Challenges and Solutions of ADAS and Automotive Radar

Dec. 20 & 22, 2016

Kenny Liao
Senior Project Manager
Keysight Technologies
Introduction to ADAS (Advanced Driver Assistance Systems)

- ADAS are systems to help the driver in the driving process.
- The systems inform and warn the driver, provide feedback on driver actions, increase comfort and reduce the workload by actively stabilizing or manoeuvring the car.
- They assist the driver and do not take over the driving task completely, thus the responsibility always remains with the driver.
- ADAS are characterized by all of the following properties: *
 - Support the driver in the driving task
 - Provide active support for lateral and/or longitudinal control with or without warning
 - Detect and evaluate the vehicle environment
 - Use complex signal processing
 - Direct interaction between the driver and the system

* Ref: Code of Practice for the Design and Evaluation of ADAS, Response3

- **Why ADAS?** Traditionally the driver is considered to cause or partially cause of 90% of all accidents often due to a mismatch between driver – vehicle – traffic environment
Examples of ADAS

- Adaptive Cruise Control (ACC)
- Blind Spot Monitoring
- Lane Change Assist
- Rear traffic crossing alert
- and many more.....

- Adaptive light control
- Automatic braking
- Automatic parking
- Collision avoidance systems
- Driver drowsiness detection
- GPS navigation
- Hill descent control
- Intelligent speed adaptation
- Night vision
- Tire pressure monitoring
Common Sensing Technologies for ADAS

- **Ultrasonic** (Parking Assist, Blind Spot Detection)
- **Camera/Video** (Lane Change Assist, Parking Assist)
- **InfraRed (IR)** (Night Vision)
- **Ladar (Laser Detection And Ranging)** / **Lidar (Light Detection And Ranging)** (Speed Detection, Vehicle Identification, Driver Identification)
- **Radar** (Adaptive Cruise Control)
Example of ADAS Sensing in a Vehicle

- Adaptive Cruise Control
- Lane Change Assist
- Blind Spot Detection
- Side Impact
- Pre-Crash
- Advanced Emergency Braking
- Evasive Collision Avoidance
- Adaptive Cruise Control
- Pedestrian
- Stop & Go
- Front Cross Traffic Alert
- Rear Cross Traffic Alert
- Parking Assist
- Side Impact
A typical automotive radar is mounted behind the front grille of a vehicle at a height of less than 1 meter.

The radar emits millimeter waves that are not readily affected by the climate to detect the surrounding conditions.

These devices are employed in advanced cruise control systems, which can actuate a motor vehicle’s accelerator and/or brakes to control its distance separation behind another vehicle.
Automotive radar systems are capable of detecting

- Object and obstacles surrounding the vehicle (Size)
- Their position to the vehicle (Range)
- Their speed relative to the vehicle (Velocity)

There are 4 major frequency bands allocated for radar applications.

- 24.125GHz with a bandwidth of around 200MHz (short/mid-range radar)
- 24GHz with a bandwidth of 5GHz (short/mid-range radar)
- 76-77GHz (narrow-band long range radar)
- 77-81GHz (wideband radar short/mid-range range)
Automotive Radar – 24Ghz ➔ 79GHz Transition

Comparison of sensor performance showing key parameters
Range resolution, Angular resolution, Doppler resolution

Source: CEPT Report 37
Automotive Radar – 24Ghz ➔ 79GHz Transition

Target separation capability

Typ. Long Range Radar Bandwidth

Typ. High Resolution Radar Bandwidth

B = 250 MHz

B = 1500 MHz

Chassis Systems Control

CC/ECR4 Hildebrandt | 09.10.2012 | © Robert Bosch GmbH 2012. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.
Radar Sensor Supply Chain

Chipsets

- Freescale SiGe chipsets
 - Continental uses Freescale SiGe chipsets for Continental demo

1st Tier

- Continental
 - Also supplied 79GHz SiGe proto chips for Continental demo
 - SiGe chip RXN7740 from the RASIC product family for 77GHz LRR model LRR3

OEM’s

- Volkswagen
 - 1x FF Dual Camera System
 - 2x FS/RS MM SRR/MRR @ 24GHz (UWB) for BSD

- Mercedes-Benz Daimler
 - 1x FF Dual Camera System
 - 1x FF MM 77GHz LRR/MRR model ARS300 for ACC / Stop&Go

- Audi
 - 2x FF 77GHz LRR model LRR3 “3rdGen” for ACC / Stop&Go used in Audi A8
 - 2x FS/RS 77GHz MRR (front/rear) for BSD/LCA/RCTA

Multi-Purpose Camera System

- Keysight Technologies
 - 2x PCB Modules
 - RF Module: RF MMIC, Radar-ASIC (Mod Control, Sig Processing)
 - Control Module: System-ASIC, FlexRay Transceiver, CAN Interfaces
Automotive Radar
Example of 77GHz Radar System
Automotive Radar
Example of 77GHz Radar System & Keysight Design and Test Solutions

mmW Signal Generation with simulated signals

- AWG
- PSG
- mmWave Source Module
- TX Antenna
- Radar Target Simulator

mmW Signal Analysis with FMCW modulation

- UXA
- Scope
- mmW Smart Mixer
- RX Antenna
Automotive Radar – Test Challenges

AR Sensor Technology Challenges:

• Frequencies – include 24GHz, plus 77GHz and 79GHz mmW.
• Bandwidth – from 100MHz up to 2GHz BW at mmW.
• Power – need to validate both wanted power levels plus unwanted emissions against ETSI conformance specifications (e.g. ETSI EN 302 264 for 79GHz).
• Modulation & Phase Noise – both need to be verified to ensure sensor provides required range, velocity and target identification/separation performance.
• Protocol – ensure communication bus compliance to CAN, CAN-FD, FlexRay, Ethernet (BroadR-Reach) standards.
• Complex real-world environment scenarios, includes multiple moving targets, multi-scattering RCS, unwanted clutter and interference.
Automotive Radar – T&M Solution Enablers

- Protocol Solutions
- RF Network Analysis
- Power Measurement
- RF Simulation Tools
- Signal Generation
- Signal Analysis
 - RF Power
 - Modulation
 - Phase Noise
Automotive Radar – Protocol Solutions

InfiniiVision & Infinium Scopes – Protocol Test Solutions
- Hardware-based protocol triggering and decode:
 - CAN, CAN FD, LIN, SENT, and FlexRay
- Symbolic decode and trigger:
 - CAN-dbc and LIN-ldf
- Eye-diagram mask testing
 - CAN, CAN FD and FlexRay
- Compliance Test solutions (*Infinium Scopes only*)
 - BroadR-Reach (Ethernet), MOST50/150

Key Features:
- Provides on-screen time-correlation link between protocol layer decode and physical layer analog signals
- Fast waveform update rates to capture automotive transients
- Real-time frame and error frame counters/totalizers including bus load
- Multiple bus decode triggering and time-interleaved listing
- Segmented memory acquisition – enables efficient capture of longer interval user specified decoding events
- Differential active probing, and extreme temperature probing

Examples:
- CAN eye-diagram mask test, CAN FD decoding
- CAN-dbc symbolic decode

For more information: www.keysight.com/find/scopes-auto
Automotive Radar – RF Network Analysis

PNA (N522xA) or PNA-X (N524xA) Series
• >67GHz Frequency Extender solution choice of either:
 • Broadband 1mm coax (10MHz-110GHz)
 • Banded waveguide (includes 60-90GHz E-Band)
• 2-port & 4-port solutions
• Optional Built-in Kelvin Bias Tees

Key Features:
• Understand design linear & non-linear behaviors,
• True differential drive, Power leveling,
• S-Parameters:
 • Gain, Return loss, Match, Isolation
• Passive and Active component test applications:
 • Amplifiers, Mixers, Frequency convertors,
 • Antenna test, Materials measurements,
• Pulse measurements,
• Gain & Phase compression, AM-AM, AM-PM,
• Group delay, Noise figure,
• Harmonic distortion (Non-Linear),
• Two-tone, Intermodulation distortion (IMD)

For more information: www.keysight.com/find/pna
Automotive Radar – Power Measurement

E8486A E-Band **
Waveguide Power Sensor

Key Features:
• Precise mmW power measurements with low SWR, mismatch and uncertainty
• Wide dynamic range option
• Frequency range: 60 to 90 GHz
• Power range:
 • Opt 100: -30 to +20 dBm
 • Opt 200: -60 to +20 dBm
• Maximum SWR:
 • Opt 100: <1.06 (>30dB RL)
 • Opt 200: <1.28
• UG-387/U Flange, EIA WR-12
• 50MHz Calibration port

Example A: 2-channel E-Band power measurement using a single dual-channel power meter.

Example B: E-Band mmW source power calibration providing traceability to US National Institute of Standards and Technology (NIST).

** Note: V-Band and W-Band sensors also available.

For more information: www.keysight.com/find/waveguidesensor
Automotive Radar – RF Simulation Tools

SystemVue - W1905EP Radar Model Library

Key Features
1. RF-DSP multi-domain electronic design
2. Antenna and Array antenna model with beamforming (linear & 2D planar)
3. Environment scenarios: moving targets (multi-scatter), clutter, interference
4. Custom DSP algorithm
5. Estimating target range and velocity (remove clutter, interference effects)
6. Advanced measurements & visualizations

Automotive Radar – Signal Generation

M8190A (optional) + PSG + mmW Source Module

- PSG supports up to 80MHz BW at PSG RF output
- PSG + M8190A AWG supports up to 2GHz BW at PSG RF output
- Phase Noise @mmW = PSG RF Phase Noise spec. + 20log(N)

Key Features:
- Download Radar FMCW signals from either:
 - Signal Studio Pulse Builder, SystemVue, Matlab, or other
- Generate ideal reference signals (replace Tx LO/VCO)
- Generate interferer, clutter, jamming test signals (Rx Test)

mmW Signal Generation

** PSG **
E8257D Analog, 67GHz (I/Q Mod not req’d) or E8267D, 44GHz (if I/Q Mod not req’d, 80MHz BW) or E8267D-016 (if I/Q Mod req’d, 2GHz BW)

** mmW Source Module **
E8257DS12 (60 to 90GHz, N=6) or E8257DS10 (75 to 110GHz, N=6)

Note: Could replace M8190A + PSG combination with single UXG wideband chirp signal source as alternative.

For more information: www.keysight.com/find/psg and www.keysight.com/find/m8190a
Automotive Radar – Signal Analysis – RF Power

X-Series Spectrum Analyzers
- PXA supports 160MHz Real-Time BW up to 50GHz
- **UXA** supports 510MHz Real-Time BW up to 26.5GHz
 - Excellent phase noise (-142dBc/Hz at 1GHz, 100kHz offset)
 - Supports both FMT (freq. mask trig.) and TQT (time qualified trig.)

mmW Smart Mixers
- **M1970E** supports 60 to 90GHz E-Band **
 - Excellent low conversion loss (27dB) and calibration accuracy

Key Features:
- Automatic detect mixer model/serial number
- Automatic configuration of mmW frequency & LO harmonic
- Automatic amplitude correction applied through USB plug and play
- Automatic LO level alignments, supporting LO cables up to 3m (10dB insertion loss)

Key Measurements:
- RF Power
- Spectrum Emissions
- Phase Noise
- Frequency Stability
- Modulation Quality

mmW Signal Analysis

Note: V-Band and W-Band smart mixers also available.

For more information: www.keysight.com/find/uxa and www.keysight.com/find/smartmixers
Automotive Radar – Signal Analysis - Modulation

89601B VSA Option BHP - FMCW Radar Analysis

Key Features:

- Supports over 40 Keysight measurement platforms including
 - X-Series Signal Analyzers
 - Infiniium Oscilloscopes
 - Modular digitizers

- Solution is **bandwidth scalable**

- Signal **Record / Playback** support

- Visualize dynamic signal time and frequency characteristics using displays:
 - RF Spectrum
 - Spectrogram
 - Persistence
 - Cumulative History

For more information: www.keysight.com/find/89601B and 89601B Opt BHP - FMCW Radar Analysis
Automotive Radar – Signal Analysis - Modulation

89601B VSA Option BHP - FMCW Radar Analysis

Key Features:

- Automatically synchronize to FMCW radar signals comprised of multi-chirp linear FM modulation patterns.

- Synchronized Amplitude & Phase ➔

- Synchronized Frequency (FM) Modulation ➔

- FMCW Region Tabular metrics ➔
 - Power and Time
 - Best-Fit FM
 - Phase Error
 - FM Error
 - FM Slope Error

For more information: www.keysight.com/find/89601B and 89601B Opt BHP - FMCW Radar Analysis
Automotive Radar – Signal Analysis – BW Scalable

Use Case #1

Scope** (> 2GHz BW)

or

DUT

Divide by “N” Test Output
(Typ. Test RF 2 - 27GHz)

Use Case #2

Scope** (> 1GHz BW using SA IF Out) +

DUT

PLL VCO Output
(Typ. Test RF 20 - 41GHz)

Use Case #3

X-Series SA + Smart Mixer (300MHz BW) +

DUT

mmW Output
(Typ. Test RF = 76 - 81GHz)

Use Case #4

Scope** (> 2GHz BW) +

Custom Downconverter

DUT

mmW Output
(Typ. Test RF = 76 - 81GHz)

** Note: Example is 10-bit Series Scope, but 89601B VSA supports all Infiniium Oscilloscopes up to 63GHz BW maximum.

For more information: www.keysight.com/find/s-series and www.keysight.com/find/uxa
Automotive Radar – Signal Analysis – Phase Noise

E5052B Signal Source Analyzer
Key Features:
1. **Phase Noise** and **AM Noise**
 - Simple, fast and accurate
 - Uses cross-correlation (noise-cancelling) technique along with heterodyne digital discriminator

2. **Frequency / Phase / Power Transients**
 - Dual heterodyne and divided path analysis
 - Narrowband path (up to 80MHz BW)
 - Wideband path (up to 4.8GHz BW, band dependent, up to 500 MHz BW when using E5053A input port)

Measure Phase Noise directly at mmW using:
 - E5052B SSA + E5053A Microwave Downconvertor
 …plus 11970W 75 to 110 GHz Harmonic Mixers

For more information: www.keysight.com/find/ssa
Automotive Radar Component Testing
Analog / Microwave Component Test
Automotive Radar Component Testing

4-Port 13.5/26.5 GHz PNA-X Options 419, 423, 029

Noise source used for calibration only

RF jumpers

receivers

Mechanical switch

Pulse generators

Source 1

Source 2

Signal combiner

Pulse modulator

Pulse modulator

LO

To receivers

Source 1

OUT 1

OUT 2

Source 2

OUT 1

OUT 2

LO

To receivers

Test port 1

Test port 3

Test port 4

Test port 2

Impedance tuner for noise figure measurements

+28V

R1

R3

R2

R4

J1

J2

J3

J4

J7

J8

J9

J10

J11

A

B

C

D

Impedance tuner for noise figure measurements

10 MHz

3 GHz

3 – 13.5/26.5 GHz

Keysight Technologies
Automotive Radar Component Testing

Millimeter Wave Component Testing

Millimeter wave Devices

- Passive Devices
- Amplifiers
- Mixers
- Semiconductors
- Antennas
- Materials

Millimeter wave Measurements

- S-Parameters (N-Port, Differential)
- Absolute power
- Gain compression
- Pulsed measurements
- Material parameters
- Time domain

[Diagram showing analog and millimeter sections with components such as DAC, AMP, ADC, VCO, Xn, LNA, LPF, etc.]

Page 27
Automotive Radar Component Testing
Single Connection Multiple Measurements

Ch1: Standard S-parameters. 201 pts, 2-port cal, 1 kHz IFBW. **500 ms**
Ch6: Pulse profile (S21), 401 pts, 2-port cal, using internal pulse gens/mods, 5 MHz IFBW. **33 ms**

Ch2: Two-tone IMD using internal broadband combiner and two internal sources. 101 pts, src/rcvr cal, 100 Hz IFBW. **950 ms**

Ch3: Fastest & most accurate amplifier gain compression. 101 pts, src/rcvr/mismatch cal correction. 10 kHz IFBW. **450 ms**

Ch4: Fastest and most accurate amplifier noise figure measurement. 101 pts, source-corrected NF cal, 1 kHz IFBW. **2700 ms**

5 channel setup with full calibration. No need to connect or disconnect between measurements. S-parameters + pulse profile + IMD + gain compression + noise figure. **Total time: 5.1 s**
Previous ATE system took >186 s with less accuracy. **PNA-X result: more accurate and ~ 37x faster**
Automotive Radar Component testing
Application Example for 77 GHz Automotive Component test

80 GHz Power Amplifier

80 GHz Mixer
Basic mm-wave System Architecture

- Network Analyzer is the measurement engine.
- **Optional** Test Set Controller interfaces to modules
- THz Frequency Extenders provide frequency conversion and signal coupling
Millimeter Wave Configurations

• Two Basic families Broadband or Banded Waveguide solutions

4-port Broadband

4-port Banded
Banded Waveguide System

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bands</td>
<td>cover 50 GHz to 1THz</td>
</tr>
<tr>
<td>Options</td>
<td>2-port & 4-port options with a Test Set Controller</td>
</tr>
<tr>
<td>Options</td>
<td>2-port Option without a Test Set Controller</td>
</tr>
<tr>
<td>Interface</td>
<td>DUT Interface = waveguide</td>
</tr>
</tbody>
</table>
| Features | • Source Power leveling up to 1.1 THz
• True differential Measurements
• Integrated Pulse measurements
• Mixer measurements
• Spectral Power Measurements |

Configuration With Test Set Controller

Configuration Without Test Set Controller (Direct Connect)
mm-wave Measurements

mm-wave Devices

- Passives
- Amplifiers
- Mixers
- Semiconductors
- Antennas
- Materials

mm-wave Measurements

- S-Parameters (N-port, Differential, Translated)
- Absolute power
- Gain compression
- Pulsed measurements
- Material parameters
- Time domain
What is Radar Target Simulator (RTS)?

RTS (Distance, RCS, Speed)

Equivalent
Radar Target Simulator Functionality

The DUT radar signal is

- a) Received
- b) Manipulated
- c) Retransmitted

RTS will apply

<table>
<thead>
<tr>
<th>RTS will apply</th>
<th>To simulate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Delay</td>
<td>Distance</td>
</tr>
<tr>
<td>Frequency Shift</td>
<td>Radial Velocity</td>
</tr>
<tr>
<td>Attenuation</td>
<td>Object Size (RCS)</td>
</tr>
</tbody>
</table>

Radar (DUT) ➔ Radar Target Simulator (Distance, RCS, Speed) ➔ Radar (DUT)
Radar Target Simulator Test Concept

Vertical Setup

Horizontal Setup
Keysight E8707A Radar Target Simulator
Scalable system configurations

<table>
<thead>
<tr>
<th>Description</th>
<th>Fixed Range</th>
<th>+ Full Range</th>
<th>+ Doppler</th>
<th>+ DUT Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Features</td>
<td>• 76-77GHz</td>
<td>• 10 – 450m with 1m resolution</td>
<td>• +/- 360 Km/h with 0.1Km/h resolution</td>
<td>• Enable DUT Tx power monitoring</td>
</tr>
<tr>
<td></td>
<td>• 1 or 2 Horns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 75 & 150m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1GHz BW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• RCS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hardware Configuration
- Base System
- Base system internal HW upgrade
- N5183A MXG
- U2042XA Power Meter

Support & Warranty
- 3 Years Keysight Factory warranty with calibration certificate valid for 1 year
- Optional 1 or 3 years contract
 - Return to Keysight or onsite calibration
 - Spare onsite swap

Keysight Confidential
Keysight Radar Target Simulator
User Interface and controlling software

Bench Environment

Simple and Ease of use GUI

Manufacturing Environment

SW API supporting C++ & C# environment

Connection via LAN

C++ & C# programming

Keysight API

Radar Target Simulator
Keysight Radar Target Simulator Product Summary

Key Product Specifications and Features

<table>
<thead>
<tr>
<th>Specification</th>
<th>Specification Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range</td>
<td>76 – 77 GHz</td>
</tr>
<tr>
<td>Horn Antenna Configuration</td>
<td>Single and Dual Horns Antenna</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>1 GHz</td>
</tr>
<tr>
<td>Min Target Distance</td>
<td>10m</td>
</tr>
<tr>
<td>Simulated Range</td>
<td>10m to 450m with 1m step</td>
</tr>
<tr>
<td>Doppler Shift Range</td>
<td>+/- 360km/h with 0.1km/h step</td>
</tr>
<tr>
<td>Receive Transmit Gain Control</td>
<td>-63.5dB with 0.5dB step</td>
</tr>
<tr>
<td>Dimension (H x W x D)</td>
<td>222 x 425 x 574 (mm)</td>
</tr>
</tbody>
</table>
Keysight Radar Target Simulator Product Summary

- Wide simulated range coverage with **minimum distance starting from 10m**
- **1GHz** Bandwidth support wide range of module without the need of changing center frequency
- **Scalable** for both Manufacturing and R&D test
 - Basic – Fixed range simulation (ie 75m & 150m)
 - Comprehensive – Full range, RCS, Doppler & DUT Transmit Power
- **Reliable, accurate** and **repeatable** performance
- **Ease of use GUI** and **API** where all parameters controllable in **C++ & C# programming environment**
- Designed, manufactured and **supported by single company Keysight Technologies**
- **World wide support**, calibration and warranty
 - Default 3 years factory warranty
 - Optional upgrade with onsite calibration, onsite spare and 7x24 support packages
- CE and Safety certified
Automotive Radar
Measurement Example

- E-band Signal Generation & Analysis
- 77GHz PCB Array Antenna
Car PCB Performance Verification in Taiwan
Keysight Automotive Radar Solutions
“Over Your Design and Test Lifecycle”

From Design Simulation, Wide Bandwidth mmWave Signal Generation & Analysis, Precise Power and Component Measurements to Manufacturing Tests
Automotive Radar
Radar Design and Test Software Platforms

Electronic Design Automation Software
- SystemVue
- EMPro
- Advanced Design System
- GoldenGate
- IC-CAP
- HeatWave
- Genesys

PC & Embedded Application Software
- Signal Studio
- 89600 VSA

Programming Environments

Productivity Software

Keysight Software leveraging instrument capabilities
Thank You