
PathWave
Test Sync Executive 2023B

System Setup Guide

SYSTEM SETUP GUIDE

Table of Contents
System Setup Guide 6

1. Software Install 6

2. Keysight System Synchronization Modules (SSM) 7

2.1. M9032A and M9033A PXIe SSM Overview 7

2.2. M9032A and M9033A Connectivity 9

2.2.1. Front Panel 9

2.2.2. System Sync ports 9

2.2.3. PXIe Backplane DSTAR Connectivity 10

2.3. Inter/Intra-chassis connectivity, Synchronization and Data-Sharing Functionalities 11

3. Configuring a System with SSMs and System Sync Connectivity 13

3.1. Multi-chassis Configuration 13

3.2. Chassis Supported for Multi-Chassis Systems 16

4. Clocking 17

4.1. Clock Types 17

4.1.1. Reference Clock 17

4.1.2. System Clocks 17

4.1.3. Analog Clocks 17

4.1.4. Sample Clocks 18

4.2. System Clock Distribution using SSM and System Sync connectivity 18

4.3. Enabling chassis clock outputs 19

4.4. Overview of Supported Clocking Schemes 20

4.4.1. Clocking schemes without External Analog Clock distribution 21

4.4.2. Clocking schemes with External Analog Clock distribution using M904xA chassis 22

5. Clocking Configurations without External Analog Clock distribution 23

5.1. Single-chassis w/o SSM (Scheme A) 23

5.2. Single/multiple chassis w/SSMs (Scheme B) 25

5.2.1. Configuring the SSM as the System Clock source 26

5.2.2. Configuring the SSM to explicitly use internal OCXO or external reference clock 27

6. Clocking Configurations with External Analog Clock distribution 28

6.1. Chassis options for Analog clock generation and distribution 28

Page 3

6.2. M9046A Front Panel Clocking IO overview 28

6.2.1. M9046A -QS0 Chassis with no HPRCS and no Analog clock splitters 29

6.2.2. M9046A -QS2 Chassis with no HPRCS, with Analog clock splitters 29

6.2.3. M9046A -QS1/3 Chassis with HPRCS and with Analog clock splitters 29

6.3. Single/multiple chassis (M904xA w/o HPRCS) with External Analog clocks and SSMs
(Scheme C) 30

6.3.1. Configuring the M904xA as the system and analog clock source 31

6.3.2. Configuring the M9046A to use the external reference clock 32

6.4. Single/multiple chassis with HPRCS, External Analog clocks and SSMs (Scheme D) 33

6.4.1. Configuring the M9046A + HPRCS as the system and analog clock source 34

6.4.2. Configuring the M9046A + HPRCS to use an external reference clock 35

6.5. Enabling chassis analog clock output 35

6.6. Enabling the External Analog Clock Source for Instruments 36

6.7. Analog clock distribution guidelines 37

6.8. Notes on the selection of the best analog clock source for instruments 39

7. System Initialization 40

7.1. Example of System Initialization and Operation 40

7.1.1. SystemWarm-up and Calibration 40

7.1.2. Normal Operation 44

8. System initialization with TSE Service and Multi-Host support 46

8.1. TSE Service Overview 47

8.1.1. TSE Service Running Modes 47

8.2. KDI Overview 48

8.2.1. KDI Authentication Service (KDIS) 48

8.2.2. KDI Clients 48

8.3. TSE Service and KDI installation 49

8.3.1. TSE Service installation 49

8.3.2. KDI Installation 49

8.3.3. Configure the KDI infrastructure and Authentication Service 51

8.4. TSE Service execution 58

8.4.1. Automatic TSE Service Execution at boot-up with KDI (recommended) 58

8.4.2. Manual TSE Service Execution (without KDI) 59

8.4.3. TSE Service Log output 60

Page 4

8.4.4. Shutting Down TSE Service 62

8.4.5. Additional command line options 62

8.4.6. Checking the state of the TSE Service with a Client Application 63

8.5. Resource IDs for Accessing Remote Resources 67

8.5.1. TSE Resource IDs to access Chassis, SSMs and TSE Service instances 67

8.5.2. KDI Resource ID to open instruments 69

8.5.3. Building the correct Remote Resource ID for multiple access 71

8.5.4. Using remote instruments HVI engines in user application 73

8.5.5. Handling Application Crash and Resource Locking 74

8.6. TSE Service Free-Running Mode 76

8.6.1. TSE Service configuration for Free-Running mode (tse_config.yml) 78

8.6.2. Free-Running mode configuration example 78

8.6.3. User application with TSE Service in Free-Running mode 82

8.7. TSE Service Leader-Follower Mode 85

8.7.1. TSE Service configuration for Leader-Follower 87

8.7.2. TSE Service Leader licensing requirements 88

8.7.3. Leader-Follower mode configuration example 88

8.7.4. User application with TSE Service in Leader-Follower mode 90

9. System Troubleshooting 94

9.1. Troubleshooting tips 94

9.2. Generic troubleshooting procedure 95

9.3. Error messages and troubleshooting guide 95

9.3.1. System Setup Errors 96

9.3.2. Initialization errors 98

9.3.3. Rare SSM errors (preceded by the chassis number the SSM is in, the failing function
call and the HVI and FW versions) 102

9.4. Frequently Asked Questions (FAQs) 102

10. How to Use HVI Logs to Report an Issue 104

10.1. Logger Configuration 105

10.2. .env Configuration File 106

10.3. Logger Extended mode Supported Instruments 106

10.4. Recommended Logger settings for contacting support 107

Page 5

System Setup Guide
This guide describes how to set up a single or multi-chassis system using Keysight PXIe Chassis and
PXIe System Synchronization Modules. It also describes how to set a reference clock and how to con-
figure everything in your software code by using the TSE API delivered by PathWave Test Sync Exec-
utive.

1. Software Install
For your setup to function correctly, you must ensure all the relevant instrument drivers and software
components are installed in your system. This includes:

l PathWave Test Sync Executive.

l Chassis drivers and firmware.

l Instruments drivers and firmware.

l System Synchronization Modules (SSM) drivers and firmware, if present.

l High Performance Reference Clock Source (HPCRS) option drivers, if present.

If you intend to use more than 6 chassis or require remote application execution, you also require the
PathWave Test Sync Executive options:

l TSE Service.

l Keysight Distributed Infrastructure (KDI).

The full list of instruments supported by PathWave Test Sync Executive along with links to driver
download pages is located at Instrument and Chassis Software and Firmware Requirements for
KS2201A.

For full installation instructions see the relevant documentation for each component.

Find us at www.keysight.com Page 6

System Setup Guide 1. Software Install

https://www.keysight.com/find/ks2201a-firmware-version-requirements
https://www.keysight.com/find/ks2201a-firmware-version-requirements

2. Keysight System Synchronization Modules (SSM)
KS2201A PathWave Test Sync Executive includes multi-chassis topologies that use the Keysight
M9032A/M9033A PXIe System Synch ronization Modules (SSMs). The previous means of
interconnecting multiple PXI chassis using M9031A modules was discontinued starting from the
KS2201A 2022 release. Compared to the discontinued M9031A module, the SSM has a much wider
range of functions including:

l Distribution of a precise reference clock.

l Management of Fast Data Sharing (FDS).

l Chassis interconnectivity.

l Synchronization of all the PXI instruments in the multi-chassis.

2.1. M9032A and M9033A PXIe SSM Overview
The M9032A/M9033A are PXIe System Synchronization Modules (SSM). These include an onboard
high-quality 10MHz Oven Controlled Crystal Oscillator (OCXO) to achieve a very precise
synchronization among various measurement instruments distributed across different chassis. The
M9032A/M9033A System Synchronization Module functionalities can only be successfully deployed
on chassis compliant with the PXI-Express (PXIe) standard. The SSMmust be inserted in the timing
slot of the PXIe chassis.

Keysight PXIe System Synchronization Module is available in two form factors, which only differ in
their connectivity capabilities:

l M9032A is a one-slot PXIe System Synchronization Module with 1 System Sync Upstream and 1
System Sync Downstream ports.

l M9033A is a two-slot PXIe System Synchronization Module with 1 System Sync Upstream and 4
System Sync Downstream ports.

For further information about these SSMs including detailed performance specifications, see the
M9032A/M9033A User's Guide, available at Keysight PXI Products.

Find us at www.keysight.com Page 7

System Setup Guide 2. Keysight System Synchronization Modules (SSM)

http://www.keysight.com/find/pxi

The following image shows the physical M9032A and M9033A SSMs:

Find us at www.keysight.com Page 8

System Setup Guide 2. Keysight System Synchronization Modules (SSM)

2.2. M9032A and M9033A Connectivity

2.2.1. Front Panel

The M9032A and M9033A Front Panel contains various connectors that can be used for both multi-
chassis interconnection and configuration of the reference clock source.

Front Panel Sub Miniature Push-on (SMP) IOs

Front Panel (FP) SMP connectors are:

SClk/Ref Out:

Outputs a copy of the system clock or a reference clock signal.

STrig/Trig IO:

Receives an arbitrary trigger signal.

SClk/Ref In:

Receives the reference clock signal.

PPS/Time Ref:

Receives a Pulse Per Second (PPS) signal.

The front panel SMP connectors can be used to share input and output reference clocks.

2.2.2. System Sync ports

System Sync ports use PCIe Optical Copper Link (OCuLink) connectors. System Sync ports are used
for chassis interconnection and synchronization in the multi-chassis system. The signals in the
System Sync include:

l Clocking (System Sync only).

l Triggering.

l Data.

The different SSMmodels have the following front panel System Sync ports:

The M9032A has 2 System Sync ports:

l 1 System Sync Upstream.

l 1 System Sync Downstream.

The M9033A has 5 System Sync ports:

Find us at www.keysight.com Page 9

System Setup Guide 2. Keysight System Synchronization Modules (SSM)

l 1 System Sync Upstream.

l 4 System Sync Downstream.

Each System Sync Downstream port can connect to the System Sync Upstream port of another SSM
placed in a different chassis. For more information, see the section below about Inter/Intra-chassis
Connectivity.

2.2.3. PXIe Backplane DSTAR Connectivity

The M9032A and M9033A are placed in the Timing Slot of a PXIe chassis which enables them to
support the DSTAR connectivity built into the chassis.

DSTARA/B/C are multi-instrument point to point connections inside a chassis. DSTARA is used to
carry the clock signal. DSTARB and DSTARC carry trigger or data signals.

Find us at www.keysight.com Page 10

System Setup Guide 2. Keysight System Synchronization Modules (SSM)

2.3. Inter/Intra-chassis connectivity, Synchronization and Data-Sharing
Functionalities
An SSM can enable both multi-chassis and multi-instrument interconnections. With these
connections, SSMs enable synchronization and data sharing across all the instruments in a multi-
chassis system.

l Multi-chassis interconnections are made with System Sync connections using their capability to
interconnect two SSMs together through their System Sync Downstream/Upstream ports.

l Intra-chassis, multi-instrument interconnections are made with PXIe DSTARA/B/C connections.
The SSM can share the precise reference clock over the DSTARA signal.

The following diagram shows a 3 chassis system connected with System Sync cables and
DSTARA/B/C signals in each chassis:

Data can be shared across System Sync and DSTAR connections in several different ways:

l The reference clock can be shared between two interconnected SSMs using the System Sync
connection between System Sync Downstream/Upstream ports.

Find us at www.keysight.com Page 11

System Setup Guide 2. Keysight System Synchronization Modules (SSM)

l The System Sync connection can share the signals sent over the PXI_TRIG[0:7] trigger buses, from
one SSM to the next. This enables the SSMs to share PXI sync resources used by PathWave Test
Sync Executive for the Hard Virtual Instrument (HVI) across the different chassis.

l System Sync connections can route data shared using Fast Data Sharing (FDS) between PXIe
instruments.

l The SSM can send the data between two modules located in the same chassis using the
DSTARB/C signals.

l Data can be sent through the System Sync connections to route it to instruments located in a
different chassis.

Find us at www.keysight.com Page 12

System Setup Guide 2. Keysight System Synchronization Modules (SSM)

3. Configuring a System with SSMs and System Sync Connectivity

3.1. Multi-chassis Configuration
In a multi-chassis system connected with Keysight PXIe System Synchronization Modules, you must
include one SSM in each chassis that is part of the system. Each SSMmust be inserted in the timing
slot of your chassis. This is typically slot 10 in Keysight 18-slot chassis, but it can be a different slot
number in different chassis models. The SSMs are connected to each other with System Sync cables.

One SSM is automatically chosen as a leader and it is used to synchronize all the instruments in the
multi-chassis system. The SSM chosen as leader is the SSM that has no incoming connection to its
System Sync Upstream port. The leader SSM distributes a replica of the reference clock signal to the
SSMs located in the other chassis. It does this through point-to-point connections between System
Sync Downstream/Upstream ports. In the example multi-chassis system shown in the following
diagram, the leader SSM is in Chassis 1.

A multi-chassis PXIe system may be configured to use many different reference options. For a list of
those options and descriptions of how to configure them, see the section Clocking in this document.
For one of those reference options, an SSM is chosen as a leader and uses its internal Oven
Controlled Crystal Oscillator (OCXO) clock to synchronize all the instruments included in the multi-
chassis system.

NOTE A Multi-chassis system based on the older M9031A modules required an external
reference clock generator to distribute the precise common 10 MHz reference clock
signal across different chassis. In the multi-chassis topology delivered by PathWave
Test Sync Executive, the SSM assumes the function of the reference clock signal
generator/distributor, by sharing a reference clock generated by an internal PLL.
This PLL can be fed by different sources (as explained later in this document)
including the OCXO inside the SSM, which generates a 10 MHz sine wave. An
external 10 or 100 MHz reference signal can still be connected to the SSM SClk /
Ref Input port, to sync it together with other clusters.

Find us at www.keysight.com Page 13

System Setup Guide 3. Configuring a System with SSMs and System Sync Con-
nectivity

The following diagram shows an example of a 6 chassis system connected with SSMs. In this system
an M9033A SSM in chassis 1 distributes the reference clock to four M9032A SSMs located in each of
the other chassis. The SSM in chassis 5 also forwards the clock to a sixth chassis.

Find us at www.keysight.com Page 14

System Setup Guide 3. Configuring a System with SSMs and System Sync Con-
nectivity

This following code shows how to use the HVI Python API to define and use the SSMs in the multi-
chassis system shown in the diagram. Each System Sync Downstream port connects to the System
Sync Upstream port of another System Sync Module in a different chassis.

The first step is to define the SSMs placed in each of the chassis during the System Definition phase.

Create SystemDefinition object
my_system = kthvi.SystemDefinition("MySystem")
#
Define System Sync Modules
resource_id_ssm_1 = 'PXI0::CHASSIS1::SLOT10::INSTR'
resource_id_ssm_2 = 'PXI0::CHASSIS2::SLOT10::INSTR'
resource_id_ssm_3 = 'PXI0::CHASSIS3::SLOT10::INSTR'
resource_id_ssm_4 = 'PXI0::CHASSIS4::SLOT10::INSTR'
resource_id_ssm_5 = 'PXI0::CHASSIS5::SLOT10::INSTR'
resource_id_ssm_6 = 'PXI0::CHASSIS6::SLOT10::INSTR'
#
In the options, SSMs are set to be simulated with Simulate=true and there are a number of parameters.
For the hardware SSM instruments, set options to an empty string.
options1 = "Simulate=true,DriverSetup=Model=M9033A"
options2 = "Simulate=true,DriverSetup=Model=M9032A"
options3 = "Simulate=true,DriverSetup=Model=M9032A"
options4 = "Simulate=true,DriverSetup=Model=M9032A"
options5 = "Simulate=true,DriverSetup=Model=M9032A"
options6 = "Simulate=true,DriverSetup=Model=M9032A"
#
sync_module_1 = my_system.interconnects.add_sync_module(resource_id_ssm_1, options1)
sync_module_2 = my_system.interconnects.add_sync_module(resource_id_ssm_2, options2)
sync_module_3 = my_system.interconnects.add_sync_module(resource_id_ssm_3, options3)
sync_module_4 = my_system.interconnects.add_sync_module(resource_id_ssm_4, options4)
sync_module_5 = my_system.interconnects.add_sync_module(resource_id_ssm_5, options5)
sync_module_6 = my_system.interconnects.add_sync_module(resource_id_ssm_6, options6)

NOTE In the HVI System Definition phase, the SSMs are added to the interconnects
collection by using their resource ID and options. Same as for the chassis, it is not
necessary to open objects representing the SSMs that are included in the multi-
chassis system.

Find us at www.keysight.com Page 15

System Setup Guide 3. Configuring a System with SSMs and System Sync Con-
nectivity

The next step is to define the interconnections among the System Sync Downstream/Upstream ports
of each pair of SSMs. The SSM System Sync ports can only be connected Downstream to Upstream.

Define connections among System Sync connectors of the SSMs
#
Connect SSM 1 to SSM 2
ssm1_downstream_sync1 = sync_module_1.connectivity.systemsync_downstream[0]
ssm2_upstream_sync = sync_module_2.connectivity.systemsync_upstream[0]
ssm1_downstream_sync1.set_connection(ssm2_upstream_sync)
#
Connect SSM 1 to SSM 3
ssm1_downstream_sync2 = sync_module_1.connectivity.systemsync_downstream[1]
ssm3_upstream_sync = sync_module_3.connectivity.systemsync_upstream[0]
ssm1_downstream_sync2.set_connection(ssm3_upstream_sync)
#
Connect SSM 1 to SSM 4
ssm1_downstream_sync3 = sync_module_1.connectivity.systemsync_downstream[2]
ssm4_upstream_sync = sync_module_4.connectivity.systemsync_upstream[0]
ssm1_downstream_sync3.set_connection(ssm4_upstream_sync)
#
Connect SSM 1 to SSM 5
ssm1_downstream_sync4 = sync_module_1.connectivity.systemsync_downstream[3]
ssm5_upstream_sync = sync_module_5.connectivity.systemsync_upstream[0]
ssm1_downstream_sync4.set_connection(ssm5_upstream_sync)
#
Connect SSM 5 to SSM 6
ssm5_downstream_sync = sync_module_5.connectivity.systemsync_downstream[0]
ssm6_upstream_sync = sync_module_6.connectivity.systemsync_upstream[0]
ssm5_downstream_sync.set_connection(ssm6_upstream_sync)

3.2. Chassis Supported for Multi-Chassis Systems
The following Keysight chassis models are supported:

l M9018B

l M9019A

l M9046A

Software and firmware version requirements are listed on-line here: Chassis Software and Firmware
Requirements for KS2201A .

NOTE If you mix different chassis models in your multi-chassis setup, you may observe
some skew across the different chassis and different performance depending on the
different chassis characteristics.

Non Keysight chassis are not supported for multi-chassis systems.

Find us at www.keysight.com Page 16

System Setup Guide 3. Configuring a System with SSMs and System Sync Con-
nectivity

https://www.keysight.com/find/ks2201a-firmware-version-requirements
https://www.keysight.com/find/ks2201a-firmware-version-requirements

4. Clocking

4.1. Clock Types
In a single or multi-chassis system there are 4 types of clocks used for synchronization and
instrument-related tasks:

l Reference clock.

l System clocks.

l Analog clocks.

l Sample clocks.

All these clocks are synchronous with one another, but are used for different purposes and can be
configured in different ways trading off performance and complexity/cost.

4.1.1. Reference Clock

The Reference clock used as reference for generation of other clocks, it determines the absolute
frequency and lowest-frequency offset phase noise performance of the analog instrumentation’s
inputs and outputs. That is because all of the other clocks are phase-locked to the Reference Clock. A
PXIe system can either use its own internal reference clock or phase-lock to an external reference
clock. It can also provide external reference clock outputs for other instrumentation to phase-lock to.

4.1.2. System Clocks

The relevant clocks that drive the internal logic of individual instruments. These include clocks
automatically reported to HVI and clocks users reports explicitly using the TSE API. The System
clocks synchronize all the digital operation of all instruments and the PXIe platform. These clocks are
derived from the Reference Clock and are used by, for example, the PathWave FPGAs Sandbox logic,
the HVI Engine core clock, Fast Data Sharing and other digital capabilities in the instruments.
Basically, a system clock is clock that is neither the reference clock nor an analog clock.

4.1.3. Analog Clocks

Clock responsible for generating the analogue signals in an instrument, the analog signal
specifications such as phase noise, depend on the specs of this clock. The Analog Clocks are
intermediate frequency clocks from which the instrument's Sample Clocks are derived. Like the
Sample clocks, the Analog Clocks affect the overall phase noise performance and skew drift of the
instrument analog inputs and outputs. In the simplest clock configurations, each peripheral module
generates it's own independent Analog Clock. In the highest fidelity clock configuration, a single
common Analog clock is generated by the High Performance Reference Clock Source (HPRCS) and is
distributed to all the individual peripheral modules though external cables and power dividers.

Find us at www.keysight.com Page 17

System Setup Guide 4. Clocking

4.1.4. Sample Clocks

The instrument's ADCs and DACs that digitize analog input signals and generate analog output
signals are clocked by their own internal Sample Clocks. The various types of peripheral modules use
different sample clock frequencies even though they are ultimately derived from the same Reference
clock. These sample clocks determine the overall phase noise performance and skew drift of the
analog inputs and outputs because they directly clock the instrument's ADCs and DACs.

4.2. System Clock Distribution using SSM and System Sync connectivity
In a multi-chassis system based on the Keysight PXIe SSMs and chassis, the SSM with no other SSM
connected to its System Sync Upstream port acts as the leader. This leader SSM forwards a copy of
the system clock to other SSMs using System Sync cables. In turn, each SSM shares the forwarded
system clock with the instruments located in their respective chassis using the PXIe DSTARA
backplane signal.

NOTE You are not required to set the the leader in the TSE API. The leader SSM is
determined by the hardware connections. That is, the leader role is automatically
taken by the SSM that has no System Sync cable connected to its System Sync
Upstream port.

Find us at www.keysight.com Page 18

System Setup Guide 4. Clocking

4.3. Enabling chassis clock outputs
If you are using a clock output from a chassis you can enable it in the TSE API.

The chassis clock outputs are available in the chassis and you can access them by their name as
follows:

Get the Clock configuration for the Rear Panel 10MHz output port from the Chassis
ktHvi.SystemDefinition definition("Name")
#
chassis = definition.add_chassis(1)
#
clockOutputRp10Mhz = chassis.clock_outputs["RP10MHzOut"]
clockOutputRP10Mhz.set_enabled(true/false)

Some clock outputs support one single frequency and others support multiple frequencies. For the
outputs supporting only one frequency, no frequency must be provided when enabling/disabling
them. If the clock outputs do support multiple frequencies, you must specify what frequency (in Hz)
you want to enable.

When you disable the clock, the frequency argument is ignored.

The following code shows some examples and error cases:

clockOutputRp10Mhz = chassis.clock_outputs["RP10MHzOut"]
clockOutputRP10Mhz.set_enabled(true) # Ok
#
clockOutputFpRef2Out = chassis.clock_outputs["FPRef2Out"]
clockOutputFpRef2Out.set_enabled(true, 10e6) # Ok

Find us at www.keysight.com Page 19

System Setup Guide 4. Clocking

4.4. Overview of Supported Clocking Schemes
There are several possible different clocking configurations, the one you should use depends on the
hardware and the application requirements. Some of the key aspects to consider when selecting a
clocking scheme are:

1. System and Analog clock sources. The source for the System and intermediate-frequency analog
clocks is a critical element that determines the system synchronization, phase noise and drift
performance. The clock sources covered in this section include:
a. PXIe chassis.

b. System Sync Module.

c. PXIe Chassis with High Performance Reference Clock Source (HPRCS). This is only available
on Keysight PXIe chassis models M904xA.

2. Internal/external Reference clock. The clock that serves as reference for the System/Analog
clocks can be generated internally by the selected source, or externally provided by the user,
generated by a clock source external to the PXIe system. In systems that include the High
Performance Reference Clock Source (HPRCS), and other external instrumentation that you wish
to share a common Reference Clock, the best overall jitter performance will usually be achieved by
phase-locking the other external instrumentation to the HPRCS Reference Clock instead of the
other way around. If the overall system needs to be phase-locked to a GPS or atomic standard
reference, you should phase-lock the HPRCS to the GPS or atomic standard and phase-lock all
the other instrumentation to the HPRCS Reference Clock.

3. Instruments internal/external Analog Clock. Most instruments can either use an external Analog
Clock or generate their own Analog Clock internally for convenience, however, using a common
external Analog Clock will always provide the best performance because all peripheral module
sample clocks will jitter and drift together.

The following tables show the different supported/recommended clocking schemes. We differentiate
two different clocking architecture depending whether External Analog Clock distribution is used or
instruments rely on the general-purpose reference to generate internally the Analog Clocks required
to driver the RF/Analog outputs. For instruments that support both the use of a dedicated high
performance Analog Clock reference distribution offers better performance.

Find us at www.keysight.com Page 20

System Setup Guide 4. Clocking

4.4.1. Clocking schemes without External Analog Clock distribution

Clocking Scheme
Reference
Clock Source

Description Performance

A: Single-chassis
w/o SSM.

Chassis:
Internal
10MHz

An OCXO inside the chassis generates a 10
MHz reference clock. Independent Analog
clocks are generated in each peripheral
module.

See the chassis datasheet for
exact phase noise performance.
See the M5xxx PXIe instrument
documentation for exact
performance of channel for
channel skew, jitter, and drift.

Chassis:
External
10MHz

The external reference clock must have a
frequency of 10 MHz. As an example, it can
come from a Device Under Test (DUT),
another instrument that is part of the setup,
etc. Independent Analog clocks are
generated in each peripheral module.

-

B:
Single/multiple
chassis w/SSMs.

SSM: Internal
10MHz

An OCXO inside the SSM generates a 10 MHz
reference clock. Independent Analog clocks
are generated in each peripheral module.

See the SSM datasheet for exact
phase noise performance.
See the M5xxx PXIe instrument
documentation for exact
performance of channel for
channel skew, jitter, and drift.

SSM: External
10/100MHz

The external reference clock can have a 10 or
100 MHz frequency. As an example, it can
come from a DUT, from another instrument
that is part of the setup, etc. Independent
Analog clocks are generated in each
peripheral module.

-

Find us at www.keysight.com Page 21

System Setup Guide 4. Clocking

4.4.2. Clocking schemes with External Analog Clock distribution using M904xA chassis

Clocking Scheme
Reference
Clock Source

Description Performance

C:
Single/multiple
chassis (no
HPRCS) with

External Analog
clocks and SSMs

Chassis:
Internal
10MHz

An OCXO inside the chassis generates a 10
MHz reference clock. A common Analog
clock is externally distributed to each
peripheral module.

See the chassis datasheet for
exact phase noise performance.
See the M5xxx PXIe instrument
documentation for exact
performance of channel for
channel skew, jitter, and drift.

Chassis:
External
10MHz

The external reference clock must have a
frequency of 10 MHz. As an example, it can
come from a DUT, another instrument that is
part of the setup, etc. A common Analog
clock is externally distributed to each
peripheral module.

-

D:
Single/multiple
chassis with

HPRCS, External
Analog clocks
and SSMs.

HPRCS:
Internal
10MHz

The HPRCS generates a 2.4 GHz sine wave
that gets divided in frequency to generate a
100 MHz reference clock signal. A common
Analog clock is externally distributed to each
peripheral module.

This option provides the best
performance in terms of phase
noise. For more information, see
the Keysight PXIe Chassis
M9046A Datasheet, available at
Keysight PXI chassis.

HPRCS:
External
10/100MHz

The external reference clock for the HPRCS
can have a 10 or 100 MHz frequency. As an
example, it can come from a DUT or another
instrument that is part of the setup, etc. A
common Analog clock is externally
distributed to each peripheral module.

-

Find us at www.keysight.com Page 22

System Setup Guide 4. Clocking

http://www.keysight.com/find/pxi-chassis

5. Clocking Configurations without External Analog Clock distribution

5.1. Single-chassis w/o SSM (Scheme A)
This is the simplest configuration and is the default if you have not specified another.

The chassis is the clock source. For the reference clock, there are two options:

1. Internal (default): This is the 10MHz clock built into the chassis (VCXO for the M9019A or OCXO for
the M904xA).

2. External: A 10MHz signal connected to the 10MHz Ref BNC input located on the chassis rear
panel.

The following diagram shows a chassis with an internal clock source (chassis clock) or an external
clock source (blue):

All chassis have on their rear panel a 10MHz reference BNC input and a 10MHz reference BNC
output. In the case of the M904x chassis, there are two Reference clock SMA outputs on the front
panel.

This clocking scheme is rather constrained in terms of features because it only allows for a single
chassis and, given that there is no SSM, advanced features like Fast Data Sharing are not available.

Find us at www.keysight.com Page 23

System Setup Guide 5. Clocking Configurations without External Analog Clock
distribution

The following snippet shows how to configure the chassis as the clock source:

Create SystemDefinition object
my_system = kthvi.SystemDefinition("MySystem")
#
Define chassis
chassis = my_system.add_chassis(1)
#
Select the chassis as ref. clock source
clockSource = chassis.clock_source
#
Set the chassis as clock source
systemDefinition.clocking.reference_source = clockSource
#
Explicitly set the clock source to use the internal OCXO as the reference clock (this is the default)
clockSource.set_mode(keysight_tse.ClockingReferenceMode.INTERNAL)
#
Alternatively you can configure the chassis to use the external clock reference with the 10Mhz frequency
value in Hz
clockSource.set_mode(keysight_tse.ClockingReferenceMode.EXTERNAL, 10e6)

Find us at www.keysight.com Page 24

System Setup Guide 5. Clocking Configurations without External Analog Clock
distribution

5.2. Single/multiple chassis w/SSMs (Scheme B)
Each SSM is equipped with an onboard high-quality 10MHz Oven Controlled Crystal Oscillator
(OCXO) that can be used as the reference clock.

Alternatively, the chassis backplane reference clock output (Scheme A.2) or the optional High
Performance Reference Clock Source (HPRCS) output (Scheme C) can be used as reference clock.
The HPRCS option requires a Keysight PXIe Chassis model M9046A. Clocking scheme B assumes the
external reference clock is neither output by the chassis nor by the HPRCS because otherwise further
configurations would be required for proper operation.

The reference clock can be chosen from two options:

1. Internal: This is the default mode. The internal OCXO of the leader SSM is used as the reference
clock.

2. External: An 10 MHz or 100 MHz external reference clock is connected to the SSM's front-panel
SClk/Ref In SMP input.

The reference clock gets propagated to all the PXIe instruments within the same chassis through the
DSTARA signal path. It gets propagated to the next SSM through the System Sync cable from the
downstream connection on leader SSM to the upstream connection on the follower.

The following diagram shows the operation of the Clocking Scheme B. The clock is generated in the
SSM in chassis 1 and is passed to the other instruments in the chassis via the DSTARA signal path in
the backplane (red arrows). It is also passed to the next chassis via the System Sync cable (in black)
where it propagates via the SSM in that chassis. The internal reference is the SSM's OCXO, and the
external reference is shown in blue:

Find us at www.keysight.com Page 25

System Setup Guide 5. Clocking Configurations without External Analog Clock
distribution

5.2.1. Configuring the SSM as the System Clock source

By default, if you do not specify anything, PathWave Test Sync Executive configures the leader SSM
as the reference clock source using its internal OCXO clock. The leader SSM is defined by the
hardware connections. In the TSE API, no additional definition other than the connections between
SSM is required to identify the leader SSM. You must ensure the connections you define in software
match the physical hardware connections between SSMs.

The following code shows how to configure a pair of chassis with SSMs where the OCXO clock is the
reference clock source, options is set to an empty string:

Create SystemDefinition object
my_system = kthvi.SystemDefinition("MySystem")
#
Define all necessary follower SSMs depending the number of chassis
leader_ssm = my_system.interconnects.add_sync_module(SSM_1, options)
my_system.interconnects.add_sync_module(SSM_2, options)
#
Define chassis
my_system.add_chassis(1)
my_system.add_chassis(2)
#
Select the leader SSM as ref. clock source
clockSource = interconnects[0].clock_source
#
Set the SSM clock source

Find us at www.keysight.com Page 26

System Setup Guide 5. Clocking Configurations without External Analog Clock
distribution

systemDefinition.clocking.reference_source = clockSource
#
Explicitly set the clock source to use the internal OCXO as the reference clock (this is the default)
clockSource.set_mode(keysight_tse.ClockingReferenceMode.INTERNAL)

5.2.2. Configuring the SSM to explicitly use internal OCXO or external reference clock

The SSM leading the synchronization by default with its internal reference clock, can optionally be
connected to an external reference clock. The external reference can come from, for example, a DUT
or another source such as a PXIe frequency reference.

To use an external reference clock, you must:

l Connect the external reference source to the SSM's SClk / Ref in port.

l In the TSE API you must set the SSM to synchronize to an external reference clock. To do this, set
the mode to EXTERNAL and set the frequency in Hz.

To use the external reference, change the final line in the previous code snippet to:

Set clock mode to EXTERNAL and set frequency to 10MHz
clockSource.set_mode(keysight_tse.ClockingReferenceMode.EXTERNAL, 10e6)

Find us at www.keysight.com Page 27

System Setup Guide 5. Clocking Configurations without External Analog Clock
distribution

6. Clocking Configurations with External Analog Clock distribution
Some instruments such as the analog ones in the Keysight M5xxx PXIe family derive their Sample
Clocks from an Analog Clock source and perform best when configured to use an externally
distributed Analog Clock. This section explains how to distribute the analog clocks to these and
similar instruments.

The analog clock can be generated from either the M9546A HPRCS or from the M9046A chassis
backplane board. The preferred choice for the analog clock source is the M9546A HPRCS inside a
Keysight M9046A PXIe chassis because of it's superior phase noise. The HPRCS can generate a sine
wave with frequencies of 2.4, 4.8, 9.6, or 19.2 GHz. In this section we assume the analog clock source
being set to generate 2.4 GHz, because this is the frequency required by the Keysight M5xxx PXIe
family. The frequency can be configured at purchase by choosing the corresponding option for the
Keysight M9046A PXIe chassis. For more information, see the Keysight PXIe Chassis M9046A User
Manual available at Keysight PXI chassis.

6.1. Chassis options for Analog clock generation and distribution
The following table lists the options available:

Source
Analog clock, locked to the reference

clock
Performance

M9046A chassis with M9546A HPRCS 2.4, 4.8, 9.6, or 19.2 GHz Best

M9046A chassis without M9546A HPRCS 2.4 GHz Medium

6.2. M9046A Front Panel Clocking IO overview
The following diagrams show the M9046A chassis front panels and how they are connected in
different configurations. The type and number of front panel connectors depend on the purchased
hardware option for splitters and HPRCS: (-QS0, -QS1/3, -QS2). In the diagrams a frequency of 2.4
GHz is assumed to have been selected for the analog clock. The analog clock frequency is also
chosen as hardware option at purchase time. More info in the Keysight PXIe Chassis M9046A User
Manual, available at Keysight PXI chassis.

Find us at www.keysight.com Page 28

System Setup Guide 6. Clocking Configurations with External Analog Clock dis-
tribution

http://www.keysight.com/find/pxi-chassis
http://www.keysight.com/find/pxi-chassis

6.2.1. M9046A -QS0 Chassis with no HPRCS and no Analog clock splitters

The following diagram shows the front panel of an M9046A -QS0 chassis.

6.2.2. M9046A -QS2 Chassis with no HPRCS, with Analog clock splitters

The following diagram shows the front panel of a M9046A chassis with -QS2 option including the
front panel analog clock splitters to ease the distribution of the analog clocks to all modules.

6.2.3. M9046A -QS1/3 Chassis with HPRCS and with Analog clock splitters

The following diagram shows the front panel of an M9046A -QS1/3 chassis with analog clock splitters
and Ref In, Cal In and Cal Out for the M9546A HPRCS.

Find us at www.keysight.com Page 29

System Setup Guide 6. Clocking Configurations with External Analog Clock dis-
tribution

6.3. Single/multiple chassis (M904xA w/o HPRCS) with External Analog
clocks and SSMs (Scheme C)
This configuration is for single or multiple chassis with SSMs. This configuration is compatible with
PXIe Chassis model M904xA with hardware options -QS0 and -QS2. The internal chassis clock is used
as the clock source and this configuration must be defined in the TSE API. The chassis clock must be
taken out from the Ref 1 Out port on the PXIe M9046 Chassis front panel and must be connected to
the SClk / Ref In port of the PXIe SSM (see diagram below).

You can use the chassis as the reference clock source with its reference clock set to:

1. Internal: Use the chassis internal OCXO.

2. External: Using an external reference clock connected to the chassis rear panel 10MHz Ref BNC
input.

The following diagram depicts the SSM using the chassis clock (indicated in red) as the clock source.
The chassis external reference is indicated by the dotted blue arrow:

Find us at www.keysight.com Page 30

System Setup Guide 6. Clocking Configurations with External Analog Clock dis-
tribution

Note The user is expected to set up all the connections between instruments. This
include:

l System Sync cabling between SSMs

l Chassis' Front Panel Ref1 Out to the SSM's Front Panel REF_IN (Only in chassis
1)

l Chassis' Front Panel 2.4Ghz out to splitters and from splitters to instruments

l External Clock Reference to Chassis' Rear Panel

6.3.1. Configuring the M904xA as the system and analog clock source

To use the internal chassis clock, you must:

l Connect the Chassis Ref 1 Out output to the SSM's SClk / Ref In located in the same chassis.

l In the TSE API you must instruct the SSM to use the chassis clock.

By default, and if it is not specified otherwise, the chassis clock circuitry uses its internal OCXO as the
reference clock.

The following code shows how to configure a pair of chassis with SSMs using the chassis clock as the
reference clock, options is set to an empty string:

Create SystemDefinition object
ktHvi.SystemDefinition definition("Name")
#
You must add all necessary follower SSMs depending on the number of chassis
syncModuleLeader = definition.interconnects.add_sync_module(SSM_1, options)
syncModuleFollower = definition.interconnects.add_sync_module(SSM_2, options)
#
Add chassis
chassis1 = definition.add_chassis(1)
definition.add_chassis(2)
#
Get the chassis clock
clock_source = chassis1.clock_source
#
Set as reference
definition.clocking.reference_source = clockSource
#
Enable the chassis analog clock
clock_output_2_4GHz = ref_chassis.clock_outputs["FP2.4GHzOut"]
clock_output_2_4GHz.set_enabled(True)

Find us at www.keysight.com Page 31

System Setup Guide 6. Clocking Configurations with External Analog Clock dis-
tribution

6.3.2. Configuring the M9046A to use the external reference clock

To use the chassis clock with an external reference clock, you must:

l Connect the external reference clock to the Chassis rear panel's 10 MHz Ref BNC input.

l Connect the Chassis Ref 1 Out to the SSM SClk / Ref In of the SSM in the same chassis.

l In the TSE API you must instruct the chassis to use the external reference clock and set the
frequency in Hz.

The following code shows how to set the external reference:

Set the reference mode to use an external reference
Set clock mode to EXTERNAL and set frequency to 10MHz
clockSource.set_mode(keysight_tse.ClockingReferenceMode.EXTERNAL, 10e6)

Find us at www.keysight.com Page 32

System Setup Guide 6. Clocking Configurations with External Analog Clock dis-
tribution

6.4. Single/multiple chassis with HPRCS, External Analog clocks and SSMs
(Scheme D)
This configuration is for single or multiple chassis with SSMs. For this clocking scheme to be used,
the first SSM must be in a Keysight M9046A chassis containing an M9546A High Performance
Reference Clock Source (HPRCS).

The HPRCS is used as the clock source and this configuration must be specified in the TSE API.

We can use the HPRCS as a clock source with its reference clock set to:

l Internal: Use the HPRCS internal OCXO.

l External: Use an external reference clock connected to the chassis front panel Ref In input.

The following diagram shows the leader SSM using the M9546A HPRCS (indicated in red) as the
clock source in chassis 1 M9046A -QS1/3. The HPRCS external reference is indicated by the blue
arrow. The distribution of the 2.4 GHz analog clock to up to 4 chassis is also shown. The connection
topology and cables used are critical to achieving the optimal channel skew drift performance. For
information about how to connect the analog clock to more than 4 chassis, see Keysight PXIe Chassis
M9046A User Manual available at Keysight PXI chassis.

Find us at www.keysight.com Page 33

System Setup Guide 6. Clocking Configurations with External Analog Clock dis-
tribution

http://www.keysight.com/find/pxi-chassis

Note The user is expected to set up all the connections between instruments. This
include:

l System Sync cabling between SSMs

l Chassis' Front Panel Ref1 Out to the SSM's Front Panel REF_IN (Only in chassis
1)

l Chassis' Front Panel 2.4Ghz out to splitters and from splitters to instruments

l External Clock Reference to Chassis' Front Panel Ref In

6.4.1. Configuring the M9046A + HPRCS as the system and analog clock source

To use the HPRCS as clock source, you must:

l Connect the chassis Ref 1 Out output to the SClk / Ref In of the SSM located in this chassis

l In the TSE API you must:

Add the M9046A -QS1/3 chassis with HPRCS to the SystemDefinition.

Set the HPRCS to be the clock source.

When no external reference clock for the HPRCS is specified, its internal OCXO is used.

The following code shows how to configure a pair of chassis with SSMs using the HPRCS as clock
source, options is set to an empty string:

Create SystemDefinition object
my_system = kthvi.SystemDefinition("MySystem")
#
Define all necessary SSMs depending on the number of chassis
my_system.interconnects.add_sync_module(SSM_1, options)
my_system.interconnects.add_sync_module(SSM_2, options)
#
Define chassis
hprcs_chassis = my_system.add_chassis(1)
my_system.add_chassis(2)
#
Create HPRCS object
clockSource = hprcs_chassis.high_performance_clock_source
#
Set the HPRCS as the reference clock
my_system.clocking.reference_source = clockSource
#
Enable the chassis analog clock
clock_output_2_4GHz = ref_chassis.clock_outputs["FP2.4GHzOut"]
clock_output_2_4GHz.set_enabled(True)

Find us at www.keysight.com Page 34

System Setup Guide 6. Clocking Configurations with External Analog Clock dis-
tribution

6.4.2. Configuring the M9046A + HPRCS to use an external reference clock

To use the HPRCS with an external reference clock, you must:

l Connect the external reference clock to the chassis' front panel Ref In input.

l Connect the chassis' front panel Ref 1 Out output to the SClk / Ref In input of the SSM located in
this chassis.

l In the TSE API you must:

Add the M9046A -QS1/3 chassis to the SystemDefinition.

Set the HPRCS to be the clock source.

Instruct the HPRCS to use an external reference clock and the desired frequency in Hz.

To use the external reference, set the reference clock mode in the previous code snippet to (defaults
to internal):

Set the reference clock mode. Set the HPRCS to use an external reference @10Mhz
clockSource.set_mode(keysight_tse.ClockingReferenceMode.EXTERNAL, 10e6)

6.5. Enabling chassis analog clock output
If you are using an analog clock output from a chassis you must enable it.

The following code shows how to enable a 2.4GHz analog clock output from an M9046A chassis.

clock_output_2_4GHz = ref_chassis.clock_outputs["FP2.4GHzOut"]
clock_output_2_4GHz.set_enabled(True)

Find us at www.keysight.com Page 35

System Setup Guide 6. Clocking Configurations with External Analog Clock dis-
tribution

6.6. Enabling the External Analog Clock Source for Instruments
For instruments that require an analog clock, you must set the source and frequency of the analog
clock in your SystemDefinition.

You can set parameters for the analog clock:

l The source as internal or external.

l The frequencies of the sources, in Hz.

For external sources, the source selected depends on the analog clock frequencies that the
instrument supports.

l If you indicate multiple frequencies, the first external frequency supported by the instrument is
selected.

l If none of the external frequencies are supported, and the instrument has an internal clock, the
internal clock is selected.

l If none of the external frequencies are supported, and the instrument does not have an internal
clock, an error is generated.

The code is:

my_system.clocking.enable_external_analog_clocks(frequencies)

For example, if you are using a M904xA chassis with the 2.4GHz analog clock reference, add the
following line:

my_system.clocking.enable_external_analog_clocks([2400e6])

Instruments that support an external analog clock are set to use this clock. Instruments that do not
support this external frequency are set to use an internal clock. If the instrument does not support
the frequency and does not have an internal clock, an error is generated.

Find us at www.keysight.com Page 36

System Setup Guide 6. Clocking Configurations with External Analog Clock dis-
tribution

6.7. Analog clock distribution guidelines
For your system to work correctly, you must ensure the clock reference distribution is correct. This is
especially important for Radio Frequency (RF) analog (2.4GHz and above) clock distribution. For the
best performance, that is, the lowest skew and drift, follow these guidelines:

l Cable distribution must be symmetrical.

l The number of distribution and amplifier hops to each end point must be the same.

l Cables must be of the same type and same length.

l The temperature of the cabling, distribution and amplifiers hops must be kept as close as possible

These guidelines ensure that any variances in clock signals are minimized as they travel to individual
instruments.

The Keysight M904xA chassis includes as an option 4:1 amplified power dividers built into the chassis
to support the balanced-star distribution of external Analog clocks with best performance. These
power dividers or splitters are designed specifically for minimizing phase noise, temperature drift, and
to maintain the Analog clocks amplitude as it is divided many times. Substituting other power dividers
to distribute the Analog clocks may degrade jitter and drift performance, so this is not recommended.
In addition the Keysight MCX cables are made of a special material that minimizes their propagation
delay change with temperature. Matching the total propagation delay from their common clock
source to each instrument causes the propagation delay drifts of the clocks to cancel out between
instruments. Note that small spurious oscillations can occur within the amplified power divider when
any of the outputs are loaded with certain reflective loads. For this reason, terminating unused
outputs with 50 Ohms loads is recommended. It is only necessary to terminate unused outputs of
power dividers that are currently being used to distribute the Analog clocks. For more information,
see your Chassis and Instrument documentation.

The following diagram shows a multi-chassis setup with M9046A chassis including balanced-star 2.4
GHz analog clock distribution:

The clock originates in chassis 1. It is sent to divider 1 which divides the signal into 4. These 4 signals
each go to dividers in all 4 chassis and from there to the individual instruments. Chassis 1 and 3 only
have 1 instrument so the divider stage may appear unnecessary, however this would mean the
signals to the instruments using less hops than in chassis 2 and 4, resulting in some instruments
getting signals before others and the instruments would therefore be out of sync.

Find us at www.keysight.com Page 37

System Setup Guide 6. Clocking Configurations with External Analog Clock dis-
tribution

Find us at www.keysight.com Page 38

System Setup Guide 6. Clocking Configurations with External Analog Clock dis-
tribution

6.8. Notes on the selection of the best analog clock source for instruments
While it is often convenient for instruments to use their own internally generated analog clocks, the
best jitter and drift performance is achieved by using a single common analog clock source generated
within the Leader chassis (with or without the HPRCS) and distributing it using the chassis amplified
power splitters in a balanced star configuration. This ensures that any low-frequency jitter skew drift
is common across the system, minimizing the inter-channel jitter and drift.

In some cases with high channel count configurations, there may not be enough individual copies of
the the Analog Clock available from a full balanced star distribution to connect to every instrument. In
those cases, a single daisy-chain connection of the Analog Clock between instrument pairs can be
used. Noting that the downstream instrument of the daisy-chained pair will have slightly higher skew
drift than the non-daisy-chained instrument. Daisy-chained instruments shall have slightly higher
skew drift, so these instruments should be the ones in the system which have the lowest bandwidth.
For example, in systems which employ the M5201A Downconverter and the M5200A Digitizer, which
are typically used in pairs, it is best practice to route the Analog Clock to the downconverter first and
then daisy-chain the downconverter's Analog Clock output to the digitizer's Analog Clock input. This
is because the 2 GHz digitizer is less sensitive to the same amount of channel skew than the 16 GHz
downconverter.

Find us at www.keysight.com Page 39

System Setup Guide 6. Clocking Configurations with External Analog Clock dis-
tribution

7. System Initialization
The TSE API enables you to control the process of system initialization and clock alignment.

The following describes the steps you take to initialize the system for a number of different scenarios.
For more information about initialization options available in the TSE API, see the section System
Initialization in the PathWave Test Sync Executive User Manual available here.

The system must be initialized after every power cycle, a change in the system hardware
configuration, or a change in the clock configuration. The initialization procedure you need to perform
depends on:

l The instruments in the system.

l Your required channel skew accuracy.

l If the hardware or clock configuration has changed.

l If a system initialization has been performed.

7.1. Example of System Initialization and Operation
To use the TSE API to initialize and run real-time operation in your system, there are two main
procedures that you must follow:

1. SystemWarm-up and Calibration

2. Normal Operation

There are also a number of use cases that are variations on these main procedures. The following text
describes these procedures along with the use case variations.

NOTE The initialization process requires access and control of all of the hardware
resources, so it is important that these resources are not already in use by another
application or HVI instance already loaded to hardware. An exception is thrown if
any of the hardware resources are already in use.

7.1.1. SystemWarm-up and Calibration

The system warm-up must be performed every time the system is turned on or the hardware
configuration is changed. This is to enable all of the components to reach a stable and repeatable
operating temperature. Once the system is warmed-up, the system can be initialized using the stored
System Calibration data.

The System Calibration must performed in these cases:

Find us at www.keysight.com Page 40

System Setup Guide 7. System Initialization

https://www.keysight.com/es/en/lib/resources/user-manuals/ks2201a-pathwave-test-sync-executive-user-s-manuals.html

1. The very first time that the system is put together and powered-on.

2. When relevant hardware changes are made that require a new system calibration. These hardware
changes include:
a. Adding/removing a chassis in your SystemDefinition object.

b. Adding/removing any instrument that requires clock alignment calibration data, such as an
M5300A module or M5201, or changes the operating temperature of the system.

c. Changing the cable connections between System Synchronization Modules, even replacing a
cable with a similar one with a different serial number.

d. Changing any of the external System Clock or Analog Clock cable connections, even replacing
a cable with a similar one with a different serial number.

e. Making any change to the clock configuration, even if it is only from the TSE API. This is
because this triggers the usage of different clock sources or signal paths.

3. Other situations where the system calibration should be updated.

4. On rare occasions, a component in the system can move into an invalid state and a reset of the
calibration might be required. For more information, see System Troubleshooting in the System
Setup Guide .

NOTE Warning : Resetting the system calibration shall in turn require you to recalculate
the User Calibration for some instruments. Observe extreme caution when doing
this to avoid costly time-consuming recalibration.

Find us at www.keysight.com Page 41

System Setup Guide 7. System Initialization

Procedure steps:

1. Power-on the system
a. Power-on all of the chassis. After this is complete, if you are using an external chassis

controller, power it on.

2. Connect to all the instruments
a. For example: instrument = ktm5300.KtM5300x(resource_id, query, reset, options)

3. Create a SystemDefinition using the TSE API and the instrument drivers:
a. Create a SystemDefinition object that we refer to here asmy_system. Use themy_system

object to define all the hardware resources in your system: chassis, SSMs, instruments,
clocking configuration, reference clock source, etc.
For example: my_system.chassis.add(1), my_system.clocking.reference_source = chassis.clock_source

b. Add the HVI Engines of each instrument to the SystemDefinition object.
For example: my_system.engines.add(instrument.hvi.engines.main_engine, "MyEngine")

4. System Initialization for Warm-Up
a. Execute my_system .initialize(keysight_tse.AlignmentModes.FULL | keysight_tse.AlignmentModes.PRE_

CALIBRATION). The PRE_CALIBRATION flag indicates there is no need to apply any previously stored
system calibration values because the system is warming-up. This enables the system to
execute code without calibration related errors. After this step, instruments may present
channel skew errors which are compensated by the next steps.

5. Wait for SystemWarm-Up
a. Wait for the required warm-up time, this can range from a few minutes to about 30 minutes.

The actual time typically depends on the type and number of instruments in the system,
clocking configuration, etc.

b. For detailed warm-up time information, see your instrument documentation, for example:
M5300 RF AWG User's Manual .

6. System initialization to perform System Calibration
a. Using the SystemDefintion created in step 3, run my_system.initialize(keysight_

tse.AlignmentModes.FULL | keysight_tse.AlignmentModes.RESET_CALIBRATION) to generate internal
system calibration data. At first system turn-on, no previous calibration data is expected to be
available.

7. Calculate User Calibration or channel deskew (Optional)
a. This operation is optional and consists of correcting analog channel skews introduced by cable

and signal path delays. Note that in some instruments, the User Calibration must be re-
calculated when a System Calibration is executed. For information about how to do this, see
your instrument documentation.

8. Ready for Normal Operation

Find us at www.keysight.com Page 42

System Setup Guide 7. System Initialization

Use Cases

Use Case
Scenario

Description

First system
start-up and
calibration

The very first time that the system is put together and powered-on, you must
execute a full warm-up and calibration procedure to achieve the best system
performance and repeatability:

l Execute all steps #1 to #7 above.

System start-
up using
existing
calibration

If the system has already been calibrated for the current hardware configuration,
then, to reuse the existing calibration to configure the system, wait for the system
temperature to stabilize then apply the existing calibration:

l Execute steps #1 to #5 above.

l Skip steps #6 and #7 System initialization to perform System Calibration and
Calculate user calibration or channel deskew , and run my_system.initialize

(keysight_tse.AlignmentModes.FULL).

Simplified
uncalibrated
system start-
up

If you want to use the system for test development, or you can tolerate analog
channel drift of up to 50ps across reboots/power-cycles:

l Execute steps #1 to #4 above.

l Skip steps #5 to #7 Wait for SystemWarm-Up , System initialization to perform
System Calibration and Calculate user calibration or channel deskew .

NOTE System hot boot-up: If the system is already warmed-up to the calibration
operating conditions, for example after a system restart, you can skip the steps #4
and #5 System Initialization for Warm Up and Wait for SystemWarm-Up .

Find us at www.keysight.com Page 43

System Setup Guide 7. System Initialization

7.1.2. Normal Operation

Once the system is warmed-up and the system calibration has been done, users can use the the TSE
API to execute real-time operations:

NOTE Note that if it is the first system start-up or you have introduced any of the HW
changes that require new System/User Calibration you must execute the First
system start-up and calibration use case described in the SystemWarm-up and
Calibration procedure.

Procedure steps:

1. Connect to all the instruments, if not already connected.
a. For example: instrument = ktm5300.KtM5300x(resource_id, query, reset, options)

2. Apply user calibration to instruments, You only need to do this if it is required, the user calibration
data is available, and it has not been applied already.
a. The user calibration is calculated during the SystemWarm-up and Calibration process. For

information about how to apply existing calibration, see your instrument documentation, for
example: M5300 RF AWG User's Manual .

3. Create a SystemDefinition object, or reuse an existing one.

4. Initialize the SystemDefinition object (Optional)
a. Run my_system.initialize(). This call executes the minimal or default initialization, provided a

Full Initialization has been executed already as described in the SystemWarm-up and
Calibration procedure. If the full initialization has not been executed, this step requires
calibration data. If the calibration data is not available this operation will fail. To run the system
initialization without calibration you can specify the PRE_CALIBRATION flag: my_system.initialize
(keysight_tse.AlignmentModes.PRE_CALIBRATION)

b. Note that you can skip the call to my_system.i nitialize() because the minimal or default
initialization happens implicitly in steps #5 and #7 described below.

5. Create a Sequencer object
a. For example: sequencer = keysight_tse.Sequencer("MySequencer", my_system)

b. Note that the sequencer creation operation implicitly executes a default initialization, this is
equivalent to calling SystemDefinition:Initialize().

6. Create an HVI object
a. For example: hvi = sequencer.compile()

b. The Hvi object is created by compiling the Sequencer object after all the HVI Sequences have
been programmed.

Find us at www.keysight.com Page 44

System Setup Guide 7. System Initialization

7. Load HVI to HW
a. For example: hvi.load_to_hw()

b. Note that the load_to_hw() operation implicitly executes a default initialization, this is
equivalent to calling SystemDefinition:Initialize().

8. Run HVI
a. For example: hvi.run(hvi.no_timeout)

9. Release HW
a. For example: hvi.release_hw()

NOTE Forcing a full initialization. You can optionally force a full initialization. Forcing the
full initialization can be useful to unblock a system if it is in a bad state, when some
temporary hardware changes in the system are done such as reconnecting cabling
using the same cables, or in general when it is useful to ensure the system is fully
initialized to discard any previous state. To force the full initialization run:

1. my_system.initialize(keysight_tse.AlignmentModes.FULL).

2. Or if you are using the system without calibration, add the PRE_CALIBRATION flag: my_
system.initialize(keysight_tse.AlignmentModes.FULL | keysight_tse.AlignmentModes.PRE_
CALIBRATION)

NOTE User Calibration not required or already applied: If user calibration is not required or
has already been applied to the instruments, you can skip step #2 Apply user
calibration to instruments. For more information on how to handle User Calibration
in instruments, see your instrument documentation.

Find us at www.keysight.com Page 45

System Setup Guide 7. System Initialization

8. System initialization with TSE Service and Multi-Host support
TSE Service and KDI offer capabilities to configure and initialize single and multi-host systems. TSE
Service works without KDI, but it is recommended to use it together with KDI for multi-host
applications or to benefit from the possibility to share instruments across applications, in particular,
delegate in TSE Service the boot-up initialization of instruments, to speed up application execution
later.

Find us at www.keysight.com Page 46

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

8.1. TSE Service Overview
TSE Service offers extended capabilities for system initialization and configuration:

1. Extend the use of TSE to Multi-Host architecture (see Free-Running mode). If you want a system
with more than 6 PXIe chassis or remote connectivity, then you require a Multi-Host system.

2. Enables the user to define a system configuration using one or more .yml files to automate the
complete system initialization (a time-consuming task), and execute it at host boot-time (see
Leader-Follower mode). This can be used with both single and multi-host systems.

8.1.1. TSE Service Running Modes

TSE Service can be configured to operate in one of 2 different modes:

Free running Mode:

This mode is mainly intended for Multi-Host systems because it enables a client application to
access resources distributed across multiple hosts. The client application is responsible for
defining the topology of the system using the SystemDefinition class to add chassis, SSMs, HVI
engines, etc, and to run the system initialization.

Leader-Follower Mode:

In this mode TSE Service in the leader host automates the complete system initialization. This
initialization is executed at boot time, speeding up the applications execution later. The system
is defined in the leader in a system_definition.yml configuration file. The client application does
not need to define or initialize the system, it just creates the application SystemDefinition that
connects to the leader TSE Service and gets all the system information automatically.

Find us at www.keysight.com Page 47

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

8.2. KDI Overview
Keysight Distributed Infrastructure (KDI) provides network infrastructure services and simplifies
deployment of a distributed environment.

KDI provides:

l Management of instruments drivers (opening/close) and discovery across the network.

l Instrument remote access.

l Authentication service (KDIS) for secure access.

With KDI, you can use KDI Resource IDs to open or access instruments across the network, see
Resource IDs for Accessing Remote Resources section.

TSE Service makes use of KDI internally to open and initialize instruments at boot-up and get them
ready for use by user applications later, see TSE Service Free-Running Mode section.

8.2.1. KDI Authentication Service (KDIS)

KDIS is a standalone, cross-platform, and lightweight gateway service that authenticates
connections. The authentication service enables secure communication within the KDI Fabric.

It includes the KDIS Admin UI that enables you to:

l Add, delete, and update users.

l Register devices (test stations and instruments).

l Register processes with credentials.

On receiving an authentication request, KDIS has the capability of performing the following actions:

l Validate the credentials against the database.

l Validate previously issued tokens and authorize a connection.

l Issue a public key for more efficient validation.

NOTE Keysight recommends that only one KDIS instance is installed in a system. In this
case, any host installing a KDI Client automatically detects the KDIS service for
authentication. If for some reason more that one KDIS must be installed, then it is
the responsibility of the user to direct each KDI client to the correct KDIS host. See
the KDI documentation for more information.

8.2.2. KDI Clients

The KDI Client is a service that must run in any host that needs access to the KDI fabric and services
such as: securely access information, status, and control features for nodes in the KDI Fabric.

Find us at www.keysight.com Page 48

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

8.3. TSE Service and KDI installation
Both TSE Service and KDI infrastructure can be installed from the TSE Installer with the appropriate
selections.

8.3.1. TSE Service installation

To install TSE Service, select the check box labelled TSE Service in the installer. TSE Service is
typically installed with KDI, details of the KDI installation options are shown in the section KDI
Installation Overview.

8.3.2. KDI Installation

KDI can be installed as part of PathWave Test Sync Executive installation when enabling TSE Service.

When Keysight Distributed Infrastructure is selected, TSE Service is configured to be started
automatically at windows boot-up. The default configuration after installation will start TSE Service in
Free-Running mode, configured to autodetect and open all PXI chassis and Instruments supported by
TSE Service.

Once TSE Service is selected, to enable KDI installation, you can select:

Keysight Distributed Infrastructure (KDI client)

Find us at www.keysight.com Page 49

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

KDI must be installed on every host.

KDI Authentication Service (KDIS)

This is installed on only one host.

NOTE Because of a limitation in KDI infrastructure (up to at least release 3.0.187), if you
intend to use the TSE Service in Leader-follower mode, then the KDIS must be
installed in the Leader TSE Service host.

To install the KDI client, select Keysight Distributed Infrastructure. Do this for every host.

To install the KDIS and the KDI client, select Keysight Distributed Infrastructure and KDI
Authentication Service (KDIS). Do this in one host, in a Leader-Follower system, this must be the
leader.

Find us at www.keysight.com Page 50

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

NOTE Keysight recommends that only one KDIS instance is installed in a given network. In
this case, any host installing KDI Client will automatically detect the KDIS service for
authentication. If for some reason, more that one KDIS must be installed, then it is
the responsibility of the user to direct each KDI client to the right KDIS host. For
more information see the KDI documentation.

For full installation details of PathWave Test Sync Executive, see the PathWave Test Sync Executive
User Manual.

Once KDI has been installed, you can configure the KDI Authentication Service.

8.3.3. Configure the KDI infrastructure and Authentication Service

KDI infrastructure requires KDI Authentication Service (KDIS) to operate. The host with the KDIS
installed is called the root-node. The KDIS instance must be the same for all hosts in a lab or setup
that are intended to work together, basically the group of hosts that work together must all have the
same root-node. Keysight recommends that KDI service instances in all hosts are configured
explicitly to point to the correct root-node or KDIS (see Configure KDI section below and for
information or troubleshooting check the KDI documentation).

There are a number of steps to configure the KDI Infrastructure:

Find us at www.keysight.com Page 51

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

l Configure KDI Authentication Service (KDIS) - the root-node:

Configure admin credentials.

Create an initial user account.

Add one or more Users.

l Configure KDI Clients - this applies also to the root-node.

l Restart the KDI Services.

l Accept KDI Clients in KDIS.

For version kdi version 3.0

8.3.3.1. Configure admin credentials in KDIS:

In the root host (or leader), o pen the KDIS Admin UI at the following URL:

l For KDI versions prior to v3.2 : https://localhost:8886/

l For KDI versions starting from v3.2 : https://localhost:7701/login

The page might give some security warnings, you can ignore these at this stage:

8.3.3.2. Create an initial Admin User Account in KDIS

You must first create an admin account, this enables you to access the KDIS User Interface and
administer the system.

Click Create Initial User Account...

The Add Admin User Account page opens.

Find us at www.keysight.com Page 52

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

https://localhost:8886/
https://localhost:7701/login

Add a username (Client Id) and password (Secret)

These are the credentials for the admin account.

The following image shows the Add Admin User Account page with example credentials:

l ClientID: user123456

l Secret: pass123456

8.3.3.3. Add additional users in KDIS:

To enable users to co nnect to an instrument with KDI requires a user (also called clients) registered
in KDIS with a username (Client Id) and password (Secret).

NOTE The KdiUser and KdiPassword required when opening instruments in the user
application refer to the Client Id and Secret registered in KDIS.

These are also used for accessing the Leader TSE Service in Leader-Follower mode.

For example, to add User "hviuser1234 " with password "hviuser1234Password" click Add, and
introduce the following information:

l Client Id: hviuser1234

l Secret: hviuser1234Password

Find us at www.keysight.com Page 53

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

Accept the credentials that KDIS adds.

For example:

NOTE After setting up for the first time or updating the KDIS configuration in the root
node, the KDI service must be restarted. See Restart the KDI service section below.

8.3.3.4. Add additional users in KDIS 3.2:

In KDIS 3.2 and above requires you to set an additional parameter when you add a user.

Find us at www.keysight.com Page 54

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

To add additional users in KDIS version 3.2, go to the Local Credentials.

You must set the Realm parameter when you add a user.

For example, to add User "hviuser1234 " with password "hviuser1234Password" click Add, and intro-
duce the following information:

l Client Id: hviuser1234

l Secret: hviuser1234Password

l Realm: KDIM-Realm

and accept these credentials.

Find us at www.keysight.com Page 55

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

8.3.3.5. Configure KDI Clients to find KDIS

Every host in the KDI infrastructure must have a root-node (KDIS host) assigned. It is important for all
hosts that must work together to have the same root-node (KDIS) assigned, for instance for TSE
Service in Leader-Follower mode.

For all hosts including the root-node:

l Open the kdi.yml file located at C:\ProgramData\Keysight\Distributed Infrastructure

l Set upstreammanager to the address of the host with KDIS installed, this is the root node or host.

For TSE Service to work properly in leader-follower mode, the host configured as TSE Service
Leader, must also be configured as root-node.

In all non-root hosts the kdi.yml file must include:

...
Specify KDIS host and port
This section allows instrument drivers to find KDIS properly (do not use inline comments to avoid issues
with instrument drivers)
upstreammanager:

host: "myKdisHostname"
port: "9090"

...

For the root-node the configuration can use "localhost":

...
Specify KDIS host and port (do not use inline comments to avoid issues with instrument drivers)
This section allows instrument drivers to find KDIS properly (do not use inline comments to avoid issues
with instrument drivers)
upstreammanager:

host: "localhost"
port: "9090"

...

8.3.3.6. Restart the KDI Services

To restart the KDI service in each host, user needs to do one of the following:

l Go to Task Manager → Services → KeysightDistributedInfrastructureService and Right Click
→Restart
or

l Use the following command:

C:\Program Files\Keysight\Distributed Infrastructure\DistributedInfrastructureService.exe -service

restart

You can check if KDI is running successfully by checking the log, located in:

C:\ProgramData\Keysight\Distributed Infrastructure\Logs

Find us at www.keysight.com Page 56

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

8.3.3.7. Accept Clients in KDIS

In KDIS, all hosts are referred as clients. Once the KDI instances in the non-root hosts have been
properly configured and restarted, they will attempt to connect to the authentication server. On this
first connection attempt KDIS will accept the client as "Provisional" and until it is accepted this host
will not be able to use the Authentication Services. To Accept a host into KDIS you must:

1. Open the KDIS Admin UI:
a. For KDI versions prior to v3.2 : https://localhost:8886/

b. For KDI versions starting from v3.2 : https://localhost:7701/login

2. log in to KDIS

3. Each non-root host (client) with Provisional state, accept it if it is a valid host.

The root-node where KDIS is installed also appear in the client list, but it is accepted by default. The
example below shows Host BCNQA1 with provisional state:

Once accepted BCNQA1 host will appear with the new state:

Find us at www.keysight.com Page 57

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

https://localhost:8886/
https://localhost:7701/login

8.4. TSE Service execution
TSE Service must be started and have complete its initialization before it can be used by client
applications. There are two ways to launch TSE Service:

l Automatic TSE Service Execution at boot-up with KDI (recommended).

l Manual TSE Service Execution (without KDI).

8.4.1. Automatic TSE Service Execution at boot-up with KDI (recommended)

This is the recommended option for most users. KDI launches TSE service automatically at host boot-
up. When KDI is selected during the TSE installation, TSE installer automatically registers the TSE
Service to be launched by KDI.

In addition to all of the KDI advantages (see About KDI section above), like not needing to specify the
TCP port to connect to resources or TSE Service, there are 2 key advantages for using KDI:

n You don't have to specify KDI Users/Passwords in the TSE Configuration files.
n Launching TSE Service at host boot-up without the need for any user to log in, speeds up the

system initialization and how soon the system is ready for an application to use it. Application
execution is also faster, since chassis, SSMs and instruments are opened at boot time per tse_

config.yml before the user application runs. If TSE Service is configured in Leader-follower mode,
then the complete system initialization is executed automatically at host boot-up time, eliminating
this time-consuming process from the application execution.

NOTE When TSE Service runs as a service launched by KDI, it runs as the windows
SYSTEM user. It is important that this user is configured properly, for instance
licensing, see TSE Service Leader licensing requirements in the leader-follower
mode section for more details.

8.4.1.1. Restarting TSE Service when launched by KDI

When using KDI, to restart TSE Service, you must first stop the current instance of TSE Service (see
Shutting Down TSE Service section), and then trigger the local KDI Client to restart the TSE Service
(see KDI documentation for details). If TSE Service is not running, it will be started automatically
under any of these two conditions:

1. KDI is restarted. See Restart the KDI Service section above.

2. When TseService-2023B.yml in the C:\ProgramData\Keysight\Distributed Infrastructure\Services folder is
saved (even without changes).

Find us at www.keysight.com Page 58

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

NOTE When TSE Service is configured to by launched by KDI, do not launch it manually
from command line, the KDI authentication required for TSE and KDI resource IDs
does not work the same. For manual execution it requires to explicitly specify the
KDI User and Password in the tse_config.yml , see TSE Service Free-Running mode
section for more details.

8.4.2. Manual TSE Service Execution (without KDI)

Starting up TSE Service without KDI requires the user to launch TSE Service explicitly by executing:

l "C:\Program Files\Keysight\PathWave Test Sync Executive 2023B\TseService\bin\TseService.exe"

The supported command line options are shown below.

TSE Service startup can also be automated by the user without using KDI:

1. Use the windows Start menu, or a similar capability to launch it automatically at windows log-in.

2. Launch it from a user application or service.

It is important to make sure TSE Service completed initialization before any user application tries to
access resources managed by TSE Service. Also, note that in multi-hosts setups the user must make
sure TSE Service is launched in all hosts.

Once running, you must use TSE-TCP Resource IDs to access chassis and SSMs resources (see
Resource IDs for Accessing Remote Resources). For this reason, if you are not using KDI to launch
TSE Service, it is recommended that you specify the TSE-Service TCP port explicitly and don't leave it
to automatic selection. This means that the port is fixed and can be specified without issues in the
TSE-TCP Resource IDs. The TCP port can be specified in the tse_config.yml file (see TSE Service
Free-Running Mode section) or as a command line option (see details below on the supported
command lines options).

NOTE If you do not specify the port or leave it as automatic, you can find out the port TSE
Service is listening on in the TSE Service log. Note that it is not guaranteed that the
same port will be automatically selected on different executions.

It is important to note that when not using KDI to launch TSE Service, when configuring TSE Service
to open instruments at boot up, you must also specific the KdiUser and KdiPassword in the tse_

config.yml.

NOTE It is recommended you use KDI to launch TSE Service automatically in those cases
where TSE Service is configured to open instruments at start up.

Find us at www.keysight.com Page 59

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

8.4.3. TSE Service Log output

TSE Service outputs information that is sent to the console including:

n Details on all operations executed.
n State of the Service.
n Errors and warnings generated during execution.

The Log output looks like this:

In the screenshot above, the last line indicates that this instance of the TSE Service has completed
the free-running mode initialization successfully and is ready to receive connections from client
applications or a leader TSE Service. Messages are identified with three categories:

1. [info] => These provide information about what has been executed, no action is required.

2. [warning] => These are not expected conditions, but not critical to prevent to continue the TSE
Service operation. Keysight strongly recommends you to verify any warning to make sure they are
not an issue for a given application.

3. [error] => These are critical situations that do not permit TSE Service to continue normal
execution. In these situations, TSE Service shall wait some time and then retry, restarting the TSE
Service.

As an example of an error condition, If you try to start TSE Service when it is already running, you get
this error:

8.4.3.1. Saving TSE Service Log output to a file

By default TSE Log is sent only to the console. It is possible to also save the TSE Service Log output to
a file, for that you must add an environment Variable:

Environment
Variable

Value Description

TSE_SERVICE_LOG_

PATH

Any existing valid path in your system, For
example:

c:\\LogsTseService

Path where the Log output file will be
saved

Find us at www.keysight.com Page 60

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

When using KDI to automatically launch TSE Service, console output is not available. With KDI, the
environment Variable must be specified in the KDI TSE-Service configuration file located in:

C:\ProgramData\Keysight\Distributed Infrastructure\Services\TseService-2023B.yml

The following snippet shows an example of the configuration file, this is not the default configuration:

NOTE: blank lines are not allowed, they signal the end of the document
#
name, version, and executable path all match driver as installed. Do not edit.
name: TseService
version: 2023B
executable: "C:/Program Files/Keysight/PathWave Test Sync Executive 2023B/TseService/bin/TseService.exe"
default_parameters:
 - "--kdi"
modes:
 - single
 - always
shared_secret: service_shared_secret
#
default_environment:
Enable TSE Service Log Output
- TSE_SERVICE_LOG_PATH=c:\\LogsTseService
Enable HVI LOGGER - Required for troubleshooting (must be submitted with support requests)
- HVI_LOGGER_LEVEL=Trace
- HVI_LOGGER_FORCE_FLUSH=1
- HVI_LOGGER_OUTPUT_PATH=c:\\Logs

NOTE Not that the TSE Service Log does not provide full information to enable
troubleshooting, when reporting issues please enable the HVI LOGGER and include
the output in the support request.

Find us at www.keysight.com Page 61

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

8.4.4. Shutting Down TSE Service

To shut down TSE Service, use the following command:

TseService --stop

This instructs the TSE Service to release any resources it has locked and then shut down.

The console output will look like this:

If there is an error in shutdown, try again.

NOTE It is possible to use Task manager to close TSE Service, but if you use this, TSE
Service will not release any locks.

Task Manager should only be used as a last resort if TSE Service has crashed and it
does not respond to the correct shutdown command.

Since it is not possible to run multiple instances of the TSE Service, to restart TSE Service you must
first stop and then start it again following the manual or automatic execution described above.

8.4.5. Additional command line options

The following additional command line options are also available:

Option Description

--help Prints the available options.

--listen_address <ip
address>:<port>

This is the address and port the TSE Server uses. You can alternatively provide this in the TSE
Service configuration .yml file.

--system_definition
<path> Specifies the location of the system_definition.yml file

--tse_config <path> Specifies the location of the tse_config.yml file

--release_pxi_triggers
<triggers>

Release Pxi Triggers that are locked by an non-responsive client. Options are "all" or a
comma separated list of triggers, such as "1,2,3".
See Handling Application Crash and Resource Locking.

Find us at www.keysight.com Page 62

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

8.4.6. Checking the state of the TSE Service with a Client Application

You can check the state, mode and logs of a TSE Service instance with a client application.

NOTE For the log retrieval to be possible, make sure the environment Variable TSE_
SERVICE_LOG_PATH is set on the host running the TSE service.

You connect to the TSE Service node and instantiate a TSE Service Client object. You can then use
the properties in the object to query it. This is quick and convenient because it does not require a
SystemDefinition.

The TSE Service client object enables you to access the state, mode and logs of the TSE Service node.
You typically use a client application with systems in Free-Running mode.

The TSE Service client object exposes the following properties:

Property Returns Description

tse_
service_
mode

Returns the
TSE Service
mode.

The mode returned is the TSE Service node is running in. This is one
of: FREE_RUNNING, LEADER, or FOLLOWER.

tse_
service_
state

This returns the TSE
Service node state.

As the system starts up, it goes through a series of states. The state
returned is the state the TSE Service node is in when it is queried.

When the state returned is RUNNING you can execute your code. For
a full list of the states, s ee the Python help files.

tse_
service_log

Returns a string with
the TSE Service Log.

This is the same TSE Service output that is sent to the console or file.

When the the Mode is correct and the State is RUNNING, the system is ready to run experiments.

The following snippet shows an example of how to check the state and mode of a Free Running host.

tse_service_host = 'tse://TestNode'
kdi_conn_options = "KdiUser=XXX,KdiPassword=****,KdiUrl=wss://localhost:9090/ws"
def wait_free_running_mode():

tseServiceClient = keysight_tse.TseServiceClient(tse_service_host, kdi_conn_options)
tse_service_state = tseServiceClient.tse_service_state
Wait until we reach running state
while tse_service_state != keysight_tse.TseServiceState.RUNNING:

time.sleep(10) # sleep 10 seconds before retrying
tse_service_state = tseServiceClient.tse_service_state
print(f"Current log on server: {tseServiceClient.tse_service_log}")

We are running, check mode
tse_service_mode = tseServiceClient.tse_service_mode
if tse_service_mode != keysight_tse.TseServiceMode.FREE_RUNNING:

raise Exception(f"Host {tse_service_host} is a {tse_service_mode}!")
Wait here until the TSE Service on the 'tse_service_host' is running in Free-Running mode
wait_free_running_mode()

Find us at www.keysight.com Page 63

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

At this point we know that the TSE Service in 'tse_service_host' is running in a FreeRunning mode.
All the instruments defined in the tse_config.yml are opened and can be used

Example checking the status of a Leader Host

tse_service_host = 'tse://TestNode'
kdi_conn_options = "KdiUser=XXX,KdiPassword=****,KdiUrl=wss://localhost:9090/ws"
def wait_leader_mode():

tseServiceClient = keysight_tse.TseServiceClient(tse_service_host, kdi_conn_options)
tse_service_state = tseServiceClient.tse_service_state
Wait until we reach running state
while tse_service_state != keysight_tse.TseServiceState.RUNNING:

time.sleep(10) # sleep 10 seconds before retrying
tse_service_state = tseServiceClient.tse_service_state
print(f"Current log on server: {tseServiceClient.tse_service_log}")

We are running, check mode
tse_service_mode = tseServiceClient.tse_service_mode
if tse_service_mode != keysight_tse.TseServiceMode.LEADER:

raise Exception(f"Host {tse_service_host} is a {tse_service_mode}!")
Wait here until the TSE Service on the 'tse_service_host' is running in Leader mode
wait_leader_mode()
At this point we know that the TSE Service in 'tse_service_host' is running in a Leader mode.
All the instruments defined in the tse_config.yml of all hosts are opened, system as it is defined in
system_definition.yml of the host is initialized and ready to be used

Example checking the status of a Follower Host

tse_service_host = 'tse://TestNode'
kdi_conn_options = "KdiUser=XXX,KdiPassword=****,KdiUrl=wss://localhost:9090/ws"
def wait_follower_mode():

tseServiceClient = keysight_tse.TseServiceClient(tse_service_host, kdi_conn_options)
tse_service_state = tseServiceClient.tse_service_state
Wait until we reach running state
while tse_service_state != keysight_tse.TseServiceState.RUNNING:

time.sleep(10) # sleep 10 seconds before retrying
tse_service_state = tseServiceClient.tse_service_state
print(f"Current log on server: {tseServiceClient.tse_service_log}")

tse_service_mode = tseServiceClient.tse_service_mode
if LEADER, we know the node is not in the correct mode
if tse_service_mode != keysight_tse.TseServiceMode.LEADER:

raise Exception(f"Host {tse_service_host} is a {tse_service_mode}!")
For FOLLOWER, we need to keep waiting until it switches from FREE_RUNNING
while tse_service_mode != keysight_tse.TseServiceMode.FOLLOWER:

time.sleep(10) # sleep 10 seconds before retrying
tse_service_mode = tseServiceClient.tse_service_mode

Wait here until the TSE Service on the 'tse_service_host' is running in Follower mode
wait_follower_mode()
At this point we know that the TSE Service in 'tse_service_host' is running in a Follower mode.
All the instruments defined in the tse_config.yml are opened and can be used
...

See Accessing TSE Services section below for more details and see TSE Service Free-Running Mode
and TSE Service Leader-Follower Mode for more information on the different TSE Service modes and
states.

Find us at www.keysight.com Page 64

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

Using Exceptions to check the status of TSE Service.

You can also use exceptions to access the state, mode, and logs. For this you must create a Sys-
temDefinition.

You can use exceptions if, for example, when you create a sequencer and there is a failure. You typ-
ically use exceptions in a system in Leader-Follower mode, in the remote SystemDefintion .

The TseServiceException exposes the same properties as a TSE Service Client object. Exceptions can be
used in local or remote SystemDefintions.

Find us at www.keysight.com Page 65

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

The following snippet shows an example on how to use a Client Application with a remote
SystemDefinition :

Opening instrument with KDI

kdi_user_option = 'KdiUser=hviuser1234,KdiPassword=hviuser1234password'
#
Create system definition client connected to the TSE Service Leader using TSE Resource ID
try:

system_def_client = keysight_tse.SystemDefinition("SystemDefinitionClient", "tse://host1", kdi_user_option)
Client SystemDefinition success only when TSE Service is in LEADER mode and RUNNING state
tse_service_state = keysight_tse.TseServiceState.RUNNING
tse_service_mode = keysight_tse.TseServiceMode.LEADER

#
except keysight_tse.TseServiceException as exc:

tse_service_mode = exc.tse_service_mode
tse_service_state = exc.tse_service_state
tse_service_log = exc.tse_service_log

Find us at www.keysight.com Page 66

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

8.5. Resource IDs for Accessing Remote Resources
The standard way to open resources (instruments, chassis, Sync Modules, etc) is to use a VISA
Resource ID. There are other special resource identifier formats that enable access to resources
distributed across the network:

l TSE and TSE-TCP Resource IDs.

l KDI Resource ID.

8.5.1. TSE Resource IDs to access Chassis, SSMs and TSE Service instances

In a system or user application with TSE Service, you can access chassis, System Synchronization
Modules (SSMs) and TSE Service instances distributed across multiple hosts using the TSE Resource
IDs. TSE Service and TSE Resource IDs can also be used in a Single chassis system.

The following table shows the 2 types of TSE Resource IDs available:

TSE Resource ID Format Use Case Example

tse://<host>/<VISA_

RESOURCE_ID>

Requires TSE
Service launched by
KDI.

Requires KdiUser
and KdiPassword
when used in the
user application (see
KDI Resource ID
usage).

For VISA_RESOURCE_ID = PXI0 : : 1 : : BACKPLANE

l tse://myhost/PXI0 : : 1 : : BACKPLANE

tse-
tcp://<host>:<port>/<VISA_

RESOURCE_ID>

Does not require
KDI.

For VISA_RESOURCE_ID =

PXI0::CHASSIS1::SLOT10::INSTR

tse-

tcp://myhost:7587/PXI0::CHASSIS1::SLOT10::INSTR

Where <host> can be specified using one of these forms:

1. Host Name (or Device Name), this is the recommended for most users. For example: MyLabPc1.

2. Full Host Name, For example: MyLabPc1.NetworkDomain.

3. IP address, this is not recommended, For example: 10.127.1.89.

With TSE-TCP Resource IDs, the application must know the hostname and the TCP port used by TSE
service to connect to or access resources controlled by that TSE Service, for example, to add a
remote chassis or an SSM.

Find us at www.keysight.com Page 67

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

With TSE Resource ID, the service discovery is resolved by KDI and there is no need to specify
upfront the TSE Service TCP port. As a result of using KDI, when using TSE Resource IDs in the client
application you are required to specify the KDI User and Password options.

NOTE KdiUser, KdiPassword options are mandatory when using TSE Resource ID.

8.5.1.1. Accessing Chassis and System Sync Modules

To open/access the chassis, you must use the TSE or TSE-TCP Resource IDs explained above,
depending on whether TSE Service is launched with KDI or not. For instance:

Chassis Resource ID specified in tse_config.yml in testNode2 TSE and TSE-TCP Resource ID

PXI0::1::BACKPLANE

tse://testNode2/PXI0::1::BACKPLANE

tse-
tcp://testNode2:8674/PXI0::1::BACKPLANE

For the System Sync Module the resource ID is derived from the corresponding chassis resource ID,
for instance:

Chassis Resource ID specified in tse_config.yml
in testNode2

Corresponding SSM TSE and TSE-TCP Resource ID

PXI0::1::BACKPLANE

tse://testNode2/PXI0::CHASSIS1::SLOT10::INSTR

tse-
tcp://testNode2:8674/PXI0::CHASSIS1::SLOT10::INSTR

Where SLOT10 corresponds to the timing slot in the PXI0::1::BACKPLANE chassis (a 18-slot chassis).

The following snippet illustrates the above examples in code:

Opening Chassis & SSMs with TSE

TSE Resource IDs rely on KDI infrastructure to resolve hosts and TCP ports
Must specify a valid user registered in KDIS
kdi_user_option = 'KdiUser=hviuser1234,KdiPassword=hviuser1234password'
#
Add Chassis using TSE Resource IDs
mySystemDefinition.chassis.add('tse://host1/PXI0::1::BACKPLANE', kdi_user_option) #Chassis 1 in Host 1
#
Add SSMs for each chassis with TSE Resource IDs (SSMs are opened already by TSE Service)
the slot must be the timing slot of the PXI Chassis (for 18-slot chassis, it is slot 10)
primarySSM = mySystemDefinition.interconnects.add_sync_module('tse://host1/PXI0::CHASSIS1::SLOT10::INSTR',
 kdi_user_option)

Opening Chassis & SSMs with TSE-TCP

Or add Chassis using TSE-TCP Resource IDs => must know the port the TSE Service is using
mySystemDefinition.chassis.add('tse-tcp://host1:8674/PXI0::1::BACKPLANE') # Chassis 1 in Host 1
#
Add SSMs for each chassis with TSE-TCP Resource IDs (SSMs are opened already by TSE Service)

Find us at www.keysight.com Page 68

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

must know the TCP port the TSE Service is using
the slot must be the timing slot of the PXI Chassis (for 18-slot chassis, it is slot 10)
primarySSM = mySystemDefinition.interconnects.add_sync_module('tse-
tcp://host1:8674/PXI0::CHASSIS1::SLOT10::INSTR') #SSM for Chassis 1 in Host 1

8.5.1.2. Accessing TSE Services

In Leader-Follower mode, the client application creates a client system definition that connects to a
Leader TSE Service. To establish this connection, the TSE or TSE -TCP Resources IDs must be used.
The snippet below demonstrates this:

Create a Client System Definition with TSE

TSE Resource IDs rely on KDI infrastructure to resolve hosts and TCP ports
Must specify a valid user registered in KDIS
kdi_user_option = 'KdiUser=hviuser1234,KdiPassword=hviuser1234password'
#
Create system definition client connected to the TSE Service Leader using TSE Resrource ID
sys_def = pyhvi.SystemDefinition("MyAppSystemDef","tse://host1", kdi_user_option)

Create a Client System Definition with TSE-TCP

Create system definition client connected to the TSE Service Leader using TSE-TCP Resource ID
sys_def = pyhvi.SystemDefinition("MyAppSystemDef","tse-tcp://host1:8674")

8.5.2. KDI Resource ID to open instruments

KDI enables you to open or access instruments across the network using KDI Resource IDs. With the
appropriate options, KDI also enables you to share the same instrument across applications and
processes. For this, the first call to open a given resource launches an independent process where the
hardware or service session is opened. Following calls to open the same resource with KDI connect to
the existing session.

TSE Service makes use of KDI to open and initialize instruments at boot-up and get them ready to be
used by the user application later. It is important to note that TSE Service performs the first open of
the hardware resource, so applications do not need to apply any of the specific options required in
the first call to open a resource with KDI.

NOTE When configuring TSE Service to open instruments at boot-up, you do not need to
specify any of the options listed in the First KDI open of a Resource.

To open an instrument with KDI, the process is the same as without KDI, except:

1. Use the KDI Resource ID instead of the VISA one. The KDI Resource ID is built adding a prefix to
the VISA Resource ID:

l kdi://<host>/<VISA_RESOURCE_ID>.

2. For Authentication the initialization options must include:

l KdiUser and KdiPassword, these are the user and password you set when you added a user
(client) in KDIS, see explanation above on how to configure KDIS.

l KdiUrl in general not needed, but it depends on the system configuration, see details below.

Find us at www.keysight.com Page 69

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

3. To open multiple KDI instances to the same Hardware you must include:

l AllowMultipleClientAttach=1

If you intent to use the HVI Engine of the instrument with TSE API, the First opening of a KDI
Resource, you must also include:

l HviServer => for example, for automatic IP and Port: HviServer=HVITCP:[::]:0

This first-time option is ignored in following open calls with KDI, as long as the specific resource is
kept open.

For example, if the instrument is not open by TSE Service:

Opening instrument with KDI

myRemoteInstrument = keysight_ktmodule.KtModule('kdi://testNode1/PXI0::CHASSIS1::SLOT7::INSTR', 1,
1,'Simulate=0,DriverSetup=,KdiUser=user1234, KdiPassword=pass1234, AllowMultipleClientAttach=1,
HviServer=HVITCP:[::]:0, other_instrument_specific_options...')

You must always include the KDI user and password as defined in KDIS configuration when you open
instruments in your application.

When the instrument is already opened by TSE Service, the user application must specify the KDI
username and password and AllowMultipleClientAttach=1, other options are in general not needed,
since they are passed by TSE Service:

Opening instrument with KDI

myRemoteInstrument= keysight_ktmodule.KtModule('kdi://testNode1/PXI0::CHASSIS1::SLOT7::INSTR', 1,
1,'Simulate=0,DriverSetup=,KdiUser=user1234, KdiPassword=pass1234, AllowMultipleClientAttach=1')

NOTE KdiUser, KdiPassword and AllowMultipleClientAttach options are mandatory.

NOTE All instances of the same instrument must use the same AllowMultipleClientAttach
value, otherwise, you will get this error:

Could not start or attach to station service KtCornerstone 0.3.6914. Error
message: Cannot connect to existing instance
(PXI0::CHASSIS1::SLOT2::INSTR) because AllowMultipleClientAttach has not
been set by both requestor (false) and instance (true).

NOTE Simulate=false is the default option if not specified. For IVI compliant drivers, the
option "DriverSetup=" is mandatory after the IVI standard options and before
instrument specific ones. "DriverSetup=" is not required for Python drivers, it is
ignored.

8.5.2.1. KdiUrl initialization option

KdiUrl is an optional initialization option specific for instrument drivers, it must be specified as an
initialization option for instruments when the KDI client configuration file does not include the

Find us at www.keysight.com Page 70

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

upstreammanager entry, see Configure KDI Clients to find KDIS for more deatils:

Opening instrument with KDI

myRemoteInstrument = keysight_ktmodule.KtModule('kdi://testNode1/PXI0::CHASSIS1::SLOT7::INSTR', 1,
1,'Simulate=0,DriverSetup=,KdiUser=user1234, KdiPassword=pass1234, KdiUrl=wss://localhost:9090/ws,
AllowMultipleClientAttach=1, other_instrument_specific_options...')

NOTE If KdiUrl is required but not specified, you will get an error like:

Couldn't get test station manager URL through options
parameter:Simulate=0,DriverSetup=,LogLevel=Info,KdiUser=hviuser1234,Kd
iPassword=hviuser1234,HviServer=HVITCP:[::]:0

8.5.3. Building the correct Remote Resource ID for multiple access

When specifying a Remote resource ID for multiple access, TSE, TSE-TCP or KDI, it is mandatory that
all instances uses the same Resource ID format, in particular all Remote Resource IDs used in
different instances that refer to the same Instrument must use the same VISA Resource ID when
building the Remote Resource ID.

The table below show the different VISA Resource IDs supported for PXI Chassis and Instruments,
and the one that is used by TSE Service that must be used by any application working with TSE
Service:

Type VISA Resource ID format TSE Support

PXI Chassis

Example: Chassis #1

PXI0::1::BACKPLANE Supported

PXI0::35-0::0::INSTR Not Supported

PXI35::0::0::INSTR Not Supported

PXI Instrument (also System Sync Modules)

Example: Instrument in Chassis #1 and Slot
12

PXI0::CHASSIS1::SLOT12::INSTR Supported

PXI0::CHASSIS1::SLOT12::INDEX0::INSTR Not Supported

PXI0::30-0.0::INSTR Not Supported

PXI30::0::0::INSTR Not Supported

Find us at www.keysight.com Page 71

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

NOTE When the instrument or chassis is opened by TSE Service at boot up, the Remote
Resource ID (KDI, TSE or TSE-TCP) used in the client application must include the
same VISA_RESOURCE_ID as listed in the tse_config.yml file (or TSE Service Log).
See TSE Service Free-Running Mode section for more details on instrument
management. For instance, if the client application KDI Resource ID does not match
the one used by TSE Service, you will get this error:

Failed to instantiate PXI0::CHASSIS1::SLOT2:: INDEX0:: INSTR. Error:
<StdException>#std::runtime_error#Visa error 0xbfff000f. VI_ERROR_RSRC_
LOCKED: Operation failed due to locked resource

Find us at www.keysight.com Page 72

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

8.5.4. Using remote instruments HVI engines in user application

In order to use TSE capabilities in the user application you must add the HVI Engines of the desired
instruments in the application systemDefinition instance using the HVI Engine unique ID provided by
the instrument drivers. HVI-capable instruments expose in the instrument drivers the hvi interface
which includes properties with all the available HVI resources, in particular the HVI Engine Unique
IDs, the following snippet illustrates how an HVI engine is added to the systemDefinition instance:

my_instrument = keysight_ktmodule.KtModule('PXI0::CHASSIS1::SLOT7::INSTR', False, False, InstrOptions)
#
my_sys_def = keysight_tse.SystemDefinition('Hvi') # optionally add Leader TSE Service Resource ID
#
my_sys_def.engines.add(my_instrument.hvi.engines.main_engine, "MyEngineAlias")

TSE has built-in multi-process and multi-host capabilities which enable a user application to add HVI
Engines and exploit TSE capabilities of instruments opened in other processes and hosts. The
information required for this is encoded in the HVI engine Unique IDs. An application in a different
process or host only needs to know the HVI Engine Unique ID of a specific instrument to use it,
regardless of the process or host where the instrument is opened.

By default, when an instrument is opened, the HVI Engine only supports in-host multi-process access
implemented using shared memory for performance. To enable access from other hosts the
HviServer option must be specified when opening the instrument, f or example, for automatic IP and
Port: "HviServer=HVITCP:[::]:0". The HviServer option opens a TCP server that allows TSE
applications out of host to access and control the HVI Engine and HVI capabilities in that instrument.
The following snippet illustrates how to open an instrument locally with multi-host access for the TSE
capabilities:

Opening instrument with KDI

my_instrument = keysight_ktmodule.KtModule('PXI0::CHASSIS1::SLOT7::INSTR', 1,
1,'Simulate=0,DriverSetup=,HviServer=HVITCP:[::]:0, other_instrument_specific_options...')

NOTE "HviServer=" initialization option must be specified when opening instruments to
enable multi-host access/control of TSE capabilities from a different host. This is
required for instruments located in hosts different from the host where the
application implementing the systemDefinition instance is executed.

Find us at www.keysight.com Page 73

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

8.5.5. Handling Application Crash and Resource Locking

TSE Service manages the infrastructure (Chassis, clocking and System Synchronization Modules) and
provides remote access to it. When a client application executes the loadToHw() command, it is TSE
Service that reserves/locks the resources for the client application. If the client application crashes
after the loadToHw() and before the releaseHw(), TSE Service will keep the resources locked and when
trying to re-run the same or other application that uses the same resources, an error will occur. An
example of resources that could stay locked are the PXI triggers or HVI Engines. To resolve this
situation, the user needs to try one of the following approaches:

1. Execute from the command line:

l TseService --release_pxi_triggers <triggers>

where <triggers> can be:
o all

o This option will release all resources (triggers, engines) locked

o or, a list of triggers to release (for example: 0,1,2,3).
o This option will release only the resources (triggers, engines) that were using the
provided triggers

l Depending on the TSE Service running mode, the release will apply to:

In the case of Leader-Follower mode, resources (triggers, engines) locked by
instrumentation controlled by the Leader TSE Service. This means the chassis, SSMs, and
instruments included in the system_definition.yml

In the case of Free-Running mode, resources (triggers, engines) locked by instrumentation
opened by the Free-Running TSE Service. This means the chassis, SSMs, and instruments
included in the tse_config.yml

This operation is not allowed on TSE Service instances in follower hosts, you must execute it
from the Leader.

2. Restart TSE Service (see the TSE Service Execution Section).

l This option releases all the resources controlled by that TSE Service, but not resources locked
by instruments opened in different processes by KDI.

For instruments opened directly by the client application with KDI, the resources are not released by
these solutions. The user must terminate their respective processes manually, before running their
client application.

Find us at www.keysight.com Page 74

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

NOTE Since the system where the TSE Services are running may be shared by multiple
users, the user that needs to release resources needs to be very careful to not affect
any other running applications with any of the solutions presented above.

Find us at www.keysight.com Page 75

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

8.6. TSE Service Free-Running Mode
TSE Service in free-running mode is mainly intended for Multi-Host systems because it enables a
client application to access resources distributed across multiple hosts. The client application is
responsible for defining the topology of the system and initializing it, for instance, using the
systemDefinition class to add chassis, SSMs, HVI engines, etc, and to run the system initialization.

User applications can:

l Access remote resources like chassis and System Synchronization Modules (SSMs) using TSE
Resource IDs.

l Access remote instruments using KDI Resource IDs.

l Configure the system as required using the TSE and instruments API.

See the Resource IDs section above for details on how to access remote resources.

Find us at www.keysight.com Page 76

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

The following state machine diagram shows the TSE Service boot up sequence in Free-running mode:

For more details on the Leader-Follower mode, see the TSE Service Leader-Follower Mode section.

Find us at www.keysight.com Page 77

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

8.6.1. TSE Service configuration for Free-Running mode (tse_config.yml)

The Free-Running mode is the basic TSE Service configuration and is specified through the tse_

config.yml file in each host. The TSE Service config file enables you to configure:

l The TCP port (this is strongly recommended if KDI is not used to launch TSE Service).

l Hardware resources: Chassis, System Synchronization Modules (SSMs) and Instruments.

l Also enables you to specify simulated hardware instances.

TSE Service opens the specified resources at boot-up, saving significant time when running the
application.

The TSE Service config file is called tse_config.yml and it must be located in
C:\ProgramData\Keysight\PathWave Test Sync Executive 2023B\TseService\config

For a full description of the tse_config.yml file options, see the PathWave Test Sync Executive User
Manual.

8.6.2. Free-Running mode configuration example

The following diagram illustrates the 3 chassis Multi-Host system that is used in this example:

Find us at www.keysight.com Page 78

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

8.6.2.1. TSE Service Config File (tse_config.yml) with HW resources

All hosts in the system must have a TSE Service config file. For the example above, the default tse_

config.yml that is included with the TSE installation works:

Configure the port for the TSE Service server
When launching TSE Service manually without KDI it is recommended to specify a port, for instance =>
0.0.0.0:8674
listen_address: 0.0.0.0:0 # Automatic IP and Port
#
chassis list to be opened in the system boot
SSM and HPRCS in each chassis are automatically detected and loaded in each chassis
chassis:
- autodetect_all_pxi # add all the PXI chassis

#
instruments:
- autodetect_all_pxi # open all detected PXI instruments at TSE Service boot-up

Find us at www.keysight.com Page 79

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

It is important to select a port that is available and permitted by your organization's IT policies. The
auto detection of the port is recommended only when using KDI, since the KDI infrastructure enables
it to resolve the actual port at runtime. When KDI is not used, the port tse-tcp URL must be used and
the port specified to access any resource through TSE Service.

In the example above, we use the 'autodetect_all_pxi' keyword to indicate TSE Service to open all
detected PXI Chassis and instruments at boot-up time. This will speed-up opening hardware later in
the user application. The SSMs and High Performance Clock Modules do not need to be specified
explicitly because they are opened automatically with the chassis.

Initialization options for chassis or instruments can also be specified. For a full description of the tse_

config.yml file options, see the PathWave Test Sync Executive User Manual.

NOTE For most instruments, except the M3xxxA family, KDI must be installed to allow the
instrument to be opened by TSE Service and shared by the user application.

If you do not want to open all Chassis or instruments at boot-up, then replace the 'autodetect_all_pxi'
with the list of chassis or instruments to open. See the example below for simulation and remove the
options "Simulate=true, Model=xxxx"

8.6.2.2. TSE Service Config File (tse_config.yml) for simulation

To work in simulation, you must specify all chassis and instruments that must be opened in simulation
using the 'simulate=true' and any other option required for the chassis or instrument to work properly
in simulation. Wildcards are not supported for opening Chassis or Instruments in simulation.
Resources must be specified using VISA_RESOURCE_IDs, do NOT use TSE, TSE-TCP or KDI Resource
IDs.

tse_config.yml for Host 1

configure the port for the server or keep it in auto "0.0.0.0:0" # Configure the port for the TSE Service
server
When launching TSE Service manually without KDI it is recommended to specify a port, for instance =>
0.0.0.0:8674
listen_address: 0.0.0.0:0 # Automatic IP and Port
#
chassis list to be opened in the system boot
SSM and HPRCS in each chassis are automatically detected and loaded in each chassis
chassis:
- PXI0::1::BACKPLANE: "Simulate=True, DriverSetup=Model=GenericPxieChassis,EnhancedTrigger=True" #

Chassis 1 (host 1 - name: testNode1)
ssm_options: "Simulate=true, DriverSetup=Model=M9033A"

- PXI0::2::BACKPLANE: "Simulate=True, DriverSetup=Model=GenericPxieChassis,EnhancedTrigger=True" #
Chassis 2 (host 1 - name: testNode1)

ssm_options: "Simulate=true, DriverSetup=Model=M9032A"
#
instruments:
- PXI0::CHASSIS1::SLOT10::INSTR: "Simulate=true, DriverSetup=Model=M5302A"
- PXI0::CHASSIS2::SLOT15::INSTR: "Simulate=true, DriverSetup=Model=M5300A"

tse_config.yml for Host 2

Find us at www.keysight.com Page 80

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

Configure the port for the TSE Service server
When launching TSE Service manually without KDI it is recommended to specify a port, for instance =>
0.0.0.0:8674
listen_address: 0.0.0.0:0 # Automatic IP and Port
#
chassis list to be opened in the system boot
SSM and HPRCS in each chassis are automatically detected and loaded in each chassis
chassis:
- PXI0::1::BACKPLANE: "Simulate=True, DriverSetup=Model=GenericPxieChassis,EnhancedTrigger=True" #

Chassis 1 (host 2 - name: testNode2)
ssm_options: "Simulate=true, DriverSetup=Model=M9033A"

#
instruments:
 - PXI0::CHASSIS2::SLOT16::INSTR: "Simulate=true, DriverSetup=Model=M5200A"

Note the Simulate=true andModel initialization options are specified for all chassis and instruments.

NOTE The same examples above can be used to specify the specific hardware instances
that should be opened instead of all. For that just remove the Simulate andModel
options.

NOTE It is recommended to not include hardware and simulated instruments together in
the same tse_config file. Consequently, it is not recommended to specify simulated
instruments and also specify the 'autodetect_all_pxi' keyword, because that also
opens any hardware resources detected.

8.6.2.3. KDI User when TSE Service is not launched by KDI

It is recommended to launch TSE Service automatically with KDI, but in those cases where that is not
possible and TSE Service must be launched manually, the tse_config.yml file must include the KDI
User & Password if the instrument section is included to open instruments (other than the M3xxxA
family):

#.....
#
Must specify KDI User and Password for the instrument section to open instruments for shared access
(default operation)
Not needed for M3xxxA instrument family
kdi_user: user123456
kdi_password: pass123456
#
instruments:
#.....

Find us at www.keysight.com Page 81

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

When KDI User and Password are included in the tse_config.yml for a given TSE Service, all remote
operations perform by this TSE service instance will be authenticated using the specified KDI User
and Password.

8.6.3. User application with TSE Service in Free-Running mode

The user application must specify and initialize all the components they want to use in the
application, by means of the SystemDefinition object and the TSE API:

After boot-up, and once the TSE Service is running and completed initialization (See TSE Service
execution section), the user (or client) application must:

1. Open all instruments. You must use KDI Resource IDs as described above, except for M3xxxA
product family.

2. Create a SystemDefinition and add the Chassis and SSMs using the TSE or TSE-TCP Resource IDs.

3. Complete the SystemDefinition configuration as usual:
a. Specify the topology of the system by indicating the physical System Sync connections

between the SSMs.

b. Configured the clocking, Sync Resources, etc as needed.

c. Add the Instrument Engines, etc.

d. Trigger the system initialization => systemDefnition.initialize(...).

4. Create the Sequencer, HVI instance and rest of the application as usual.

The following snippet shows an example for a client application using TSE Service in free-running
mode for the system and configuration examples above:

import keysight_tse as pytse
import keysight_ktmodule
#
To access remote resources with the KDI infrastructure must use a valid user registered in KDIS
kdi_user_option = 'KdiUser=hviuser1234,KdiPassword=hviuser1234password'
#
#
**

Check the TSE Service has completed the Free-Running initialization and is in the FreeRunning::Running
state
Create TSE Service client object and query it
tse_service_host = 'tse://host1'
tseServiceClient = keysight_tse.TseServiceClient(tse_service_host, kdi_user_options)
tse_service_state = tseServiceClient.tse_service_state
tse_service_mode = tseServiceClient.tse_service_mode
while tse_service_state != keysight_tse.TseServiceState.RUNNING or tse_service_mode != keysight_
tse.TseServiceMode.FREE_RUNNING:
 # sleep 10 seconds before retrying

time.sleep(10)
Check state
tse_service_state = tseServiceClient.tse_service_state

Find us at www.keysight.com Page 82

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

 # Check mode
tse_service_mode = tseServiceClient.tse_service_mode

At this point we know that the TSE Service in 'tse_service_host' is running in a FreeRunning mode.
All the instruments defined in the tse_config.yml are opened and can be used
#
#
**

Open instrument drivers using KDI since instruments are already opened by TSE Service (specified in the
tse_config.yml)
#
Define init option including Kdi options
HviServer and AllowMultipleClientAttach options are not needed because these instruments are already
opened by TSE Service
KdiUrl is not needed if upstreammanager entry is included in the localhost kdi.yml configuration file.
InstrOptions =
'Simulate=0,DriverSetup=,LogLevel=Info,AllowMultipleClientAttach=1,KdiUrl=wss://localhost:9090/ws'
#
Open instruments in host 1 using KDI Resource ID
module = keysight_ktmodule.KtModule('kdi://host1/PXI0::CHASSIS1::SLOT7::INSTR', False, False, f"
{InstrOptions},{kdi_user_option}")
modules.append(module)
module = keysight_ktmodule.KtModule('kdi://host1/PXI0::CHASSIS2::SLOT12::INSTR', False, False, f"
{InstrOptions},{kdi_user_option}")
modules.append(module)
#
Define instrument in host 2 using KDI Resource ID
module = keysight_ktmodule.KtModule('kdi://host2/PXI0::CHASSIS1::SLOT12::INDEX0::INSTR', 1, 1, f"
{InstrOptions},{kdi_user_option}")
modules.append(module)
#
#**
Create Hvi instance
sys_def = pytse.SystemDefinition('Hvi')
#
Add chassis using TSE Resource ID (chassis are opened already by TSE Service)
to use TSE Resource IDs must include the KdiUser and KdiPassword
sys_def.chassis.add('tse://host1/PXI0::1::BACKPLANE', kdi_user_option) # host 1 chassis 1
sys_def.chassis.add('tse://host1/PXI0::2::BACKPLANE', kdi_user_option) # host 1 chassis 2
sys_def.chassis.add('tse://host2/PXI0::1::BACKPLANE', kdi_user_option) # host 2 chassis 1
#
Add SSMs for each chassis with TSE Resource IDs (SSMs are opened already by TSE Service)
to use TSE Resource IDs must include the KdiUser and KdiPassword
ssm_leader = sys_def.interconnects.add_sync_module('tse://host1/PXI0::CHASSIS1::SLOT10::INSTR', kdi_user_
option)
ssm_follower1 = sys_def.interconnects.add_sync_module('tse://host1/PXI0::CHASSIS1::SLOT10::INSTR', kdi_user_
option)
ssm_follower2 = sys_def.interconnects.add_sync_module('tse://host2/PXI0::CHASSIS1::SLOT10::INSTR', kdi_user_
option)
#

The rest of the application works as usual, no change for using TSE Service in free-running mode

#

Specify the topology
#
Connect Leader Chassis to the 2 follower Chassis using SSMs SystemSync ports
ssm_leader.connectivity.systemsync_downstream[1].set_connection(ssm_follower1.connectivity.systemsync_

Find us at www.keysight.com Page 83

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

upstream[1])
ssm_leader.connectivity.systemsync_downstream[2].set_connection(ssm_follower2.connectivity.systemsync_
upstream[1])
#

Configure clocking
#
Configure Leader or primary SSM clock source
clockSource = ssm_leader.clock_source
clockSource.set_mode(pytse.ClockingReferenceMode.EXTERNAL, 100e6)
#
Assign Leader SSM as clock source for the whole system
sys_def.clocking.reference_source = clockSource
#

Add HVI Engines
for index, module in enumerate(modules):

main_id = module.hvi.engines.main_engine
engine_alias = "Engine_"+ str(index) + "_" + str(main_id)
sys_def.engines.add(main_id, engine_alias)

#
#
Run system initialization
sys_def.initialize()
#
**
Create a sequencer
sequencer = pytse.Sequencer("sequencer", sys_def)
#
define real-time sequence (Optional)
...
#
compile the sequence
hvi = sequencer.compile()
#
**
Deploy and Execute on Hardware
#
Deploy to hardware and initialize
hvi.load_to_hw()
#
(optional) Run real-time sequence
hvi.run(hvi.no_timeout)
#
When done - Release hardware
hvi.release_hw()

NOTE Your application using the TSE API can run in any host, you do not need to run the
application in the hosts connected to the hardware.

NOTE If your application is used in a host with no hardware, then the TSE Service is not
required to be running on this host. Only the Hosts with hardware connected to
them require the TSE Service to be running.

Find us at www.keysight.com Page 84

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

8.7. TSE Service Leader-Follower Mode
A system configured in Leader-Follower mode has a predefined system configuration that is fully
initialized at start-up. This configuration is specified in the system_definition.yml configuration file
located in one of the hosts, called the Leader TSE Service. The Leader TSE Service system definition
can include resources distributed in other hosts running TSE Service, called Follower TSE Services. In
the system_definition.yml configuration file the user can specify:

l System Topology.

This includes information for the chassis and interconnects (SystemSync connectivity) across
them.

l Clocking configuration.

l Optionally instruments to include in the automatic start-up initialization.

In this mode, client applications specify the Leader TSE Service when creating the application
systemDefinition instance and only need to specify the HVI Engines and related resources, but no
need to specify topology and clocking because that's inherited from the Leader TSE Service. This is a
simpler and quicker way to use a system because it enables client applications to exploit TSE real-
time capabilities without having to first specify chassis, SSMs, clocks, etc. or having to wait for a full
system initialization.

Find us at www.keysight.com Page 85

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

The state machine diagram below shows the initialization steps once TSE Service has completed the
Free-Running initialization:

Find us at www.keysight.com Page 86

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

It is important to note that TSE Service always starts in Free-Running mode and performs the free-
running initialization per the local tse_config.yml file. It is in this step where all TSE Service hosts
open chassis, SSMs, Instruments, etc. depending on the local tse_config.yml file configuration. Then,
only if the system_definition.yml file is found locally, this TSE Service switches to the Leader mode. In
this mode it creates a SystemDefinition instance including all elements specified in the system_

definition.yml, topology, clocking, and instruments if specified. Before creating the SystemDefinition,
the Leader TSE Service connects to other TSE Services, the Follower TSE Services, that own the
elements specified in the topology section. When a TSE Service received a connection request from
the Leader, it switches from the Free-Running into the Follower mode, TSE Services accept only one
Leader connection when in free-running mode.

8.7.1. TSE Service configuration for Leader-Follower

Leader-Follower systems are configured with 2 different configuration files:

l The TSE Service tse_config.yml configuration files, all hosts must have this file properly configured.

l The system_definition.yml configuration file, this file is only required in the Leader host.

This files can be found, or must be placed in this folder:

C:\ProgramData\Keysight\PathWave Test Sync Executive 2023B\TseService\config

8.7.1.1. tse_config.yml config file

The tse_config.yml file includes the TSE Service configuration common to all operating modes. All
hosts in systems running TSE Service must have a tse_config.yml. See TSE Service Free-Running
Mode section for more details

8.7.1.2. The Service system_definition.yml file

The system_definition.yml only exists in the Leader and defines the entire system configuration,
including:

l System topology.

This include information of the Chassis and how they are connected by means of Sync Modules
and SystemSync Connectivity.

l Clocking.

l Sync resources.

l [Optional] Instruments.

Find us at www.keysight.com Page 87

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

8.7.2. TSE Service Leader licensing requirements

TSE Service to run in Leader Mode has the same licensing requirements as any client application. The
number of TSE licenses required depends on the number of instruments, Sync Modules and Chassis.
As a general guideline, one TSE license is required for each instrument and Sync Module included in
the System Definition, or for a TSE Service Leader, specified in the system_definition.yml . See
Licensing Documentation in the User Manual for more details on how to calculate the number of TSE
licenses required for a given setup.

TSE Licenses must be properly configured using PathWave License Manager (PLM). Special care
must be taken when using KDI to automate TSE Service launch at Windows boot-up, it is required
that PLM is properly configured for the Windows' SYSTEM user, since KDI runs at Windows boot-up
as this user. This is particularly relevant when using floating licenses configured in a different host.
You must make sure the "HKEY_USERS\.DEFAULT\Software\Keysight\EEsof License
Configuration\HVI_LICENSE_FILE" key lists all paths and servers to search for the TSE Licenses, the
screenshot below is an example:

8.7.3. Leader-Follower mode configuration example

The Leader-Follower example will build on the example and configuration described in the Free-
running mode Section. The example setup we will use is the same as used in the previous section:

Find us at www.keysight.com Page 88

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

8.7.3.1. tse_config.yml config file examples

Refer to the Free-Running example for details on how to configure the tse_config.yml .

Find us at www.keysight.com Page 89

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

8.7.3.2. The Service system_definition.yml file example

This an example system_definition .yml file to configure host1 as TSE Service Leader for the setup
described above:

This in the Node the follower nodes to connect to
#
topology:
- chassis: tse://host1/PXI0::1::BACKPLANE
downstream:
- 1: tse://host1/PXI0::2::BACKPLANE
- 2: tse://host2/PXI0::1::BACKPLANE

#
clocking:
If this section is not included, TSE will assume SSM-Internal
reference: ssm # Allowed values are: ssm|chassis|hpc. Default is: ssm.

We can assume the chassis and ssm to be the leader defined in the connections
earlier
mode: external # Allowed values are: internal|external. Default is: internal.
frequency: 100e6 # Allowed only with mode == external

#
sync_resources:
- PXI_TRIGGER_0
- PXI_TRIGGER_3

#
initialization_warmup_time_seconds: 30 # Time to wait between first initialization without Calibration
and final init with Calibration.
#
Specify instruments to be added to the Leader SystemDefinition and initialized at boot-up
instruments:
- inherit_from_tse_config # Initialize all instruments found for the Topology specified above per the tse_

config.yml files of each host

Instead of using the inherit_from_tse_config to include in the system initialization all instruments per
the tse_config.yml in each host, it is also possible to list specify specific instruments in the system_

definition .yml file. Note that if instruments are not opened already in the corresponding host per the
tse_config.yml file, then the system initialization will be delayed waiting for the instrument to open.
This is how the 3 instruments in our present example could be defined explicitly in the system_

definition .yml :

...
#
Specify instruments to be added to the Leader SystemDefinition and initialized at boot-up
instruments:
- kdi://host1/PXI0::CHASSIS1::SLOT10::INSTR:
- kdi://host1/PXI0::CHASSIS2::SLOT15::INSTR:
- kdi://host2/PXI0::CHASSIS2::SLOT16::INSTR:

Note that KDI Resource IDs must be used for instruments in hosts other than the Leader, for the
Leader host it is optional.

8.7.4. User application with TSE Service in Leader-Follower mode

When using TSE Service in leader-follower mode the user application creates a SystemDefinition
instance which connects to the Leader TSE Service, a Client System Definition. To create a client

Find us at www.keysight.com Page 90

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

SystemDefinition instance you must specify the TSE or TSE-TCP Resource ID of the leader TSE
Service:

l SystemDefinition(<name>, <leader_address>)

l SystemDefinition(<name>, <leader_address>, <options>)

When using TSE Resource IDs, the options must include the KDI User and Password. The following
snippet demonstrates how to create a client SystemDefinition:

To access remote resources with the KDI infrastructure must use a valid user registered in KDIS
kdi_user_option = 'KdiUser=hviuser1234,KdiPassword=hviuser1234password'
#
Create system definition client connected to the TSE Service Leader
sys_def = pyhvi.SystemDefinition("Hvi","tse://host1", kdi_user_option)

Create system definition client connected to the TSE Service Leader
sys_def = pyhvi.SystemDefinition("Hvi","tse-tcp://host1:8674")

If the connection fails, or the TSE Service is not ready in the Running state in the Leader mode, the
operation will throw an exception with information on the TSE Service state if at least the connection
to the TSE Service would be established.

Find us at www.keysight.com Page 91

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

The following code shows an application that connects to the Leader in a Multi-Host system in
Leader-Follower mode:

import keysight_tse as pytse
import keysight_ktmodule
#
To access remote resources with the KDI infrastructure must use a valid user registered in KDIS
kdi_user_option = 'KdiUser=hviuser1234,KdiPassword=hviuser1234password'
#
#
**

Create tse service client connected to the TSE Service Leader to check the status
#
tse_service_state = pytse.TseServiceState.NOT_STARTED
tse_service_mode = pytse.TseServiceMode.FREE_RUNNING
tse_service_log = ''
#
tse_service_host = 'tse://host1'
tseServiceClient = keysight_tse.TseServiceClient(tse_service_host, kdi_user_options)
tse_service_state = tseServiceClient.tse_service_state
tse_service_mode = tseServiceClient.tse_service_mode
while tse_service_state != keysight_tse.TseServiceState.RUNNING or tse_service_mode != keysight_
tse.TseServiceMode.LEADER:
 # sleep 10 seconds before retrying

time.sleep(10)
Check state
tse_service_state = tseServiceClient.tse_service_state

 # Check mode
tse_service_mode = tseServiceClient.tse_service_mode
if tse_service_mode==pytse.TseServiceMode.FREE_RUNNING and tse_service_mode == pytse.TseServiceMode.NOT_

STARTED:
raise Exception(f"Host {tse_service_host} not available!")

if tse_service_mode == pytse.TseServiceMode.FREE_RUNNING and tse_service_
mode==pytse.TseServiceMode.RUNNING:

raise Exception(f"Host {tse_service_host} is not configured as a Leader!")
if tse_service_mode == pytse.TseServiceMode.FOLLOWER:

raise Exception(f"Host {tse_service_host} is a Follower!")
#
#
**

Open instruments
modules = []
InstrOptions = 'Simulate=0,DriverSetup=,LogLevel=Info,AllowMultipleClientAttach=1'
#
module = keysight_ktmodule.KtModule('kdi://host1/PXI0::CHASSIS1::SLOT7::INSTR', false, false, f"
{InstrOptions},{kdi_user_option}")
modules.append(module)
#
module = keysight_ktmodule.KtModule('kdi://host1/PXI0::CHASSIS2::SLOT12::INDEX0::INSTR', false, false, f"
{InstrOptions},{kdi_user_option}")
modules.append(module)
#
module = keysight_ktmodule.KtModule('kdi://host2/PXI0::CHASSIS1::SLOT12::INDEX0::INSTR', false, false, f"
{InstrOptions},{kdi_user_option}")
modules.append(module)
#
#

Find us at www.keysight.com Page 92

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

Configure Client System Definition
#
The topology is already defined in the Leader TSE Service,
There is no need to add/configure chassis/SSMs, clocking, systemSync connectivity, etc
#
Add Engines
for index, module in enumerate(modules):

main_id = module.hvi.engines.main_engine
engine_alias = "Engine_"+ str(index) + "_" + str(main_id)
sys_def_client.engines.add(main_id, engine_alias)

#
Call System initialize
The initialization will only initialize the instruments for the Engines added in the system definition
Infrastruture is managed and initialized by the Leader TSE Service
This step only checks proper initialization for infrastructure
sys_def_client.initialize()
#

The rest of the application works as usual, no change for using TSE Service in free-running mode

#
**
Create a sequencer
sequencer = pytse.Sequencer("sequencer", sys_def_client)
#
define real-time sequence (Optional)
...
#
compile the sequence
hvi = sequencer.compile()
#
**
Deploy and Execute on Hardware
#
Deploy to hardware and initialize
hvi.load_to_hw()
#
(optional) Run real-time sequence
hvi.run(hvi.no_timeout)
#
When done - Release hardware
hvi.release_hw()

Find us at www.keysight.com Page 93

System Setup Guide 8. System initialization with TSE Service and Multi-Host
support

9. System Troubleshooting
This section contains explanations to troubleshoot common setup issues or resolve common error
messages returned during the execution of your application.

If an error occurs while you are running HVI, an error message is typically displayed on the console.
This message can originate in either:

l HVI itself.

l One of the components that HVI controls.

In the second case, HVI outputs a message identifying the instrument and process that generated the
error, prefixing the error itself by the string Product error for easy identification.

NOTE If an error message includes Product Error, to ensure the best and fastest service,
report the problem directly to the support representatives for the relevant product,
for example Chassis, HPRCS, SSM or Instruments.

9.1. Troubleshooting tips
When you are using more than 1 chassis, you must:

l Use the latest chassis driver and firmware.

l Specify the connections between the chassis in the TSE API.

Chassis numbering

l Ensure your chassis are numbered from 1 upwards.

The PXI standard does not permit chassis to be numbered as 0. If this happens, it indicates
there has been an incorrect installation of the firmware, PXI chassis driver, software, or PXI
resource manager.

Ensure you are using correct firmware and software components

l For PathWave Test Sync Executive to work correctly, the PXI chassis, firmware, driver, software,
and PXI Resource Manager must be all be installed correctly, regardless of the chassis vendor.

Compatibility requirements for PathWave test Sync Executive are listed at Instrument
Software and Firmware Requirements for KS2201A.

Using non-Keysight chassis with PathWave Test Sync Executive

l Keysight recommends you use PathWave Test Sync Executive with Keysight chassis. It is It is
possible to use non-Keysight chassis with the following limitations:

Find us at www.keysight.com Page 94

System Setup Guide 9. System Troubleshooting

https://www.keysight.com/find/ks2201a-firmware-version-requirements
https://www.keysight.com/find/ks2201a-firmware-version-requirements

a. Only a single PXIe chassis is supported if you are using a non-Keysight chassis. Multi-chassis
operation requires the recommended Keysight PXIe Chassis.

b. The proper PXIe resource manager and chassis VISA driver installation is required.

c. PathWave Test Sync Executive has not been validated with non-Keysight PXIe chassis, if you
encounter any issues, contact Keysight support.

Using non-Keysight chassis with Keysight Instruments and PathWave Test Sync Executive

l Check the documentation of each PXI instrument that you are using with PathWave Test Sync
Executive, to ensure they comply with the instrument limitations on compatibility with non-
Keysight chassis or controllers.

9.2. Generic troubleshooting procedure
Common courses of action to resolve errors are described in the following tables. If the error is not
listed or the proposed action does not solve the problem, follow these steps:

1. Rerun the system initialization forcing FULL initialization => my_system.initialize(keysight_
tse.AlignmentModes.FULL)

2. If the error persists, power cycle the complete hardware setup and run the system initialization
forcing FULL initialization.

3. If the error still persists, and as a very last resort, consider running a FULL initialization with RESET_

CALIBRATION => my_system.initialize(keysight_tse.AlignmentModes.FULL | keysight_tse.AlignmentModes.RESET_

CALIBRATION)

WARNING: Resetting the system calibration in this way will in turn also force you to rerun the
SystemWarm-up and Calibration procedure described above, which for some instruments
requires to redo the User calibration. So observe extreme caution when doing this to avoid costly
and time-consuming recalibration.

9.3. Error messages and troubleshooting guide
The following tables collect common error messages and explain the most common causes of the
underlaying issue and how to solve it.

Find us at www.keysight.com Page 95

System Setup Guide 9. System Troubleshooting

https://support.keysight.com/

9.3.1. System Setup Errors

Error message Explanation
Common causes and possible

fixes

Chassis with number n not found
Adding chassis n to the
SystemDefinition

using add_chassis fails.

PXIe cable to chassis n is not plugged in.
Chassis n is not powered up.
Chassis n was not discovered during PC
host boot-up.

IVI ERROR: library:KtM9032x_64.dll,
error_code:x - Invalid session ID (VI_
NULL).

No error message could be retrieved.
Please check the documentation

Adding an SSM to the
SystemDefinition

using add_sync_module fails.

There is no SSM in the SSM slot of at
least one chassis.
One of the SSM being used in not
recognized as an HW by the PC/chassis
controller. Check Connection Expert to
confirm if this is the root cause. Try
power cycling to solve it.
The SFP of at least one SSM is open
when it shouldn't be.

ERROR: Only leader Sync Module can be
configured as clock source; leader
cellini is connected to chassis n

Setting the clock source to be
an SSM other than the SSM in
leader chassis n.

Set the leader SSM (with no SSM
connected to its upstream System Sync
port) to be the clock source.

ERROR: Chassis Clock Source can only
be used in the chassis where the leader
Sync Module is connected; clock source
chassis is n and leader Sync Module
chassis is n

Setting the clock source to be
a chassis other than the leader
chassis n.

Only the leader chassis hosting the
leader SSM can be set to be a clock
source

Chassis only supports 10MHz external
reference. Please set an external
reference frequency of 10MHz when using
a chassis clock source as a reference

The frequency of the external
reference for the chassis is
incorrectly set using set_mode

() when using the chassis as a
clock source.

Set the frequency of the external
reference clock to 10 MHz.

Chassis n doesn't support High
Performance Clock Source

Leader chassis n is not an
M9046A with HPRCS. This is
required to set the clock
source to HPRCS.

Replace leader chassis n with a chassis
containing an HPRCS.

Find us at www.keysight.com Page 96

System Setup Guide 9. System Troubleshooting

Error message Explanation
Common causes and

possible fixes

Kt9546x: wait reference clock set mode fails.: Please
check the physical connection between Chronos and its
clock source

Incorrect external
reference clock
for the HPRCS in
the leader chassis.

Reference clock set to the
incorrect frequency.
HPRCS Ref In input not
connected.
Double check the external
reference clock source going into
the HPRCS.

Hardware Error: Kt9546 Pll is not locked

M9546 fails to
lock to the
external reference
clock when using
HPRCS as clock
source.

Power cycle the chassis to reset
the M9546 HPRCS
Make sure to install the latest
M9546 HPRCS driver available on
www.keysight.com.
Check if the HPRCS OCXO is
damaged by using the chassis SFP
(see M9046 chassis
documentation).
If the issue persists, please open
the M9546A SFP and try running a
Utilities->Self Test. If this does not
solve the issue, please share the
self-test results with customer
support.
If the OCXO appears to be
damaged or the issue persists,
please reach out to Keysight
support at
https://support.keysight.com/ to
send the chassis for repair.

Chassis's route error from trigger line XX in bus
segment YY to trigger line 0 in trigger bus segment 1:
IVI-C driver error[xxx]: The chassis generated an
error: INTERNAL_SW: Unexpected internal software error.
Error code (hex): 0xbffa0018 from method set_route_ext_
bus_mode

The chassis driver
you are using is
out of date

Please install the latest chassis
driver from the chassis webpage
on www.keysight.com

Error opening IVI driver for chassis M9044 -
PXI::BACKPLANEIVI ERROR: library:KtPxiChassis_64.dll,
error_code: xxxx - Invalid session ID (VI_NULL)...
Please check the documentation

The EEPROM of
the M9046
chassis is
programmed as
M9044 by mistake

Please reach out to Keysight
support at
https://support.keysight.com/ to
receive instructions about how to
correctly reprogram the chassis
EEPROM

Find us at www.keysight.com Page 97

System Setup Guide 9. System Troubleshooting

http://www.keysight.com./
https://support.keysight.com/
http://www.keysight.com/
https://support.keysight.com/

9.3.2. Initialization errors

Error message Explanation
Common causes and possible

fixes

operation "Link Initialization" failed:

FdsConnectorAdapter::initializeConnectivity:

Module info: Chassis n, Slot 10, HVI version

x, Firmware version y.

Product error: The SystemSyncUp_x8 port is not

hooked up.

FdsConnectorAdapter::initializeConnectivity:

Module info: Chassis m, Slot 10, HVI version

x, Firmware version y.

Product error: The SystemSyncDown_x8 port(s)

is not hooked up

FDS System Sync link
initialization failed.

System Sync cable connecting the
SSMs in chassis m and n is missing
(downstream s of SSM m to upstream
of SSM n).

operation "LinkAlignment" failed: Could not
align link
CHASSIS#n:SLOT#10::PxiBackplane#0:Port#s:Tx ->

CHASSIS#n:SLOT#m::PxiBackplane#0:Port#0:Rx.
FdsConnectorAdapter::finishAlignment: Module
info: Chassis n, Slot m, HVI version x,

Firmware version y.
Product error: Required Pipe Select for DstarB
of -5 exceeds expected max value of 7. Latency

of bank 10. Latency count 15
Could not align link
CHASSIS#n:SLOT#m::PxiBackplane#0:Port#0:Tx ->

CHASSIS#n:SLOT#10::PxiBackplane#0:Port#s:Rx.
FdsConnectorAdapter::finishAlignment: Module
info: Chassis n, Slot 10, HVI version x,

Firmware version y.
Product error: FDS measured latency count
larger than expected fixed latency count

FDS DSTARB/C link
initialization between
SSM n and the
instrument in chassis n
slot m failed.

Power cycling the hardware setup
should fix this. If the error persists
then it might be a hardware error that
you should report to Keysight.

Hardware Error: Chassis n is not locked to

SyncModule clock
-

Power cycling the hardware setup
should fix this. If the error persists
then it might be a hardware error that
you should report to Keysight.

Find us at www.keysight.com Page 98

System Setup Guide 9. System Troubleshooting

Initialization errors (continued)

The following SSMmessages are of similar nature and are all preceded by the chassis number the
SSM is in, the failing function call and the HVI and FW versions:

Error message Explanation
Common causes and

possible fixes

Product error: PLL unlocked after MMCM input phase
adjustment

The leader SSM in
chassis n fails to lock to
the Ref1Out reference
from the chassis front
panel.
The leader SSM in
chassis n fails to lock to
the external reference
clock.

Cable is not connected, or it is
connected to the incorrect
SMA output.
The external reference clock is
missing.

Product error: Unable to lock to REF_IN. Verify clock
configuration and cabling and re-run the test. Refer
to the KS2201A PathWave Test Sync Executive System
Setup Guide for further guidance

Rear 10 MHz chassis n
REF IN BNC input is not
present.
Leader SSM n Ref In
input is not connected.

The external reference clock
has the incorrect frequency.
This is usually because of
missing external clocks, cabling
issues, or an incorrect
frequency setting. Check all of
these.

Product error: Unable to lock to System Sync FWD_CLK.
(Same as above ...) -

Follower SSM n upstream
System Sync connection fails.

Product error: Unable to lock the internal OCXO
source. (Same as above ...) -

This indicates a hardware issue
because we should always be
able to lock to the internal
OCXO.

Product error: Unsupported reference frequency. Only
10MHz and 100MHz supported -

Incorrect reference frequency
specified.

Find us at www.keysight.com Page 99

System Setup Guide 9. System Troubleshooting

Initialization errors (continued)

Error message Explanation
Common causes and

possible fixes

Product error: LMKCLKout11 phase measurement
out of range. Verify clock configuration and
cabling and re-run the test. Refer to the
KS2201A PathWave Test Sync Executive System
Setup Guide for further guidance

The SSMmight have
applied an incorrect
calibration, or a
calibration calculated
for a different
configuration.

Check if the HPRCS cable is
correctly connected to the SSM Ref
In Check if you are using an
incorrect SMA output instead of the
HPRCS output.
Try to run a FULL initialization with
RESET_CALIBRATION => my_
system.initialize(keysight_
tse.AlignmentModes.FULL |
keysight_
tse.AlignmentModes.RESET_
CALIBRATION).
If this does not solve the issue, try
power cycling the hardware and
rerunning the test.
If the error persists then it might
indicate a hardware issue.

Product error: PLL unlocked after LMKCLKout11
phase adjustment. (Same as above ...)

Product error: PLL unlocked after
DSTARA/CK100_STM phase adjustment. (Same as
above ...)

Product error: FPGA_10M phase alignment to
CLK100_STM failed. (Same as above ...)

Product error: PXIe_SYNC100 alignment to
Sync100_Base failed. (Same as above ...)

Find us at www.keysight.com Page 100

System Setup Guide 9. System Troubleshooting

Initialization errors (continued)

Error message Explanation

The base frequency required by application (XXX Hz) is
not compatible with system alignment base frequency
(YYY Hz) as configured by TSE Service. In case you are
using a sub-topology, make sure to set the flag
'support_client_subtopologies' to true. Please update TSE
Service system_definition.yml to include the application
configuration/requirements.

In a Leader-Follower mode, the client application, that
is connected to a TSE Service leader node, may have a
Sync Base frequency that is not an integer multiple of
the Sync Base frequency of the system represented by
the TSE Service.

Common causes and possible fixes

Possible reasons that can lead to the calculation of an Sync frequency by the client application that is incompatible with that
of the system are the following:
1. Engines added only to the client application with distinct core frequencies

2. The client application is using a subtopology of the system defined on the Leader system_
definition.yml and this leads to a distinct physical propagation delay

To resolve this issue, the user needs to update the system_definition.yml on the Leader node. Depending on the reason
above, the user will need to:
For 1:

l add the instruments used in the client application in the system_definition.yml file

l or, add the sync base frequency required by the application in the non_hvi_system_clocks list of the
system_definition.yml

For 2:

l enable the support for subtopologies by specifying in the system_definition.yml file the following
option:

support_client_subtopologies: true

Find us at www.keysight.com Page 101

System Setup Guide 9. System Troubleshooting

9.3.3. Rare SSM errors (preceded by the chassis number the SSM is in, the failing function
call and the HVI and FW versions)

Error message Explanation
Common causes and

possible fixes

Product error: PXIe_CLK10 phase measurement out of

range. Verify clock configuration and cabling and re-

run the test. Refer to the KS2201A PathWave Test Sync

Executive System Setup Guide for further guidance

Other similar messages:

Product error: FPGA_10M phase detection failed. (Same

as above ...)

Product error: FPGA_10M phase unstable. (Same as above

...)

Product error: PXIe_CLK10 phase out of range. (Same as

above ...)

Product error: PXIe_CLK10 phase adjustment failed.

(Same as above ...)

-

These errors are usually resolved by
rerunning the test. If the error
persist, try to power cycle the
hardware setup. If it still persists,
please contact Keysight.

9.4. Frequently Asked Questions (FAQs)
Q: I cannot see any Analog output from the M9046 Chassis Front Panel (FP) 2.4 GHz output
connector. How can I solve it?

A: Please make sure that your application is using the TSE API code lines explained in the section
"Enabling the chassis Analog clock" to activate the 2.4 GHz reference on the M9046 FP. Moreover
make sure you use the HV API code lines exaplined in the section "Configuring the Analog Clock
Source in Instruments" to make sure your instruments are set to use the external 2.4 GHz reference
instead of any reference internal to the instrument.

Q: I am receiving errors that point to a missing clock cable connection but the cable seems to be
there. How can I troubleshoot it?

A: Please inspect the cable connection and the cable connectors. Not fully plugged cables or
damaged connectors can cause the error to show up even if the cable seems to be there at a first
look.

Q: How can I troubleshoot the error message "Hardware Error: Kt9546 Pll is not locked"?

A: 0) Power cycle the chassis to reset the M9546 HPRCS and check if it solves the problem 1) Please
install the latest M9546 driver from the chassis tech support webpage on www.keysight.com. 2) By

Find us at www.keysight.com Page 102

System Setup Guide 9. System Troubleshooting

#SystemSetupGuide-EnablingthechassisAnalogclock
#SystemSetupGuide-ConfiguringtheAnalogClockSourceinInstruments
#SystemSetupGuide-ConfiguringtheAnalogClockSourceinInstruments
http://www.keysight.com./

using the PXIe Chassis SFP please set the clock source to HPRCS and check if the "Reference clock
status" is Locked. 3) If the issue persists, please open the M9546A SFP and try running a Utilities-
>Self Test. If this does not solve the issue, please share the self-test results with customer support 4)
If the HPRCS clock source cannot be locked from the chassis SFPor the self-test do not solve the
issue as explained in steps 2)-3), please contact Keysight support at https://support.keysight.com/
to check if the HPRCS OCXO is damaged and may need replacement or any other possible solution
for this issue.

Find us at www.keysight.com Page 103

System Setup Guide 9. System Troubleshooting

https://support.keysight.com/

10. How to Use HVI Logs to Report an Issue

PathWave Test Sync Executive comes with an integrated logger that you can use for troubleshooting.

The HVI Logger is aimed at producing information that is useful for support engineers. It provides
information that is additional to the Sequence Representation output.

The logger has the following features:

l The level of logging is configurable.

l You can force flush messages.

l The output can be configured to go to the console or to an output file.

l You can configure the logger from environment Variables or in a .env configuration file.

l You can instruct some instruments to produce logs.

The logger can produce the following levels of logging information, where each level also includes all
the information in the levels below it:

Logger
level

Description

Trace Produces trace information that is useful to support engineers.

Debug
Produces debug information that is useful to support engineers. This level also provides the Sequence
Representation output.

Info Produces generally useful information.

Warning Logs anything that can potentially cause application oddities, but are automatically recovered.

Error Logs any errors that are fatal to an operation, but not the service or application.

Fatal Logs any errors that forces a shutdown of the application.

Off Does not log anything.

Find us at www.keysight.com Page 104

System Setup Guide 10. How to Use HVI Logs to Report an Issue

../../System_Setup_Guide/HTML/Sequence_Representation.htm
../../System_Setup_Guide/HTML/Sequence_Representation.htm
../../System_Setup_Guide/HTML/Sequence_Representation.htm

10.1. Logger Configuration
The logger is configured with environment Variables. The following table describes the Variables:

Environment
Variable

Values Description

HVI_LOGGER_

LEVEL

l Trace

l Debug

l Info

l Warning

l Error

l Fatal

l Off

This value indicates the level of information printed to the log.

The information printed out contains the information for the level
specified and all of the levels below it. For example, if the level is
set to Debug, all messages except Trace are printed to the log.

By default, the level is set to Error, so only Error and Fatal are
printed.

HVI_LOGGER_

OUTPUT_PATH

Any existing
valid path in
your system,
For example:
C:\tmp

This Variable disables console output and tells the logger to save
the log to a file at the specified location.

The file with the log messages is called: HVILog_hviLogger_[num1]_

[num2].log ,

where num1 is the date and time, and num2 is the thread ID.

HVI_LOGGER_

FORCE_FLUSH
1 or 0

This Variable forces the log messages to be flushed to the output
every time a message is logged. Enable this if you want to
troubleshoot a program that is crashing, so that all messages
before the crash shall be written. Do not enable this option in
any other cases, because it impacts the performance of the
execution.

HVI_LOGGER_
EXTENDED

"*", "ALL", or a
comma
separated
list.

For example:

M9032,M9546

This Variable enables the logging output of instruments
managed by HVI.

An output file for each instrument is generated in the path
specified with HVI_LOGGER_OUTPUT_PATH .

The file is saved as:

{MODEL}_{Chassis Slot for M903x}_{date}.log

See the section Logger Extended mode Supported Instruments
for a list of supported instruments.

Find us at www.keysight.com Page 105

System Setup Guide 10. How to Use HVI Logs to Report an Issue

NOTE By default the configuration for the logger is:

l Logging level: Error.

l Output: console.

l Force flush: disabled.

l Logger Extended: disabled.

10.2. .env Configuration File
The logger configuration can be also configured from a .env file. The configuration values are stored
in the file as KEY=VALUE pairs and you can use # for comments.

The .env file must be located in the same folder as the HVI script to be executed. HVI parses the .env

file and sets all the environment Variables found for that script.

The following shows an example .env file:

.env

The hvi logger level: Trace, Debug, Info, Warning, Error, Fatal, Off.
HVI_LOGGER_LEVEL=Fatal
#
Set this parameter to write the logs to a file instead of being printed to the console
HVI_LOGGER_OUTPUT_PATH=C:\tmp\hviLogs
#
Set this parameter to force flush the log every new line instead of doing it at the end.
This helps you to identify the line of code before a crash.
HVI_LOGGER_FORCE_FLUSH=0
#
Activates the Logger for all HVI controlled instruments. The supported models are the
System Synchronization Modules (M9032,M9033), the High Performance Reference Clock Source, (M9546)
or "ALL"
HVI_LOGGER_EXTENDED=ALL

10.3. Logger Extended mode Supported Instruments
PathWave Test Sync Executive can control a number of different instruments. The environment
Variable HVI_LOGGER_EXTENDED activates logging output from the instruments that support it. The way
the logs are produced depends on the instruments, some instruments produce individual log files
whereas other instruments combine log files together into a single file.

The supported models for release 2023B are:

Model Description

M9546x High Performance Reference Clock Source

M9032, M9033 System Synchronization Modules

Find us at www.keysight.com Page 106

System Setup Guide 10. How to Use HVI Logs to Report an Issue

NOTE Some Instruments, like the Keysight M5000 PXIe family for example, might include
native logging facilities that cannot be controlled by PathWave Test Sync Executive,
for more information, see your instrument documentation.

10.4. Recommended Logger settings for contacting support
If you require support for PathWave Test Sync Executive, a log file will help the support team to
rapidly diagnose any problems.

If you want to contact support, first generate a log with the following settings:

l HVI_LOGGER_LEVEL=Trace

l HVI_LOGGER_FORCE_FLUSH=1

l HVI_LOGGER_OUTPUT_PATH=C:\Logs or another path 1

1 The path must be an existing valid path.

Find us at www.keysight.com Page 107

System Setup Guide 10. How to Use HVI Logs to Report an Issue

This information is subject to change

without notice.

© Keysight Technologies 2023

Edition 2023B_U0_00, September, 2023

Printed in USA

KS2201-90009

www.keysight.com

http://www.keysight.com/

	System Setup Guide
	1. Software Install
	2. Keysight System Synchronization Modules (SSM)
	2.1. M9032A and M9033A PXIe SSM Overview
	2.2. M9032A and M9033A Connectivity
	2.2.1. Front Panel
	2.2.2. System Sync ports
	2.2.3. PXIe Backplane DSTAR Connectivity

	2.3. Inter/Intra-chassis connectivity, Synchronization and Data-Sharing Funct...

	3. Configuring a System with SSMs and System Sync Connectivity
	3.1. Multi-chassis Configuration
	3.2. Chassis Supported for Multi-Chassis Systems

	4. Clocking
	4.1. Clock Types
	4.1.1. Reference Clock
	4.1.2. System Clocks
	4.1.3. Analog Clocks
	4.1.4. Sample Clocks

	4.2. System Clock Distribution using SSM and System Sync connectivity
	4.3. Enabling chassis clock outputs
	4.4. Overview of Supported Clocking Schemes
	4.4.1. Clocking schemes without External Analog Clock distribution
	4.4.2. Clocking schemes with External Analog Clock distribution using M904xA ...

	5. Clocking Configurations without External Analog Clock distribution
	5.1. Single-chassis w/o SSM (Scheme A)
	5.2. Single/multiple chassis w/SSMs (Scheme B)
	5.2.1. Configuring the SSM as the System Clock source
	5.2.2. Configuring the SSM to explicitly use internal OCXO or external refere...

	6. Clocking Configurations with External Analog Clock distribution
	6.1. Chassis options for Analog clock generation and distribution
	6.2. M9046A Front Panel Clocking IO overview
	6.2.1. M9046A -QS0 Chassis with no HPRCS and no Analog clock splitters
	6.2.2. M9046A -QS2 Chassis with no HPRCS, with Analog clock splitters
	6.2.3. M9046A -QS1/3 Chassis with HPRCS and with Analog clock splitters

	6.3. Single/multiple chassis (M904xA w/o HPRCS) with External Analog clocks a...
	6.3.1. Configuring the M904xA as the system and analog clock source
	6.3.2. Configuring the M9046A to use the external reference clock

	6.4. Single/multiple chassis with HPRCS, External Analog clocks and SSMs (Sch...
	6.4.1. Configuring the M9046A + HPRCS as the system and analog clock source
	6.4.2. Configuring the M9046A + HPRCS to use an external reference clock

	6.5. Enabling chassis analog clock output
	6.6. Enabling the External Analog Clock Source for Instruments
	6.7. Analog clock distribution guidelines
	6.8. Notes on the selection of the best analog clock source for instruments

	7. System Initialization
	7.1. Example of System Initialization and Operation
	7.1.1. System Warm-up and Calibration
	7.1.2. Normal Operation

	8. System initialization with TSE Service and Multi-Host support
	8.1. TSE Service Overview
	8.1.1. TSE Service Running Modes

	8.2. KDI Overview
	8.2.1. KDI Authentication Service (KDIS)
	8.2.2. KDI Clients

	8.3. TSE Service and KDI installation
	8.3.1. TSE Service installation
	8.3.2. KDI Installation
	8.3.3. Configure the KDI infrastructure and Authentication Service

	8.4. TSE Service execution
	8.4.1. Automatic TSE Service Execution at boot-up with KDI (recommended)
	8.4.2. Manual TSE Service Execution (without KDI)
	8.4.3. TSE Service Log output
	8.4.4. Shutting Down TSE Service
	8.4.5. Additional command line options
	8.4.6. Checking the state of the TSE Service with a Client Application

	8.5. Resource IDs for Accessing Remote Resources
	8.5.1. TSE Resource IDs to access Chassis, SSMs and TSE Service instances
	8.5.2. KDI Resource ID to open instruments
	8.5.3. Building the correct Remote Resource ID for multiple access
	8.5.4. Using remote instruments HVI engines in user application
	8.5.5. Handling Application Crash and Resource Locking

	8.6. TSE Service Free-Running Mode
	8.6.1. TSE Service configuration for Free-Running mode (tse_config.yml)
	8.6.2. Free-Running mode configuration example
	8.6.3. User application with TSE Service in Free-Running mode

	8.7. TSE Service Leader-Follower Mode
	8.7.1. TSE Service configuration for Leader-Follower
	8.7.2. TSE Service Leader licensing requirements
	8.7.3. Leader-Follower mode configuration example
	8.7.4. User application with TSE Service in Leader-Follower mode

	9. System Troubleshooting
	9.1. Troubleshooting tips
	9.2. Generic troubleshooting procedure
	9.3. Error messages and troubleshooting guide
	9.3.1. System Setup Errors
	9.3.2. Initialization errors
	9.3.3. Rare SSM errors (preceded by the chassis number the SSM is in, the fai...

	9.4. Frequently Asked Questions (FAQs)

	10. How to Use HVI Logs to Report an Issue
	10.1. Logger Configuration
	10.2. .env Configuration File
	10.3. Logger Extended mode Supported Instruments
	10.4. Recommended Logger settings for contacting support

