Agenda

Introduction: Why Use a Logic Analyzer and Oscilloscope?

Case Study 1: Linear FM “Chirp” Radar Example
Insertion of Baseband Test Points in the FPGA
FPGA Digital Capture with Logic Analyzer / VSA
Analog IF Capture with Oscilloscope / VSA

Case Study 2: Same Hardware Reconfigured as OFDMA Comms System
Introduction: Why use a logic analyzer and oscilloscope?

With reconfigurable radar designs, whole section is digital and must probe internal to an FPGA

Logic analyzer has capability to automate digital signal capture

Logic analyzer also has ability to export captured data into VSA for analysis

Scope can capture analog IF for export to VSA as well

Allows baseband and RF teams to have common measurement framework
Agenda

Introduction: Why Use a Logic Analyzer and Oscilloscope?

Case Study 1: Linear FM “Chirp” Radar Example
- Insertion of Baseband Test Points in the FPGA
- FPGA Digital Capture with Logic Analyzer / VSA
- Analog IF Capture with Oscilloscope / VSA

Case Study 2: Same Hardware Reconfigured as OFDMA Comms System
Radar Digital Processor comprised of FPGAs and DSPs

May be configurable for different functions

Consider a case where it is configured as a linear FM (LFM) chirped radar

Will show common test methodology for FPGA testing and RF testing
First Case Study: FPGA LFM Chirp Radar Waveform Design
Simulation Results in System Vue

Expected spectral content

Linear frequency modulation across the pulse profile

Pulse width definition
Integrated, Tops-Down Comms ESL Flow

Cross-domain model-based design: RF, Comms, and C++/HDL

- Algorithms: C++, .m
- Handwritten HDL Custom IP
- Target-neutral HDL Generation
- System design RF Architecture Baseband design PHY Reference

- Dataflow Simulation
 - .m/C++ ALGORITHM
 - HDL Simulator(s)
 - SIMULATED H/W

- FPGA Target
 - .bit Files
 - FPGA Synthesis
 - REAL HARDWARE

- Measurement, Analysis
 - FlexDCA software
 - VSA software
 - Infinium Scope
 - MXA / PXA
 - Logic Analyzer
 - MXG / ESG
 - Wideband arbs
 - RF sensor

DIGITAL BITS, or MODULATED CARRIERS
Integrated, Tops-Down Comms ESL Flow

Cross-domain model-based design: RF, Comms, and C++/HDL

- Handwritten HDL
- Custom IP
- Algorithms C++, .m
- System design
- RF Architecture
- Baseband design
- PHY Reference

Target-neutral HDL Generation

- Dataflow Simulation
 - .m/C++ ALGORITHM
 - HDL Simulator(s)

- SIMULATED H/W

- FPGA Synthesis

- REAL HARDWARE

- FPGA Target

MEASUREMENT, ANALYSIS

- FlexDCA software
- VSA software
- Infinium Scope
- MXA / PXA
- Logic Analyzer
- MXG / ESG
- Wideband arbs
- RF sensor

DIGITAL BITS, or MODULATED CARRIERS
Agenda

Introduction: Why Use a Logic Analyzer and Oscilloscope?
Case Study 1: Linear FM “Chirp” Radar Example

Insertion of Baseband Test Points in the FPGA

FPGA Digital Capture with Logic Analyzer / VSA
Analog IF Capture with Oscilloscope / VSA

Case Study 2: Same Hardware Reconfigured as OFDMA Comms System
FPGA LFM Radar Test Setup

16822A logic analyzer with VSA (L)

MSO9404A oscilloscope with VSA (R)
Use Dynamic Probe to Probe FPGA Waveform at Various Stages of the FPGA Implementation
Probe Digital IF in FPGA with Dynamic Probe

Use Dynamic Probe to Probe FPGA Waveform at Various Stages of the FPGA Implementation
FPGA Measurement Core Configuration

- State or timing core
- Core width
- Assign FPGA physical pins to bring out signals
- Option for time division multiplexing (2x)
- Single ended or differential output
Xilinx Plan Ahead to Assist in Net Search

- Get graphical view of FPGA implementation
- Helpful to trace signals for probing
- Here can see the bus with the digital IF signal
Assign FPGA Nets to Each Signal Bank

- Go into design hierarchy
- Select nets of interest
- “Make Connections” assigns nets to signal banks
- Also select clock signal
Agenda

Introduction: Why Use a Logic Analyzer and Oscilloscope?
Case Study 1: Linear FM “Chirp” Radar Example
Insertion of Baseband Test Points in the FPGA
FPGA Digital Capture with Logic Analyzer / VSA
Analog IF Capture with Oscilloscope / VSA
Case Study 2: Same Hardware Reconfigured as OFDMA Comms System
Agenda

- Introduction: Why Use a Logic Analyzer and Oscilloscope?
- Case Study 1: Linear FM “Chirp” Radar Example
- Insertion of Baseband Test Points in the FPGA
- FPGA Digital Capture with Logic Analyzer / VSA
- **Analog IF Capture with Oscilloscope / VSA**
- Case Study 2: Same Hardware Reconfigured as OFDMA Comms System
Capture FPGA LFM Radar Analog IF with Oscilloscope
Analyze LFM Radar Analog IF with VSA Software on Oscilloscope
Switch to Signal Bank 1 for Filtered Digital I/Q

The Logic Analyzer interface allows the user to switch the FPGA MUX to move the probe points.

Digital IF/FPGA

$I(t) \cdot \cos(W_c(t))$

$Q(t) \cdot \sin(W_c(t))$
Capture FPGA LFM Radar Digital I/Q Waveform with Logic Analyzer on "Bank 1"
Agenda

• Introduction: Why Use a Logic Analyzer and Oscilloscope?
• Case Study 1: Linear FM “Chirp” Radar Example
• Insertion of Baseband Test Points in the FPGA
• FPGA Digital Capture with Logic Analyzer / VSA
• Analog IF Capture with Oscilloscope / VSA
• Case Study 2: Same Hardware Reconfigured as OFDMA Comms System
Second Case Study: FPGA Comms OFDMA Design
Second Case Study:
FPGA OFDMA Comms Test Setup

16822A logic analyzer (L)
MSO9404A oscilloscope (R)
Logic Analyzer FPGA Dynamic Probe Test Results

EVM = ~0.3%

EVM = ~0.6%

EVM = ~1.2%

Digital IF/FPGA

Anticipate Accelerate Achieve

Agilent Technologies © 2012
Unfiltered I/Q fed to VSA
Probe Filtered I and Q Data with Dynamic Probe

Use Dynamic Probe to Probe FPGA Waveform at Various Stages of the FPGA Implementation
Filtered I/Q fed to VSA
Summary

Re-configurable mixed-signal designs can present system-level integration testing challenges

VSA software used with simulation, logic analyzer, digital oscilloscope or PXA signal analyzer helps to isolate and debug issues

Logic analyzer dynamic probe adds another level of FPGA debugging capability to isolate digital baseband problems
Helpful resources

16800 series logic analyzers: www.agilent.com/find/logic

Agilent Radar Measurements Application Note:

Mixed-Signal Integration Challenges in Complex Radar Systems

Infiniium 9000 series oscilloscopes: www.agilent.com/find/9000

89600 VSA software: www.agilent.com/find/VSA

System Vue: www.agilent.com/find/SystemVue

N9030A PXA: www.agilent.com/find/pxa

FPGA-based radar debug video:
www.youtube.com/playlist?list=PLC34AC0190671F9F7

FPGA-based LTE debug video: www.agilent.com/find/LTE