUX Module</td>
<td>2</td>
<td>Non-latching</td>
<td>Four 1-to-2 Optical Switches</td>
</tr>
<tr>
<td>N2281A</td>
<td>Optical Switch Dual 1-to-4 MUX Module</td>
<td>2</td>
<td>Non-latching</td>
<td>Two 1-to-4 Optical Switches</td>
</tr>
</tbody>
</table>
Channel and Slot Addressing

A channel refers to an individual relay on a switching module, or an individual bit/port on a digital I/O module. The channel address is in the form of snn, where s represents slot number and nn represents a channel number.

For all mainframes, slot 0 refers to the 3499A/B/C control board. Valid slot numbers are:

<table>
<thead>
<tr>
<th>Slot</th>
<th>Slot Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3499A</td>
<td>slots 0 through 5</td>
</tr>
<tr>
<td>3499B</td>
<td>slots 0 through 2</td>
</tr>
<tr>
<td>3499C</td>
<td>slots 0 through 9</td>
</tr>
</tbody>
</table>

The channel number, nn, is plug-in module dependent. Detailed information about channel numbers of individual plug-in modules is given below and on the following pages.

<table>
<thead>
<tr>
<th>Plug-in Module</th>
<th>Channel Addressing (snn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N2260A 40-Channel MUX Module</td>
<td>2-Wire Mode: s00, s01...s38, s39</td>
</tr>
<tr>
<td>N2261A 40-Channel GP Relay Module</td>
<td>s00, s01, s02, s03... s37, s38, s39</td>
</tr>
<tr>
<td>N2262A 4X8 Matrix Module</td>
<td>Row 0, 1, 2, 3; Column 0, 1, 2, 3... 6, 7 (s00, s01, s02... s07; s10, s11, s12... s17; s20, s21, s22... s27; s30, s31, s32... s37)</td>
</tr>
</tbody>
</table>

a. The N2260A and N2266A can be only be used as a 40-channel 2-wire MUX module in 3488 mode.
b. A channel number on a matrix module is formed in Slot-Row-Column format, i.e., channel address s23 means row 2, column 3 in Slot s.
Channel and Slot Addressing

### Plug-in Module	Channel Addressing \((snn)\)
N2263A	
32-Bit Digital I/O Module	Individual Bits: \(s00, s01, s02... s30, s31\)
8-Bit Ports: \(s00, s01, s02, s03\)	
16-Bit Ports: \(s04, s05\)	
32-Bit Port: \(s06\)	
N2264A	
12-Channel GP Relay +	
3-Channel High-current GP Relays +	
16-Bit Digital I/O Module	12 GP Relays: \(s00, s01, s02... s10, s11\)
3 High-current GP Relays: \(s20, s21, s22\)	
16-Bit Digital I/O:	
Individual Bits: \(s30, s31, s32... s44, s45\)	
8-Bit Ports: \(s30, s31\)	
16-Bit Port: \(s32\)	
N2265A	
4x4 Matrix +	
16-Bit Digital I/O Module	4x4 Matrix:
Row 0, 1, 2, 3; Column 0, 1, 2, 3	
\((s00, s01, s02; s10, s11, s12, s13; s20, s21, s22; s30, s31\)	
16-Bit Digital I/O:	
Individual Bits: \(s40, s41, s42... s54, s55\)	
8-Bit Ports: \(s40, s41\)	
16-Bit Port: \(s42\)	
N2266A	
40-Channel MUX Module\(^b\)	2-Wire Mode: \(s00, s01...s38, s39\)
N2267A	
8-Channel High Current GP Module	\(s00, s01, s02... s07\)
N2268A	
50Ω 3.5 GHz Dual 4-to-1 MUX Module | \(s00, s01, s02, s03; s10, s11, s12, s13\) |

\(^a\) A channel number on a matrix module is formed in Slot-Row-Column format, i.e., channel address \(s23\) means row 2, column 3 in Slot \(s\).

\(^b\) The N2260A and N2266A can only be used as a 40-channel 2-wire MUX module in 3488 mode.
Chapter 3 System Overview

Channel and Slot Addressing

<table>
<thead>
<tr>
<th>Plug-in Module</th>
<th>Channel Addressing ((snn))</th>
</tr>
</thead>
<tbody>
<tr>
<td>N2270A 10-Channel High Voltage MUX Module</td>
<td>(s00, s01, s02... s07)</td>
</tr>
<tr>
<td>N2280A Optical Switch Quad 1-to-2 MUX Module</td>
<td>(s00, s01; s10, s11; s20, s21; s30, s31)</td>
</tr>
<tr>
<td>N2281A Optical Switch Dual 1-to-4 MUX Module</td>
<td>(s00, s01, s02, s03; s10, s11, s12, s13)</td>
</tr>
<tr>
<td>4-Bit Built-in Digital I/O ((\text{slot 0 control module}))</td>
<td>Individual Bits: 091, 092, 093, 094 *4-Bit Port:* 090</td>
</tr>
<tr>
<td>44470A 10-Channel MUX Module</td>
<td>(s00, s01, s02, s03... s08, s09)</td>
</tr>
<tr>
<td>44470D 20-Channel MUX Module</td>
<td>(s00, s01, s02, s03... s18, s19)</td>
</tr>
<tr>
<td>44471A 10-Channel GP Relay Module</td>
<td>(s00, s01, s02, s03... s08, s09)</td>
</tr>
<tr>
<td>44471D 20-Channel GP Relay Module</td>
<td>(s00, s01, s02, s03... s18, s19)</td>
</tr>
<tr>
<td>44472A Dual 4-Channel VHF Module</td>
<td>Group 0: s00, s01, s02, s03 *Group 1:* s10, s11, s12, s13</td>
</tr>
<tr>
<td>44473A 4x4 Matrix Module</td>
<td>Row: 0, 1, 2, 3; Column: 0, 1, 2, 3 ((s00, s01, s02, s03; s10, s11, s12, s13; s20, s21, s22, s23; s30, s31, s32, s33)^{\text{a}})</td>
</tr>
</tbody>
</table>

\(s = \text{Slot Number}; \ nn = \text{Channel Number}\)

\(\text{a. A channel number on a matrix module is formed in Slot-Row-Column format, i.e., channel address } \text{s23} \text{ means row 2, column 3 in Slot } s.\)
Channel and Slot Addressing

| Plug-in Module | Channel Addressing \((snn)\)
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(s) = Slot Number; (nn) = Channel Number</td>
</tr>
</tbody>
</table>
| 44474A | Individual Bits: s00, s01, s02... s14, s15
| 16-Bit Digital I/O Module | 8-Bit Ports: s00, s01
| | 16-Bit Port: s02 |
| 44475A | N/A |
| Breadboard Module | |
| 44476A | s00, s01, s02 |
| 3-Channel 13 GHz Microwave Switch Module | |
| 44476B | s00, s01 |
| 2-Channel 26 GHz Microwave Switch Module | |
| 44477A | s00, s01, s02, s03, s04, s05, s06 |
| 7-Channel Form-C Relay Module | |
| 44478A | Group 0: s00, s01, s02, s03
| 50 Ω 1.3 GHz MUX Module | Group 1: s10, s11, s12, s13 |
| 44478B | Group 0: s00, s01, s02, s03
| 75 Ω 1.3 GHz MUX Module | Group 1: s10, s11, s12, s13 |
Factory Default and Reset States

The table on the next page shows the settings of the instrument after a reset.

- You can reset the instrument either by pressing **Shift + Card Reset** on the front-panel, or with a **RESET** command over the remote interface.

- If a module is accidentally removed or installed while the instrument power is on, the instrument will perform a reset.

3488 Mode Defaults

<table>
<thead>
<tr>
<th>Item</th>
<th>Factory Default</th>
<th>Reset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>GPIB/488</td>
<td>GPIB (Address 9)</td>
</tr>
<tr>
<td></td>
<td>RS-232<sup>b</sup></td>
<td>Keep current setting<sup>a</sup></td>
</tr>
<tr>
<td>System Mode</td>
<td>SCPI Mode</td>
<td>SCPI Mode</td>
</tr>
<tr>
<td></td>
<td>3488A Mode</td>
<td>Keep current setting</td>
</tr>
<tr>
<td>System-Related</td>
<td>Display State</td>
<td>On</td>
</tr>
<tr>
<td></td>
<td>Stored State</td>
<td>Empty</td>
</tr>
<tr>
<td></td>
<td>Error Queue</td>
<td>Empty</td>
</tr>
<tr>
<td>Module-Related</td>
<td>Switching Channels</td>
<td>Open</td>
</tr>
<tr>
<td></td>
<td>Digital I/O Ports</td>
<td>Input</td>
</tr>
<tr>
<td></td>
<td>Card Pair</td>
<td>None</td>
</tr>
<tr>
<td>Scan-Related</td>
<td>Scanning</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Scan List</td>
<td>Empty</td>
</tr>
<tr>
<td></td>
<td>Channel Delay (seconds)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Trigger Out Pulse</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

^a Current setting includes the selection of the GPIB interface and its address setting.

^b RS-232 interface CANNOT be used in 3488A mode.
Features and Functions
Features and Functions

This chapter provides details about particular functions and features of the Agilent 3499A/B/C Switch/Control System. The sections in this chapter describe the features using both the front-panel and the remote interface using SCPI commands. The examples in this chapter are general. For specific procedures using the front panel refer to Chapter 2. For SCPI command information refer to Chapter 5. The following sections are included in this chapter:

- Monitoring a Channel or a Slot, on page 75
- Switching a Relay Channel, on page 77
- Scanning, on page 78
- Digital I/O Operation, on page 84
- State Storage, on page 94
- Error Conditions, on page 96
- Self-Test, on page 96
- Display Control, on page 97
- Relay Cycle Counts, on page 98

The following conventions are used for the front-panel operation.

- All keys on the front-panel keyboard are expressed in bold font and normally associated with a “press”. For example, press **Mon**.

- All the front-panel display annunciators are expressed in bold font followed by an “annunciator”. For example, **MON** annunciator.

- The information shown on the front-panel display is enclosed within a pair of quotation marks.

- **Shift + Recall**\(^1\) indicates the sequential operation: first press **Shift**, then press **Recall**.

\(^1\) Also applicable to keys **Card Reset**, **Scan**, and **S.List**.
Chapter 4 Features and Functions

Monitoring a Channel or a Slot

You may need to continuously monitor the current status of a particular switching channel, a digital I/O port, or an entire plug-in module. This is especially useful when developing and debugging remote interface commands or watching for an important signal.

- To monitor a channel or a port, specify the channel or port number.
- To monitor a plug-in module, specify the slot number. The displayed information is module type dependent as shown on the next page.

- Front-Panel Operation: To select a channel, a digital I/O port, or a slot, press **Mon**. The **MON** annunciator lights up. Press **Mon** again to exit this state.

<table>
<thead>
<tr>
<th>MUX</th>
<th>OPEN 101</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Monitor a switching channel 101.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIN</th>
<th>255 400</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Monitor a DIO Port 400.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1:0,...,6...9</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mon</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>00: H255 L254</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mon</td>
</tr>
</tbody>
</table>

 If only part of the channel status on the module can be displayed at one time, press **Enter** to display the next part.

- Remote Interface Operation:

 OUTPUT 709; “VIEW 103” ! Query the state of a relay channel 103.

 OUTPUT 709; “VIEW 431” ! Query the state of a bit channel 431.

 OUTPUT 709; “CMON 2” ! Monitor the module in slot 2.
Example MON Display

<table>
<thead>
<tr>
<th>Description</th>
<th>MON Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>The display for a multiplexer or a GP relay module. This display indicates that the monitored module is in Slot 2 and channels 10, 16, and 19 are closed.</td>
<td>1:0,.....6,...9. (2)</td>
</tr>
<tr>
<td>The display for a matrix module. The top display is the row information, indicating that the relays on Row 3, Columns 1, 3, 6 and 7 of the module (in Slot 3) are closed. The lower display is the column information, indicating that relays on column 3, row 0 and 3 are closed.</td>
<td>ROW 3:;1,,3,,6,7 (3)</td>
</tr>
<tr>
<td></td>
<td>0:,;3,COL 3, (3)</td>
</tr>
<tr>
<td>The display for a digital I/O module. The first 2 digits on the left (“00” in this case) represent the “L” 8-bit port address. Adding one to this value, the “H” 8-bit port address is obtained. Data with a trailing decimal point indicates that the last operation on that port was a WRITE, data without a trailing decimal point indicates that the last operation on that port was a READ. This display shows that the data last read from Port 401 is 255 and the data last written to Port 400 was 254.</td>
<td>00:H255L254. (4)</td>
</tr>
<tr>
<td>The top display is for the built-in digital I/O Port 090 (controller module) and the data from the last operation. The lower display indicates that data last written to the bit channel 091 is 0.</td>
<td>DIO 12 090</td>
</tr>
<tr>
<td></td>
<td>DOUT 0 091</td>
</tr>
<tr>
<td>For a multifunction module, the first function on the module is displayed, then the next. This display is an example of a multifunction module with matrix and DIO functions (in slot 5).</td>
<td>ROW 0:,;1,,3, (5)</td>
</tr>
<tr>
<td></td>
<td>00:H255L254. (5)</td>
</tr>
</tbody>
</table>
Switching a Relay Channel

Switch modules can be used to route signals to and from your test system. This is achieved by closing or opening the relay channels on these modules.

- From the front-panel, you can open or close one relay channel at a time. However, over the GPIB interface, multiple relay channels can be operated by a single command if a channel list is specified. In addition, these open or closed states can be stored, and a stored channel setup can be included in a scan list (see “State Storage” on page 94).

- Whenever a switch module is reset, all of the closed relay channels on the module will be opened.

- Whenever the instrument is turned on or reset, all of the closed relay channels in the instrument will be opened.

- Front-Panel Operation: Select a channel, press Open or Close.

 Select a slot, press and hold Card Reset to open all channels on the selected module.

 Press Shift, then press and hold Card Reset to open all channels in the instrument.

- Remote Interface Operation: The following commands open and close multiple channels on the modules in slots 1 and 2.

 OUTPUT 709; "OPEN 101,102,207" ! Open multiple channels.
 OUTPUT 709; "CRESET 1" ! Open all channels on the module in slot 1.
 OUTPUT 709; "CLOSE 101,102,207" ! Close multiple channels
Scanning

The Agilent 3499A/B/C can scan switching channels, digital I/O bit channels, and stored channel setups in a scan list. When a scan starts, the first channel in a scan list is closed. The channel is then opened and the next channel in the list is closed. This process repeats for all channels in the scan list. You can sweep through a scan list more than once. You can also synchronize scanned channel closures with external measurement devices.

Rules for Scanning

- A scan list must be specified before initiating a scan. One or more switching channels, digital I/O bit channels, and/or previously stored channel setups can be included in a scan list. The order of the channels in the scan list determines the order of the channels to be scanned.

- If any plug-in module is installed or removed while the instrument is operating, the instrument will automatically perform a reset and the current scan list is cleared.

- If a scan list contains a non-existing channel, the scan cannot be performed and an error will occur.

- If a scan list contains a channel on a digital I/O module that is not configured to handshake mode #1 or mode #2 (see page 86), the scan cannot be performed and an error will occur.

- If a mismatch between a stored channel setup in the scan list and the current hardware configuration is found, a scan cannot be performed and an error will occur. When a stored setup is included in the scan list, the stored setup is recalled and the next channel in the scan list is switched.

- When a scan is aborted, the channel last scanned before the interruption will remain closed. Aborting a scan does not affect the present scan configuration. A scan cannot resume from where it is interrupted. To initiate a new scan, the channels in the scan list will be scanned from the beginning of the scan list.

- A scan list may contain up to 200 entries.
Creating a Scan List

Before initiating a scan, a scan list must be set up. The instrument scans the specified channels automatically in the same order of the scan list.

- The scan list is automatically cleared whenever the instrument is turned off or reset. You can also clear the scan list by pressing Shift+S.List.

- Front-Panel Operation: Press S.List, the CONFIG annunciator will light. The display will show “ADD TO SCAN”. Press Enter to begin building the scan list. Select each desired channel and press Enter to add the channel to the scan list. As channels are added, an asterisk is shown in the display to indicate the channel is a part of the scan list.

 - Press S.List. Press Enter.
 - Select a channel to add.
 - Press Enter.
 - Select the next channel to add.

- Remote Interface Operation: You may use single channels, ranges of channel, or stored setups in the scan list. Set up a scan list with one command as follows:

  ```
  10 OUTPUT 709; "SLIST 100-109" ! Create a scan list.
  20 FOR I = 1 to 10
  30 OUTPUT 709; "STEP" ! Step through the scan list.
  40 OUTPUT 709; "DELAY 20" ! Add 20 ms time delay.
  50 Next I
  ```

 Note: Stored states may be used in scan lists. Stored states are discussed in more detail beginning on page 94.
Chapter 4 Features and Functions
Scanning

Configuring a Scan

You can use delay times to control a scan.

- You can specify a delay time (from 0 to 99999.999 seconds, with 1 ms resolution) between when a channel is closed and when the next operation begins (and, if configured, a trigger out pulse is sent). The delay time can be set individually for each channel in the scan list, or one delay can be set for all channels in the scan list. Note that, even if the trigger source is set to IMMEDIATE, the scan list will not advance until the delay time is met.

- Front-Panel Operation: Use the **S.List** menu to set the scan delay time as shown below.

 ![Delay Time Menu]

 Turn the knob to select DELAY TIME. Press **Enter**.

 ![Delay Time Value]

 Use arrow keys and knob to select the delay time. Press **Enter**.

 ![S.List Menu]

 Press **S.List** to exit the menu.

- Remote Interface Operation:

 OUTPUT 709; “DELAY 2000; CHAN 101”

 ! Set a 2 second delay time
Performing a Scan

Once you set up a scan list and configure the scan, the actual scan can be performed.

- If a scan list contains a non-existing channel, the scan cannot be performed and an error will occur.

- If a scan list contains a channel on a digital I/O module that does not work in Mode #1 or Mode #2, the scan cannot be performed and an error will occur (see page 86 for more information about modes).

- If a stored channel setup in the scan list does not match the current hardware configuration, the scan cannot be performed and an error will occur.

- Front-Panel Operation: Press Scan to begin the scan operation.

 Stop a scan in progress by pressing Shift+Scan. The last channel closed in the scan list will remain closed. You cannot pause and then continue a scan. You must start the scan operation over.

 Press Step to start and step through the channels in the scan list, one channel at a time.

- Remote Interface Operation: Use the STEP command to begin a scan. If you abort a scan in progress, the last channel closed in the scan list will remain closed. You cannot pause and then continue a scan. You must start the scan operation over.

 OUTPUT 709; "STEP" !Step into the scan list.
Using External Triggering

Two control lines are provided in the rear panel mini-DIN connector: external trigger in and external trigger out. These lines can be used individually or combined to synchronize a scan list with an external instrument (such as a DMM). The figure below shows this connection. The 3499A/B/C can be configured to output a trigger pulse to notify the external instrument whenever a channel is closed.

- In addition to the Ext.Trig.In and Ext.Trig.Out pair provided on the rear panel of the mainframe, the EI (external increment) and CC (channel closed) pair on a 44474A module can also be used to synchronize. Specify either Slot 0 or the slot in which a 44474A module is installed to indicate which lines are to be used.
- Both the built-in trigger lines and the EI/CC lines on the 44474A are TTL compatible.
- Once enabled, the selected trigger-in line is immediately ready to accept the trigger signal from the external instrument. Enabling or disabling a trigger source from the front-panel sets both the trigger in and trigger out functions.
• Front-Panel Operation: Press Menu, use the knob to select “CONF EXT TRIG” and press Enter. Select either slot 0 (built-in external trigger) or the slot where a 44474A is installed and press Enter. Enable or disable the pair of trigger lines and press Enter. Press the Menu key again to exit the menu.

Press S.List, select “CONFIG SCAN”, and configure the arm source or trigger source as either EXT or MIX.

• Remote Interface Operation: The following code segment will set up the 3499A/B/C to synchronize with an external instrument.

```plaintext
OUTPUT 709; “DMODE 0,1,0,1” !Enable a trigger pulse on the rear panel Mini DIN connector.
```
Digital I/O Operation

The digital input/output is well-suited for monitoring and controlling external devices. You may use the built-in digital I/O bits or port (on the rear panel), one or more digital I/O modules, or a multifunction modules with a DIO function. In the following context, multifunction modules refer to those with a DIO function.

- The built-in digital I/O (control board) consists of four bits which can be operated either independently as four bit channels (numbered 091 through 094) or as one 4-bit port (numbered 090).

- The plug-in digital I/O modules and multifunction modules usually consist of several 8-, 16-, and/or 32-bit ports. These ports can be operated independently, which means one port can be used for output operation, while others can be used for input. However, all bits within a same 8-bit port are dependent. If one bit of a port is used for input or output operation, then all other bits of the same port can only be used for the same operation.

Note

For more information about a specific digital I/O module, refer to the Agilent 3499A/B/C User’s Manual (shipped with the instrument) or visit www.agilent.com.

Digital I/O Configuration

- Parameters such as flow control mode, control line polarity (PCTL), flag line polarity (PFLG), and I/O direction line polarity, are all configured for the plug-in digital I/O modules and multifunction modules. However, these DO NOT apply to the built-in 4-bit digital I/O (on the rear panel).

- The data line polarity of any 8-bit port (or the 4-bit built-in port) can be configured from the front-panel. However, using the remote interface, the data line polarity of any ports (8-, 16-, or 32-bit) can be configured.

- Data display format of any 8-bit port, binary or decimal (default), can only be specified from the front-panel. Once specified, the format applies to all input and output operations on the same port.

- When the instrument is turned on or reset, the handshake mode is set to Mode #1 and the polarities of all configured lines are positive. More information about handshake modes is given starting on page 86.
Front-Panel Operation: Select a digital I/O module and press **Mode**. “CONFIG DIO” is shown in the display. Press **Enter** to show the second-level menu and begin the configuration.

Note

Be sure to select the module, not a port or bit. The options on this menu are only available when the module is selected.

1. Select a DIO module.
2. Press **Mode**.
3. Select flow control mode. Press **Enter**.
4. Select the control line polarity. Press **Enter**.
5. Select the flag line polarity. Press **Enter**.
6. Select the I/O direction line polarity. Press **Enter**.

Press **Mode** again to exit the menu.

Configure a port. Select a digital I/O port, then press **Mode**, the **CONFIG** annunciator lights up. When “DATA POLARITY” appears in the display, press **Enter** to set data line polarity and/or use the knob to select “DISP FORMAT” and press **Enter** to set data display format for the port.

![Diagram](image-url)
Chapter 4 Features and Functions
Digital I/O Operation

• Remote Interface Operation: Set the flow control parameters using the following 3488 command. This example assume a digital I/O module is installed in slot 4.

```
OUTPUT 709; "DMODE 4,1,0,1"    ! Set the flow control to Mode #1 and the polarity of all lines to default values.
```

About Flow Control Modes (Handshake)

Five flow control modes are available for Digital I/O operations. Some modes use one or more of the three flow control lines: I/O Direction, PFLG, and PCTL. Select the flow control you need for your digital input/output applications.

<table>
<thead>
<tr>
<th>Mode Number</th>
<th>Handshake Mode Definition</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Static mode #1</td>
<td>Default handshake mode.</td>
</tr>
<tr>
<td>2</td>
<td>Static mode #2</td>
<td>Read what was written.</td>
</tr>
<tr>
<td>3</td>
<td>Read or Write and strobe</td>
<td>If you set a port to this mode, you cannot use the port in a scan list.</td>
</tr>
<tr>
<td>4</td>
<td>Read and write strobe</td>
<td>If you set a port to this mode, you cannot use the port in a scan list.</td>
</tr>
<tr>
<td>5</td>
<td>Full handshake</td>
<td>If you set a port to this mode, you cannot use the port in a scan list.</td>
</tr>
</tbody>
</table>

Note

The polarity of the flow control lines is assumed to be positive (the default) in the following diagrams and discussions.
Chapter 4 Features and Functions
Digital I/O Operation

Static Mode #1
Static Mode #1 is the default mode. In this mode, data is transferred statically, there is no read or write strobe pulses or handshaking. The I/O Direction line is active and indicates direction of transfer. This is shown in the following timing diagrams.

Approximately 1 ms after the I/O direction line goes to a low state, the digital I/O module takes control of the data lines.

Static Mode #2
Static Mode #2 acts just like Mode #1 except the output lines are not disabled during an input operation. This means that if a port is written to and then read from, the data read will be that which was just written to it. It is possible, however, that external devices might load the lines and cause a false read.

Timing for the I/O direction line is as shown in Mode #1 for write operations. For read operations, the I/O direction line does not change.
Read or Write and Strobe Mode #3

In this mode, the I/O direction line is still used to indicate direction of transfer (input or output) but the PCTL (Peripheral control) line is used to strobe the data.

During a write operation, where the 3499A/B/C writes the data to some external device, the strobe pulse signifies that the data on the 16 or 32 data I/O lines is valid. This is shown in the following timing diagram.

The Strobe pulse is used during a read operation to signify that the 3499A/B/C has completed the read operation. This is shown in the following diagram.

When used during a Read operation, the Strobe pulse signifies that the 3499A/B/C has latched (read) the data from the data lines.
Read and Write Strobe Mode #4
Read and Write Strobe Mode #4 uses the I/O direction line as a Strobe pulse to indicate writing operations. The PCTL line is used to indicate Read operations. It is thus similar to the R/W and Strobe Mode #3 except separate control lines are used for the Strobe pulses and there is no I/O direction line.

The I/O Direction line is used to indicate that the data is valid on the data bus lines. I/O Direction is used to trigger the receiving device.

As in Mode #3, the PCTL (RD) line is used to indicate to the sending device that the 3499A/B/C has latched (read) the data.
Full Handshake Mode #5

Handshake Mode #5 provides a complete two wire handshake with a data direction line. During write operations, the PCTL line indicates that output data is valid; during read operations, it indicates that the digital I/O module (i.e. N2263A) is “ready for data”. The PFLG line is used by the peripheral device to indicate “ready for data” during write operations or “data valid” for read operations.

For this discussion, write operations mean the plug-in digital I/O module is controlling the data lines. Read operations mean external devices control the data lines and the digital I/O module reads the data and controls the PCTL/RD line.

The complete handshaking sequence for Mode #5 is as follows: The 3499A/B/C checks to see if the receiving device has set the PFLG line low, this indicates the receiving device is ready to accept data. When PFLG is low, the 3499A/B/C sets the data on the data bus and sets PCTL low. The 3499A/B/C then waits for the receiving device to set PFLG high, indicating that it has latched the data. To complete the handshake, the 3499A/B/C sets PCTL high.
As with the Write operation, the 3499A/B/C begins by testing PFLG for a low state, indicating that the data is valid. When PFLG is low, the 3499A/B/C sets PCTL low and waits for PFLG to go high. The 3499A/B/C will set PCTL high to indicate that it has completed the data read operation. Data on the data bus must remain valid until after the 3499A/B/C sets PCTL high.
Chapter 4 Features and Functions
Digital I/O Operation

Digital Input Operation

- From the front-panel, you can read data from the built-in digital I/O bits/port (numbered 090 through 094) or any one of the 8-bit ports on a digital I/O module or multifunction module.

- From the remote interface, you can read data from the individual bit channels and 8-, 16-, or 32-bit ports on a digital I/O module or multifunction module, as well as from the built-in digital I/O bits/port (numbered 090 through 094).

- Instrument reset will set all digital I/O ports in the instrument as input ports. Pressing Card Reset or issuing a RESET command will set all ports on the specified module as input ports (ports on other modules are not affected).

Front-Panel Operation: Select an 8-bit digital I/O port, press Read to read the data from the port. The data can be displayed as either decimal or binary (see page 33).

Remote Interface Operation: Use the following command to read an individual bit (bit 6) on a module in slot 4. A “0” (bit cleared) or a “1” (bit set) will be returned.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Decimal Range</th>
<th>Hex range</th>
</tr>
</thead>
<tbody>
<tr>
<td>BYTE</td>
<td>0 to 255</td>
<td>00h to FFh</td>
</tr>
<tr>
<td>WORD</td>
<td>-32768 to 32767</td>
<td>-8000h to 7FFFh</td>
</tr>
<tr>
<td>LWORD</td>
<td>2^{31} to $(2^{31} -1)$</td>
<td>-80000000h to 7FFFFFFFh</td>
</tr>
</tbody>
</table>

The range of possible returned values is shown:

WORD values greater then 32767 and LWORD values greater then $(2^{31} -1)$ are returned as negative numbers. These values are in 2's complement form.
Digital Output Operation

- From the front-panel, you can write data to the built-in digital I/O bits/port (numbered 090 through 094) or any one of the 8-bit ports on a digital I/O module or multifunction module.

- From the remote interface, you can write data to individual bit channels and 8-, 16-, or 32-bit ports on a digital I/O module or multifunction module, as well as to the built-in digital I/O bits/port (numbered 090 through 094).

- Instrument reset will set all digital I/O ports in the instrument as input ports. Pressing Card Reset or issuing a RESET command will set all ports on the specified module as input ports (ports on other modules are not affected).

- Front-Panel Operation: Select an 8-bit port, press Write, the data from the last operation (read or write) will be displayed. Edit the data to the desired value and press Enter to write the data to the port. To cancel the write operation, press Write again instead of Enter. You can edit the data in either binary or decimal form (see page 33).

- Remote Interface Operation:

 OUTPUT 709; “DWRITE 400,219” ! Write 219 to 16-bit Port 404.

 OUTPUT 709; “OPEN 403,405,407” ! Open bit channels 403, 405, and 407.

WORD values greater than 32767 and LWORD values greater than
for \(2^{31} - 1\) are sent as negative numbers. These values are in 2’s complement form.
State Storage

The 3499A/B/C provides the capability to store setups, and then recall them to put the instrument back into a known configuration. Information that can be stored includes:

- Status of all relay channels (open or closed)
- Status of digital I/O ports (input or output, flow control, etc.)
- Remote interface settings (address, baud, etc.)

Additionally, you can include a stored state in a scan list as a channel.

Firmware Revision Differences

State storage behavior differs depending upon the firmware revision of your 3499A/B/C (see page 55).

- Firmware revision 1.0 must be upgraded. Please contact your nearest Agilent Technologies Office for details.
- Firmware revisions 2.0 and 3.0 allow up to 10 states to be stored. Firmware revision 4.0 allows up to 40 stored states.
- Stored states are lost if power is removed for firmware revisions 2.0 or 3.0. Stored states are preserved when power is removed for firmware revision 4.0.
- Storage memory locations are numbered 01 to 10 for Firmware revision 2.0 and 3.0. Memory locations are numbered 01 to 40 for Firmware revision 4.0.
- Before recalling a stored setup, the instrument verifies that all module types and slot assignment match the setup. If a mismatch is detected, an error ("RECALL FAILED") will occur.
Firmware Revision Differences (continued)

- An instrument reset does not affect the stored instrument setup information.
- All stored setups will be cleared if the system mode is changed (for example, to SCPI mode).
- Firmware revision 3.0 allows instrument operation in either SCPI or 3488 mode, not both. The mode is selected when the firmware is loaded.

To Store an Instrument State

Firmware revision 2.0 and 3.0 allow up to 10 stored states. Firmware revision 4.0 allows up to 40 stored states. Set the instrument to the state you want to store.

- Front-Panel Operation: To store an instrument setup, press Shift + Recall, select a memory location, and press Enter. To cancel the store operation, press Recall again instead of Enter.

- Remote Interface Operation:

 OUTPUT 709; "STORE 4" ! Store an instrument setup

Note

Approximately 1 second is required to store an instrument setup into an Agilent 3499A/B/C with Firmware REV 4.0. To avoid errors in when programming, be sure to allow a 1 second interval between the store and recall operations.

To Recall an Instrument State

You can recall a previously stored instrument setup.

- Front-Panel Operation: To recall a stored setup, press Recall, select the memory location to be recalled, and press Enter. To cancel the recall operation, press Recall again instead of Enter.

- Remote Interface Operation:

 OUTPUT 709; "RECALL 4" ! Recall the previously stored channel setup.
Error Conditions

When an error occurs, the 3499A/B/C will beep and the **ERROR** annunciator on the front-panel lights up. This indicates one or more command syntax or hardware errors have been detected.

- The error queue will be cleared automatically once you read the queue, change the system mode, send the **RESET** command, or cycle power on the instrument. However, a module reset will not clear the error queue.

- **Front-Panel Operation:** Press **View**, select “ERROR”, and press **Enter**. The sum of the values of the possible error conditions is displayed (refer to “Error Messages” on page 135).

- **Remote Interface Operation:** In 3488 mode, the sum of the values of the possible error conditions is recorded in the error queue. For example, the returned value of “0003” means that both “Syntax Error” and “Execution Error” occurred (refer to “Error Messages” on page 135).

```plaintext
ERROR ! Query the error register.
```

Self-Test

The 3499A/B/C can perform a self-test to verify that it is in proper operation.

- If the self-test is successful, “PASSED” will be displayed on the front-panel. Otherwise, the reason of the failure will be displayed. For details of all self-test failures, refer to “Self Test Errors” on page 136.

- **Front-Panel Operation:** Press **Menu**, use the knob to select “SELFTEST”, and press **Enter** to perform a self-test.

- **Remote Interface Operation:**

```plaintext
TEST ! Returns zero if the test is successful, or non-zero if it fails.
```
Display Control

You can turn off the 3499A/B/C display (for security or increased processing speed for example). You can also write a message of up to 13 characters to the front-panel display.

Note
The display cannot be turned off from the front-panel.

- When the display is turned off, the entire front-panel display goes blank except for the **ADRS** and **RMT** annunciators (the **ERROR** annunciator will also be on if there are errors), and all keys except **Local** are locked.
- If the display is turned off, pressing **Local** causes the instrument to return to local operation, the display will be turned back on.
- The display is automatically turned on when power is cycled, or after a **RESET** command.
- When the display is on, you can send a message (up to 13 characters) to display on the front-panel from the remote interface. If you attempt to send more than 13 characters, only the first 13 characters can be displayed. The characters can be letters (A-Z), numbers (0-9), and some special characters (‘space () * + - . : ; / \).
- **Remote Interface Operation:**

 OUTPUT 709; "DOFF" ! Turn off the display.
 OUTPUT 709; "DON" ! Turn on the display.
 OUTPUT 709; "DISP Scan finished." ! Display the message on the front panel.
Chapter 4 Features and Functions

Relay Cycle Counts

The Agilent 3499A/B/C can read and track the relay cycle counts on some plug-in modules. This feature can be very useful in switching systems to track relay failures and predict system maintenance requirements.

- The cycle counts of the tree relays (s98 & s99) on an N2260A or N2266A can also be queried.

- Front-Panel Operation: Press View, use the knob to select “RELAY CYCLES”, and press Enter. Turn the knob to select the relay channel of interest. The display shows the channel cycle count.

- Remote Interface Operation: This feature is only available from the front panel in 3488 mode.
Remote Interface Reference
Remote Interface Reference

This chapter describes 3488 mode commands applicable to the Agilent 3499A/B/C Switch/Control System. The chapter contents include:

- Command Syntax, on page 101
- 3488 Mode Command Quick Reference, on page 102
- 3488 Mode Commands, on page 104

**Note**

It is highly recommended that you use SCPI commands (in SCPI mode) instead of 3488A commands (in 3488A mode). The SCPI commands allow you to use all the features of the Agilent 3499A/B/C and the plug-in modules. 3488 mode commands are a subset and are provided for legacy installations.
Command Syntax

Throughout this manual, the following conventions are used for command syntax for remote interface programming.

- Square brackets ([]) indicate optional keywords or parameters.
- Braces ({ }) enclose parameter choices within a command string.
- Angle brackets (< >) enclose parameters for which you must specify a value.
- A vertical bar (|) separates multiple parameters.

Rules for Using a Channel or Scan List

Many of the SCPI commands include a channel list or scan list parameter which allows you to specify one or more channels. The channel number has the form (@snn), where s is the slot number and nn is the channel number. You can specify a slot, a single channel, or multiple channels as described below.

- The following command closes a single channel (channel 11) on the module installed in slot 1:

 OPEN 111

- The following command closes multiple channels on modules in slots 1 and 2:

 CLOSE 111,112,203,204

- Additional information about channel and slot numbering is given on page 67.
3488 Mode Command Quick Reference

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAN</td>
<td>Open the last channel/bit closed and close the specified channel/bit.</td>
<td>104</td>
</tr>
<tr>
<td>CLOSE</td>
<td>Close one or more relays (channels/bits) on the plug-in modules.</td>
<td>105</td>
</tr>
<tr>
<td>CMON</td>
<td>Monitor the open/close states of a plug-in module in the specified slot.</td>
<td>106</td>
</tr>
<tr>
<td>CRESET</td>
<td>Reset one or multiple cards in the specified slot(s) to their default states.</td>
<td>106</td>
</tr>
<tr>
<td>CPAIR</td>
<td>Pair up two plug-in modules of the same type.</td>
<td>107</td>
</tr>
<tr>
<td>CTYPE</td>
<td>Query the module’s identification in the specific slot.</td>
<td>108</td>
</tr>
<tr>
<td>DBR</td>
<td>Read digital I/O port.</td>
<td>110</td>
</tr>
<tr>
<td>DBW</td>
<td>Output a block of binary data to the specified digital I/O port.</td>
<td>112</td>
</tr>
<tr>
<td>DELAY</td>
<td>Insert a delay time during scanning.</td>
<td>113</td>
</tr>
<tr>
<td>DISP</td>
<td>Write a message to display.</td>
<td>114</td>
</tr>
<tr>
<td>DMODE</td>
<td>Establish the handshake mode, polarity and trigger configuration of the DIO module.</td>
<td>115</td>
</tr>
<tr>
<td>DOFF</td>
<td>Turn off the front panel display of the instrument.</td>
<td>117</td>
</tr>
<tr>
<td>DON</td>
<td>Turn on the front panel display of the instrument.</td>
<td>117</td>
</tr>
<tr>
<td>DREAD</td>
<td>Read the status of a digital I/O port as inputs.</td>
<td>118</td>
</tr>
<tr>
<td>DWRITE</td>
<td>Output a block of data to the specified digital I/O port.</td>
<td>120</td>
</tr>
<tr>
<td>EHALT</td>
<td>Enable/Disable the stop-on-error mode.</td>
<td>121</td>
</tr>
<tr>
<td>ERROR</td>
<td>Query Error register.</td>
<td>121</td>
</tr>
<tr>
<td>ID?</td>
<td>Query the instrument’s identity.</td>
<td>121</td>
</tr>
<tr>
<td>LOCK</td>
<td>Activate or deactivate locking out the keyboard of the instrument.</td>
<td>122</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>MASK</td>
<td>Query/set the SRQ mask conditions.</td>
<td>122</td>
</tr>
<tr>
<td>OLAP</td>
<td>Enable/Disable GPIB I/O overlap mode.</td>
<td>123</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open one or more relays (channels/bits) on the plug-in modules.</td>
<td>124</td>
</tr>
<tr>
<td>RECALL</td>
<td>Re-assert the channel/bit setup stored by the command STORE (1-10).</td>
<td>125</td>
</tr>
<tr>
<td>RESET</td>
<td>Reset the instrument to its power on state. All channels/bits of the plug-in modules are open, etc.</td>
<td>125</td>
</tr>
<tr>
<td>SLIST</td>
<td>Specify a sequence of channels/bits to be scanned.</td>
<td>126</td>
</tr>
<tr>
<td>SYSMODE</td>
<td>Specify a system mode (SCPI or 3488A) for the instrument.</td>
<td>127</td>
</tr>
<tr>
<td>SYSMODE?</td>
<td>Query the instrument's system mode.</td>
<td>127</td>
</tr>
<tr>
<td>SREAD</td>
<td>Read back the read-only port on a 44475A Breadboard module (for 44475A only).</td>
<td>128</td>
</tr>
<tr>
<td>SWRITE</td>
<td>Write data to the static write-only port on a 44475A Breadboard module (for 44475A only).</td>
<td>129</td>
</tr>
<tr>
<td>STATUS</td>
<td>Query the Status Byte of the 3499A/B/C.</td>
<td>130</td>
</tr>
<tr>
<td>STEP</td>
<td>Sequence through a scan list set up by SLIST.</td>
<td>131</td>
</tr>
<tr>
<td>STORE</td>
<td>Store the current of the instrument in the specified register number (1-10).</td>
<td>131</td>
</tr>
<tr>
<td>TEST</td>
<td>Cause the 3499A/B/C to perform an internal self-test.</td>
<td>132</td>
</tr>
<tr>
<td>VIEW</td>
<td>Query the state of a particular channel/bit.</td>
<td>133</td>
</tr>
</tbody>
</table>
3488 Mode Commands

CHAN [<channel_address>]

Opens the last channel/bit closed by either STEP or CHAN command and then closes the specified channel/bit.

The channel_address has the form @sn, where s is the slot number and nn is the channel number. For all mainframes, slot 0 refers to the 3499A/B/C control board. Valid slot numbers are:

<table>
<thead>
<tr>
<th>Slot</th>
<th>Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>3499A</td>
<td>slots 0 through 5</td>
</tr>
<tr>
<td>3499B</td>
<td>slots 0 through 2</td>
</tr>
<tr>
<td>3499C</td>
<td>slots 0 through 9</td>
</tr>
</tbody>
</table>

The channel number, nn, is plug-in module dependent. Channel numbers for plug-in modules are listed on page 70.

If no channel/bit is specified with CHAN, the 3499A/B/C will respond with the number of the last channel closed. If no channel has been closed since the last reset, then CHAN returns the number 0.

If a Scan List is in effect when CHAN is executed, the 3499A/B/C will search through the list and position the Scan List pointer to the channel specified by CHAN. If CHAN specifies a channel that is not in the Scan List, and then STEP is executed, the 3499A/B/C will open the channel closed by CHAN and go to the beginning of the Scan List.

```
OUTPUT 709; "CHAN 203" ! Close channel 203.
OUTPUT 709; "CHAN
ENTER 709; A
DISP A
```
CLOSE <channel_address>[,<channel_address>,<channel_address>...]

Close one or more channels on the non digital I/O (DIO) modules. It can also be used to “clear” bits on the digital I/O modules. The CLOSE command does not open any channels/bits that were previously closed.

The channel_address has the form @snn, where s is the slot number and nn is the channel number. For all mainframes, slot 0 refers to the 3499A/B/C control board. Valid slot numbers are:

<table>
<thead>
<tr>
<th>Mainframe</th>
<th>Slot Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3499A</td>
<td>slots 0 through 5</td>
</tr>
<tr>
<td>3499B</td>
<td>slots 0 through 2</td>
</tr>
<tr>
<td>3499C</td>
<td>slots 0 through 9</td>
</tr>
</tbody>
</table>

The channel number, nn, is plug-in module dependent. Channel numbers for plug-in modules are listed on page 70.

Several channels or bits can be closed with one CLOSE command by separating the channel or bit addresses with a comma. If more than one channel or bit is specified, they are closed or bits “cleared” in the order listed.

When CLOSE is used with the DIO modules (44474A, N2263A, N2264A, N2265A), the DIO modules must be in either default Static Mode #1 or Static Mode #2. Using the CLOSE command in any other mode will cause an error. In these modes there is no read or write handshaking. Digital modes are described in more detail on page 86.

The bits 091-094 on the 4-bit built-in digital I/O can be also included in the channel_address.

All the channels/bits in the plug-in modules are opened following a reset. For the DIO modules, all bits are operating as input bits, no handshaking enabled.

```
OUTPUT 709; “CLOSE 102,103,212,313”
```

! Close the specific channels.
CMON <slot>

Causes the 3499A/B/C to monitor the individual card (module) in the specified slot.

The slot parameter is a decimal ranging from 0 to 9 (mainframe dependent). Valid slot numbers are:

<table>
<thead>
<tr>
<th>Device</th>
<th>Slots</th>
</tr>
</thead>
<tbody>
<tr>
<td>3499A</td>
<td>0 through 5</td>
</tr>
<tr>
<td>3499B</td>
<td>0 through 2</td>
</tr>
<tr>
<td>3499C</td>
<td>0 through 9</td>
</tr>
</tbody>
</table>

Specifying 0 as the slot number turns off the monitor function. Cycling power on the instrument or resetting the modules will cancel the monitoring.

You cannot monitor the 4-bit built-in DIO, an individual DIO port, or a switching channel.

The displayed information is module dependent, refer to page 75 for more details.

```plaintext
OUTPUT 709; “CMON 2”
ENTER 709; A$
DISP A$
```

CRESET <slot>[,<slot>...]

Resets all channels/bits on the specified modules to their open state. Only the modules in the specified slots are affected.

The slot parameter is a decimal ranging from 0 to 9 (mainframe dependent). Valid slot numbers are:

<table>
<thead>
<tr>
<th>Device</th>
<th>Slots</th>
</tr>
</thead>
<tbody>
<tr>
<td>3499A</td>
<td>0 through 5</td>
</tr>
<tr>
<td>3499B</td>
<td>0 through 2</td>
</tr>
<tr>
<td>3499C</td>
<td>0 through 9</td>
</tr>
</tbody>
</table>

Switching Modules: All the switching channels on the specific module are reset to their open state.

DIO Modules: A digital I/O module is reset to its default mode. That means the bits on the module are set to open (high impedance), and the module is in the Static Mode #1 (no handshaking).

```plaintext
OUTPUT 709; “CRESET 2” ! Reset the module in slot 2.
```
CPAIR <slot>,<slot>

Pairs two of the same (type) plug-in modules (i.e. two N2261A modules). This operation will effectively assign both modules to both slot numbers so that closing/opening/scanning a channel on either one module will perform the same operation on the respective channel on the other module.

The slot parameter is a decimal ranging from 0 to 9 (mainframe dependent). Valid slot numbers are:

<table>
<thead>
<tr>
<th>Module</th>
<th>Slots Valid</th>
</tr>
</thead>
<tbody>
<tr>
<td>3499A</td>
<td>0 through 5</td>
</tr>
<tr>
<td>3499B</td>
<td>0 through 2</td>
</tr>
<tr>
<td>3499C</td>
<td>0 through 9</td>
</tr>
</tbody>
</table>

This feature is especially useful when doing 4-wire scanning with the MUX modules, such as 44470A/D, N2260A, etc.

Commands used with the CPAIR function are: CLOSE, OPEN, CRESET, CHAN, STEP, DWRITE and DREAD. Channels/bits on the paired slots can be included in a scan list.

Executing a CPAIR command cancels any previous CPAIR command that involved either of the two modules. It is possible, however, to have two sets of card pairs, e.g. Slot 1 paired with 2 and Slot 3 paired with 4.

Paired DIO Modules: Two of the same (type) DIO modules used in Mode #1 or #2 can be paired. You cannot pair DIO modules using other handshake modes (see page 86).

Executing the CPAIR command without specifying slot numbers allows you to determine which, if any, slots are paired together. Four numbers are returned separated by commas. The first two numbers specify slots in the first pair, the second two numbers specify the second pair. An inactive card pair is denoted by 0,0.

```plaintext
OUTPUT 709; "CPAIR 1,3"  ! Pair the modules in Slot 1 and Slot 3.
OUTPUT 709; "CLOSE 105"   ! Close Channels 105 and 305 simultaneously.
```
CTYPE <slot>

This query returns a string containing the module identification in the specified slot. The slot parameter is a decimal ranging from 0 to 9 (mainframe dependent). Valid slot numbers are:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3499A</td>
<td>slots 0 through 5</td>
</tr>
<tr>
<td>3499B</td>
<td>slots 0 through 2</td>
</tr>
<tr>
<td>3499C</td>
<td>slots 0 through 9</td>
</tr>
</tbody>
</table>

```
OUTPUT 709; "CTYPE 3"               ! Look for the card in Slot 3.
ENTER 709;A$
DISP A$                           ! Card description will be displayed.
```
The string returned has one of the following forms:

<table>
<thead>
<tr>
<th>Module</th>
<th>Returned String</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empty Slot</td>
<td>NO CARD</td>
</tr>
<tr>
<td>Mainframe Built-in DIO</td>
<td>3499, Serial #</td>
</tr>
<tr>
<td>N2260A</td>
<td>40CH MUX, N2260A, Serial #</td>
</tr>
<tr>
<td>N2261A</td>
<td>40CH GP, N2261A, Serial #</td>
</tr>
<tr>
<td>N2262A</td>
<td>4X8 MATRIX, N2262A, Serial #</td>
</tr>
<tr>
<td>N2263A</td>
<td>32BIT DIO, N2263A, Serial #</td>
</tr>
<tr>
<td>N2264A</td>
<td>12+3 (5A) CH GP+16BIT DIO, N2264A, Serial #</td>
</tr>
<tr>
<td>N2265A</td>
<td>4X4 MATRIX+16BIT DIO, N2265A, Serial #</td>
</tr>
<tr>
<td>N2266A</td>
<td>20CH MUX, N2266A, Serial #</td>
</tr>
<tr>
<td>N2267A</td>
<td>8(8A)CH GP, N2267A, Serial #</td>
</tr>
<tr>
<td>N2268A</td>
<td>DUAL 1X4 RF MUX, N2268A</td>
</tr>
<tr>
<td>N2270A</td>
<td>10(1000V)CH MUX, N2270A, Serial #</td>
</tr>
<tr>
<td>N2280A</td>
<td>QUAD 1X2 OPTICAL, N2280A, Serial #</td>
</tr>
<tr>
<td>N2281A</td>
<td>DUAL 1X4 OPTICAL, N2281A, Serial #</td>
</tr>
<tr>
<td>44470A</td>
<td>RELAY MUX</td>
</tr>
<tr>
<td>44470D</td>
<td>RELAY MUX</td>
</tr>
<tr>
<td>44471A</td>
<td>GP RELAY</td>
</tr>
<tr>
<td>44471D</td>
<td>GP RELAY</td>
</tr>
<tr>
<td>44472A</td>
<td>VHF SW</td>
</tr>
<tr>
<td>44473A</td>
<td>MATRIX SW</td>
</tr>
<tr>
<td>44474A</td>
<td>DIGITAL IO</td>
</tr>
<tr>
<td>44475A</td>
<td>BREADBOARD</td>
</tr>
<tr>
<td>44476A/B</td>
<td>GP RELAY</td>
</tr>
<tr>
<td>44477A</td>
<td>GP RELAY</td>
</tr>
<tr>
<td>44478A/B</td>
<td>VHF SW</td>
</tr>
</tbody>
</table>

a. Both the 44470A/D return “RELAY MUX 44470”. You must physically check the module to determine which one is present.

b. All the 44471A/D, 44476A/B and 44477A return “GP RELAY 44471”. To determine if the module is an 44471A/D, 44476A/B or 44477A, check the switching channels. For 44471A/D and 44476A/B, you must physically check the modules to determine which one is present.

c. Both the 44478A/B return “VHF SW 44472”. You must physically check the module to determine which one is present.

DBR <slot><port>,[<number of times to read>]

Reads the data items according to the format setup by the slot/port parameters and the DMODE (for polarity and handshaking) command.
Chapter 5 Remote Interface Reference

3488 Mode Commands

The slot parameter is a decimal ranging from 0 to 9 (mainframe dependent). Valid slot numbers are:

<table>
<thead>
<tr>
<th>Model Number</th>
<th>4-Bit Port</th>
<th>8-Bit Port</th>
<th>16-Bit Port</th>
<th>32-Bit Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bit Built-in DIO</td>
<td>090</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>44474A 16-Bit DIO</td>
<td>N/A</td>
<td>s00, s01</td>
<td>s02</td>
<td>N/A</td>
</tr>
<tr>
<td>N2263A 32-Bit DIO</td>
<td>N/A</td>
<td>s00, s01, s02, s03</td>
<td>s04, s05</td>
<td>s06</td>
</tr>
<tr>
<td>N2264A Multifunction</td>
<td>N/A</td>
<td>s30, s31</td>
<td>s32</td>
<td>N/A</td>
</tr>
<tr>
<td>N2265A Multifunction</td>
<td>N/A</td>
<td>s40, s41</td>
<td>s42</td>
<td>N/A</td>
</tr>
</tbody>
</table>

The port parameter is a number that indicates where the data is to be read. The port is module dependent and the valid port numbers are shown below:

The number of times to read is an integer between 1 and 32767. If more than one reading is requested, the 3499A/B/C must be in the OLAP1 mode (see page 123).
• When Slot 0 is specified, only Port 090 is valid.

• If a 16-bit port is specified, data will be sent with the high or most significant byte first. The data transfer is terminated with the 3499A/B/C setting the GPIB EOI true line concurrently with the last data byte sent.

• If a 32-bit mode (Port 06) is specified, data will be sent with the highest byte first, then the second highest byte and so on. The data transfer is terminated with the 3499A/B/C setting the GPIB EOI true line concurrently with the last data byte sent.

```
DIM A$[30]
IOBUFFER A$
A$ = “DBR 504,1”
TRANSFER A$ TO 709 INTR
ENTER 709 USING “%,K”; B$

DISP B$
```

! One digital binary reading.

! Qualifiers “%,K” set PC to concurrent EOI and last data byte.
Chapter 5 Remote Interface Reference
3488 Mode Commands

DBW <slot><port>,#I<block data>

Outputs a block of data to the specified digital I/O port. When DBW is received, the 3499A/B/C will interpret the block of data to be output according to the slot/port parameters and DMODE (polarity, handshake) command.

The slot parameter is a decimal ranging from 0 to 9 (mainframe dependent). Valid slot numbers are:

<table>
<thead>
<tr>
<th>Model Number</th>
<th>4-Bit Port</th>
<th>8-Bit Port</th>
<th>16-Bit Port</th>
<th>32-Bit Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bit Built-in DIO</td>
<td>090</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>44474A 16-Bit DIO</td>
<td>N/A</td>
<td>s00, s01</td>
<td>s02</td>
<td>N/A</td>
</tr>
<tr>
<td>N2263A 32-Bit DIO</td>
<td>N/A</td>
<td>s00, s01, s02, s03</td>
<td>s04, s05</td>
<td>s06</td>
</tr>
<tr>
<td>N2264A Multifunction</td>
<td>N/A</td>
<td>s30, s31</td>
<td>s32</td>
<td>N/A</td>
</tr>
<tr>
<td>N2265A Multifunction</td>
<td>N/A</td>
<td>s40, s41</td>
<td>s42</td>
<td>N/A</td>
</tr>
</tbody>
</table>

The port parameter is a number that indicates where the data is to be read. The port is module dependent and the valid port numbers are shown below.

In 16-bit mode, block data is interpreted as being the high byte first. In 32-bit mode (port 06), block data is interpreted as being the highest byte first, then the second highest and so on. The transfer is completed by setting the GPIB EOI line true concurrently with the last byte of data.

```
CONTROL 7,16,128 ! Set EOI true concurrent with the last character sent.
DIM A$[30]
IOBUFFER A$
A$ = "CMON 5;DBW 504, #IAS" ! Output a block of data"AS" to the plug-in DIO (Port 04, Slot 5).
TRANSFER A$ to 709 INTR
```
DELAY <time in mS>

Inserts a time delay between the time that a channel is closed and the time that the next command or Channel Closed pulse is executed.

The delay time may be a value between 0 and 32,767 mS (32 seconds) in 1 mS increments.

The delay time does not become effective until either a CHAN or a STEP is executed.

If any command is sent to the 3499A/B/C during the delay time, the command will not be executed until the delay time has completed.

For 44474A digital I/O module, a Channel Closed pulse will be sent after the delay time is complete (when External Increment enabled).

Executing DELAY with no parameters will read back the current delay time in mS.

The default delay time is “0” after an instrument power up or reset.

```
OUTPUT 709; “DELAY 2000; CHAN 101”  // The delay time is 2 seconds.
OUTPUT 709; “DELAY”
ENTER 709; A
DISP A  // Display the delay time.
```
DISP <ASCII character string>

Writes a message (up to 13 characters) to display on the front panel of the 3499A/B/C.

ASCII character string can be up to 13 characters. The characters supported by the 3499A/B/C are shown below:

<table>
<thead>
<tr>
<th>Type</th>
<th>Letters (Supported by 3499A/B/C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>0-9</td>
</tr>
<tr>
<td>Letter</td>
<td>a-z; A-Z</td>
</tr>
<tr>
<td>Special Character</td>
<td>' (space) () * + , . / \</td>
</tr>
</tbody>
</table>

The lower case characters can be included in ASCII character string, but the characters displayed on the front panel are all uppercase.

A colon (:) or a semicolon(;) is used as the terminator to end the string. An error will occur if there are other characters following the colon or semicolon.

```
OUTPUT 709; "DISP "It’s a DIO" ! Display “IT’S A DIO”.
```
DMODE <slot>[,<mode>] [, <polarity>] [, <EI>]

Establishes the handshake mode as well as polarity of the digital I/O bits and control lines for the plug-in DIO modules. It is also used to enable/disable the External Increment (EI) and Channel Closed (CC) pulse functions for the 44474A DIO module.

The slot parameter is a decimal ranging from 0 to 9 (mainframe dependent). Valid slot numbers are:

<table>
<thead>
<tr>
<th>Slot Type</th>
<th>Slot Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>3499A</td>
<td>slots 0 through 5</td>
</tr>
<tr>
<td>3499B</td>
<td>slots 0 through 2</td>
</tr>
<tr>
<td>3499C</td>
<td>slots 0 through 9</td>
</tr>
</tbody>
</table>

The mode parameter can take one of the values shown in the table below. Complete descriptions of the handshake modes are given beginning on page 86.

<table>
<thead>
<tr>
<th>Handshake Mode</th>
<th>Parameter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static 1 (default) mode</td>
<td>1</td>
</tr>
<tr>
<td>Static 2 (read what was written) mode</td>
<td>2</td>
</tr>
<tr>
<td>R/W and Strobe mode</td>
<td>3</td>
</tr>
<tr>
<td>Read & Write Strobe mode</td>
<td>4</td>
</tr>
<tr>
<td>Handshake (no EI or CC) mode</td>
<td>5</td>
</tr>
</tbody>
</table>

Note

Only the ports including the first bit (i.e. Ports 00, 04, 06, etc.) on a digital I/O model can be set to Mode #3, #4 or #5, and the three control lines are valid for these ports. Other ports can be only in Static Mode #1 or #2, and the three control lines are invalid.

The polarity parameter sets the polarity of both the 16/32-bit data lines and the handshake/control lines. When the polarity of the control lines is changed by this command, the DIO modules will immediately change the states of the affected lines. For the data lines, the current state is not immediately changed, but the new polarity will be used in subsequent operations.
The polarity parameter is a decimal weighted sum of up to seven bits and is defined below.

<table>
<thead>
<tr>
<th>Definition</th>
<th>Bit #</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default, data lines high true (open), PCTL and PFLG low means ready, I/O Direction line high for ready.</td>
<td>0</td>
<td>0 = Default</td>
</tr>
<tr>
<td>1st 8-bit port polarity</td>
<td>0</td>
<td>1 = Low means positive, High means negative</td>
</tr>
<tr>
<td>2nd 8-bit port polarity</td>
<td>1</td>
<td>2 = Low means positive, High means negative</td>
</tr>
<tr>
<td>PCTL Polarity</td>
<td>2</td>
<td>4 = Low means busy, High means ready</td>
</tr>
<tr>
<td>PFLG Polarity</td>
<td>3</td>
<td>8 = Low means busy, High means ready</td>
</tr>
<tr>
<td>I/O Direction line polarity</td>
<td>4</td>
<td>16 = Low means input, High means output</td>
</tr>
<tr>
<td>3rd 8-bit port polarity</td>
<td>5</td>
<td>32 = Low means positive, High means negative</td>
</tr>
<tr>
<td>4th 8-bit port polarity</td>
<td>6</td>
<td>64 = Low means positive, High means negative</td>
</tr>
</tbody>
</table>

Note

If the slot parameter is 0, the mode parameter will be ignored. The polarity of the built-in DIO Port 090 is specified. In this case, the EI parameter is used to enable/disable the external Trig In/Out lines.

The EI parameter provides a method of sequencing through a scan list without system computer intervention. EI is enabled when set to 1 and disabled when set to 0.

The EI parameter is only applicable for the 4-bit built-in DIO and the 44474A plug-in module. For other DIO modules, EI is ignored.

When slot is set to 0, the EXT TRIG IN & OUT lines on the Mini_DIN connector (shown on page 7) will be enabled when EI = 1. Using the external increment/external triggering for a scan list is described in more detail beginning on page 82.

You can send DMODE <slot> with no parameters and the 3499A/B/C will respond with a display of the currently set parameters (i.e., mode, polarity, EI).

Whenever power on or reset the instrument, the DIO modules are put in Static Mode #1, with High True Logic on all lines, EI/CC are disabled.

```
OUTPUT 715; "DMODE 5,1,0,1"  ! Set the EI & CC Mode and STATIC Mode #1.
```
DOFF

Turns off the 3499A/B/C’s display. This allows the instrument to operate faster because it no longer needs to update the display.

```
OUTPUT 709; “DOFF”  ! Turn off the display.
```

DON

Turns on the 3499A/B/C’s display.

The display will be reactivated by either the DON command or pressing the LOCAL key. Use DON to remove a message written to the display with a DISP command.

```
OUTPUT 709; “DON”  ! Turn on the display.
```
Chapter 5 Remote Interface Reference

3488 Mode Commands

DREAD <slot><port>[,number of times to read]

Reads the current status of the DIO modules’ ports designated as inputs. The decimal value read back is equal to the decimal sum of the bit values that are set. When Slot 0 is specified, only Port 090 is valid.

The slot parameter is a decimal ranging from 0 to 9 (mainframe dependent). Valid slot numbers are:

<table>
<thead>
<tr>
<th>Model Number</th>
<th>4-Bit Port</th>
<th>8-Bit Port</th>
<th>16-Bit Port</th>
<th>32-Bit Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bit Built-in DIO</td>
<td>090</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>44474A 16-Bit DIO</td>
<td>N/A</td>
<td>s00, s01</td>
<td>s02</td>
<td>N/A</td>
</tr>
<tr>
<td>N2263A 32-Bit DIO</td>
<td>N/A</td>
<td>s00, s01, s02, s03</td>
<td>s04, s05</td>
<td>s06</td>
</tr>
<tr>
<td>N2264A Multifunction</td>
<td>N/A</td>
<td>s30, s31</td>
<td>s32</td>
<td>N/A</td>
</tr>
<tr>
<td>N2265A Multifunction</td>
<td>N/A</td>
<td>s40, s41</td>
<td>s42</td>
<td>N/A</td>
</tr>
</tbody>
</table>

The port parameter is a number that indicates where the data is to be read. The port is module dependent and the valid port numbers are shown below.

If the DIO modules are using the Static Mode #1, this command will read the input data. The DIO modules must be using Static Mode #2 for this command to read the outputs.

The number of times to read parameter sets the number of times to read the port. The 3499A/B/C must be in OLAP 1 mode (see page 123) and the information is sent as a block with the readings separated by commas. If no number of times to read is given, the specified port will be read one time only. The maximum value of number of times to read is 32767.
• When reading the 4-bit built-in DIO port (Port 090), the decimal value will be between 0 and 15.

• When reading an 8-bit port, the decimal value of the bits will be between 0 and 255.

• When reading a 16-bit port, the decimal value of the 16 bits will be between –32768 and 32767. Any time the summed decimal value of the 16 bits would exceed +32768, the 2’s complement form is used and expressed as a negative number.

• When reading a 32-bit port, the decimal value will be between –2147483648 and 2147483647. Any time the summed decimal value of the 32 bits would exceed +2147483647, the 2’s complement form is used and expressed as a negative number.

```
DIM A$[700]
OUTPUT 709; "OLAP 1"
OUTPUT 709; "DREAD 501,100"    ! Take 100 readings.
ENTER 709; A$                   ! Enter all 100 readings.
DISP A$                         ! Display readings.
END
```
DWRITE <slot><port>,<data>[,<data>...]

Configures all or part of a DIO module to digital output ports and writes data to the DIO ports.

The slot parameter is a decimal ranging from 0 to 9 (mainframe dependent). Valid slot numbers are:

- 3499A slots 0 through 5
- 3499B slots 0 through 2
- 3499C slots 0 through 9

The port parameter is a number that indicates where the data is to be written. The port is module dependent and the valid port numbers are shown below.

<table>
<thead>
<tr>
<th>Model Number</th>
<th>4-Bit Port</th>
<th>8-Bit Port</th>
<th>16-Bit Port</th>
<th>32-Bit Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bit Built-in DIO</td>
<td>090</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>44474A 16-Bit DIO</td>
<td>N/A</td>
<td>s00, s01</td>
<td>s02</td>
<td>N/A</td>
</tr>
<tr>
<td>N2263A 32-Bit DIO</td>
<td>N/A</td>
<td>s00, s01, s02, s03</td>
<td>s04, s05</td>
<td>s06</td>
</tr>
<tr>
<td>N2264A Multifunction</td>
<td>N/A</td>
<td>s30, s31</td>
<td>s32</td>
<td>N/A</td>
</tr>
<tr>
<td>N2265A Multifunction</td>
<td>N/A</td>
<td>s40, s41</td>
<td>s42</td>
<td>N/A</td>
</tr>
</tbody>
</table>

- When writing to the 4-bit built-in DIO port (Port 090), the decimal value must be between 0 and 15.
- When writing to an 8-bit port, the decimal value of the bits must be between 0 and 255.
- When writing to a 16-bit port, the decimal value of the 16 bits must be between -32768 and 32767. Any time the summed decimal value of the 16 bits would exceed +32768, the 2's complement form must be used and expressed as a negative number.
- When writing to a 32-bit port, the decimal value must be between -2147483648 and 2147483647. Any time the summed decimal value of the 32 bits would exceed +2147483647, the 2's complement form must be used and expressed as a negative number.

There is no limit to the number of data items that can be sent with the DWRITE command.

```
OUTPUT 709; "DWRITE 206, -1074267141"
```
EHALT <0 | 1>

Enables or disables the stop-on-error mode. When enabled (EHALT 1), an error will lock up the GPIB interface (no GPIB communication). Default condition is disabled (EHALT 0), which allows GPIB communication after an error is discovered.

Note

Once the GPIB is locked up, you must reset the GPIB interface. The 3499A/B/C can be reset by either pressing the front panel local key or executing the GPIB CLEAR command.

```
OUTPUT 709; "EHALT 1" ! Enable the stop-on-error mode.
```

ERROR

Reads the 3499A/B/C’s error register. The returned decimal value is the sum of the values of the possible error conditions, as shown below:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Weighted Value</th>
<th>Error Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>Syntax Error</td>
</tr>
</tbody>
</table>
| 1 | 2 | Execution Error
| | | possible meanings include: |
| | | a. Parameter out of range |
| | | b. Card type mismatch |
| | | c. Attempt to access a nonexistent stored state or scan list |
| 2 | 4 | Hardware Trigger too fast |
| 3 | 8 | Logical Failure |
| 4 | 16 | Power Supply Failure |

```
OUTPUT 709; “ERROR”
OUTPUT 709; A$
DISP A$
```

ID?

Queries the 3499A/B/C’s identity and returns a string in the form “3499A”.

```
10 OUTPUT 709; “ID?”
20 ENTER 709; A$
30 DISP A$ ! Display the returned string.
```
3488 Mode Commands

LOCK <0 | 1>
Locking out the keyboard prevents the keyboard from being scanned thus permitting faster operation.

LOCK 1 locks the keyboard and LOCK 0 (default) unlocks the keyboard.

OUTPUT 709; "LOCK 1" ! Lockout the keyboard.

MASK [<decimal value>]
Sets the SRQ mask to allow certain conditions to generate SRQ.

The decimal value loaded into the mask is equal to the sum of the values of the conditions that will cause an SRQ interrupt as shown below:

<table>
<thead>
<tr>
<th>Mask Bit</th>
<th>Weighted Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>End of Scan Sequence</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Output available</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>Power-on SRQ true</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>Not used</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>Ready for instructions</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>Error</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>SRQ (This bit is not maskable)</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Not used</td>
</tr>
</tbody>
</table>

If no value is sent with the MASK command, the 3499A/B/C will display or output the current value of its SRQ mask to the computer.

OUTPUT 709; "MASK 8" ! Set themask for Front Panel SRQ key.
OUTPUT 709; "MASK 33" ! Set mask for Error (32) and End of Scan Sequence (1).
OUTPUT 709; "MASK"
ENTER 709; A
DISP A ! The current mask value is displayed.
OLAP <0 | 1>

Suspends or releases the GPIB I/O communications.

In the Overlap disabled mode (default, OLAP 0), the 3499A/B/C holds up GPIB I/O communications while it processes received messages.

When Overlap is enabled (OLAP 1), the 3499A/B/C will release the GPIB as soon as the command message is received. Overlap enabled allows faster I/O operations but does not guarantee sequential operation of other devices on the bus.

Overlap goes into effect on the first Bus communication after the OLAP message sent.

Overlap only applies to commands received, not to data sent by the 3499A/B/C.

In Overlap enabled, you should monitor Bit 4 in the 3499A/B/C Status Register to help insure sequential operation of other instruments on the GPIB interface.

OLAP 1 is necessary for multiple readings from the digital I/O modules with the DREAD and DBR commands.

Switching between OLAP 0 and OLAP 1 should have a minimum delay time of 5 seconds before sending other commands.

```plaintext
OUTPUT 709; “OLAP 1”
```
OPEN <channel_address>[,<channel_address>,<channel_address>...]
Open one or multiple channels/bits on the plug-in modules.

The channel_address has the form @snn, where s is the slot number and
nn is the channel number. For all mainframes, slot 0 refers to the 3499A/B/C control board. Valid slot numbers are:

<table>
<thead>
<tr>
<th>Slot</th>
<th>Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>3499A</td>
<td>slots 0 through 5</td>
</tr>
<tr>
<td>3499B</td>
<td>slots 0 through 2</td>
</tr>
<tr>
<td>3499C</td>
<td>slots 0 through 9</td>
</tr>
</tbody>
</table>

The channel number, nn, is plug-in module dependent. Channel numbers for plug-in modules are listed on page 70.

Several channels/bits can be opened with one OPEN command by
separating the channel/bit addresses with a comma. If more than one
channel/bit is specified, they are opened in the order listed. Use CARD
RESET command to open all channels/bits on the modules, it is easier
than listing each channel/bit.

When OPEN is used with the DIO modules (44474A, N2263A, N2264A,
N2265A), the DIO modules must be in either default Static Mode #1 or
Static Mode #2. Using the OPEN command in any other mode will cause
an error. In these modes there is no read or write handshaking.

The bits 091-094 on the 4-bit built-in digital I/O can be also included in a
channel_address.

All the channels in the plug-in modules are opened following a reset. For
the DIO modules, all bits are operating as input bits. There is no
handshaking enabled.

OUTPUT 709; “OPEN 103,105,113,116”

! Open channels 3, 5, 13, 16 in Slot 1.
RECALL <1–40>
Recalls the channel/bit setup stored by the command STORE. Only relays and static Digital Outputs are recalled. This means that only those channels/bits that are closed in the stored channel setup will be closed when the channel setup is recalled.

Note
If no state has been stored in the channel setup selected, an error will result and the 3499A/B/C will send SRQ if it was enabled (see MASK on page 122). In this case, the 3499A/B/C remains in its previous state.

```
OUTPUT 709; "CLOSE 103,104,202,204,206; STORE 6"
OUTPUT 709; "RECALL 6"
```

RESET
Used to reset the 3499A/B/C to the power on state. Reset performs the following:

- Identifies all plug-in modules and resets them (all relays open)
- Sets all parameters of the instrument to their default conditions. The reset conditions are shown on page 71.

This command does not affect the GPIB settings or stored states.

Note
If RESET is executed over the remote interface, interface functions are not affected (i.e. the 3499A/B/C will stay in Remote mode). If the front panel RESET key is pressed, interface functions are reset.

```
OUTPUT 709; "RESET"
```
SLIST <channel_address>[,<channel_address>,<channel_address>...]

Specifies a sequence of channels to be scanned. The sequence is specified as a list of up to 85 channel addresses (relays or digital I/O lines) and/or stored setups separated by commas. Contiguous channels may be specified by entering the first channel address and the last channel address separated by a hyphen. \texttt{STEP} is used to sequentially close channels in the list.

The channel address has the form \texttt{@snn}, where 	exttt{s} is the slot number and 	exttt{nn} is the channel number. For all mainframes, slot 0 refers to the 3499A/B/C control board. Valid slot numbers are:

<table>
<thead>
<tr>
<th>Slot</th>
<th>Slots</th>
</tr>
</thead>
<tbody>
<tr>
<td>3499A</td>
<td>0 through 5</td>
</tr>
<tr>
<td>3499B</td>
<td>0 through 2</td>
</tr>
<tr>
<td>3499C</td>
<td>0 through 9</td>
</tr>
</tbody>
</table>

The channel number, \texttt{nn}, is plug-in module dependent. Channel numbers for plug-in modules are listed on page 70.

The 4-bit built-in DIO bits (091-094) can be included in a scan list.

Channels may be scanned in any sequence, i.e., 309-300.

Stepping beyond the last channel specified in the scan list cause a wrap-around to the first channel in the list. The number 0 can be used as a stop channel.

\texttt{CHAN} may be used to specify a particular channel/bit to close. If \texttt{CHAN} is used, any channel/bit previously closed in the scan list will open and the channel/bit specified by \texttt{CHAN} will close. In addition, if the channel/bit closed by \texttt{CHAN} is specified in the scan list, subsequent scanning with the \texttt{STEP} command will start with that channel/bit.

The commands \texttt{OPEN}, \texttt{CLOSE}, \texttt{CRESET}, or \texttt{RECALL} will have no effect on the scan list even though the states of individual channels change.

Stored channel setups may be recalled as part of a scan list by specifying the register number.
For example, in the code below, the scan would start by closing channel 104, followed by channel 205, then recall saved setup 10, followed by channels 300, 301, 302, ... 309, and finally channel 410. The 0 channel specified at the end of the list is a stop channel, which will open the last channel closed (channel 410) without closing any other channel.

```
OUTPUT 709; “SLIST 104,10,205,300-309,410,0”
! ‘10’ is a stored setup. ‘0’ at the end of the list opens channel 410.
```

```
FOR I= 1 TO 15
   OUTPUT 709; “STEP”
NEXT I
```

SYSMODE <0|1|SCPI|HP3488A>

Specifies the system mode for the Agilent 3499A/B/C Switch/Control system. The 3499A/B/C can be operated in either one of the two system modes. Specifying 0|SCPI will set the instrument to SCPI mode. Specifying 1|HP3488A will set the instrument to 3488A mode.

Switching the system modes between SCPI mode and 3488A mode will cause the instrument to return to its default state, but the GPIB address and the RS-232 settings will remain at what they had been configured.

The instrument requires a minimum of 5 seconds to change modes. You should program a minimum 5 second delay before sending commands after a mode change to prevent and error.

```
OUTPUT 709; “SYSMODE HP3488A” ! Specify the instrument system mode.
```

SYSMODE?

Queries the system mode for the Agilent 3499A/B/C Switch/Control system. The returned string will be either “SCPI” or “HP3488A”, indicating the instrument’s system mode.

```
OUTPUT 709; “SYSMODE HP3488A” ! Specify the instrument’s system mode.
```

```
OUTPUT 709; “SYSMODE?” ! Query the instrument’s system mode. “HP3488A” will be returned, indicating that the instrument is in 3488A mode.
```
SREAD <slot><register>

Reads data from the input port on a 44475A Breadboard in the specified slot. The data read back is in the form of a decimal number which is the sum of the binary weighted values of the bits that are high (+5 volts). This command is for 44475A Breadboard only.

The slot parameter is a decimal ranging from 0 to 9 (mainframe dependent). Valid slot numbers are:

<table>
<thead>
<tr>
<th>Slot</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>3499A</td>
<td>0 through 5</td>
</tr>
<tr>
<td>3499B</td>
<td>0 through 2</td>
</tr>
<tr>
<td>3499C</td>
<td>0 through 9</td>
</tr>
</tbody>
</table>

Two 8-bit ports are available on the 44475A Breadboard. One port is a static read only port (04), the second port is static write only (00). Static means that there is no handshaking involved in data transfers.

The register parameter value is 04. If a number other than 04 is used (any value between 0 and 7 will not cause an instrument error), the value 255 will be returned.

```
OUTPUT 709; “SREAD 304” ! Breadboard in Slot 3.
ENTER 709; A
DISP A
```

...
SWRITE <slot><register>,<data>

Writes data to the output port on a 44475A breadboard in the specific slot. The data value is a decimal sum of the binary weighted values of the bits that are to be set high (+5 volts).

The slot parameter is a decimal ranging from 0 to 9 (mainframe dependent). Valid slot numbers are:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3499A</td>
<td>slots 0 through 5</td>
</tr>
<tr>
<td>3499B</td>
<td>slots 0 through 2</td>
</tr>
<tr>
<td>3499C</td>
<td>slots 0 through 9</td>
</tr>
</tbody>
</table>

Two 8-bit ports are available on the 44475A Breadboard. One port is a static read only port (04), the second port is static write only (00). Static means that there is no handshaking involved in data transfers.

The register parameter value is 00. Any number between 1 and 7 may be used without causing an error, however no action will be taken by the Breadboard.

data is the binary weighted sum to write to the register. data can range from 0 to 255.

```
  OUTPUT 709; "SWRITE 500,146"  ! Breadboard in Slot 5.
  ENTER 709; A
  DISP A
```
Chapter 5 Remote Interface Reference
3488 Mode Commands

STATUS
Reads the 3499A/B/C's Status Byte and returns a decimal value that is the sum of the values of the individual bits that are set (condition is true).

<table>
<thead>
<tr>
<th>Bit</th>
<th>Weighted Value</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>End of scan sequence</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Output available</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>Power-on SRQ asserted</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>Front panel SRQ key pressed</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>Ready for instructions</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>Error</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>RQS</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>Not used</td>
</tr>
</tbody>
</table>

Bits 0, 2, and 3 will be cleared after the STATUS command is executed. Bit 1 will be cleared only after the data is read from the 3499A/B/C, new data is requested, or the 3499A/B/C is reset. The Ready for Instructions bit (Bit 4) will be cleared whenever the 3499A/B/C is busy executing instructions. For this reason, Bit 4 will always be clear when STATUS is executed. The Error bit (Bit 5) will only be cleared after the Error Register is read. Bit 6, RQS, will only be cleared after STATUS, if the condition that caused Bit 6 to be set is cleared.

OUTPUT 709; “STATUS”
ENTER 709; A
DISP A
STEP

Opens the last channel closed and close the next channel in the Scan List. If `STEP` is executed and no Scan List exists, the 3499A/B/C will generate an execution error.

The 3499A/B/C uses a pointer to keep track of which channel in the Scan List is currently closed. When `STEP` is executed, that channel is opened and the next item in the list is checked. If the next item in the list is a relay or a digital I/O line, that channel/bit is closed. If the next item in the list is a stored channel setup, that channel setup is recalled. If the next item in the list is a stop channel 0, the last channel/bit closed will be open without closing any channel/bit.

Channels that are closed by a channel setup will remain closed; they are not opened by the next execution of the `STEP` command.

```
10 OUTPUT 709; "SLIST 100-119; CMON 1"
20 FOR I= 1 TO 20
30 OUTPUT 709; "STEP"
40 NEXT I
```

STORE <1–40>

Records the current state of the 3499A/B/C (including the channel states, the static digital output states, etc.) in the specified register number (1-40).

Up to 40 channel/bit setups can be stored when operating the instrument in 3488A mode. Use RECALL (page 125) to restore a previously stored state.

The channel/bit setup(s) can be included in a scan list.

The states of digital I/O modules that are not using handshake modes #1 or #2 are ignored.

The channels’ state will not be changed when `STORE` is executed.

Resetting the 3499A/B/C does not affect the stored channel/bit setup.

```
OUTPUT 709; "CLOSE103,115,203,204,205,206"
OUTPUT 709; "STORE 9"    ! Store the channel setup in Register 9.
OUTPUT 709; "RECALL 9"    ! Recall the channel setup 9.
```
TEST

Initiates the internal self tests and returns a number indicating the test results. A value of “+00000” returned indicates all tests have passed. Any other value indicates the instrument failed the tests as shown below:

<table>
<thead>
<tr>
<th>Error Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+00001</td>
<td>ROM Test Failed.</td>
</tr>
<tr>
<td>+00002</td>
<td>GPIB Test Failed.</td>
</tr>
<tr>
<td>+00003</td>
<td>RS-232 Test Failed.</td>
</tr>
<tr>
<td>+00004</td>
<td>Front Panel Test Failed.</td>
</tr>
</tbody>
</table>

OUTPUT 709; "TEST"
ENTER 709; A
DISP A
VIEW <channel_address>

Shows the state, either open or closed of a particular channel or a DIO bit. The 3499A/B/C responds with the string "OPEN 1" if the specified channel/bit is open. If the specified channel/bit is closed, the 3499A/B/C responds with the string "CLOSED 0".

The channel_address has the form @snn, where s is the slot number and nn is the channel number. For all mainframes, slot 0 refers to the 3499A/B/C control board. Valid slot numbers are:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3499A</td>
<td>slots 0 through 5</td>
</tr>
<tr>
<td>3499B</td>
<td>slots 0 through 2</td>
</tr>
<tr>
<td>3499C</td>
<td>slots 0 through 9</td>
</tr>
</tbody>
</table>

The channel number, nn, is plug-in module dependent. Channel numbers for plug-in modules are listed on page 70.

Only one channel/bit can be “viewed” each time with this command.

VIEW can only be used to look at input bits on a digital I/O module. If an attempt is made to **VIEW** an output bit, the 8-bit port where the bit is located will revert to an input port.

```
OUTPUT 709; "VIEW 105"  ! View channel 5 on slot 1.
ENTER 709; A$            ! Input the response from the 3499A/B/C.
DISP A$                  ! A$ will either be "OPEN 1" or "CLOSED 0".
```

- or -

```
OUTPUT 709; "VIEW 105"  ! View channel 5 on slot 1.
ENTER 709; A             ! "A" will be either 1 or 0 (open or closed, respectively)
DISP A
```
Error Messages
Error Messages

In 3488A mode, you can query the instrument error queue when the ERROR annunciator is on. The returned decimal value is the sum of the values of the possible error conditions, as shown below:

<table>
<thead>
<tr>
<th>Weighted Value</th>
<th>Error Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Syntax Error</td>
</tr>
<tr>
<td>2</td>
<td>Execution Error which includes:</td>
</tr>
<tr>
<td></td>
<td>a. Parameter out of range;</td>
</tr>
<tr>
<td></td>
<td>b. Module type mismatch;</td>
</tr>
<tr>
<td></td>
<td>c. Attempt to access a nonexistent stored state or scan list.</td>
</tr>
<tr>
<td>4</td>
<td>Hardware Trigger too fast</td>
</tr>
<tr>
<td>8</td>
<td>Logical Failure</td>
</tr>
<tr>
<td>16</td>
<td>Power Supply Failure</td>
</tr>
</tbody>
</table>

Note: When the error queue is empty, the string “+00000” is returned in response to a remote interface ERROR command. The mainframe display will show “0000”.

Self Test Errors

The errors listed below indicate failures that may occur during a self-test (in 3488A mode).

<table>
<thead>
<tr>
<th>Error Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>ROM test failed.</td>
</tr>
<tr>
<td>+2</td>
<td>GPIB test failed.</td>
</tr>
<tr>
<td>+3</td>
<td>RS-232 test failed.</td>
</tr>
<tr>
<td>+4</td>
<td>Front-panel test failed.</td>
</tr>
</tbody>
</table>

Note: The string “+0” returned from a TEST command indicates that all the tests have passed. In this case, “PASSED” displays on the front-panel of the instrument.
Application Programs

This chapter provides example programs in Visual C++, Visual BASIC and BASIC to help you develop programs for your specific application. Chapter contents include:

- Visual C++ Example Program, on page 139
- Visual BASIC Example Program, on page 141
- BASIC Example Program, on page 143

Note

For the example programs provided in this chapter to run properly, make sure that your system has been properly setup according to the requirements of the individual example.
Visual C++ Example Program

This example program is written in Visual C++ 6.0 and has been tested on a PC running WIN95/NT. The example uses the 3488 commands. As the example is currently written, the program requirements are:

• GPIB interface selected and set to the address of 09 from the front-panel;

• Any one of the relay modules installed in Slot 1 of the mainframe;

• A GPIB interface card installed in your PC with the VISA library.

```c
#include <stdio.h>
#include <windows.h>
#include "visa.h"

#define INST_ADDR"GPIB0::9::INSTR" // 3499A/B/C GPIB address.

void main()
{
    ViSession drm; // Session to default resource manager.
    ViSession vi;  // Session to instrument.
    ViStatus status; // VISA function status return code.
    int i;

    /* Open the default resource manager. */
    status = viOpenDefaultRM( &drm );
    if ( status < VI_SUCCESS ) {
        printf( "VISA ERROR: viOpenDefaultRM()\n" );
        exit(1);
    }

    /* Open a session to the 3499A/B/C. */
    status = viOpen( drm, INST_ADDR, VI_NULL, VI_NULL, &vi );
    if ( status < VI_SUCCESS ) {
        printf( "VISA ERROR: viOpen(). Address: %s\n", INST_ADDR );
        viClose( drm );
        exit(1);
    }

    /* Set 3499A/B/C to 3488A mode. */
    viPrintf( vi, "SYSMODE HP3488A\n" );
    Sleep( 4000 ); //Wait 4 seconds.

    /* Reset the instrument to a known state. */
    viPrintf( vi, "RESET\n" );
    Sleep( 4000 );

    /* Close channels 100 through 103. */
    viPrintf( vi, "CLOSE 100, 101, 102, 103\n" );

    /* Open channels 100 through 103. */
    viPrintf( vi, "OPEN 100, 101, 102, 103\n" );
}```
Chapter 7 Application Programs
Visual C++ Example Program

/* Create a scanlist, then set up a loop to scan through the channels two times. */
viPrintf( vi, "SLIST 100-103\n" );
for ( i = 0; i < 8; i++ ) {
    viPrintf( vi, "STEP\n" );
    Sleep( 25 ); // Wait 25 milliseconds.
}
printf( "Scan End.\n" );
viClose( vi ); // Close session to 3499A/B/C.
viClose( drm ); // Close session to the resource manager.
Visual BASIC Example Program

This example program is written in Visual BASIC 6.0 and has been tested on a PC running WIN95/NT. The example uses the 3488 commands. As the example is currently written, the program requirements are:

- GPIB interface selected and set to the address of 09 from the front-panel;
- Any one of the relay modules installed in Slot 1 of the mainframe;
- A GPIB interface card installed in your PC with the VISA library.

Declare Sub Sleep Lib "Kernel32" (ByVal s As Long)
' Sleep( ) function declaration.

Sub main()
Dim drm As Long ' Session to default resource manager.
Dim vi As Long ' Session to instrument.
Dim status As Long ' VISA function status return code
Dim retStr As String * 128
' String returned from the instrument.
Dim str As String ' String for individual channel number.
On Error GoTo ErrorHandler
' Open default resource manager.
drm = -1
status = viOpenDefaultRM(drm)
If (status < VI_SUCCESS) Then GoTo VisaErrorHandler
' Open a session to 3499A/B/C.
INST_ADDR = "GPIB0::9::INSTR"
' Set 3499A/B/C GPIB address to 9 (default).
status = viOpen(drm, INST_ADDR, 0, 0, vi)
If (status < VI_SUCCESS) Then GoTo VisaErrorHandler
' Set 3499A/B/C to 3488A mode.
Call viVPrintf(vi, "SYSMODE HP3488A" + Chr$(10), 0)
Call Sleep(4000) ' Wait 4 seconds
' Reset the instrument to a known state.
Call viVPrintf(vi, "RESET" + Chr$(10), 0)
Call Sleep( 4000 )
' Close channels 100 through 103.
Call viVPrintf(vi, "CLOSED 100, 101, 102, 103" + Chr$(10), 0)
' Open channels 100 through 103.
Call viVPrintf(vi, "OPEN 100, 101, 102, 103" + Chr$(10), 0)

ErrorHander: On Error Resume Next
ErrorHandler: On Error Resume Next
VisaErrorHandler: On Error Resume Next
Chapter 7 Application Programs
Visual BASIC Example Program

' Create a scanlist, then set up a loop to scan through
' the channels two times.
viVPrintf(vi, "SLIST 100-103" + Chr$(10), 0)
' Create a scan list including 100 through 103.
For I = 0 To 8
  Call viVPrintf(vi, "STEP" + Chr$(10), 0)
  ' Step through the channels.
  Sleep (25) ' Wait 25 milliseconds.
Next
viClose (vi) ' Close session to 3499A/B/C.
viClose (drm) ' Close session to the resource manager.
End

ErrorHandler:
  ' Display the error message
  MsgBox "''' Error : " + Error$, MB_ICON_EXCLAMATION
  If drm <> -1 Then
    viClose (drm)
  End If
End

VisaErrorHandler:
  Dim strVisaErr As String * 200
  Call viStatusDesc(drm, status, strVisaErr)
  MsgBox "''' Error : " + strVisaErr
  If drm <> -1 Then
    viClose (drm)
  End If
End

End Sub
BASIC Example Program

Sample programs in this section are written in BASIC 6.0 and have been tested on a UNIX workstation.

Requirements:

- GPIB interface selected and set to the address of 09 from the front-panel;
- Any one of the relay modules installed in Slot 1 of the mainframe;
- A GPIB interface card installed in your UNIX workstation.

```bas
10 ! EXAMPLE.BAS: TEST 3499A/B/C IN 3488A MODE
20 DIM Retstr$[128]! String returned from the instrument.
30 OUTPUT 709; "SYSMODE HP3488A"! Set 3499A/B/C to 3488A mode
40 WAIT 4! Wait 4 seconds.
50 OUTPUT 709; "RESET" ! Reset 3499A/B/C.
60 WAIT 4
70 ! Close channels 100 through 103.
80 OUTPUT 709; "CLOSE 100, 101, 102, 103"
90 ! Open channels 100 through 103.
100 OUTPUT 709; "OPEN 100, 101, 102, 103"
110 ! A SIMPLE SCAN.
120 OUTPUT 709; "SLIST 100-103"! Create a scan list.
130 FOR I=0 TO 8! Step through the channels two times.
140 OUTPUT 709; "STEP"
150 WAIT .025
160 NEXT I
170 Done: END
```
Index

If you have questions related to the operation of the Agilent 3499A/B/C or plug-in modules, call 1.800.453.4844 in the United States, or contact your nearest Agilent Technologies Sales Office.

A
aborting scan 81
address, GPIB (IEEE 488) 46
Addressing
   channels 17
Agilent
   contacting 8
   phone 8
Annunciators 5
application program
   BASIC 143
   Visual BASIC 141
   Visual C++ 139
arm count selection 80
arm source selection 80

B
BASIC 143
Basic Operation 17
built-in digital I/O
   channel numbering 69
   read from 30, 92
   write 93
   write to 31
built-in external trigger
   configuration 41, 82
BYTE 92

C
card pair 40
CC/EI 82
CHAN command 104
Channel
   addressing 17
   channel
      close 19, 77
      monitoring 75
      open 19, 77
      open all 20
channel list
   rules 101
channel number 17
clear scan list 79
CLOSE command 105
close/open relay channel 19
close/open relay channel 77
CMON command 106
command reference
   alphabetical 102
Connector
   GPIB 6, 7
   mini DIN 7
   RS-232 6, 7
Contact Agilent 8
convention
   front panel operation 26, 74
Index

CPAIR command 107
CRESET command 106
CTYPE command 108
cycle counts of relay 98

D
data display format 85
DBR command 110
DBW command 112
default states 71
DELAY command 113
delay time setting 80
Digital I/O configuration
front panel 32
Digital I/O
configuration 84
default setting 92, 93
general rules 84
operation described 84
read from port 92
read port 30
write port 31
write to port 93
Digital I/O configuration
control line polarity 85
data display format 85
data line polarity 85
default settings 84
flag line polarity 85
flow control mode 32
I/O line polarity 85
Digital I/O input/output
write to port 31
Digital I/O modules
general information 64
DIN Connector 7
DISP command 114
Display 5
display message 97
DOFF command 117
DON command 117
DREAD command 118
DWRITE command 120

E
EHALT command 121
EI/CC 82
enable/disable EI/CC 41
enable/disable trigger out pulse 41, 83
ERROR command 121
error messages 136
errors viewing/deleting 35, 96
errors, self-test 136
example program
Visual BASIC 141
Visual C++ 139
example programs
BASIC 143
external trigger
general rules 82
external trigger 82
configuration 41, 83

F
factory default 71
Features
3499A 2
3499B 2
3499C 2
Switch/Control System 2
Filler Panels 24
filler panels 7
Firmware
revision 4.0 43
firmware
revision differences 94
firmware revision 48
flow control mode description (DIO modules)
full handshake mode 90
read and write strobe mode 48, 89
read or write and strobe mode 48, 88
static mode 87
static mode 87

FP 1, 2
FP 2, 24
Front Panel 4
front-panel display
general description 5
on/off 97
text message 97
Front-Panel Operation 26

G
GP modules
general information 61
GPIB (IEEE 488)
address selection 46
connector 6, 7
GPIB (IEEE 488)
Interface configuration 45

H
handshake mode description (DIO modules)
default 87
full handshake mode 90
read and write strobe mode 48, 89
read or write and strobe Mode 88
static mode 87
static mode 87

I
ID? command 121
Inoperative instrument 14
instrument
firmware revision 48
local/remote state 50
mounting onto rack 21
power on 27
power on failure 14
power on process 13
power-on state setting 43
recall state 95
serial number 49
state storage 94
store state 95
system mode selection 27
unpacking & inspection 13
viewing errors 35
interface, GPIB (IEEE 488)
address selection 46
Index

L
local 50
LOCK command 122
LWORD 92

M
mainframes
general description 54
MASK command 122
Matrix modules
general information 63
Menu key operation
card pair 40
configure external trigger 41
configure power-on state 43
configure remote interface 45
firmware revision query 48
perform self-test 47
serial number query 49
system mode 27
Mini DIN 6, 7
Mode #1 87
Mode #2 87
Mode #6 88
Mode #4 89
Mode #5 90
Mode key operation
configure DIO module 32
calculate DIO port 33
modules
classification 58
installation 16
installation procedure 15
pairing 40
removal 15
monitoring channel/slot 28, 75
mount
3499A 21
3499B 22
3499C 24
mount mainframe onto rack 21
Multifunction modules
general information 65
MUX modules
general information 59

N
N2260A module
channel numbering 67
default setting 84
description 60
relay type 60
N2261A module
channel numbering 67
description 61
relay type 61
N2262A module
channel numbering 67
description 63
relay type 63
N2263A module
channel numbering 68
description 64
N2264A module
channel numbering 68
description 65
relay type 65
N2265A module
channel numbering 68
description 65
relay type 65
N2266A module
channel numbering 68
description 60
relay type 60
N2267A module
channel numbering 68
description 61
relay type 61
N2268A module
channel numbering 68
description 60
relay type 60
N2270A module
channel numbering 69
description 60
relay type 60
N2280A module
channel numbering 69
description 66
relay type 66
N2281A module
channel numbering 69
description 66
relay type 66

O
OLAP command 123
OPEN command 124
open/close relay channel 77
Optical modules
general information 66

P
pair modules 40
parallel operation 54
phone 8
plug-in modules
classification 58
overview 58
pairing 40
removal 15
power-on instrument 13, 27
power-on state setting 43

R
R/W and Strobe Mode #3 88
Rack Mount 21
Read and Write Strobe Mode #4 89
read from port 92
read or write and strobe mode #3 88
read relay cycles 98
Rear Panel 6
RECALL command 125
recall instrument state 95
by including into scan list 79
by setting power-on to 43
relay cycle count 98
remote interface configuration 45
remote interface, GPIB (IEEE 488)
address selection 46
remove module from mainframe 15
RESET 71, 96
reset 20
  states 71
RESET command 125
Rev 4.0 43
RS-232 Interface
  connector 6
S
  scan
    list 37
    list clear 38
    viewing list 39
  scan list
    rules 101
  scan list viewing 39
  scanning
    arm source selection 80
    clearing scan list 79
    creating scan list 79
    external mode 82
    from front-panel 37
    general rules 78
    initiating and stopping 81
    starting 81
  scanning (3488A mode)
    default settings 71
  scanning (SCPI mode)
    arm count selection 80
    delay time setting 80
SCPI Command
  Summary 101
SCPI command
  alphabetical reference 102
  application programs 139, 141, 143
  channel list 101
  scan list 101
SCPI mode selection 27
self-test 13, 47, 96
serial number 49
SLIST command 126
slot
  monitoring 75
  slot numbers 17
SREAD command 128
State Storage 56
  state storage
  and firmware revision 94
Static Mode #1 87
Static Mode #2 87
STATUS command 131
STEP command 131
STORE command 131
store instrument state 94
Switch/Control System
  mainframes description 54
  plug-in modules overview 58
Switch/Control System Features 2
switching relay channel 77
SWRITE command 129
SYSMODE command 127
SYSMODE? command 127
system mode
  3488A mode selection 27
  general description 54
  SCPI mode selection 27
T
  Telephone 8
TEST command 96, 132
turn on instrument 27
turn on/off display 97
V
  VIEW command 133
  view errors 35, 96
  View key operation
    view error 35
    view scan list 39
view relay cycles 98
view scan list 39
Visual BASIC 141
Visual C++ 139
W
  WORD 92
write to port 31, 93