Keysight N6466A/N6466B MOST Electrical Compliance Test Application

Programmer's Reference

Notices

© Keysight Technologies, Inc. 2005-2015

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Keysight Technologies, Inc. as governed by United States and international copyright laws.

Manual Part Number

Version 02.01.0000

Ed ition

February 23, 2015

Available in electronic format only

Published by: Keysight Technologies, Inc. 1900 Garden of the Gods Road Colorado Springs, CO 80907 USA

Warranty

The material contained in this document is provided "as is," and is subject to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Keysight disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Keysight shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Keysight and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

Technology Licenses

The hard ware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

Restricted Rights Legend

If software is for use in the performance of a U.S. Government prime contract or subcontract, Software is delivered and licensed as "Commercial computer software" as defined in DFAR 252.227-7014 (June 1995), or as a "commercial item" as defined in FAR 2.101(a) or as "Restricted computer software" as defined in FAR 52.227-19 (June 1987) or any equivalent agency regulation or contract clause. Use, duplication or disclosure of Software is subject to Keysight Technologies' standard commercial license terms, and non-DOD Departments and Agencies of the U.S. Government will receive no greater than Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S. Government users will receive no greater than Limited Rights as defined in FAR 52.227-14 (June 1987) or DFAR 252.227-7015 (b)(2) (November 1995), as applicable in any technical data.

Safety Notices

CAUTION

A **CAUTION** notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a **CAU-TION** notice until the indicated conditions are fully understood and met.

WARNING

A WARNING notice denotes a hazard. It calls attention to an operating proced ure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the ind icated conditions are fully understood and met.

In This Book

This book is your guide to programming the Keysight Technologies N6466A/N6466B MOST Electrical Compliance Test Application.

- Chapter 1, "Introduction to Programming," starting on page 7, describes compliance application programming basics.
- Chapter 2, "Configuration Variables and Values," starting on page 11, Chapter 3, "Test Names and IDs," starting on page 15, and Chapter 4, "Instruments," starting on page 19, provide information specific to programming the N6466A/N6466B MOST Electrical Compliance Test Application.
- How to Use This Book Programmers who are new to compliance application programming should read all of the chapters in order. Programmers who are already familiar with this may review chapters 2, 3, and 4 for changes.

Contents

In This Book / 3

1 Introduction to Programming

Remote Programming Toolkit / 8 Licensing / 9

- 2 Configuration Variables and Values
- 3 Test Names and IDs
- 4 Instruments

Index

1 Introduction to Programming

Remote Programming Toolkit / 8 Licensing / 9

This chapter introduces the basics for remote programming a compliance application. The programming commands provide the means of remote control. Basic operations that you can do remotely with a computer and a compliance app running on an oscilloscope include:

- Launching and closing the application.
- Configuring the options.
- Running tests.
- Getting results.
- · Controlling when and were dialogs get displayed
- Saving and loading projects.

You can accomplish other tasks by combining these functions.

1 Introduction to Programming

Remote Programming Toolkit

The majority of remote interface features are common across all the Keysight Technologies, Inc. family of compliance applications. Information on those features is provided in the N5452A Compliance Application Remote Programming Toolkit available for download from Keysight here:

"www.keysight.com/find/scope-apps-sw". The N6466A/N6466B MOST Electrical Compliance Test Application uses Remote Interface Revision 3.40. The help files provided with the toolkit indicate which features are supported in this version.

In the toolkit, various documents refer to "application-specific configuration variables, test information, and instrument information". These are provided in Chapters 2, 3, and 4 of this document, and are also available directly from the application's user interface when the remote interface is enabled (View>Preferences::Remote tab::Show remote interface hints). See the toolkit for more information.

Licensing

To enable programming of compliance applications on your oscilloscope, please visit "www.keysight.com/find/scope-apps" to purchase an N5452A remote programming option license.

1 Introduction to Programming

2 Configuration Variables and Values

The following table contains a description of each of the N6466A/N6466B MOST Electrical Compliance Test Application options that you may query or set remotely using the appropriate remote interface method. The columns contain this information:

- GUI Location Describes which graphical user interface tab contains the control used to change the value.
- Label Describes which graphical user interface control is used to change the value.
- Variable The name to use with the SetConfig method.
- Values The values to use with the SetConfig method.
- Description The purpose or function of the variable.

For example, if the graphical user interface contains this control on the **Set Up** tab:

Enable Advanced Features

then you would expect to see something like this in the table below:

Table 1 Example Configuration Variables and Values

GUI Location	Label	Variable	Values	Description
Set Up	Enable Advanced Features	EnableAdvanced	True, False	Enables a set of optional features.

and you would set the variable remotely using:

```
ARSL syntax
------
arsl -a ipaddress -c "SetConfig 'EnableAdvanced' 'True'"
```



```
C# syntax
-----
remoteAte.SetConfig("EnableAdvanced", "True");
```

Here are the actual configuration variables and values used by this application:

NOTE Some of the values presented in the table below may not be available in certain configurations. Always perform a "test run" of your remote script using the application's graphical user interface to ensure the combinations of values in your program are valid.

```
NOTE
```

The file, ""ConfigInfo.txt"", which may be found in the same directory as this help file, contains all of the information found in the table below in a format suitable for parsing.

Table 2 Configuration Variables and Values

GUI Location	Label	Variable	Values	Description
Confgure	Signal Channel	MOSTCHAN	CHANnel1, CHANnel2, CHANnel3, CHANnel4	The channel connected to the measurement signal. This is used for all live MOST traffic. Select Debug to load waveforms.
Confgure	Signal Memory	MOSTCHANWFM	WMEMory1, WMEMory2, WMEMory3, WMEMory4	The waveform memory that you loaded your MOST signal to be measured.
Confgure	Use Waveform Files	WFMFiles	Y, N	Select Yes to use loaded .wfm files, No to use real time signals
Run Tests	Event	RunEvent	(None), Fail, Margin < N, Pass	Names of events that can be used with the StoreMode=Event or RunUntil RunEventAction options
Run Tests	RunEvent=Margin < N: Minimum required margin %	RunEvent_Margin < N_MinPercent	Any integer in range: 0 <= value <= 100	Specify N using the 'Minimum required margin %' control.
Set Up	Device ID	pcboOverallDeviceID	(Accepts user-defined text)	This option allow user to key in related test details.
Set Up	Speed Grade	DeviceType	MOST150c, MOST150o, MOST50e	This option allow user to select specific speed grade.
Set Up	User Comment	txtExternalInstrumentAddres s	(Accepts user-defined text)	This option allow user to connect external patgen.

GUI Location	Label	Variable	Values	Description
Set Up	User Comment	txtOverallUserComment	(Accepts user-defined text)	This option allow user to key in related test detail.
Set Up	User Description	pcboOverallDeviceDescriptio n	(Accepts user-defined text)	This option allow user to key in test detail.

Table 2 Configuration Variables and Values (continued)

2 Configuration Variables and Values

3 Test Names and IDs

The following table shows the mapping between each test's numeric ID and name. The numeric ID is required by various remote interface methods.

- Name The name of the test as it appears on the user interface **Select Tests** tab.
- Test ID The number to use with the RunTests method.
- Description The description of the test as it appears on the user interface **Select Tests** tab.

For example, if the graphical user interface displays this tree in the **Select Tests** tab:

- All Tests
 - Rise Time
 - Fall Time

then you would expect to see something like this in the table below:

Table 3 Example Test Names and IDs

Name	Test ID	Description
Fall Time	110	Measures clock fall time.
Rise Time	100	Measures clock rise time.

and you would run these tests remotely using:

Here are the actual Test names and IDs used by this application:

NOTE

The file, ""TestInfo.txt"", which may be found in the same directory as this help file, contains all of the information found in the table below in a format suitable for parsing.

Name	TestID	Description
Extinction Ratio	1206	Extinction Ratio at SP2
Eye Mask - AD	2101	Eye Mask at SP1E
Eye Mask - AD	2201	Eye Mask at SP2E
Eye Mask - AD	2300	Eye Mask at SP3E
Eye Mask - AD	2400	Eye Mask at SP4E
Eye Mask - A1H1	101	Eye Mask at SP1
Eye Mask - A1H1	1101	Eye Mask at SP1
Eye Mask - A2E2	1203	Eye Mask at SP2
Eye Mask - A2H2	203	Eye Mask at SP2
Eye Mask - A3E3	1303	Eye Mask at SP2
Eye Mask - A3H3	303	Eye Mask at SP3
Eye Mask - A4H4	401	Eye Mask at SP1
Eye Mask - A4H4	1401	Eye Mask at SP1
Fall time - tf2	201	Fall time at SP2
Fall time - tf2	1201	Fall time at SP2
Fall time - tf3	301	Fall time at SP3
Fall time - tf3	1301	Fall time at SP3
Overshoot AoKo	1204	Overshoot at SP2
Overshoot AoKo	1304	Overshoot at SP2
Rise time - tr2	200	Rise time at SP2
Rise time - tr2	1200	Rise time at SP2
Rise time - tr3	300	Rise time at SP2
Rise time - tr3	1300	Rise time at SP2
Transferred Jitter	2100	Transferred Jitter at SP1E
Transferred Jitter	2200	Transferred Jitter at SP2E
Transferred Jitter - Jtr1	100	Transferred Jitter at SP1
Transferred Jitter - Jtr1	1100	Transferred Jitter at SP1

Table 4Test IDs and Names

Name	TestID	Description
Transferred Jitter - Jtr2	202	Transferred Jitter at SP2
Transferred Jitter - Jtr2	1202	Transferred Jitter at SP2
Transferred Jitter - Jtr3	302	Transferred Jitter at SP3
Transferred Jitter - Jtr3	1302	Transferred Jitter at SP3
Transferred Jitter - Jtr4	400	Transferred Jitter at SP4
Transferred Jitter - Jtr4	1400	Transferred Jitter at SP4
Undershoot AuTu	1205	Undershoot at SP2
Undershoot AuTu	1305	Undershoot at SP2

 Table 4
 Test IDs and Names (continued)

3 Test Names and IDs

4 Instruments

The following table shows the instruments used by this application. The name is required by various remote interface methods.

- Instrument Name The name to use as a parameter in remote interface commands.
- Description The description of the instrument.

For example, if an application uses an oscilloscope and a pulse generator, then you would expect to see something like this in the table below:

Table 5 Example Instrument Information

Name	Description
scope	The primary oscilloscope.
Pulse	The pulse generator used for Gen 2 tests.

and you would be able to remotely control an instrument using:

```
ARSL syntax (replace [description] with actual parameter)
arsl -a ipaddress -c "SendScpiCommandCustom 'Command=[scpi
command];Timeout=100;Instrument=pulsegen'"
arsl -a ipaddress -c "SendScpiQueryCustom 'Command=[scpi
query];Timeout=100;Instrument=pulsegen'"
C# syntax (replace [description] with actual parameter)
SendScpiCommandOptions commandOptions = new SendScpiCommandOptions();
commandOptions.Command = "[scpi command]";
commandOptions.Instrument = "[instrument name]";
commandOptions.Timeout = [timeout];
remoteAte.SendScpiCommand(commandOptions);
SendScpiQueryOptions queryOptions = new SendScpiQueryOptions();
```

```
sendscpigueryOptions queryOptions = new sendscpigueryOptions();
queryOptions.Query = "[scpi query]";
queryOptions.Instrument = "[instrument name]";
```



```
queryOptions.Timeout = [timeout];
remoteAte.SendScpiQuery(queryOptions);
```

Here are the actual instrument names used by this application:

NOTE

The file, ""InstrumentInfo.txt"", which may be found in the same directory as this help file, contains all of the information found in the table below in a format suitable for parsing.

Table 6 Instrument Names

Instrument Name	Description
scope	The primary oscilloscope

Index

С

configuration variables and values, 11

IDs and names of tests, 15 instrument names, 19

L

licensing, 9

Ν

names and IDs of tests, 15 names of instruments, 19 notices, 3

Ρ

programming, introduction to, 7

R

Remote Programming Toolkit, 8

Т

test names and IDs, 15

V

variables and values, configuration, 11

Index