
PathWave
Test Sync Executive 2023B

User Manual

USER MANUAL

Notices

Copyright Notice

© Keysight Technologies 2020-2023

No part of this manual may be reproduced in

any form or by any means (including elec-

tronic storage and retrieval or translation

into a foreign language) without prior agree-

ment and written consent from Keysight

Technologies, Inc. as governed by United

States and international copyright laws.

Manual Part Number

KS2201-90000

Published By

Keysight Technologies

1400 Fountaingrove Parkway

Santa Rosa,

CA 95403-1738

Edition

Edition 2023B_U0_00, September, 2023

Keysight Technologies, USA

Regulatory Compliance

This product has been designed and tested

in accordance with accepted industry stand-

ards, and has been supplied in a safe con-

dition. To review the Declaration of

Conformity, go to http://www.key-

sight.com/go/conformity.

Warranty

THE MATERIAL CONTAINED IN THIS

DOCUMENT IS PROVIDED “AS IS,” AND IS

SUBJECT TO BEING CHANGED, WITHOUT

NOTICE, IN FUTURE EDITIONS. FURTHER,

TO THE MAXIMUM EXTENT PERMITTED BY

APPLICABLE LAW, KEYSIGHT DISCLAIMS

ALL WARRANTIES, EITHER EXPRESS OR

IMPLIED, WITH REGARD TO THIS MANUAL

AND ANY INFORMATION CONTAINED

HEREIN, INCLUDING BUT NOT LIMITED TO

THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE. KEYSIGHT SHALL

NOT BE LIABLE FOR ERRORS OR FOR

INCIDENTAL OR CONSEQUENTIAL

DAMAGES IN CONNECTION WITH THE

FURNISHING, USE, OR PERFORMANCE OF

THIS DOCUMENT OR OF ANY

INFORMATION CONTAINED HEREIN.

SHOULD KEYSIGHT AND THE USER HAVE A

SEPARATE WRITTEN AGREEMENT WITH

WARRANTY TERMS COVERING THE

MATERIAL IN THIS DOCUMENT THAT

CONFLICT WITH THESE TERMS, THE

WARRANTY TERMS IN THE SEPARATE

AGREEMENT SHALL CONTROL.

KEYSIGHT TECHNOLOGIES DOES NOT

WARRANT THIRD-PARTY SYSTEM-LEVEL

(COMBINATION OF CHASSIS,

CONTROLLERS, MODULES, ETC.)

PERFORMANCE, SAFETY, OR REGULATORY

COMPLIANCE, UNLESS SPECIFICALLY

STATED.

Technology Licenses

The hardware and/or software described in

this document are furnished under a license

and may be used or copied only in accord-

ance with the terms of such license.

U.S. Government Rights

The Software is “commercial computer soft-

ware,” as defined by Federal Acquisition

Regulation (“FAR”) 2.101. Pursuant to FAR

12.212 and 27.405-3 and Department of

Defense FAR Supplement (“DFARS”)

227.7202, the U.S. government acquires

commercial computer software under the

same terms by which the software is cus-

tomarily provided to the public. Accordingly,

Keysight provides the Software to U.S. gov-

ernment customers under its standard com-

mercial license, which is embodied in its End

User License Agreement (EULA), a copy of

which can be found at http://www.key-

sight.com/find/sweula. The license set forth in

the EULA represents the exclusive authority

by which the U.S. government may use,

modify, distribute, or disclose the Software.

The EULA and the license set forth therein,

does not require or permit, among other

things, that Keysight: (1) Furnish technical

information related to commercial computer

software or commercial computer software

documentation that is not customarily

provided to the public; or (2) Relinquish to,

or otherwise provide, the government rights

in excess of these rights customarily

provided to the public to use, modify, repro-

duce, release, perform, display, or disclose

commercial computer software or com-

mercial computer software documentation.

No additional government requirements bey-

ond those set forth in the EULA shall apply,

except to the extent that those terms, rights,

or licenses are explicitly required from all pro-

viders of commercial computer software pur-

suant to the FAR and the DFARS and are set

forth specifically in writing elsewhere in the

EULA. Keysight shall be under no obligation

to update, revise or otherwise modify the

Software. With respect to any technical data

as defined by FAR 2.101, pursuant to FAR

12.211 and 27.404.2 and DFARS 227.7102,

the U.S. government acquires no greater

than Limited Rights as defined in FAR 27.401

or DFAR 227.7103-5 (c), as applicable in any

technical data.

Safety Notices

A CAUTION notice denotes a hazard. It calls

attention to an operating procedure, practice,

or the like that, if not correctly performed or

adhered to, could result in damage to the

product or loss of important data. Do not pro-

ceed beyond a CAUTION notice until the

indicated conditions are fully understood and

met.

Page iii

http://www.keysight.com/go/conformity
http://www.keysight.com/go/conformity
http://www.keysight.com/find/sweula
http://www.keysight.com/find/sweula

A WARNING notice denotes a hazard. It calls

attention to an operating procedure, prac-

tice, or the like that, if not correctly per-

formed or adhered to, could result in

personal injury or death. Do not proceed bey-

ond a WARNING notice until the indicated

conditions are fully understood and met.

The following safety precautions should be

observed before using this product and any

associated instrumentation.

This product is intended for use by qualified

personnel who recognize shock hazards and

are familiar with the safety precautions

required to avoid possible injury. Read and

follow all installation, operation, and main-

tenance information carefully before using

the product.

If this product is not used as specified, the

protection provided by the equipment could

be impaired. This product must be used in a

normal condition (in which all means for pro-

tection are intact) only.

The types of product users are:

l Responsible body is the individual or
group responsible for the use and main-
tenance of equipment, for ensuring that
the equipment is operated within its spe-
cifications and operating limits, and for
ensuring operators are adequately
trained.

l Operators use the product for its inten-
ded function. They must be trained in
electrical safety procedures and proper
use of the instrument. They must be pro-
tected from electric shock and contact
with hazardous live circuits.

l Maintenance personnel perform routine
procedures on the product to keep it
operating properly (for example, setting
the line voltage or replacing consumable
materials). Maintenance procedures are

described in the user documentation.
The procedures explicitly state if the
operator may perform them. Otherwise,
they should be performed only by ser-
vice personnel.

l Service personnel are trained to work on
live circuits, perform safe installations,
and repair products. Only properly
trained service personnel may perform
installation and service procedures.

Operator is responsible to maintain safe

operating conditions. To ensure safe oper-

ating conditions, modules should not be

operated beyond the full temperature range

specified in the Environmental and physical

specification. Exceeding safe operating con-

ditions can result in shorter lifespans,

improper module performance and user

safety issues. When the modules are in use

and operation within the specified full tem-

perature range is not maintained, module

surface temperatures may exceed safe hand-

ling conditions which can cause discomfort

or burns if touched. In the event of a module

exceeding the full temperature range,

always allow the module to cool before

touching or removing modules from chassis.

Keysight products are designed for use with

electrical signals that are rated Meas-

urement Category I and Measurement Cat-

egory II, as described in the International

Electrotechnical Commission (IEC) Standard

IEC 60664. Most measurement, control, and

data I/O signals are Measurement Category

I and must not be directly connected to

mains voltage or to voltage sources with

high transient over-voltages. Measurement

Category II connections require protection

for high transient over-voltages often asso-

ciated with local AC mains connections.

Assume all measurement, control, and data

I/O connections are for connection to

Category I sources unless otherwise marked

or described in the user documentation.

Exercise extreme caution when a shock haz-

ard is present. Lethal voltage may be present

on cable connector jacks or test fixtures. The

American National Standards Institute

(ANSI) states that a shock hazard exists

when voltage levels greater than 30V RMS,

42.4V peak, or 60VDC are present. A good

safety practice is to expect that hazardous

voltage is present in any unknown circuit

before measuring.

Operators of this product must be protected

from electric shock at all times. The respons-

ible body must ensure that operators are pre-

vented access and/or insulated from every

connection point. In some cases, con-

nections must be exposed to potential

human contact. Product operators in these

circumstances must be trained to protect

themselves from the risk of electric shock. If

the circuit is capable of operating at or above

1000V, no conductive part of the circuit may

be exposed.

Do not connect switching cards directly to

unlimited power circuits. They are intended

to be used with impedance-limited sources.

NEVER connect switching cards directly to

AC mains. When connecting sources to

switching cards, install protective devices to

limit fault current and voltage to the card.

Before operating an instrument, ensure that

the line cord is connected to a properly-

grounded power receptacle. Inspect the con-

necting cables, test leads, and jumpers for

possible wear, cracks, or breaks before each

use.

When installing equipment where access to

the main power cord is restricted, such as

rack mounting, a separate main input power

disconnect device must be provided in close

proximity to the equipment and within easy

reach of the operator.

Page iv

For maximum safety, do not touch the

product, test cables, or any other instru-

ments while power is applied to the circuit

under test. ALWAYS remove power from the

entire test system and discharge any capa-

citors before: connecting or disconnecting

cables or jumpers, installing or removing

switching cards, or making internal changes,

such as installing or removing jumpers.

Do not touch any object that could provide a

current path to the common side of the cir-

cuit under test or power line (earth) ground.

Always make measurements with dry hands

while standing on a dry, insulated surface

capable of withstanding the voltage being

measured.

The instrument and accessories must be

used in accordance with its specifications

and operating instructions, or the safety of

the equipment may be impaired.

Do not exceed the maximum signal levels of

the instruments and accessories, as defined

in the specifications and operating inform-

ation, and as shown on the instrument or

test fixture panels, or switching card.

When fuses are used in a product, replace

with the same type and rating for continued

protection against fire hazard.

Chassis connections must only be used as

shield connections for measuring circuits,

NOT as safety earth ground connections.

If you are using a test fixture, keep the lid

closed while power is applied to the device

under test. Safe operation requires the use of

a lid interlock.

Instrumentation and accessories shall not be

connected to humans.

Before performing any maintenance, dis-

connect the line cord and all test cables.

To maintain protection from electric shock

and fire, replacement components in mains

circuits – including the power transformer,

test leads, and input jacks – must be pur-

chased from Keysight. Standard fuses with

applicable national safety approvals may be

used if the rating and type are the same.

Other components that are not safety-

related may be purchased from other sup-

pliers as long as they are equivalent to the

original component (note that selected parts

should be purchased only through Keysight

to maintain accuracy and functionality of the

product). If you are unsure about the applic-

ability of a replacement component, call an

Keysight office for information.

No operator serviceable parts inside. Refer

servicing to qualified personnel. To prevent

electrical shock do not remove covers. For

continued protection against fire hazard,

replace fuse with same type and rating.

PRODUCT MARKINGS:

The CE mark is a registered trademark of the

European Community.

Australian Communication and Media

Authority mark to indicate regulatory com-

pliance as a registered supplier.

This symbol indicates product compliance

with the Canadian Interference-Causing

Equipment Standard (ICES-001). It also iden-

tifies the product is an Industrial Scientific

and Medical Group 1 Class A product (CISPR

11, Clause 4).

South Korean Class A EMC Declaration. This

equipment is Class A suitable for pro-

fessional use and is for use in elec-

tromagnetic environments outside of the

home. A급기기 (업무용방송통신기자재)

이기기는업무용 (A급)전자파적합기기로

서판매자또는사용자는이점을주의하시

기바라며 ,가정외의지역에서사용하는것

을목적으로합니다.

This product complies with the WEEE Dir-

ective marketing requirement. The affixed

product label (above) indicates that you

must not discard this electrical/electronic

Page v

product in domestic household waste.

Product Category: With reference to the

equipment types in the WEEE directive

Annex 1, this product is classified as “Mon-

itoring and Control instrumentation”

product. Do not dispose in domestic house-

hold waste. To return unwanted products,

contact your local Keysight office, or for

more information see http://-

about.key-

sight.-

com/en/companyinfo/environment/takeback.shtml.

This symbol indicates the instrument is sens-

itive to electrostatic discharge (ESD). ESD

can damage the highly sensitive components

in your instrument. ESD damage is most

likely to occur as the module is being

installed or when cables are connected or

disconnected. Protect the circuits from ESD

damage by wearing a grounding strap that

provides a high resistance path to ground.

Alternatively, ground yourself to discharge

any built-up static charge by touching the

outer shell of any grounded instrument

chassis before touching the port connectors.

This symbol on an instrument means cau-

tion, risk of danger. You should refer to the

operating instructions located in the user

documentation in all cases where the symbol

is marked on the instrument.

This symbol indicates the time period during

which no hazardous or toxic substance ele-

ments are expected to leak or deteriorate

during normal use. Forty years is the expec-

ted useful life of the product.

Page vi

http://about.keysight.com/en/companyinfo/environment/takeback.shtml
http://about.keysight.com/en/companyinfo/environment/takeback.shtml
http://about.keysight.com/en/companyinfo/environment/takeback.shtml
http://about.keysight.com/en/companyinfo/environment/takeback.shtml

Contents
KS2201A - PathWave Test Sync Executive User Manual 10

Chapter 1: Introduction 11

Chapter 2: Install PathWave Test Sync Executive 14

System Requirements 15

Install Main Components 18

Install Additional Components 29

Chapter 3: Installing Licenses 32

PathWave Test Sync Executive License Requirements 33

Supported Licensing Modes 36

The Licensing Process 37

Installing Licenses with PathWave License Manager 38

Chapter 4: HVI Technology Elements 41

About Instruments 42

About PathWave Test Sync Executive 43

Language Support 44

HVI Use Model 45

HVI Engines 47

Resources 49

HVI Sequences 51

HVI Statements 53

HVI Diagrams 61

Timing 65

Chapter 5: HVI integration with PathWave FPGA 72

PathWave FPGA and HVI Overview 73

Using FPGA-Sandbox Resources with HVI 78

HVI FPGA-Memory Maps and HVI FPGA-Register Banks in FPGA-Sandboxes 80

Actions, Events and Triggers in an FPGA-Sandbox 84

FPGA Fast Data Sharing 86

FPGA-Instruction 88

HVI Statements for using FPGAs 91

Chapter 6: Multi-Chassis Systems and System Synchronization Modules 93

System Synchronization Modules 94

Configuring a System with SSMs and System Sync Connectivity 100

Page 7

Clocking 104

Chapter 7: The TSE API 110

TSE API Use Model 111

TSE API Common Functionalities 114

System Initialization 130

The SystemDefinition Object 142

HVI Engines and their Resources 145

Chassis and Interconnects (SyncModule) 153

Synchronization Resources 163

Synchronization Signals and Sync Modes 168

Non-HVI Clocks 169

System Initialization in the SystemDefinition Object 170

User-Defined Trigger Routing 172

System Clocking Configuration 177

The Sequencer Object 181

SyncSequence and Sequence objects 184

Sequence Statements 186

Sync Statements 188

Local Statements 202

EngineView Components 218

InstructionSet Object 222

HVI Registers and Scopes 227

HVI Compilation 232

System Initialization in the Sequencer Object 234

Sequence Representation 235

The Hvi Object 243

Engine Runtime Components 245

Load to Hardware and Run 254

System Initialization during Load To Hardware 255

Real-time Hardware Execution Error Handling 256

Fast Data Sharing (FDS) Execution Errors 259

Chapter 8: Building an Application with the TSE API 262

Planning an HVI with the HVI Use Model 263

1 Create the SystemDefinition 267

Page 8

2. Program HVI Sequences 278

3. Compile Your Sequences 288

4. Load To Hardware 289

5. Modify Initial Register Values (Optional) 290

6. Execute Sequences 291

7. Release All Resources 293

HVI Logging and Troubleshooting 294

Chapter 9: TSE Service and Multi-Host support 298

About TSE Service and Multi-Host Systems 299

TSE Service Operation Modes 302

TSE Service Configuration 309

Accessing Remote Resources 321

Using TSE Service in an Application 328

Chapter 10: HVI Time Management and Latency 331

Timing Concepts 332

Synchronization Clocks, Signals, and Modes 333

General Timing Concepts 340

Sync and Local Flow-Control Statement Timing Concepts 343

HVI Instruction Timing Concepts 349

Sync Statement Timing 350

Local Flow-Control Statement Timing 388

HVI Instruction Timing 402

Minimum Start Delay Calculation for Local Flow-Control and Sync Statements 421

Errors in Start Delay or Duration specification 430

Appendix A: Supported Instruments 433

Appendix B: Additional Documentation and Examples 435

Appendix C: Timing Tables 438

Sync Statement Timing Tables 439

Local Flow-Control Statement Timing Tables 450

HVI Instruction Timing Tables 458

Page 9

KS2201A - PathWave Test Sync Executive User Manual
This User Manual describes the PathWave Test Sync Executive programming environment, which is
based on Keysight's Hard Virtual Instrument (HVI) technology. HVI enables you to develop and
execute synchronous, real-time operations across multiple instruments. The real-time sequencing
and synchronization capabilities of PathWave Test Sync Executive make it a powerful tool for Multi-
Input Multi-Output (MIMO) applications that require tight synchronization and real-time control and
feedback.

NOTE PathWave Test Sync Executive (KS2201A) is not compatible with the older M3601A.
You cannot use them together and they cannot run the same HVI Sequences.

Find us at www.keysight.com Page 10

KS2201A - PathWave Test Sync Executive User Manual

Chapter 1: Introduction
This chapter introduces Keysight KS2201A, PathWave Test Sync Executive (TSE) and HVI technology.

Keysight PathWave Test Sync Executive Overview

PathWave Test Sync Executive (TSE) is a programming environment based on Keysight's Hard Virtual
Instrument (HVI) technology, that enables you to develop and execute synchronous real-time oper-
ations across multiple instruments.

The real-time sequencing and synchronization capabilities of PathWave Test Sync Executive make it
a powerful tool for Multi-Input Multi-Output (MIMO) applications that require tight synchronization
and real-time control and feedback. For example:

l Radar.

l Bit error testing.

l Communication systems.

l Massive-scale quantum physics experiments.

PathWave Test Sync Executive supports:

l Multi-chassis configuration.

l HVI Sequence design using an Application Programming Interface (API) for Python.

l Programming of multiple instruments.

l Execution of time-deterministic sequences of operations.

l Precision synchronization and execution.

Find us at www.keysight.com Page 11

KS2201A - PathWave Test Sync Executive User Manual Chapter 1: Introduction

About HVI Technology

HVI technology enables you to program one or more instruments to execute time-deterministic
sequences of operations with precise synchronization. It achieves this by deploying a code executable
onto the hardware of each instrument. This executes on an HVI Engine, which is an IP block that is
integrated into the instrument. The code executes on these Engines in parallel, across multiple
instruments.

The user-defined hardware operation sequence for a group of instruments is called a Hard Virtual
Instrument or just HVI. The sequences of operations or instructions executed by the HVI Engines are
called HVI Sequences. The operations and instructions that make up HVI Sequences are known as
HVI Statements.

When creating an HVI, you can include any instrument that integrates the HVI technology. For
example, the Keysight M3xxxA, M53xxA are families of PXI instruments with HVI support. This User
Manual includes code examples of the HVI Instrument-specific API that complement the code
examples that explain the functionality of the Test Sync Executive (TSE) API.

TSE Application Programming Interface

The TSE API is the set of programming classes, properties and methods that enable you to create and
program a TSE instance. The TSE API supports the Python and C# languages. Unless otherwise
noted, this document refers to the Python API in explanations.

Python Help

A complete description of the HVI Python API is provided in the help file provided with the PathWave
Test Sync Executive installer. It is found inside the installation directory for PathWave Test Sync
Executive inside the api\python\Help subdirectory, by default this is:

C:\Program Files\Keysight\PathWave Test Sync Executive 2023B\api\python\Help

Alternatively, you can enter Python API Help into the Windows Search.

C# Help

The TSE API documentation for C# is located at:

C:\Program Files\Keysight\PathWave Test Sync Executive 2023B\api\dotNet\Help

API Use Model: The TSE API and the HVI Instrument Specific API

Each instrument extends the TSE API functionality with an instrument specific API. The TSE API is
common to all products and only the instrument specific TSE API is different, depending on the instru-
ment. It is important to differentiate between the TSE API features and the instrument-specific exten-
sions. The extensions enable a heterogeneous array of instruments and resources to coexist in a
common framework.

Find us at www.keysight.com Page 12

KS2201A - PathWave Test Sync Executive User Manual Chapter 1: Introduction

The TSE API exposes all HVI functions and is a common API for all products. It defines the base inter-
faces, classes and properties that are used to create an HVI, control the hardware execution flow, and
operate with data, HVI Triggers, HVI Events and HVI Actions, but it alone does not include the ability
to control instrument-specific operations. The TSE API defines the hard virtual instrumentation frame-
work, and it is the job of the instrument-specific TSE API extensions to enable instrument functions in
an HVI. These functions are exposed by the instrument-specific add-on definitions. This is done by an
HVI instrument add-on API provided by each instrument that describes the instrument-specific
resources and operations that can be executed or used within HVI Sequences.

HVI instrument-specific definitions are listed in your Instrument documentation. For a list of sup-
ported instruments see Appendix A: Supported Instruments.

Find us at www.keysight.com Page 13

KS2201A - PathWave Test Sync Executive User Manual Chapter 1: Introduction

Chapter 2: Install PathWave Test Sync Executive
This chapter explains how to install PathWave Test Sync Executive and related required components.

It contains the following sections:

l System Requirements

l Install Main Components

l Install Additional Components

Find us at www.keysight.com Page 14

KS2201A - PathWave Test Sync Executive User Manual Chapter 2: Install PathWave Test Sync Executive

System Requirements
This section describes the system requirements for PathWave Test Sync Executive.

PathWave Test Sync Executive Installation

To install PathWave Test Sync Executive you just need to run Keysight PathWave Test Sync Executive
installer as described in Install Main Components.

Supported Programming Languages and Requirements

PathWave Test Sync Executive provides Python and .NET support.

The supported Python versions include: 3.7, 3.8, 3.9 and 3.10.

The TSE .NET assembly requires .NET framework 4.6 or 4.7.

NOTE When running the PathWave Test Sync Executive installer, it will automatically
detect the installed Python versions and display the option to automatically install
the TSE package in those Python versions. If a Python version is installed after
running TSE installer it is required to run the pip install command manually.

HW Requirements and Compatibility

To run PathWave Test Sync Executive with hardware, you require:

l One or more PXIe chassis.

l One or more PXIe instruments.

l Associated software, libraries, drivers, and firmware.

Find us at www.keysight.com Page 15

KS2201A - PathWave Test Sync Executive User Manual Chapter 2: Install PathWave Test Sync Executive

PXIe Chassis

PathWave Test Sync Executive is compatible with any PXIe chassis, however Keysight recommends
the following Keysight chassis so you can make use of their capabilities and multi-instrument and
multi-chassis scalability:

l M9019A.

l M9018B.

l M9010A.

l M9046A.

These chassis include an enhanced PXI trigger bridge that provides the capabilities required by
PathWave Test Sync Executive to provide support for multi-segment/chassis operation. You can use
other chassis without limitation for single segment operation, and you can also use other chassis for
multi-segment/multi-chassis operations, but these impose limitations on the complexity of the HVI
Sequences that you can execute.

For most chassis, the enhanced PXI trigger bridge functionality is delivered by a firmware update, see
your chassis user manual for details. The PathWave Test Sync Executive programming
examples show how to verify the correct firmware version for specific chassis. The programming
examples are described in Appendix B: Additional Documentation and Examples .

NOTE The Programming Examples are often updated so ensure you check for the latest
versions.

System Sync Modules (SSMs)

For PXIe Multi-chassis support it is required to include one PXIe System Sync Modules (SSMs) per
chassis and use the System Sync cabling to interconnect the different SSMs. Keysight SSM offering
includes M9032A/33A modules, for more information see: Instrument and Chassis Software and
Firmware Requirements for KS2201A.

Instruments

PathWave Test Sync Executive works with a number of PXIe instruments.

For more information see the PathWave Test Sync Executive Release Notes and Appendix A:
Supported Instruments.

Find us at www.keysight.com Page 16

KS2201A - PathWave Test Sync Executive User Manual Chapter 2: Install PathWave Test Sync Executive

https://www.keysight.com/find/ks2201a-firmware-version-requirements
https://www.keysight.com/find/ks2201a-firmware-version-requirements

Older versions of HVI technology

PathWave Test Sync Executive (KS2201A) and the older version M3601A, are not compatible. You
cannot use them together.

If you use M3601A, the additional components required by HVI use different versions, so they must be
reinstalled every time you change between running M3601 and KS2201A.

Find us at www.keysight.com Page 17

KS2201A - PathWave Test Sync Executive User Manual Chapter 2: Install PathWave Test Sync Executive

Install Main Components
This section explains how to install the main components of PathWave Test Sync Executive, it
contains the following sections:

1. Install Python, the minimum version is 3.7.x, 64-bit.

2. Install PathWave Test Sync Executive.

3. Manual Installation of Python APIs.

NOTE PathWave License Manager must not be running when you install PathWave Test
Sync Executive.

If PathWave License Manager is running, you must close it before installing the
main components.

1: Install Python

PathWave Test Sync Executive requires 64-bit Python. Versions 3.7, 3.8, 3.9, and 3.10 are supported
along with their sub-versions. Multiple versions can also be supported.

1. Download the Python installer from the Python web site: python.org.

2. Run the installer.

a. Add Python 3.x to the PATH system Variable. To do this, ensure the check box Add python 3.x
to PATH is checked. This is shown in the following screenshot:

Find us at www.keysight.com Page 18

KS2201A - PathWave Test Sync Executive User Manual Chapter 2: Install PathWave Test Sync Executive

https://www.python.org/

2: Install PathWave Test Sync Executive

Use the following procedure to install PathWave Test Sync Executive:

NOTE If you want to use TSE Python library it is recommended to install Python 64-bit
before installing PathWave Test Sync Executive, so the TSE installation
automatically detect and perform the Python library installation.

If PathWave License Manager is running, you must close it before installing
PathWave Test Sync Executive.

TSE installer execution modes

There are 2 kinds of execution modes:

n Full Graphic Mode: This mode is the default, which will prompt the user to select the installation
path and the components to be installed, as described below.

n Unattended Mode: Unattended mode can be used when the installation process needs to be
automated. For example, when TSE needs to be integrated as part of another installer, or when
automating the setup of computers. This mode can be enabled with the flag --mode unattended. The
unattended mode has also 3 different submodes, that can be selected with the flag --

unattendedmodeui <submode>:

<submode> values Description

none
No user interaction is required and no output shown. This is the default if no unattended
mode UI option is provided.

minimal
No user interaction is required and a progress pop-up is displayed showing the
installation progress.

minimalWithDialogs
In addition to the installation progress shown in the minimal mode, pop-ups are also
displayed. No interaction will be required. In case of errors, dialogs showcasing the
problem can appear, prompting the user on what to do.

If you're integrating TSE into your own installer, we recommend that you use u nattended mode with
minimalWithDialogs . This will ensure that the user sees a progress bar and detailed error information
in case any error happens.

In addition, you can configure the installation in unattended mode with the following parameters to
customize the installation with the same options available in the GUI:

Find us at www.keysight.com Page 19

KS2201A - PathWave Test Sync Executive User Manual Chapter 2: Install PathWave Test Sync Executive

Parameter Description

--disable-components
<list>

Comma separated list. Disables the components listed that may by default be
enabled.

--enable-components <list>
Comma separated list. Enables the components listed that may by default be
enabled.

--prefix <path> Path to the installation directory.

The components you can select, both in unattended and GUI mode are:

Component Description Default

TseService
TSE Service application. See Chapter 9: TSE Service and
Multi-Host support for more details on TSE Service
capabilities.

Disabled

KDI
Keysight Distributed Infrastructure provides multi-host
capabilities to the TSE Service application. Incompatible with
KDIS

Enabled if TseService is
enabled

KDIS
KDI authentication Service, responsible for authentication and
validation requests. Incompatible with KDI

Disabled

python37 Python 3.7 API for Test Sync Executive Enabled if Python 3.7 detected

python38 Python 3.8 API for Test Sync Executive Enabled if Python 3.8 detected

python39 Python 3.9 API for Test Sync Executive Enabled if Python 3.9 detected

python310 Python 3.10 API for Test Sync Executive Enabled if Python 3.10 detected

dotnetx64 .NET API for Test Sync Executive Enabled

Please do note that you can select any combination of languages and TSE Service options, but at
least one of the components listed is necessary.

Find us at www.keysight.com Page 20

KS2201A - PathWave Test Sync Executive User Manual Chapter 2: Install PathWave Test Sync Executive

Running TSE installer with the GUI

When launching the TSE installer in the GUI mode, the Setup screen is shown:

The next screen is the License Agreement screen. You must accept the license to continue:

Find us at www.keysight.com Page 21

KS2201A - PathWave Test Sync Executive User Manual Chapter 2: Install PathWave Test Sync Executive

You can change the installation directory on the Installation Directory screen.

By default, PathWave Test Sync Executive is installed to:

C:\Program Files\Keysight\PathWave Test Sync Executive 2023B

Find us at www.keysight.com Page 22

KS2201A - PathWave Test Sync Executive User Manual Chapter 2: Install PathWave Test Sync Executive

TSE Service and KDI Options

TSE 2023 introduce extended multi-host and system initialization automation with TSE Service. See
Chapter 9: TSE Service and Multi-Host support for more details on TSE Service capabilities.

To install TSE Service, select the check box labelled TSE Service in the installer. TSE Service is
typically installed with KDI, details of the KDI installation options are shown in the section KDI
Installation Overview.

Find us at www.keysight.com Page 23

KS2201A - PathWave Test Sync Executive User Manual Chapter 2: Install PathWave Test Sync Executive

KDI Installation

KDI can be installed as part of PathWave Test Sync Executive installation when enabling TSE Service.

When Keysight Distributed Infrastructure is selected, TSE Service is configured to be started
automatically at windows boot-up. The default configuration after installation will start TSE Service in
Free-Running mode configured to autodetect and open all PXI chassis and Instruments supported by
TSE Service.

Once TSE Service is selected, to enable KDI installation, you can select:

Keysight Distributed Infrastructure (KDI client).

KDI must be installed on every host,

KDI Authentication Service (KDIS).

This is installed on only one host.

NOTE Because of a limitation in KDI infrastructure (up to at least release 3.0.187), if you
intend to use the TSE Service in Leader-follower mode, then the KDIS must be
installed in the Leader TSE Service host.

To install the KDI client, select Keysight Distributed Infrastructure. Do this for every host.

Find us at www.keysight.com Page 24

KS2201A - PathWave Test Sync Executive User Manual Chapter 2: Install PathWave Test Sync Executive

To install the KDIS and the KDI client, select Keysight Distributed Infrastructure and KDI
Authentication Service (KDIS). Do this in one host, in a Leader-Follower system, this must be the
leader.

NOTE Keysight recommends that only one KDIS instance is installed in a given network. In
this case, any host installing KDI Client will automatically detect the KDIS service for
authentication. If for some reason more that one KDIS must be installed, then it is
the responsibility of the user to direct each KDI client to the right KDIS host. For
more information see the KDI documentation.

KDI and TSE Service Configuration

Once TSE installation is completed in all hosts, you must configure the KDI Authentication Service,
KDI clients and TSE Services. For details see section 9. System initialization with TSE Service and
Multi-Host support in the PathWave Test Sync Executive Setup Guide .

Find us at www.keysight.com Page 25

KS2201A - PathWave Test Sync Executive User Manual Chapter 2: Install PathWave Test Sync Executive

Select Python Versions

You can also select the Python API versions you want to install on the Select HVI APIs page.

If a Python version component is marked with an asterisk and selected, the installer will install the
Python package.

If the Python version component is not marked with an asterisk, but is selected with a check mark, an
additional step is required; see Manual Installation of Python APIs below.

Required components are selected by default and you cannot de-select them.

Find us at www.keysight.com Page 26

KS2201A - PathWave Test Sync Executive User Manual Chapter 2: Install PathWave Test Sync Executive

When you have selected the components, the next screen is Ready to Install. Select Next to install
PathWave Test Sync Executive.

The Installer first installs the License manager. It then installs PathWave Test Sync Executive:

Find us at www.keysight.com Page 27

KS2201A - PathWave Test Sync Executive User Manual Chapter 2: Install PathWave Test Sync Executive

The following screen is shown when the installer has completed installing: Select Finish to close the
installer.

Manual Installation of Python APIs

If you selected Python APIs when installing PathWave Test Sync Executive that were not
automatically installed, you can complete the installation process with the pip command.

For example, to install Python APIs for Python 3.9, type the following command at a command
prompt:

py -3.9 -m pip install "C:\Program Files\Keysight\PathWave Test Sync Executive 2023B\api\Python\Python39"

Find us at www.keysight.com Page 28

KS2201A - PathWave Test Sync Executive User Manual Chapter 2: Install PathWave Test Sync Executive

Install Additional Components
To use PathWave Test Sync Executive, you require both hardware and software.

To work with PathWave Test Sync Executive, instruments and chassis require minimum specific soft-
ware and firmware versions. These are listed on line at: Instrument and Chassis Software and Firm-
ware Requirements for KS2201A .

Ensure you have all the following components and they are all up to date:

l Keysight IO Libraries.

l Keysight Instrument Drivers, Libraries, and Software Front Panel.

l Keysight Instrument FPGA Firmware.

l Keysight Chassis Family Driver.

l Keysight Chassis Driver and Firmware.

Install Keysight IO Libraries

Install the IO Libraries. These are available at Keysight IO Libraries Suite.

Install Keysight Instrument Drivers, Libraries, and Software Front Panel

To install the instrument drivers and libraries, install the software for your instruments:

l For the M5302A instrument see: M5302A Software.

l For the M3xxxA instruments see: Keysight SD1 Software.

NOTE Ensure you check the driver release notes, so that your drivers that are compatible
with the version of PathWave Test Sync Executive you have installed.

Update Keysight Instrument FPGA Firmware

You can update the FPGA firmware of your PXI instruments from your Software Front Panel. For
information about how to install SW and FPGA firmware for Keysight instruments, see the instrument
documentation:

These are available at Keysight PXI Products.

NOTE Ensure you check the firmware release notes, so that you install firmware that is
compatible with the version of PathWave Test Sync Executive you have installed.

Install Keysight Chassis Family Driver

Install the Chassis Family Driver, which is available at Keysight PXI Chassis. When you install the
Keysight Chassis Family Driver, PXIe Chassis Software Front Panel software is automatically installed.

Find us at www.keysight.com Page 29

KS2201A - PathWave Test Sync Executive User Manual Chapter 2: Install PathWave Test Sync Executive

https://www.keysight.com/find/ks2201a-firmware-version-requirements
https://www.keysight.com/find/ks2201a-firmware-version-requirements
http://www.keysight.com/find/iolibraries
http://www.keysight.com/find/M5302A-Driver
https://www.keysight.com/es/en/lib/software-detail/instrument-firmware-software/sd1-3x-software-3120392.html
http://www.keysight.com/find/pxi
http://www.keysight.com/find/pxi-chassis

Update Keysight Chassis Firmware

In PXIe Chassis Software Front Panel, you can:

l Check the chassis firmware version in the help window.

l Update the chassis firmware with the Utilities window of PXIe Chassis Software Front Panel (SFP).

You can use the Utilities window of PXIe Chassis SFP to update the chassis firmware. For more
information about updating Chassis firmware, see
PXIeChassisFirmwareUpdateGuide.pdf at Keysight PXI Chassis.

NOTE Ensure you check the firmware release notes, so that you install firmware that is
compatible with the version of PathWave Test Sync Executive you have installed.

The following screenshot shows an example of the chassis firmware version shown in the help window
of the PXIe Chassis SFP. In this case the chassis is a Keysight Chassis model M9019A.

Find us at www.keysight.com Page 30

KS2201A - PathWave Test Sync Executive User Manual Chapter 2: Install PathWave Test Sync Executive

http://www.keysight.com/find/pxi-chassis

The following screenshot shows a breakdown of components of different versions of the M9019A
chassis firmware:

Find us at www.keysight.com Page 31

KS2201A - PathWave Test Sync Executive User Manual Chapter 2: Install PathWave Test Sync Executive

Chapter 3: Installing Licenses
This chapter provides a brief introduction to PathWave Test Sync Executive licensing. It contains the
following sections:

l PathWave Test Sync Executive License Requirements

l Supported Licensing Modes

l The Licensing Process

l Installing Licenses with PathWave License Manager

Find us at www.keysight.com Page 32

KS2201A - PathWave Test Sync Executive User Manual Chapter 3: Installing Licenses

PathWave Test Sync Executive License Requirements
Each instrument used in your HVI implementation must be licensed to be used with PathWave Test
Sync Executive.

There are 2 types of licensing for instruments:

1. For instruments with no -HVx option installed, you require 1 license for each instrument (including
Sync Modules).

2. For instruments with the -HVx option (-HV1 or -HV2) installed, a single license covers all of the
instruments with the -HVx option in the same chassis.

The following table shows an example of the number of licenses required for a single chassis system:

Chassis

Number of
Instruments

without -HVx
option

Number of
Instruments

with -HVx
option

Licenses required

A 1 4

2

l 1 license for the instrument without the -HVx option.

l 1 license for the 4 instruments with the -HVx option.

Find us at www.keysight.com Page 33

KS2201A - PathWave Test Sync Executive User Manual Chapter 3: Installing Licenses

The following table shows an example of the number of licenses required for a 3 chassis system:

Chassis

Number of
Instruments

without -HVx
option

Number of
Instruments

with -HVx
option

Licenses required

A 1 4

2

l 1 license for the instrument without the -HVx option.

l 1 license for the 4 instruments with the -HVx option.

B 4 0

4

l 1 license each for the 4 instruments without the -HVx
option.

C 2 4

3

l 1 license each for the 2 instruments without the -HVx
option.

l 1 license for all the instruments with the -HVx option.

Total licenses required 9

NOTE The -HVxoption was previously required to be purchased for an instrument to be
used with PathWave Test Sync Executive.

The -HVx option is now deprecated, but existing instruments with the -HVx option
are still supported.

l Keysight M3xxxA PXI Instruments used the -HV1 option.

l Keysight M5302A Digital I/O instruments previously used the -HV2 option.

l Keysight M9415A VXT Vector Transceiver uses the -HV2 option.

Find us at www.keysight.com Page 34

KS2201A - PathWave Test Sync Executive User Manual Chapter 3: Installing Licenses

Licenses Requirements per Process

All HVI instances running in the same process share the same licenses, but HVI instances running in
different processes require different licenses.

For example, if you have 3 HVI instances running in a single process, the licenses are reused.

The following table shows the number of licenses required for scenarios where these are 1 or 3
processes:

Description HVI instance 1 HVI instance 2 HVI instance 3 Licenses required

3 HVI instances in the same process 3 6 10 10

3 HVI instances in 3 different processes 3 6 10 19

Licensing Requirements for TSE Service

TSE Service to run in Leader Mode has the same licensing requirements as any client application as
described above. Following the guidelines above, the number of TSE licenses required depends on
the number of instruments, System Synchronization Modules (SSMs) and Chassis as defined in the
TSE Service configuration files (tse_config.yml and system_definition.yml).

Adding licenses to an existing setup

TSE licenses added to an existing set-up must be co-termed to match the expiration date of the
existing TSE licenses. This is done with the help of your Keysight Field Engineer or Account Manager
who will look up your current licenses in order to capture the date-based version. They will then work
with internal Keysight systems (KSM) to manually match the end dates of the added licenses to work
with your earlier licenses. This process is not customer accessible.

Find us at www.keysight.com Page 35

KS2201A - PathWave Test Sync Executive User Manual Chapter 3: Installing Licenses

Supported Licensing Modes
The following types of licenses are supported:

Commercial licenses:

l Node-Locked, perpetual and 6, 12, 24, and 36 months, subscription.

l USB Portable, perpetual and 6, 12, 24, and 36 months, subscription.

l Floating/Networked, perpetual and 6, 12, 24, and 36 months, subscription.

l Transportable, perpetual and 6, 12, 24, and 36 months, subscription.

Trial licenses:

l 30 days Node-locked.

NOTE l To obtain a trial or commercial license, see the product download page.

l As part of the licensing process you will require a Host ID (probably a Mac
address) for your workstation. The product license manager might display this, if
not, the help or documentation for the license manager shall tell you how to
obtain a Host ID.

Transportable Licenses

If you want to reconfigure your systems so a different number of chassis are used, you can use a
transportable license . These enable you to move your licenses between systems without any need to
contact Keysight, so you don't have to keep buying new licenses.

For example, say you have two systems: one with three chassis and a second system with two
chassis. If you want to move the third chassis from the first system to the second, the second system
will require a third license. The first system has three licenses, but it shall no longer require all three.
A transportable license enables you to move the third license from the first system to the second
system. You can then use the new configuration without having to buy a new license.

Find us at www.keysight.com Page 36

KS2201A - PathWave Test Sync Executive User Manual Chapter 3: Installing Licenses

The Licensing Process
The Keysight licensing process uses the following steps:

1. Purchase and fulfillment

For most Keysight licensed product options, your entitlement certificate is sent to you as a PDF
attachment via email immediately after your purchase. In some cases, you receive a paper copy
of your certificate with your purchased product. The licensed product options may be software
products or upgraded features of an instrument.

2. Getting a license

Using the entitlement certificate you received when you ordered, you can request your licenses
on the Keysight Software Manager web site. To do this, you'll need to choose a host instrument
or PC, and provide its identifying information (the Host ID) when you request your licenses. Once
you begin the process, Keysight Software Manager will guide you step by step through
requesting your licenses and you will receive the license files via email.

You might need to create a myKeysight login when you first go to the Keysight Software Manager
site, and you will need to log in anytime you go to the site.

3. Installing your license

To enable the licensed software, after you receive a license file from Keysight Software Manager,
you must install it on your instrument or computer or on a central licensing server accessible
from your instrument or computer. If you are installing node-locked or transportable licenses on
the same local PC where you execute KS2201A, ensure you place your license files in a public
folder, for example, C:\Users\public\folder_name.

To install the license:

1. Install PathWave Test Sync Executive.

2. Use PathWave License Manager to install your license. The installation process is
described in the email that comes with your license.

Find us at www.keysight.com Page 37

KS2201A - PathWave Test Sync Executive User Manual Chapter 3: Installing Licenses

http://www.keysight.com/find/softwaremanager

Installing Licenses with PathWave License Manager
You can install licenses from the PathWave License Manager. This is installed when you
install Keysight PathWave Test Sync Executive. You can use a local license on your computer or a
floating license from a license server.

Full details describing how to install licenses are provided by email when you purchase a license.

If you are upgrading without purchasing a new license, have a more complex setup, or did not get a
licensing email, see the Licensing Quick Start Guide, this provides comprehensive information about
the licensing process and how to solve problems.

NOTE If you are upgrading from a previous version of PathWave Test Sync Executive that
used a different license manager, Keysight recommends that you keep the old
license manager installed.

Find us at www.keysight.com Page 38

KS2201A - PathWave Test Sync Executive User Manual Chapter 3: Installing Licenses

https://www.keysight.com/find/licensingquickstart

Potential Conflicts Between License Managers of Different HVI Software

Some previous versions of KS2201A software used a different license manager. Specifically:

l KS2201A Pathwave Test Sync Executive 2021 Release and later use PathWave License Manager
(PLM).

l KS2201A Pathwave Test Sync Executive 2020 Update 1 Release uses PathWave License Manager
(PLM).

l KS2201A PathWave Test Sync Executive 2020 Release uses Keysight License Manager 6.

The license managers described above are compatible with each other and they can detect and show
the licenses installed using the other license managers. For node-locked or transportable licenses,
conflicts can arise if any licenses were not installed in a a public folder, for example,
C:\Users\public\folder_name . In this case, the license must be reinstalled from scratch using the license
manager of the product the license belongs to.

If you are moving from one HVI software to another version that uses a different license manager, to
update the floating license installation on your license server, see the instructions provided.

NOTE l If you need to uninstall any PathWave Test Sync Executive software, always use
the provided software uninstaller. Manually uninstalling a license manager can
cause corruption to other license managers.

l If you have licenses located in user-specific locations (such as
C:\Users\fred\Desktop), these licenses may not be accessible to the license service
created by PathWave License Manager. Using the license manager provided with
the appropriate product, remove and reinstall such licenses in a generally
accessible location, such as C:\Users\public

Licensing Configuration for TSE Service

For TSE Service to run in Leader-Follower Mode, it has the same licensing requirements as any client
application. The number of TSE licenses required depends on the number of instruments, Sync
Modules and Chassis as defined in the TSE Service configuration files (tse_config.yml and system_

definition.yml).

TSE Licenses must be properly configured using PathWave License Manager (PLM). Special care
must be taken when using KDI to automate TSE Service launch at Windows boot-up, it is required
that PLM is properly configured for the Windows' SYSTEM user, since KDI runs at Windows boot-up
using this user. This is particularly relevant when using floating licenses configured in a different host.
You must make sure the "HKEY_USERS\.DEFAULT\Software\Keysight\EEsof License
Configuration\HVI_LICENSE_FILE" key list all paths and servers to search for the TSE Licenses, the
screenshot below is an example:

Find us at www.keysight.com Page 39

KS2201A - PathWave Test Sync Executive User Manual Chapter 3: Installing Licenses

Troubleshooting the License Installation

If you have difficulties with installing or using your licenses see Licensing Quick Start Guide. If the
problem persists, please contact Keysight Technical Support and share the log files.

Log files are saved by PathWave License Manager in:

C:\ProgramData\Keysight\Licensing\Log

Find us at www.keysight.com Page 40

KS2201A - PathWave Test Sync Executive User Manual Chapter 3: Installing Licenses

https://www.keysight.com/find/licensingquickstart

Chapter 4: HVI Technology Elements
This chapter describes the elements that make up an HVI.

It contains the following sections:

l About Instruments

l About PathWave Test Sync Executive

l Language Support

l HVI Use Model

l HVI Engines

l Resources

l HVI Sequences

l HVI Statements

l HVI Diagrams

l Timing

Find us at www.keysight.com Page 41

KS2201A - PathWave Test Sync Executive User Manual Chapter 4: HVI Technology Elements

About Instruments
Instruments are modules or cards that can capture or generate various kinds of electronic signals.
Many kinds of instruments are available with different kinds of functions.

Different kinds of instruments can perform various functions with electronic signals:

l Measure signals.

l Record signals.

l Perform signal analysis.

l Perform signal conditioning.

Some types of instruments can generate different kinds of outputs:

l Signals.

l Voltages.

l Pulses.

l Arbitrary waveforms.

l Digital outputs.

Instruments can be supplied as modules or cards that fit into a chassis. The chassis enables you to fit
multiple modules together. The instruments in a chassis are synchronized to a common digital
clock reference that is shared by all the instruments. The chassis also offers shared triggering and
communication resources.

For this User Manual, the specific instruments referred to are PXI modular instruments that are inser-
ted into a PXI chassis.

For a full list of Keysight instruments, see Keysight.com.

Find us at www.keysight.com Page 42

KS2201A - PathWave Test Sync Executive User Manual Chapter 4: HVI Technology Elements

http://keysight.com/

About PathWave Test Sync Executive
PathWave Test Sync Executive enables you to program multiple instruments together. They
operate together, tightly orchestrated with other instruments, so they behave like a single instrument.

PathWave Test Sync Executive enhances individual instruments by enabling them to:

l Execute real-time sequences of operations with full time determinism.

l Precisely synchronize instrument operations.

l Fast, real-time hardware exchange of information and decisions between instruments.

You define a new virtual instrument made up of a combination of instruments. This is known as a Hard
Virtual Instrument (HVI). Once the HVI resources are defined, you can program multiple instruments
to work together as if they were a single instrument.

To program the HVI, you write an application using the TSE API. When you run your application, it
generates the HVI instance and the binary code that is executed by the hardware in the instruments.

When creating an HVI, you can include any instrument that supports PathWave Test Sync Executive,
such as Keysight's M3xxxA family of PXI instruments.

Each instrument that supports PathWave Test Sync Executive has specific instructions that enable
you to use its functionalities within HVI. These instructions are documented in the instrument doc-
umentation.

Find us at www.keysight.com Page 43

KS2201A - PathWave Test Sync Executive User Manual Chapter 4: HVI Technology Elements

Language Support
The TSE API is the set of programming classes, properties and methods that enable you to create and
program an HVI instance. PathWave Test Sync Executive 2021 and above supports the Python and
C# languages.

The C# API is similar to the Python API except for the following differences:

l Class and property names are in camel case, that is, the beginning of individual words are cap-
italized.

l Variable names are also in camel case, except the first letter of the first word is not capitalized.

l There are no spaces, underscores, or dashes between words in class and property names.

l The first letter of methods and functions is capitalized.

The following table shows examples in Python and C#:

Type Python C#

Type names SystemDefinition SystemDefinition

Variables multi_seq_block_1 multiSeqBlock1

Methods add_sync_multi_sequence_block() AddSyncMultiSequenceBlock()

The following blocks of Python and C# code are equivalent:

Python code:

Add a Sync Multi-Sequence Block:
multi_seq_block_1 = sync_while.sync_sequence.add_sync_multi_sequence_block("multi_seq_block_1", 210)

C# code:

// Add a Sync Multi-Sequence Block
var multiSeqBlock1 = syncWhile.SyncSequence.AddSyncMultiSequenceBlock("multiSeqBlock1", 210);

A complete description of the HVI Python API is provided in the help file installed with the PathWave
Test Sync Executive installer.
It is found inside the installation directory for PathWave Test Sync Executive inside the api\py-
thon\Help subdirectory, by default this is:

C:\Program Files\Keysight\PathWave Test Sync Executive 2023B\api\python\Help

Alternatively, you can enter Python API Help into the Windows Search.

The TSE API documentation for C# is located at:

C:\Program Files\Keysight\PathWave Test Sync Executive 2023B\api\dotNet\Help

Find us at www.keysight.com Page 44

KS2201A - PathWave Test Sync Executive User Manual Chapter 4: HVI Technology Elements

HVI Use Model
This section describes the TSE API use model, and the steps it involves.

HVI uses a program-within-a-program model, that is, HVI can be seen as a real-time hardware pro-
gram that runs within a software program.

HVI Use Model Steps

To use the TSE API, your application must follow a series of steps to define and run an HVI
instance. These steps are broadly defined by three different classes within the TSE API:

1. SystemDefinition.

2. Sequencer.

3. Hvi.

1 SystemDefinition

You instantiate a SystemDefinition object from this class. You use the properties of this object to
define all the instrument and platform resources that are required to set up the HVI:

l Chassis.

l Interconnects.

l Clocks.

l Synchronous signals.

l Trigger routing.

You also use this object to define the resources in the instruments that are available to your HVI:

l HVI Engines - IP blocks in the FPGA or instrument hardware that executes HVI Sequences.

l HVI Actions - these initiate instrument-specific operations.

l HVI Events - these indicate instrument-specific operations have occurred.

l HVI Triggers - signals used to communicate between instruments.

When you have defined these resources, you must add them to the relevant collections. Collections
are special objects that associate resources with individual HVI Engines, so that you can use the
resources on those Engines.

Find us at www.keysight.com Page 45

KS2201A - PathWave Test Sync Executive User Manual Chapter 4: HVI Technology Elements

2 Sequencer

You instantiate a Sequencer object and use it to program and compile your Sequences:

l You add instructions and operations known as Statements to Sequences. These can be
synchronized across instruments or local to a specific instrument.

l You also add and use HVI Registers within this object. Registers are small, fast memories on the
HVI Engines that you can use as program Variables.

l Once you have defined all the Sequences that define your HVI, you must compile it. The
compilation process returns an Hvi object.

3 Hvi

Hvi is the runtime or executable object. With this object, you load the HVI Sequences into the relevant
Engines and execute them.
This object also enables you to interact with the hardware resources assigned to the HVI and initialize
all resources before the actual execution happens.

Execution Flow of the HVI

When you run your application, the HVI instance is generated, compiled, and downloaded into the
instruments and infrastructure. It is executed across all the instruments and the infrastructure
resources, and then the HVI instance takes control of the individual instruments and platform
components. The HVI configures the required resources and downloads the hardware programs that,
when executed, run on the instruments and platform hardware synchronously.

An application can create multiple HVI instances, but if the resources are shared, only one can be
downloaded and executed in hardware at a time. If the HVI instances do not share any resources,
they can be executed in parallel.

Find us at www.keysight.com Page 46

KS2201A - PathWave Test Sync Executive User Manual Chapter 4: HVI Technology Elements

HVI Engines
For HVI to control an instrument, the instrument requires one or more HVI Engines. An HVI Engine is
an Intellectual Property (IP) block that controls the functions of the instrument and the timing of
operations. The HVI Engine is included directly in the instrument hardware or it can be programmed
into the Field Programmable Gate Array (FPGA) in the instrument.

HVI works by deploying a binary executable to each hardware instrument to be executed by the HVI
Engine. Different binaries execute on the different HVI Engines in parallel, across multiple
instruments.

When you write an application that includes an HVI, you create HVI Sequences. These are sequences
of HVI Statements, these are operations that control the instrument. The HVI Sequences are
compiled into the binary executables that the HVI Engine executes.

About Instrument FPGAs

An FPGA is an electronic component on the Instrument. The FPGA in an instrument might include
pre-programmed IP for the instrument's functionality and this can include HVI IP components and
regions you can configure.

In addition to any existing IP and HVI Engines, instrument FPGAs include an FPGA-Sandbox, this is a
user-configurable region in the instrument FPGA. You can configure the FPGA-Sandbox to imple-
ment your own specific functionality. This can include custom logic and memory. To take advantage
of this feature, you must use PathWave-FPGA to create your design in the FPGA-Sandbox. For more
information see Chapter 5: HVI integration with PathWave FPGA.

For HVI to control an instrument, the instrument requires one or more HVI Engines. An HVI Engine is
an Intellectual Property (IP) block that controls the functions of the instrument and the timing of
operations. The HVI Engine is included directly in the instrument hardware or it can be programmed
into the FPGA in the instrument.

HVI works by deploying a binary executable to each hardware instrument to be executed by the HVI
Engine. Different binaries execute on the different HVI Engines in parallel, across multiple
instruments.

When you write an application that includes an HVI, you create HVI Sequences. These are sequences
of HVI Statements, these are operations that control the instrument. The HVI Sequences are
compiled into the binary executables that the HVI Engine executes.

Find us at www.keysight.com Page 47

KS2201A - PathWave Test Sync Executive User Manual Chapter 4: HVI Technology Elements

About Instrument FPGAs

An FPGA is an electronic component on the Instrument. The FPGA in an instrument might include
pre-programmed IP for the instrument's functionality and this can include HVI IP components and
regions you can configure.

In addition to any existing IP and HVI Engines, instrument FPGAs include an FPGA-Sandbox, this is a
user-configurable region in the instrument FPGA. You can configure the FPGA-Sandbox to imple-
ment your own specific functionality. This can include custom logic and memory. To take advantage
of this feature, you must use PathWave-FPGA to create your design in the FPGA-Sandbox. For more
information see Chapter 5: HVI integration with PathWave FPGA.

Find us at www.keysight.com Page 48

KS2201A - PathWave Test Sync Executive User Manual Chapter 4: HVI Technology Elements

Resources
The HVI Engine executes Sequences that are made up of Statements. These statements or instruc-
tions can operate on different resources in real-time. HVI can operate on the following resources:

l HVI Actions.

l HVI Events.

l HVI Triggers.

l Clock signals.

l HVI Registers.

l HVI FPGA-Registers and HVI FPGA-Memory Maps.

Actions, Events and Triggers are concepts within HVI. They are used to initiate operations, wait for
operations, send signals, and receive signals.

Actions

HVI Actions are digital electronic pulsed or level signals that are sent from the HVI Engine to
control instrument operations outside of the HVI Engine.

You use Actions in HVI Sequences to initiate operations. Typically, Actions initiate instrument-
specific operations. For example, in a digitizer instrument, a StartAcquisition Action sends a
digital pulse to start an acquisition operation.

Events

HVI Events are digital electronic pulsed or level signals that are sent to the HVI Engine and used
as notifications when instrument operations have occurred outside of the HVI Engine.

You use HVI Events in HVI Sequences as notification events that the execution has to wait for.
Typically, events indicate instrument-specific operations have occurred. For example, in an AWG,
the AWG will send a digital pulse through the WaveformDone event when a waveform execution has
been completed.

Triggers

HVI Triggers are electronic signals that the HVI Engines can send or receive.

HVI Triggers are used to send signals and share data between instruments. You can use these to
initiate operations, communicate states, or share information. There are multiple types of
triggers depending on how they are connected, for example:

l Front panel triggers (usually a SMA connector on the instrument front panel).

l PXIe triggers (connected to the PXIe backplane of the chassis).

l General purpose digital IO (LVDS connector in the instrument front panel).

Find us at www.keysight.com Page 49

KS2201A - PathWave Test Sync Executive User Manual Chapter 4: HVI Technology Elements

HVI Registers

HVI Registers are similar to Variables in a programming language. They hold values that can be
modified at runtime and can be used as parameters for instructions and Statements. Physically,
HVI Registers are small hardware memories located in HVI Engines. Their contents can be shared
between HVI Engines by using specific instructions.

HVI FPGA-Registers and HVI FPGA-Memory Maps

Some instrument FPGAs provide a user-configurable region in the instrument FPGA known as an
FPGA-Sandbox. This enables you to program the instrument with logic that implements your
own custom functionality. FPGA-Registers and FPGA-Memory Maps are components in the
FPGA-Sandbox that you can use as resources in your HVI Sequences. For more information see
Chapter 5: HVI integration with PathWave FPGA.

For the instruments that support an FPGA-Sandbox, HVI can support the sharing of data
between the FPGA-Sandbox and the HVI Engine in an instrument or between the FPGA-
Sandboxes of different instruments. This functionality depends of the availability of specific
interfaces inside the FPGA-Sandbox. To take advantage of these features, you must use
PathWave FPGA to create your design in the sandbox.

NOTE The exact resources available and how they are configured is instrument
dependent. Each instrument defines the actions and events available, how it uses
triggers and the number and type of registers available. For the specific definitions
and availability of resources in each instrument, see your instrument
documentation.

Find us at www.keysight.com Page 50

KS2201A - PathWave Test Sync Executive User Manual Chapter 4: HVI Technology Elements

http://www.keysight.com/find/pathwave-fpga

HVI Sequences
You control instruments with HVI Statements. Statements operate on resources such as Actions,
Events, and Triggers. There are different types of Statements that perform different types of oper-
ations. HVI Statements are the building blocks of HVI Sequences. These Sequences are compiled in
your application and are executed in real-time on the HVI Engines.

An HVI Sequence is an ordered list of HVI Statements with associated timing information. A
Sequence is executed in a time-deterministic manner by the hardware HVI Engine located within an
instrument. An HVI instance is made up of one or more Sequences that run in parallel and syn-
chronously.

There are two types of sequences:

l Sync Sequences

l Local Sequences

HVI Sequences are organized in a hierarchy with Sync Sequences at the top.

Sync Sequences

A Synchronized Sequence (called a Sync Sequence) contains commands known as Sync Statements
that execute across multiple instruments:

Find us at www.keysight.com Page 51

KS2201A - PathWave Test Sync Executive User Manual Chapter 4: HVI Technology Elements

Local Sequences

The Local Sequences are executed by each individual HVI Engine in an instrument.

Local Sequences are contained within Sync Multi-Sequence Blocks (SMSB). A Sync Multi-Sequence
Block is a type of Sync Statement that is contained in a Sync Sequence.

The following diagram shows the relationship between a Sync Sequence, a Sync Multi-Sequence
Block, and Local Sequences:

Find us at www.keysight.com Page 52

KS2201A - PathWave Test Sync Executive User Manual Chapter 4: HVI Technology Elements

HVI Statements
This section describes HVI Statements, it contains the following sections:

l HVI Sync Statements

Sync While

Sync Register-Sharing

Sync Data-Sharing

Sync Multi-Sequence Block

l HVI Local Statements

HVI Instructions

Local Flow-Control Statements

HVI Statements are the commands or operations that make up an HVI Sequence. HVI Sequences are
the ordered lists of HVI Statements that are executed with precise timing. If you think of an HVI
Sequence as a poem, the HVI Statements are the possible words you can use to write the poem and
the TSE API is the language you use to write it. HVI Statements are FPGA-level operations that are
executed by the HVI Engines.

HVI Statements are broadly divided into two groups:

HVI Sync Statements

Synchronized (Sync) Statements are used to execute operations or control the flow of execution
across all the hardware HVI Engines. Sync Statements are executed synchronously among all
HVI Engines.

HVI Local Statements

These are the commands or operations you put in the Local Sequences to be executed on a spe-
cific HVI Engine that is in a specific hardware instrument.

Find us at www.keysight.com Page 53

KS2201A - PathWave Test Sync Executive User Manual Chapter 4: HVI Technology Elements

The following diagram shows the different kinds of Statements and how they relate to Sync
Sequences and Local Sequences:

Find us at www.keysight.com Page 54

KS2201A - PathWave Test Sync Executive User Manual Chapter 4: HVI Technology Elements

HVI Sync Statements

These are used to execute operations or control the flow of execution across all HVI hardware
Engines. Sync Statements are executed synchronously among all HVI Engines.

HVI Sync Statements are contained in a Sync Sequence. HVI Sync Statements execute across all
instruments.

The Sync Sequence enables multiple Engines to execute statements in lockstep.

The following HVI Sync Statements are available:

l Sync While

l Sync Register-Sharing

l Sync Data-Sharing

l Sync Multi-Sequence Block

Sync While

Enables a while loop to execute synchronously on all Engines.

The Sync While Statement enables you to execute a Sync Sequence in a loop while a condition is
met. The condition is evaluated each time before starting the Sync Sequence execution. When the
condition is false and the Sync Sequence reaches the end, the Sync while jumps out of the loop and
the Sync Sequence containing the Sync while continues execution with the next Sync Statement.

Sync Register-Sharing

The Sync Register-Sharing statement enables you to share data from a source register to a
destination register in any other HVI Engine.

It enables you to share the contents of N adjacent bits from a source register and write it to a
destination register in another HVI Engine in your HVI.

Find us at www.keysight.com Page 55

KS2201A - PathWave Test Sync Executive User Manual Chapter 4: HVI Technology Elements

Sync Data-Sharing

The Sync Data-Sharing statement enables you to transfer data between FPGA-Sandboxes and HVI
Registers in different instruments, where FPGA-Sandboxes and HVI Registers can be sources or
destinations. The data-sharing is orchestrated by the HVI Engines of the different instruments.

Data can be shared between instruments in a single chassis or across instruments in multiple chassis.
Sync Data-Sharing utilizes the Fast Data Sharing (FDS) functionality to enable the low-latency
transfer of data.

Data is sent 4 bits at a time and can be sent from one to one, or from one to many FPGA-Sandboxes
or HVI Registers.

NOTE The Sync Data-Sharing statement replaces the now deprecated Sync FPGA Data-
Sharing statement.

Find us at www.keysight.com Page 56

KS2201A - PathWave Test Sync Executive User Manual Chapter 4: HVI Technology Elements

Sync Multi-Sequence Block

Enables the execution of multiple, simultaneous, Engine-specific Sequences.

Sync Multi-Sequence Blocks are a type of Sync Statement that contain a set of Local Sequences. The
Local Sequences execute on individual HVI Engines within the instruments. All Local Sequences
contained in a Sync Multi-Sequence Block start and end at the same time.

The Sync Multi-Sequence Block enables you to run different Sequences on each Engine concurrently.
It ensures that the execution of all the Local Sequences starts exactly at the same time and that the
Sync Sequence remains synchronous afterwards. It serves as a boundary between sections and a
container where each Engine operates individually.

All HVI Local Sequences operate within HVI Sync Statements. The HVI Sync Statements determine
global or synchronized operations, or synchronization points.

The following diagram shows how the HVI Sync Statements fit in the Sync Sequence:

Find us at www.keysight.com Page 57

KS2201A - PathWave Test Sync Executive User Manual Chapter 4: HVI Technology Elements

HVI Local Statements

HVI Local Statements are the commands or operations that make up Local Sequences. These are the
commands or operations you put in the Local Sequences to be executed on a specific HVI Engine in a
specific hardware instrument. There are two types of Local Statements:

l HVI Instructions.

l HVI Local Flow-Control Statements.

HVI Instructions

These are operations that are executed by the HVI Engine in the instrument hardware and do not
impact the execution flow.

There are two types of Local Instructions:

HVI Native Instructions

HVI-native instructions are instrument independent, general-purpose instructions present on all
instruments, for example, math operations, writing Triggers and executing Actions. HVI Native
Instructions are defined by the TSE API.

Instrument-Specific Instructions

These are instructions that are specific to instruments. You can use these when you program an
HVI with those specific instruments.

These instructions can change instrument settings such as amplitude and frequency. They can
also trigger instrument functions such as queuing waveforms for playback, outputting a
waveform, or triggering a data acquisition.

Instrument-Specific Instructions are defined by the HVI instrument add-on API and are exposed
in each instrument driver as instrument-specific HVI definitions.

NOTE The User Guides for the M320xA PXI AWGs and M310xA PXI Digitizers describe all
the HVI Instructions available for each of the M3xxxA PXI instruments.

Find us at www.keysight.com Page 58

KS2201A - PathWave Test Sync Executive User Manual Chapter 4: HVI Technology Elements

Local Flow-Control Statements

Local Flow-Control Statements are used to control the execution flow within each Local
Sequence. These Statements are depicted with yellow boxes in the HVI diagrams displayed in this
User Manual.

These are used to control the execution flow of a specific HVI Engine. They are divided into two types:

l Wait Statements

l Conditional Flow-Control Statements

Wait Statements:

Local Wait-For-Event

Waits for a condition that can be determined by an HVI Event, an HVI Trigger, or any logical
combination of any of these types of conditions.

Local Wait-For-Time

Waits for an amount of time specified in a register.

Local Delay

Delays a Sequence for a time you specify.

Conditional Flow-Control Statements:

Local If

This acts as a Local If-Elseif-Else, Local If executes one of a set of possible Local Sequences
depending on the value of a defined condition.

Local While

Executes while a condition is true.

Find us at www.keysight.com Page 59

KS2201A - PathWave Test Sync Executive User Manual Chapter 4: HVI Technology Elements

The following diagram shows the different types of Local Statements and their relationship to
the Local Sequences:

Find us at www.keysight.com Page 60

KS2201A - PathWave Test Sync Executive User Manual Chapter 4: HVI Technology Elements

HVI Diagrams
This section shows HVI diagrams. These are used to illustrate HVI Sequences.

In the HVI diagrams, the following colors are used to indicate different kinds of Statements:

The following diagram shows a single Sync Statement with flow and time for the block:

Find us at www.keysight.com Page 61

KS2201A - PathWave Test Sync Executive User Manual Chapter 4: HVI Technology Elements

The diagrams can show nesting of Statements within Statements. For example, the following diagram
shows a Sync Statement that is within another Sync Statement:

Local Sequences are placed within their HVI Engines in Sync Multi-Sequence Blocks. The following
diagram shows a pair of Local Sequences with an HVI Instruction each inside a Sync Multi-Sequence
Block:

Find us at www.keysight.com Page 62

KS2201A - PathWave Test Sync Executive User Manual Chapter 4: HVI Technology Elements

A dotted line indicates that execution time is not known at compile time. This is often the case with
flow-control Statements. In this case the Wait-For-Event Statement shall not release until the Event
occurs. It is not known at compile time when this is, so the time cannot be calculated at compile
time.

The following diagram shows a Local Flow-Control Statement that encloses a pair of HVI Instructions.
The color Yellow indicates a Local Flow-Control Statement.

The circular symbol is a loop indicator that shows that the block iterates.

Find us at www.keysight.com Page 63

KS2201A - PathWave Test Sync Executive User Manual Chapter 4: HVI Technology Elements

The following diagram shows a more complex example. The Sync Multi-Sequence Block contains
two Local Sequences, one per HVI Engine. The Local Sequences execute operations on
their associated HVI Engines in parallel.

Find us at www.keysight.com Page 64

KS2201A - PathWave Test Sync Executive User Manual Chapter 4: HVI Technology Elements

Timing
This section introduces the basic HVI timing concepts, it contains the following sections:

l HVI Statement Timing Definitions

l Timing Descriptions for Different Statement Types

Start Delay operation for different types of Statements

HVI Instruction Timing

Local Flow-Control timing

Sync Statement timing

HVI timing is a complex topic that involves you understanding how to calculate the timing between
statements. The calculations required and parameters involved are described in detail in Chapter 10:
HVI Time Management and Latency.

HVI Statement Timing Definitions

When you are programming an HVI, you have precise control over the timing of HVI Statement
execution. To do this correctly, you must understand the following time definitions:

l Start time.

l End time.

l Execution time.

l Start Delay.

Start time

This is the instant of time when the HVI starts the execution of a Statement.

End time

This is the instant of time when t he execution of a Statement is completed and the result is
available, or an operation has completed.

Execution time

This is the time interval from the Start time to the End time of the Statement.

Find us at www.keysight.com Page 65

KS2201A - PathWave Test Sync Executive User Manual Chapter 4: HVI Technology Elements

Start Delay

The Start Delay defines the period between the execution of consecutive statements. The Start
Delay enables you to have full control of the timing of operations and ensures there is enough
time for correct execution. Start Delay is a parameter that you set when you add statements to a
Sequence.

NOTE If you do not specify a valid Start Delay, the compiler generates an error and
indicates the minimum valid minimum value.

The following diagram shows the HVI statement timing definitions:

Find us at www.keysight.com Page 66

KS2201A - PathWave Test Sync Executive User Manual Chapter 4: HVI Technology Elements

Timing Descriptions for Different Statement Types

This section describes statement timing and provides a set of examples. It contains the following
subsections:

l Start Delay operation for different types of Statements.

l HVI Instruction timing.

l Local Flow-Control Statement timing.

l Sync Statement timing.

Start Delay operation for different types of Statements

Start Delay is always specified between two consecutive Statements, from the previous Statement to
the current Statement.

You define a Start Delay in one of 2 different ways:

l From the beginning of the previous Statement.

l From the end of the previous Statement.

The way you define the Start Delay depends on the type of the previous Statement. For example, say
you have 2 Statements: A followed by B. The Start Delay for Statement A is already specified and you
want to specify the Start Delay for Statement B.

The current Statement is Statement B, so the Start Delay of Statement B depends on the type of the
previous Statement A:

HVI Instructions

If Statement A is an HVI Instruction, the Start Delay of Statement B starts at, and is measured
from, the Start time of the Statement A.

Sync Statements and Local Flow-Control Statements

If Statement A is a Sync Statement or a Local Flow-Control Statement, the Start Delay of
Statement B starts at, and is measured from, the End time of Statement A.

Find us at www.keysight.com Page 67

KS2201A - PathWave Test Sync Executive User Manual Chapter 4: HVI Technology Elements

The following diagram shows the different Start Delay definitions:

Find us at www.keysight.com Page 68

KS2201A - PathWave Test Sync Executive User Manual Chapter 4: HVI Technology Elements

HVI Instruction Timing

The following diagram shows the timing when the previous Statement is a HVI Instruction.

For HVI Instructions, the Start Delay of the following instruction is measured from the start of the
previous instruction.

The following diagram shows two Statements and their timing where the first Statement in a HVI
Instruction:

Find us at www.keysight.com Page 69

KS2201A - PathWave Test Sync Executive User Manual Chapter 4: HVI Technology Elements

Local Flow-Control timing

For Local Flow-Control Statements, the Start Delay of the next Statement is measured from the end
of the previous Local Flow-Control Statement. This is because the HVI Engine is busy during the
execution of the flow-control Statement and the execution of a flow-control Statements cannot be
overlapped with any following Statements.

For the Local Flow-Control Statement after instruction A, the Start Delay (Start Delay C) is measured
from the start of the previous instruction (instruction A).

For instruction B, that follows the Local Flow-Control Statement, the Start Delay (Start Delay D) is
measured from the end of the flow-control block.

The execution time of Local Flow-Control Statements can be known at compile time, or might be
unknown, the dotted line in the diagram below indicates that the execution time of the Local Flow-
Control block T1 is not known at compile time.

The following diagram shows the difference between measuring timing of HVI Instructions and Local
Flow-Control Statements.

Find us at www.keysight.com Page 70

KS2201A - PathWave Test Sync Executive User Manual Chapter 4: HVI Technology Elements

Sync Statement timing

For Sync Statements, the Start Delay is measured from the end of one Sync Statement to the start of
the following Sync Statement.

The following diagram shows two Sync Statements, A and B. Sync Statement B is a container for two
further Sync Statements, B-1 and B-2. The times indicated are Start Delay A, Start Delay B, Start
Delay C, T1, and T2.

The time between the end of Sync Statement A and the start of Sync Statement B-1 is Start Delay A +
Start Delay B. The time between the end of Sync Statement B-1 and the start of Sync Statement B-2
is Start Delay C.

The execution time of Sync Statements can be known at compile time, as shown below with a solid
line.

The following diagram shows the timing between Sync Statements:

Find us at www.keysight.com Page 71

KS2201A - PathWave Test Sync Executive User Manual Chapter 4: HVI Technology Elements

Chapter 5: HVI integration with PathWave FPGA
This chapter describes PathWave Test Sync Executive integration with PathWave FPGA. It contains
the following sections:

l PathWave FPGA and HVI Overview

l Using FPGA-Sandbox Resources with HVI

l HVI FPGA-Memory Maps and HVI FPGA-Register Banks in FPGA-Sandboxes

l Actions, Events and Triggers in an FPGA-Sandbox

l FPGA Fast Data Sharing

l FPGA-Instruction

l HVI Statements for using FPGAs

Find us at www.keysight.com Page 72

KS2201A - PathWave Test Sync Executive User Manual Chapter 5: HVI integration with PathWave FPGA

PathWave FPGA and HVI Overview

What is an FPGA?

A Field programmable Gate Array (FPGA) is a digital electronic component on many Keysight instru-
ments, whose behavior can be modified for different use cases.

Keysight instruments use FPGAs to implement complex functionality and data processing. Some
instruments also make a region in the FPGA available to enable the addition of custom logic and real-
time processing into the instruments. You can customize the FPGA with PathWave FPGA software.

PathWave FPGA

PathWave FPGA is a graphical software tool that enables you to rapidly customize logic in the Sand-
box section of the FPGA in supported Keysight instruments. By doing this you can modify or enhance
the default behavior of these instruments.

Instruments that support both PathWave FPGA and PathWave Test Sync Executive enable you to
combine your customized logic with the real-time capabilities of PathWave Test Sync Executive. For
example, you can have DSP processing in the FPGA-Sandbox, triggered in real time by an HVI
Sequence.

FPGA-Sandbox

In addition to any existing Intellectual Property (IP) and HVI Engines, a Keysight instrument FPGA can
include one or more FPGA-Sandboxes. An FPGA-Sandbox is the region in the FPGA that you can con-
figure using PathWave FPGA.

You can configure the FPGA-Sandbox to implement your own custom IP, signal processing and other
functionality. This can include custom logic, HVI FPGA-Registers and memory interfaces. HVI
can interact with this custom logic using HVI-specific interfaces.

PathWave FPGA includes an Intellectual Property (IP) library that includes Logic/Math, Memory, and
DSP blocks that you can place in the FPGA-Sandbox. The Real-time HVI design interface catalog
enables you to add memories and FPGA-Registers, and also contains specific HVI interfaces for HVI
Actions, HVI Events, HVI Triggers, and FPGA-Instruction Statements.

Find us at www.keysight.com Page 73

KS2201A - PathWave Test Sync Executive User Manual Chapter 5: HVI integration with PathWave FPGA

http://www.keysight.com/find/pathwave-fpga
http://www.keysight.com/find/pathwave-fpga

.k7z files

When you have completed your design, PathWave FPGA enables you to easily build a .K7z file for
your FPGA from your schematic.

The .k7z file contains the bitfile that is used to program the FPGA-Sandbox design into the FPGA. The
.k7z file also contains all the information about the FPGA-Sandbox design, such as names,
addresses, ranges of the HVI FPGA-Registers, and memory-mapped locations, etc, including
resources that are connected to the HVI Engine.

You add the .k7z into your HVI instance in the SystemDefinition. This file is used by the HVI to get all
the definitions required so you can utilize your customizations.

HVI Resources in the FPGA-Sandbox

PathWave FPGA enables you to add HVI to your logic design in the FPGA-Sandbox. These resources
enable your HVI to interact with the logic in the sandbox.

You can add the following types of components and access them from your HVI Sequences:

l HVI FPGA-Registers.

l HVI FPGA-Memory Maps.

l HviAction interfaces.

l HviEvent interfaces.

l HviTrigger interfaces (HviTriggerIoIn, HviTriggerIoOut, HviTriggerIoT).

l FPGA Fast Data Sharing (FDS) ports.

l FPGA-Instruction (HviFPGAInstructions).

NOTE The exact resources you can add depends on the capabilities of the instrument you
are using. For example, FDS ports are only available on instruments that support
them.

Find us at www.keysight.com Page 74

KS2201A - PathWave Test Sync Executive User Manual Chapter 5: HVI integration with PathWave FPGA

The following diagram shows a screenshot of PathWave FPGA with some example resources:

The following image is a screenshot of from PathWave FPGA taken from Programming Example 3.
The image shows a set of FPGA blocks, a number of HVI resources, and the connections between
them in an FPGA-Sandbox. For more information about Programming Example 3 see: Appendix B:
Additional Documentation and Examples. For information about how to use PathWave FPGA see the
documentation at PathWave FPGA.

Find us at www.keysight.com Page 75

KS2201A - PathWave Test Sync Executive User Manual Chapter 5: HVI integration with PathWave FPGA

http://www.keysight.com/find/pathwave-fpga

PathWave Test Sync Executive includes a number of HVI instructions that enable your HVI Sequences
to interact with the IP blocks in the FPGA-Sandbox. The instructions include access to FPGA-
Registers or FPGA-Memory Maps, and send data or commands into the FPGA-Sandbox.

If you want to send an Action into the FPGA-Sandbox, you must add an HviAction interface to the
FPGA-Sandbox, you just add this to the design and connect them to your customized logic. In a
Sequence you are able to interact with the logic using the relevant instructions. Actions in the FPGA-
Sandbox are accessed from Sequences in the same way you use any other HVI Actions, no special
instructions are required. HviEvents and HviTriggers work the same way.

HVI Sequences and FPGA-Sandbox resource interaction

When you run your HVI, the HVI Engine reads and executes the individual commands within your HVI
Sequences. When the HVI Engine executes an HVI Statement that involves interaction with a
resource in the FPGA-Sandbox, the HVI Engine communicates with the FPGA-Sandbox.

The following diagram shows an FPGA-Sandbox that contains custom IP blocks with connections to
an HVI Engine and the instrument physical interfaces:

Find us at www.keysight.com Page 76

KS2201A - PathWave Test Sync Executive User Manual Chapter 5: HVI integration with PathWave FPGA

Using PathWave FPGA with PathWave Test Sync Executive

The full flow to customize the logic in an FPGA-Sandbox and then use these customizations in HVI
Sequences is:

In PathWave FPGA:

l Open the instrument Board Support Package (BSP) using PathWave FPGA.

l Customize the logic by adding logic blocks.

l Add any HVI FPGA-Registers and memories required.

l Add HVI interfaces so HVI can interact with your logic (Actions, Events, Triggers).

l Connect your customized logic to the relevant I/O signals in the HVI interfaces.

l Generate the .k7z file.

Once you have configured the FPGA with PathWave FPGA, added the relevant HVI interfaces as
required, and generated a .k7z file, you must load the definitions into PathWave Test Sync Executive:

l Load the .k7z file into your SystemDefinition.

l Write your HVI Sequences and use the FPGA resources.

l Load your HVI instance to hardware (this step loads the .k7z as required).

You can use the HVI resources in the FPGA in the same way as you use any other HVI resources.

Find us at www.keysight.com Page 77

KS2201A - PathWave Test Sync Executive User Manual Chapter 5: HVI integration with PathWave FPGA

Using FPGA-Sandbox Resources with HVI
This section describes what to do in the different HVI programming stages, so you can use the FPGA
customizations you made in PathWave FPGA in your HVI Sequences.

Load the .k7z file in SystemDefintition

When you have completed and built a design, PathWave FPGA generates a .k7z file.

Before you can use any FPGA-Sandbox resources with HVI, you must first load the .k7z into your HVI
System Definition.

The .k7z file contains a bitfile, that is used to load the design into the FPGA-Sandbox. The .k7z file
also contains information about the resources in the design, such as names of ports and interfaces,
addresses, ranges of the registers, memory-mapped locations, etc. The .k7z file is used to program
your customizations into the FPGA and it is also used by HVI to get all the definitions required so you
can utilize your customizations.

The following code shows how to load the .k7z file:

This must be the name that the instrument has defined for the target FPGA-Sandbox
sandbox_name = "InstrumentSandbox1"
Get FPGA-Sandbox
sandbox = system_definition.engines[engine_name].fpga_sandboxes[sandbox_name]
Load the k7z file to HVI
sandbox.load_from_k7z(k7z_file_path)

Using FPGA-Sandbox resources in an HVI Sequence

When you load the .k7z , file into a specific FPGA-Sandbox, HVI is able to access the resources
defined in PathWave FPGA for that specific FPGA-Sandbox, allowing you to use them in your HVI
Sequences or at runtime.

The following example shows how to get and write to an HVI FPGA-Memory Map inside a Sequence:

Get FPGA-Memory Map object by name, as this is defined in the PathWave FPGA design
hvi_memory_map = sandbox.hvi_memory_maps["memory_map_name"]
#
Write FPGA-Memory Map
engine_sequence = multi_sequence_block_statement.sequences[engine_name]
fpga_array_write_instruction = engine_sequence.instruction_set.fpga_array_write
write_mem_map_instruction_statement = engine_sequence.add_instruction("Write FPGA-Memory Map", 10, fpga_
array_write_instruction.id)
write_mem_map_instruction_statement.set_parameter(fpga_array_write_instruction.fpga_memory_map.id, hvi_
memory_map)
write_mem_map_instruction_statement.set_parameter(fpga_array_write_instruction.fpga_memory_map_offset.id, 0)
write_mem_map_instruction_statement.set_parameter(fpga_array_write_instruction.value.id, 10)

Actions, Events, and Triggers are treated in a different way.

Find us at www.keysight.com Page 78

KS2201A - PathWave Test Sync Executive User Manual Chapter 5: HVI integration with PathWave FPGA

The Actions, Events, and Triggers available in the FPGA-Sandbox are provided by the Instrument the
FPGA is located in.

You define and use these the same way as you do other instrument Actions, Events and Triggers. For
more information, see your instrument documentation.

The following code shows how to use an action_execute instruction to execute an Action:

First, the Action that goes to the FPGA-Sandbox must be added to the Engine:
#
Get the Action ID using the instrument's API, e.g.:
action_id = instrument.hvi.actions.user_sandbox3
#
Specify a name for the Action to be used in the context of your HVI program
action_name = "MySandboxAction"
#
Add the Action to the Engine of the instrument
action = system_definition.engines[engine_name].actions.add(action_id, action_name)
#
Then, use the Action in your Sequence
engine_sequence = multi_sequence_block_statement.sequences[engine_name]
action_execute_instruction = engine_sequence.instruction_set.action_execute
action = engine_sequence.engine.actions[action_name]
instruction = sequence.add_instruction("Execute Action", 10, action_execute_instruction.id)
instruction.set_parameter(action_execute_instruction.action.id, action)

NOTE When you write HVI Sequences, you must use the same names you used in the
PathWave FPGA project to access the HVI FPGA resources, FPGA-Memory Maps,
FPGA-Registers and FDS ports.

Load to Hardware

The .k7z internal bitfile is automatically loaded into the hardware at this stage if it is not already
loaded. Once it has been loaded, in addition to running the HVI Sequence to control FPGA resources
in real-time, you can also access some of the HVI FPGA resources from software, for instance writing
to an HVI FPGA-Memory Map:

Load or Deploy Hvi instance to hardware. At this step the k7z is loaded, if it is not already loaded
hvi_instance.load_to_hw()
#
Write to HVI FPGA Memory Map, in this example 0 is the offset and 1 is the data.
sandbox.fpga_memory_maps["memory_map_name"].write(0 , 1)
#
Run the Hvi Sequence to use/control FPGA-Sandbox resources in real-time as described in the Sequence
hvi_instance.Run()

Find us at www.keysight.com Page 79

KS2201A - PathWave Test Sync Executive User Manual Chapter 5: HVI integration with PathWave FPGA

HVI FPGA-Memory Maps and HVI FPGA-Register Banks in FPGA-Sandboxes
This section describes the HVI FPGA-Registers and HVI FPGA-Memory Maps that you can add to
FPGA-Sandboxes in PathWave FPGA.

HVI FPGA-Registers

HVI FPGA-Registers are user-defined hardware registers that are similar to Variables in a
programming language. Physically, registers are small hardware memories located in the FPGA-
Sandbox. The FPGA-Registers can be accessed and modified by both HVI instructions in real-time
during Sequence execution, and can be written in HVI software calls.

The FPGA-Registers can be used for destinations or sources of data, and FPGA-Registers can be
treated as signed or unsigned. The size is 32 bits and numerical values must be within the signed or
unsigned range. FPGA-Registers are not required to be used for numerical values, you can use the 32
bits however you wish. You can add multiple FPGA-Registers at once as a register bank.

The following image shows a register bank in PathWave FPGA:

In the image, Din_v and Dout_v indicate signals.

Din_v is used to specify when a value is valid, so the bank will update the internal value of the register
for when it is being read.

Dout_v indicates when the Dout value is valid, so it can be used by your custom logic.

Find us at www.keysight.com Page 80

KS2201A - PathWave Test Sync Executive User Manual Chapter 5: HVI integration with PathWave FPGA

FPGA-Register Read example

The instruction fpga_register_read is an HVI-native instruction that enables you to read from an FPGA-
Registers in an FPGA-Sandbox, the destination must be an HVI Register (not an FPGA-Register).

The following code example shows an fpga_register_read instruction

Read FPGA-Register into an HVI Register
#
fpga_register = hvi.sync_sequence.engines["engine_name"].fpga_sandboxes["sandbox_name"].hvi_registers
["sandbox_register"]
readFpgaReg0 = sequence.add_instruction("Read FPGA Register_Bank_HviAction4Cnt", 10, sequence.instruction_
set.fpga_register_read.id)
readFpgaReg0.set_parameter(sequence.instruction_set.fpga_register_read.destination.id, hvi_register)
readFpgaReg0.set_parameter(sequence.instruction_set.fpga_register_read.fpga_register.id, fpga_register)

FPGA-Register Write example

The instruction fpga_register_write is an HVI-native instruction that enables you to write to an FPGA-
Register in an FPGA-Sandbox. The value to be written to the register is taken from an HVI Register or
from a literal.

The following code example shows an fpga_register_write instruction:

Write to an HVI Register from an HVI Register used in an HVI Sequence
#
writeFpgaReg0 = seq.add_instruction("Write FPGA Register_Bank_HviPxiTrigOut", 50, hvi.instruction_set.fpga_
register_write.id)
writeFpgaReg0.set_parameter(seq.instruction_set.fpga_register_write.fpga_register.id, fpga_register)
writeFpgaReg0.set_parameter(seq.instruction_set.fpga_register_write.value.id, hvi_register)

Find us at www.keysight.com Page 81

KS2201A - PathWave Test Sync Executive User Manual Chapter 5: HVI integration with PathWave FPGA

HVI FPGA-Memory maps

An HVI FPGA-Memory Map is an interface you add to an FPGA-Sandbox that enables you to to
connect HVI Sequences to a memory in the FPGA-Sandbox, or to custom logic that includes a
memory block. The interface specifies a location and size that you define. The memories are always
accessed 32 bits at a time.

To use the interface in HVI Sequences, you must use the same name that you used in PathWave
FPGA, otherwise you will not be able to access the memory.

The following image shows an FPGA-Memory Map in PathWave FPGA:

HVI FPGA-Memory Map Read example

The following code example shows an HVI FPGA-Memory Map this is read with an fpga_array_read

instruction. The destination is always an HVI register:

Read FPGA-Memory Map
#
readMemoryMap = sync_block_1.sequences["engine_name"].add_instruction("Read FPGA-Memory Map", 20,
hvi.instruction_set.fpga_array_read.id)
readMemoryMap.set_parameter(seq.instruction_set.fpga_array_read.fpga_memory_map.id, hvi_memory_map)
readMemoryMap.set_parameter(seq.instruction_set.fpga_array_read.destination.id, register)
readMemoryMap.set_parameter(seq.instruction_set.fpga_array_read.fpga_memory_map_offset.id, 0)

Find us at www.keysight.com Page 82

KS2201A - PathWave Test Sync Executive User Manual Chapter 5: HVI integration with PathWave FPGA

HVI FPGA-Memory Map write example

The following code example shows an HVI FPGA-Memory Map that is written by a fpga_array_write

instruction. The source can be a literal or an HVI register:

Write Memory Map
#
writeMemoryMap = sync_block_1.sequences["engine_name"].add_instruction("Write FPGA-Memory Map", 10,
seq.instruction_set.fpga_array_write.id)
writeMemoryMap.set_parameter(seq.instruction_set.fpga_array_write.fpga_memory_map.id, hvi_memory_map)
writeMemoryMap.set_parameter(seq.instruction_set.fpga_array_write.value.id, register)
writeMemoryMap.set_parameter(seq.instruction_set.fpga_array_write.fpga_memory_map_offset.id, 0)

For more information, see Local Statements.

Find us at www.keysight.com Page 83

KS2201A - PathWave Test Sync Executive User Manual Chapter 5: HVI integration with PathWave FPGA

Actions, Events and Triggers in an FPGA-Sandbox
A number of interfaces for HVI Actions, HVI Events, and HVI Triggers are available in PathWave FPGA
that you can add to an FPGA-Sandbox. These are are provided by the instrument that the FPGA is loc-
ated in.

The following image shows HviAction, HviEvent, and HviTriggerIoIn interfaces:

Actions

You add Actions to enable you to send signals into the FPGA-Sandbox from your HVI Sequences.

For example, you can use an Action to tell the logic in an FPGA-Sandbox to send a signal.

Events

You add Events to inform your HVI Sequences of Events in the FPGA-Sandbox.

For example, you can use an Event to get the FPGA to inform your HVI that an external signal has
been received in the FPGA-Sandbox, or a signal has been generated in the FPGA-Sandbox.

You use the Wait-for-Event Statement to command your HVI to wait until an Event occurs. A signal
in the FPGA-Sandbox can initiate the Event.

Triggers

You can add Triggers that go into or out of the FPGA-Sandbox.

For example, a Trigger going into the FPGA-Sandbox can initiate an Event in the FPGA-Sandbox.

Find us at www.keysight.com Page 84

KS2201A - PathWave Test Sync Executive User Manual Chapter 5: HVI integration with PathWave FPGA

You can also use an Action to initiate the logic in the FPGA-Sandbox to send a Trigger out of the
FPGA-Sandbox, or you can use an Event that is initiated when a Trigger has arrived.

Depending on the Instrument, there may be a number of different Trigger types available, for
example:

l HviTriggerIoIn.

l HviTriggerIoOut.

l HviTriggerIoT.

l HviTriggerOutToLvds.

l LvdsToHviTriggerIn.

For a list of Actions, Events and Triggers available for an instrument, see your instrument doc-
umentation.

Using FPGA-Sandbox Actions, Events and Triggers in HVI Sequences

You can use the Actions, Events and Triggers that you added to an FPGA-Sandbox in your HVI
Sequences. For Actions, Events and Triggers this is the same as you use any other instrument
Actions, Events and Triggers, except for Triggers and Events where you must set the source to be
fpga_sandbox.

For example, for Actions:

l Use the ActionDefinition object to define the Action.

l Add the definition to the ActionDefinitionCollection.

l Add the Action to an HVI Engine with the add method of the ActionCollection.

l In your Sequence, add an Action with InstructionsActionExecute.

Find us at www.keysight.com Page 85

KS2201A - PathWave Test Sync Executive User Manual Chapter 5: HVI integration with PathWave FPGA

FPGA Fast Data Sharing
HVI enables FPGAs on instruments to communicate with each other using Fast Data Sharing (FDS)
technology.

Fast Data Sharing (FDS) is a technology that enables you to share data between FPGA-Sandboxes
with a known fixed low latency. You can share data during the execution of Sequences between
FPGA-Sandboxes in different instruments in the same, or different chassis. The data sharing is per-
formed using Sync Data-Sharing Statements.

To take advantage of this FDS, you must use PathWave-FPGA to create a design in an FPGA-Sand-
box that includes FDS ports.

Communication with Fast Data Sharing

FDS enables you to move data such as register values, or values of items such as qubit states. The
data can travel between instruments on System Sync cables or on the PXIe DSTARB or DSTARC lines
inside a chassis. FDS requires System Synchronization Modules (SSM) and PXIe instruments that sup-
port FDS technology. An advantage of FDS is that it does not use up additional triggers beyond those
PathWave Test Sync Executive requires, so you are not required to reserve any additional triggers to
use FDS.

HVI supports the following kinds of FDS transfers:

l Sharing FPGA-Sandbox data with Sync Data-Sharing Statements.

For FDS enabled instruments, Pathwave-FPGA provides the interfaces to use FDS. Timing and rout-
ing information is provided by the instruments.

HVI guarantees that the data is sent in the correct order, and that the communication timing and rout-
ing is computed automatically by HVI. HVI also automatically calculates the optimal communication
timing to avoid collisions when data is transferred.

Accessing FPGA FDS Ports

When a PathWave FPGA project (.k7z file) is loaded, the HVI FPGA-Memory Maps, HVI FPGA-
Registers, and FDS ports are populated under the sandbox object.

You can access the list of FDS Port locations (FdsPort objects) defined in the FPGA-Sandbox by using
an FPGA-Sandbox Definition object that is loaded from the .k7z file.

The FdsPort object enables you to use the FDS port instances placed in the FPGA-Sandbox of a loaded
PathWave FPGA project. An FdsPort has one property which is the name of the port.

The FdsPort can be set as a parameter in a SyncFpgaDataSharing Statement.

Find us at www.keysight.com Page 86

KS2201A - PathWave Test Sync Executive User Manual Chapter 5: HVI integration with PathWave FPGA

http://www.keysight.com/find/pathwave-fpga
http://www.keysight.com/find/pathwave-fpga

The following example shows how to use and program the FDS transactions in the SyncFpgaDataSharing

Statement.

The FdsPortAddress object enables you to specify both the source and the destination for each FDS
transaction. This is done by specifying the name of the FDS port connected in PathWave FPGA to the
block transmitting/receiving the data over FDS. The address where the data is read/written is also
specified. Once the source and destinations are specified, each transaction can be added to the Syn-

cFpgaDataSharing Statement by specifying how many bits are shared in each transaction.

Python example:

Sync Data-Sharing definition with 3 transactions
#
Retrieve ports
instrument1_fds_ports = sequencer.sync_sequence.engines[instrument1_engine_name].fpga_sandboxes[0].fds_ports
instrument2_fds_ports = sequencer.sync_sequence.engines[instrument2_engine_name].fpga_sandboxes[0].fds_ports
instrument3_fds_ports = sequencer.sync_sequence.engines[instrument3_engine_name].fpga_sandboxes[0].fds_ports
#
Sources
instrument1_tx = kthvi.FdsPortAddress(instrument1_fds_ports[instrument1_tx_port_name], src1_address)
instrument2_tx = kthvi.FdsPortAddress(instrument2_fds_ports[instrument2_tx_port_name], src2_address)
#
Destinations
instrument2_rx = kthvi.FdsPortAddress(instrument2_fds_ports[instrument2_rx_port_name], dst2_address)
instrument3_rx = kthvi.FdsPortAddress(instrument3_fds_ports[instrument3_rx_port_name], dst3_address)
#
Adding Sync Data Sharing Statement
fpga_data_sharing = sequencer.sync_sequence.add_sync_data_sharing("my statement", start_delay)
Transaction 1
fpga_data_sharing.transactions.add(instrument1_tx, instrument2_rx, num_bits_to_share)
#
Transaction 2
fpga_data_sharing.transactions.add(instrument2_tx, instrument3_rx, num_bits_to_share)
#
Transaction 3
fpga_data_sharing.transactions.add(instrument1_tx, instrument3_rx, num_bits_to_share)

Find us at www.keysight.com Page 87

KS2201A - PathWave Test Sync Executive User Manual Chapter 5: HVI integration with PathWave FPGA

FPGA-Instruction
The FPGA-Instruction statement enables you to issue commands to custom FPGA-Sandbox logic
from within HVI sequences.

You can customize logic in an FPGA sandbox using PathWave FPGA to create different functions.
When you do this, adding an HVI_Instr interface enables you to interface with your logic from HVI
Sequences.

You use the FPGA-Instruction Statement in your Sequences to issue the commands into the FPGA-
Sandbox to utilize the different functionality. This means you can setup custom commands with dif-
ferent functions in the FPGA-Sandbox and utilize them in HVI Sequences.

When an HVI Engine executes an FPGA-Instruction, it also reads the parameters and the instruction
ID and passes this data to the HVI_Instr interface in the FPGA-Sandbox, this interfaces an instruction
parser and your logic.

This flow is shown in the following diagram:

Find us at www.keysight.com Page 88

KS2201A - PathWave Test Sync Executive User Manual Chapter 5: HVI integration with PathWave FPGA

Integrating the FPGA-Instruction Statement with FPGA-Sandbox Logic

If you want to issue commands to your logic with the FpgaInstruction Statement, you must add an HVI
instruction interface to the FPGA-Sandbox. Your logic must receive the parameters provided and
then decode and execute the commands. How this is done depends on the instrument you are using,
see your instrument documentation for more information.

The following image shows the HVI instruction interface hvi_instr as it appears in PathWave FPGA:

The signals are:

apply:

A flag that is typically used to apply stored configuration data in a multi-step setup process.

cmdId:

Command identifier. This is useful when more than one command is supported by the custom
logic.

dataA:

General purpose data, 40 bits wide.

valid:

A flag used to identify when the data on the other ports is valid.

Find us at www.keysight.com Page 89

KS2201A - PathWave Test Sync Executive User Manual Chapter 5: HVI integration with PathWave FPGA

The following example shows an FPGA-Instruction Statement:

Set up local Sequence
fpga_inst = local_sequence.instruction_set.fpga_instruction
instruction = local_sequence.add_instruction('fpgaInstruction', 10, fpga_inst.id)
#
port_number = 2
data_a = 1234
command_id = 5
apply = 1
#
instruction.set_parameter(fpga_inst.port_number.id, port_number)
instruction.set_parameter(fpga_inst.data_a.id, data_a)
instruction.set_parameter(fpga_inst.command_id.id, command_id)
instruction.set_parameter(fpga_inst.apply.id, apply)

For more information see Local Statements.

Find us at www.keysight.com Page 90

KS2201A - PathWave Test Sync Executive User Manual Chapter 5: HVI integration with PathWave FPGA

HVI Statements for using FPGAs
PathWave Test Sync Executive includes a number of FPGA-specific HVI Statements you can use to
interact with the FPGA on an instrument:

Local Statements

FPGA-Register Read

The instruction fpga_register_read is an HVI Native Instruction that enables you read from an HVI
FPGA-Register to a destination HVI Register.

FPGA-Register Write

The instruction fpga_register_write is an HVI Native Instruction that enables you to write an HVI
FPGA-Register placed in an FPGA-Sandbox. The value to be written to the HVI FPGA-Register is
taken from an HVI Register or from a literal.

FPGA-Memory Map Write

The instruction fpga_array_write is an HVI Native Instruction that enables you to write to an HVI
FPGA-Memory Map that is located in an FPGA-Sandbox. The value to be written to the HVI
FPGA-Memory Map is taken from an HVI Register or from a literal.

FPGA-Memory Map Read

The instruction fpga_array_read is an HVI Native Instruction that enables you to read from an HVI
FPGA-Memory Map. The value read from the HVI FPGA-Memory Map is written to a destination
HVI Register.

FPGA-Instruction Statement

The fpgaInstruction Statement enables you to issue commands to your custom FPGA-Sandbox
logic from within HVI Sequences. This is an HVI Native Instruction, but it can only be used
successfully on instruments that support it.

For more information, see Local Statements.

Find us at www.keysight.com Page 91

KS2201A - PathWave Test Sync Executive User Manual Chapter 5: HVI integration with PathWave FPGA

Sync Statements

Sync Data-Sharing Statement

The Sync Data-Sharing Statement enables you to transfer data between FPGA-Sandboxes.

For more information, see Sync Statements.

Find us at www.keysight.com Page 92

KS2201A - PathWave Test Sync Executive User Manual Chapter 5: HVI integration with PathWave FPGA

Chapter 6: Multi-Chassis Systems and System Synchronization Mod-
ules
This chapter describes how you use System Synchronization Modules to synchronize a Multi-Chassis
System. It contains the following sections:

l System Synchronization Modules

l Configuring a System with SSMs and System Sync Connectivity

l Clocking

For information about troubleshooting a multi-chassis system, see the System Setup Guide.

Find us at www.keysight.com Page 93

KS2201A - PathWave Test Sync Executive User
Manual

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

System Synchronization Modules
This section describes System Synchronization Modules.

KS2201A PathWave Test Sync Executive includes multi-chassis topologies that use the Keysight
M9032A/M9033A PXIe System Synch ronization Modules (SSMs). The previous means of inter-
connecting multiple PXI chassis using M9031A modules was discontinued starting from the KS2201A
2022 release. Compared to the discontinued M9031A module, the SSM has a much wider range of
functions including:

l Distribution of a precise reference clock.

l Management of Fast Data Sharing (FDS).

l Chassis interconnectivity.

l Synchronization of all the PXI instruments in the multi-chassis.

M9032A and M9033A PXIe SSM Overview

The M9032A/M9033A are PXIe System Synchronization Modules (SSM). These include an onboard
high-quality 10MHz Oven Controlled Crystal Oscillator (OCXO) to achieve a very precise syn-
chronization among various measurement instruments distributed across different chassis. The
M9032A/M9033A System Synchronization Module functionalities can only be successfully deployed
on chassis compliant with the PXI-Express (PXIe) standard. The SSM must be inserted in the timing
slot of the PXIe chassis.

Keysight PXIe System Synchronization Module is available in two form factors, which only differ in
their connectivity capabilities:

l M9032A is a one-slot PXIe System Synchronization Module with 1 System Sync Upstream and 1
System Sync Downstream ports.

l M9033A is a two-slot PXIe System Synchronization Module with 1 System Sync Upstream and 4
System Sync Downstream ports.

For further information about these SSMs including detailed performance specifications, see the
M9032A/M9033A User's Guide, available at Keysight PXI Products.

Find us at www.keysight.com Page 94

KS2201A - PathWave Test Sync Executive User
Manual

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

http://www.keysight.com/find/pxi

The following image shows the physical M9032A and M9033A SSMs:

Find us at www.keysight.com Page 95

KS2201A - PathWave Test Sync Executive User
Manual

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

System Sync Module Connectivity

Front Panel

The M9032A and M9033A Front Panel contains various connectors that can be used for both multi-
chassis interconnection and configuration of the reference clock source.

Front Panel Sub Miniature Push-on (SMP) IOs

Front Panel (FP) SMP connectors are:

SClk/Ref Out:

Outputs a copy of the system clock or a reference clock signal.

STrig/Trig IO:

Receives an arbitrary trigger signal.

SClk/Ref In:

Receives the reference clock signal.

PPS/Time Ref:

Receives a Pulse Per Second (PPS) signal.

The front panel SMP connectors can be used to share input and output reference clocks.

Find us at www.keysight.com Page 96

KS2201A - PathWave Test Sync Executive User
Manual

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

System Sync ports

System Sync ports use PCIe Optical Copper Link (OCuLink) connectors. System Sync ports are used
for chassis interconnection and synchronization in the multi-chassis system. The signals in the
System Sync include:

l Clocking (System Sync only).

l Triggering.

l Data.

The different SSM models have the following front panel System Sync ports:

The M9032A has 2 System Sync ports:

l 1 System Sync Upstream.

l 1 System Sync Downstream.

The M9033A has 5 System Sync ports:

l 1 System Sync Upstream.

l 4 System Sync Downstream.

Each System Sync Downstream port can connect to the System Sync Upstream port of another SSM
placed in a different chassis. For more information, see the section below about Inter/Intra-chassis
Connectivity.

PXIe Backplane DSTAR Connectivity

The M9032A and M9033A are placed in the Timing Slot of a PXIe chassis which enables them to
support the DSTAR connectivity built into the chassis.

DSTARA/B/C are multi-instrument point to point connections inside a chassis. DSTARA is used to
carry the clock signal. DSTARB and DSTARC carry trigger or data signals.

Find us at www.keysight.com Page 97

KS2201A - PathWave Test Sync Executive User
Manual

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

Inter/Intra-chassis connectivity, Synchronization and Data-Sharing Functionality

An SSM can enable both multi-chassis and multi-instrument interconnections. With these
connections, SSMs enable synchronization and data sharing across all the instruments in a multi-
chassis system.

l Multi-chassis interconnections are made with System Sync connections using their capability to
interconnect two SSMs together through their System Sync Downstream/Upstream ports.

l Intra-chassis, multi-instrument interconnections are made with PXIe DSTARA/B/C connections.
The SSM can share the precise reference clock over the DSTARA signal.

The following diagram shows a 3 chassis system connected with System Sync cables and
DSTARA/B/C signals in each chassis:

Data can be shared across System Sync and DSTAR connections in several different ways:

l The reference clock can be shared between two interconnected SSMs using the System Sync
connection between System Sync Downstream/Upstream ports.

l The System Sync connection can share the signals sent over the PXI_TRIG[0:7] trigger buses, from
one SSM to the next. This enables the SSMs to share PXI sync resources used by PathWave Test
Sync Executive for the Hard Virtual Instrument (HVI) across the different chassis.

Find us at www.keysight.com Page 98

KS2201A - PathWave Test Sync Executive User
Manual

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

l System Sync connections can route data shared using Fast Data Sharing (FDS) between PXIe
instruments.

l The SSM can send the data between two modules located in the same chassis using the
DSTARB/C signals.

l Data can be sent through the System Sync connections to route it to instruments located in a
different chassis.

Find us at www.keysight.com Page 99

KS2201A - PathWave Test Sync Executive User
Manual

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

Configuring a System with SSMs and System Sync Connectivity
This section describes how you use System Synchronization Modules to synchronize a Multi-Chassis
System.

In a multi-chassis system connected with Keysight PXIe System Synchronization Modules, you must
include one SSM in each chassis that is part of the system. Each SSM must be inserted in the timing
slot of your chassis. This is typically slot 10 in Keysight 18-slot chassis, but it can be a different slot
number in different chassis models. The SSMs are connected to each other with System Sync cables.

One SSM is automatically chosen as a leader and it is used to synchronize all the instruments in the
multi-chassis system. The SSM chosen as leader is the SSM that has no incoming connection to its
System Sync Upstream port. The leader SSM distributes a replica of the reference clock signal to the
SSMs located in the other chassis. It does this through point-to-point connections between System
Sync Downstream/Upstream ports. In the example multi-chassis system shown in the following dia-
gram, the leader SSM is in Chassis 1.

A multi-chassis PXIe system may be configured to use many different reference options. For a list of
those options and descriptions of how to configure them, see the section Clocking in this document.
For one of those reference options, an SSM is chosen as a leader and uses its internal Oven Con-
trolled Crystal Oscillator (OCXO) clock to synchronize all the instruments included in the multi-
chassis system.

NOTE A Multi-chassis system based on the older M9031A modules required an external
reference clock generator to distribute the precise common 10 MHz reference clock
signal across different chassis. In the multi-chassis topology delivered by PathWave
Test Sync Executive, the SSM assumes the function of the reference clock signal
generator/distributor, by sharing a reference clock generated by an internal PLL.
This PLL can be fed by different sources (as explained later in this document)
including the OCXO inside the SSM, which generates a 10 MHz sine wave. An
external 10 or 100 MHz reference signal can still be connected to the SSM SClk /
Ref Input port, to sync it together with other clusters.

Find us at www.keysight.com Page 100

KS2201A - PathWave Test Sync Executive User
Manual

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

The following diagram shows an example of a 6 chassis system connected with SSMs. In this system
an M9033A SSM in chassis 1 distributes the reference clock to four M9032A SSMs located in each of
the other chassis. The SSM in chassis 5 also forwards the clock to a sixth chassis.

Find us at www.keysight.com Page 101

KS2201A - PathWave Test Sync Executive User
Manual

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

This following code shows how to use the HVI Python API to define and use the SSMs in the multi-
chassis system shown in the diagram. Each System Sync Downstream port connects to the System
Sync Upstream port of another System Sync Module in a different chassis.

The first step is to define the SSMs placed in each of the chassis during the System Definition phase.

Create SystemDefinition object
my_system = kthvi.SystemDefinition("MySystem")
#
Define System Sync Modules
resource_id_ssm_1 = 'PXI0::CHASSIS1::SLOT10::INSTR'
resource_id_ssm_2 = 'PXI0::CHASSIS2::SLOT10::INSTR'
resource_id_ssm_3 = 'PXI0::CHASSIS3::SLOT10::INSTR'
resource_id_ssm_4 = 'PXI0::CHASSIS4::SLOT10::INSTR'
resource_id_ssm_5 = 'PXI0::CHASSIS5::SLOT10::INSTR'
resource_id_ssm_6 = 'PXI0::CHASSIS6::SLOT10::INSTR'
#
In the options, SSMs are set to be simulated with Simulate=true and there are a number of parameters.
For the hardware SSM instruments, set options to an empty string.
options1 = "Simulate=true,DriverSetup=Model=M9033A"
options2 = "Simulate=true,DriverSetup=Model=M9032A"
options3 = "Simulate=true,DriverSetup=Model=M9032A"
options4 = "Simulate=true,DriverSetup=Model=M9032A"
options5 = "Simulate=true,DriverSetup=Model=M9032A"
options6 = "Simulate=true,DriverSetup=Model=M9032A"
#
sync_module_1 = my_system.interconnects.add_sync_module(resource_id_ssm_1, options1)
sync_module_2 = my_system.interconnects.add_sync_module(resource_id_ssm_2, options2)
sync_module_3 = my_system.interconnects.add_sync_module(resource_id_ssm_3, options3)
sync_module_4 = my_system.interconnects.add_sync_module(resource_id_ssm_4, options4)
sync_module_5 = my_system.interconnects.add_sync_module(resource_id_ssm_5, options5)
sync_module_6 = my_system.interconnects.add_sync_module(resource_id_ssm_6, options6)

NOTE In the HVI System Definition phase, the SSMs are added to the interconnects
collection by using their resource ID and options. Same as for the chassis, it is not
necessary to open objects representing the SSMs that are included in the multi-
chassis system.

Find us at www.keysight.com Page 102

KS2201A - PathWave Test Sync Executive User
Manual

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

The next step is to define the interconnections among the System Sync Downstream/Upstream ports
of each pair of SSMs. The SSM System Sync ports can only be connected Downstream to Upstream.

Define connections among System Sync connectors of the SSMs
#
Connect SSM 1 to SSM 2
ssm1_downstream_sync1 = sync_module_1.connectivity.systemsync_downstream[0]
ssm2_upstream_sync = sync_module_2.connectivity.systemsync_upstream[0]
ssm1_downstream_sync1.set_connection(ssm2_upstream_sync)
#
Connect SSM 1 to SSM 3
ssm1_downstream_sync2 = sync_module_1.connectivity.systemsync_downstream[1]
ssm3_upstream_sync = sync_module_3.connectivity.systemsync_upstream[0]
ssm1_downstream_sync2.set_connection(ssm3_upstream_sync)
#
Connect SSM 1 to SSM 4
ssm1_downstream_sync3 = sync_module_1.connectivity.systemsync_downstream[2]
ssm4_upstream_sync = sync_module_4.connectivity.systemsync_upstream[0]
ssm1_downstream_sync3.set_connection(ssm4_upstream_sync)
#
Connect SSM 1 to SSM 5
ssm1_downstream_sync4 = sync_module_1.connectivity.systemsync_downstream[3]
ssm5_upstream_sync = sync_module_5.connectivity.systemsync_upstream[0]
ssm1_downstream_sync4.set_connection(ssm5_upstream_sync)
#
Connect SSM 5 to SSM 6
ssm5_downstream_sync = sync_module_5.connectivity.systemsync_downstream[0]
ssm6_upstream_sync = sync_module_6.connectivity.systemsync_upstream[0]
ssm5_downstream_sync.set_connection(ssm6_upstream_sync)

Chassis Supported for Multi-Chassis Systems

The following Keysight chassis models are supported:

l M9018B

l M9019A

l M9046A

Software and firmware version requirements are listed on-line here: Chassis Software and Firmware
Requirements for KS2201A .

NOTE If you mix different chassis models in your multi-chassis setup, you may observe
some skew across the different chassis and different performance depending on the
different chassis characteristics.

Non Keysight chassis are not supported for multi-chassis systems.

Find us at www.keysight.com Page 103

KS2201A - PathWave Test Sync Executive User
Manual

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

https://www.keysight.com/find/ks2201a-firmware-version-requirements
https://www.keysight.com/find/ks2201a-firmware-version-requirements

Clocking
This section describes Clocking:

Clocking Overview

Clock Types

In a single or multi-chassis system there are 4 types of clocks used for synchronization and instru-
ment-related tasks:

l Reference clock.

l System clocks.

l Analog clocks.

l Sample clocks.

All these clocks are synchronous with one another, but are used for different purposes and can be
configured in different ways trading off performance and complexity/cost.

Reference Clock

The Reference clock used as reference for generation of other clocks, it determines the absolute fre-
quency and lowest-frequency offset phase noise performance of the analog instrumentation’s inputs
and outputs. That is because all of the other clocks are phase-locked to the Reference Clock. A PXIe
system can either use its own internal reference clock or phase-lock to an external reference clock. It
can also provide external reference clock outputs for other instrumentation to phase-lock to.

System Clocks

The relevant clocks that drive the internal logic of individual instruments. These include clocks auto-
matically reported to HVI and clocks users reports explicitly using the TSE API. The System clocks
synchronize all the digital operation of all instruments and the PXIe platform. These clocks are
derived from the Reference Clock and are used by, for example, the PathWave FPGAs Sandbox logic,
the HVI Engine core clock, Fast Data Sharing and other digital capabilities in the instruments. Basic-
ally, a system clock is clock that is neither the reference clock nor an analog clock.

Analog Clocks

Clock responsible for generating the analogue signals in an instrument, the analog signal spe-
cifications such as phase noise, depend on the specs of this clock. The Analog Clocks are inter-
mediate frequency clocks from which the instrument's Sample Clocks are derived. Like the Sample
clocks, the Analog Clocks affect the overall phase noise performance and skew drift of the instrument
analog inputs and outputs. In the simplest clock configurations, each peripheral module generates
it's own independent Analog Clock. In the highest fidelity clock configuration, a single common Ana-

Find us at www.keysight.com Page 104

KS2201A - PathWave Test Sync Executive User
Manual

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

log clock is generated by the High Performance Reference Clock Source (HPRCS) and is distributed
to all the individual peripheral modules though external cables and power dividers.

Sample Clocks

The instrument's ADCs and DACs that digitize analog input signals and generate analog output sig-
nals are clocked by their own internal Sample Clocks. The various types of peripheral modules use dif-
ferent sample clock frequencies even though they are ultimately derived from the same Reference
clock. These sample clocks determine the overall phase noise performance and skew drift of the ana-
log inputs and outputs because they directly clock the instrument's ADCs and DACs.

System Clock Distribution using SSM and System Sync connectivity

In a multi-chassis system based on the Keysight PXIe SSMs and chassis, the SSM with no other SSM
connected to its System Sync Upstream port acts as the leader. This leader SSM forwards a copy of
the system clock to other SSMs using System Sync cables. In turn, each SSM shares the forwarded
system clock with the instruments located in their respective chassis using the PXIe DSTARA back-
plane signal.

NOTE You are not required to set the the leader in the TSE API. The leader SSM is
determined by the hardware connections. That is, the leader role is automatically
taken by the SSM that has no System Sync cable connected to its System Sync
Upstream port.

Find us at www.keysight.com Page 105

KS2201A - PathWave Test Sync Executive User
Manual

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

Enabling chassis clock outputs

If you are using a clock output from a chassis you can enable it in the TSE API.

The chassis clock outputs are available in the chassis and you can access them by their name as
follows:

Get the Clock configuration for the Rear Panel 10MHz output port from the Chassis
ktHvi.SystemDefinition definition("Name")
#
chassis = definition.add_chassis(1)
#
clockOutputRp10Mhz = chassis.clock_outputs["RP10MHzOut"]
clockOutputRP10Mhz.set_enabled(true/false)

Some clock outputs support one single frequency and others support multiple frequencies. For the
outputs supporting only one frequency, no frequency must be provided when enabling/disabling
them. If the clock outputs do support multiple frequencies, you must specify what frequency (in Hz)
you want to enable.

When you disable the clock, the frequency argument is ignored.

The following code shows some examples and error cases:

clockOutputRp10Mhz = chassis.clock_outputs["RP10MHzOut"]
clockOutputRP10Mhz.set_enabled(true) # Ok
#
clockOutputFpRef2Out = chassis.clock_outputs["FPRef2Out"]
clockOutputFpRef2Out.set_enabled(true, 10e6) # Ok

Supported Clocking Schemes

There are several possible different clocking configurations, the one you should use depends on the
hardware and the application requirements. Some of the key aspects to consider when selecting a
clocking scheme are:

1. System and Analog clock sources. The source for the System and intermediate-frequency analog
clocks is a critical element that determines the system synchronization, phase noise and drift per-
formance. The clock sources covered in this section include:
a. PXIe chassis.

b. System Sync Module.

c. PXIe Chassis with High Performance Reference Clock Source (HPRCS). This is only available
on Keysight PXIe chassis models M904xA.

2. Internal/external Reference clock. The clock that serves as reference for the System/Analog
clocks can be generated internally by the selected source, or externally provided by the user, gen-
erated by a clock source external to the PXIe system. In systems that include the High Per-
formance Reference Clock Source (HPRCS), and other external instrumentation that you wish to
share a common Reference Clock, the best overall jitter performance will usually be achieved by

Find us at www.keysight.com Page 106

KS2201A - PathWave Test Sync Executive User
Manual

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

phase-locking the other external instrumentation to the HPRCS Reference Clock instead of the
other way around. If the overall system needs to be phase-locked to a GPS or atomic standard ref-
erence, you should phase-lock the HPRCS to the GPS or atomic standard and phase-lock all the
other instrumentation to the HPRCS Reference Clock.

3. Instruments internal/external Analog Clock. Most instruments can either use an external Analog
Clock or generate their own Analog Clock internally for convenience, however, using a common
external Analog Clock will always provide the best performance because all peripheral module
sample clocks will jitter and drift together.

The following tables show the different supported/recommended clocking schemes. We differentiate
two different clocking architecture depending whether External Analog Clock distribution is used or
instruments rely on the general-purpose reference to generate internally the Analog Clocks required
to driver the RF/Analog outputs. For instruments that support both the use of a dedicated high per-
formance Analog Clock reference distribution offers better performance.

Find us at www.keysight.com Page 107

KS2201A - PathWave Test Sync Executive User
Manual

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

Clocking schemes without External Analog Clock distribution

Clocking Scheme
Reference

Clock Source
Description Performance

A: Single-chassis
w/o SSM.

Chassis:
Internal
10MHz

An OCXO inside the chassis generates a
10 MHz reference clock. Independent
Analog clocks are generated in each
peripheral module.

See the chassis datasheet for
exact phase noise
performance.
See the M5xxx PXIe
instrument documentation for
exact performance of channel
for channel skew, jitter, and
drift.

Chassis:
External
10MHz

The external reference clock must have a
frequency of 10 MHz. As an example, it
can come from a Device Under Test
(DUT), another instrument that is part of
the setup, etc. Independent Analog
clocks are generated in each peripheral
module.

-

B:
Single/multiple
chassis w/SSMs.

SSM: Internal
10MHz

An OCXO inside the SSM generates a 10
MHz reference clock. Independent
Analog clocks are generated in each
peripheral module.

See the SSM datasheet for
exact phase noise
performance.
See the M5xxx PXIe
instrument documentation for
exact performance of channel
for channel skew, jitter, and
drift.

SSM: External
10/100MHz

The external reference clock can have a
10 or 100 MHz frequency. As an
example, it can come from a DUT, from
another instrument that is part of the
setup, etc. Independent Analog clocks
are generated in each peripheral
module.

-

Find us at www.keysight.com Page 108

KS2201A - PathWave Test Sync Executive User
Manual

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

Clocking schemes with External Analog Clock distribution using M904xA chassis

Clocking Scheme
Reference

Clock Source
Description Performance

C:
Single/multiple

chassis (no
HPRCS) with

External Analog
clocks and SSMs

Chassis:
Internal
10MHz

An OCXO inside the chassis generates a
10 MHz reference clock. A common
Analog clock is externally distributed to
each peripheral module.

See the chassis datasheet for
exact phase noise
performance.
See the M5xxx PXIe
instrument documentation for
exact performance of channel
for channel skew, jitter, and
drift.

Chassis:
External
10MHz

The external reference clock must have
a frequency of 10 MHz. As an example, it
can come from a DUT, another
instrument that is part of the setup, etc.
A common Analog clock is externally
distributed to each peripheral module.

-

D:
Single/multiple

chassis with
HPRCS, External

Analog clocks
and SSMs.

HPRCS:
Internal
10MHz

The HPRCS generates a 2.4 GHz sine
wave that gets divided in frequency to
generate a 100 MHz reference clock
signal. A common Analog clock is
externally distributed to each peripheral
module.

This option provides the best
performance in terms of phase
noise. For more information,
see the Keysight PXIe Chassis
M9046A Datasheet,
available at Keysight PXI
chassis.

HPRCS:
External
10/100MHz

The external reference clock for the
HPRCS can have a 10 or 100 MHz
frequency. As an example, it can come
from a DUT or another instrument that is
part of the setup, etc. A common Analog
clock is externally distributed to each
peripheral module.

-

For details on the different configurations see in System Setup Guide

Find us at www.keysight.com Page 109

KS2201A - PathWave Test Sync Executive User
Manual

Chapter 6: Multi-Chassis Systems and System Syn-
chronization Modules

http://www.keysight.com/find/pxi-chassis
http://www.keysight.com/find/pxi-chassis
../../KS2201A_-_PathWave_Test_Sync_Executive_U/HTML/System_Setup_Guide.htm

Chapter 7: The TSE API
This chapter describes the TSE API. It describes the main classes and properties required to under-
stand the key programming concepts you must understand to use the TSE API.

The TSE API is used in conjunction with the instrument HVI add-on API:

l The TSE API is the common API that apply to all instruments that support HVI.

l The Instrument HVI add-on API is an instrument-specific set of definition that enable to control
instrument-specific capabilities from the TSE API.

NOTE The TSE API functions alone are not sufficient to fully execute HVI sequences on an
instrument. To successfully create an HVI, you must use both APIs.

This chapter contains the following sections:

l TSE API Use Model

l TSE API Common Functionalities

l System Initialization

l The SystemDefinition Object

l The Sequencer Object

l The Hvi Object

Find us at www.keysight.com Page 110

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

TSE API Use Model
PathWave Test Sync Executive has three main classes. You use them in this order:

1. SystemDefinition.

2. Sequencer.

3. Hvi.

Each of the stages in creating an HVI involves instantiating an object instance which is then passed to
the next stage. The following diagram shows the stages:

NOTE Once a step is completed and the SystemDefinition, Sequencer, or Hvi object is
created, changes in the previous step instances will not apply on the already
created next-step objects. That is:

l Any modification to the SystemDefinition instance once at the Program HVI
Sequences or Execute HVI stage do not have any impact on the Sequencer and
Hvi objects created/manipulated in these stages.

l Similarly, any modification to the SystemDefinition or Sequencer instances at the
Execute HVI stage do not have any impact on the already generated Hvi Instance.

SystemDefinition

This is the first step of building an HVI. You use the SystemDefinition object to define the hardware
components, configuration and the resources available in your system to be managed in the HVI. You
do this by adding each of the resources to the relevant collections.

The SystemDefinition contains properties and methods to define and configure the following ele-
ments of an HVI:

Find us at www.keysight.com Page 111

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

l Chassis.

l Interconnects.

l Engines.

l FPGA-Sandboxes.

l HVI system clocks.

l Non-HVI core clocks.

l Sync resources.

Once you have added the resources, you can initialize the system. Ensure you initialize the system
after adding all the resources.

NOTE The default initialization that happens when the Sequencer object is created,
initializes all the HVI Engines included in the SystemDefinition object. If you initialize
the system using the initialize() method in the SystemDefinition instance, ensure
that all the HVI Engines are added to the SystemDefinition instance before you call
initialize().

NOTE PathWave Test Sync Executive 2023B release includes TSE Service. If your system
uses TSE Service the set-up of a system is different.

The setup of a system that uses TSE Service handles starting up chassis, SSMs, and
instruments. It also handles clocking and other infrastructure tasks.

A system definition or equivalent is still required, however this is done by a system
administrator.

This arrangement simplifies sequence programming for end users since they are not
required to write a full System Definition each time.

Users are still required to add instruments get their engines, and call initialize().
For more information, see Chapter 9: TSE Service and Multi-Host support.

Find us at www.keysight.com Page 112

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Sequencer

Once the SystemDefinition object is defined and configured, you define the HVI Sequences with a
Sequencer object.

The Sequencer object is created from a SystemDefinition object. The Sequencer object contains all the
hardware resources/configurations you defined in the SystemDefinition, these are available as read-
only view collections. The view collections enable you to use the hardware resources for the sequence
programming, but you cannot add or remove HW from them.

The Sequencer object exposes properties and methods for:

l Creating and manipulating the SyncSequence and Local Sequences. The sync_sequence property is
the entry point for programming the real-time multi-instrument sequence.

l Compilation. Once you have programmed your sequence (Sync and Local sequences), you use the
compile() method to obtain the Hvi object.

Hvi

The Hvi object is the actual HVI instance that you load to hardware and execute.

Hvi contains runtime versions of the objects that you set up with
the SystemDefinition and Sequencer objects. You use the runtime objects for executing the Sequences
on the hardware, but you cannot modify them.

Hvi contains the properties and methods to:

l Load the HVI instance to hardware.

l Run the HVI.

l Release the hardware resources used by the HVI.

Further Explanations

Detailed explanations of all the main classes and their functions are provided in the help file provided
with the KS2201A PathWave Test Sync Executive installer. This is located at:

C:\Program Files\Keysight\PathWave Test Sync Executive 2023B\api\python\Help

Find us at www.keysight.com Page 113

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

TSE API Common Functionalities
This section describes the functionalities that are common across the TSE API. It contains the fol-
lowing sections:

l Capabilities

l Collections

l Error Management

l Time

l Component Versions

Capabilities

The TSE API exposed many HVI capabilities or functionalities, including:

l Chassis/PXI backplane resource configuration.

l Multi-chassis/Box Interconnect configuration, for example, with System Synchronization Modules
(SSMs).

l Access to HVI interfaces and resources in the FPGA-Sandbox.

l Real-time sequencing:

Synchronized Flow-Control Statements such as While loops.

Synchronized Multi-Sequence Block Statements that provide access to program sequencing
operations in each individual instrument that participate in the global sequence.

HVI Instructions and operations. These include HVI-Native and Instrument-Specific HVI Instruc-
tions.

Local Flow-Control Statements such as While loops and If Statements.

Find us at www.keysight.com Page 114

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Collections

Resources in HVI are grouped into Collections. Collections contain items of the same type, such as:

l Engines.

l Triggers.

l Actions.

l Events.

l Registers.

l FPGA-Sandboxes.

The concept of collections is fundamental in the TSE API use model because every component
(Chassis, Engines, Clocks, Triggers etc.) used within the HVI is accessed through its corresponding
collection.

For some of the collections, the elements must be registered explicitly by the user when defining an
HVI instance, for example, you must add a Trigger to a Trigger collection. Once registered, you can
then use the components inside HVI Sequences. There are other collections that are populated
automatically by TSE as a result of other resources or components registration.

Collections are particularly useful because the member instances can be accessed by index or string.
Collections are exposed at different levels in the TSE API hierarchy and those needed for the real-time
sequencing description are exposed in the local and Sync Sequence objects.

Find us at www.keysight.com Page 115

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

The following tables lists the collections:

Name Description

Collection Chassis

Description Contains the chassis added to the SystemDefinition

Access Type

integer: Chassis number identifier (for instance for PXI, as enumerated by PXI
manager). Only valid for single host applications

string: Chassis resource ID. This can be the VISA resource ID or the TSE resource
ID

Exposed in SystemDefinition::getChassis

Hvi::getChassis

Collection SystemSyncUpstream/SystemSyncDownstream

Description
Contains the System Sync Upstream/Downstream connectors of a System Synchronization
Module (SSM)

Access Type

integer: Index of the System Sync Upstream/Downstream connectors, as this is
defined by the Instrument

string: Name of the System Sync Upstream/Downstream connectors, as this is
defined by the Instrument

Exposed in
SyncConnectivity::getSystemSyncUp

SyncConnectivity::getSystemSyncDown

Collection Action

Description Contains the actions that will be used with HVI by a specific engine

Access Type
integer: Position inside the collection. Matches the order of addition by the user.

string: Name of the item, when this was added by the user

Exposed in

EngineDefinition::getActions

EngineView::getActions

EngineRuntime::getActions

Find us at www.keysight.com Page 116

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Collections (continued)

Collection Trigger

Description Contains the triggers that will be used with HVI by a specific engine

Access Type
integer: Position inside the collection. Matches the order of addition by the user.

string: Name of the item, when this was added by the user

Exposed in

EngineDefinition::getTriggers

EngineView::getTriggers

EngineRuntime::getTriggers

Collection Event

Description Contains the events that will be used with HVI by a specific engine

Access Type
integer: Position inside the collection. Matches the order of addition by the user.

string: Name of the item, when this was added by the user

Exposed in

EngineDefinition::getEvents

EngineView::getEvents

EngineRuntime::getEvents

Collection IfBranch

Description Contains the IF-branches of an IF statement

Access Type integer: Position inside the collection. Matches the order of addition by the user.

Exposed in IfStatement::getElseIfBranches

Find us at www.keysight.com Page 117

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Collections (continued)

Name Description

Collection RegisterSharingOperation

Description Contains the RegisterSharing Operations of a SyncRegisterSharing statement

Access Type integer: Position inside the collection. Matches the order of addition by the user.

Exposed in SyncRegisterSharingStatement::getRegisterSharingOperations

Collection ClockOutput

Description Contains the ClockOutputs supported by a specific chassis

Access Type string: Name of the clock output on the front panel label

Exposed in Chassis::getClockOutputs

Collection FpgaSandbox

Description Contains the FpgaSandboxes supported by a specific instrument

Access Type
integer: Position inside the collection. Order is defined by the instrument.

string: Name of the sandbox as this is defined by the instrument

Exposed in

EngineDefinition::getFpgaSandboxes

EngineView::getFpgaSandboxes

EngineRuntime::getFpgaSandboxes

Find us at www.keysight.com Page 118

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Collections (continued)

Name Description

Collection FpgaMemoryMap

Description Contains the FpgaMemoryMaps supported by a specific FPGA sandbox

Access Type

integer: Position inside the collection. Matches the order defined in the k7z file.

string: Name of the MemoryMap, as this is defined in the PathWave FPGA
project.

Exposed in

FpgaSandboxDefinition::getFpgaMemoryMaps

FpgaSandboxView::getFpgaMemoryMaps

FpgaSandboxRuntime::getFpgaMemoryMaps

Collection FdsPort

Description Contains the FDS ports supported by a specific FPGA sandbox

Access Type
integer: Position inside the collection. Matches the order defined in the k7z file.

string: Name of the FDS port, as this is defined by the instrument.

Exposed in

FpgaSandboxDefinition::getFdsPorts

FpgaSandboxView::getFdsPorts

FpgaSandboxRuntime::getFdsPorts

Collection Scope

Description Contains the Scopes per engine added to the SystemDefinition

Access Type

integer: Position inside the collection. Matches the order of engines addition by
the user.

string: Name of the engine for which this scope applies

Exposed in SyncSequence::getScopes

Find us at www.keysight.com Page 119

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Collections (continued)

Name Description

Collection Sequence

Description Contains the Sequences per engine added to the SystemDefinition

Access Type

integer: Position inside the collection. Matches the order of engines addition by
the user.

string: Name of the engine for which this scope applies

Exposed in SyncMultiSequenceBlockStatement::getSequences

Collection Engine

Description Contains the Engine added to the SystemDefinition

Access Type

integer: Position inside the collection. Matches the order of engines addition by
the user.

string: Name of the item, when this was added by the user

Exposed in
SystemDefinition::getEngines

SyncSequence::getEngines

Collection SwRecording

Description Contains the SwRecording added to a specific engine

Access Type
integer: Position inside the collection. Matches the order of addition

string: Name of the item, when this was added by the user

Exposed in

EngineDefinition::getRecordings

EngineView::getRecordings

EngineRuntime::getRecordings

Find us at www.keysight.com Page 120

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Collections (continued)

Name Description

Collection Register

Description Contains the registers belonging to a specific Scope

Access Type string: Name of the item, when this was added by the user

Exposed in Scope::getRegisters

Collection SyncRegister

Description Contains the registers belonging to a specific SyncScope

Access Type string: Name of the item, when this was added by the user

Exposed in SyncScope::getRegisters

Collection Interconnect

Description Contains the Sync Modules added to the SystemDefinition

Access Type

integer: Position inside the collection. Matches the order of addition

string: Sync Module resource ID. This can be the VISA resource ID or the TSE
resource ID

Exposed in
SystemDefinition::getInterconnects

Hvi::getInterconnects

Find us at www.keysight.com Page 121

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Collections (continued)

Name Description

Collection Statement

Description Contains the statements belonging to a specific Sequence

Access Type
integer: Position inside the collection. Matches the order in the sequence

string: Name of the statement, when this was added by the user

Exposed in Sequence::getStatements

Collection SyncStatement

Description Contains the SyncStatements belonging to a specific SyncSequence

Access Type
integer: Position inside the collection. Matches the order in the SyncSequence

string: Name of the SyncStatement, when this was added by the user

Exposed in SyncSequence::getSyncStatements

Collection Routing

Description Contains the routing added to the SystemTriggering

Access Type
integer: Position inside the collection. Matches the order of addition

string: Name of the item, when this was added by the user

Exposed in SystemTriggering::getRoutings

Find us at www.keysight.com Page 122

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Using Collections

Collections have additional access properties beyond those of vectors or lists.

To use the resources in the SystemDefinition you must add them to their respective collections.

For example, If you want to use a specific Engine you must add it to the Engine collection in the
SystemDefinition. Once you have added the Engine, you can query it and configure it. To use the
resources within each Engine you must add them to their respective collections in that Engine, you
can then query them and configure them as required.

Adding a new collection item

You add new collection items by calling the add() method.

The following code adds a new Engine to the Engines collection property of the SystemDefinition and
returns the new Engine. The Engine can be queried with the name MyEngine_1 :

my_engine = my_system_def.engines.add(module.hvi.engines.main_engine, "MyEngine_1")

NOTE You define the name when you add the item to the collection, each name you
specify in a collection must be unique in that collection.

Find us at www.keysight.com Page 123

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

The following diagram shows the relationship between the SystemDefintion, the Engine collection
and an individual Engine:

Random access by string or by numerical index

You access collection items with the [] operator. You can index items with their name, or by a number
that indicates their location inside the collection.

For example, you can query any Engine already added to the collection through the engines property
in the SystemDefinition instance.

The following code returns an EngineDefinition object named My_Engine_1:

my_system_defintion.engines["My_Engine_1"]

To find the number of items in a collection, use either count or the built-in len() function. For
example, the following code returns the number of Engines the instrument has:

len(instrument.engines)

Find us at www.keysight.com Page 124

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Managing objects in a collection

The collection is a grouping of elements, but it has no knowledge of the parameters or attributes of
each element.

Configuration of the specific element within a collection are managed though the element instances,
not the collection itself. For instance, you manage an Engine with the Engine instance obtained from
the EngineCollection.

Find us at www.keysight.com Page 125

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Error Management

Error handling in the TSE API is based on exceptions. If an error occurs during execution, the
execution is stopped, and a message is returned that includes an error code and a relevant error
message. Error management is done through an Error object.

Time

This section describes the API related to the Time inside HVI.

For time you use a Duration object, located in the namespace time, to represent a time interval.

You can create a Duration object in one of these ways:

l By only providing a single floating point value. In this case, the value is treated as time in
nanoseconds.

l By providing a floating point value and the unit of time you want the value to represent.

The signature is:

time.Duration(double valueInNanoseconds);
time.Duration(double value, Time::Unit unit);

The units of the duration are defined by Unit. The supported units are the following:

l Seconds.

l Milliseconds.

l Microseconds.

l Nanoseconds.

l Picoseconds.

Minimum. is a specialization of the Duration implementation to specify that minimum time instead of a
fixed specific time and allow TSE to decide the actual time during sequence compilation or at a later
point.

The signature is:

time.Minimum();

The following is an example of usage:

from keysight_tse import time
a_duration = time.Duration(35.0)
assert a_duration.type == time.Type.FIXED_DURATION
assert a_duration.value == 35.0
assert a_duration.unit == time.Unit.NANOSECONDS
another_duration = time.Duration(35.78, time.Unit.MICROSECONDS)
assert another_duration.type == time.Type.FIXED_DURATION
assert another_duration.value == 35.78
assert another_duration.unit == time.Unit.MICROSECONDS

Find us at www.keysight.com Page 126

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

a_minimum_duration = time.Minimum()
assert a_minimum_duration.type == time.Type.MINIMUM_DURATION
assert a_minimum_duration.value == 0.0
assert a_minimum_duration.unit == time.Unit.NANOSECONDS

Find us at www.keysight.com Page 127

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Component Versions

When using TSE in addition to the PathWave Test Sync Executive (TSE) Software Version, you should
be aware of the following component versions:

l HVI Core (software) Version.

l HVI Engine Software Version.

l HVI Engine Firmware Version.

Python Object Description

HVI Core
(software)
Version

keysight_tse.SystemDefinition.hvi_core_
version

SystemDefinition

The version of the HVI
core component that
gets installed by
PathWave Test Sync
Executive software to
deliver the TSE API.

HVI Engine
Software
Version

Engine.software_version

EngineView.software_version

EngineRuntime.software_version

EngineDefinition

EngineRuntime

EngineView

The version of the HVI
software component
used by the instrument
associated with this
Engine.

HVI Engine
Firmware
Version

Engine.firmware_version

EngineView.firmware_version

EngineRuntime.firmware_version

EngineDefinition

EngineRuntime

EngineView

The version of the HVI
Engine FPGA IP that is
programmed into the
FPGA of the instrument
associated with this
Engine.

Find us at www.keysight.com Page 128

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

hvi_core_version

This version is exposed as a property of the SystemDefinition.

This is the version of the HVI core component that gets installed by PathWave Test Sync Executive
software and also instruments implementing HVI technology. The HVI Core is a shared component in
the system, if products with different HVI Core versions are installed in a given host, only newer HVI
Core version will be installed and consequently regardless of the order of installation the latest of all
HVI Core included in the different products will be available.

software_version

This is a property of each Engine in each product. It can be queried from the EngineDefintion,
EngineRuntime and EngineView objects.

This is the version of the HVI Core used to build the instrument driver and it is the HVI Core version
included in the instrument driver installation. This version does not need to be the same as the HVI
Core installed in the system to work, but instruments shipped with older HVI Core versions may not
support all the latest features. This software version depends on the version of the instrument drivers
that can be queried using the instrument driver API or the instrument Software Front Panel software.

firmware_version

This is a property of each Engine in each product. It can be queried from the EngineDefintion,
EngineRuntime and EngineView objects.

This is the version of the HVI Engine IP included in the instrument FW. The HVI Engine IP version is
associated with the instrument firmware version, different instrument firmwares may include different
HVI Engine versions. You can upgrade/downgrade the instrument firmware using the instrument
Software Front Panel software. The HVI Engine IP version determine the features that are available for
a given instrument.

Major, minor and revisions

The version has the sub-versions: major, minor and revision.

The following code shows an example of how to get the versions:

logging.info("HVI Core : {}".format(sys_def.hvi_core_version.to_string()))
for engine in sys_def.engines:

logging.info("Firmware Version : {}.{}.{}".format(engine.firmware_version.major, engine.firmware_
version.minor, engine.firmware_version.revision))

logging.info("Software Version : {}.{}.{}".format(engine.software_version.major, engine.software_
version.minor, engine.software_version.revision))

Find us at www.keysight.com Page 129

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

System Initialization
This section describes System initialization, it contains the following sections:

l The SystemDefinition initialize()

l Initialization during Sequencer Creation

l Initialization during Load To Hardware

l Example of System Initialization

In HVI technology, System Initialization is a process that includes the configuration and alignment of
the different systems clocks, including the clocking for each instrument specified as part of the HVI
SystemDefinition. This procedure includes the generation and alignment of the instrument internal
Sync and SyncBase signals described in Chapter 10: HVI Time Management and Latency. Ini-
tialization also includes the alignment of clocks controlling the Fast Data Sharing (FDS) functionality
for cases where your HVI definition includes instruments that support this functionality, such as instru-
ments from the Keysight PXIe M5xxx instrument family.

A complete system initialization can be a complex procedure that can take some time. It must be per-
formed when the system is first assembled and powered on, but you are not required to perform this
level of initialization every time. However, a basic level of initialization is required every time to ensure
that the system is synchronized and the clocks are in alignment.

A number of initialization options are provided to ensure correct setup and minimize initialization time
when you want to run operations. You can use the basic options after the system has been fully ini-
tialized for the first time, however if you change the hardware setup (instruments, cables, etc.) or
clocks (reference clock source, clock connection cables, etc.) you must perform a complete ini-
tialization again.

The SystemDefintion object includes an initialize() method that initializes the hardware included in the
SystemDefinition, and performs synchronization and clock alignment. There are 3 cases where sys-
tem initialization and clock alignment can occur:

l Manually calling initialize() in the SystemDefinition.

l When the Sequencer object is created.

l When calling Load to Hardware.

Find us at www.keysight.com Page 130

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

NOTE The initialization process requires access and control of all of the hardware
resources, so it is important that these resources are not already in use by another
application or HVI instance already loaded to hardware. An exception is thrown if
any of the hardware resources are already in use.

Find us at www.keysight.com Page 131

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

The SystemDefinition initialize()

The systemDefinition.initialize(...) method enables you to explicitly trigger a system initialization and
alignment. You might want to explicitly control when the initialization process is executed
because the initialization process can take some considerable time depending on the parameters and
system state.

You can also specify specific alignment modes when calling the initialize() method:

Mode Description

Default
Calling initialize() without parameters performs the default, or
minimal-possible initialization. This is the mode intended to be
used in normal system operation.

keysight_tse.AlignmentModes.Full
Forces a full system, complete system initialization and
alignment.

keysight_tse.AlignmentModes.ResetCalibration
Performs system initialization and alignment resetting and
regenerating the stored calibration data.

keysight_

tse.AlignmentModes.IgnoreCalibrationErrors

Performs system initialization and alignment, ignoring
calibration data. This mode is intended for system warm-up or
other instances when the use of precise alignment calibration
data is not available yet or not required.

keysight_tse.AlignmentModes.Disable_clock_

monitoring

Disables the Clock Monitoring on SSMs. By default,
Clock Monitoring is disabled unless at least one
instrument supports it.

keysight_tse.AlignmentModes.Force_clock_

monitoring

Forces the Clock Monitoring on SSMs. By default, Clock
Monitoring is disabled unless at least one instrument supports
it.

You can combine modes using a bitwise-OR operator, for example:

systemDefinition.initialize(AlignmentModes::Full | AlignmentModes::IgnoreCalibrationErrors);

The API call above will combine the Full and IgnoreCalibrationErrors alignment modes as follows:

The software forces a complete system initialization and clock alignment (Full mode). While
doing this, if the software detects that any of the instruments included in the HVI
SystemDefinition object requires calibration data and this data is missing, it shall allow the
system initialization procedure to continue and finalize, instead of throwing an error
(IgnoreCalibrationErrors mode).

systemDefinition.initialize(AlignmentModes::IgnoreCalibrationErrors);

Find us at www.keysight.com Page 132

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

The API call above will perform a default system initialization and clock alignment. While doing
this, if the software detects that any of the instruments included in the HVI SystemDefinition
object requires calibration data and this is missing, it will allow to the system initialization
procedure to continue and finalize, instead of throwing an error.

NOTE When using the default mode, in order to minimize the initialization time, PathWave
Test Sync Executive relies on storing the initialization state of each instrument to
decide what initialization steps are required. If hardware or cabling changes have
been made in your system, you must make sure the correct initialization modes, Full
/ IgnoreCalibrationErrors / ResetCalibration, is executed as required by your setup.
For information about the initialization requirements for cabling or hardware
changes, see your instrument documentation.

Default Initialization

This is the mode intended to be used in normal system operation. When
calling systemDefinition.initialize()without parameters, it performs the default, or minimal-possible
initialization. The default initialization tries to minimize the necessary operations to obtain the fastest
initialization and synchronization time. The default initialization is automatically executed when a
Sequencer object is created from a SystemDefinition, and also when the LoadToHw() method is called
on the HVI instance.

If you have a system that has been power-cycled, the first call to systemDefinition.initialize() with no
arguments will actually execute a full initialization and complete clock alignment because the system
has not been aligned yet. The full initialization procedure can take several minutes depending on on
the size and structure of your system, including the number of chassis and instruments, see the Full
Mode description. Subsequent calls to systemDefinition .initialize() after the first call, are very fast.

Some instruments require stored calibration data to initialize correctly, in these cases this calibration
data must be available for all instruments in the SystemDefinition for the default initialization to work.
If the calibration data is not available, an error is generated. See ResetCalibration and
IgnoreCalibrationErrors modes to understand the details on how to manage calibration data. For
example, the Keysight PXIe M3xxx family does not require any calibration data, whereas in the
Keysight PXIe M5xxx family, the M5300 RF AWG and M5201 Frequency Down-Converter do require
calibration data. For information about the calibration requirements, see your instrument
documentation.

Find us at www.keysight.com Page 133

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Full Mode

You can force a full clock alignment by calling: systemDefinition .initialize(keysight_

tse.AlignmentModes.Full). The full initialization procedure can take several minutes depending on on the
size and structure of your system, including the number of chassis and instruments.

NOTE This mode in general is only needed when some cabling change is done on the
system without shutting it down or in cases when we want to force from software a
complete reset of the initialization or alignment to recover from an undesired state.

ResetCalibration Mode

You can force the update of alignment calibration data by calling: systemDefinition .initialize(keysight_

tse.AlignmentModes.ResetCalibration)

This mode erases any existing system calibration data and forces the instruments to re-calculate and
store new calibration data. Use this mode if there is no system calibration data available for the
current hardware configuration and operating temperature, or if the existing calibration requires
recalculation.

This operation must be performed when one or more of the following occur:

l A system setup containing any instrument that requires calibration data is used for the 1st time.

l The hardware in the system has been changed. This includes adding any instrument that requires
calibration data, changing the cable connections between System Sync Modules, or changing any
of the cables connections (clock, in/out, etc.) of any instrument requiring calibration data.

l The clock configuration has been changed. This includes changing the reference clock source, or
any of the cable connections from it to any of the instruments that require calibration data.

NOTE Ensure you perform a full initialization with ResetCalibration when your system is
fully warmed up. For information about the warm-up and temperature stabilization
requirements for best performance, see your instrument documentation.

IgnoreCalibrationErrors Mode

Calling systemDefinition.initialize(keysight_tse.AlignmentModes.IgnoreCalibrationErrors)configures the
system without the need of having calibration data already stored for the specific temperature
condition. Typical use of this mode is for system warm-up to prepare the system for a default
initialization or a ResetCalibration initialization. Other instances include when calibration data is not
available but precise calibration is not required.

NOTE When using instruments that require precise calibration data, always us this mode
to warm-up the system before use. For information about the warm-up and
temperature stabilization requirements for best performance, see your instrument
documentation.

Find us at www.keysight.com Page 134

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Initialization during Sequencer Creation

Behind the code used to create a Sequencer object, a system initialization is implicitly executed only
if the SystemDefinition contains instruments that include FDS functionality. If the instruments do not
include FDS, these operations are skipped. For example, the initialize() of a SystemDefinition that
only includes M3xxx instruments is not performed at the Sequencer creation because these
instruments do not support FDS. If an M5xxx instrument is included in a SystemDefinition, system
initialization and clock alignment is performed when creating the Sequencer, unless the initialize()
had already been explicitly called.

At the Sequencer creation, this only performs a minimal update to the initialization and clock
alignment. If the infrastructure, in particular the System Synchronization Modules (SSMs), are not
properly initialized and aligned, a full system initialization is triggered, equivalent to calling
SystemDefinition::initialize(AlignmentModes::Full). Otherwise, if all of the SSMs are already aligned,
it checks if there are any instruments misaligned and force initializes them, skipping any that are
already aligned.

NOTE The initialization process requires exclusive access to the hardware resources
involved, so it cannot be executed while another TSE instance is running and has
that hardware locked.

Initialization during Load To Hardware

The Load To Hardware operation also contains an implicit default system initialization. In Load to
Hardware such system initialization is always performed and it is equivalent to the explicit call sys_
def.initialize()executed without parameters. This only performs a minimal update to the initialization
and clock alignment.

Find us at www.keysight.com Page 135

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Example of System Initialization

To use the TSE API to initialize and run real-time operation in your system, there are two main
procedures that you must follow:

1. System Warm-up and Calibration

2. Normal Operation

There are also a number of use cases that are variations on these main procedures. The following text
describes these procedures along with the use case variations.

NOTE The initialization process requires access and control of all of the hardware
resources, so it is important that these resources are not already in use by another
application or HVI instance already loaded to hardware. An exception is thrown if
any of the hardware resources are already in use.

SystemWarm-up and Calibration

The system warm-up must be performed every time the system is turned on or the hardware
configuration is changed. This is to enable all of the components to reach a stable and repeatable
operating temperature. Once the system is warmed-up, the system can be initialized using the stored
System Calibration data.

The System Calibration must performed in these cases:

1. The very first time that the system is put together and powered-on.

2. When relevant hardware changes are made that require a new system calibration. These hardware
changes include:
a. Adding/removing a chassis in your SystemDefinition object.

b. Adding/removing any instrument that requires clock alignment calibration data, such as an
M5300A module or M5201, or changes the operating temperature of the system.

c. Changing the cable connections between System Synchronization Modules, even replacing a
cable with a similar one with a different serial number.

d. Changing any of the external System Clock or Analog Clock cable connections, even replacing
a cable with a similar one with a different serial number.

e. Making any change to the clock configuration, even if it is only from the TSE API. This is
because this triggers the usage of different clock sources or signal paths.

3. Other situations where the system calibration should be updated.

4. On rare occasions, a component in the system can move into an invalid state and a reset of the
calibration might be required. For more information, see System Troubleshooting in the System
Setup Guide .

Find us at www.keysight.com Page 136

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

NOTE Warning : Resetting the system calibration shall in turn require you to recalculate
the User Calibration for some instruments. Observe extreme caution when doing
this to avoid costly time-consuming recalibration.

Find us at www.keysight.com Page 137

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Procedure steps:

1. Power-on the system
a. Power-on all of the chassis. After this is complete, if you are using an external chassis

controller, power it on.

2. Connect to all the instruments
a. For example: instrument = ktm5300.KtM5300x(resource_id, query, reset, options)

3. Create a SystemDefinition using the TSE API and the instrument drivers:
a. Create a SystemDefinition object that we refer to here as my_system. Use the my_system

object to define all the hardware resources in your system: chassis, SSMs, instruments,
clocking configuration, reference clock source, etc.
For example: my_system.chassis.add(1), my_system.clocking.reference_source = chassis.clock_source

b. Add the HVI Engines of each instrument to the SystemDefinition object.
For example: my_system.engines.add(instrument.hvi.engines.main_engine, "MyEngine")

4. System Initialization for Warm-Up
a. Execute my_system .initialize(keysight_tse.AlignmentModes.FULL | keysight_tse.AlignmentModes.PRE_

CALIBRATION). The PRE_CALIBRATION flag indicates there is no need to apply any previously stored
system calibration values because the system is warming-up. This enables the system to
execute code without calibration related errors. After this step, instruments may present
channel skew errors which are compensated by the next steps.

5. Wait for System Warm-Up
a. Wait for the required warm-up time, this can range from a few minutes to about 30 minutes.

The actual time typically depends on the type and number of instruments in the system,
clocking configuration, etc.

b. For detailed warm-up time information, see your instrument documentation, for example:
M5300 RF AWG User's Manual .

6. System initialization to perform System Calibration
a. Using the SystemDefintion created in step 3, run my_system.initialize(keysight_

tse.AlignmentModes.FULL | keysight_tse.AlignmentModes.RESET_CALIBRATION) to generate internal
system calibration data. At first system turn-on, no previous calibration data is expected to be
available.

7. Calculate User Calibration or channel deskew (Optional)
a. This operation is optional and consists of correcting analog channel skews introduced by cable

and signal path delays. Note that in some instruments, the User Calibration must be re-
calculated when a System Calibration is executed. For information about how to do this, see
your instrument documentation.

8. Ready for Normal Operation

Find us at www.keysight.com Page 138

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Use Cases:

Use Case
Scenario

Description

First system
start-up and
calibration

The very first time that the system is put together and powered-on, you must
execute a full warm-up and calibration procedure to achieve the best system
performance and repeatability:

l Execute all steps #1 to #7 above.

System start-
up using
existing
calibration

If the system has already been calibrated for the current hardware configuration,
then, to reuse the existing calibration to configure the system, wait for the system
temperature to stabilize then apply the existing calibration:

l Execute steps #1 to #5 above.

l Skip steps #6 and #7 System initialization to perform System Calibration and Calculate user
calibration or channel deskew , and run my_system.initialize(keysight_

tse.AlignmentModes.FULL).

Simplified
uncalibrated
system start-
up

If you want to use the system for test development, or you can tolerate analog
channel drift of up to 50ps across reboots/power-cycles:

l Execute steps #1 to #4 above.

l Skip steps #5 to #7 Wait for SystemWarm-Up , System initialization to perform System
Calibration and Calculate user calibration or channel deskew .

NOTE System hot boot-up: If the system is already warmed-up to the calibration
operating conditions, for example after a system restart, you can skip the steps #4
and #5 System Initialization for Warm Up and Wait for SystemWarm-Up .

Find us at www.keysight.com Page 139

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Normal Operation

Once the system is warmed-up and the system calibration has been done, users can use the the TSE
API to execute real-time operations:

NOTE Note that if it is the first system start-up or you have introduced any of the HW
changes that require new System/User Calibration you must execute the First
system start-up and calibration use case described in the SystemWarm-up and
Calibration procedure.

Procedure steps:

1. Connect to all the instruments, if not already connected.
a. For example: instrument = ktm5300.KtM5300x(resource_id, query, reset, options)

2. Apply user calibration to instruments, You only need to do this if it is required, the user calibration
data is available, and it has not been applied already.
a. The user calibration is calculated during the SystemWarm-up and Calibration process. For

information about how to apply existing calibration, see your instrument documentation, for
example: M5300 RF AWG User's Manual .

3. Create a SystemDefinition object, or reuse an existing one.

4. Initialize the SystemDefinition object (Optional)
a. Run my_system.initialize(). This call executes the minimal or default initialization, provided a

Full Initialization has been executed already as described in the SystemWarm-up and
Calibration procedure. If the full initialization has not been executed, this step requires
calibration data. If the calibration data is not available this operation will fail. To run the system
initialization without calibration you can specify the PRE_CALIBRATION flag: my_system.initialize
(keysight_tse.AlignmentModes.PRE_CALIBRATION)

b. Note that you can skip the call to my_system.i nitialize() because the minimal or default
initialization happens implicitly in steps #5 and #7 described below.

5. Create a Sequencer object
a. For example: sequencer = keysight_tse.Sequencer("MySequencer", my_system)

b. Note that the sequencer creation operation implicitly executes a default initialization, this is
equivalent to calling SystemDefinition:Initialize().

6. Create an HVI object
a. For example: hvi = sequencer.compile()

b. The Hvi object is created by compiling the Sequencer object after all the HVI Sequences have
been programmed.

Find us at www.keysight.com Page 140

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

7. Load HVI to HW
a. For example: hvi.load_to_hw()

b. Note that the load_to_hw() operation implicitly executes a default initialization, this is
equivalent to calling SystemDefinition:Initialize().

8. Run HVI
a. For example: hvi.run(hvi.no_timeout)

9. Release HW
a. For example: hvi.release_hw()

NOTE Forcing a full initialization. You can optionally force a full initialization. Forcing the
full initialization can be useful to unblock a system if it is in a bad state, when some
temporary hardware changes in the system are done such as reconnecting cabling
using the same cables, or in general when it is useful to ensure the system is fully
initialized to discard any previous state. To force the full initialization run:

1. my_system.initialize(keysight_tse.AlignmentModes.FULL).

2. Or if you are using the system without calibration, add the PRE_CALIBRATION flag: my_
system.initialize(keysight_tse.AlignmentModes.FULL | keysight_tse.AlignmentModes.PRE_
CALIBRATION)

NOTE User Calibration not required or already applied: If user calibration is not required or
has already been applied to the instruments, you can skip step #2 Apply user
calibration to instruments. For more information on how to handle User Calibration
in instruments, see your instrument documentation.

Find us at www.keysight.com Page 141

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

The SystemDefinition Object
This section describes the SystemDefinition object, it contains the following sections:

l HVI Engines and their Resources

l Chassis and Interconnects (SyncModule)

l Synchronization Resources

l Synchronization Signals and Sync Modes

l Non-HVI Clocks

l System Initialization in the SystemDefinition Object

l User-Defined Trigger Routing

l System Clocking Configuration

You must tell your HVI about the components in your system, how they are connected, and the fea-
tures available. To enable this, the SystemDefinition object contains a set of properties (collections)
that enable you do define the hardware configuration that your HVI is going to use. When you define
your system, you must add the different components you intend to use to the relevant collections
(properties) in your SystemDefinition. There are collections for Engines, Chassis, and Interconnects.

You use a SystemDefinition object to configure the physical hardware resources available to the
HVI. You create a SystemDefinition with the following code:

my_system_defintion = keysight_tse.SystemDefinition("My Setup")

The following diagram shows the SystemDefinition with some of its methods and properties. To sim-
plify the diagram, it does not show all methods or properties:

Find us at www.keysight.com Page 142

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Find us at www.keysight.com Page 143

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

The properties shown in the diagram above can be classified in three kinds:

Collection Properties

engines[...]

Enables you to add and access engines.

chassis[...]

Enables you to add and access chassis.

interconnects[...]

Enables you to add and access SyncModules.

Grouping Properties (interfaces that group methods and properties)

clocking

A group of methods and properties used for representing clocks.

triggering

A group of properties used for representing trigger routings.

Direct access Properties

sync_resources

Provides a list of trigger IDs you can reserve for use in your HVI.

Find us at www.keysight.com Page 144

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

HVI Engines and their Resources

Engine Collection in SystemDefinition

To include the HVI Engine of an instrument into an HVI instance, you must first add the instrument
HVI Engine to the Engine collection in the SystemDefinition instance using the add() method. You get
the Engine collection in the SystemDefinition through the engines property:

my_engine_def = my_system_def.engines.add(module.hvi.engines.main_engine, "MyEngine_1")

Where the add(...) parameters are:

1. The instrument HVI Engine identifier obtained from the instrument driver.

2. The name of the engine assigned within the HVI instances. This is a string used when referring to
this HVI Engine in any following TSE API calls.

When you add the instrument HVI engine to the system definition you obtain an EngineDefinition
object. You can also query any Engine already added to the Engines collection using the [] operator
on the engines property, like in any other collection:

my_engine_def = my_system_defintion.engines["My_Engine_1"]

Find us at www.keysight.com Page 145

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

The following diagram shows the EngineDefinition with its methods and properties, and how it relates
to the SystemDefinition:

Find us at www.keysight.com Page 146

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Engine (Definition) Properties

The Engine objects returned from the Engine collection in the SystemDefinition are of the type
EngineDefinition, The EngineDefinition instance contains properties and methods that you use to
configure the Engine for use later in the Sequencer and Hvi instances. The EngineDefinition object
includes Triggers, Actions, Events, and FPGA-Sandboxes collections that enable you to define and
configure the Engine resources to be used within the SystemDefinition instance, and later in the
Sequencer and Hvi instances created from this SystemDefinition.

Triggers

The Trigger collection in the EngineDefinition object is used to add and manage all the Triggers that
you use later throughout the TSE API. There are multiple types of triggers depending on their
hardware implementation, for example:

l Front panel triggers (usually a SMA connector on the module's front panel),

l PXIe triggers (connected to the PXIe backplane of the chassis),

l General purpose digital IO (LVDS connector in the module's front panel),

l Any other trigger lines enabled within the instrument.

To use a Trigger from an HVI Engine, you must add it to the Trigger collection using the add() method.
The Trigger collection in the Engine object is accessed through the triggers property:

fp_trigger_def = my_engine_def.triggers.add(instrument.hvi.triggers.front_panel_1, "FP Trigger")

Where the add(...) parameters are:

1. The instrument Trigger identifier, obtained from the instrument driver.

2. The name of the Trigger assigned within the HVI instance. This is a string used when referring to
this HVI Trigger in any following TSE API calls.

The object returned when you add a Trigger to the EngineDefinition or when querying the Trigger
from the Trigger collection is of the type TriggerDefinition. This TriggerDefinition object provides an
interface to query the Trigger properties such as Id, Name (user defined name), Hardware Name and
Type. It also expose a config property to configure the behavior of the Trigger:

fp_trigger_def_config = my_engine_def.triggers["FP Trigger"].config

Trigger Configuration

The config property holds the current configuration of the Trigger hardware and enables you to query
and configure the required Trigger behavior. The Trigger config property includes the following
properties:

Find us at www.keysight.com Page 147

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Parameter Description Possible values Default value

direction
Get or set the direction of the
Trigger

Direction enum: INPUT, OUTPUT INPUT

polarity
Get or set the polarity of the
output Trigger

TriggerPolarity enum: ACTIVE_

HIGH, ACTIVE_LOW
ACTIVE_HIGH

trigger_mode Get or set the Trigger mode TriggerMode enum: LEVEL, PULSE LEVEL

sync_mode
Get or set the synchronization
mode of the Trigger

SyncMode enum: IMMEDIATE, SYNC,

SYNC_BASE
IMMEDIATE

hw_routing_

delay

Get or set the delay of the
Trigger in nanoseconds

Int 0

pulse_length
Get or set the pulse length of
the Trigger in nanoseconds

Int 100ns

source

Get or set an input signal
(trigger or event) to route
instrument internal signals out
of the instrument

Event
Event.SOFTWARE_
HVI

sampling_mode Get or Set the sampling mode SamplingMode enum: FULL_RATE,
CLK_100Mhz

FULL_RATE

input_
threshold

Get or Set the analog input
threshold to determine the logic 0
and 1 logic values

double
See Instrument
documentation

NOTE Not all triggers support all possible operation modes or configurations. Please refer
to the instrument documentation for details on the capabilities supported by the
different triggers available in an instrument.

In the following example, the Trigger fp_trigger is added to the Trigger collection and configured to be
used as input.

Defines the FP Trigger to be used as a wait condition by the digitizer
Add to the HVI Trigger Collection of each HVI Engine the FP Trigger object of that instrument
#
fp_trigger_id = instrument.hvi.triggers.front_panel_1
fp_trigger_def = my_engine_def.triggers.add(fp_trigger_id, "FP Trigger")
#
Trigger configuration
fp_trigger_def.config.direction = kthvi.Direction.INPUT

Find us at www.keysight.com Page 148

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

fp_trigger_def.config.polarity = kthvi.Polarity.ACTIVE_HIGH
fp_trigger_def.config.hw_routing_delay = 0
fp_trigger_def.config.trigger_mode = kthvi.TriggerMode.LEVEL

NOTE In the SystemDefinition you only configure the Triggers / Actions etc. to be used
later in the Sequencer and Hvi instances created from this SystemDefinition.

Find us at www.keysight.com Page 149

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Actions

The Action collection in the EngineDefinition object is used to add and manage all the Actions that
you use later throughout the TSE API.

To use an HVI Action in an HVI Engine, you must add it to the Actions collection using the add()

method. The Action collection in the Engine object is accessed through the actions property:

my_action_def = my_engine_def.actions.add(action_id, action_name)

Where the add(...) parameters are:

1. The Action identifier, obtained from the instrument driver.

2. The name of the Action assigned within the HVI instance. This is a string that is used when
referring to this Action in any following TSE API calls.

The object returned when you add an Action to the EngineDefinition or when querying the Action
from the Action collection is of the type ActionDefinition. This ActionDefinition object provides an
interface to query the Action properties such as Id, Name (user defined name), Hardware Name and
type. It also expose a config property to configure the behavior of the Action:

my_action_def_config = my_engine_def.actions[action_name].config

Actions are used in HVI Sequences with Action-execute instructions.

Events

The Events collection in the EngineDefinition object is used to add and manage all the Events that you
use later throughout the TSE API.

To use an HVI Event in an HVI Engine, you must add it to the Events collection using the add() method.
The Event collection in the Engine is accessed through the events property:

my_event_def = my_engine_def.events.add(event_id, event_name)

Where the add(...) parameters are:

1. The Event identifier, obtained from the instrument driver.

2. The name of the Event assigned within the HVI instance. This is a string that is used when referring
to this Event in any following TSE API calls.

The object returned when you add an Event to the EngineDefinition or when querying the Event from
the Event collection is of the type EventDefinition. This EventDefinition object provides an interface to
query the Event properties such as Id, Name (user defined name), Hardware Name and Type.

FPGA-Sandboxes

The FPGA-Sandbox collection in the EngineDefinition object is used to manage the FPGA-Sandboxes
that you use later throughout the TSE API.

Find us at www.keysight.com Page 150

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

An FPGA-Sandbox is a user-configurable region in the FPGA. You use PathWave-FPGA to create your
design for the FPGA-Sandbox. An HVI interface is provided for the FPGA-Sandbox for the instruments
that support it. Through this interface, HVI can access HVI FPGA-Registers and HVI FPGA-Memory
Maps inside the FPGA-Sandbox.

When the design is completed and built, PathWave-FPGA generates a .k7z file. This file stores all the
information needed about the names, addresses, ranges of the registers and memory-mapped loc-
ations that are connected to the HVI interface.

To use an FPGA-Sandbox design in your HVI Engine, you must first get an object that represents the
FPGA-Sandbox from the FPGA-Sandbox collection in the Engine. You do this by querying the FPGA-
Sandbox collection. The FPGA-Sandbox collection in the Engine object is accessed through the fpga_

sandboxes property:

sandbox = engine.fpga_sandboxes["sandbox0"]

The sandboxes available and their names depend on each instrument, so you should refer to the
instrument documentation to know the available sandboxes. The object returned when you query the
FPGA-Sandboxes collection is of the type FpgaSandboxDefinition. To use the FpgaSandboxDefinition
object you must load the relevant data from the .k7z file into it:

sandbox.load_from_k7z("c:/fpga/Hvi2SandboxTest.k7z")

Once the data from the .k7z file is loaded, you can use the interfaces in the FpgaSandboxDefinition
object to access the contents of the FPGA-Sandbox, including the FPGA-Registers, FPGA-Memory
Map, and FDS Ports. These are accessed through the following collections:

FPGA-Registers

Using the FpgaSandboxDefinition object, you can access the list of FPGA-Registers defined in the
FPGA-Sandbox. The FPGA-Registers have one property, the name of the register.

fpga_register = engine.fpga_sandboxes["sandbox0"].fpga_registers[0]
fpga_register.name

When you write sequences, you can set the FPGA-Registers as parameters in certain instructions.

FPGA-Memory Maps

Using the FpgaSandboxDefinition object, you can access the list of FPGA-Memory Maps defined in
the FPGA-Sandbox. The FPGA-Memory Maps have two properties, the name and the size of the
memory-mapped location.

fpga_memory_map = engine.fpga_sandboxes[SANDBOX_0_NAME].fpga_memory_maps[0]

The FPGA-Memory Maps can be set as a parameters in certain instructions.

FDS Ports

Using the FpgaSandboxDefinition object, you can access the list of FDS Ports in the FPGA-Sandbox.
The FdsPort enables you to use the FDS Port instances placed in your FPGA-Sandbox design. An
FdsPort has one property which is the name of the port.

Find us at www.keysight.com Page 151

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

http://www.keysight.com/find/pathwave-fpga

The following example code shows how to get the FDS Ports from the FpgaSandboxDefinitions
objects in two different Engines.

get FDS Ports for each Engine
source_port_name = 'fds_tx_output_1'
dst_port_name = 'fds_rx_input_1'
#
module_1_fds_ports = sequencer.sync_sequence.engines["Module_1"].fpga_sandboxes[0].fds_ports
module_2_fds_ports = sequencer.sync_sequence.engines["Module_2"].fpga_sandboxes[0].fds_ports
#
source_address = 10
source_port = module_1_fds_ports[source_port_name]
source = keysight_tse.FdsPortAddress(source_port, source_address)
#
dst1_address = 20
dst1_port = module_2_fds_ports[dst_port_name]
dst1 = keysight_tse.FdsPortAddress(dst1_port, dst1_address)

FdsPorts can be set as parameters in Sync Data-Sharing Statements.

Find us at www.keysight.com Page 152

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Chassis and Interconnects (SyncModule)

This section describes the Chassis, and Interconnects (SyncModule) objects and how to use them. It
contains the following sections:

l The Chassis Object

l The Interconnect (SyncModule) Collection in the System Definition

l Opening Hardware or Simulated Devices

Find us at www.keysight.com Page 153

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

The Chassis Object

The Chassis collection in the SystemDefinition object is used to add and manage all the Chassis that
you use later throughout the TSE API.

To use a Chassis in the SystemDefinition, you must add it to the Chassis collection using the add()

method. The Chassis collection in the SystemDefinition object is accessed through the chassis

property. You add the chassis using the chassis VISA resource ID string and you can also include
additional options:

Add chassis with resource ID string
my_system.chassis.add(chassis_resource_id_string)
including options
my_system.chassis.add(chassis_resource_id_string, "Simulate=True,DriverSetup=Model=GenericPxieChassis")

Where the add(...) parameters are:

1. The Chassis VISA resource ID String. For example, the VISA resource ID for PXI Chassis 1 would be
" PXI0::1::BACKPLANE ". VISA resource IDs can be checked in Connection Expert or an equivalent
system management application.

2. Optionally, a string with initialization options. See chassis specific documentation for details on
the supported initialization options and also Options for opening a Chassis.

NOTE WARNING:

If the chassis is already opened and the simulation option does not match the one
from the already opened resource, the call throws an ERROR.

If the simulation option matches but the other options do not, then the call will
succeed, and a WARNING entry is added in the HVI log.

NOTE LEGACY API: Older versions of the TSE API is Add chassis with number:

1. my_system.chassis.add(chassis_number)

2. my_system.chassis.add(chassis_number, options)

The object returned when you add a Chassis to the SystemDefinition object or when querying the
Chassis from the Chassis collection is of the type Chassis. This Chassis object provides an interface to
query the Chassis properties such as which slots are available, the Chassis model, and Chassis
vendor.

Find us at www.keysight.com Page 154

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

#ChassisandInterconnects(SyncModule)-OptionsforopeningaChassis

The following diagram shows the Chassis, its methods, properties and relationship to the
SystemDefinition. To simplify the diagram, some methods and properties are not shown:

Find us at www.keysight.com Page 155

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

A Chassis has the following properties:

Property Description

number The chassis number

model The chassis model

vendor The chassis vendor

first_slot The first slot number in the chassis

last_slot The last slot number in the chassis

slots The Collection of slots

triggering The triggering object of the chassis

clock_outputs The Collection of clock outputs in the chassis

clock_source Controls the chassis clock cource

high_performance_clock_source Controls the High Precision Reference Clock Source

Find us at www.keysight.com Page 156

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

The Interconnect (SyncModule) Collection in the System Definition

The interconnects collection represents physical hardware modules or instruments that are used to
connect different chassis together. A System Synchronization Module (SSM) is a PXIe instrument
that can be used for physically connecting multiple chassis together. It can synchronize the multiple
chassis and the instruments within them, share a high performance clock reference across the multi-
chassis system, and managing Fast Data Sharing (FDS) between PXIe instruments.

To include an SSM into an HVI instance, the first step is to add the SSM to the Interconnect collection
in the SystemDefinition instance. This is slightly different from other collections because there is no
add() method, instead you use the add_sync_module() method. You get the Interconnects collection in
the SystemDefinition through the interconnects property.

You can add an SSM with a Resource ID or with an Engine ID. It is easier to add the SSM with the
Resource ID, unless you have a specific reason to use the Engine ID.

The add_sync_module(...) parameters are:

1. The instrument resource identifier that you define or engine identifier you get from a driver.

2. An options string, see Options for opening SSMs.

The following code shows how to open the SSM with a resource ID:

Add with Resource ID
Define System Sync Module
resource_id_ssm_1 = 'PXI0::CHASSIS1::SLOT10::INSTR'
options1 = ""
#
sync_module_1 = my_system_definition.interconnects.add_sync_module(resource_id_ssm_1, options1)

NOTE WARNING:

If the SSM is already opened and the simulation option does not match the one
from the already opened resource, the call will throw an ERROR.

If the simulation option matches but the other options do not, then the call will
succeed, and a WARNING entry will be added in the HVI log.

In some cases you might want to open the SSM in advance to interact with it. In this case, you only
need to add the SSM to the System Definition with the unique Engine ID that was returned by the
instrument when it was opened.

The following code shows how to open the SSM with a Engine ID:

Open and get Engine ID
#
import keysight_ktm9032x
#
id_query = True;
reset = True
instrument_initOptions = ""
driver = keysight_ktm9032x.KtM9032x("PXI0::CHASSIS1::SLOT10::INSTR", id_query, reset, instrument_

Find us at www.keysight.com Page 157

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

initOptions)
engine_id_ssm_1 = ivi_module.hvi.engines.main_engine
#
...
my_system_definition = kthvi.SystemDefinition("My System Definition")
...
#
Add with Engine ID
sync_module_1 = my_system_definition.interconnects.add_sync_module(engine_id_ssm_1)

When you add the SSM to the Interconnects collection you obtain an SyncModule object (shown in
green in the following diagram). You can also query any SyncModule already added to the
Interconnects collection using the [] operator on the Interconnects property, like in other collections.

Find us at www.keysight.com Page 158

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

The following diagram shows the Interconnects and its methods and properties, the SyncModule, and
how these relate to the SystemDefinition:

Find us at www.keysight.com Page 159

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

The SyncModule object has the following properties:

Property Description

chassis The chassis number where the SSM is located.

slot The slot number where the SSM is located.

clock_source Gets an object to control the SSM clock source.

connectivity

Gets the Connectivity object describing the connectivity capabilities of the SSM.
You must use this to specify connections in software that reflect what is connected
in your hardware setup.

triggers Gets the Triggers collection for the SSM.

Connectivity

This describes the connectivity capabilities of an SSM. This gives your access to the physical System
Sync ports on the SSM.

Opening Hardware or Simulated Devices

You can use PathWave Test Sync Executive with hardware or simulated devices and instruments. The
simulation mode enables you to test your Sequences before running them on actual hardware.

When you are opening a device such as a SSM or a Chassis, you can specify an options string. This is
a string that contains a list of comma separated options. The options you specify are specific to the
device you are opening, and can change depending on if you are opening real device or using a
simulation.

NOTE In some cases a generic simulation built-in to HVI is provided, this is to enable you
to get things up and running. A driver based simulation provides a more accurate
simulation of the real hardware, so it is better for testing.

Options for opening a Chassis

Hardware Chassis

To add a real chassis do the following:

Add chassis with resource ID string
my_system.chassis.add(resource_id_string)

or you can include initialization options with:

my_system.chassis.add(resource_id_string, options)

Find us at www.keysight.com Page 160

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Simulated Generic Chassis

It is not possible to use real chassis driver to run TSE in simulation, for that TSE exposes a
GenericPxieChassis chassis model. The following code shows how to add a chassis in simulation
mode using the built-in generic chassis simulation:

For Chassis simulation supported Models only include "GenericPxieChassis" and "GenericChassis"
sys_def.chassis.add(resource_id_string, 'Simulate=True,DriverSetup=Model=GenericPxieChassis')

To simulate chassis that supports Analog/RF generation and distribution, such as the M9046A, you
must also specify the AnalogClockSupport option.

AnalogClockSupport option supported values are "None", "HPCS" and "Internal"
sys_def.chassis.add(resource_id_string,
'Simulate=True,DriverSetup=Model=GenericPxieChassis,AnalogClockSupport=HPCS')

Some examples for Analog/RF clocking support with simulated chassis:

Example Chassis to
simulate

Add Chassis Options

M9019A or M9018B (no
Analog/RF clocking
support)

Simulate=True,DriverSetup=Model=GenericPxieChassis

M9046A hardware
variants
"806,QS1,STD" or
"806,QS3,STD"

Simulate=True,DriverSetup=Model=GenericPxieChassis,AnalogClockSupport=HPCS

M9046A hardware
variants
"805,QS0,STD" or
"807,QS2,STD"

Simulate=True,DriverSetup=Model=GenericPxieChassis,AnalogClockSupport=internal

NOTE The simulation option HPClock is DEPRECATED and replaced with AnalogClockSupport.

Find us at www.keysight.com Page 161

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Options for opening SSMs

Hardware SSM

If you are using SSM hardware, the options sting is typically empty. If you want to specify hardware
options when using the SSM, see the SSM user manual for available options.

Add SSM to Interconnects Collection
interconnects.add_sync_module(resource_id,"")

Simulated SSM

You can simulate a specific SSM with the driver for that SSM. When simulating, several options
should be specified:

l Simulate=True.

l The following option must go after DriverSetup=

Model specifies the model of SSM you want to simulate.

You can add a simulated SSM in the following way:

interconnects.add_sync_module(resource_id, 'Simulate=true,DriverSetup=Model=M9033A')

Find us at www.keysight.com Page 162

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Synchronization Resources

This section describes Synchronization Resources, it contains the following sections:

l HVI synchronization resources

l Where Sync Resources are used

l Calculating the number of Sync Resources required

HVI provides transparent multi-instrument synchronization and synchronized conditional execution,
for example, the Sync While Statement does synchronized conditional execution. To use these cap-
abilities, for a Device Under Test (DUT) or instruments that do not integrate HVI technology, you must
assign HVI synchronization resources and specify clock frequencies.

HVI synchronization resources

When you set up your system, you must allocate sufficient synchronization resources for your system
and Sequences to work correctly. Sync resources in the PXIe platform consist of the PXI Trigger lines.
These are a limited resource, so you must be careful when you are allocating them.

The sync resources are used internally by the HVI to implement the following cross-instrument
operations, transparently to the user:

l Alignment and Synchronization initialization.

l Real-time Sequencing multi-instrument operations, such as:

Sync While.

Sync Register-Sharing.

Triggered synchronization in a SyncMultiSequenceBlock.

The HVI optimizes the use of Sync resources as much as possible and reuses the same Sync
resources when possible for different operations, providing they are executed with sufficient time
separation. You can estimate the number of Sync resources you require by working out how many
are required at the different stages of your application.

The Sync resources consist of PXI triggers and are defined by the enumeration keysight_

tse.TriggerResourceId. The resources must be specified in the SyncResources property of the
SystemDefintion object. For example:

Add Sync resources
sys_def.sync_resources = [keysight_tse.TriggerResourceId.PXI_TRIGGER0,

keysight_tse.TriggerResourceId.PXI_TRIGGER1,
keysight_tse.TriggerResourceId.PXI_TRIGGER2]

Find us at www.keysight.com Page 163

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Where Sync Resources are used

There are 3 areas where you require Sync resources, these are the same 3 stages you set up your HVI
in:

System Initialization

Initialization (SystemDefinition.initialize() call) requires one Sync resource for instrument
synchronization. At this step the Sync resources is configured in HW and used to synchronize all
hardware in the SystemDefinition, it is important that at this point the Sync resource is available and
not in use by any other HVI instance or application. This Sync resource is reused later for the
Sequence execution, for example, if you use PXI_TRIGGER0 for synchronization, it is later reused for the
Sequence execution.

Sequence Compilation

The HVI Sequence requires Sync resources to execute specific multi-instrument real-time operations.
Some operations that require Sync resources include:

l Sync While.

l Sync Register-Sharing.

l Triggered synchronization in a Sync Multi-Sequence Block.

During the Sequence compilation, HVI allocates the Sync resources assigned in the SystemDefinition as
required. So it is important that sufficient Sync resources are assigned for the Sequence to compile, if
this is not the case, a compilation error will be generated. At the compile stage, Sync resources are
not used in hardware, they are just allocated to specific real-time operations in the code resulting of
the Sequence compilation. These resources will be configured and used in hardware when the HVI
instance is loaded to hardware.

Sequencer Creation

Your Sequence shall require Sync resources to operate, but it can reuse the Sync resources pre-
viously used in the SystemDefinition for initialization.

If you have not called initialize or it is otherwise required, the initialization still occurs at the beginning
of the Sequence. Sync resources are required for this, however these resource are reused by the
Sequence.

The numbers of Sync resources required in a Sequence depends on:

l The use of certain Sync Statements such as Sync While require 1 sync resource.

l The use of Sync Register-Sharing Statements requires 1 Sync resource per bit.

l Triggered synchronization requires 1 additional Sync resource.

l The arrangement of your system also affects the number of Sync resources required.

Find us at www.keysight.com Page 164

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

HVI Load to Hardware

The Sync resources required to initialize the system (synchronize all hardware) and those allocated to
the HVI Sequence during compilation, are configured into hardware at this step (Hvi.load_to_hw() call).
The same Sync resources used to initialize the system are also used to run the HVI Sequence. It is
important that at the time of the Hvi.load_to_hw() call, to ensure the allocated Sync resources are not
already in use in hardware by any other HVI instance or application.

Find us at www.keysight.com Page 165

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Calculating the number of Sync Resources required

Different functionalities require different amounts of Sync resources, this can also depend on the
system configuration, in particular if it is a small setup such as a single PXIe-chassis & single
segment, or a large system with multiple chassis.

Sync resource usage per functionality

The following table summarizes the Sync resources required by the different functionalities.

Functionality

Sync resources required

(for recommended Keysight
chassis)

Description
Single PXIe

chassis & Segment
Others

1 SystemDefinition::Initialize() and Sequence start in Hvi::Run() 1

2 Sync While Statement 1

3
Sync Multi-Sequence Blocks with Triggered-Sync (those with
unknown execution time during compilation)

1 2

4 Sync Register-Sharing of N bits N

For information about recommended chassis, see Configuring a System with SSMs and System Sync
Connectivity.

Sync resource reuse across functionalities

HVI reuses the same Sync resources for different functionalities and also for the same functionality if
executed multiple times. The criteria to reuse Sync resources is:

l Functionalities #1, #2 and #3 reuse the Sync resources.

l Functionality #4 (Sync Register-Sharing) reuse Sync resources ONLY when sender module are in
the same Chassis and Segment.

Calculating the total Sync resources required

To calculate the total amount of Sync Resources required, use the following formula:

l Total Sync Resources = Max(#1, #2, #3) + Sum(Max(#4 for each segment)).

l If a functionality is not used, use 0 in the equation above.

Find us at www.keysight.com Page 166

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

The following table shows examples with the number of sync resources required:

Scenario Description
Functionality Sync Resource

Total#1 #2 #3 #4

System initialization only, SystemDefinition::Initialize()
(any number of chassis)

1 - - - 1

SyncSequence (1x chassis, 1x segment)

No Triggered-Sync SyncMultiSequenceBlocks

+ Sync-While

1 1 - - 1

 SyncSequence (1x chassis, 1x segment)

+ Triggered-Sync SyncMultiSequenceBlocks

No Sync-While

+ RegSharing (chassis1, segment 1) (n bits)

1 - 1 n n + 1

SyncSequence (2+ chassis)

+ Triggered-Sync SyncMultiSequenceBlocks

No Sync-While

+ RegSharing (chassis1, segment 1) (n bits)

1 - 2 n n + 2

SyncSequence (2+ chassis)

+ Triggered-Sync SyncMultiSequenceBlocks

+ Sync-While

+ RegSharing (chassis 1, segment 2) (n bits)

+ RegSharing (chassis 1, segment 2) (m bits)

1 1 2
Max
(n,m)

Max(n,m) + 2

SyncSequence (2+ chassis)

+ Triggered-Sync SyncMultiSequenceBlocks

+ Sync-While

+ RegSharing (chassis 1, segment 1) (n bits)

+ RegSharing (chassis 2, segment 3) (m bits)

1 1 2 n + m n + m + 2

Find us at www.keysight.com Page 167

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Synchronization Signals and Sync Modes

HVI uses different periodic digital signals for synchronization purposes. The definition of those digital
signals depends on platform and instruments signals. Platform signals are the CLK100 and CLK10 sig-
nals in a PXI platform such as a PXI chassis. Instruments have different clock signals inside that are
classified as core clocks or system clocks. Platform and instrument clock signals contribute to define
the following HVI synchronization signals:

l SYNC.

l SYNC_BASE.

Synchronization modes

You can configure the synchronization mode. This is used, for example, for generating a Trigger value
or waiting for an Event.

The following modes are supported:

IMMEDIATE

The Trigger or Action is issued immediately, with no need to wait for any common syn-
chronization clock. For the Wait-For-Event, the HVI execution continues immediately, as soon as
the Event is received.

SYNC

The Trigger or Action is issued at the first edge of the SYNC signal. For the Wait-For-Event, the
HVI execution continues at the first edge of the SYNC signal, following the Event arrival time.

SYNC_BASE

The Trigger or Action is issued at the first edge of the SYNC_BASE signal. For the Wait-For-
Event, the HVI execution continues at the first edge of the SYNC_BASE signal, following the
Event arrival time.

For more information about synchronization, see Synchronization Clocks, Signals, and Modes.

Find us at www.keysight.com Page 168

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Non-HVI Clocks

Non-HVI clocks are clocks on instruments that are present in a system, but do not have HVI Engines.
In order to account for these additional clock frequencies on the entire system timing, TSE API allows
to specify two types of additional clocks:

Non-HVI system clocks

Non-HVI system clocks are those clocks used by the instrument that do not directly impact the
operation of the specific feature that the HVI must trigger. System clocks are used by the HVI to
determine the SYNC_BASE period.

You must set these with the property SystemDefinition.non_hvi_system_clocks

Non-HVI core clocks

Non-HVI core clocks are instrument clocks that directly impact the operation of the specific fea-
ture that the HVI must trigger. Core clocks are used by the HVI to determine both the SYNC and
the SYNC_BASE period.

You must set these with the property SystemDefinition.non_hvi_core_clocks

For more information see Synchronization Clocks, Signals, and Modes.

Find us at www.keysight.com Page 169

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

System Initialization in the SystemDefinition Object

System Initialization is a process that includes the configuration and alignment of the different sys-
tems clocks, including the clocking for each instrument specified as part of the HVI SystemDefinition.

The SystemDefintion object includes an initialize() method that initializes the hardware included in
the SystemDefinition, and performs synchronization and clock alignment. There are 3 cases where
system initialization and clock alignment can occur:

l Manually calling initialize() in the SystemDefinition.

l When the Sequencer object is created.

l When calling Load to Hardware.

The SystemDefinition initialize() method

The systemDefinition.initialize(...) method enables you to explicitly trigger a system initialization and
alignment. You might want to explicitly control when the initialization process is executed
because the initialization process can take some considerable time depending on the parameters and
system state.

You can also specify specific alignment modes when calling the initialize() method.

The following table shows the alignment mode parameters:

Mode Description

Default
Calling initialize() without parameters performs the default, or
minimal-possible initialization. This is the mode intended to be
used in normal system operation.

keysight_tse.AlignmentModes.Full
Forces a full system, complete system initialization and
alignment.

keysight_tse.AlignmentModes.ResetCalibration
Performs system initialization and alignment resetting and
regenerating the stored calibration data.

keysight_

tse.AlignmentModes.IgnoreCalibrationErrors

Performs system initialization and alignment, ignoring any
missing calibration data. This mode is intended for system
warm-up or other instances when the use of precise alignment
calibration data is not available yet or not required.

Find us at www.keysight.com Page 170

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Alignment mode parameters (continued).

Mode Description

keysight_

tse.AlignmentModes.ForceClockMonitoring

During system operation, TSE can run a clock monitoring routing
in the background and use the information for optimal system
alignment. The clock monitoring is enabled automatically if any
of the instruments with HVI Engines added into the
SystemDefinition benefits from the clock monitoring
information. This flag force enables the clock monitoring,
regardless of the HVI engines added to the SystemDefinition.

keysight_

tse.AlignmentModes.DisableClockMonitoring

This flag force disables the clock monitoring regardless of the
instrument's requirements. Disabling clock monitoring speeds
up the system initialization and load-to-hardware operations but
may result in non-optimal system alignment.

For a full explanation of initialization and all the parameters, see System Initialization.

Find us at www.keysight.com Page 171

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

User-Defined Trigger Routing

About Triggering

Triggers are logic signals that enable you to communicate events or states between instruments. In a
PXI system, instruments can be located in different slots of a PXI chassis, and in different PXI chassis
connected through a SystemSync connection using System Synchronization Modules (SSMs). TSE
includes API methods that enable users to configure custom Trigger routings across different instru-
ments and chassis.

Trigger Resources in TSE API

The TSE API supports the following types of Trigger:

Triggers

Instrument Triggers

Instruments with HVI engines expose triggers that can be accessed and controlled with TSE API.
These triggers are registered and obtained through the HVI Engines instances when you setup your
SystemDefinition, see HVI Engines and their Resources. When using PXI triggers, you must be careful
that if they are assigned as sync resources, they cannot be used for general purpose triggering.

Trigger resources available depend on each instrument. Instruments drivers exposes a Triggers prop-
erty in the Hvi interface that includes all available triggers in that instrument.

The following snippet demonstrates how to register and access Instrument Triggers from TSE API:

Retrieve Engine instance
instr1_engine = my_system_definition.engines["myInstr1Engine]
#
Create/Add Trigger object for instrument trigger through the Engine instance
my_instr_trigger = instr1_engine.triggers.add(my_instr1.hvi.triggers.PxiTrigger0, "DestinationTrig")
#
Triggers once added can be retrieved by means of the label assigned when adding it
my_instr_trigger = instr1_engine.triggers["DestinationTrig"]

PXIe DSTAR Triggers

PXIe DSTAR Triggers are only available in a PXIe chassis when a System Timing Module is present.
TSE only supports PXIe DSTAR triggers when M9032A/33A PXIe System Synchronization Modules
are present in the chassis. The PXIe DSTAR triggers are accessed through the Chassis Slot instance:

system_definition.chassis[...].slot[...].Triggers[string]

Where the string identifies the specific trigger, supported valued are:

l "PXIe_DSTARB"

l "PXIe_DSTARC"

The following snippet demonstrates how to retrieve PXIE_DSTARB/C:

Find us at www.keysight.com Page 172

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Retrieve Trigger onject for PXIe_DSTARB in Slot 5
dstar_Trig = system_definition.chassis[1].slot[5].Triggers["PXIe_DSTARB"]

System Synchronization Module (SSM) Triggers

System Synchronization Modules expose trigger resources that can be accessed in the TSE API
through the interconnect instance. TSE 2023B only supports STRIG_IO for M9032A/33A SSMs. The
snippet below demonstrates how to access STRIG_IO:

Retrieve Trigger Object for STRIG_IO in SSM 1
SSM1_triggerInOut = my_system_definition.Interconnects["SSM_1"].Triggers["STRIG_IO"]

Trigger Configuration

Triggers include a configuration property that enables you to control several different capabilities in
the triggers. Not all triggers support all capabilities, see HVI Engines and their Resources for more
information about Trigger configuration. For instruments triggers, refer to the instrument doc-
umentation for details about the supported features for the different triggers available. For PXIe
DSTAR and SSM triggers, the following table summarizes the properties that are not supported:

Trigger Properties not supported

PXIe DSTAR
source, hw_routing_delay, input_

threshold

SSM STRIG_
IO

source, hw_routing_delay

 The following snippet demonstrates the use of trigger configuration properties:

Trigger configuration
my_trigger.config.direction = keysight_tse.Direction.INPUT
my_trigger.config.polarity = keysight_tse.Polarity.ACTIVE_HIGH
my_trigger.config.hw_routing_delay = 0
my_trigger.config.trigger_mode = keysight_tse.TriggerMode.LEVEL

Trigger Runtime configuration and operation

Once the HVI instance is loaded to hardware, for triggers configured as outputs, it is possible to
change the trigger configuration, read trigger state, and change state. See Engine Runtime Com-
ponents for more details.

Platform Triggers

Platform Triggers are defined by the platform and are typically used when working with instruments
or resources that are not HVI-capable (do not contain an HVI Engine). Platform resources are iden-
tified by a TriggerResourceId, supported triggers are:

l PxiTrigger0, PxiTrigger1, PxiTrigger2, PxiTrigger3, PxiTrigger4, PxiTrigger5, PxiTrigger6, PxiTrig-
ger7

Find us at www.keysight.com Page 173

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Platform triggers are accessed through the triggering interface in the chassis instance:

system_definition.chassis[...].triggering.get_platform_trigger(keysight_tse.TriggerResourceId
trigger, int slot)

The following snippet demonstrates how to retrieve PXI_TRIGGERs:

Retrieve PXI_TRIGGER[0] in Slot 11
platform_trigger = system_definition.chassis[1].triggering.get_platform_trigger(keysight_
tse.TriggerResourceId.PXI_TRIGGER0, 11)

Platform Trigger Configuration

Platform triggers do not have any configuration accessible from the TSE API. The Platform Triggers
configuration is determined automatically by TSE depending on the SystemDefinition and Sequencer
definitions. For instance, the section below describes how to define trigger routings, but, when defin-
ing routings for the platform triggers, their configuration is set automatically depending on the rout-
ing definition.

Routing Triggers Across Instruments and Chassis

Defining custom trigger routing

In addition to the automatic triggering configuration performed by TSE on the triggers assigned as
Sync Resources (see Synchronization Resources), TSE exposes methods for users to configure cus-
tom trigger routings.

NOTE Triggers assigned as Sync Resources cannot be used for user-defined routings or
configured by the user. These triggers are managed and configured automatically
by TSE.

Trigger routings have some constraints depending on the type of trigger resource used:

l Routings cannot include together PXI_TRIGGER with PXIE_DSTARB/C or SSM STRIG_IO

l For PXI_TRIGGER routings, source and destinations must all correspond to the same PXI_TRIGGER
index.

The trigger routings are configured through the triggering interface in the SystemDefiniton:

l SystemDefinition.triggering.routings.Add(label: str, source: TriggeringSignal, destinations: list[Trig-

geringSignal])

l SystemDefinition.triggering.routings.Add(source: TriggeringSignal, destinations: list[TriggeringSignal])

Applying custom trigger routing to hardware

Trigger routings are applied to hardware when the HVI instance is loaded to hardware. The triggering
interface in the HVI instance enables you to query the trigger routings defined in the Sys-
temDefinition:

Find us at www.keysight.com Page 174

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

l Hvi.triggering.routings[label: str]

l Hvi.triggering.routings[index: int]

Keysight recommends you use the add() method in the SystemDefintion with a label, so this label can
be used later in the HVI instance to retrieve the specific routing. When using the integer index to
access the routing collection, the index is associated to the order when adding the routing.

The routing returned by the HVI instance enables you to query the following properties:

Property Type Description Note

label String
Label assigned when added in the
systemDefinition instance

-

source_
signals

list
[TriggeringSignal]

List of source triggers as defined in the
systemDefinition instance

-

dest_
signals

list
[TriggeringSignal]

List of destination triggers as defined in the
systemDefinition instance

-

latency float Routing latency in nanoseconds
Only supported for
PXIE_DSTARB/C
and SSM STRIG_IO

PXI_TRIGGER routing example

The following example shows how to route PXI_TRIGGERS using both Platform Triggers and Instru-
ment Triggers. Platform triggers are used in general when the PXI instrument source or destination of
the trigger do not support HVI technology, in other cases it is recommended to use the trigger from
the HVI Engine:

Create PlatformTrigger through the Chassis object for PXI_TRIGGER[0] in slot 11
slot_trigger = my_system_definition.chassis[1].triggering.get_platform_trigger(keysight_
tse.TriggerResourceId.PXI_TRIGGER0, 11)
#
Create Instrument Trigger object through the HVI Engine object
instr_engine = my_system_definition.engines["Instr1"]
instr_trigger = instr_engine.triggers.add(Instr1.hvi.triggers.PxiTrigger0, "Destination")
#
Configure Instrument trigger
instr_trigger.config.direction = keysight_tse.Direction.INPUT
#... other properties
#
Add a user routing from PXI_TRIGGER[0] in slot 11 (platform trigger) to Instr1
routing = my_system_definition.triggering.routings.add("MyPxi0Routing", slot_trigger, [instr_trigger])
#
Create Sequencer and Hvi instances
my_sequencer = keysight_tse.Sequencer("sequencer", my_system_definition)
#
#... Optionally define a real-time sequence

Find us at www.keysight.com Page 175

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

#
Compile Sequencer to obtain "excutable" HVI instance
my_hvi = my_sequencer.compile()
#
The trigger routing is applied to HW in the load_to_hw()
my_hvi.load_to_hw()
#
... Optionally run the real-time sequence
#
The trigger routing is released from the hardware
my_hvi.release_hw()

SSM STRIG_IO and PXIE_DSTRAR routing example

The following example illustrates how to route the STRIG_IO from an SSM to the DSTARB/C in dif-
ferent slots in different chassis.

Create PXIE_DSTARB destination triggers objects (DSTARB in the slot is always an output)
DStarB_ch1_slot3 = my_system_definition.chassis["PXI0::1::BACKPLANE"].slot[3].Triggers["PXIe_DSTARB"]
DStarB_ch1_slot12 = my_system_definition.chassis["PXI0::1::BACKPLANE"].slot[12].Triggers["PXIe_DSTARB"]
DStarB_ch2_slot5 = my_system_definition.chassis["PXI0::2::BACKPLANE"].slot[5].Triggers["PXIe_DSTARB"]
#
Create SSM STRIG_IO triggers objects and configure it as input
SSM1_triggerIn = my_system_definition.Interconnects["MySSM_1"].Triggers["STRIG_IO"]
#
Configure Trigger (use same configuration interface as all triggers)
SSM1_triggerIn.config.direction = keysight_tse.Direction.Input (throw exception if not supported specified
direction)
#
Define STRIG_IO routing to PXIE_DSTARBs
my_strig_routing = my_system_definition.triggering.routings.add("StrigRouting", SSM1_triggerIn, [DStarB_ch1_
slot3, DStarB_ch1_slot12, DStarB_ch1_slot5])
#
Create Sequencer and Hvi instances
my_sequencer = keysight_tse.Sequencer("sequencer", my_system_definition)
#
#... Optionally define a real-time sequence
#
Compile Sequencer to obtain "excutable" HVI instance
my_hvi = my_sequencer.compile()
#
The trigger routing is applied to HW in the load_to_hw()
my_hvi.load_to_hw()
#
after the load to hardware can retrieve trigger objects and change configuration
SSM1_triggerIn_runtime = my_hvi.interconnects["MySSM_1"].Triggers["STRIG_IO"]
SSM1_triggerIn_runtime.config.polarity= keysight_tse.Polarity.ACTIVE_LOW
SSM1_triggerIn_runtime.apply_config()
#
after the load to hardware can query Latency property
my_routing = my_hvi.triggering.routings["StrigRouting"]
my_routing.latency
#
... Optionally run the real-time sequence
#
The trigger routing is released from the hardware
my_hvi.release_hw()

Find us at www.keysight.com Page 176

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

System Clocking Configuration

In a hardware system, there are a number of different options for the system clocking. The clocking
property in the SystemDefinition object enables you to define the source of the system wide clocking ref-
erence along with a mode and frequency.

Setting the Source of the Reference Clock

You can set a System Sync Module (SSM) as a reference clock source.

Select the SSM as the source
clockSource = interconnects[0].clock_source
#
Set the SSM clock source
systemDefinition.clocking.reference_source = clockSource

Alternatively, you set the chassis as a reference clock source with the following code:

Select the chassis as the source
clockSource = chassis.clock_source
#
Set the clock reference source
systemDefinition.clocking.reference_source = clockSource

Setting clock reference Mode and Frequency

You can set the mode as INTERNAL or EXTERNAL.

INTERNAL

The reference clock source is internal. This is the default value.

Do not set the frequency, this raises an error.

EXTERNAL

The reference clock source is synchronized to an external clock.

You must set the frequency (in Hz) of the external sources.

Find us at www.keysight.com Page 177

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

To set the High Performance Reference Clock Source (HPRCS) as the reference clock do the
following:

This will be added only in the main chassis with the leader SSM.
ktHvi.SystemDefinition definition("Name")
#
chassis = definition.add_chassis(1)
clockSource = chassis.high_performance_clock_source
#
Configuring HPRCS to use its internal clock
clockSource.set_mode(keysight_tse.ClockingReferenceMode.INTERNAL)
#
Configuring HPRCS to use an external reference @10Mhz
clockSource.set_mode(keysight_tse.ClockingReferenceMode.EXTERNAL, 10e6)

As SSM is required because the HPRCS output is connected to REF_IN input of the SSM.
syncModule = definition.interconnects.add_sync_module(resourceIdStm1, options)
#
definition.clocking.reference_source = clockSource

In some cases you may want to use the clock source device (Chassis, SSM or HPRCS) internal clock.
This also enables you to use an external clock source to drive it, such as an atomic clock or a device
under test. The following code shows how to configure the chassis as the clock source and take the
clock reference from an external 10MHz source:

clockSource = chassis.clock_source
#
Set clock mode to EXTERNAL and set frequency to 10MHz
clockSource.set_mode(keysight_tse.ClockingReferenceMode.EXTERNAL, 10e6)
#
systemDefinition.clocking.reference_source = clockSource

However, if you want to explicitly configure the clock source to use the chassis internal OCXO clock
source:

clockSource = chassis.clock_source
#
Set clock mode to INTERNAL
clockSource.set_mode(keysight_tse.ClockingReferenceMode.INTERNAL)
#
systemDefinition.clocking.reference_source = clockSource

You can query the clock reference mode and frequency with the following code:

Get mode and frequency (in Hz)
#
mode = clockSource.mode
frequency = clockSource.frequency

Chassis Clock Outputs

The chassis have internal clocks and outputs for them. For instance, the clock output on the rear
panel of an M9019A or the clock outputs on the front panel of an M9046A. These clock outputs can
be use as a reference clock for instruments in the system and for devices external to the system. The
TSE API enables you to enable or disable the chassis clocks.

Find us at www.keysight.com Page 178

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

For the clock options and outputs available on your chassis, see your chassis documentation.

NOTE Chassis Clock Outputs do not have any default behavior. If the user does not specify
any configuration for a clock output (see below) the clock output is left untouched.

Enabling chassis clock outputs

The chassis clock outputs are available in the chassis and you can access them by their name as fol-
lows:

Get the Clock configuration for the Rear Panel 10MHz output port from the Chassis
ktHvi.SystemDefinition definition("Name")
#
chassis = definition.add_chassis(1)
#
clockOutputRp10Mhz = chassis.clock_outputs["RP10MHzOut"]
clockOutputRP10Mhz.set_enabled(true/false)

Some clock outputs support one single frequency and others support multiple frequencies. For the
outputs supporting only one frequency, no frequency must be provided when enabling/disabling
them. If the clock outputs do support multiple frequencies, you must specify what frequency (in Hz)
you want to enable.

When you disable the clock, the frequency argument is ignored.

The following code shows some examples and error cases:

clockOutputRp10Mhz = chassis.clock_outputs["RP10MHzOut"]
clockOutputRP10Mhz.set_enabled(true) # Ok
clockOutputRP10Mhz.set_enabled(true, 10e6) # Throws error, no frequency expected
clockOutputRP10Mhz.set_enabled(false, 10e6) # Ok, frequency is ignored
#
clockOutputFpRef2Out = chassis.clock_outputs["FPRef2Out"]
clockOutputFpRef2Out.set_enabled(true) # Throws error, frequency expected
clockOutputFpRef2Out.set_enabled(true, 10e6) # Ok
clockOutputFpRef2Out.set_enabled(false, 10e6) # Ok, frequency is ignored

Enabling the chassis Analog Clock Output

If you are using an analog clock output from a chassis you must enable it manually.

The following code shows how to enable a 2.4GHz analog clock output from an M9046A chassis.

clock_output_2_4GHz = ref_chassis.clock_outputs["FP2.4GHzOut"]
clock_output_2_4GHz.set_enabled(True)

Automatic clock output enable

If the you defines the HPRCS clock from the M9046A chassis as the clock source, you must connect
the Front panel Ref 1 Out port (FPRef1Out) from the leader M9046A to the REF_IN of the leader SSM.
HVI automatically enables the Ref 1 Out clock output port from the leader chassis to let the leader
SSM take the clock reference from it.

The following code shows an example:

Find us at www.keysight.com Page 179

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

This is only added in the main chassis with the leader SSM.
ktHvi.SystemDefinition definition("Name")
#
chassis = definition.add_chassis(1)
clockSource = chassis.high_performance_clock_source
#
Configure the HPRCS to use its internal clock
clockSource.set_mode(keysight_tse.ClockingReferenceMode.INTERNAL)

As SSM is required because the HPRCS output is connected to REF_IN input of the SSM.
syncModule = definition.interconnects.add_sync_module(resourceIdStm1, options)
#
definition.clocking.reference_source = clockSource
#
The following lines are not required, HVI does this automatically
#clockOutputFpRef1Out = chassis.clock_outputs["FPRef1Out"]
#clockOutputFpRef1Out.set_enabled(true)

Enabling the Analog Clock Source in Instruments

For instruments that require an analog clock, you must set the source and frequency of the analog
clock in your SystemDefinition.

You can set parameters for the analog clock:

l The source as internal or external.

l The frequencies of the sources, in Hz.

For external sources, the source selected depends on the analog clock frequencies that the instru-
ment supports.

l If you indicate multiple frequencies, the first external frequency supported by the instrument is
selected.

l If none of the external frequencies are supported, and the instrument has an internal clock, the
internal clock is selected.

l If none of the external frequencies are supported, and the instrument does not have an internal
clock, an error is generated.

my_system.clocking.enable_external_analog_clocks(frequencies)

If the instrument does not support the frequency and does not have an internal clock, an error is
generated.

Find us at www.keysight.com Page 180

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

The Sequencer Object
This section describes the Sequencer object, it contains the following sections:

l SyncSequence and Sequence objects

l Sequence Statements

l Sync Statements

l Local Statements

l EngineView Components

l InstructionSet Object

l HVI Registers and Scopes

l HVI Compilation

l System Initialization in the Sequencer Object

l Sequence Representation

You use the Sequencer object to define, program, and compile your HVI Sequences.

The Sequencer object includes a top level Sync Sequence, known as the Global Sync Sequence.
Within this:

l You can add Sync Statements within the top level Sync Sequence using the methods provided in
the sync_sequence object.

l You can create local sequences to control each instrument (or HVI engine) individually using the
SyncMultiSequenceBlockStatement which exposes a sequences collection with Local Sequence objects for
all HVI engines.

l You add Local Statements to Local Sequences using the methods of each sequence object.

The Sequences and Statements you add can access the resources previously defined using the
EngineCollectionView property of the sync_sequence. The view properties and objects enable you to see the
definitions you have set up, but you cannot modify them.

NOTE WARNING : Once a Sequencer instance is created, any change to the
SystemDefinition will not affect the Sequencer object or any objects or definitions
inside the Sequencer (Engines, Triggers, Actions, Events,...). All API calls on the
Sequencer object must use the properties in the Sequencer and its hierarchy. Do
not use properties objects from the SystemDefinition or other Sequencer instances
under any circumstances.

Once you have defined all the Sequences that define your HVI, you must compile it. The HVI instance
Hvi, is generated when you compile the Sequencer object successfully.

Find us at www.keysight.com Page 181

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

The following diagram shows the hierarchy of Sequences and Statements:

Find us at www.keysight.com Page 182

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

The following diagram shows the Sequencer methods and properties:

Find us at www.keysight.com Page 183

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

SyncSequence and Sequence objects

There are two types of HVI Sequence objects that enable HVI Sequence programming and usage:

l SyncSequence.

l Sequence.

HVI uses a sync_sequence object to manage all of the HVI Engine Sequences simultaneously. It exposes
the add statement methods such as add_sync_while(). All of the Statements added are collected in the
sync_sequence object.

Synchronization and timing information are added within each sync_sequence so that all Sequences
across the HVI are coordinated precisely. The SyncMultiSequenceBlockStatement exposes HVI Instructions
and Local Flow-Control Statements that are sent by the Sequence object. The other Sync Statements
are all synchronized across all the Sequences in the HVI.

An HVI Sequence contains the list of Local Statements to be executed by the HVI Engine.

The Sequence object exposes the add Statement methods such as add_while(). You add Local Flow-Con-
trol Statements such as If or While directly into the Sequence. All HVI Instructions are added using
add_instruction(). The list of available Statements for the add_instruction() Statement is shown in Local
Statements.

The Sequence object stores a collection of all the Statements added to it, along with the scope Vari-
ables and registers needed for this Sequence. These are sent to a SyncMultiSequenceBlockStatement. This
object exposes access and execution of Local Sequences.

Find us at www.keysight.com Page 184

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

The following diagram shows the SyncMultiSequenceBlockStatement and its relationship to sync_sequences

and sequences:

Find us at www.keysight.com Page 185

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Sequence Statements

Sequencing statements exposed in the TSE API are divided into two types:

Sync Statements

Sync Statements are the building blocks used to program Sync Sequences. The following types of
Sync Statement are available:

l Sync While.

l Sync Multi-Sequence Block.

l Sync Register-Sharing.

l Sync Data-Sharing.

l Sync For.

For a description of each Sync Statement with examples and a description of the Statement exe-
cution, see Sync Statements.

Local Statements

Local Statements are programmed on Engines in individual instruments. They are always pro-
grammed within a Sync MultiSequenceBlock Statement. Local Statements are in the form of Local-
Flow-control, and HVI-Native or Instrument-Specific instructions:

Local Flow-Control Statements

l Local If

l Local If with matched branches

l Local While

l Local Wait-for-Event

l Local Wait-for-time

l Local Delay

HVI-native Instructions

l Action Execute

l Register Increment

l Trigger Write

l Register Assign

l FPGA-Register Read

l FPGA-Register Write

l FPGA-Memory Map Read

Find us at www.keysight.com Page 186

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

l FPGA-Memory Map Write

l FPGA-Instruction Statement

Instrument-specific Instructions

l For Instrument-Specific HVI Instructions, see your instrument documentation.

For a description of each HVI-Native Instruction with examples and a description of the Statement
execution, see Local Statements.

Find us at www.keysight.com Page 187

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Sync Statements

This section describes the HVI Statements in the TSE API that you use to program HVI Sequences.
The functions of each Statement are explained in detail along with a corresponding HVI diagram.
Python code examples are provided showing how to program the Statements with the HVI Python
API.

Sync Statements are the building blocks used to program Sync Sequences. The following types of
Sync Statement are available:

l Sync While

l Sync For

l Sync Delay

l Sync Multi-Sequence Block

l Sync Data-Sharing

l Sync FPGA Data-Sharing - (deprecated)

l Sync Register-Sharing (deprecated with limited operation only supported on PXI platform)

l Obtaining Timing Information for Sync Sequences

Find us at www.keysight.com Page 188

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Sync While

A Sync While enables you to synchronously execute multiple Local Sequences while a condition you
specify is met. The Sync While condition is evaluated each time at the beginning of the Statement
execution. If the condition is true, an iteration of the Sync While Statement is executed. If the
condition is false, the HVI execution jumps to the Statement following the Sync While.

You can add other Sync Statements inside a Sync while. To define Local Sequences within the Sync
While, you must use a Sync Multi-Sequence Block.

You can set a duration for this Statement. For more information see Chapter 10: HVI Time
Management and Latency.

A Sync while that contains a pair of Sync Statements is shown in the following diagram:

If you are using a Sync while Statement across multiple Engines, during its execution, one of the
Engines is set to the role of Leader and the remaining Engines have the role of Follower:

Leader

The condition of the Sync While Statement is evaluated in this Engine and the result is
propagated to the other Engines through hardware resources, for example, PXI triggers in a
PXI platform.

Follower

A Follower Engine monitors the result of the condition and acts on it, following the Leader.

The condition expression assigned to the Sync While must use resources that belong to the same HVI
Engine. The Leader Engine of the Sync While is selected automatically by the HVI compiler from the
condition expression.

The following code example shows how to add a Sync While Statement and access the Sync
Sequence in the Sync while.

Find us at www.keysight.com Page 189

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Configure Sync While Condition
sync_while_condition = keysight_tse.Condition.register_comparison(reg, keysight_
tse.ComparisonOperator.GREATER_THAN, 10)
#
Add Sync While to a sync-Sequence
sync_while = my_sync_seq.add_sync_while("sync_while", 10, sync_while_condition)
#
Access the sync Sequence in the Sync-While and add Sync-Statements inside
sync_block = sync_while.sync_sequence.add_sync_multi_sequence_block("exec_block",10)

Sequence String Output

The following is an example of sequence string output, in this case the SyncWhile is used with a set of
instruments:

+90ns<2000ns> => "Sync MIMO Measurements": SyncWhile(reg"DioEngine0.Loops" < 5) {
+250ns<Min> => "Trigger Digital I/Os, AWGs and Digitizers": SyncMultiSequenceBlock {

Engine "DioEngine0" {
...

}
Engine "AwgEngine0" {

...
}
Engine "DigEngine0" {

...
} }

}

Find us at www.keysight.com Page 190

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Sync For

The Sync-For statement enables you to execute synchronized real-time looping, across multiple
instruments over a range of values you pre-define. The Sync-For runs with a Sync-Register that
enables significantly faster real-time looping than using Sync-While with Local HVI registers. By
using Sync Registers, the Sync-For avoids having to use triggered-synchronization points. This
results in a multi-instrument execution that is as fast a single engine Local-For. See HVI Registers
and Scopes for more information about Sync-Registers.

The Sync-For statement is created with a Sync-Iterator, the Sync-Iterator takes a Sync Register and
the range and step for the sweep:

Sync-Iterator
Parameter

Type data range

syncRegister SyncRegister NA

beginValue std::int64_t
signed range [-2bits-1, 2bits-1 - 1], where bits is the number of bits the
register can hold

endValue std::int64_t
signed range [-2bits-1, 2bits-1 - 1], where bits is the number of bits the
register can hold

stepValue std::int64_t
signed range [-2bits-1, 2bits-1 - 1], where bits is the number of bits the
register can hold

The following snippet demonstrates how to use the Sync-For statement:

Example API usage

Get the Sync registers collection
sync_register_collection = my_sequencer.sync_sequence.sync_scope.registers
Create Sync register
my_sync_register = sync_register_collection.add("my_sync_register", keysight_tse.RegisterSize.SHORT)

Find us at www.keysight.com Page 191

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Create Sync iterator with start value 1, end value 10, step 1.
sync_iterator = keysight_tse.sync_iterator(my_sync_register, 1, 10, 1)
Create Sync-For statement
sync_for_statement = sequencer.sync_sequence.add_sync_for("sync_for", 100, sync_iterator)
Program Sync Sequence inside Sync-For as any other Sync Sequence
sync_for_sequence = sync_for_statement.sync_sequence

The following output is an example of Sequence string output:

+100ns<Min> => "mySyncFor": SyncFor(syncReg:"my_sync_register", begin=1, end=10, step=1) {
+100ns<Min> => "sync_for_sequence": SyncSequence {

...
}

}

Find us at www.keysight.com Page 192

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Sync Delay

The Sync Delay Statement delays the execution of a Sync Sequence for a time specified in Common
Clock Cycles. The delay can be specified as a literal or as a value in a Sync Register, the delay is not
required to be known at the time of creating the HVI Sequence.

Sync Delay Statement enables you to place a delay anywhere without desynchronizing execution.
There are other methods that enable you to add delays, but the Start Delay parameter can only be
specified before the other Statements in a Sequence, and a Local delay must be a predefined time
and can lead to the different engines desynchronizing.

Sync Delay does not desynchronize the execution because all engines execute the same delay. This is
true even if the delay time is not known at compile time.

The statement is added with variations of add_sync_delay():

Delay specified in a literal:
add_sync_delay(name, delay)
#
Delay specified in a Sync Register:
add_sync_delay(name, SyncRegister)

The following code shows examples of Sync Delay Statements:

Define register
LEADER_REGISTER0_NAME = "register0"
#
Add register
sync_registers = sequencer.sync_sequence.sync_scope.registers
sync_register = sync_registers.add(LEADER_REGISTER0_NAME, keysight_tse.RegisterSize.SHORT)
#
Add Sync Delay with value from Sync Register, 100 is the start delay.
syncDelayStatement = sync_sequence.add_sync_delay('MySyncDelaySR', 100, sync_register)
#
Add Sync Delay with literal value
syncDelayStatement = sync_sequence.add_sync_delay('MySyncDelayLit', 200)

Sequence String Output

The following is an example of the Sequence string output of a Sync Data-Sharing Statement with a
Sync Register:

+100ns<?> => "MySyncDelaySR": SyncDelay(syncReg "register0")

The following is an example of the Sequence string output of a Sync Data-Sharing Statement with a
literal:

+0ns<200ns> => "MySyncDelayLit": SyncDelay()

Find us at www.keysight.com Page 193

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Sync Multi-Sequence Block

Sync Multi-Sequence Blocks are a type of Sync Statement that contains a set of local Sequences. It
serves as a container and boundary between sections, where each local Sequence executes on an
individual Engine within a specific instrument.

The Sync Multi-Sequence Block enables you to program each Engine to do specific operations and
run them on each Engine concurrently. The Sync Multi-Sequence Block synchronizes all the Engines
so that all of the contained Local Sequences start at exactly the same time. You can define which
Local Statements each Engine is going to execute, and the exact time each Local Statement starts to
execute compared to the previous one. The Sync Multi-Sequence Block ensures that all the Engines
complete their Sequences at the same time so the Sync Sequence remains synchronous afterwards.

You can set a duration for this Statement. For more information see Chapter 10: HVI Time
Management and Latency.

The following diagram shows a Sync Multi-Sequence Block that contains three Local Sequences:

The following code snippet shows a Sync Multi-Sequence Block being added with the call add_sync_
multi_sequence_block(), a Local Sequence is then obtained and an instruction added to it:

Add Sync Multi-Sequence Block
sync_block = keysight_tse.sync_sequence.add_sync_multi_sequence_block("TriggerAWGs")
#
Add instruction to a Local Sequence in the block
sequence = sync_block.sequences["Main Engine"]
inst = sequence.add_instruction("Add Instruction", 10, seq.instruction_set.add_instruction.id)

Find us at www.keysight.com Page 194

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Triggered-Sync Timing Measurement

When a Sync Multi-Sequence Block includes a local statement that at compile time has an unknown
execution time, a triggered-synchronization (triggered sync) is required at the end of the Sync Multi-
Sequence-Block statement, to re-synchronize all HVI engines and continue synchronized execution.
The triggered-sync process can take a Variable time depending on the execution timing, this is
described in detail in Sync Statement Timing .

The Sync Multi-Sequence Block Statement includes a property that enables the measurement in
real-time, of the actual triggered-sync delay. You can then query the value from software during HVI
Sequence execution.

NOTE Limitations and error conditions

l The triggered-sync delay measurement can only be enabled in one Sync Multi-
Sequence Block. If you enable it in more than one, TSE generates an error at
compilation time.

l If the property is enabled in a Sync Multi-Sequence Block that has an execution
time known at compilation time, TSE generates an error.

l If the triggered-sync delay is queried for a Sync-Multi-Sequence Block that did
not have the property enabled, TSE generates an error.

l Only one triggered-sync delay can be stored at a given time in hardware, so in
the case the Sync Multi-Sequence Block is in a synchronized loop, software must
ensure it reads the triggered-sync delay value before the same Sync Multi-
Sequence Block is executed again.

Enabling the measurement of the triggered-sync delay

The triggered-sync delay measurement is disabled by default, to enable it, you must set the enable_

triggered_sync_delay_measure property to true. A t runtime later, you can query in real-time from
software, the time that the triggered-sync delay incurred.

Enable to measure the triggered-sync timing for the sync-multisequence block
mySyncMultiSequenceBlock.enable_triggered_sync_delay_measure = true
#
store Sync Multi-Sequence Block full-name to query later at runtime the triggered-Sync delay from Hvi
instance
triggered_sync_block_full_name = mySyncMultiSequenceBlock.full_name

Reading the triggered-sync delay in real-time

The triggered-sync delay is queried while the HVI sequence is running using get_triggered_sync_delay

method in the Sync-Sequence SyncScope interface. The get_triggered_sync_delay takes as a parameter
the full-name of the Sync-Multi-Sequence Block and returns a time Duration.

myHVI.run()
...
syncDelay = myHVI.syncsequence.syncscope.get_triggered_sync_delay(triggered_sync_block_full_name)

Find us at www.keysight.com Page 195

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

#
time.Duration exposes a method to retrieve the time value as a double in nanoseconds
time_in_ns = syncDelay.time_in_nanoseconds

Sequence String Output

The following output is provided for Sequence string output:

+96ns<Min> => "MultiSyncExecution": SyncMultiSequenceBlock(triggeredSyncDelayMeasure = True) {
...
}

Sync Data-Sharing

The Sync Data-Sharing Statement enables you to send data across instruments using the Fast Data
Sharing (FDS) links in a synchronous operation that is executed in all HVI engines in the sequence. It
can be used to exchange data between HVI-Registers and FPGA-sandboxes of instruments to do
things such as establish fast real-time feedback and communication between receiver and source
instruments.

The start and the end of the Sync Data-Sharing are synchronized, and the statement blocks exe-
cution in all instruments until the last instrument has received the final bits of data. You can optionally
specify a fixed duration for this Statement. For more information see Chapter 10: HVI Time Man-
agement and Latency.

The Sync Data-Sharing can include one or more DataSharingTransaction, where each transaction
enables you to share data from a single source, either FDS port, HVI Register, or Sync-Register, to a
list of destinations that can include both FDS ports and HVI Registers, or a single Sync-Register. Sync
Data-Sharing uses FDS technology and System Synchronization Module capabilities to share the
data. In addition, for each Transaction you can specify the number of bits to transfer, and for the FDS
Ports, the specific address to read or write.

The following diagram shows the relationship between the different components:

Find us at www.keysight.com Page 196

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Find us at www.keysight.com Page 197

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Sync Data-Sharing Operation Constraints

The SyncDataSharingStatement uses FDS for transfers and has the following constraints:

1. Bits-to-share must be greater than 0 and a multiple of 4.

2. If you are using HVI registers, the number of bits-to-share must be equal to or less than the size of
the smallest register.

3. A transaction can include multiple destinations provided that:
a. For registers, each engine appears only once in the destination list for a given transaction.

b. For FDS ports, the same FDS port appears only once in the destination list for a given trans-
action.

c. When using a Sync-Register as destination, it must be the only register destination in the trans-
action.

4. A Sync-Register can be used as a source, in which case TSE optimizes the transaction leveraging
the fact that Sync-Registers information is available in multiple/all engines.

NOTE For PXIe instruments except System Synchronization Modules (SSMs), HVI
Registers or Sync-Registers are only supported as sources or destinations if the
instrument supports FDS through DSTARB and DSTARC. For more information, see
the instrument documentation.

Sync Data-Sharing Example

The following block diagram and code snippet shows an example of Sync Data-Sharing:

Get the FDS ports collections per engine in the Sequencer stage
engine0_fds_ports = sequencer.sync_sequence.engines["Engine0"].fpga_sandboxes["Sandbox0"].fds_ports
engine1_fds_ports = sequencer.sync_sequence.engines["Engine1"].fpga_sandboxes["Sandbox0"].fds_ports
engine2_fds_ports = sequencer.sync_sequence.engines["Engine2"].fpga_sandboxes["Sandbox0"].fds_ports
#
Add registers to be used in the FDS transactions below
sequencer.sync_sequence.scopes["Engine0"].registers.add('myRegister1', keysight_tse.RegisterSize.SHORT)
sequencer.sync_sequence.sync_scope.registers.add('myRegister2', keysight_tse.RegisterSize.SHORT)
#

Find us at www.keysight.com Page 198

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Create the Sync Data Sharing statement
sync_data_sharing_statement = sequencer.sync_sequence.add_sync_data_sharing("Share Pulse Counting A", 150)
#
Create the first Sharing Transaction: one source two destinations
source = keysight_hvi.FdsPortAddress(engine0_fds_ports["fdsTxOut1"], 12)
dests = [keysight_hvi.FdsPortAddress(engine1_fds_ports["fdsRxIn1"], 20), keysight_hvi.FdsPortAddress
(engine2_fds_ports["fdsRxIn1"], 32), sequencer.sync_sequence.scopes["Engine0"].registers['myRegister1']]
sync_data_sharing_statement.transactions.add(source, dests, 32)
#
Create a second Sharing Transaction: one source one destination
source = keysight_hvi.FdsPortAddress(engine1_fds_ports["fdsTxOut1"], 0)
sync_data_sharing_statement.transactions.add(source, sequencer.sync_sequence.sync_scope.registers
['myRegister2'], 16)

Sequence String Output

The following is an example of the Sequence string output of a Sync Data-Sharing Statement:

+150ns<Min> => "Share Pulse Counting A": SyncDataSharing {
(fpgaFds"Engine0.fdsTxOut1", address=12)[31:0] => [(fpgaFds"Engine1.fdsRxIn1", address=20),

(fpgaFds"Engine2.fdsRxIn1", address=32),reg"Engine0.myRegister1"]
(fpgaFds"Engine1.fdsTxOut1", address=0)[15:0] => [syncReg"myRegister2"]

}

Sync FPGA Data-Sharing - (deprecated)

NOTE Support for SyncFpgaDataSharingStatement has been DEPRECATED. For new application
it is recommended to use the SyncDataSharingStatement that offers the same
functionalities and more.

Sync Register-Sharing (deprecated with limited operation only supported on PXI platform)

NOTE The SyncRegisterSharingStatement relies only on PXI triggers to share a small number of
bits across instruments limited by the number of available PXI triggers. Support for
this method has been DEPRECATED and for new application it is recommended to
use the SyncDataSharingStatement together with a System Sync Module.

The SyncRegisterSharingStatement enables you to share data from a source register to a destination
register in any Engine in your HVI. Specifically, you share the contents of N adjacent bits from a source
register to a destination register. You can optionally specify a duration for the statement. For more
information see Chapter 10: HVI Time Management and Latency.

In the following code example, Sync Register-Sharing is used to share the content of the digitizer
register feedback and write into the AWG register wfm_id :

Find us at www.keysight.com Page 199

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Digitizer registers
feedback = keysight_tse.sync_sequence.scopes["Dig Engine"].registers.add("Feedback Reg", keysight_
tse.RegisterSize.SHORT)
feedback.initial_value = 0
#
AWG registers
wfm_id = keysight_tse.sync_sequence.scopes["AWG Engine"].registers.add("Wfm ID", keysight_
tse.RegisterSize.SHORT)
wfm_id.initial_value = 0
#
Add Sync Register Sharing
bits_to_share = 3
sync_while_2.sync_sequence.add_sync_register_sharing("Share feedback->wfm_id", 10, steps, wfm_id, bits_to_
share)

Sequence String Output

The following output is provided for Sequence string output:

The following example shows a Sync register-sharing command that copies the contents of the Steps

 register in the Digitizer Engine to the Wavefrom ID register in the AWG Engine:

+190ns<Min> => "Share steps->wfm_id": SyncRegisterSharing {
reg"Digitizer Engine.Steps"[1:0] => [reg"AWG Engine.Waveform ID"]

}

Find us at www.keysight.com Page 200

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Obtaining Timing Information for Sync Sequences

You can get sync period timing information from a Sync Sequence with the SyncSequence method sync_

timing:

time_period = sync_timing(timing_type)

The time period it provides depends on the timing_type :

SYNC_STATEMENT_PERIOD

This is the period of a Sync Statement measured from the HVI Common clock.

TRIGGERED_SYNC_PERIOD

This is the period of a triggered sync measured from the SYNC signal.

For a description of the different clocks and signals, see Synchronization Clocks, Signals, and Modes.

This method returns the time period requested as a Duration.

The following code example shows how to use the sync_timing method:

Get sync statement period
sync_sequence_time = self.sequencer.sync_sequence.sync_timing(keysight_tse.SyncTimingType.SYNC_STATEMENT_
PERIOD)
#
Get triggered_sync period
sync_sequence_triggered_sync_time = self.sequencer.sync_sequence.sync_timing(keysight_
tse.SyncTimingType.TRIGGERED_SYNC_PERIOD)

Find us at www.keysight.com Page 201

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Local Statements

This section describes the Local Statements available in the TSE API, that you use to program HVI
Sequences. It contains the following sections:

l Programming Local Sequences

l HVI Instructions

l Instrument-Specific HVI Instructions

l HVI Instructions (native)

Action Execute

Register Increment

Trigger Write

Register Assign

FPGA-Register Read

FPGA-Register Write

FPGA-Memory Map Read

FPGA-Memory Map Write

FPGA-Instruction

l Local Flow-Control Statements

Local If Statement

o Local If with matched branches

Local While

Local Wait-For-Event

Local Wait-For-Time

Local Delay

The functions of each Statement are explained in detail together with Python code examples showing
how to program the Statements with the HVI Python API.

Find us at www.keysight.com Page 202

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Programming Local Sequences

You program Local Sequences within a Sync Multi-Sequence Block or a Local Flow-
Control Statement (Local While or Local If). The following code shows an example of a Local
Sequence programmed within a Sync Multi-Sequence Block.

Add Statements to each Local Sequence within the Sync Multi-Sequence Block
HVI Local Sequence collection is automatically created form the
user-defined HVI Engine Collection
Each HVI Local Sequence can be retrieved using the name of the corresponding HVI Engine
sequence = sync_block.sequences[engine_name]
#
Add FP Trigger ON to all instruments
instr_trigger_write = sequence.instruction_set.trigger_write
instr_trigger_ON = sequence.add_instruction("FP Trigger ON", 10, instr_trigger_write.id)
instr_trigger_ON.set_parameter(instr_trigger_write.trigger, fp_trigger)
instr_trigger_ON.set_parameter(instr_trigger_write.sync_mode.id, instr_trigger_write.sync_mode.immediate)
instr_trigger_ON.set_parameter(instr_trigger_write.value.id, instr_trigger_write.value.on)

Find us at www.keysight.com Page 203

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

HVI Instructions

HVI Instructions are operations that can be executed by the instrument hardware within an HVI
Sequence. There are two types of HVI instructions:

l Instrument-Specific HVI Instructions.

l HVI Native instructions.

Instrument-Specific HVI Instructions

Instrument-Specific HVI Instructions are specific to individual instruments. They are defined by the
instrument add-on API and exposed in each instrument driver as instrument specific HVI definitions.
Instrument-Specific HVI Instructions can change instrument settings such as amplitude, frequency,
or trigger an instrument function such as output a waveform or trigger a data acquisition. For
example, the M3xxxA documentation describes all the Instrument-Specific HVI instructions available
for each of the M3xxxA PXI instruments.

The following code is an example of using the awgQueueWaveform custom instruction that is part of the
HVI instruction set of the Keysight M320xA AWG instrument. This example shows how to add an
Instrument-Specific HVI Instruction to a Local Sequence using the add_instruction() API method and
also how to set the instruction parameters using the set_parameter() method:

Retrieve engine sequence:
seq = sync_block.sequences["engine_0"]
#
Add and program AWG Queue Waveform instruction:
instr_queue_wfm = instrument.hvi.instruction_set.queue_waveform
instruction0 = seq.add_instruction("awgQueueWaveform", 10, .id)
#
Set instruction parameters:
instruction0.set_parameter(instr_queue_wfm.waveform_number.id, seq.registers[waveformNumberRegisterName])
instruction0.set_parameter(instr_queue_wfm.channel.id, nAWG)
instruction0.set_parameter(instr_queue_wfm.trigger_mode.id, keysightSD1.SD_TriggerModes.SWHVITRIG)
instruction0.set_parameter(instr_queue_wfm.start_delay.id, startDelay)
instruction0.set_parameter(instr_queue_wfm.cycles.id, nCycles)
instruction0.set_parameter(instr_queue_wfm.prescaler.id, prescaler)

Find us at www.keysight.com Page 204

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

HVI Instructions (native)

HVI Instructions are HVI Native Instructions that are available on all Keysight instruments. They are
general purpose and instrument independent. They include HVI Instructions and Local Flow-
Control Statements. The HVI Native Instructions and parameters are defined in the interface
hvi.instruction_set.

The set of HVI Instructions include:

l Action Execute.

l Register Increment.

l Trigger Write.

l Register Assign.

l FPGA-Register Read.

l FPGA-Register Write.

l FPGA-Memory Map Read.

l FPGA-Memory Map Write.

l FPGA-Instruction.

Action Execute

To add Actions to an HVI Sequence, you must add them with the add() method of the ActionCollection

property of the HVI Engine.

Once the required Actions are added to the list of the HVI Engine Actions for the instruments, an
instruction to execute them can be added to the instrument's Sequence using the property action_

execute. One or multiple Actions can be executed at the same time within the same Action Execute
instruction.

The following code example shows an Action Execute instruction being used to initiate an AWG
Trigger:

Previously defined Actions to be executed within the experiment
awg_trigger_12 = [hvi.sync_sequence.engines["engine_name"].actions["previously_defined_action_1"], hvi.sync_
sequence.engines["engine_name"].actions["previously_defined_action_2"]]
#
AWG Trigger CH1, CH2 - Generates first pulse
sequence = sync_block_2.sequences["engine_name"]
inst_awg_trigger = sequence.add_instruction("AwgTrigger(CH1, CH2)", 10, sequence.instruction_set.action_
execute.id)
inst_awg_trigger.set_parameter(hvi.instruction_set.action_execute.action.id, awg_trigger_12)

Find us at www.keysight.com Page 205

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Register Increment

You can implement a register increment within a Sequence with the property add. The same
instruction can be used to add registers and constant values (operands) and put the result in another
register (result). To increment the register, it must have been added previously to the scope of the
corresponding HVI Engine.

The following code shows an example of a register increment:

Previously defined
counter = sync_sequence.scopes["AWG Engine"].registers.add("Counter Reg", keysight_tse.RegisterSize.SHORT)
#
Increment counter register
instruction = awg_sequence.add_instruction("Increment counter", 10, awg_sequence.instruction_set.add.id)
instruction.set_parameter(awg_sequence.instruction_set.add.destination.id, counter)
instruction.set_parameter(awg_sequence.instruction_set.add.left_operand.id, counter)
instruction.set_parameter(awg_sequence.instruction_set.add.right_operand.id, 1)

Trigger Write

The following code example shows a Trigger write instruction used to implement a front panel trigger
ON/OFF instruction. The instruction is added to the Sequence with the method add_instruction().
Instruction parameters are set using the API method set_parameter(). All HVI Native Instructions and
parameters are defined in the hvi.instruction_set interface.

Add FP Trigger ON to all instruments
sequence = sync_block.sequences[engine_name]
instr_trigger_write = sequence.instruction_set.trigger_write
instr_trigger_ON = sequence.add_instruction("FP Trigger ON", 10, instr_trigger_write.id)
instr_trigger_ON.set_parameter(instr_trigger_write.trigger, fp_trigger)
instr_trigger_ON.set_parameter(instr_trigger_write.sync_mode.id, instr_trigger_write.sync_mode.immediate)
instr_trigger_ON.set_parameter(instr_trigger_write.value.id, instr_trigger_write.value.on)

Register Assign

A register assign Statement can be used to initialize a register to an initial value using the instruction_

set property assign. The same instruction can be used to assign a register value (source) to another
register (destination). Each register can also be initialized outside an HVI Sequence, before its
execution, by using the property register.initial_value .

The following code shows an example of Register Assign:

Previously defined registers
wfm_id = hvi.sync_sequence.scopes["AWG Engine"].registers.add("Wfm ID", keysight_tse.RegisterSize.SHORT)
#
Initialize Waveform ID
seq = sync_block_1.sequences["AWG Engine"]
instruction = seq.add_instruction("Initialize Wfm ID", 10, seq.instruction_set.assign.id)
instruction.set_parameter(seq.instruction_set.assign.destination.id, wfm_id)
instruction.set_parameter(seq.instruction_set.assign.source.id, 0)

Find us at www.keysight.com Page 206

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

FPGA-Register Read

The instruction fpga_register_read is an HVI Native instruction that enables you read from an HVI
FPGA-Register. The value read from the HVI FPGA-Register is written to a destination HVI FPGA-
Register.

The following code example shows an FPGA-Register Read instruction:

Read FPGA Register into an HVI Register used in the HVI Sequence
sequence = sync_block_1.sequences["engine_name"]
hvi_register = hvi.sync_sequence.scopes["engine_name"].registers["my_register"]
fpga_register = hvi.sync_sequence.engines["engine_name"].fpga_sandboxes["sandbox_name"].hvi_registers
["sandbox_register"]
readFpgaReg0 = sequence.add_instruction("Read FPGA Register_Bank_TseAction4Cnt", 10, sequence.instruction_
set.fpga_register_read.id)
readFpgaReg0.set_parameter(sequence.instruction_set.fpga_register_read.destination.id, hvi_register)
readFpgaReg0.set_parameter(sequence.instruction_set.fpga_register_read.fpga_register.id, fpga_register)

FPGA-Register Write

The instruction fpga_register_write is an HVI Native instruction that enables you to write an HVI FPGA-
Register placed in an FPGA-Sandbox. The value to be written to the HVI FPGA-Register is taken from
an HVI FPGA-Register or from a literal.

The following code example shows an FPGA-Register Write instruction:

Write FPGA Register from an an HVI Register used in the HVI Sequence
hvi_register = hvi.sync_sequence.scopes["engine_name"].registers["my_register"]
fpga_register = hvi.sync_sequence.engines["engine_name"].fpga_sandboxes["sandbox_name"].hvi_registers
["sandbox_register"]
seq = sync_block_1.sequences["engine_name"]
writeFpgaReg0 = seq.add_instruction("Write FPGA Register_Bank_TsePxiTrigOut", 50, hvi.instruction_set.fpga_
register_write.id)
writeFpgaReg0.set_parameter(seq.instruction_set.fpga_register_write.fpga_register.id, fpga_register)
writeFpgaReg0.set_parameter(seq.instruction_set.fpga_register_write.value.id, hvi_register)

Find us at www.keysight.com Page 207

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

FPGA-Memory Map Read

The instruction fpga_array_read is an HVI Native Instruction that enables you to read from an HVI
FPGA-Memory Map. The value read from the HVI FPGA-Memory Map is written to a destination HVI
register.

The following code example shows an FPGA-Memory Map read instruction:

Register and Memory map
register = sync_sequence.scopes["engine_name"].registers["my_register"]
hvi_memory_map = sync_sequence.engines["engine_name"].fpga_sandboxes["sandbox_name"].hvi_memory_maps
["memory_map_name"]
Read Memory Map
seq = sync_block_1.sequences["engine_name"]
readMemoryMap = sync_block_1.sequences["engine_name"].add_instruction("Read FPGA-Memory Map", 20,
hvi.instruction_set.fpga_array_read.id)
readMemoryMap.set_parameter(seq.instruction_set.fpga_array_read.fpga_memory_map.id, hvi_memory_map)
readMemoryMap.set_parameter(seq.instruction_set.fpga_array_read.destination.id, register)
readMemoryMap.set_parameter(seq.instruction_set.fpga_array_read.fpga_memory_map_offset.id, 0)

FPGA-Memory Map Write

The instruction fpga_array_write is an HVI Native Instruction that enables you to write to an HVI FPGA-
Memory Map that is located in an FPGA-Sandbox. The value to be written to the HVI FPGA-Memory
Map is taken from an HVI register or from a literal.

The following code example shows an FPGA-Memory Map write instruction:

Register and Memory map
register = sync_sequence.scopes["engine_name"].registers["my_register"]
hvi_memory_map = sync_sequence.engines["engine_name"].fpga_sandboxes["sandbox_name"].hvi_memory_maps
["memory_map_name"]
Write Memory Map
seq = sync_block_1.sequences["engine_name"]
writeMemoryMap = sync_block_1.sequences["engine_name"].add_instruction("Write FPGA-Memory Map", 10,
seq.instruction_set.fpga_array_write.id)
writeMemoryMap.set_parameter(seq.instruction_set.fpga_array_write.fpga_memory_map.id, hvi_memory_map)
writeMemoryMap.set_parameter(seq.instruction_set.fpga_array_write.value.id, register)
writeMemoryMap.set_parameter(seq.instruction_set.fpga_array_write.fpga_memory_map_offset.id, 0)

Find us at www.keysight.com Page 208

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

FPGA-Instruction

The FPGA-Instruction Statement enables you to issue commands to custom FPGA-Sandbox logic
from within HVI Sequences.

You can add the FPGA-Instruction Statement in an HVI Sequence. When the HVI Sequence is
running, the HVI Engine executes the FPGA-Instruction Statement and sends the command and data
parameters to a parser and your logic in the FPGA-Sandbox. Your logic reads the parameter data and
executes the command as indicated.

This instruction can only be used successfully on instruments that support it. For more information,
see your instrument documentation.

The FpgaInstruction Statement has the following parameters:

Parameter Description Size Notes

Port Number Selects the port in the FPGA-Sandbox -
Number of available ports defined
by the instrument

Command ID
An identifier for a command you have
implemented in custom logic

16 bits

Data A The data to send to the IP in the sandbox 40 bits

Supports registers

l If the source register is a short

(32 bits), the top 8 (most
significant) bits are set to 0.

l If the source register is a long

(48 bits), the top 8 (most
significant) bits are truncated.

Apply 1

A 1 bit field which determines if the
command is applied immediately or is set
up for later execution

1 bit

l 0 = Set up now, apply the
instruction later.

l 1 = Apply instruction
immediately (this is the default).

1 To apply the instruction after setup, you initiate it with the next instruction with Apply set to 1. You
can set a number of instructions each with Apply = 0, then the next instruction with Apply = 1 shall
trigger all of them.

The Apply=0 followed by an Apply=1 provides a set up now, and apply later option. This enables you
to set up the command and then delay the execution so it happens at a specifically timed interval.
This also enables you to set up a number of commands and then have them execute simultaneously.

Find us at www.keysight.com Page 209

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

The following code shows an example of an FPGA-Instruction:

Set up local Sequence
fpga_inst = local_sequence.instruction_set.fpga_instruction
instruction = local_sequence.add_instruction('fpgaInstruction', 10, fpga_inst.id)
#
port_number = 2
data_a = 1234
command_id = 5
apply = 1
#
instruction.set_parameter(fpga_inst.port_number.id, port_number)
instruction.set_parameter(fpga_inst.data_a.id, data_a)
instruction.set_parameter(fpga_inst.command_id.id, command_id)
instruction.set_parameter(fpga_inst.apply.id, apply)

Find us at www.keysight.com Page 210

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Local Flow-Control Statements

Local Flow-Control Statements are HVI Native Instructions that are available on all Keysight
instruments. Local Flow-Control Statements execute within Local Sequences. These include wait
Statements, loops such as Local While, and conditional execution like Local If. Local Flow-
Control Statements are depicted with a yellow box in the HVI diagrams in this User Manual.

Local Flow-Control Statements include:

Local If

Selects and executes a different possible Local Sequence according to the value of a
defined condition (if / elseif / else).

Local While

Executes the same Sequence in a loop while the condition is met.

Local Wait-For-Event

Causes the Sequence to stop and wait for a condition to evaluate true. Once the condition is
true, for example, when the selected Event occurs, the next instruction is executed. In future
releases, this will be extended to more complex conditions.

Local Wait-For-Time

Causes the Sequence to wait for a certain time specified in an HVI register. Once the time
has elapsed, the Sequence will continue.

Local Delay

Delays the Sequence for a time you specify. The delay is specified in nanoseconds.

All Local Flow-Control Statements except wait Statements, include one or more Local Sequences.
For instance, Local While Statements have a single Sequence and the Local If Statement can have
multiple Sequences. These Statements have the following common characteristics:

l Sequences in Local Flow-Control Statements can contain any Local Statement including Local
Flow-Control Statements.

l Only Local Statements can be added inside Local Sequences and consequently inside Local Flow-
Control Statements. You cannot add Sync Statements inside Local Flow-Control Statements.

Find us at www.keysight.com Page 211

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Local If Statement

The Local If Statement is a flow-control Statement that conditionally executes one of a set of different
possible Local Sequences (if/ elseif / else) depending on the value of predefined conditions.

The conditions are evaluated in the order they are inserted. The possible sequences are:

l At least one Sequence that is conditionally executed. This is the main If branch.

l Optional conditional Sequences where their conditions are evaluated in order. The first Sequence
with a true condition is executed if the conditions in previous branches evaluated false. These are
the Elseif branches.

l If more then one Elseif condition evaluates to true, only the first is executed.

l One optional Else Sequence, which is executed if all above previous conditions evaluate to false.
This is the Else branch.

The following diagram shows a Local If Flow-Control Statement:

The add_if() method of a Sequence enables you to add an If-Elseif-Else construct within the main HVI
Sequence of any HVI Engine. The Local If Statement contains one If branch, zero or more Elseif
branches and one Else branch. The instructions and Statements contained in each If or Else branch
are executed if the condition of each branch is met.

You can program the branch Sequences with the same methods and properties used to program the
main HVI Sequence, using the properties if_branch, else_branch and else_if_branches. You define the
condition of each branch with a ConditionalExpression object, The conditions are stored in registers.

You can set a duration for this Statement. For more information see Chapter 10: HVI Time
Management and Latency.

Find us at www.keysight.com Page 212

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

The following code is an example of a Local If Statement:

Configure IF condition
if_condition = keysight_tse.Condition.register_comparison(reg, keysight_tse.ComparisonOperator.SMALLER_THAN,
10);
#
Set flag that enables to match the execution time of all the IF branches
enable_matching_branches = True
if_statement = my_sync_multi_seq_block.add_if("MyIfBlock", 10, if_condition, enable_matching_branches)
#
Program IF branch
if_sequence = if_statement.if_branch.sequence
#
Add Statements in if-sequence
instruction = ifSequence.add_instruction("ExecuteAction0", 10, if_sequence.instruction_set.action_
execute.id)
instruction.set_parameter(...) ...
#
Program Else-If branches
Else-If Condition
else_if_condition_1 = keysight_tse.Condition.register_comparison(reg, keysight_
tse.ComparisonOperator.SMALLER_THAN, 15)
else_if_branch_1 = if_statement.else_if_branches.add(else_if_condition_1)
#
Program Else-If branch
else_if_sequence_1 = else_if_branch_1.sequence
#
Add Statements in Else-If-sequence
instruction = else_if_sequence_1.add_instruction("SetFrequency", 10, module.HVI.instruction_set.set_
frequency.id)
instruction.set_parameter(...) ...
#
Eventually add more Else-If-branches
else_if_condition_2 = ... else_if_branch_1 =
#
Else-branch
Program Else branch
else_sequence = else_branch.sequence
#
Add Statements in Else-Sequence
instruction = else_sequence.add_instruction(...) ...

Find us at www.keysight.com Page 213

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Local If with matched branches

Unlike other flow-control options, the Local If Statements can have different execution paths, each
with different times. The matched branches option enables you to control how the HVI deals with
them.

Enabling matched branches ensures the HVI synchronizes the times of the branches, so they are the
same. The shorter branches get an additional delay added when they are finished so that the
durations of all the branches are equal. If the matched branches option is not enabled, the branches
can end at different times, that is, they are de-synchronized.

The following code shows how to enable matched branches:

Set flag that enables to match the execution time of all the IF branches
#
enable_matching_branches = True
if_statement = my_sync_multi_seq_block.add_if("MyIfBlock", 10, if_condition, enable_matching_branches)

Find us at www.keysight.com Page 214

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Local While

The Local While Statement executes a same Sequence in a loop while a condition is met. The value
for the condition is stored in a register.

You can set a duration for this Statement. For more information see Chapter 10: HVI Time
Management and Latency.

The following diagram shows a Local While:

The following code is an example of a Local While Statement:

Configure while condition
while_condition = keysight_tse.Condition.register_comparison(reg, keysight_tse.ComparisonOperator.NOT_EQUAL,
1)
#
Add WHILE Sequence within the Sequence of "engine_0"
seq = sync_block.sequences["engine_0"]
while_loop = seq.add_while("While Loop", 10, while_condition)
#
Program local while Sequence
instruction = while_loop.sequence.add_instruction("Initialize Pulse Counter", 10, seq.instruction_
set.assign.id)
instruction.set_parameter(seq.instruction_set.add.destination.id, pulse_counter)
instruction.set_parameter(seq.instruction_set.add.source.id, 0)

Find us at www.keysight.com Page 215

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Local Wait-For-Event

The Local Wait-For-Event Statement causes the HVI Sequence to stop and wait for a condition to
evaluate true. Once the condition is true, for example the selected Event occurs, the next instruction
is executed.

The Local Wait Statement is implemented with the Sequence method add_wait(). This Sequence
blocking Statement sets an instrument to wait for a condition. The condition can be defined by a
Trigger, an Event, or a combination of them using logical operators. You can only use one Event in
the condition.

In the following example, the Local Wait is used to set a digitizer instrument to wait for an external
front panel trigger. The Local Wait Statement is set to wait for a Trigger falling edge using the .wait

mode keysight_tse.WaitMode.TRANSITION combined with a Trigger configuration as ACTIVE_LOW. The sync
mode keysight_tse.SyncMode.IMMEDIATE sets the wait Event to let the execution continue immediately,
that is, as soon as the trigger Event is received:

Trigger resource to be used as a wait condition
fp_trigger_id = module_list[0].hvi.triggers.front_panel_1
fp_trigger = sync_sequence.engines[digitizer_engine_name].triggers.add(fp_trigger_id, "FP Trigger")
#
Trigger configuration
NOTE: Trigger to be used as WaitEvent conditions must be configured
as keysight_tse.Direction.INPUT
fp_trigger.configuration.direction = keysight_tse.Direction.INPUT
fp_trigger.configuration.drive_mode = keysight_tse.DriveMode.PUSH_PULL
fp_trigger.configuration.polarity = keysight_tse.TriggerPolarity.ACTIVE_LOW
fp_trigger.configuration.hw_routing_delay = 0
fp_trigger.configuration.trigger_mode = keysight_tse.TriggerMode.LEVEL
#
Define the condition for the Local Wait Statement
wait_condition = keysight_tse.Condition.trigger(hvi.sync_sequence.engines[digitizer_engine_name].triggers
["FP Trigger"])
#
Add a Wait For Event
wait_event = sync_block_1.sequences[digitizer_engine_name].add_wait("Wait for FP Trigger", 100, wait_
condition)
wait_event.set_mode(keysight_tse.WaitMode.TRANSITION, keysight_tse.SyncMode.IMMEDIATE)

For information about timing implications for wait for Event Statements, Synchronization Points and
Sync Sequence Start in Chapter 10: HVI Time Management and Latency.

Find us at www.keysight.com Page 216

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Local Wait-For-Time

The Local Wait-For-Time Statement causes the Sequence to wait for a certain time specified in an
HVI register. Once the time is elapsed, the Sequence continues.

The following code is an example of a Local Wait-For-Time Statement:

Wait Time makes the HVI Sequence wait for an amount of time specified by
a register (register 'tau' in this example)
#
waitTau = sync_block.sequences["digitizer_engine"].add_wait_time("WaitTau", 10, tau)

Local Delay

The Local Delay Statement delays the execution of a Local Sequence for a time you specify. The
default unit is nanoseconds but the delay is specified in any unit of seconds. The delay is fixed and
cannot be changed during HVI execution, so the delay value must be known at the time of creating
the HVI Sequence.

The Local Delay Statement works in a similar way as the Start Delay Statement parameter. The
difference is that the Start Delay can only be specified before the other Statements in a Sequence.
The Local Delay Statement enables you to place a fixed delay at the end of Sync Multi-Sequence
Block or a Flow-Control Statement.

If you require a Variable delay that can be changed during HVI execution, use the Local Wait-For-
Time Statement.

The following code shows an example of a Local Delay Statement:

Delay makes the HVI Sequence wait for an amount of time specified by a constant
#
wait = sync_block.sequences["digitizer_engine"].add_delay("Delay", 30)

Find us at www.keysight.com Page 217

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

EngineView Components

A number of runtime components are under the EngineView.

TriggerCollectionView

Collection of the TriggerViews managed by the Engine.

TriggerView

TriggerView provides an interface to view the hardware Trigger controlled by HVI.

Find us at www.keysight.com Page 218

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

ActionCollectionView

Collection of the Actions managed by the Engine.

ActionView

Represents an Action that can be passed to instructions that accept Actions as input parameters.

EventCollectionView

Collection of the Events managed by the Engine.

EventView

EventView represents a read-only configuration of an Event.

Find us at www.keysight.com Page 219

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

FPGA-Sandbox View

This section describes the FPGA-SandboxView properties and methods().

The following diagram shows the FPGASandboxCollectionView,its methods and properties:

Find us at www.keysight.com Page 220

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

FPGA-Sandboxes and FPGA-Memory Maps

FpgaSandboxView provides access to FPGA-Memory Maps by providing handles to FPGA-Registers and
FPGA-Memory Maps that are defined in the FPGA memory. You can use FpgaRegisterView and
FpgaMemoryMapView as parameters for HVI instructions for reading or writing FPGA memory. You must
load the PathWave FPGA project as part of the SystemDefinition and then you can use the
FpgaSandboxView in the Sequencer.

FpgaRegisterView

Once the sandbox project is loaded, you can access the contents of the FPGA-Sandbox and use them
as parameters for HVI instructions. The FPGA write operation can accept registers and literal values
as parameters. The following example shows writing FPGA-Registers:

Retrieve FPGA-Register object from FPGA-Registers collection
All sandbox object collections are populated when loading a bit file generated by PathWave FPGA
fpga_register_view = sequencer.sync_sequence.engines[0].fpga_sandboxes[SANDBOX_0_NAME].fpga_registers[FGPA_
REGISTER_NAME]
Write FPGA-Register
fpga_regw_instruction = sequence.instruction_set.fpga_register_write
fpga_register_write = sequence.add_instruction("my_fpga_register_write", 10, fpga_regw_instruction.id)
fpga_register_write.set_parameter(fpga_regw_instruction.fpga_register.id, fpga_register_view)
fpga_register_write.set_parameter(fpga_regw_instruction.value.id, value_register)

FpgaMemoryMapView

Like FPGA-Registers, the FpgaMemoryMapView can be used after the PathWaveFPGA project has
been loaded. The destination of FPGA read operation must be a register. The following example
shows how you use it to read from an FPGA-Memory Map:

Retrieve memory map object from memory maps collection
All sandbox object collections are populated when loading a bit file generated by PathWave FPGA
memory_map = sequencer.sync_sequence.engines[0].fpga_sandboxes[SANDBOX_0_NAME].fpga_memory_maps[FGPA_MEMORY_
MAP_NAME]
Read Memory Map
fpga_arrayr_instr = sequence.instruction_set.fpga_array_read
fpga_array_read = sequence.add_instruction("my_fpga_array_read", time_ns, fpga_arrayr_instr.id)
fpga_array_read.set_parameter(fpga_arrayr_instr.fpga_memory_map.id, memory_map)
fpga_array_read.set_parameter(fpga_arrayr_instr.fpga_memory_map_offset.id, 1)
fpga_array_read.set_parameter(fpga_arrayr_instr.value.id, value_register))

FdsPort

FdsPort enables you to access the FDS ports you defined in the SystemDefinition. FdsPort is a object
in an fds_ports collection which provides the name of a sandbox FDS port, it enables you to use an
FDS port instance that you placed in the sandbox of a loaded PathWave FPGA project.

As with the other FPGA software definitions, FdsPort can only be used after the PathWaveFPGA
project has been loaded.

Find us at www.keysight.com Page 221

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

InstructionSet Object

HVI instructions can be one of two types, HVI Native Instructions or Instrument-Specific HVI Instruc-
tions:

l HVI Native Instructions are part of the instruction_set property of a Sequence.

l Instrument-Specific HVI Instructions are documented in instrument user guides.

The InstructionSet contains the set of available HVI Native Instructions that can be executed within
an HVI Statement. These include instructions for:

l Register arithmetic.

l Reading and writing I/O Trigger ports.

l Executing Actions.

l Communicating with the instrument sandbox using an HVI Host Interface, previously called an HVI
Port.

HVI Native Instructions are executed within an instruction execute Statement, this is, the same way
the Instrument-Specific HVI Instructions are executed.

Find us at www.keysight.com Page 222

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

The following diagram shows the InstructionSet and its properties:

Find us at www.keysight.com Page 223

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Using the instruction set

You program HVI Instructions into Local Sequences with the add_instruction() method. You can set
HVI Instruction parameters with the set_parameter() method and set each parameter with its
parameter.id property. Some HVI Instruction parameters must be set to literal values or to an HVI
Register, for example, the source and destination parameters in the InstructionAssign from the native
InstructionSet.

You can set other HVI Instruction parameters such as the SyncModeand TriggerValue of the trigger_write

instruction to one value of a pre-defined set of possible values. In this case, the possible values
available are stored in properties contained within the parameter.

Pseudo-code explaining the HVI Instruction programming concept
hvi_instr = sequence.instruction_set.hvi_instruction_X
instr = sequence.add_instruction("My HVI Instruction", 10, hvi_instr.id)
instr.set_parameter(hvi_instr.parameter_A.id, hvi_instr.parameter_A.VALUE_1)
instr.set_parameter(hvi_instr.parameter_B.id, hvi_instr.parameter_B.VALUE_XY)

Find us at www.keysight.com Page 224

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Trigger write HVI Instruction example

The following example shows an example of the HVI Native Instruction trigger_write. For the meaning
of each parameter value, see the TSE API help that is installed with PathWave Test Sync Executive. It
is located at:

C:\Program Files\Keysight\PathWave Test Sync Executive 2023B\api\python\Help

C:\Program Files\Keysight\PathWave Test Sync Executive 2023B\api\dotNet\Help

The following table show the parameters for the HVI Native Instruction: trigger_write

Parameter ID Parameter Values

trigger.id Trigger object taken from the TriggerCollection object of the Engine in the Sequence.

sync_mode.id
sync_mode.immediate

sync_mode.sync

value.id
value.on

value.off

The following example code shows a trigger_write HVI Instruction.:

Write FP Trigger to ON value
fp_trigger = sequence.engine.triggers["FP Trigger"]
trigger_write_instr = sequence.instruction_set.trigger_write
instr_trigger_ON = sequence.add_instruction("FP Trigger ON", 10, trigger_write_instr.id)
instr_trigger_ON.set_parameter(trigger_write_instr.trigger.id, fp_trigger)
instr_trigger_ON.set_parameter(trigger_write_instr.sync_mode.id, trigger_write_instr.sync_mode.IMMEDIATE)
instr_trigger_ON.set_parameter(trigger_write_instr.value.id, trigger_write_instr.value.ON)

WARNING You must take the Trigger from the Engine inside the Sequence. Taking the Trigger
from the Engine via SystemDefinition raises an error when set_parameter(trigger_

write_instr.trigger.id, fp_trigger) is called.

This also applies to Actions.

Find us at www.keysight.com Page 225

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Instrument-Specific HVI Instructions

You program Instrument-Specific HVI Instructions into your HVI Sequences using the same methods
as HVI Native Instructions, that is, you add Instrument-Specific HVI Instructions to Local Sequences
with the add_instruction() API method. Parameters of Instrument-Specific HVI Instructions are also set
with the set_parameter() API method. For documentation on Instrument-Specific HVI Instructions and
their parameters, see your instrument documentation. For M3xxxA PXI instruments, the information is
located in the SD1 3.x Software for M320xA / M330xA Arbitrary Waveform Generators User's Guide
available at M3201A PXIe Arbitrary Waveform Generator.

Find us at www.keysight.com Page 226

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

http://www.keysight.com/find/m3201a

HVI Registers and Scopes

HVI Registers

HVI Registers are similar to Variables in a programming language. They hold values that can be mod-
ified at runtime and can be used as parameters for instructions and Statements. Physically, HVI
Registers are small hardware memories located in HVI Engines. The number of registers available
depends on the instrument, for more information see the HVI Engine setting HviRegCount.

Registers are specific to individual HVI Engines and cannot be accessed by other HVI Engines. To
transfer data between HVI registers in different instruments you must use register sharing
instructions.

You define HVI Registers by adding them to the HVI Register collection in the scope corresponding to
each specific HVI Engine.

HVI Sync Registers

While HVI Registers are HVI Engine specific, HVI Sync Registers are global registers present in all HVI
Engines in a sequence which hold the same value. HVI Sync Registers are internally implemented by
"local" HVI Registers, and HVI Statements and the HVI compiler are responsible for maintaining con-
sistency of the Sync Register value across instruments. To guarantee consistency, Sync Registers can
only be modified by Sync Statements, such as Sync-For. Sync Registers can be used in any statement
for reading purposes.

The use of Sync Registers in Sync Statements enables the HVI Compiler to optimize the compiled
code to avoid using triggered-resynchronizations, this results in significantly faster real-time exe-
cution. For instance, the Sync-For Statement using Sync-Registers can loop all instruments, fully syn-
chronized, with the same performance of a Local-For statement in a single instrument.

Sync Registers are defined and accessed through the Sync-Scope exposed in the Sync Sequence
instances.

Registers Scope

HVI Sync Sequences and HVI Local Sequences both include the concept of the scope of registers,
this is similar to the concept of the scope of Variables in programming languages. The scope defines
what registers or memory resources can be used within each HVI Sequence, and when they can be
used.

Each scope is associated with a specific Sequence and HVI Engine. Registers can only be defined
within the Global Sync Sequence scope, but they can be retrieved from any child Sequence scope
providing it is on the same HVI Engine. Registers are always defined with a clear connection to a spe-
cific Engine and their visibility only propagates to child Sequences that execute on the same Engine.
HVI Engines do not have visibility of, and cannot access registers that are in the scopes of other HVI
Engines.

Find us at www.keysight.com Page 227

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

NOTE Registers can only be added to the HVI top Sync Sequence scopes. This means that
you can only add global registers that are visible in all child Sequences.

NOTE Registers are created using the Sequencer, but to read/write Registers during HVI
execution, you must use the RegisterRunTime within the Hvi object. For more
information, see The Hvi Object.

Find us at www.keysight.com Page 228

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

The following diagram shows the scope concepts. The registers available are shown in the Sequences
and child Sequences.

In the Global Sync Sequence a scope is defined for each of Engine A and Engine B.

l Engine A scope contains Register A and Register B.

l Engine B scope contains Register X.

The Global Sync Sequence contains Sync Statements including a Sync while and a Sync Multi-
Sequence Block. These are expanded as HVI diagrams. The Sync Multi-Sequence Block contains
Sequences for both Engines. These are shown with the registers available in blue for Engine A, red for
Engine B.. The Sequence for Engine B contains a Local While. This is expanded below with the
available Register X shown in red.

The Sync while in the Global Sync Sequence is also shown, it contains another Sync Multi-Sequence
Block which is shown expanded.

Find us at www.keysight.com Page 229

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Scope, SyncScope and ScopeCollection

The register scopes of HVI Sequences are managed through the Scope and SyncScope classes.

Each Local Sequence instance is associated to a specific HVI Engine and has its own Scope object.
Sync Sequences are associated to multiple HVI Engines and consequently have an HVI Scope
collection that contains a Scope for each associated HVI Engine. Each HVI Scope can be accessed
from the Scope collection using the same name as the corresponding HVI Engine. HVI Scopes are
used to define the registers within a sequence.

Similarly, the scope of Sync Registers is managed through the SyncScope instance. Each SyncScope
instance is owned by the Sync Sequence, and can be accessed through the SyncScope property
available in the Sync Sequence and also in Local Sequences inside that specific Sync Sequence.

To use Registers or Sync Registers in HVI Sequences, you must add them to the Register collection
within the scope or SyncScope of the corresponding HVI Sequence or Sync Sequence.

Find us at www.keysight.com Page 230

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

The following diagram shows the Scopes and their relationship to the Sequencer and Sync Sequence:

Find us at www.keysight.com Page 231

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

HVI Compilation

Once you have programmed all of your HVI Sequences, the next step is to compile them. The com-
pilation process returns the Hvi object that is used to run the created Sequences on hardware.

Call the compile() method in the Sequencer object to perform the compilation operation. If successful,
this method returns an Hvi object, if the compilation fails, it throws an exception.

The compilation process translates the programmed Sequence into binary instructions to be loaded
into the hardware. During this process, the compiler applies the compilation rules, evaluates the spe-
cified constraints, and determines if the number of resources required (PXI Triggers, Actions, Events,
HVI Registers) is available in hardware and can be acquired. The compiler returns an error if any of
the HVI Statements was not programmed properly inside the HVI Sequence or if any of the HVI
resources are missing or not registered properly.

NOTE At this point you can no longer modify Sequences, Actions, Events or Triggers.

Information returned

The value returned from the compilation procedure is an Hvi object. This object can be used to:

l Load and execute the binary instructions by each Engine.

l Retrieve the CompileStatus object.

Errors returned

If the compilation fails, the object keysight_tse.CompilationFailed is thrown. This contains
a CompileStatus object.

In the following Python snippet, the CompileStatus object is retrieved from the exception object thrown:

try:
hvi = sequencer.compile()
print('Compilation completed successfully!')

except kthvi.CompilationFailed as err:
print('Compilation failed!')
compile_status = err.compile_status
print(compile_status.to_string()) # This line will print all the errors and warnings collected during

compilation raise err

Find us at www.keysight.com Page 232

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Compile status

The CompileStatus object contains the following information:

l The elapsed time of the compilation process.

l The warning and error messages generated by the compilation.

l Information about the PXI sync resources that must be reserved.

The following diagram shows CompileStatus and its properties:

Find us at www.keysight.com Page 233

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

System Initialization in the Sequencer Object

When a Sequencer object is created, a system initialization is implicitly executed, but only if it is
required. This system initialization is only intended to ensure that the hardware included in the Sys-
tem-Definition can work together and that the minimal information required to build real-time
sequences is available.

In the case that the infrastructure, in particular the System Sync Modules (SSMs), are not properly ini-
tialized and aligned, a full system initialization is triggered, equivalent to calling Sys-
temDefinition::initialize(AlignmentModes::Full). If all of the System Sync Modules are already aligned,
it checks if there are any instruments misaligned and force initializes them, skipping any others that
are already aligned.

NOTE The initialization process requires exclusive access to the hardware resources
involved, so it cannot be executed while another TSE instance is running and has
that hardware locked.

For a full explanation of initialization, see System Initialization.

Find us at www.keysight.com Page 234

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Sequence Representation

This section describes Sequence Representation, it contains the following sections:

l Using Sequence representation

l Format of the Sequence Representation Output

l Format Variations

l Sequence Representation Error Messages

PathWave Test Sync Executive enables you to troubleshoot your Sequences with Sequence
Representation.

The Sequence representation displays Statements, timing values, and Statement parameters. The
output is designed so you can read it and see what your Sequences are doing.

NOTE l Sequence representation is only available for Sync Sequences in this release.

l There is also an HVI Logger that provides more detailed information, this is
primarily designed for support. See HVI Logging and Troubleshooting.

Using Sequence representation

To activate the output, In Python use the Sequence method to_string():

output = sequencer.sync_sequence.to_string(kthvi.OutputFormat.DEBUG)
print(output)

If you are programming with C#, use the method ToString:

var output = GlobalSequence.ToString(OutputFormat.Debug);
System.Console.WriteLine(output);

Find us at www.keysight.com Page 235

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Format of the Sequence Representation Output

Sequence representation has a basic structure with variations for different types of Statements.

The representation out format has one Statement per line and uses curly braces to begin and end any
inner or Local Statements.

The basic format is:

Time-related information => "User-assigned Label" : Statement Name(Parameter List) {

Optional statements

}

For example:

+10ns => "FP Trigger ON": TriggerWrite(Trigger = [trigger"TriggerIO"], Mode = IMMEDIATE, Value = ON)

For Arithmetic-like and FPGA Statements the format is:

Time-related information => "User-assigned Name" : ASSIGNEE = EXPRESSION

where:

l ASSIGNEE is a named reference, such as event, trigger, action, reg, or fpgaReg followed by the label in
quotes.

l EXPRESSION is a mathematical expression with binary operators, such as addition, subtraction, and
assignment.

For example:

+10ns => "Increment counter register": reg"LeaderEngine.Loop Counter" = reg"LeaderEngine.Loop Counter" + 1

Time related information

The time information section of the representation output is in the following format:

+Start_delay <Duration> Absolute_time =>

NOTE There are a number of limitations in this release:

l Duration is shown as Min or ?.

l Absolute time is not shown in this release.

Find us at www.keysight.com Page 236

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Indicators

The representation output uses the following characters to indicate different pieces of information:

Category Indicators Description

Timing-
related
information

+ Appears at the start, the number with this indicates the Start delay.

<>
Encloses a Duration if it is set. If the Duration is not set, this defaults to min, which
is the minimum time possible.

Absolute time (not supported in this release).

Separator =>
Separator. The time information for the Statement is on the left of this
and information about the Statement is on the right.

Command
label and
name

" " Encloses labels

: Divides the label and the command description.

Blocks and
parameters

{ ...

}

Encloses blocks of Statements:

l Sync multi-Sequence block.

l Engine instructions.

l Sync Flow-Control.

l Local Flow-Control.

(...

)

Enclose parameters. These can be optional.

[...

]

Enclose lists. For example [element, ...], or for named element lists
[name"username", ...]

Register
indicators

reg Indicates a register.

fpgaReg Indicates an FPGA-Register

Find us at www.keysight.com Page 237

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Code blocks

Code blocks are indented and shown within curly braces. Code blocks include code in Sync multi-
Sequence blocks, Engines, and flow-control Statements.

The following example from Programming Example 1 shows a Sync multi-Sequence block TriggerAWGs

that contains a pair of Engines AwgEngine0 and AwgEngine1 .

+30ns<Min> => "TriggerAWGs": SyncMultiSequenceBlock {
Engine "AwgEngine0" {

+10ns => "FP Trigger ON": TriggerWrite(Trigger = [trigger"TriggerIO"],
Mode = IMMEDIATE, Value = ON)
+100ns => "FP Trigger OFF": TriggerWrite(Trigger = [trigger"TriggerIO"],
Mode = IMMEDIATE, Value = OFF)
+10ns => "AWG trigger": ActionExecute([action"GenMarker1", action"GenMarker2"])

}
Engine "AwgEngine1" {

+10ns => "FP Trigger ON": TriggerWrite(Trigger = [trigger"TriggerIO"],
Mode = IMMEDIATE, Value = ON)
+100ns => "FP Trigger OFF": TriggerWrite(Trigger = [trigger"TriggerIO"],
Mode = IMMEDIATE, Value = OFF)
+10ns => "AWG trigger": ActionExecute([action"GenMarker1", action"GenMarker2"])

}
}

If an Engine does not execute any Statements, the Engine is shown with empty braces. For example,
in the previous example, if the Engine AwgEngine1 didn't have any instructions, it would be shown as:

Engine "AwgEngine1" {}

Find us at www.keysight.com Page 238

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Format Variations

There are variations of the Sequence representation output format for different types of Statement.

Sync Statements

The following example shows a Sync register-sharing command that copies the contents of the
Steps register in the Digitizer Engine to the Wavefrom ID register in the AWG Engine:

+190ns<Min> => "Share steps->wfm_id": SyncRegisterSharing {
reg"Digitizer Engine.Steps"[1:0] => [reg"AWG Engine.Waveform ID"]

}

Sync multi-Sequence blocks

The output for a Sync multi-Sequence block indicates any Engines it contains. The Sequences and
the Statements they contain are shown within each Engine.

The following example shows the output for a Sync multi-Sequence block that contains 2 Engines.
The first Engine is labelled Digitizer Engine and contains a Sequence with a pair of Local
Statements. A second Engine labelled AWG Engine does not contain any Sequences. This is
indicated with empty braces.

Representation output for a Sync multi-Sequence block:

+260ns<Min> => "Loop Delay": SyncMultiSequenceBlock {
Engine "Digitizer Engine" {

+10ns => "loops++": reg"Digitizer Engine.Loops" = reg"Digitizer Engine.Loops" + 1
+30ns<?> => "WaitTime: loop_delay": WaitTime(reg"Digitizer Engine.Loop Delay")

}
Engine "AWG Engine" {}

}

Find us at www.keysight.com Page 239

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Sync flow-control and Local flow-control Statements

Flow control Statements show the flow-control condition and the Statements executed if the
condition is met.

The following example shows a Local If. The condition is indicated along with the matching branches
parameter and the Statement executed is also shown inside braces.

Representation output for a Local If Statement:

+70ns<?> => "Check wfm_id": If(condition = (reg"AWG Engine.Waveform ID" > = 1), MatchingBranches = TRUE) {
+30ns => "wfm_id = 0": reg"AWG Engine.Waveform ID" = 0

}

If a flow control instruction contains multiple branches, these are also listed.

The following example contains a Local If with a condition and an Else branch that is executed when
the If condition is not met.

+70ns<?> => "Queue Wfm AWG": If(condition = (reg"AWG Engine0.Queue Reg" == 0), MatchingBranches = TRUE) {
+100ns => "Queue Waveform A CH1": M30xxA.AwgQueue(Channel = 1, WaveformId
= reg"AWG Engine0.Wfm A", Cycles = 3, StartDelay = 0, Prescaler = 0, TriggerMode = AUTOTRIG)

}
Else {

+100ns => "Queue Waveform B CH1": M30xxA.AwgQueue(Channel = 1, WaveformId
= reg"AWG Engine0.Wfm B", Cycles = 2, StartDelay = 0, Prescaler = 0, TriggerMode = AUTOTRIG)

}

HVI instructions

HVI Instructions show the Start delay, the label, instruction and any parameters. For example:

+10ns => "Increment counter register": reg"LeaderEngine.Loop Counter"
= reg"LeaderEngine.Loop Counter" + 1

Custom instructions

Custom instructions indicate the product family before the instruction in the form:

ProductFamily.CustomInstructionName

In the following example, the product family KtM30xxA is indicated before the custom instruction
QueueWaveform:

+100ns => "QueueWaveform(CH1, wfm_id)": M30xxA.AwgQueue(Channel = 1, WaveformId
= reg"AWG Engine.Waveform ID", Cycles = 1, StartDelay = 0, Prescaler = 0, TriggerMode = AUTOTRIG)

Find us at www.keysight.com Page 240

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Examples

The following example is an excerpt from Programming Example 1. It shows the Python code for
setting up the TriggerWrite and ActionExecute instructions and the resulting Sequence
representation output that is generated.

Python Code:

Write FP Trigger ON to all instruments
fp_trigger = sequence.engine.triggers[config.fp_trigger_name]
trigger_write = sequence.instruction_set.trigger_write
instr_trigger_ON = sequence.add_instruction("FP Trigger ON", 10, trigger_write.id)
instr_trigger_ON.set_parameter(trigger_write.trigger.id, fp_trigger)
instr_trigger_ON.set_parameter(trigger_write.sync_mode.id, trigger_write.sync_mode.immediate)
instr_trigger_ON.set_parameter(trigger_write.value.id, trigger_write.value.on)
Write FP Trigger OFF to all instruments
instr_trigger_OFF = sequence.add_instruction("FP Trigger OFF", 100, trigger_write.id)
instr_trigger_OFF.set_parameter(trigger_write.trigger.id, fp_trigger)
instr_trigger_OFF.set_parameter(trigger_write.sync_mode.id, trigger_write.sync_mode.immediate)
instr_trigger_OFF.set_parameter(trigger_write.value.id, trigger_write.value.Off)
Execute AWG trigger from the HVI sequence of each module
"Action Execute" instruction executes the AWG trigger from HVI
action_list = sequence.engine.actions
instruction1 = sequence.add_instruction("AWG trigger", 10, sequence.instruction_set.action_execute.id)
instruction1.set_parameter(sequence.instruction_set.action_execute.action.id, action_list)

The Sequence representation output from the previous code:

+10ns => "FP Trigger ON": TriggerWrite(Trigger = [trigger"TriggerIO"],
Mode = IMMEDIATE, Value = ON)
+100ns => "FP Trigger OFF": TriggerWrite(Trigger = [trigger"TriggerIO"],
Mode = IMMEDIATE, Value = OFF)
+10ns => "AWG trigger": ActionExecute([action"GenMarker1", action"GenMarker2"])

Find us at www.keysight.com Page 241

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Sequence Representation Error Messages

The Sequence representation system can detect and report errors.

Errors can be part of an assignment expression, destination, or parameter value.

For example, if a parameter has not been set in an instruction. In the case of register parameters this
can result in values completely missing from the output or exceptions being thrown.

Error formats

Errors are indicated in the following formats:

Errors with a message

An error in indicated in the following manner, the messages provided do not contain @ symbols:

@ERROR: <message>@

Errors with no message

In some cases, an error is be indicated without a message:

@ERROR@

The following example output shows some example errors:

+90ns<Min> => "Sync MIMO Trigger": SyncWhile(reg"AwgEngine0.Loops" < 3) {
+250ns<Min> => "TriggerAWGs":SyncMultiSequenceBlock {

Engine "AwgEngine0" {
+10ns => "assign":@ERROR: register is not set@ = @ERROR@

+100ns => "QueueWaveform(CH1, wfm_id)": M30xxA.AwgQueue(Channel = @ERROR@,
WaveformId = @ERROR: invalid id@, Cycles = 1, StartDelay = 0, Prescaler = 0,
TriggerMode = AUTOTRIG)

}
}

}

Find us at www.keysight.com Page 242

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

The Hvi Object
This section describes the Hvi object, it contains the following sections:

l Engine Runtime Components

l Load to Hardware and Run

l System Initialization during Load To Hardware

l Real-time Hardware Execution Error Handling

l Fast Data Sharing (FDS) Execution Errors

The Hvi object is the actual HVI instance that is loaded to hardware and executed. It contains the
runtime versions of the objects you set up with the SystemDefinition and Sequencer instances. The
runtime objects are the instances of the objects that operate while the HVI is running. For most cases,
you cannot change the configuration of these objects at runtime, but you can access and use these
resources such as HVI registers or an FPGA-Memory Map.

NOTE The Hvi object is the runtime object. once you have compiled it, you can no longer
change resources or Sequences.

Find us at www.keysight.com Page 243

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

The following diagram shows the Hvi object:

Find us at www.keysight.com Page 244

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Engine Runtime Components

A number of runtime components are under the EngineRuntime.

The following diagram shows the EngineRuntime object and properties:

Find us at www.keysight.com Page 245

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

ActionRuntime

The ActionRuntime object is the runtime version of the Action you setup in the SystemDefinition. It is
used in an HVI at runtime, outside of a sequence, to manage and initiate an action.

The ActionRuntime provides an interface that enables you to:

l Apply a config to hardware.

l Read a config from hardware.

l Execute an Action.

l Stop an Action.

Configuring an ActionRuntime

You configure an ActionRuntime with the ActionConfig that you set up in the SystemDefinition. See
HVI Engines and their Resources.

You apply the ActionConfig to the hardware by calling apply_config(). This sets the Action's config
property and configures the hardware with the settings in the ActionConfig. You can change the
config by getting the ActionConfig object and modifying it. You then use apply_config() to write the
changes to hardware.

You can also read the config currently on the hardware with read_hw_config(), this returns an
ActionConfig.

Starting and stopping an Action

If the source of the Action is configured as software_hvi, you can also execute and stop the Action with
the following ActionRuntime methods:

l execute()

Executes the Action.

l stop()

Stops the Action.

Find us at www.keysight.com Page 246

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Other properties

The ActionRuntime also includes additional properties that are common across the Definition, View
and Runtime versions of the Action:

l hw_name

l id

l name

For definitions see the Python Help.

The following shows an example of getting and using an ActionRuntime object:

Get an ActionRuntime object
ACTION_RUNTIME_0_NAME = "Action0"
Action0 = hvi.sync_sequence.engines[0].actions[ACTION_RUNTIME_0_NAME]
#
Apply the ActionConfig
Action0.apply_config()
#
Executes the action in Hardware, It will only take effect when the source of action is configured as
source.software_hvi.
Action0.execute()
#
Stop Execution
Action0.stop()

Find us at www.keysight.com Page 247

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Event Runtime

The EventRuntime object is the runtime version of the Event you set up in the SystemDefinition. It is
used in an HVI at runtime, outside of a sequence, to control events and get their status.

Managing an EventRuntime

There are methods to manage the Event:

l wait()

This waits for the Event to occur. You can set a timeout parameter for this or use the constant
forever to wait indefinitely. The accuracy of the timeout depends on the system and is in the
order of milliseconds.

l clear()

This clears the notifications received so far.

EventRuntime Properties

The Event Runtime provides properties that enable you to set the source of the Event:

l software_hvi

l fpga_sandbox

The EventRuntime includes properties you can query with the status of the Event:

l occurred

This indicates if there has been a notification registered since the last time it was cleared.

l state

This indicates the current state of the Event.

Other properties

The EventRuntime also includes additional properties that are common across the Definition, View
and Runtime versions of the Event:

l hw_name

l id

l name

For definitions see the Python Help.

Find us at www.keysight.com Page 248

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

The following shows an example of getting and using an EventRuntime object:

Get an ActionRuntime object
EVENT_RUNTIME_0_NAME = "Event0"
Event0 = hvi.sync_sequence.engines[0].events[EVENT_RUNTIME_0_NAME]
#
Wait for event, indefinitely
Event0.wait(forever)
#
Has the event occurred?
MyEventOccurred = Event0.occurred
#
Read Event state
if MyEventOccurred = True

MyEventstate = Event0.state
#
Stop Execution
Event0.clear()

Pre-defined EventRuntimes

EventRuntime has additional pre-defined EventRuntimes that you typically use when calibrating
certain types of link or with User-Defined Trigger Routing. Typically they are configured in triggers as
sources. See the TriggerRuntime section.

l sync_pattern_10mhz

This selects a 10 MHz sync pattern.

l sync_pattern_100mhz

This selects a 100 MHz sync pattern.

l trigger_routing

This is the default, it enables you to use system_definition.triggering.routings.add().

Find us at www.keysight.com Page 249

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

TriggerRuntime

The TriggerRuntime object is the runtime version of the Trigger you set up in the SystemDefinition. It
is used in an HVI at runtime, outside of a sequence, to control and configure a hardware trigger.

Configuring an TriggerRuntime

You configure an TriggerRuntime with the TriggerConfig that you set up in the SystemDefinition. See
HVI Engines and their Resources.

The TriggerRuntime provides the method apply_config() that applies the TriggerConfig to the
hardware. This sets the Trigger's config property and configures the hardware with the settings in the
TriggerConfig. You can change the config by getting the TriggerConfig object and modifying it. You
then use apply_config() to write the changes to hardware.

Managing a TriggerRuntime

The TriggerRuntime provides the following methods to manage the Trigger:

l write(TriggerValue)

Writes a trigger value to the Hardware trigger corresponding to this software object.
TriggerValue is defined in the Python Help.

l off()

This disables the trigger. This is equivalent to write(TriggerValue::Off).

l on()

This enables the trigger. This is equivalent to write(TriggerValue::On).

l read()

Reads trigger value from the hardware trigger corresponding to this SW object.

Other properties

The TriggerRuntime provides a property to get the signal type of the triggering signal, the values are
defined in the Python Help:

l signal_type

The TriggerRuntime also includes additional properties that are common across the Definition, View
and Runtime versions of the Trigger:

l hw_name

l id

Find us at www.keysight.com Page 250

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

l name

For definitions see the Python Help.

The following shows an example of getting and using an TriggerRuntime object:

Get an ActionRuntime object
TRIGGER_RUNTIME_0_NAME = "Trigger0"
Trigger0 = hvi.sync_sequence.engines[0].triggers[TRIGGER_RUNTIME_0_NAME]
#
Enable the trigger in Hardware
Trigger0.on()
#
Disable the trigger in Hardware
Trigger0.off()
#
Read the Trigger Value
Trigger0.read()

Using a TriggerRuntime to calibrate a link to a non-HVI instrument

The TriggerRuntime includes the method calibrate_input_sampling() for calibrating a link to a non-HVI
instrument. You use this to initialize a link, after calling LoadToHw().

Technically, calibrate_input_sampling() performs non-FDS link alignment between an FDS endpoint (an
SSM) and a non-FDS endpoint (the non-HVI instrument). It returns the delay from the SSM input to
the HVI Engine input as a Time::Duration.

There are two variations of the method:

l calibrate_input_sampling(CalibrationPattern)

l calibrate_input_sampling(CalibrationPattern, CalibrationModes)

The calibration pattern can be one of:

l SyncPattern_100Mhz.

l SyncPattern_10Mhz.

The calibration modes are

l ReuseCalibration.

This reuses existing calibration data if it exists.

l ResetCalibration.

This resets the calibration data with the newly measured data.

Find us at www.keysight.com Page 251

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

FpgaSandboxRuntime

This section describes the FPGA-Sandbox runtime.

FPGASandboxRuntime contains all the FPGA-Registers and FPGA-Memory Maps available at runtime. The
following diagram shows the objects:

The FPGASandboxRuntime object can be obtained from the Hvi object:

SANDBOX_0_NAME = "sandbox0" sandbox = hvi.sync_sequence.engines[0].fpga_sandboxes[SANDBOX_0_NAME]

NOTE Hvi resources can only be read or written loaded, that is, between the load_to_hw
() and release_hw() calls. Any attempt to read or write resources without having the
instrument loaded to hardware results in an exception being thrown.

Find us at www.keysight.com Page 252

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

FPGA-Registers

Once the Sequencer has been compiled and the HVI has been loaded to hardware, the register can
be read and written. If the HVI is not loaded, an exception is thrown.

fpga_register = hvi.sync_sequence.engines[0].fpga_sandboxes[SANDBOX_0_NAME].fpga_registers[0]
hvi.load_to_hw()
fpga_register.write(1) # ok
hvi.release_hw()
fpga_register.write(1) # exception is thrown

FPGA-Memory Maps

As with registers, FPGA-Memory Maps can be used after HVI has been loaded to hardware. They can
only be accessed, read, or written while the HVI is loaded to hardware.

fpga_memory_map = hvi.sync_sequence.engines[0].fpga_sandboxes[SANDBOX_0_NAME].fpga_memory_maps[0]
hvi.load_to_hw()
fpga_memory_map.write(0x10, 0x1245) # ok
hvi.release_hw()
fpga_memory_map.write(0x10, 0x1245) # exception is thrown

FDS Ports

As with registers, FPGA-Memory Maps can only be accessed after HVI has been loaded to hardware.

Find us at www.keysight.com Page 253

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Load to Hardware and Run

A successfully compilation of the Sequencer instance returns the hvi instance. To execute it, you must
load it to hardware and run it.

These operations are performed using the following methods of the Hvi object.

To load the HVI to hardware call the method hvi.load_to_hw().

The hvi.load_to_hw() method deploys HVI to hardware and does all of the resource configuration
including:

l Synchronization resources.

l Trigger resources.

l Clocks.

The hvi.load_to_hw() method also loads the binaries containing information to execute the HVI
Sequences, to the relevant HVI Engines.

Once the HVI has been loaded to hardware, you can execute your Sequences by calling hvi.run(). The
HVI execution in Hardware finishes when the HVI Sequence reaches the end. The Stop()method can
be used to stop or cancel the HVI execution.

When the HVI has finished execution and it is not needed to run the HVI again, call the
method ReleaseHw() to release or free all resources used by the HVI.

Find us at www.keysight.com Page 254

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

System Initialization during Load To Hardware

During Load to Hardware, a system initialization is always performed. The initialization is equivalent
to the explicit call sys_def.initialize()executed without parameters. This only performs a minimal
update to the initialization and clock alignment.

For a full explanation of initialization and all the parameters, see System Initialization.

Find us at www.keysight.com Page 255

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Real-time Hardware Execution Error Handling

If a hardware error is detected while a Sequence is running, it is possible the execution results are
invalid or unreliable. HVI captures some critical hardware errors related to the real-time sequence
execution and reports them to you.

Execution Status and Error List

There are two properties to retrieve HVI execution status and errors. The one you use and when,
depends on the mode your HVI is running in:

l execution_status.

l execution_errors.

execution_status Property

The execution_status property returns the enum ExecutionStatus, where ExecutionStatus indicates one of
following:

Status Description

NOT_LOADED
Sequence has not been loaded to the
Hardware

NOT_STARTED Sequence is loaded but not started.

RUNNING Sequence is Running.

COMPLETED_SUCCESSFULLY Sequence completed successfully.

STOPPED_AFTER_TIMEOUT Sequence stopped due to timeout.

STOPPED_WITH_ERROR Sequence stopped due to error.

STOPPED_BY_USER Sequence stopped by user.

execution_errors Property

The execution_errors property returns a list of type [ExecutionError]. ExecutionError has the following prop-
erties:

Find us at www.keysight.com Page 256

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Property Description

engine_name The name of the HVI Engine that reported the error

message A complete string-based representation for easy printing.

product_code
Error code returned by the device, this is an integer defined by the instrument that identifies the
specific error.

product_
message This is a string provided by the instrument with any relevant details.

If you query execution_errors more than once, it returns the same list. Calling run() , loadToHw() or
ReleaseHw() clears the list.

Note that the errors returned by HVI can be generated by the instruments in which case HVI will indic-
ate the instrument and the instrument error message and code. For information on instrument spe-
cific errors see your instrument documentation.

Querying Execution Errors

Errors are queried or reported using a different mechanism that depends on if you are running your
HVI Sequence in blocking mode or non-blocking mode.

Retrieving Errors when HVI is Running in Blocking Mode

If an error occurs when the HVI is executed in blocking mode, the Sequence execution is halted, an
exception is thrown, and a list of the errors can be queried.

The error reporting Sequence goes in the following order:

1. Call loadtoHw()

2. Call run(). When an error Event occurs while the HVI is running in hardware:
a. The HVI Sequence is halted.

b. The error list is updated.

c. An exception is thrown.

3. Query the HVI property execution_errors.

The property execution_errors returns a list of type [ExecutionError].

The following code shows an example of getting errors from running an HVI sequence in blocking
mode:

try:
hvi.run(keysight_tse.Hvi.no_timeout)

except Exception as err:
print(err)

Find us at www.keysight.com Page 257

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

for execution_error in hvi.execution_errors:
print(execution_error.message)

Retrieving Errors when HVI is Running in Non-Blocking Mode

If an error occurs when the HVI is in non-blocking mode, Sequence execution is not halted auto-
matically and no exception is thrown, since in non-blocking mode, the run() method returns imme-
diately as soon as the Sequence execution starts. In order to query the status of the HVI execution
you must query the HVI property execution_status and depending on the status check the execution_

errors.

The following code shows an example of running an HVI sequence in non-blocking mode:

hvi.run(keysight_tse.Hvi.no_wait)
while hvi.execution_status == keysight_tse.ExecutionStatus.RUNNING:

Wait for some time
time.sleep(1)

Check for execution errors
if hvi.execution_status == keysight_tse.ExecutionStatus.STOPPED_ERROR:

for execution_error in hvi.execution_errors:
print(execution_error.message)

Find us at www.keysight.com Page 258

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Fast Data Sharing (FDS) Execution Errors

If an error is encountered during an FDS operation, TSE collects it from the relevant instrument and
reports it to the user.

There are 2 types of errors:

1. Initialization errors

2. HVI Sequence Execution Errors

FDS Initialization Errors

These errors occur when you initialize the system, which can be when calling Sys-
temDefinition::Initialize(...), during Sequence creation or at Hvi::load_to_hw().

Find us at www.keysight.com Page 259

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Error message Cause Solution

The SystemSyncUp_
x8 port is not hooked
up

SystemSync cable not connected
Check and connect cable

The
SystemSyncDown_x8
port(2) is not hooked
up

The
SystemSyncDown_x8
port(3) is not hooked
up

The
SystemSyncDown_x8
port(4) is not hooked
up

Failed to initialize
FDS bank[X]

There are two ways these could
occur:

1. Bad clock alignment of system
resulting in the instrument being in a
unknown state, so the FDS banks do
not get initialized correctly.

2. This might be a bad k7z sandbox load
that results in the FDS banks not
being initialized correctly.

Verify that the PathWave FPGA
Sandbox design is correctly
implemented and shows no errors,
and reinitialize the system.Failed to set

TriState=0 on FDS
bank[X]

HVI Sequence Runtime Errors

The following is an example of a typical error encountered during sequence runtime. The exact num-
ber and type of error depend on the instrument:

Error at run stage-> hvi.run(timeout)
keysight_tse.keysight_tse.Error: operation "HVI execution" failed: HVI stopped due to execution errors:
Engine: 'MyTestEngine' fds error code 123: 'The product message'. Verify the IP in the FPGA Sandbox
connected to FDS-Port(PxiBackplane#1:Port#123:Tx). Check for correct implementation, connections and
configurations, in particular the 'Read Latency'.

Find us at www.keysight.com Page 260

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

The following are specific FDS errors that can be returned when you are running the HVI sequence.
See the Real-time Hardware Execution Error Handling section for more details on how to handle HVI
sequence execution errors.

Message Description Cause Solution

FdsTxError: Tx Ready
asserted but Valid is not
asserted

Transmit error

To transmit data, the TX_
Ready and TX_Valid
signals must both be
high. If one or other of
these is low, a Transmit
error FdsTxError is
raised

This is usually because of a
mismatch between the read latency
of the Tx IP used to send data in the
FPGA Sandbox and the value
reported by the k7z to TSE. Verify
these two values match.

FdsTxError: Tx Valid
asserted but Ready is not
asserted

FdsRxError: Rx Ready
asserted but Valid is not
asserted

Receive error

To receive data, the RX_
Ready and RX_Valid
signals must both be
high. If one or other of
these is low, a Receive
error FdsRxError is
raised

Typically this means your IP is
not ready to receive data.

Verify the IP in the FPGA
Sandbox connected to the
FDS-Port. Check for correct
implementation, connections
and configurations.

FdsRxError: Rx Valid
asserted but Ready is not
asserted

operation "HVI
execution" failed: HVI
stopped due to
execution errors:
Engine: 'MyTestEngine'
fds error code 123:

Invalid latencies on
FdsPorts

Verify the IP in the FPGA Sandbox
connected to the FDS-Port. Check
for correct implementation,
connections and configurations, in
particular the Read Latency.

Find us at www.keysight.com Page 261

KS2201A - PathWave Test Sync Executive User Manual Chapter 7: The TSE API

Chapter 8: Building an Application with the TSE API
This chapter describes the steps you must follow to use the TSE API. If you do not follow these steps
your application shall not work correctly.

HVI uses program-within-a-program model. That is, the HVI enables you to define a program that
runs on the instrument's hardware while the software programs run in parallel and can interact with
the instruments. HVI is also responsible for all the setup, compilation, and hardware execution
management. When you run your application, it generates an HVI instance and the Sequences within
it are executed on the instruments.

This chapter contains the following sections:

l Planning an HVI with the HVI Use Model

l 1 Create the SystemDefinition

l 2. Program HVI Sequences

l 3. Compile Your Sequences

l 4. Load To Hardware

l 5. Modify Initial Register Values (Optional)

l 6. Execute Sequences

l 7. Release All Resources

l HVI Logging and Troubleshooting

NOTE The code examples provided in this chapter are in both Python and C#.

Find us at www.keysight.com Page 262

KS2201A - PathWave Test Sync Executive User Manual Chapter 8: Building an Application with the TSE API

Planning an HVI with the HVI Use Model
Programming and executing an HVI requires you to follow a precise use model. You must write your
code in the correct order and be aware of the requirements of each stage, or your application shall
not work correctly.

The HVI Use Model consists of 3 broad stages:

1. System Definition

You must define hardware resources before you can use them in HVI. The resources you can use
depends on your hardware set up, what instruments you have, what capabilities they have, and how
they are arranged. You set these up first and then you can use their functionalities in your HVI
Sequences. This operation is called System Definition and it can be done by using an instance of the
SystemDefinition.

The initialization of the system you have defined is also important to understand. By default, the
defined system is initialized at the code line that is creating the Sequencer object from the Sys-

temDefinition object. If you use the default initialization, this ensures that the complete system is cor-
rectly initialized.

There are some use cases when you might need to use the initialize() API method to perform a cus-
tom initialization, for example, a full realignment of the HVI Engine clocks. For more information, see
the description of AlignmentMode list in System Initialization and the Python API Help. In this case it
is important to make sure that the SystemDefinition object is not modified after calling the initialize
() API method.

NOTE Ensure you initialize your system after all the resources have been added and
defined. If you call the initialize() API method before the system is fully defined, the
system shall not be initialized properly. Consequences of an improper initialization
might be that some instruments included in the HVI might be out of sync or that
their HVI Sequence execution will misbehave by for example, missing a Trigger or
not playing a waveform.

For example, in the following code initialize() is called incorrectly before all the Engines are added to
the SystemDefinition.

call initialize()
#
sys_def.initialize()
#
Incorrect usage, Engines added after the initialize() call are not initialized.
sys_def.engines.add(...)

Find us at www.keysight.com Page 263

KS2201A - PathWave Test Sync Executive User Manual Chapter 8: Building an Application with the TSE API

NOTE PathWave Test Sync Executive 2023 release and above includes TSE Service. If your
system uses TSE Service the set-up of a system is different.

The setup of a system that uses TSE Service handles starting up chassis, SSMs, and
instruments. It also handles clocking and other infrastructure tasks.

A system definition or equivalent is still required, however this is done by a system
administrator.

This arrangement simplifies sequence programming for end users since they are not
required to write a full System Definition each time.

Users are still required to add instruments get their engines, and call initialize().
For more information, see Chapter 9: TSE Service and Multi-Host support.

2. Program HVI Sequences

As a next step, the SystemDefinition object is passed into the Sequencer object at the Sequencer creation.

Once the Sequencer object is created, the SystemDefinition instance is fixed. All resources added and
defined using the SystemDefinition object must be modified before this step. You cannot make
any changes to the SystemDefinition instance after this. Any changes made in the SystemDefinition after
this point are not passed into the Sequencer object and therefore are not included in the HVI.

Once the hardware is set up and resources assigned, you can write your Sequences and set
initialization values. You create Sync Sequences for globally synchronized operations, and you create
Local Sequences for operations in the HVI Engines in individual instruments.

3. Execute the HVI

When you have programmed your Sequences, you call the compile software method to create an
instance of the Hvi class from the Sequencer object instance containing the information about the
programmed Sequences.

After a successful Sequencer compilation, the Sequencer configuration is passed into the Hvi object
when it is created. Once the Hvi object is created, the Sequencer instance is fixed. You cannot make
any changes to the Sequencer or SystemDefinition instances after this point.

The compilation generates binary files that can be loaded to hardware and execute your HVI. Before
running the HVI, you can redefine the initial values of some of the resources that are included in the
HVI, such as HVI registers for different Engines.

Find us at www.keysight.com Page 264

KS2201A - PathWave Test Sync Executive User Manual Chapter 8: Building an Application with the TSE API

Object Instances in the HVI Use Model

The following diagram shows the stages and highlights how each of the stages in the HVI use model
creates and uses an object instance which is then passed to the next stage:

NOTE Once an instance of SystemDefinition, Sequencer, or Hvi classes is created and
configured, you cannot modify it in the next HVI step. If you attempt to modify one
of these instances at a later stage, the modifications will not apply to your HVI. That
is:

l You shall not modify the SystemDefinition object at the "Program HVI
Sequences" or "Execute HVI" stage.

l You also shall not modify the SystemDefinition or Sequencer instances at the
"Execute HVI" stage.

Correct Example

In the following example the value non_hvi_core_clocks in SystemDefintion is set.

This is set before the Sequencer is created so this is the correct place to do this.

Define SystemDefinition
my_system = kthvi.SystemDefinition("MySystem");
#
Set value of non_hvi_core_clocks (in Hz)
sys_def.non_hvi_core_clocks = [10e6]
#
Create the sequencer
sequencer = kthvi.Sequencer("MySequencer", my_system);
#
Get the Hvi
hvi = sequencer.compile().

Find us at www.keysight.com Page 265

KS2201A - PathWave Test Sync Executive User Manual Chapter 8: Building an Application with the TSE API

Incorrect Example

In the following example the value non_hvi_core_clocks in SystemDefintion is set. In this case the value is
set after the Sequencer is defined.

This example will not work because you cannot change a value in SystemDefintion after you have
created the Sequencer.

Define SystemDefinition
my_system = kthvi.SystemDefinition("MySystem");
#
Create the Sequencer
sequencer = kthvi.Sequencer("MySequencer", my_system);
#
Set value of non_hvi_core_clocks (in Hz)
sys_def.non_hvi_core_clocks =[10e6] # THIS FAILS
#
Get the Hvi
hvi = sequencer.compile().

NOTE If you need to make a change to SystemDefintion object after creating the
Sequencer, you must create a new Sequencer for the change to have an effect.

Find us at www.keysight.com Page 266

KS2201A - PathWave Test Sync Executive User Manual Chapter 8: Building an Application with the TSE API

1 Create the SystemDefinition
Setting up the HVI requires several steps:

l Include the HVI Library in your Application

l Define the Hardware in your HVI

Define the chassis

Define the chassis interconnects

Define the synchronization resources

Define the clocks

l Define and Configure HVI Resources

Define HVI Engines

Define HVI Actions

Define HVI Events

Define HVI Triggers

Define FPGA-Sandbox resources

Find us at www.keysight.com Page 267

KS2201A - PathWave Test Sync Executive User Manual Chapter 8: Building an Application with the TSE API

Include the HVI Library in your Application

Include the HVI library in your application:

Python code:

import keysight_tse as kthvi

C# code:

using Keysight.Tse;

You must first create an instance of a SystemDefinition object.

Python code:

Create SystemDefinition instance
my_system = keysight_tse.SystemDefinition("Multi-chassis Setup")

C# code:

// Create SystemDefinition instance
var sysDef = new SystemDefinition("My System");

When you have done this, specify the hardware and hardware resources that you require in your HVI:

l Define the hardware in your HVI.

l Define the HVI resources.

l Add the resources to the relevant collections.

l Initialize HVI hardware resources for the HVI.

Find us at www.keysight.com Page 268

KS2201A - PathWave Test Sync Executive User Manual Chapter 8: Building an Application with the TSE API

Define the Hardware in your HVI

Add the hardware resources in your system to the SystemDefinition object, including:

l Chassis.

l Chassis interconnections.

l PXI Trigger synchronization resources.

l Synchronization clocks.

Define the chassis

Python code:

Add chassis with number or options
my_system.chassis.add(chassis_number)
my_system.chassis.add(chassis_number, "DriverSetup=model=GenericPxieChassis")

C# code:

// Add chassis with number or options
sysDef.Chassis.Add(1);
sysDef.Chassis.Add(1, "Simulate=True,DriverSetup=model=GenericPxieChassis");

Find us at www.keysight.com Page 269

KS2201A - PathWave Test Sync Executive User Manual Chapter 8: Building an Application with the TSE API

Define the chassis interconnects

You must first define the SystemSync modules. The options specify a number of parameters about
each module:

Python code:

Define SystemSync Modules
ssm_m9032_resource_id_ssm_1 = 'PXI0::CHASSIS1::SLOT10::INSTR'
ssm_m9033_resource_id_ssm_2 = 'PXI0::CHASSIS2::SLOT10::INSTR'
ssm_m9032_options = "Simulate=true,DriverSetup=Model=M9032A, HviEngineIpVersion=1.1.0,
HviGatewareFeatureVersion=2,model=M9032"
ssm_m9033_options = "Simulate=true,DriverSetup=Model=M9033A, HviEngineIpVersion=1.1.0,
HviGatewareFeatureVersion=2,model=M9033"
system_sync_modules_descriptors = [SystemSyncModuleDescriptor('PXI0::CHASSIS1::SLOT10::INDEX0::INSTR', ssm_
options)]

C# code:

// Define SystemSync Modules
public static string Ssm9032Options { get; set; } = "Simulate=true,DriverSetup=Model=M9032A,
HviEngineIpVersion=1.1.0, HviGatewareFeatureVersion=2,model=M9032"
public static string Ssm9033Options { get; set; } = "Simulate=true,DriverSetup=Model=M9033A,
HviEngineIpVersion=1.1.0, HviGatewareFeatureVersion=2,model=M9033"
public List<SystemSyncModuleDescriptor> SystemSyncModulesDescriptors { get; set; } = new
List<SystemSyncModuleDescriptor>
{

new SystemSyncModuleDescriptor("PXI0::CHASSIS1::SLOT10::INDEX0::INSTR", Ssm9032Options),
new SystemSyncModuleDescriptor("PXI0::CHASSIS2::SLOT10::INDEX0::INSTR", Ssm9033Options),

};

You must add the modules to the interconnects collection within the SystemDefinition:

Python code:

Add SystemSync Modules to chassis
ssm_m9032 = my_system.interconnects.add_sync_module(ssm_m9032_resource_id, ssm_m9032_options)
ssm_m9033 = my_system.interconnects.add_sync_module(ssm_m9033_resource_id, ssm_m9033_options)

C# code:

// Add SystemSync Modules to chassis
ssmList.Add(interconnects.AddSyncModule(descriptor.ResourceId, descriptor.Options));

Find us at www.keysight.com Page 270

KS2201A - PathWave Test Sync Executive User Manual Chapter 8: Building an Application with the TSE API

Once done, get the interface objects for each of the SSM connectors:

NOTE The items in the collection systemsync_downstream are indexed from 0.

Python code:

Get the 8x SystemSync downstream connector on first SSM
ssm_m9032_down = ssm_m9032.connectivity.systemsync_downstream[0]

Get the 8x SystemSync upstream connector on second SSM
ssm_m9033_up = ssm_m9033.connectivity.systemsync_upstream[0]

C# code:

// Get the 8x SystemSync downstream connector on first SSM
ssm1Down = ssm1.Connectivity.SystemsyncDownstream[0]

// Get the 8x SystemSync upstream connector on second SSM
ssm2Up = ssm2.Connectivity.SystemsyncUpstream[0]

Set the connection between the connectors. This tells the HVI that these connections are connected
together.

Python code:

Set the connection
ssm_m9032_down.set_connection(ssm_m9033_up)

C# code:

// Set the connection.
ssm1.Connectivity.SystemSyncDownstream[0].SetConnection(ssm2.Connectivity.SystemSyncUpstream[0]);

Find us at www.keysight.com Page 271

KS2201A - PathWave Test Sync Executive User Manual Chapter 8: Building an Application with the TSE API

Define the synchronization resources

Python code:

Define sync resources
my_system.sync_resources = [keysight_tse.TriggerResourceId.PXI_TRIGGER0,

keysight_tse.TriggerResourceId.PXI_TRIGGER1,
keysight_tse.TriggerResourceId.PXI_TRIGGER2]

C# code:

// Define sync resources
TriggerResourceId[] resources = {

TriggerResourceId.PxiTrigger0,
TriggerResourceId.PxiTrigger1,
TriggerResourceId.PxiTrigger2};

Define the clocks

In simple setups this is only required when dealing with instruments that do not support HVI
technology, or Devices Under Test that have specific clocking requirements.

For more complex setups see the System Setup Guide.

Python code:

clocks configuration
my_system.non_hvi_core_clocks = [100MHz]
my_system.non_hvi_system_clocks = [500MHz]

C# code:

// clocks configuration
sysDef.NonHviCoreClocks = {100};
sysDef.NonHviCoreClocks = {500};

Find us at www.keysight.com Page 272

KS2201A - PathWave Test Sync Executive User Manual Chapter 8: Building an Application with the TSE API

Define and Configure HVI Resources

Triggers, Actions, and Events are all HVI resources that can be used by the HVI Engine and the HVI
Sequence to interact with the outside world, that is, with other instruments, the instrument sandbox,
or any other external entities.

You must first define the Engines, then add the resources you are going to use to the relevant
collections in the Engines you want to use them with. You must do this for the following types of
resources:

l HVI Engines.

l Actions.

l Events.

l Triggers.

l FPGA-Sandbox resources.

Find us at www.keysight.com Page 273

KS2201A - PathWave Test Sync Executive User Manual Chapter 8: Building an Application with the TSE API

Define HVI Engines

First, you must add the Engines you want to use to an Engine collection. The method add_engine
() returns an Engine.

Python code:

Add Engines
engine0 = my_system.engines.add(module.hvi.engines.main_engine, "Receiver")
engine1 = my_system.engines.add(module.hvi.engines.main_engine, "Transmitter")

C# code:

// Add Engines
sysDef.Engines.Add(module.Hvi.Engines.MainEngine, "Receiver");
sysDef.Engines.Add(module.Hvi.Engines.MainEngine, "Transmitter");

The procedure for adding the other HVI resources follows the same pattern. As a first step, the
resource must be added to the corresponding collection using the method add() within the
properties TriggerCollection , ActionColletion , EventCollection , etc.

For example, for an Event, do the following:

There is an Event collection for each Engine. Get the Event collection with the property engine.events .
This returns the EventCollection object. Add the Events you want to use to the Event collection with
the add() method of EventCollection . To add each Event you must specify both an event id and an
event name:

Python code:

my_event = engine.events.add(module.hvi.events.PXI0, "My Event")

C# code:

myEvent = Engine.Events.Add(module.Hvi.Events.Pxi0, "My Event")

Actions, Triggers, and FPGA-Sandboxes all have their own collection properties, for
example ActionCollection is for Actions.

Use the same procedure to get collections and add Actions, Triggers, and FPGA-Sandboxes to their
respective collections. The ID of Engines, Actions, Events, and Triggers related to a specific
instrument are defined by the instrument API, typically within the instrument.hvi interface of an
instrument object.

Find us at www.keysight.com Page 274

KS2201A - PathWave Test Sync Executive User Manual Chapter 8: Building an Application with the TSE API

Define HVI Actions

The following code example defines all HVI Actions necessary to perform AWG (Arbitrary Waveform
Generator) Trigger operations. The AWG Trigger Actions for each AWG channel is added to the
ActionCollection of the AWG Engine that needs to execute them in its Local Sequence.

Python code:

Define AWG Trigger Actions for all AWG channels
for ch_index in range(1, num_channels + 1):
#
Actions need to be added to the Engine's Action list so that they can be executed
action_name = "AWG Trigger CH" + str(ch_index) # arbitrary user-defined name
instrument_action = "awg{}_trigger".format(ch_index) # name decided by instrument API
action_id = getattr(instrument.hvi.Actions, instrument_action)
my_system.engines[awg_engine_name].actions.add(action_id, action_name)

C# code:

// Define AWG Trigger Actions for 4 AWG channels
// Actions must be added to the Engine's Action list so that they can be executed
//
mySystem.Engines[engineName].Actions.Add(module.Hvi.Actions.Awg0Trigger, "awg0trigger")
mySystem.Engines[engineName].Actions.Add(module.Hvi.Actions.Awg1Trigger, "awg1trigger")
mySystem.Engines[engineName].Actions.Add(module.Hvi.Actions.Awg2Trigger, "awg2trigger")
mySystem.Engines[engineName].Actions.Add(module.Hvi.Actions.Awg3Trigger, "awg3trigger")

Define HVI Events

The code example below adds the AWG CH1 Waveform Start Event to the Event collection of an
M320xA AWG's HVI Engine object called awg_engine. For further information on M320xA Events see
SD1 3.x Software for M320xA / M330xA Arbitrary Waveform Generators User’s Guide available
at M3201A PXIe Arbitrary Waveform Generator.

Python code:

wfm_start_event = awg_engine.events.add(instrument.hvi.events.awg1_waveform_start, "AWG CH1 Wfm Start
Event")

C# code:

// adding wait for Trigger Event
wfmStartEvent = awgEngine.Events.Add(instrument.Hvi.Events.Awg1WaveformStart, "AWG CH1 Wfm Start Event")

Find us at www.keysight.com Page 275

KS2201A - PathWave Test Sync Executive User Manual Chapter 8: Building an Application with the TSE API

http://www.keysight.com/find/m3201a

Define HVI Triggers

The code example below defines a Front Panel (FP) Trigger to be used by a digitizer instrument. The
TriggerCollection is accessed through the dig_engine.triggers interface, where dig_engine is an HVI
Engine object.

Python code:

Defines the FP Trigger to be used as a wait condition by the digitizer
Add to the HVI Trigger Collection of each HVI Engine the FP Trigger object of that same instrument
#
fp_trigger_id = instrument.hvi.triggers.front_panel_1
fp_trigger = dig_engine.triggers.add(fp_trigger_id, "FP Trigger")
#
Trigger configuration
NOTE: Trigger to be used as WaitEvent conditions must be configured as kthvi.Direction.INPUT
DriveMode (e.g. PushPull/OpenDrain) is defined by the instrument and cannot be changed by the user
fp_trigger.config.direction = kthvi.Direction.INPUT
fp_trigger.config.polarity = kthvi.Polarity.ACTIVE_HIGH
fp_trigger.config.hw_routing_delay = 0
fp_trigger.config.trigger_mode = kthvi.TriggerMode.LEVEL

C# code:

// Defines the FP Trigger to be used as a wait condition by the digitizer
// Add to the HVI Trigger Collection of each HVI Engine the FP Trigger object of that same instrument
//
fpTriggerId = instrument.Hvi.Triggers.frontPanel1;
fpTrigger = digEngine.Triggers.Add(fpTriggerId, "FP Trigger");
//
// Trigger configuration
// NOTE: Trigger to be used as WaitEvent conditions must be configured as Direction.Input
// DriveMode (e.g. PushPull/OpenDrain) is defined by the instrument and cannot be changed by the user
fpTrigger.Config.Direction = Direction.Input;
fpTrigger.Config.Polarity = Polarity.ActiveHigh;
fpTrigger.Config.HwRoutingDelay = 0;
fpTrigger.Config.TriggerMode = TriggerMode.Level;

Find us at www.keysight.com Page 276

KS2201A - PathWave Test Sync Executive User Manual Chapter 8: Building an Application with the TSE API

Define FPGA-Sandbox resources

The SandboxCollection is accessible through the engine.fpga_sandboxes interface of an Engine object.
Unlike other HVI collections, this collection is already populated by a number of FPGA-Sandboxes
where the number of FPGA-Sandboxes depends on the instrument being used. Most instruments
have a single sandbox region in their FPGA, but some instruments might have multiple sandbox
regions. FPGA-Sandbox objects do not need to be added to the collection, you only need to access
them.

Python code:

NOTE: The M3xxxA_sandbox name is not arbitrary and cannot be changed.
The sandbox name is defined by each instrument. See SD1 3.x M3xxxA documentation for further info
sandbox_name = 'sandbox0'
awg_sandbox = awg_engine.fpga_sandboxes[sandbox_name]

C# code:

// NOTE: The M3xxxA_sandbox name is not arbitrary and cannot be changed.
// The sandbox name is defined by each instrument. See SD1 3.x M3xxxA documentation for further info
sandboxName = "sandbox0";
awgSandbox = AwgEngine.FpgaSandboxes[sandboxName];

Find us at www.keysight.com Page 277

KS2201A - PathWave Test Sync Executive User Manual Chapter 8: Building an Application with the TSE API

2. Program HVI Sequences
Programming HVI Sequences requires a number of steps:

l Create a Sequencer Object

l Create Sequences

l Start with the Global Sync Sequence

l Adding Sync Statements and Sync Sequences

l Adding Local Statements

l Adding HVI Instructions

l Using Triggers, Actions, and Events

l Using FPGA-Sandbox Resources

Create a Sequencer Object

Before you can begin writing Sequences, you must create a Sequencer object and pass the
SystemDefinition to the Sequencer object:

Python code:

sequencer = keysight_tse.Sequencer("sequencer", my_system)

C# code:

Sequencer seq = new Sequencer("sequencer", sysDef);

Find us at www.keysight.com Page 278

KS2201A - PathWave Test Sync Executive User Manual Chapter 8: Building an Application with the TSE API

Define HVI Registers and Initialize Register Values

Define the HVI Registers resource you require in each Engine and use the add() method to add them
to the register collection for that Engine. Then define their initial values:

Python code:

loop_register = sequencer.sync_sequence.scopes["Engine 1"].registers.add("Loop Register", keysight_
tse.RegisterSize.SHORT)
loop_register.initial_value = 0

C# code:

var loopRegister = sequencer.SyncSequence.Scopes["Engine 1"].Registers.Add("Loop Register",
RegisterSize.SHORT);
loopRegister.InitialValue = 0;

The registers that you to use in the HVI Sequences must be added to the register collection within the
scope of the corresponding HVI Sequence. This can be done using the RegisterCollection property that
is within the Scope object corresponding to each Sequence. HVI Registers belong to a specific HVI
Engine because they refer to hardware registers of that specific instrument. Registers from one HVI
Engine cannot be used by other Engines or outside of their scope. Registers can only be added to the
HVI top Sync Sequence scopes. This means that you can only add global registers that are visible in
all child Sequences. The number and size of registers is defined by each instrument.

To reserve a register resource:

1. Get the register collection from the Engine you want to reserve the register on.

2. Add the registers you require. Use the add() method to the register collection for that Engine

NOTE Register size is defined by the following:

l SHORT = 32 bit

l LONG = 48 bit

Find us at www.keysight.com Page 279

KS2201A - PathWave Test Sync Executive User Manual Chapter 8: Building an Application with the TSE API

Create Sequences

After you have got the Sequencer object and set up the registers you require, you can write the program
the HVI executes, this is composed of:

l Sequences.

l Statements.

l Instructions.

l Time restrictions.

To define your program, you must:

l Create Sequences.

l Add Statements and instructions.

Start with the Global Sync Sequence

When HVI starts execution, it starts in a Global Sync Sequence, this is defined by the Sequencer object.
This is used in the previous example when the registers were reserved:

Python code:

engine_1_registers = sequencer.sync_sequence.scopes["Engine 1"].registers

C# code:

var engine1Registers = seq.SyncSequence.Scopes[engine1Name].Registers;

Find us at www.keysight.com Page 280

KS2201A - PathWave Test Sync Executive User Manual Chapter 8: Building an Application with the TSE API

Adding Sync Statements and Sync Sequences

You add Sync Statements to the SyncSequence property with add_statement() methods such as
SyncSequence.add_sync_while():

Python code:

Create Sync While Statement (loop_register < SYNC_WHILE_LOOP_ITERATIONS):
SYNC_WHILE_LOOP_ITERATIONS = 5
sync_while_condition = keysight_tse.Condition.register_comparison(engine_1_registers["loop_register"],
keysight_tse.ComparisonOperator.LESS_THAN, SYNC_WHILE_LOOP_ITERATIONS)
sync_while = sequencer.sync_sequence.add_sync_while("sync_while", 100, sync_while_condition)

C# code:

// create Sync While Statement (loop_register < SYNC_WHILE_LOOP_ITERATIONS)
var syncWhileCondition = Condition.RegisterComparison(
engine1Registers["loop_register"], ComparisonOperator.LessThan, SYNC_WHILE_LOOP_ITERATIONS);
var syncWhile = seq.SyncSequence.AddSyncWhile("sync_while", 100, syncWhileCondition);

You can also add Sync Sequences within the global Sync Sequence and add Sync Statements within
the Sync Sequences.

Adding Local Statements

To add HVI Instructions or Local Flow-Control Statements, you must add them within a Sync Multi-
Sequence Block. You must add this Sync Multi-Sequence Block within a Sync Sequence by using the
add_sync_multi_sequence_block() method:

Python code:

Add a Sync Multi-Sequence Block:
multi_seq_block_1 = sync_while.sync_sequence.add_sync_multi_sequence_block("multi_seq_block_1", 210)

C# code:

// Add a Sync Multi-Sequence Block
var multiSeqBlock1 = syncWhile.SyncSequence.AddSyncMultiSequenceBlock("multiSeqBlock1", 220);

To add the Local Statements, you must get a Sequence object for each Engine in the Sync Multi-
Sequence Block and add them using the corresponding add_XXX() method. HVI Instructions can be
added to a Sync Multi-Sequence Block using the add_instruction() method. For each instruction
parameter, use the set_parameter() method to set it.

By adding Local Statements to the Sequences, you define the Local Sequence that each local Engine
executes in parallel with the other Engines.

Find us at www.keysight.com Page 281

KS2201A - PathWave Test Sync Executive User Manual Chapter 8: Building an Application with the TSE API

Adding HVI Instructions

There are two types of HVI instructions:

l HVI Native Instructions.

l Instrument-Specific HVI Instructions.

HVI Native Instructions

The InstructionSet property contains the set of native instructions that can be executed within an HVI
Statement, including:

l Register arithmetic.

Add / Subtract.

Assign.

l Read/write I/O Trigger ports.

l Communications operations with the instrument sandbox using an HVI Host Interface.

FPGA-Register read/write.

FPGA-Memory Map read/write (fpga_array_read and fpga_array_write).

l Action Execute.

l Trigger Write.

To use the HVI Native Instructions, you must use the InstructionSet property. You get this from the
Local Sequence object:

Python code:

Initialize loop_register
loop_reg = multi_seq_block.scope.registers["loop_register"]
awg_sequence = multi_seq_block.sequences["AWG Engine"]
instruction_a = multi_seq_block.add_instruction("loop_register = 0", 10, awg_sequence.instruction_
set.assign.id)
instruction_a.set_parameter(awg_sequence.instruction_set.assign.destination.id, loop_reg)
instruction_a.set_parameter(awg_sequence.instruction_set.assign.source.id, 0)
#
Increment pulse_counter
pulse_counter = multi_seq_block_1.scope.registers["pulse_counter"]
instruction = multi_seq_block_1.add_instruction("Increment Pulse Counter", 10, awg_sequence.instruction_
set.add.id)
instruction.set_parameter(awg_sequence.instruction_set.add.destination.id, pulse_counter)
instruction.set_parameter(awg_sequence.instruction_set.add.left_operand.id, pulse_counter)
instruction.set_parameter(awg_sequence.instruction_set.add.right_operand.id, 1)

C# code:

// Initialize loop_register
var reg = sequence.Scope.Registers[registerName];

Find us at www.keysight.com Page 282

KS2201A - PathWave Test Sync Executive User Manual Chapter 8: Building an Application with the TSE API

var instructionA = sequence.AddInstruction(registerName + "_assign", startDelay,
sequence.InstructionSet.Assign.Id);
instructionA.SetParameter(sequence.InstructionSet.Assign.Value.Id, value);
instructionA.SetParameter(sequence.InstructionSet.Assign.Destination.Id, reg);
//
// Increment register by 1
private void incrementRegisterBy1(ISequence sequence, string registerName, int startDelay)
{

var reg = sequence.Scope.Registers[registerName];
var instructionA = sequence.AddInstruction("Increment Pulse Counter",
startDelay, sequence.InstructionSet.Add.Id);
instructionA.SetParameter(sequence.InstructionSet.Add.LeftOperand.Id, reg);
instructionA.SetParameter(sequence.InstructionSet.Add.RightOperand.Id, 1);
instructionA.SetParameter(sequence.InstructionSet.Add.Destination.Id, reg);

}

Instrument-Specific HVI Instructions

Instrument-Specific HVI Instructions are described in the documentation for the instrument. For
example, the following code shows how to set a channel amplitude value:

Python code:

Set CH1 amplitude to 1.0 V:
instruction = multi_seq_block_1.add_instruction("Set CH1 amplitude to 1.0 V", 10,
instrument.hvi.instruction_set.set_amplitude.id)
instruction.set_parameter(instrument.hvi.instruction_set.set_amplitude.channel.id, ch1)
instruction.set_parameter(instrument.hvi.instruction_set.set_amplitude.value.id, 1.0)

C# code:

// Set CH1 amplitude to 1.0 V
instruction = multiSeqBlock1.AddInstruction("Set CH1 amplitude to 1.0 V", 10,
instrument.Hvi.InstructionSet.SetAmplitude.id);
instruction.SetParameter(instrument.Hvi.InstructionSet.SetAmplitude.Channel.id, ch1);
instruction.SetParameter(instrument.Hvi.InstructionSet.SetAmplitude.Value.id, 1.0);

Find us at www.keysight.com Page 283

KS2201A - PathWave Test Sync Executive User Manual Chapter 8: Building an Application with the TSE API

Using Triggers, Actions, and Events

The examples below provide an overview of how to use Triggers, Actions and Events within an HVI
Sequence.

Using Triggers

There are two typical use cases of Trigger objects (previously defined by the user during system
definition). The first one is the usage of the Trigger object as a wait condition inside a Wait Statement:

Python code:

Add a wait Statement that has a FP Trigger as a condition
fp_trigger = awg_engine.triggers["fp_trigger"]
wait_condition = keysight_tse.Condition.trigger(fp_trigger)
wait_event = awg_sequence.add_wait("wait for fp trigger", 10, wait_condition)
wait_event.set_mode(kthvi.WaitMode.TRANSITION, kthvi.SyncMode.IMMEDIATE)

C# code:

// Add a wait Statement that has a FP Trigger as a condition
fpTrigger = awgEngine.Triggers["fpTrigger"];
waitCondition = Condition.Trigger(fpTrigger);
waitEvent = awgSequence.AddWait("wait for trigger", 10, waitCondition);
waitEvent.SetMode(WaitMode.Transition, SyncMode.Immediate);

The second use case involves the TriggerWrite HVI Native instruction, where the Trigger object can be
used to specify which electrical Trigger line can be written from the HVI Sequence:

Python code:

Write FP Trigger to ON value
fp_trigger = awg_engine.triggers["fp_trigger"]
trigger_write_instr = sequence.instruction_set.trigger_write
instr_trigger_ON = sequence.add_instruction("FP Trigger ON", 10, trigger_write_instr.id)
instr_trigger_ON.set_parameter(trigger_write_instr.sync_mode.id, trigger_write_instr.sync_mode.immediate)
instr_trigger_ON.set_parameter(trigger_write_instr.trigger.id, fp_trigger)
instr_trigger_ON.set_parameter(trigger_write_instr.value.id, trigger_write_instr.value.on)

C# code:

// Write FP Trigger to ON value
var tw = sequence.InstructionSet.TriggerWrite;
var instOn = sequence.AddInstruction("Trigger On", 20, tw.Id);
instOn.SetParameter(tw.Trigger.Id, trigger);
instOn.SetParameter(tw.SyncMode.Id, tw.SyncMode.Immediate);
instOn.SetParameter(tw.Value.Id, tw.Value.On);

Find us at www.keysight.com Page 284

KS2201A - PathWave Test Sync Executive User Manual Chapter 8: Building an Application with the TSE API

Using Actions

User-defined Actions can be executed using the HVI native instruction ActionExecute. A list of Actions
action_list, can be executed simultaneously within the same instruction. The action_list object must
have been be previously defined.

Python code:

"Action Execute" instruction executes the AWG Trigger from HVI
instruction = sequence.add_instruction("AWG trigger", 10, sequence.instruction_set.action_execute.id)
instruction.set_parameter(sequence.instruction_set.action_execute.action.id, action_list)

C# code:

// "ActionExecute" instruction executes the AWG Trigger from HVI
var actionArray = sequence.Engine.Actions.ToArray();
instruction = sequence.AddInstruction("AWG trigger", 10, sequence.InstructionSet.ActionExecute.id);
instruction.SetParameter(sequence.InstructionSet.ActionExecute.Action.id, actionArray);

Using Events

The typical use case of Events within HVI Sequences is as a condition for a Wait Statement:

Python code:

Add a wait Statement that waits for AWG CH1 queue to be empty
awg_queue_empty = awg_engine.events["Awg1QueueIsEmpty"]
wait_condition = keysight_tse.Condition.event(awg_queue_empty)
wait_event = awg_sequence.add_wait("Wait for AWG Queue to be Empty", 10, wait_condition)
wait_event.set_mode(kthvi.WaitMode.TRANSITION, kthvi.SyncMode.IMMEDIATE)

C# code:

// adding wait for Trigger
var waitTrigger = sequence.Engine.Triggers["wait_trigger"];
var waitEvent = sequence.AddWait("wait for trigger", 10, Condition.Trigger(waitTrigger));
waitEvent.SetMode(WaitMode.Transition, SyncMode.Immediate);

Find us at www.keysight.com Page 285

KS2201A - PathWave Test Sync Executive User Manual Chapter 8: Building an Application with the TSE API

Using FPGA-Sandbox Resources

To use FPGA-Sandbox resources, the sandbox must be loaded using the load_from_k7z() method
specifying the path containing the .k7z file produced compiling a project designed using PathWave
FPGA. For more information see the PathWave FPGA User Manual at PathWave FPGA . Once the
FPGA-Sandbox is loaded, all the HVI FPGA-Registers and HVI FPGA-Memory Maps that were
inserted in the specified PathWave FPGA project file can be accessed to be used in the HVI
Sequence. Please note that the same names used in the PathWave FPGA project must be used to
access the FPGA resources. In the following example, the FPGA-Register name Register_Bank_
MyCounter is not arbitrary but assumed to be taken from the PathWave FPGA project that generated
the file MySandboxProject.k7z :

Python code:

sandbox = engine.fpga_sandboxes["sandbox0"]
sandbox.load_from_k7z("MySandboxProject.k7z")
counter_register = sandbox.fpga_registers["Register_Bank_MyCounter"]

C# code:

sandbox = Engine.FpgaSandboxes["sandbox0"];
sandbox.LoadFromk7z("MySandboxProject.k7z");
counterRegister = sandbox.FpgaRegisters["registerBankMyCounter"];

Find us at www.keysight.com Page 286

KS2201A - PathWave Test Sync Executive User Manual Chapter 8: Building an Application with the TSE API

http://www.keysight.com/find/pathwave-fpga

Write to FPGA resources

The following example shows how to write to an FPGA-Register and read an FPGA array. The process
in both cases is very similar:

Python code:

Write FPGA-Register
fpga_register = engine.fpga_sandboxes[sandbox_name].fpga_registers[register_name]
fpga_regw_instruction = sequence.instruction_set.fpga_register_write
fpga_register_write = sequence.add_instruction("my_fpga_register_write", 10, fpga_regw_instruction.id)
fpga_register_write.set_parameter(fpga_regw_instruction.fpga_register.id, fpga_register)
fpga_register_write.set_parameter(fpga_regw_instruction.value.id, value_register)
#
Read FPGA array
memory_map = engine.fpga_sandboxes[sandbox_name].fpga_memory_maps[0]
fpga_arrayr_instr = sequence.instruction_set.fpga_array_read
fpga_array_read = sequence.add_instruction("my_fpga_array_read", time_ns, fpga_arrayr_instr.id)
fpga_array_read.set_parameter(fpga_arrayr_instr.fpga_memory_map.id, memory_map)
fpga_array_read.set_parameter(fpga_arrayr_instr.fpga_memory_map_offset.id, loop_reg)
fpga_array_read.set_parameter(fpga_arrayr_instr.value.id, value_register))

C# code:

// Write FPGA-Register
fpga_register = engine.fpga_sandboxes[sandbox_name].fpga_registers[register_name];
fpga_regw_instruction = sequence.instruction_set.fpga_register_write;
fpga_register_write = sequence.add_instruction("my_fpga_register_write", 10, fpga_regw_instruction.id);
fpga_register_write.set_parameter(fpga_regw_instruction.fpga_register.id, fpga_register);
fpga_register_write.set_parameter(fpga_regw_instruction.value.id, value_register);
//
// Read FPGA array
memoryMap = Engine.fpgaSandboxes[sandbox_name].fpgaMemoryMaps[0];
fpgaArrayrInstr = sequence.InstructionSet.FpgaArrayRead;
fpgaArrayRead = sequence.AddInstruction("myFpgaArrayRead", timeNs, fpgaArrayrInstr.id);
fpgaArrayRead.SetParameter(fpgaArrayrInstr.FpgaMemoryMap.id, memoryMap);
fpgaArrayRead.SetParameter(fpgaArrayrInstr.FpgaMemoryMapOffset.id, loopReg);
fpgaArrayRead.SetParameter(fpgaArrayrInstr.Value.id, valueRegister));

Find us at www.keysight.com Page 287

KS2201A - PathWave Test Sync Executive User Manual Chapter 8: Building an Application with the TSE API

3. Compile Your Sequences
After writing the Sequences, you must add the command that compiles the HVI. Call the compile()
method in the Sequencer object to perform the compilation operation. The compile() method returns the
HVI instance Hvi.

Python code:

Compile HVI Sequences:
try:

hvi = sequencer.compile()
print('HVI Compiled')

except keysight_tse.CompilationFailed as err:
print(err.compile_status.to_string())
raise err

C# code:

// Compile HVI Sequences:
try
{

hvi = sequencer.Compile();
Console.WriteLine("compile DONE");

}
catch (CompilationFailed err)
{

Console.WriteLine(err.CompileStatus.ToString());
throw err;

}

NOTE At this point you can no longer modify Sequences, Actions, Events or Triggers.

The property hvi.sync_resources provides information about the PXI sync resources you must reserve.

Python code:

print("This needs to reserve {} PXI trigger resources to execute".format(len(hvi.sync_resources)))

C# code:

Console.WriteLine("This needs to reserve {} PXI trigger resources to execute".Format(len
(Hvi.SyncResources)));

If the compilation fails, the object keysight_tse.CompilationFailed is thrown. This contains compilation
error messages that you can print.

Find us at www.keysight.com Page 288

KS2201A - PathWave Test Sync Executive User Manual Chapter 8: Building an Application with the TSE API

4. Load To Hardware
Before your compiled Sequences can be executed, they must be uploaded into the HVI Engines in the
instrument hardware. To upload the compiled Sequences, you must use the Hvi method load_to_hw().

Python code:

Load HVI to hardware:
Hvi.load_to_hw()
print("HVI Loaded to hardware")

C# code:

// Load HVI to hardware:
Hvi.LoadToHw();
Console.WriteLine("load DONE");

Find us at www.keysight.com Page 289

KS2201A - PathWave Test Sync Executive User Manual Chapter 8: Building an Application with the TSE API

5. Modify Initial Register Values (Optional)
The HVI execution can be parameterized using Registers, the initial values of all Registers are
updated when the run() method in Hvi is called. To modify the initial value of the Registers in the Hvi

object, use:

Python code:

Modify register initial value
value = 10
register_runtime = hvi.sync_sequence.scopes[0].registers[loop_register.name]
register_runtime.initial_value = value

C# code:

// Modify register initial value
var value = 10;
registerRuntime = Hvi.SyncSequence.Scopes[0].registers[loopRegister.name];
registerRuntime.initialValue = value;

Once the instrument has been loaded to hardware, you can write to the FPGA-Memory Map.

Python code:

memory_map.write(0, 1)
memory_map.write(1, 2)
memory_map.write(2, 3)

C# code:

memoryMap.Write(0, 1);
memoryMap.Write(1, 2);
memoryMap.Write(2, 3);

Find us at www.keysight.com Page 290

KS2201A - PathWave Test Sync Executive User Manual Chapter 8: Building an Application with the TSE API

6. Execute Sequences
To execute the binaries, call the run() method in Hvi. The HVI can be run in a blocking or non-blocking
mode:

Blocking mode

In blocking mode, the execution is blocked at the HVI execution code line for a fixed amount of time
specified by the timeout input parameter. If timeout = hvi.no_timeout is used as an input parameter, the
execution can be blocked until the HVI Sequences finish their execution.

Python code:

hvi.run(hvi.no_timeout)

C# code:

hvi.Run(System.TimeSpan.FromSeconds(10));

Non-blocking mode

In non-blocking mode, the execution is not blocked. This enables you to initiate a second HVI
instance to run in parallel.

Python code:

Execute HVI in non-blocking mode
This mode allows SW execution to interact with HVI execution:
hvi.run(hvi.no_wait)
print("HVI Running...")

C# code:

// Execute HVI in non-blocking mode
// This mode allows SW execution to interact with HVI execution:
hvi.Run(IHvi.no_wait);
Console.WriteLine("HVI Running...");

Find us at www.keysight.com Page 291

KS2201A - PathWave Test Sync Executive User Manual Chapter 8: Building an Application with the TSE API

While and after execution is finished, you can read or write registers and execute the binaries again.

Python code:

Modify Register initial value
value = 20
register_runtime = hvi.sync_sequence.scopes[0].registers[loop_register.name]
register_runtime.initial_value = value
hvi.run(hvi.no_timeout)

C# code:

// Modify Register initial value
ver value = 20;
registerRuntime = hvi.SyncSequence.Scopes[0].Registers[loopRegister.name];
registerRuntime.initialValue = value;
hvi.Run(IHvi.NoTimeout);

Find us at www.keysight.com Page 292

KS2201A - PathWave Test Sync Executive User Manual Chapter 8: Building an Application with the TSE API

7. Release All Resources
To release all HVI resources and enable other applications or HVI instances to use the hardware, you
must release the hardware. Your application cannot perform any operation with the hardware
resources in the HVI after this point.

Python code:

Unlock and release hardware resources:
hvi.release_hw()
print("Releasing Hardware...")

C# code:

// Unlock and release hardware resources:
hvi.ReleaseHw();
Console.WriteLine("Releasing Hardware...");

Find us at www.keysight.com Page 293

KS2201A - PathWave Test Sync Executive User Manual Chapter 8: Building an Application with the TSE API

HVI Logging and Troubleshooting
PathWave Test Sync Executive comes with an integrated logger that you can use for troubleshooting.

The HVI Logger is aimed at producing information that is useful for support engineers. It provides
information that is additional to the Sequence Representation output.

The logger has the following features:

l The level of logging is configurable.

l You can force flush messages.

l The output can be configured to go to the console or to an output file.

l You can configure the logger from environment Variables or in a .env configuration file.

l You can instruct some instruments to produce logs.

The logger can produce the following levels of logging information, where each level also includes all
the information in the levels below it:

Logger
level

Description

Trace Produces trace information that is useful to support engineers.

Debug
Produces debug information that is useful to support engineers. This level also provides the
Sequence Representation output.

Info Produces generally useful information.

Warning Logs anything that can potentially cause application oddities, but are automatically recovered.

Error Logs any errors that are fatal to an operation, but not the service or application.

Fatal Logs any errors that forces a shutdown of the application.

Off Does not log anything.

Find us at www.keysight.com Page 294

KS2201A - PathWave Test Sync Executive User Manual Chapter 8: Building an Application with the TSE API

Logger Configuration

The logger is configured with environment Variables. The following table describes the Variables:

Environment
Variable

Values Description

HVI_LOGGER_

LEVEL

l Trace

l Debug

l Info

l Warning

l Error

l Fatal

l Off

This value indicates the level of information printed to the log.

The information printed out contains the information for the level
specified and all of the levels below it. For example, if the level is
set to Debug, all messages except Trace are printed to the log.

By default, the level is set to Error, so only Error and Fatal are
printed.

HVI_LOGGER_

OUTPUT_PATH

Any existing
valid path in
your system,
For example:
C:\tmp

This Variable disables console output and tells the logger to save
the log to a file at the specified location.

The file with the log messages is called: HVILog_hviLogger_[num1]_

[num2].log ,

where num1 is the date and time, and num2 is the thread ID.

HVI_LOGGER_

FORCE_FLUSH
1 or 0

This Variable forces the log messages to be flushed to the output
every time a message is logged. Enable this if you want to
troubleshoot a program that is crashing, so that all messages
before the crash shall be written. Do not enable this option in
any other cases, because it impacts the performance of the
execution.

HVI_LOGGER_
EXTENDED

"*", "ALL", or a
comma
separated
list.

For example:

M9032,M9546

This Variable enables the logging output of instruments
managed by HVI.

An output file for each instrument is generated in the path
specified with HVI_LOGGER_OUTPUT_PATH .

The file is saved as:

{MODEL}_{Chassis Slot for M903x}_{date}.log

See the section Logger Extended mode Supported Instruments
for a list of supported instruments.

Find us at www.keysight.com Page 295

KS2201A - PathWave Test Sync Executive User Manual Chapter 8: Building an Application with the TSE API

NOTE By default the configuration for the logger is:

l Logging level: Error.

l Output: console.

l Force flush: disabled.

l Logger Extended: disabled.

.env Configuration File

The logger configuration can be also configured from a .env file. The configuration values are stored
in the file as KEY=VALUE pairs and you can use # for comments.

The .env file must be located in the same folder as the HVI script to be executed. HVI parses the .env

file and sets all the environment Variables found for that script.

The following shows an example .env file:

.env

The hvi logger level: Trace, Debug, Info, Warning, Error, Fatal, Off.
HVI_LOGGER_LEVEL=Fatal
#
Set this parameter to write the logs to a file instead of being printed to the console
HVI_LOGGER_OUTPUT_PATH=C:\tmp\hviLogs
#
Set this parameter to force flush the log every new line instead of doing it at the end.
This helps you to identify the line of code before a crash.
HVI_LOGGER_FORCE_FLUSH=0
#
Activates the Logger for all HVI controlled instruments. The supported models are the
System Synchronization Modules (M9032,M9033), the High Performance Reference Clock Source, (M9546)
or "ALL"
HVI_LOGGER_EXTENDED=ALL

Logger Extended mode Supported Instruments

PathWave Test Sync Executive can control a number of different instruments. The environment Vari-
able HVI_LOGGER_EXTENDED activates logging output from the instruments that support it. The way the
logs are produced depends on the instruments, some instruments produce individual log files
whereas other instruments combine log files together into a single file.

The supported models for release 2023B are:

Model Description

M9546x High Performance Reference Clock Source

M9032, M9033 System Synchronization Modules

Find us at www.keysight.com Page 296

KS2201A - PathWave Test Sync Executive User Manual Chapter 8: Building an Application with the TSE API

NOTE Some Instruments, like the Keysight M5000 PXIe family for example, might include
native logging facilities that cannot be controlled by PathWave Test Sync Executive,
for more information, see your instrument documentation.

Recommended Logger settings for contacting support

If you require support for PathWave Test Sync Executive, a log file will help the support team to rap-
idly diagnose any problems.

If you want to contact support, first generate a log with the following settings:

l HVI_LOGGER_LEVEL=Trace

l HVI_LOGGER_FORCE_FLUSH=1

l HVI_LOGGER_OUTPUT_PATH=C:\Logs or another path 1

1 The path must be an existing valid path.

Find us at www.keysight.com Page 297

KS2201A - PathWave Test Sync Executive User Manual Chapter 8: Building an Application with the TSE API

Chapter 9: TSE Service and Multi-Host support
This chapter describes TSE Service, the features it provides and how it enables Multi-Host support.

For detailed description of how to install and configure a TSE Service based system, see Chapter 9 in
the PathWave Test Sync Executive System Setup Guide.

This chapter contains the following sections:

l About TSE Service and Multi-Host Systems

l TSE Service Operation Modes

l TSE Service Configuration

l Accessing Remote Resources

l Using TSE Service in an Application

Find us at www.keysight.com Page 298

KS2201A - PathWave Test Sync Executive User Manual Chapter 9: TSE Service and Multi-Host support

About TSE Service and Multi-Host Systems
PathWave Test Sync Executive release 2023 and above includes TSE Service and supports Multi-host
systems.

TSE Service Overview

TSE Service offer extended capabilities for system initialization and configuration:

1. Extend the use of TSE to Multi-Host architecture (see Free-Running mode). If you want a system
with more than 6 PXIe chassis or remote connectivity, then you require a Multi-Host system.

2. Enables the user to define system configuration using one or more .yml files to automate the com-
plete system initialization (a time-consuming task), and execute it at host boot-time (see Leader-
Follower mode). This can be used with both single and multi-host systems.

TSE Service Running Modes

TSE Service can be configured to operate in one of 2 different modes:

Free running Mode:

This mode is mainly intended for Multi-Host systems because it enables a client application to
access resources distributed across multiple hosts. The client application is responsible for
defining the topology of the system using the SystemDefinition class to add chassis, SSMs, HVI
engines, etc, and to run the system initialization.

Leader-Follower Mode:

In this mode TSE Service in the leader host automates the complete system initialization, and
this initialization is executed at boot time, speeding up the applications execution later. The sys-
tem is defined in the leader in a system_definition.yml configuration file. The client application
does not need to define or initialize the system, it just creates the application SystemDefinition
that connects to the leader TSE Service and gets all the system information automatically.

About Multi-Host Systems

There is a current limitation with PCs in that their bus systems can only connect to up to 6 PXI chassis
per PC host. To enable highly scalable systems that extend to more than 6 chassis, Multi-Host cap-
abilities are required to coordinate the operations in a single application across multiple hosts. TSE
Service implements a remote access infrastructure that enables Multi-Host operation. In Multi-Host
operation, a single HVI Sequence implemented in one application in one host, is deployed to all instru-
ments across several hosts, to achieve a large-scale system that runs fully synchronized.

Multi-Host systems are similar to the Multi-chassis systems possible with TSE 2022, but they use a
number of hosts to increase the number of chassis you can use. Each host is connected to a number
of chassis. As with the existing Multi-chassis systems, The chassis are connected together with Sys-
tem Synchronization Modules (SSMs).

Find us at www.keysight.com Page 299

KS2201A - PathWave Test Sync Executive User Manual Chapter 9: TSE Service and Multi-Host support

TSE Service provides the capabilities required to enable Multi-host systems. Keysight Distributed
Infrastructure (KDI) is the underlying service that supports this feature. On top of KDI, PathWave Test
Sync Executive adds support for very large systems using the same existing programming paradigm,
enabling an easy transition for existing users.

The following diagram shows a Singe-Host and a Multi-Host system:

Find us at www.keysight.com Page 300

KS2201A - PathWave Test Sync Executive User Manual Chapter 9: TSE Service and Multi-Host support

NOTE For a Multi-Host system to work, the following must be installed:

l TSE Service

l [OPTIONALLY] Keysight Distributed infrastructure (KDI)

Typically, these are installed when you install PathWave Test Sync Executive. For
more information, see Chapter 2: Install PathWave Test Sync Executive in this
document and Chapter 9 in the PathWave Test Sync Executive System Setup
Guide.

Find us at www.keysight.com Page 301

KS2201A - PathWave Test Sync Executive User Manual Chapter 9: TSE Service and Multi-Host support

TSE Service Operation Modes
You can configure TSE Service to operate in one of 2 different modes for different use cases:

l Free-Running mode.

l Leader-Follower mode.

Free-Running Mode

This mode is mainly intended for Multi-Host systems because it enables a client application to access
resources distributed across multiple hosts. The client application is responsible for defining the topo-
logy of the system using the SystemDefinition class to add chassis, SSMs, HVI engines, etc. and to
run the system initialization.

User applications can:

l Access remote resources like chassis and System Synchronization Modules (SSMs) using the TSE
Resource IDs.

l Access remote instruments using the KDI Resource ID.

l Configure the system as required using the TSE and instruments API.

TSE Service Free-Running mode is configured by means of the tse_config.yml file located in each host.
See TSE Service Configuration for more details.

Find us at www.keysight.com Page 302

KS2201A - PathWave Test Sync Executive User Manual Chapter 9: TSE Service and Multi-Host support

The following diagram shows a Multi-Host system in Free-Running mode. In Free-Running mode the
client (or user) application, that can run in a separate host other than the hosts connected to
hardware, connects to the TSE Service in the different hosts to use the chassis and Sync Module
resources in each host.

Find us at www.keysight.com Page 303

KS2201A - PathWave Test Sync Executive User Manual Chapter 9: TSE Service and Multi-Host support

The following state machine diagram shows the TSE Service boot up sequence in Free-running mode:

Find us at www.keysight.com Page 304

KS2201A - PathWave Test Sync Executive User Manual Chapter 9: TSE Service and Multi-Host support

Leader-Follower Mode

The Leader-Follower mode builds on the Free-Running mode to provide simplified usage for client
applications. A system configured in Leader-Follower mode has a predefined system configuration
that is fully initialized at start-up. This configuration is specified in the system_definition.yml

configuration file located in one of the hosts, called the Leader TSE Service.

The Leader TSE Service system definition can include resources distributed in other hosts running
TSE Service, called Follower TSE Services. In the system_definition.yml configuration file the user can
specify:

l System Topology.

This includes information from the chassis and interconnects (SystemSync connectivity) across
them.

l Clocking configuration.

l Optionally, the instruments to include in the automatic start-up initialization.

See TSE Configuration section for details on the system_definition.yml configuration options.

In this mode, client applications specify the Leader TSE Service when creating the application
SystemDefinition instance and only need to specify the HVI Engines and related resources, but there
is no need to specify topology and clocking because that's inherited from the Leader TSE Service.
This is a simpler and quicker way to use a system because it enables client applications to exploit TSE
real-time capabilities without having to first specify chassis, SSMs, clocks, etc. or having to wait for a
full system initialization.

Find us at www.keysight.com Page 305

KS2201A - PathWave Test Sync Executive User Manual Chapter 9: TSE Service and Multi-Host support

The following diagram shows a Multi-Host system in Leader-Follower mode. In Leader-Follower
mode the client (or user) application, that can run in a separate host other than the hosts connected
to hardware, connects to only to the Leader TSE Service.

Find us at www.keysight.com Page 306

KS2201A - PathWave Test Sync Executive User Manual Chapter 9: TSE Service and Multi-Host support

The state diagram below shows the initialization steps once TSE Service has completed the Free-
running initialization:

It is important to note that TSE Service always start in Free-Running mode and performs the free-run-
ning initialization per the local tse_config.yml file. It is in this step where all TSE Service hosts open
chassis, SSMs, Instruments, etc. depending on the local tse_config.yml file configuration. Then, only if
the system_definition.yml file is found locally, this TSE Service switch to the Leader mode, in this mode
it creates a SystemDefinition instance including all elements specified in the system_definition.yml,

topology, clocking, and instruments if specified. Before creating the SystemDefinition, the Leader TSE

Find us at www.keysight.com Page 307

KS2201A - PathWave Test Sync Executive User Manual Chapter 9: TSE Service and Multi-Host support

Service connects to other TSE Services, the Follower TSE Services, that own the elements specified in
the topology section. When a TSE Service received a connection request from the Leader, it switches
from the Free-Running into the Follower mode, TSE Services accept only one Leader connection
when in free-running mode.

Configuring and using TSE Service in an application

For a detailed description of how to configure and use TSE Service in an application, see Chapter 9 in
the PathWave Test Sync Executive System Setup Guide.

Find us at www.keysight.com Page 308

KS2201A - PathWave Test Sync Executive User Manual Chapter 9: TSE Service and Multi-Host support

TSE Service Configuration
This section describes the contents of the TSE Service configuration files. For examples on how to
use these files see the PathWave Test Sync Executive System Setup Guide.

TSE Service requires specific configuration files. These files are in YAML (.yml) format. See the YAML
documentation for specifications of the YAML format.

There two configuration file:

l TSE Service Config File: tse_config.yml

l System Definition File: systemDefinition.yml

These files must be located in:

C:\ProgramData\Keysight\PathWave Test Sync Executive 2023B\TseService\config

TSE Service Config File

Every host running TSE Service requires its own tse_config.yml file. This applies to any of the con-
figurations, Free-Running or Leader-Follower mode. It must be located in:

C:\ProgramData\Keysight\PathWave Test Sync Executive 2023B\TseService\config

The Free-Running mode is the startup TSE Service mode and is configured through the tse_config.yml

file in each host. The TSE Service config file enables you to configure:

l TSE Server TCP port (this is strongly recommended if KDI is not used to launch TSE Service).

l Hardware resources: chassis, System Synchronization Modules (SSMs) and instruments.

l Enables you to specify simulated hardware instances.

TSE Service opens the specified resources at boot-up enabling remote access for PXI Chassis and
SSMs, and also saving significant time when running the application.

See Chapter 9 in the PathWave Test Sync Executive System Setup Guide for a complete example of
how to configure the tse_config.yml for a system to run in Free-Running mode.

Find us at www.keysight.com Page 309

KS2201A - PathWave Test Sync Executive User Manual Chapter 9: TSE Service and Multi-Host support

TSE Server TCP Address

You can set the TCP address and port for TSE Service manually, or let the system set it automatically
by setting it to 0.0.0.0:0.

It is important to select a port that is available and permitted by your organization's IT policies. The
auto detection of the port is recommended only when using KDI to start the TSE Service, because the
KDI infrastructure enables TSE Service to resolve the actual port at runtime. When KDI is not used to
start TSE Service, Keysight strongly recommends that you specify the TCP port manually, and in the
case of multiple network interfaces, also the IP address, since you will need to specify the TCP port
when using the TSE-TCP resource IDs.

For example:

Configure automatic port for the TSE Service server
listen_address: 0.0.0.0:0

Configure autodectect IP with port 8674 for the TSE Service server
listen_address: 0.0.0.0:8674

Find us at www.keysight.com Page 310

KS2201A - PathWave Test Sync Executive User Manual Chapter 9: TSE Service and Multi-Host support

Infrastructure (Chassis, System Sync Modules and High Performance Reference Clocks)

The "chassis" section enables you to list the chassis to open at start-up, individually by VISA Resource
IDs, or to autodetect them. This section is optional, you only need to list the chassis. The SSM and
High Performance Clock are opened automatically with the chassis.

chassis:
- PXI0::1::BACKPLANE # Chassis 1
- PXI0::2::BACKPLANE: "OptionX=???" # Chassis 2 opened with options
- PXI0::3::BACKPLANE: "OptionX=???" # Chassis 2 opened with options
ssm_options: "OptionY=???" # OPTIONALLY can also specify options for the SSM in the chassis

Can also specify chassis in simulation mode:

chassis:
- PXI0::1::BACKPLANE: "Simulate=True, DriverSetup=Model=GenericPxieChassis,EnhancedTrigger=True" #

Chassis 1 opened in simulation
ssm_options: "Simulate=true, DriverSetup=Model=M9033A" # OPTIONALLY can also specify options for the

SSM in the chassis
- PXI0::2::BACKPLANE: "Simulate=True, DriverSetup=Model=GenericPxieChassis,EnhancedTrigger=True" #

Chassis 2 opened in simulation
ssm_options: "Simulate=true, DriverSetup=Model=M9032A" # OPTIONALLY can also specify options for the

SSM in the chassis

NOTE For PXI chassis simulation you must specify the "GenericPxieChassis" model.

Alternatively, you can configure TSE Service to autodetect and open all PXI chassis
connected to that host, note that this is not supported for simulation:

- autodetect_all_pxi

or include options as well:

- autodetect_all_pxi: "OptionX=true"

NOTE You are not required to explicitly specify SSMs and High Performance Clock
Modules, because these are detected and opened automatically with the chassis.

Find us at www.keysight.com Page 311

KS2201A - PathWave Test Sync Executive User Manual Chapter 9: TSE Service and Multi-Host support

Instruments Section

The "Instruments" section enables you to list instruments to be opened automatically at start-up,
these instruments can be later be inherited by the Leader TSE Service to include them in the
automatic initialization. Similarly, as for Chassis, you can list the instruments individually using the
VISA Resource ID:

instruments:
- PXI0::CHASSIS1::SLOT7::INSTR:
- PXI0::CHASSIS2::SLOT6::INSTR:
- PXI0::CHASSIS1::SLOT3::INSTR: "Option1=true" # OPTIONALLY can specify initialization options

You can also specify instrument in simulation mode:

instruments:
- PXI0::CHASSIS1::SLOT7::INSTR: "Simulate=true,DriverSetup=Model=M50XXA"
- PXI0::CHASSIS2::SLOT6::INSTR: "Simulate=true,DriverSetup=Model=M53XXA,Option1=true"
- PXI0::CHASSIS1::SLOT3::INSTR: "Simulate=true,DriverSetup=Model=M52XXA,Option2=false"

Alternatively, you can configure TSE Service to autodetect and open all PXI instruments in that host
and connected to the chassis defined in the chassis section (this option does not work for simulation):

 - autodetect_all_pxi

or include options as well:

- autodetect_all_pxi: "Option1=true" # OPTIONALLY can specify initialization options

NOTE For most instruments, except the M3xxxA family, KDI must be installed to enable
the instrument to be opened by TSE Service and shared by the user application. Do
not use the Instruments section if you want the application to open the instruments
locally with exclusive access, instead of using the remote capability for shared
access.

Instrument and Chassis Simulation

To work in simulation, you must specify all chassis and instruments that must be opened in simulation
using the ' simulate=true ' and the appropriate model in addition to any other options required for the
chassis or instrument to work properly in simulation. Autodetection is not supported for opening
Chassis or Instruments in simulation. Resources must be specified using VISA_RESOURCE_IDs, do
not use any other form of Resource IDs.

NOTE Keysight recommends you not to include hardware and simulated instruments
together in the same TSE Service Config file. It is not recommended to specify
simulated instruments and also specific the 'autodetect_all_pxi', because it also
opens any hardware resources detected.

Find us at www.keysight.com Page 312

KS2201A - PathWave Test Sync Executive User Manual Chapter 9: TSE Service and Multi-Host support

KDI User and Password

It is recommended to launch TSE Service automatically with KDI, but in those cases where that is not
possible and TSE Service must be launched manually, the tse_config.yml file must include the
KdiUser and KdiPassword if the instrument section opens instruments other than the M3xxxA family.

Must specify KDI User and Password for the instrument section to open instruments for shared access
(default operation)
Not needed for M3xxxA instrument family
kdi_user: user123456
kdi_password: pass123456

When KDI User and Password are included in the tse_config.yml for a given TSE Service, all remote
operations perform by this TSE service instance will be authenticated using the specified KDI User
and Password.

The System Definition YAML File

The Leader host in a Leader-Follower system requires a system_definition.yml file. This file is only used
in the Leader in systems configured in Leader-Follower mode and must be located in:

C:\ProgramData\Keysight\PathWave Test Sync Executive 2023B\TseService\config

Once TSE Service completes the free-running initialization if the system_definition.yml file is found, it
switches into the Leader mode. This file defines the entire system configuration, including:

l System topology.

This includes information about the chassis and how they are connected with SSMs and
SystemSync Connectivity.

l Clocking.

l Sync resources.

l Warmup time.

l Instruments (optional).

Find us at www.keysight.com Page 313

KS2201A - PathWave Test Sync Executive User Manual Chapter 9: TSE Service and Multi-Host support

System Topology

To add the topology of the system, you list the chassis in the same order they are physically
connected. Chassis are physically connected together with System Synchronization Modules (SSMs).
The chassis are listed with TSE Resource IDs (can also use VISA resource IDs for chassis connected to
the same host as the Leader TSE Service).

1. First list the leader with all follower chassis directly connected downstream from it.

2. Add an entry for each other chassis with all follower chassis directly connected downstream from
it.

The following table shows the format for listing the chassis:

Format Example

 - chassis: <chassis or host
address>PXI0::<chassis
number>::BACKPLANE

 downstream:

- <System Sync Downstream
Connector Number 1 >: <chassis or
host address>PXI0::<chassis
number>::BACKPLANE

 - <System Sync Downstream
Connector Number 1 >: <chassis or
host address>PXI0::<chassis
number>::BACKPLANE

 - chassis:
tse://host1/PXI0::1::BACKPLANE

downstream:

- 1: tse://host1/PXI0::2::BACKPLANE

- 2: tse://host2/PXI0::1::BACKPLANE

(1) The Connector Number is the number of the physical connector on the upstream SSM.

The following example code shows the leader first with two downstream chassis and one of these
downstream chassis also having two additional downstream chassis, note that the indentation must
follows the YAML rules:

topology:
- chassis: tse://host1/PXI0::1::BACKPLANE
downstream:
- 1: tse://host1/PXI0::2::BACKPLANE
- 2: tse://host2/PXI0::1::BACKPLANE

- chassis: tse://host2/PXI0::1::BACKPLANE
downstream:
- 1: tse://host2/PXI0::2::BACKPLANE
- 2: tse://host2/PXI0::3::BACKPLANE

For a complete example, see the PathWave Test Sync Executive System Setup Guide.

Find us at www.keysight.com Page 314

KS2201A - PathWave Test Sync Executive User Manual Chapter 9: TSE Service and Multi-Host support

tse://host1/PXI0::2::BACKPLANE
tse://host1/PXI0::2::BACKPLANE

Client applications can define and use a subset of the system's topology. This is supported via the
optional support_client_subtopologies flag when it is enabled. This flag is optional, the default is true.

[OPTIONAL] When enabled, this enables the client applications to use a subset of the system topology. By
default, it is true.
support_client_subtopologies: true

Sync Resources

You must list Synchronization Resources. For information about Sync Resources, see Synchronization
Resources.

For example:

sync_resources:
- PXI_TRIGGER_1
- PXI_TRIGGER_3

Clocking

You can optionally specify the clock reference, mode and frequency. For more information about
clocking see Clocking, Non-HVI Clocks, and System Clocking Configuration.

System Reference Clock

The permitted values can be one of:

Parameter Option Description Default

reference:

ssm The SSM internal clock source x

chassis The internal chassis clock -

hpc
The High Precision Refence Clock Source (HPRCS), available as an
option in some Keysight chassis.

-

mode:
internal Use the internal clock. x

external Use an external clock as a reference. -

frequency: - Use if mode=external, This is the frequency of the external reference. -

For example:

clocking:
If this section is not included, TSE uses the defaults ssm and internal
reference: ssm # Permitted values are: ssm|chassis|hpc. Default is: ssm.

the SSM used is the one of the leader chassis defined in the topology section
mode: external # Permitted values are: internal|external. Default is: internal.
frequency: 100e6 # Permitted only with mode == external

Find us at www.keysight.com Page 315

KS2201A - PathWave Test Sync Executive User Manual Chapter 9: TSE Service and Multi-Host support

Inputs, Outputs and Synchronization Clocks

You can optionally specify the clocks used in the system:

l External Analog Clocks.

l Clock Outputs.

l Non-HVI Core Clocks.

l Non-HVI System Clocks.

These are specified by giving the name and the frequency.

External Analog Clocks

External Clocks are used to enable the external analog/RF clock reference in instruments. When
running the initialization TSE Service will configure instruments to use external analog/RF reference
for those instruments that support the frequency specified in the "external_analog_clock" entry:

external_analog_clocks: #OPTIONAL
 - 2.4e9
- 4.8e9

Clock Outputs

Use the "clock_outputs" section to enable specific Chassis and SSMs clock outputs. The clocks are
listed with the following options:

Option Description Required

output: The output being specified Yes

enabled:
If the output is enabled, true or
false

Yes

frequency: Frequency of the clock output
Not for outputs with a single specific
frequency.

For example:

clock_outputs: #OPTIONAL
- chassis: tse://host1/PXI0::1::BACKPLANE
output: FPRef1Out
enabled: true
frequency: 100e6

- chassis: tse://host2/PXI0::2::BACKPLANE
output: FP2.4GHzOut
enabled: true

NOTE The options available depend on the chassis or SSM that is generating the clock, for
more information see the relevant documentation.

Find us at www.keysight.com Page 316

KS2201A - PathWave Test Sync Executive User Manual Chapter 9: TSE Service and Multi-Host support

Non-HVI Core Clocks and Non-HVI System Clocks

If the system has specific synchronization constraints, use the entries non_hvi_core_clocks and non_hvi_

system_clocks to add non-HVI clocks as required by the system, see Non-HVI Clocks for more details:

non_hvi_core_clocks: #OPTIONAL - In Hz
- 15e6
- 10e6
non_hvi_system_clocks: #OPTIONAL - In Hz
- 1e6

Initialization Modes

The TSE Service Leader performs a complete system initialization at start-up. Depending on the
Warm-Up-Time defined, TSE Service performs two initializations:

1. [Only when Warm-Up-Time > 0] Pre-calibration initialization.

2. [Only when Warm-Up-Time > 0] Wait warm-up time.

3. Perform final initialization (this step requires calibration data available).

By default, step #3 uses the default initialization options as described in System Initialization in the
SystemDefinition Object. You can add specific initialization options with the "initalize_alignment_
modes" section:

The Alignment Mode flags to apply during system initialization
initialize_alignment_modes:
- ForceClockMonitoring
- Full

- ResetCalibration
- IgnoreCalibrationErrors
- DisableClockMonitoring

NOTE Note that before running a normal initialization using calibration data, you must
execute once an initialization to calculate the calibration data using the
"ResetCalibration" initialization mode. To run an initialization without calibration
data, specify the "IgnoreCalibrationErrors" flag.

Find us at www.keysight.com Page 317

KS2201A - PathWave Test Sync Executive User Manual Chapter 9: TSE Service and Multi-Host support

Warmup Time

You can specify the warmup time, in seconds.

initialization_warmup_time_seconds: 30

When this time is specified and different than zero, TSE Service performs two initializations:

1. Pre-calibration initialization.

2. Wait warm-up time.

3. Perform initialization using calibration data.

The warm up is required for instruments to achieve the steady operation temperature. Check the
instrument documentation for recommended warm-up time.

Instruments

You can explicitly list instruments in the system_definition.yml , so these instruments are included in
the automatic start-up system initialization/alignment. These are listed with KDI Resource IDs.

instruments: #These instruments are added to the Leader TSE Service SystemDefinition to be initialized.
- kdi://localhost/PXI0::CHASSIS1::SLOT3: Option1=1, # include explicitly by instrument address and

options.
- kdi://localhost/PXI0::CHASSIS2::SLOT12: Option1=1, # include explicitly by instrument address and

options.

The inherit_from_tse_config flag instructs TSE Service to include all the instruments listed or auto-
detected per the tse_config.yml file in each host (leader and followers) that belong to the topology
specified. This can simplify the system_definition.yml because you don't need to explicitly list all
instruments across multiple hosts and instead rely on each host configuration.

For example:

instruments: #These instruments are added to the Leader TSE Service SystemDefinition to be initialized.
 - inherit_from_tse_config # includes all instruments found for the Topology specified and defined in the
tse_config.yml files of each host

Find us at www.keysight.com Page 318

KS2201A - PathWave Test Sync Executive User Manual Chapter 9: TSE Service and Multi-Host support

Checking TSE Service Status with a TSE Service Client object

You can check the state, mode, and logs of TSE Service node with a client application. You connect
to the TSE Service node and instantiate a TSE Service Client object. You can then use the properties
in the object to query it. The TSE Service client object enables you to access the state, mode, and logs
of the TSE Service node. You typically use a client application with systems in Free-Running mode. It
does not require a SystemDefinition.

The TSE Service client object exposes the following properties:

Property Returns Description

tse_
service_
mode

Returns the TSE
Service mode.

The mode returned is the TSE Service node is running in. This is
one of: FREE_RUNNING, LEADER, or FOLLOWER.

tse_
service_
state

This returns the TSE
Service node state.

As the system starts up, it goes through a series of states. The
state returned is the state the TSE Service node is in when it is
queried.

When the state returned is RUNNING you can execute your code. For
a full list of the states, s ee the Python help files.

tse_
service_log

Returns a string
with the TSE
Service Log.

This is the same TSE Service output that is sent to the console or
file.

When the the Mode of each node is correct and the state is RUNNING, the system is ready to run
experiments.

The following snippet shows an example of how to check the state and mode of a host:

tse_service_host = 'tse://TestNode'
kdi_conn_options = "KdiUser=XXX,KdiPassword=****,KdiUrl=wss://localhost:9090/ws"
Get client object
tseServiceClient = keysight_tse.TseServiceClient(tse_service_host, kdi_conn_options)
#
Check state
tse_service_state = tseServiceClient.tse_service_state
#
Check mode
tse_service_mode = tseServiceClient.tse_service_mode
#
Get log
print(f"Current log on server: {tseServiceClient.tse_service_log}")

Find us at www.keysight.com Page 319

KS2201A - PathWave Test Sync Executive User Manual Chapter 9: TSE Service and Multi-Host support

Using Exceptions to check the status of TSE Service

You can also use exceptions to access the state, mode, and logs. For this you must create a
SystemDefinition.

You can use exceptions if, for example, when you create a sequencer and there is a failure. You
typically use exceptions in a system in Leader-Follower mode, in the remote SystemDefintion.

The TseServiceException exposes the same properties as a TSE Service Client object.

The following snippet shows an example on how to use a Client Application with a remote
SystemDefinition :

Opening an instrument with KDI

kdi_user_option = 'KdiUser=hviuser1234,KdiPassword=hviuser1234password'
#
Create system definition client connected to the TSE Service Leader using TSE Resource ID
try:

system_def_client = keysight_tse.SystemDefinition("SystemDefinitionClient", "tse://host1", kdi_user_option)
Client SystemDefinition success only when TSE Service is in LEADER mode and RUNNING state
tse_service_state = keysight_tse.TseServiceState.RUNNING
tse_service_mode = keysight_tse.TseServiceMode.LEADER

#
except keysight_tse.TseServiceException as exc:

tse_service_mode = exc.tse_service_mode
tse_service_state = exc.tse_service_state
tse_service_log = exc.tse_service_log

Find us at www.keysight.com Page 320

KS2201A - PathWave Test Sync Executive User Manual Chapter 9: TSE Service and Multi-Host support

Accessing Remote Resources
The standard way to open local resources (instruments, chassis, Sync Modules, etc) is to use a VISA
Resource ID. With TSE Service and KDI there are other special resource identifier formats that enable
access to resources distributed across the network:

l TSE and TSE-TCP Resource IDs.

l KDI Resource ID.

TSE Service enables you to remotely access resources: chassis and System Sync Modules (SSMs) by
means of the TSE and TSE-TCP resource IDs. While KDI Resource ID is supported by some instru-
ments product families to enable remote and multiple access to instruments.

TSE Resource IDs to access Chassis, SSMs and TSE Service instances

In a system or user application with TSE Service, you can access chassis, System Synchronization
Modules (SSMs), and TSE Service instances distributed across multiple hosts using the TSE Resource
IDs. TSE Service and TSE Resource IDs can also be used in a Single chassis system.

The following table shows the 2 types of TSE Resource IDs available:

TSE Resource ID Format Use Case Example

tse://<host>/<VISA_RESOURCE_ID>

Requires TSE
Service
launched by
KDI.

Requires
KdiUser and
KdiPassword
when used in
the user
application
(see KDI
Resource ID
usage).

For VISA_RESOURCE_ID = PXI0 : : 1 : : BACKPLANE

l tse://myhost/PXI0 : : 1 : : BACKPLANE

tse-tcp://<host>:<port>/<VISA_

RESOURCE_ID>

Does not
require KDI.

For VISA_RESOURCE_ID =

PXI0::CHASSIS1::SLOT10::INSTR

tse-

tcp://myhost:7587/PXI0::CHASSIS1::SLOT10::INSTR

Find us at www.keysight.com Page 321

KS2201A - PathWave Test Sync Executive User Manual Chapter 9: TSE Service and Multi-Host support

Where <host> can be specified using one of these forms:

1. Host Name (or Device Name), this is the recommended for most users. For example: MyLabPc1.

2. Full Host Name, For example: MyLabPc1.NetworkDomain.

3. IP address, this is not recommended, For example: 10.127.1.89.

With TSE-TCP Resource IDs, the application must know the hostname and the TCP port used by TSE
service to connect to or access resources controlled by that TSE Service, for example, to add a
remote chassis or Sync Module.

With TSE Resource ID, the service discovery is resolved by KDI and there is no need to specify
upfront the TSE Service TCP port. As a result of using KDI, when using TSE Resource IDs in the client
application it is required to specify the KDI User and Password options.

NOTE KdiUser, KdiPassword options are mandatory when using TSE Resource ID.

Accessing Chassis and System Sync Modules

To open/access the chassis, you must use the TSE or TSE-TCP Resource IDs explained above,
depending on whether TSE Service is launched with KDI or not. For instance:

Chassis Resource ID specified in tse_config.yml in
testNode2

TSE and TSE-TCP Resource ID

PXI0::1::BACKPLANE
tse://testNode2/PXI0::1::BACKPLANE

tse-tcp://testNode2:8674/PXI0::1::BACKPLANE

For the System Synchronization Module, the resource ID is derived from the corresponding chassis
resource ID, for instance:

Chassis Resource ID specified in tse_
config.yml in testNode2

Corresponding SSM TSE and TSE-TCP Resource ID

PXI0::1::BACKPLANE

tse://testNode2/PXI0::CHASSIS1::SLOT10::INSTR

tse-
tcp://testNode2:8674/PXI0::CHASSIS1::SLOT10::INSTR

Where SLOT10 corresponds to the timing slot in the PXI0::1::BACKPLANE chassis (an 18-slot
chassis).

Find us at www.keysight.com Page 322

KS2201A - PathWave Test Sync Executive User Manual Chapter 9: TSE Service and Multi-Host support

The following snippet illustrates in code the examples above:

Opening Chassis & SSMs with TSE

TSE Resource IDs rely on KDI infrastructure to resolve hosts and TCP ports
Must specify a valid user registered in KDIS
kdi_user_option = 'KdiUser=hviuser1234,KdiPassword=hviuser1234password'
#
Add Chassis using TSE Resource IDs
mySystemDefinition.chassis.add('tse://host1/PXI0::1::BACKPLANE', kdi_user_option) #Chassis 1 in Host 1
#
Add SSMs for each chassis with TSE Resource IDs (SSMs are opened already by TSE Service)
the slot must be the timing slot of the PXI Chassis (for 18-slot chassis, it is slot 10)
primarySSM = mySystemDefinition.interconnects.add_sync_module('tse://host1/PXI0::CHASSIS1::SLOT10::INSTR',
 kdi_user_option)

Opening Chassis & SSMs with TSE-TCP

Or add Chassis using TSE-TCP Resource IDs => must know the port the TSE Service is using
mySystemDefinition.chassis.add('tse-tcp://host1:8674/PXI0::1::BACKPLANE') # Chassis 1 in Host 1
#
Add SSMs for each chassis with TSE-TCP Resource IDs (SSMs are opened already by TSE Service)
must know the TCP port the TSE Service is using
the slot must be the timing slot of the PXI Chassis (for 18-slot chassis, it is slot 10)
primarySSM = mySystemDefinition.interconnects.add_sync_module('tse-
tcp://host1:8674/PXI0::CHASSIS1::SLOT10::INSTR') #SSM for Chassis 1 in Host 1

Accessing TSE Services

In Leader-Follower mode, the client application creates a client system definition that connects to a
Leader TSE Service, to stablish this connection the TSE or TSE-TCP Resources IDs must be used. The
following snippet demonstrates this:

Create a Client System Definition with TSE

TSE Resource IDs rely on KDI infrastructure to resolve hosts and TCP ports
Must specify a valid user registered in KDIS
kdi_user_option = 'KdiUser=hviuser1234,KdiPassword=hviuser1234password'
#
Create system definition client connected to the TSE Service Leader using TSE Resrource ID
sys_def = pyhvi.SystemDefinition("MyAppSystemDef","tse://host1", kdi_user_option)

Create a Client System Definition with TSE-TCP

Create system definition client connected to the TSE Service Leader using TSE-TCP Resource ID
sys_def = pyhvi.SystemDefinition("MyAppSystemDef","tse-tcp://host1:8674")

Find us at www.keysight.com Page 323

KS2201A - PathWave Test Sync Executive User Manual Chapter 9: TSE Service and Multi-Host support

KDI Resource ID to open instruments

KDI enables you to open or access instruments across the network using the KDI Resource ID. With
the appropriate options, KDI also enables you to share the same instrument across applications and
processes. For this, the first call to open a given resource launches an independent process where the
hardware or service session is opened. Following calls to open the same resource with KDI will
connect to the existing session.

TSE Service makes use of KDI to open and initialize instruments at boot-up and get them ready to be
used by the user application later. It is important to note that TSE Service performs the first open of
the hardware resource, so applications do not need to apply any of the specific options required in
the first call to open a resource with KDI.

NOTE When configuring TSE Service to open instruments at boot-up, you do not need to
specify any of the options listed in the First KDI open of a Resource.

To open an instrument with KDI, the process is the same as without KDI, except:

1. Use the KDI Resource ID instead of the VISA one. The KDI Resource ID is built by adding a prefix to
the VISA Resource ID:

l kdi://<host>/<VISA_RESOURCE_ID>.

2. For Authentication the initialization options must include:

l KdiUser and KdiPassword, these are the user and password you set when you added a user
(client) in KDIS, see explanation above on how to configure KDIS.

l KdiUrl in general not needed, but it depends on the system configuration, see details below.

3. To open multiple KDI instances to the same Hardware you must include:

l AllowMultipleClientAttach=1

If you intend to use the HVI Engine of the instrument with TSE API, at the First opening of a KDI
Resource, you must also include:

l HviServer => for example, for automatic IP and Port: HviServer=HVITCP:[::]:0

This first-time option is ignored in following open calls with KDI, as long as the specific resource is
kept open.

For example, if the instrument is not opened by TSE Service:

Opening instrument with KDI

myRemoteInstrument = keysight_ktmodule.KtModule('kdi://testNode1/PXI0::CHASSIS1::SLOT7::INSTR', 1,
1,'Simulate=0,DriverSetup=,KdiUser=user1234, KdiPassword=pass1234, AllowMultipleClientAttach=1,
HviServer=HVITCP:[::]:0, other_instrument_specific_options...')

Find us at www.keysight.com Page 324

KS2201A - PathWave Test Sync Executive User Manual Chapter 9: TSE Service and Multi-Host support

You must always include the KDI user and password as defined in KDIS configuration when you open
instruments in your application.

When the instrument is already opened by TSE Service, the user application must specify the KDI
username and password and AllowMultipleClientAttach=1, other options are in general not needed,
since they are passed by TSE Service:

Opening instrument with KDI

myRemoteInstrument= keysight_ktmodule.KtModule('kdi://testNode1/PXI0::CHASSIS1::SLOT7::INSTR', 1,
1,'Simulate=0,DriverSetup=,KdiUser=user1234, KdiPassword=pass1234, AllowMultipleClientAttach=1')

NOTE KdiUser, KdiPassword and AllowMultipleClientAttach options are mandatory.

NOTE All instances of the same instrument must use the same
AllowMultipleClientAttach value, otherwise, you will get this error:

Could not start or attach to station service KtCornerstone 0.3.6914. Error
message: Cannot connect to existing instance
(PXI0::CHASSIS1::SLOT2::INSTR) because AllowMultipleClientAttach has not
been set by both requestor (false) and instance (true).

NOTE Simulate=false is the default option if not specified. For IVI compliant drivers the
option "DriverSetup=" is mandatory after the IVI standard options and before
instrument specific ones. "DriverSetup=" is not required for Python drivers, it is
ignored.

KdiUrl initialization option

KdiUrl is an optional initialization option specific for instrument drivers, it must be specified as an
initialization option for instruments when the KDI client configuration file does not include the
upstreammanager entry, see Configure KDI Clients to find KDIS for more details:

Opening instrument with KDI

myRemoteInstrument = keysight_ktmodule.KtModule('kdi://testNode1/PXI0::CHASSIS1::SLOT7::INSTR', 1,
1,'Simulate=0,DriverSetup=,KdiUser=user1234, KdiPassword=pass1234, KdiUrl=wss://localhost:9090/ws,
AllowMultipleClientAttach=1, other_instrument_specific_options...')

NOTE If KdiUrl is needed and not specified, you will get an error like:

Couldn't get test station manager URL through options
parameter:Simulate=0,DriverSetup=,LogLevel=Info,KdiUser=hviuser1234,Kd
iPassword=hviuser1234,HviServer=HVITCP:[::]:0

Find us at www.keysight.com Page 325

KS2201A - PathWave Test Sync Executive User Manual Chapter 9: TSE Service and Multi-Host support

Building the correct Remote Resource ID for multiple access

When specifying a Remote resource ID for multiple access, TSE, TSE-TCP or KDI, it is mandatory that
all instances uses the same Resource ID format, in particular all Remote Resource ID used in different
instances that refer to the same Instrument must use the same VISA Resource ID when building the
Remote Resource ID.

The following table shows the different VISA Resource IDs supported for PXI Chassis and Instruments,
and the one that is used by TSE Service which must be used by any application working with TSE
Service:

Type VISA Resource ID format TSE Support

PXI Chassis

Example: Chassis #1

PXI0::1::BACKPLANE Supported

PXI0::35-0::0::INSTR
Not
Supported

PXI35::0::0::INSTR
Not
Supported

PXI Instrument (also System Sync
Modules)

Example: Instrument in Chassis #1 and Slot
12

PXI0::CHASSIS1::SLOT12::INSTR Supported

PXI0::CHASSIS1::SLOT12::INDEX0::INSTR
Not
Supported

PXI0::30-0.0::INSTR
Not
Supported

PXI30::0::0::INSTR
Not
Supported

NOTE When the instrument or chassis is opened by TSE Service at boot up, the Remote
Resource ID (KDI, TSE or TSE-TCP) used in the client application must include the
same VISA_RESOURCE_ID as listed in the tse_config.yml file (or TSE Service Log).
See TSE Service Free-Running Mode section for more details on instrument
management. For instance, if the client application KDI Resource ID does not match
the one used by TSE Service, you will get this error:

Failed to instantiate PXI0::CHASSIS1::SLOT2:: INDEX0:: INSTR. Error:
<StdException>#std::runtime_error#Visa error 0xbfff000f. VI_ERROR_RSRC_
LOCKED: Operation failed due to locked resource

Find us at www.keysight.com Page 326

KS2201A - PathWave Test Sync Executive User Manual Chapter 9: TSE Service and Multi-Host support

Using remote instruments HVI engines in a user application

In order to use TSE capabilities in a user application, you must add the HVI Engines of the desired
instruments in the application systemDefinition instance using the HVI Engine unique ID provided by
the instrument drivers. HVI-capable instruments expose in the instrument drivers the hvi interface
which includes properties with all the available HVI resources, in particular the HVI Engine Unique
IDs, the following snippet illustrates how an HVI engine is added to the systemDefinition instance:

my_instrument = keysight_ktmodule.KtModule('PXI0::CHASSIS1::SLOT7::INSTR', False, False, InstrOptions)
#
my_sys_def = keysight_tse.SystemDefinition('Hvi') # optionally add Leader TSE Service Resource ID
#
my_sys_def.engines.add(my_instrument.hvi.engines.main_engine, "MyEngineAlias")

TSE has built-in multi-process and multi-host capabilities which enable a user application to add HVI
Engines and exploit TSE capabilities of instruments opened in other processes and hosts, the
information required for this is encoded in the HVI engine Unique IDs. An application in a different
process or host just needs to know the HVI Engine Unique ID of a specific instrument, to use it
regardless of the process or host where the instrument is opened.

By default when an instrument is opened, the HVI Engine only supports in-host multi-process access
implemented using shared memory for performance. To enable access from other hosts the
HviServer option must be specified when opening the instrument, f or example, for automatic IP and
Port: "HviServer=HVITCP:[::]:0". The HviServer option opens a TCP server that allows TSE
applications out of host to access and control the HVI Engine and HVI capabilities in that instrument.

The following snippet illustrates how to open an instrument locally with multi-host access for the TSE
capabilities:

Opening instrument with KDI

my_instrument = keysight_ktmodule.KtModule('PXI0::CHASSIS1::SLOT7::INSTR', 1,
1,'Simulate=0,DriverSetup=,HviServer=HVITCP:[::]:0, other_instrument_specific_options...')

NOTE "HviServer=" initialization option must be specified when opening instruments to
allow multi-host access/control of TSE capabilities from a different host. This is
required for instruments located in hosts different from the host where the
application implementing the systemDefinition instance is executed.

Find us at www.keysight.com Page 327

KS2201A - PathWave Test Sync Executive User Manual Chapter 9: TSE Service and Multi-Host support

Using TSE Service in an Application
With the introduction of TSE Service, there are a number of different options to configure the system
in an application to exploit TSE capabilities:

l No TSE Service.

l TSE Service in Free-Running mode.

l TSE Service Leader-Follower mode.

No TSE Service

You create a SystemDefinition object and define the complete system in it, this is the same as the
method used in TSE 2022 and previous releases. You use the call:

SystemDefinition(<name>)

For example:

Define SystemDefinition
my_system = kthvi.SystemDefinition("MySystem")

Once the SystemDefinition object is created, you must define the complete system, with chassis, inter-
connects, clocks, sync resources, HVI Engines, etc.

Find us at www.keysight.com Page 328

KS2201A - PathWave Test Sync Executive User Manual Chapter 9: TSE Service and Multi-Host support

TSE Service Free-Running mode

The setup of Free-Running mode is similar to the No TSE Service setup in that you must define the
chassis, clocks, topology etc. however, in this case you only need to define what you plan to use.

The application code to create and configure the SystemDefinition object, when using TSE Service in
Free-Running mode, is the same as you use for no TSE Service. The advantages of using TSE Service
are:

1. Access remote in other hosts like chassis and System Sync modules (SSMs) using the TSE
Resource IDs.

2. Optionally, you can configure instruments to be open at TSE Service boot-up using KDI Resource
IDs to reduce the instrument driver load time in the application. For local instruments this may
have the disadvantage that some calls to the instrument driver may be slightly slower because
they go through the TCP remote connection.

The user application must specify and initialize all the components they want to use in the application
in the System Definition object using the TSE API.

After boot-up, and once the TSE Service is running and completed initialization, the user (or client)
application must:

1. Open all instruments.

2. Create a System Definition and add the Chassis and SSMs.
a. Use TSE Resource IDs to access Chassis and SSMs in other hosts. See the Accessing Remote

Resources Section for more details.

3. Complete the System Definition configuration as usual:
a. Specify the topology of the system by indicating the physical System Sync connections

between the SSMs.

b. Configured the clocking, Sync Resources, etc. as required.

c. Add the Instrument HVI Engines, etc.

d. Trigger the system initialization with systemDefnition.initialize(...).

4. Create the Sequencer, HVI instance, and rest of the application as usual.

For a full description of how to do this with examples, see Chapter 9 of the PathWave Test Sync
Executive System Setup Guide.

NOTE Your application using the TSE API can run in any host, you do not need to run the
application in the hosts connected to the hardware. If your application is used in a
host with no hardware, then the TSE Service is not required to be running on this
host. Only the Hosts with hardware connected to them require the TSE Service to
be running.

Find us at www.keysight.com Page 329

KS2201A - PathWave Test Sync Executive User Manual Chapter 9: TSE Service and Multi-Host support

TSE Service Leader-Follower mode

Starting an application in a system in Leader-Follower mode is simpler than Free-Running mode
because you are not required to add chassis, SSMs, clocks or define the topology, all this is defined
once in the system_definition.yml file. Additionally, applications run faster because the complete
system initialization can be executed automatically at windows boot-up before the application is
executed. The application only needs to open the instruments and add the HVI engines into the
SystemDefintion instance to get the complete hardware configuration.

When using TSE Service in leader-follower mode the user application creates a client
SystemDefinition instance which connects to the Leader TSE Service. To create a client
SystemDefinition instance, you must specify the TSE or TSE-TCP Resource ID of the leader TSE
Service:

l SystemDefinition(<name>, <leader_address>)

l SystemDefinition(<name>, <leader_address>, <options>)

The following snippets demonstrates how to create a client SystemDefinition. Note that when using
TSE Resource IDs, the options must include the KDI User and Password.

To access remote resources with the KDI infrastructure must use a valid user registered in KDIS
KdiUserOption = 'KdiUser=hviuser1234,KdiPassword=hviuser1234password'
#
Create system definition client connected to the TSE Service Leader
sys_def = pyhvi.SystemDefinition("Hvi","tse://host1", KdiUserOption)

Create system definition client connected to the TSE Service Leader
sys_def = pyhvi.SystemDefinition("Hvi","tse-tcp://host1:8674")

If the connection fails, or the TSE Service is not ready in the Running state in the Leader mode, the
operation will throw an exception with information on the TSE Service state if the connection to the
TSE Service was established.

Once the SystemDefinition object is created, the application must add the HVI Engines and configure
the engine resources, there is no need for the application to configure Chassis, SSMs, interconnects
or clocking, since all this is done by the Leader TSE Service per the systemDefinition.yml file. For a full
description of how to do this with examples, see Chapter 9 of the PathWave Test Sync Executive
System Setup Guide.

Find us at www.keysight.com Page 330

KS2201A - PathWave Test Sync Executive User Manual Chapter 9: TSE Service and Multi-Host support

Chapter 10: HVI Time Management and Latency
This chapter describes HVI time management and latency. It introduces the concepts involved and
describes the timing and latencies of Statement execution, how they impact the overall execution tim-
ing of Sequences, and the constraints on the Start Delay and duration of Statements. It also provides
latency information for the different Statements and instructions.
This chapter contains the following sections:

l Timing Concepts

l Sync Statement Timing

l Local Flow-Control Statement Timing

l HVI Instruction Timing

l Minimum Start Delay Calculation for Local Flow-Control and Sync Statements

l Errors in Start Delay or Duration specification

Find us at www.keysight.com Page 331

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Timing Concepts
This section describes timing concepts. It contains the following sections:

l Synchronization Clocks, Signals, and Modes

l General Timing Concepts

l Sync and Local Flow-Control Statement Timing Concepts

l HVI Instruction Timing Concepts

Find us at www.keysight.com Page 332

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Synchronization Clocks, Signals, and Modes

This section introduces the main concepts of clocks, signals and propagation delays involved in HVI
time management. It includes the following sections:

l Clocks Overview

HVI Engine clock

HVI Engine cycle

HVI Common clock

l Synchronization Signals

Core clocks

System clocks

l Physical Propagation Delay

Sync Period Calculation

Find us at www.keysight.com Page 333

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Clocks Overview

The following list describes the main concepts that apply to all Statement types:

HVI Engine clock

This is the HVI Core clock of the Engine in an instrument. There is one HVI Engine clock per
instrument.

HVI Engine cycle

An Engine cycle is the timeframe in which the HVI Engine can fetch, dispatch or execute
instructions. One Engine cycle is equal to the period of the Engine clock. For example, for an
Engine that runs at 100 MHz, the duration of an Engine cycle will be equal to 10 ns.

HVI Common clock

This is not a real clock, it is a definition to calculate timing for Sync Statements within HVI
Sequences. It can be seen as a clock that has its rising edge aligned with all HVI Engines clocks
rising edges.

Therefore, its frequency is equal to the GCD (Greatest Common Divisor) of the frequencies of all
the HVI Engine clocks:

HVI_Common_ClockFrequency = GCD{HVI_Engine_Clock_1Frequency, HVI_Engine_Clock_2Frequency, ...,

HVI_Engine_Clock_NFrequency}, where N is the number of Engines added to HVI.

The period can be calculated in two ways:

l as the LCM of HVI Engine Cycles (the periods of all the HVI Engine clocks):

HVI_Common_ClockPeriod = LCM{HVI_Engine_Clock_1Period, HVI_Engine_Clock_2Period, ..., HVI_Engine_

Clock_NPeriod}, where N is the number of Engines added to HVI

l or, just the inverse of the HVI Common Clock frequency:

HVI_Common_ClockPeriod = 1/ HVI_Common_ClockPeriod

For example, if the Engines added to HVI have the following HVI Engine Clock frequencies
{100MHz, 187.5MHz, 300MHz}, the HVI Common Clock frequency/period will be:

HVI_Common_ClockFrequency = GCD{100MHz, 187.5MHz, 300MHz} = 12.5MHz,

HVI_Common_ClockPeriod = 1/ HVI_Common_ClockFrequency = 80ns

Find us at www.keysight.com Page 334

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

When calculating Sync Statement timing, the HVI Common Clock period is used to round some
timing magnitudes to the next HVI Common Clock period (below ncc stands for next common
clock):

roundncc(TimeValue) = ceil(TimeValue / HVI_Common_ClockPeriod) * HVI_Common_ClockPeriod

NOTE When working with fractional or periodic time values or periods to avoid problems
with the numerical precision it may be better to use the frequency value instead
following this simple equation:

HVI_Common_ClockFrequency = 1/ HVI_Common_ClockPeriod

Synchronization Signals

HVI uses different periodic digital signals for synchronization purposes. The definition of those digital
signals depends on platform and instruments signals. Platform signals are the CLK100 and CLK10
signals in a PXI platform such as a PXI chassis. Instruments have different clock signals inside that are
classified as core clocks or system clocks.

In cases where an instrument does not include an HVI Engine, these are known as non-HVI core
clocks or non-HVI system clocks. For more information, see Non-HVI Clocks.

Core clocks

These are clocks used by the HVI Engine embedded in an HVI-enabled instrument, including:

HVI Core clocks. These are clocks automatically reported to HVI by an HVI-enabled instrument.
These include the HVI Engine clocks of all engines in the SystemDefinition instance

Non-HVI Core clocks. These are clocks users report explicitly to HVI using the PathWave Test
Sync Executive API, for instruments without HVI, or Devices Under Test. These are included so
they can be taken into account during the synchronized execution of an HVI sequence. Non-
HVI Core clocks must also include any other clock period you require the execution of an HVI
sequence to be synchronized with.

These clocks are used in the calculation of both the SYNC and SYNC_BASE periods.

Find us at www.keysight.com Page 335

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

System clocks

These are the relevant clocks that drive the internal logic of individual instruments, including:

HVI System clocks. These are clocks automatically reported to HVI by an HVI-enabled
instrument.

Non-HVI System clocks. These are clocks users reports explicitly using the PathWave Test Sync
Executive API to account for specific synchronization requirements of instruments without HVI,
or Devices Under Test.

These clocks are taken into account in the alignment process, because they affect the calculation of
the SYNC_BASE period.

System clocks are not Core clocks.

Platform and instrument clock signals contribute to define the HVI Sync signals according to the
following definitions.

The period (and inversely, also the frequency) of the SYNC signal is defined as:

Sync_Period = N x LCM(all instrument core clocks), N such that NxLCM(.) ≥ PhysicalPropagationDelay

The period (and inversely also the frequency) of the SYNC_BASE signal is defined as:

Sync_Base_Period = LCM(CLK10, Sync_Period, all instrument system clocks)

where, in the above formulas, LCM(.) stands for the Least Common Multiple operation.

Both SYNC and SYNC_BASE periods must be equal to or greater than the Physical Propagation Delay
value for the relevant multi-chassis topology, these are given in the following table. If the LCM(all
instrument core clocks) is smaller than that, then you must take the next multiple after the LCM(.)
that is equal to or greater than the Physical Propagation Delay. The next multiple is the actual Sync
Period value for your system. Once that Sync Period value is obtained, you can use it in the SYNC_
BASE LCM formula to estimate the SYNC_BASE Period, which is automatically also greater than the
Physical Propagation Delay.

Find us at www.keysight.com Page 336

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Physical Propagation Delay

The Physical Propagation Delay corresponds to the amount of time (expressed in nanoseconds) that a
PXIe Trigger needs to cover the path between any given pair of segments in a topology. This value is
used when running Sync Statements because it provides information about how long the execution
signaling between modules takes.

The topology is defined by the number of chassis in your system and how they are connected to each
other with the System Sync cabling.

The System Sync cabling distributes clocks, Triggers, and data from the Leader SSM to the followers,
possibly going through intermediate followers. The number of System Sync hops between the Leader
SSM and each Follower determines what is known as the SSM level. The Leader is SSM level 1, all
SSMs connected with 1 hop to the Leader SSM are Level 2 SSMs, those with 3 hops are Level 3
SSMs, and so on.

In the case of the M9033A SSM, there can be up to 4 followers connected to a single SSM, so there
can be up to 5 chassis in system with 2 SSM levels. If you connect additional SSMs to the level-2
SSMs, this creates a 3rd level. In this arrangement you can add one additional chassis, this is because
the PathWave Test Sync Executive supports up to 6 chassis in a single host system. To use more
chassis, you must use a Multi-Host system, for more information see Chapter 9: TSE Service and
Multi-Host support.

The following diagram shows a 6 chassis system with 3 SSM levels:

Find us at www.keysight.com Page 337

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

The following table shows the Physical Propagation Delay values for different numbers of chassis and
SSM levels:

Number of
Chassis

Number of
SSM levels

Physical Propagation delay 1,2 (ns) Notes

1 chassis - 100

2 chassis - 200

3 chassis - 300

>3 chassis 2 SSM levels 300 Maximum 5 chassis

>3 chassis 3 SSM levels 400

Maximum 6 chassis
with PathWave Test
Sync Executive in a
single host system.

1 Upper bound on the time it takes for a PXIe Trigger to travel from the furthermost segments

2 Ensure your M904x chassis has version 5 or higher firmware revision for the Left and Right Trigger
Bridges. See the hardware revision in your chassis Software Front Panel (SFP).

Find us at www.keysight.com Page 338

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Sync Period Calculation

The Sync Period must always be greater than or equal to the Physical Propagation Delay. To obtain
the actual Sync Period value, you first calculate the Least Common Multiple (LCM) of all HVI and
non-HVI core clock periods added to the SystemDefinition. Secondly, you compare the LCM with the
Physical Propagation Delay and take the next multiple of the LCM that is greater than or equal to
the Physical Propagation Delay. This is what was also conveyed by the previous Sync Period formula.

The base unit of time measurement on an HVI Engine is the period of its own HVI Engine Clock, but
the Physical Propagation Delay is expressed in nanoseconds. To be able to use it, each Engine must
express it in Clock cycles, so a conversion is required:

Propagation_delay_cycles = Round(Physical_Propagation_Delay/Hvi_Engine_Clock_period)

For example. to calculate the Sync frequency for instruments A and B use the formula:

Sync = LCM(all instrument core clocks)

Instrument A Core clock = 100 MHz, period = 10 ns

Instrument B Core clock = 300 MHz, period = 3.333 ns.

Since 10ns is a multiple of 3.333 ns, the LCM is 10ns. If your instruments are all in 1 chassis, the
Physical Propagation Delay constrained by the propagation delay is 100 ns (per the values in the
previous table). Therefore, you need to take the next multiple of the LCM = 10 ns which is also equal
or greater than 100 ns. This gives the final value of the Sync Period as 100 ns and the Sync signal
frequency is 10MHz.

NOTE You can find the instrument System and Core clocks in the documentation of each
instrument.

Find us at www.keysight.com Page 339

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

General Timing Concepts

This section introduces general timing concepts that apply to HVI Sequences and Statements. It
includes the following sections:

l Global Sync Sequence Start

l Start Time of Statement execution

l Start Delay

l Execution Time

l Internal Sequences

Global Sync Sequence Start

The Global Sync Sequence start is time 0 for the HVI execution, that is the timing point when the HVI
Sequences will start executing at the same time in all the Engines added in the SystemDefinition. This
timing point is aligned with the arrival of the Sync signal, that is, it always matches the rising edge of
the Sync signal (in PXIe systems aligned with the PXIe-SYNC100 signal).

The following diagram shows the Global Sync Sequence Start.

Find us at www.keysight.com Page 340

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Start Time of Statement execution

The relative time in nanoseconds from the HVI Execution Start Time to the start of the execution of
a Statement.

Start Delay

This is the user-defined delay value from the Start Time of the previous Statement to the Start
Time of the current Statement. This value can be expressed in seconds or one of its fractions,
down to picoseconds. Generally, the valid range is from 0 to +infinity, however the exact range
and granularity of this value is defined by the following:

The acceptable values are multiples either of the HVI Engine Clock period (in Local Statements) or,
of the HVI Common Clock period (in sync Statements).
o For example, for a Local Statement for an HVI Engine with Clock frequency of 100MHz, the
clock period is 10 ns, so the acceptable values are the multiples: 0 ns, 10 ns, 20 ns, etc.

o As another example, for a sync Statement, if there are three Engines added to HVI with the
frequencies {100MHz, 187.5MHz, 300MHz}, the HVI Common Clock frequency will be
12.5MHz and the period is 80 ns, so the acceptable values are the multiples: 0 ns, 80 ns, 160
ns, etc.

o The acceptable margin of the value is defined in the Error and Warning Margins section
below.

The minimum possible value is affected by the Start-Latency of the current Statement and the
End-Latency of the previous Statement. Formulas to calculate the minimum values are provided
in the Timing Tables.

The maximum possible value is only limited by the actual representation of the value in hard-
ware and software. While this limit in hardware is instrument-dependent, in software it is
defined as: The maximum value that can be represented in a signed 64-bit integer value.

The following sections explain how to calculate the Start Delay. When compiling the Sequence,
the compiler will report any timing violation and suggest a closer correct value.

NOTE If you do not specify a valid Start delay, the compiler generates an error and
indicates the minimum valid minimum value.

Find us at www.keysight.com Page 341

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Execution Time

This is the time interval from the Start time until the End time of the Statement. This interval is
determined by constraints and inherent limits of the instrument, such as propagation delays and
resource availability. Sync and Flow-control Statement execution cannot overlap with other
Statements, so in these cases the execution time must be added to the timing calculation. The
Start delay of the next Statement from a flow-control or Sync Statement is measured from the
end-time of the Statement.

The following diagram shows these concepts in an HVI diagram:

Internal Sequences

Some Sync and all Local Flow-Control Statements are broken into internal Sequences for exe-
cution in HVI Engines.

Find us at www.keysight.com Page 342

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Sync and Local Flow-Control Statement Timing Concepts

This section describes Sync and Local Flow-Control Statement Timing. It includes the following sec-
tions:

l Latency

l Duration Property

There are several additional concepts and parameters you must be aware of to calculate timing,
especially for specifying Start Delays and the Duration property of Statements.

NOTE The knowledge of these concepts can assist you to understand HVI timing and
accurately specify proper values for these timing properties, however it is not
mandatory to use them at development time. This is because all limitations are
checked by HVI at the time of compilation and any violation is reported with
information provided about how it can be resolved. This enables you to focus on its
Sequence creation without worrying about complex timing calculations.

Find us at www.keysight.com Page 343

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Latency

Latency Parameters

The latency parameters are defined for all Sync and Local Flow-Control Statements. They impose a
minimum value to the Start Delays of the Statements used in a Sequence:

Start-Latency

This is the minimum number of clock cycles a Sync or Local Flow-Control Statement
requires to start execution.

Entry-Latency

This is the minimum number of clock cycles a Local Flow-Control Statement requires to
start the execution of the internal Sequence. This imposes a minimum value on the Start
Delay of the first Statement of the internal Sequence.

End-Latency

This is the minimum number of clock cycles a Statement requires to exit its execution,
before another Statement can be executed.

Iteration Latency (loop Statements)

For loop Statements only, this is the minimum number of cycles a loop Statement requires
to start another execution of the internal Sequence after one iteration is completed. This
imposes a minimum value on the Start Delay of the first Statement of the internal Sequence.

The exact definitions of Start latency, Entry latency and End latency depend on the type of Statement.
Latency values are used in Sync Statement Timing and Local Flow-Control Statement Timing and
HVI Instruction Timing . The Latency values are listed in Appendix C: Timing Tables.

Find us at www.keysight.com Page 344

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

The following diagram shows the Start, Entry and End Latencies and how they relate to Start Delays:

Find us at www.keysight.com Page 345

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Duration Property

The Sync Statements and Local Flow-Control Statements If and While include a duration property
that you can set. The duration property enables you to specify the time interval that a Statement
takes to execute.

This value can be expressed in seconds or one of its fractions, down to picoseconds. Generally, the
valid range is from 0 to +infinity, however the exact range and granularity of this value is defined by
the following:

The acceptable values are multiples either of the HVI Engine Clock period (in Local Statements) or,
of the HVI Common Clock period (in sync Statements).
o For example, for a Local Statement for an HVI Engine with Clock frequency of 100MHz, the
clock period is 10 ns, so the acceptable values are the multiples: 0 ns, 10 ns, 20 ns, etc.

o As another example, for a sync Statement, if there are three Engines added to HVI with the
frequencies {100MHz, 187.5MHz, 300MHz}, the HVI Common Clock frequency will be
12.5MHz and the period is 80 ns, so the acceptable values are the multiples: 0 ns, 80 ns, 160
ns, etc.

o The acceptable margin of the value is defined in the Error and Warning Margins section
below.

The minimum possible value is affected by internal operations of the Statement. For Statements
that contain internal Sequences, the minimum is affected also by the Start-Delay and the
Duration of the internal Statements. Formulas to calculate the minimum values are provided in
the Timing Tables.

The maximum possible value is only limited by the actual representation of the value in
hardware and software. While this limit in hardware is instrument-dependent, in software it is
defined as: The maximum value that can be represented in a signed 64-bit integer value.

NOTE For the loop Statements Local while and Sync while, the duration property specifies
the execution time of 1 iteration. This means that the overall execution time of a
while Statement depends on the number of iterations that are executed. The total
execution time is duration multiplied by the number of iterations.

If the duration is set to a fixed-time interval, then the execution time of the Statement shall match the
value specified in the duration property. If this time cannot be matched an error is generated. For
example, this can happen with an if-Statement when more time is required to complete the
Statements inside a branch than the duration specified.

The duration property cannot be set to fixed value if there is a flow control Statement inside that has
an unknown duration.

Find us at www.keysight.com Page 346

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

If the duration is set to a minimum-time interval, then the execution time of the Statement is the
minimum possible given by the Statements inside.

NOTE By default, if not specified, duration property is set to minimum-time.

The following diagram shows how the duration property is applied to a Sync Multi-
Sequence Block:

Python code for the preceding diagram:

fixed_duration_A = time.Duration(xxx)
mse1 = sequencer.sync_sequence.add_sync_multi_sequence_block('mse1', start_delay_A)
mse1.duration = fixed_duration_A
sequence = mse1.sequences['Engine1']
instructionA = sequence.add_instruction("instructionA", start_delay_B, sequence.instruction_set.action_
execute.id)
instructionB = sequence.add_instruction("instructionB", start_delay_C, sequence.instruction_set.action_
execute.id)

You must not set the duration property of a Statement A to a fixed-time if the Statement A contains a
flow control Statement with an unknown duration (e.g. Local Wait-For-Event, Local Wait-For-Time,
Local While, etc.). Doing so will result into an error at compilation.

Find us at www.keysight.com Page 347

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

The following diagram shows a while loop that generates an error if the user would try to set to a
fixed-value the duration of the Sync Multi-Sequence Block that contains a Local While Statement:

Find us at www.keysight.com Page 348

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

HVI Instruction Timing Concepts

The following section explains HVI Instruction timing. It includes the following sections:

l Fetch Time

Fetch Time

This is the time interval required by the HVI Engine to fetch and dispatch an HVI Instruction for pro-
cessing. The Fetch time consumes HVI Engine execution cycles. A Statement may take several HVI
Engine cycles to complete the fetch before processing can start. The number of cycles a fetch takes
depends on the Statement or instruction characteristics, for instance, the number of parameters.

The following diagram shows the fetch time with other timing definitions:

Find us at www.keysight.com Page 349

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Sync Statement Timing
This section describes Sync Statement timing. It contains the following sections:

l About Sync Statement Timing

l How to use the Timing Tables for Sync Statements

l HVI Start

l Sync Multi-Sequence Block Timing

l Sync While

l Sync For

l Sync Delay

l Sync Register-Sharing

l Sync Data-Sharing

Find us at www.keysight.com Page 350

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

About Sync Statement Timing

Sync Statements consume HVI Engine execution time and cannot overlap their execution with other
Statements. Their start and end is synchronized and happens at the same HVI Common Clock cycle
across all the Engines participating in the system. The Start delay of a Sync Statement is measured
from the end of previous Sync Statement to the start of the current one.

The following diagram shows the timing between a number of Sync Statements including a Sync
Register-Sharing Statement and Sync Multi-Sequence Block Statement.

The diagram shows two Sync Statements A and B. Sync Statement B is a container for two further
Sync Statements: Sync Register-Sharing and Sync Multi-Sequence Block. The times indicated
are Start Delay A, Start Delay B, Start Delay C, T1, and T2.

The time between the end of Sync Statement A and the start of Sync Register-Sharing is Start Delay
A + Start Delay B .

The time between the end of Sync Register-Sharing and the start of Sync Multi-Sequence
Block is Start Delay C.

Sync Register-Sharing and Sync Multi-Sequence Block timing:

NOTE You can get Sync Statement timing information with the SyncSequence method sync_

timing. See Sync Statements.

Find us at www.keysight.com Page 351

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

How to use the Timing Tables for Sync Statements

All the timings provided in the tables below are expressed in HVI Engine Clock cycles. To use them to
calculate minimum start delay values, see the explanations in Minimum Start Delay Calculation for
Flow-Control and Sync Statement. Start delays of Local Statements must be multiple of the HVI
Engine Clock, whereas Sync Statements must be multiples of the HVI Common Clock, see General
Timing Concepts.

Leader Engine

In some of the Sync Statements, one of the Engines that leads the Statement operation. For example,
in a Sync While Statement, the Engine that leads is the one where the condition is evaluated. For the
context of Timing Latency calculation, we are going to call this Engine the Leader Engine.

Rounding Delays

When a latency value needs to be applied to multiple Engines, we must round the Engine cycles to
the next HVI Common Clock cycle. We do this using the following formula (below ncc stands for n
ext c ommon c lock):

roundncc_cycles(TimeValueEngineCycles) = ceil(TimeValueEngineCycles* HVI_Engine_ClockPeriod / HVI_Common_

ClockPeriod) * HVI_Common_ClockPeriod / HVI_Engine_ClockPeriod

NOTE In the case that all the Engines are running at the same frequency, the HVI Engine
Clock cycles and the HVI Common Clock cycles will have the same value for all the
Engines. Therefore, you can skip the rounding calculation because it has no effect:

roundncc_cycles(TimeValueEngineCycles) == TimeValueEngineCycles

Matching Delays

Some parts of the latency may need to be aligned between Engines. In order to achieve this, we use
the following formula:

match{TimeValueEngine1Cycles, TimeValueEngine2Cycles,..., TimeValueEngineNCycles} = roundncc_cycles(max

{TimeValueEngine1Cycles, TimeValueEngine2Cycles,..., TimeValueEngineNCycles})

In the previous formula, all the TimeValues have to first be converted to the EngineCycles of the target
Engine so that the max can be applied among similar quantities. This can be done using this formula:

TimeValueTargetEngineCycles = ceil(TimeValueOtherEngineCycles * HVI_OtherEngine_ClockPeriod / HVI_TargetEngine_

ClockPeriod)

NOTE In the case that all the Engines are running in the same frequency, the calculation of
the match formula is just the time value of the Leader Engine:

match{TimeValueEngine1Cycles, TimeValueEngine2Cycles,..., TimeValueEngineNCycles} ==

TimeValueLeaderEngineCycles

Find us at www.keysight.com Page 352

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

https://confluence.it.keysight.com/display/HAUD/Minimum_Start_Delay_Calculation_for_Flow-Control_and_Sync_Statement
https://confluence.it.keysight.com/display/HAUD/Minimum_Start_Delay_Calculation_for_Flow-Control_and_Sync_Statement
https://confluence.it.keysight.com/display/HAUD/General_Timing_Concepts
https://confluence.it.keysight.com/display/HAUD/General_Timing_Concepts

Physical Propagation Delay

The Physical Propagation Delay corresponds to the amount of time (expressed in nanoseconds) that a
PXIe Trigger needs, to cover the path between any given pair of segments in a topology. This value is
used when running Sync Statements because it provides information about how long the execution
signaling between modules takes.

The Physical Propagation Delay is expressed in nanoseconds and its value depends on the topology.
A table with the values is defined on the page Synchronization Clocks, Signals, and Modes.

In the context of the Timing Tables, the value is expressed in cycles of the HVI Engine, as it is shown in
the timing tables. To be able to use it, a conversion is required:

Propagation_delayEngineCycles = Round(Physics_Propagation_DelaySeconds /HVI_Engine_ClockPeriod)

HVI Start

This is the time 0 for the HVI execution. It always matches the rising edge of the Sync signal (in PXIe
systems aligned with the PXIe-SYNC100 signal).

HVI start basic timing value:

Parameter
Time

(cycles)

End-Latency 2

Find us at www.keysight.com Page 353

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Sync Multi-Sequence Block Timing

In a synchronized multi-Sequence block, you can define the Statements that the HVI Engines execute
in parallel with other Engines.

Local Sequences start and end their execution within the Sync Multi-Sequence Block synchronously.

HVI automatically calculates the execution time of each local Sequence and adjusts the execution of
all local Sequences within the Sync Multi-Sequence Block so that they all can end together
deterministically.

The individual Sequences can have different execution times, so HVI automatically adjusts the timing
of each individual Sequence. The final time is calculated automatically.

There are two cases for the Sync-Point that are treated in different ways by HVI:

l Timed-Sync: When the execution time is known at HVI compilation time for all Local Sequences
within the Sync Multi-Sequence Block.

l Triggered-Sync: When the execution time is unknown at HVI compilation time for one or more
Local Sequences within the Sync Multi-Sequence Block.

Find us at www.keysight.com Page 354

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Timed-Sync (Sync Multi-Sequence Block containing Local Sequences with known total execution
time)

For Sync Multi-Sequence Blocks that contain HVI Instructions or Local Flow-Control Statements with
execution times that are known at HVI compilation time, the HVI compiler accounts for the different
Sequence execution times during compilation and then adjusts the final times. This ensures all of the
Local Sequences reach the end of the Sync Multi-Sequence Block at the same time.

When the execution time (duration property) of the Sync Multi-Sequence Block is not specified, the
compiler adjusts the total execution time to be the minimum possible to allow the execution of the
longest Local Sequence. Note that in the case that the Engines participating in the system do not
share the same frequency, HVI will automatically adjust the duration (or execution time) of the Sync
Multi-Sequence Block Statement to a multiple of the HVI Common Clock.

For example, in the diagram below, the total time for Engine A is 400 ns. HVI calculates the times
required for the other Engines to finish at the same time. For Engine B this is 390 ns, for Engine K this
is 90 ns.

Find us at www.keysight.com Page 355

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Using the previous example but assuming that the Engine A runs at 200 MHz, while the rest Engines
run at 100 MHz, the common clock cycle will happen at multiples of 10 ns. In the following diagram
we can notice two things:

l The duration of the longest Sequence (Engine A) is 395 ns, which is not a multiple of a common
clock cycle. Therefore, HVI will adjust the end of the Sync Multi-Sequence Block to the next
Common Clock Cycle at 400 ns and then make sure the Sequences of all the Engines match this
time.

l The start of the end-latency of the Statement will not start from the start time (395ns from the
beginning of the Sync Multi-Sequence Block Statement) of the last Statement of the longest
Sequence (Engine A) because it is not at a common clock cycle. Rather, it will start from the next
Common Clock Cycle, at 400 ns.

Find us at www.keysight.com Page 356

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Sync Multi-Sequence Block with a specific execution time (duration property)

When the execution time (duration property) of the Sync Multi-Sequence Block is specified, the
compiler verifies that the specified execution time is enough to allow the execution of the longest
Local Sequence, if not an error is generated. Note that in the case that the Engines participating in
the system do not share the same frequency, the specified execution time (duration property) must be
a multiple of the HVI Common Clock.

In the following diagram, the times of the HVI Instructions and the delays between them are known,
so the timing between them and for the entire block can be calculated. In this case the total time is
specified at 750 ns. The HVI calculates the times required for all the other Engines to finish at the
same time. For Engine A this is 350 ns, for Engine B this is 740 ns, for Engine K this is 440 ns.

Find us at www.keysight.com Page 357

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Triggered-Sync (Sync Multi-Sequence Block containing Local Sequences with unknown execution
times)

In some cases, one or more of the local Sequences within the Sync Multi-Sequence Block include a
Local Flow-Control Statement that has an execution time that is unknown at HVI compilation time. At
the point in the Local Sequence where the unknown execution time is encountered, the Local
Sequence becomes de-synchronized and an active triggering process is required at the end of the
Sync Multi-Sequence Block to re-synchronize the execution of all HVI Engines. This guarantees that
all the HVI Engines then continue execution at exactly the same point after the Triggered-Sync point.
The execution resumes in all HVI Engines at the same time, aligned with a sub-sequent Sync pulse,
which forces the execution to be aligned to a multiple of the Sync period of the main Sync signal.
Triggered-sync points require the use of Trigger resources assigned in the SyncResources property in
the SystemDefinition instance and the main Sync signal.

Possible cases of the unknown execution time is when one of the Local Sequences contain:

l A Local Wait-for-time Statement with an HVI Register defining the wait time at runtime.

l A Local Wait-for-Event Statement.

l A Local While Statement.

l A Local If Statement with unmatched branches, that take different execution times.

NOTE Specifying the execution time (duration property) in this scenario is not permitted
and will lead to a compilation error.

Find us at www.keysight.com Page 358

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Triggered-Sync delay

A Triggered-sync point adds a delay to the Sequence timing that has four parts. Two of them are
constant and the other two vary depending on the last Statement and its position compared to the
Sync pulse time. The formula to calculate the delay is:

triggered_sync_delay = end_latency + sync_overhead + edge_offset + sync_period

where:

l end_latency is the End-latency of the last Statement before the resync. If the last Statement is an
HVI Instruction, this is equal to its Fetch time.

l sync_overhead is constant per instrument. Its value is 3 cycles.

l edge_offset is the time interval from the end of the sync_overhead to the sync-pulse edge. This time
can vary depending on the position of the last Statement compared to the Sync pulse time.

l sync_period is constant per configuration and is calculated by the equation defined in
Synchronization Clocks, Signals, and Modes.

NOTE The TSE API enables you to record and retrieve the value of the Triggered-Sync
delay, See Sync Statements.

Example of timing management with Triggered-Sync point

The following diagram shows an example with a simple Sequence where the Triggered-sync point is
marked in red. The Triggered-sync point is at the end of the Sync Multi-Sequence Block and it is
required because there is a WaitTime Statement and the time for this cannot be determined at
compile time.

Find us at www.keysight.com Page 359

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

#SynchronizationClocks,Signals,andModes-,Synchronization20Signals,-HVI20uses20different

The following table shows the Variables and their execution times:

Variable Value Description

Ta 120 ns Start delay of Sync-while Statement

Tb 270 ns Start delay of Sync Multi-Sequence Block

Tc 50 ns Start delay of Action A HVI Instruction

Td 30 ns Start delay of Wait-for-time Statement

Reg0 4 The HVI Register used for the Wait-for-time

TWAIT 40 ns The total wait time based on the value on the value of Reg0

TEND 10 ns End-latency of Wait-for-time Statement

Tsync_period 100 ns Sync period for 1 chassis

Tsync_overhead 30 ns Sync overhead

The following diagrams shows the execution timeline for the first 3 iterations of the Sequence shown
in the previous diagram, it is important to note that the first Triggered-sync aligns the execution with
the Sync pulse and consequently the duration (or execution time) for the following cycles will be
different, this effect is in some cases seen as a skew (or jitter) in the 1st cycle. A way to eliminate the
first cycle variation is to adjust the Sync While start time.

Find us at www.keysight.com Page 360

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Jitter when waiting for external Events or Triggers

The triggered-sync is controlled by the SYNC signal. This means that repeated executions, for
example, inside a Sync While loop of an Sync Multi-Sequence Block that contains a WaitEvent, may
show jitter of the Sync Multi-Sequence Block actions with respect to the Event that is in the
WaitEvent condition. In these cases, the maximum skew variation (or jitter) is the maximum time
difference between Trigger Events and the Sync Period. The Variable skew (or jitter) value can be:

l 0 => when the Trigger Events have the same time delay with respect to the SYNC signal.

l Sync period => When the Trigger Events are asynchronous and at a rate that is not multiple of the
Sync period.

l If more than one synchronization signal is used (SYNC, SYNC_BASE, etc.), the largest will
dominate:

A Sync Multi-Sequence Block always aligns its start to the SYNC signal, so at least the jitter for
an asynchronous Event will be equal to the Sync period.

For example, if you also re-sync the Wait-For-Event with the SYNC_BASE (by using the SYNC_
BASE SyncMode), and the Trigger is asynchronous to the SYNC_BASE, then the jitter will be
equal to SYNC_BASE.

l The SYNC and SYNC_BASE periods depend on any Non-Hvi clocks (core/system) added to the
systemDefinition using the TSE API.

Sync Multi-Sequence Block Timing Tables

Timing value for Sync Multi-Sequence Blocks:

Execution time (cycles) (1)

roundncc_cycles (sumfor_all_internal_statements(StartDelayCycles) + sumfor_all_internal_flow_control_statements

(DurationCycles)) (2)

The following tables shows latency values for Sync Multi-Sequence Blocks:

Find us at www.keysight.com Page 361

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Parameter Description Time(cycles)

Start-
Latency

Minimum start-delay for
Statement

1

Entry-
latency

Minimum start-delay for
first Statement inside any
of the contained Sequences

1

End-
Latency

Minimum
start-delay
for the next
Statement

timed-sync
(5)

Minimum
Duration

roundncc_cycles(End-LatencyLast-statement-of-longest-branch(3) -

1)

* If the last Statement of the longest branch is not
starting from a common clock cycle (see section Sync
Multi-Sequence Block Timing and Time Matching in
Sync Statement Timing), the formula is updated to:

roundncc_cycles(End-LatencyLast-statement-of-longest-branch(3) -

1 - DistanceToNextCommonClock)

where:

- DistanceToNextCommonClock is the number of Engine
Cycles from the start of the last Statement to the
following common clock cycle.

timed-sync
(5)

Fixed
Duration

0

triggered-
sync (5) 0

Fixed-
Duration

Minimum fixed-duration for
Statement

roundncc_cycles([maxfor_all_Sequences[Sequence-Duration]])(4),

where Sequence-Duration is calculated as follows:

sumfor_all_internal_statements(Start-Delay) + sumfor_all_

internal_flow_control_statements(Duration) + End-LatencyLast-

statement - 1

Find us at www.keysight.com Page 362

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

(1) The values provided here apply if the duration property of the Statement is set to Minimum
(default). If a fixed-duration has been set, then the Execution time is equal to that value.

(2) The values are only calculated for the branch that is being executed, if there are multiple
branches available.

(3) If the Sequence is empty, the value is 0.

(4) If the Sequence is empty, then the duration is 0.

(5) Triggered-sync is required if any of the Sequences in a Sync Multi-Sequence Block contains
a Statement that has unknown execution time at compile time.

Find us at www.keysight.com Page 363

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Sync While

For the Sync While flow-control Statement, the timing is different compared to other Sync
Statements. The Sync While Statement continues operation while a condition is met. It stops
executing when the condition is no longer met.

The following diagram shows a Sync While Statement with other Sync Statements. The time for an
iteration of Sync While is T2 x N, where T2 is the time per iteration and N is the number of iterations.
The time cannot be indicated exactly on a diagram or in code because the number of iterations is not
known until runtime.

The time for the containing Statement Sync Statement A cannot be indicated because it contains a
flow-control Statement. This is indicated by the dotted line and the time indicated as T min.

Sync While Timing Tables

Timing value for Sync While Statement:

Execution time (cycles) (1)

roundncc_cycles (#Iterations * [sumfor_all_internal_statements(StartDelayCycles) + sumfor_all_internal_flow_

control_statements(DurationCycles)])

The following tables shows latency values for the Sync While Statement:

Find us at www.keysight.com Page 364

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Parameter Description Time (cycles)

Start-Latency Minimum start-delay for Statement

l Leader Engine: 6 + #Register_Conditions

l Follower Engine(s): 2

Entry/Iteration
latency

Minimum start-
delay for first
Statement inside
the while loop

Minimum
Duration

match{LatencyALeaderEngine, LatencyAFollowerEngine1,

...} + 2 + End-LatencyLast-statement(2)

where LatencyA is :

l Leader Engine(3): 12 + #Register_Conditions
+ Instrument_SyncResources_Latency (4) +
Propagation_delayCycles

l Follower Engine(s): 2

Fixed Duration

match{LatencyBLeaderEngine, LatencyBFollowerEngine1,

...} + 2

where :

l LatencyB = LatencyA - 1

l LatencyA as defined above

Find us at www.keysight.com Page 365

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Parameter Description Time (cycles)

End-Latency

Minimum start-
delay for next
Statement outside
the while loop

Minimum
Duration

match{LatencyALeaderEngine, LatencyAFollowerEngine1,

...} + match{LatencyCLeaderEngine,

LatencyCFollowerEngine1, ...} + End-LatencyLast-

statement(2),

where:

l LatencyA as defined above

l LatencyC is 2 for each Engine.

Fixed Duration

match{LatencyBLeaderEngine, LatencyBFollowerEngine1,

...} + match{LatencyCLeaderEngine,

LatencyCFollowerEngine1, ...},

where:

l LatencyB as defined above

l LatencyC as defined above

Fixed-Duration
Minimum fixed-
duration for
Statement

Sync-While
Branch with at
least one
Statement
inside

roundncc_cycles(sumfor_all_internal_statements

(StartDelayCycles) + sumfor_all_internal_flow_control_

statements(DurationCycles) + 1 + End-LatencyLast-

statement)

Empty Sync-
While Branch

match{LatencyBLeaderEngine, LatencyBFollowerEngine1,

...} + match{LatencyCLeaderEngine,

LatencyCFollowerEngine1, ...} + 1,

where:

l LatencyB as defined above

l LatencyC as defined above

Find us at www.keysight.com Page 366

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Parameter Description Time (cycles)

Register
Evaluation
Latency

Time to evaluate the Register
condition

Leader Engine (Only):

l From start: 2

l For each iteration: -(3 + #Register_Conditions)

(1)This value applies if the duration property of the statement is set to Minimum (default). If a fixed-
duration has been set, then the Execution time is equal to that value.

(2)If the sequence is empty, the value of End-LatencyLast-statement is 0.

(3)In the context of this statement, Leader is the engine that contains the Register or Registers used
in the while condition.

(4) Instrument_SyncResources_Latency is an instrument specific value. For more information see the
instrument documentation.

Find us at www.keysight.com Page 367

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Sync For

The Sync For statement enables you to execute synchronized real-time looping, across multiple
instruments over a range of values you pre-define. The Sync For runs with a Sync-Register that
enables significantly faster real-time looping than using Sync While with Local HVI registers. By using
Sync Registers, the Sync For avoids having to use triggered-synchronization points. This results in a
multi-instrument execution that is as fast a single engine Local For. See HVI Registers and Scopes for
more information about Sync-Registers.

Sync For Timing Tables

Timing value for Sync For Statement:

Execution time (cycles) (1)

roundncc_cycles (#Iterations * [sumfor_all_internal_statements(StartDelayCycles) + sumfor_all_internal_flow_

control_statements(DurationCycles)])

Find us at www.keysight.com Page 368

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

The following tables shows latency values for the Sync For Statement:

Parameter Description Time (cycles)

Start-Latency Minimum start-delay for Statement
8

Entry/Iteration
latency

Minimum start-
delay for first
Statement inside
the while loop

Minimum
Duration

14 + End-LatencyLast-statement(2)

Fixed Duration
14

End-Latency

Minimum start-
delay for next
Statement outside
the while loop

Minimum
Duration

14 + End-LatencyLast-statement(2)

Fixed Duration
14

Fixed-Duration
Minimum fixed-
duration for
Statement

Branch with at
least one
Statement
inside

[sum for_all_internal_statements(Start-Delay) +
sumfor_all_internal_flow_control_statements
(Duration) + End-Latency Last-statement] (1)

Empty Branch 14

Register
Evaluation
Latency

Time to evaluate the Register
condition

N/A

Find us at www.keysight.com Page 369

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Sync Delay

The Sync Delay Statement delays the execution of a Sync Sequence for a time specified in Common
Clock Cycles. The delay can be specified as a literal or as a value in a Sync Register, the delay is not
required to be known at the time of creating the HVI Sequence.

Sync Delay Statement enables you to place a delay anywhere without desynchronizing execution, this
is because all engines execute the same delay. This is true even if the delay time is not known at
compile time.

Sync Delay Timing Tables

Timing value for Sync Delay Statement:

Execution time (cycles)

Literal Value(1) / Register Value(2)

Latency values for Sync Delay Statement:

Parameter Description Time (cycles)

Start-Latency Minimum start-delay for Statement
1

End-Latency
Minimum start-delay for the next
Statement

0

Fixed-
Duration

Minimum fixed-duration for Statement
N/A

Register
Evaluation
Latency

Time to evaluate the Register condition 1(2)

(1) Applies only when delay value is specified as a Literal.

(2) Applies only when delay value is specified as a Sync Register.

Find us at www.keysight.com Page 370

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Sync Register-Sharing

The Sync Register-Sharing Statement execution time must be accounted for when calculating the
Sync Sequence timing.

The following diagram shows Sync Register-Sharing Statement followed by a Sync Multi-Sequence
Block:

Sync Register-Sharing Timing Table

Sync Register-Sharing latency does not depend on the number of bits shared. For more information
on this functionality, see Sync Statements.

Timing value for Sync Register-Sharing Statement:

Execution time (cycles) (1)

roundncc_cycles(5 + Propagation_delayCycles)(2)

Find us at www.keysight.com Page 371

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Latency values for Sync Register-Sharing Statement:

Parameter Description Time (cycles)

Start-Latency Minimum start-delay for Statement
1

End-Latency
Minimum start-delay for the next
Statement

0

Fixed-
Duration

Minimum fixed-duration for Statement
roundncc_cycles(5 + Propagation_delayCycles)(2)

Register
Evaluation
Latency

Time to evaluate the Register condition -1

(1) The value provided here applies if the duration property of the Statement is set to
Minimum (default). If a fixed-duration has been set, then the Execution Time is equal to that
value.

(2) This latency needs to be calculated only on the Leader Engine. In the context of this
Statement, Leader is the Engine that contains the Register(s) used as source.

Find us at www.keysight.com Page 372

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Sync Data-Sharing

The Sync Data-Sharing Statement enables you to share data between the FPGA-Sandboxes on
different instruments in the same or different chassis.

NOTE The Sync Data-Sharing Statement replaces the now deprecated Sync FPGA Data-
Sharing Statement.

Sync Data-Sharing Timing Table

Calculating execution times for Sync Data-Sharing can be a complex process. This is because Sync
Data-Sharing execution time depends on a number of factors:

l Instrument specific delay characteristics.

l The topology of your system.

l The amount of data be transferred.

l If the transfer of data is in a single chassis or if it is between different chassis.

l The scheduling of multiple transactions.

Find us at www.keysight.com Page 373

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Latency values for Sync Data-Sharing Statement:

Parameter Description Time (cycles)

Start-Latency Minimum start-delay for Statement
1

End-Latency Minimum start-delay for the next Statement
0

Estimating the execution time of a Sync Data-Sharing Statement

Sync Data-Sharing execution time depends on several factors:

l Instrument specific delay characteristics.

l The topology of the system, for instance, the number of chassis and the System Sync connectivity
topology across chassis.

l Location of the source and destination instruments, such as if the data transfer happens in a single
chassis or through multiple chassis.

l The amount of data be transferred.

l The scheduling of multiple transactions.

In order to assist you estimate of the execution time, the following examples are provided that
abstract some of the complexities, these should enable you to make good estimates of execution
time.

Find us at www.keysight.com Page 374

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Latency Equations

To estimate the Sync Data-Sharing Statement execution time, a number of equations are provided
below.

The following image shows the example topology used in the examples:

The formula to calculate the time it takes to send a single nibble (4-bits) of data from Instrument 1 to
Instrument 2 (in the same chassis) is:

Tsingle_chassis = Ttx_latency + Tlink_latency+ Tssm_latency + Tlink_latency + Trx_latency = Ttx_latency + 2*Tlink_latency +

Tssm_latency + Trx_latency

The formula to calculate the time it takes to send a single nibble of data from Instrument 1 to
Instrument 3 (in a different chassis) is:

Ttwo_chassis = Ttx_latency + Tlink_latency + Tssm_latency + Tlink_latency + Tssm_latency + Tlink_latency + Trx_latency =

Ttx_latency + 3*Tlink_latency + 2*Tssm_latency + Trx_latency

To generalize this to N number of SSMs hops, the formula is:

TN_chassis = Ttx_latency + (NSSM+1)*Tlink_latency + NSSM*Tssm_latency + Trx_latency

Since the previous equations are for sending only one nibble of data, if you want a transaction with
more bits, this will be split into multiple of 4-bit transactions happening one after the other on
consecutive clock cycles. For N number of data bits (which must always be multiple of 4-bits), the
equation is:

Ttransaction_duration = Ttx_latency + (NSSM+1)*Tlink_latency + N_SSM*Tssm_latency + Trx_latency + Nnum_bits/4

Find us at www.keysight.com Page 375

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Constants Estimation

In the formulas above, the constants of the different latency equations are instrument-specific. See
your instrument or System Synchronization Module (SSM) documentation for the exact latency
values. The following values are are reference values for the product-specific latencies:

Variable
Reference Value

(Clock Cycles)

Ttx_latency 4

Trx_latency 3

TSSM_latency 4

In addition to the instrument/SSM specific latency the calculations must account for the link latency
that depends on the link characteristic (PXIe backplane or System Sync/Link cable length) and
receiving instrument implementation. See your instrument or SSM documentation for the exact
latency values. The following is a reference value for the link latencies:

Variable
Reference Value

(Clock Cycles)

Tlink_latency 12

Example Scenarios

As described above, a Sync Data-Sharing Statement can contain multiple transactions. A transaction
can go to one or multiple destinations, that is, deliver the same data to multiple Rx endpoints, but
independently of the number of destinations, a transaction has only one transmission point and
operation. PathWave Test Sync Executive optimizes the Sync Data-Sharing Statement timing by
parallelizing as much as possible the execution of different transactions. Depending on the number of
transactions, the system topology and the overlap in terms of sources and destinations of the
different transactions, the level of parallelization can vary. In the following examples we show some
typical use cases.

Find us at www.keysight.com Page 376

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Example 1: Single transaction with multiple destinations

The simplest use case for Sync Data-Sharing Statement consists of a single data sharing transaction.
A transaction can go to one or more destinations, that is, deliver data to multiple Rx endpoints, but
independently of the number of destinations, a transaction has only 1 Tx endpoint and operation. The
execution time for a single-transaction Sync Data-Sharing Statement is given by the time required to
complete the final Rx operation, where tr1 is the transaction, rx1, rx2 ...rxN are the Rx endpoints:

Texecution = max(Ttr1_rx1_end, Ttr1_rx2_end,, Ttr1_rxn_end)

Find us at www.keysight.com Page 377

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

The following example shows how to calculate the Sync Data-Sharing Statement execution time for a
single-transaction (tr1) with 2 destinations (rx1 and rx2):

The following code snippet shows a Sync Data-Sharing Statement sharing to two destinations:

Sync Data-Sharing definition with a single transaction to 2 destinations (Rx)
#
Transaction 1 (tr1)
instrument1_tx = keysight_tse.FdsPortAddress(source_port, source_address)
instrument2_rx1 = keysight_tse.FdsPortAddress(dst1_port, dst1_address)
instrument3_rx2 = keysight_tse.FdsPortAddress(dst2_port, dst2_address)
data_sharing_st.transactions.add(instrument1_tx, [instrument2_rx1 , instrument3_rx2], num_bits_to_share)

The following diagram shows the timing (execution starts at end of cycle 0).

tr1_tx refers to the transmission of the data from the transmission port.

tr1_rx1 and tr1_rx2 refer to reception of the data at the two receive ports.

tr1_rx1_duration is the total time from the beginning of transmission tr1_tx to the end of reception of
the data at receive point 1 (tr1_rx1_end).

tr1_rx2_duration is the total time from the beginning of transmission tr1_tx to the end of reception of
the data at receive point 2 (tr1_rx2_end).

Single Tx operation start:

Ttr1_tx_start = Texecution_start = 0 cycles

Ttr1_tx_end = Ttr1_tx_start + Nnum_bits/4 = 32/4 = 8 cycles

Timing for tr1_rx1:

Find us at www.keysight.com Page 378

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Ttr1_rx1_duration = Ttx_latency + (NSSM+1)*Tlink_latency + NSSM*Tssm_latency+ Trx_latency + Nnum_bits/4 = 4 +

(1+1)*12+1*4+3+32/4 = 43 cycles

Ttr1_rx1_end = Ttr1_tx_start + Ttr1_rx1_duration = 0 + 43 = 43 cycles

Timing for tr1_rx2:

Ttr1_rx2_duration = Ttx_latency + (NSSM+1)*Tlink_latency + NSSM*Tssm_latency + Trx_latency + Nnum_bits/4 = 4 +

(2+1)*12+2*4+3+32/4 = 59 cycles

Ttr1_rx2_end = Ttr1_tx_start + Ttr1_rx2_duration = 0 + 59 = 59 cycles

The execution time of the Sync Data-Sharing Statement is:

Texecution = max(Ttr1_rx1_end, Ttr1_rx2_end) = max(43,59) = 59 cycles

NOTE Note that if only one destination is used, for instance only Instrument 2, then
Texecution = Ttr1_rx1_end = 43 cycles

Find us at www.keysight.com Page 379

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Example 2: Multiple simultaneous transactions

When sending data from the same transmitter, the transactions are executed in series. This means
that the next transaction starts transmission as soon as the last nibble of the previous transaction is
transmitted. Therefore, to estimate the execution time of the Sync Data-Sharing Statement, you must
delay the individual transactions accordingly, then compare their end times and you pick the highest
one.

In this example there are two different transactions originating from the same Tx port in Instrument 1.
In the first transaction (tr1), 32 bits is sent from Instrument1 to instrument2 and in the second
transaction (tr2), a different data packet of 32 bits is sent from Instrument1 to Instrument3. At the
same time as the first transaction, Instrument2 does a separate transaction3 (tr3), sending 32 bits of
data to Instrument1. Unlike example 1, these are all different transactions that send different data
packets.

The following code snippet shows the transactions:

Sync Data-Sharing definition with 3 transactions to 3 destinations
#
Sources
instrument1_tx = keysight_tse.FdsPortAddress(source1_port, source1_address)
instrument2_tx = keysight_tse.FdsPortAddress(source2_port, source2_address)
Destinations
instrument1_rx = keysight_tse.FdsPortAddress(dst1_port, dst1_address)
instrument2_rx = keysight_tse.FdsPortAddress(dst2_port, dst2_address)
instrument3_rx = keysight_tse.FdsPortAddress(dst3_port, dst3_address)
#
Transaction 1
data_sharing_st.transactions.add(instrument1_tx, [instrument2_rx], num_bits_to_share)
#
Transaction 2
data_sharing_st.transactions.add(instrument1_tx, [instrument3_rx], num_bits_to_share)
#
Transaction 3
data_sharing_st.transactions.add(instrument2_tx, [instrument1_rx], num_bits_to_share)

The following diagram shows the execution time of the Sync Data-Sharing Statement as well as the
timings of each individual transaction:

Find us at www.keysight.com Page 380

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

tr1_tx, tr2_tx, and tr3_tx, refers to the transmission of the data from the transmit ports.

tr1_rx, tr2_rx, and tr3_rx, refer to reception of the data at the receive ports.

tr1_duration is the total time from the beginning of transmission (tr1_tx) to the end of reception of the
data at receive point 1 (tr1_rx_end).

tr2_duration and tr3_duration are the total times for tr2 and tr3 respectively.

The timing for Transaction1 (tr1) is the same as tr1_rx1 in example 1:

Ttr1_end = Ttr1_start + Ttr1_duration = 0 + 43 = 43 cycles

For Transaction2 (tr2), Instrument1 sends data to Instrument 3.

tr2 can start the data transmission as soon as the transmission of Transaction1 has ended. The
duration for t2 is 59 cycles, the same as tr1_rx2 in example 1.

Therefore, the timing for Transaction2 is:

Ttr2_start = Ttr2_tx_start = Ttr1_tx_end = 8 cycles

Ttr2_end = Ttr2_start + Ttr2_duration = 8 + 59 = 67 cycles

Transaction3 (tr3) sends data from Instrument 2 to instrument 1. This is sent and received at the same
time as tr1, the duration is the same as tr1_rx1 in example 1.

Ttr3_end = Ttr3_start + Ttr3_duration = 0 + 43 = 43 cycles

The execution time of the Sync Data-Sharing Statement is:

Texecution_end = max(Ttr1_end, Ttr2_end, Ttr3_end) = max(43,67,43) = 67 cycles

Find us at www.keysight.com Page 381

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Example 3: Optimizing the timing of multiple simultaneous transactions by reordering transactions

Changing the order of the transactions can affect the execution time of the Statement. If example 2 is
modified so tr2 is sent before tr1, some time is saved.

Sync Data-Sharing definition with a 3 transactions to 3 destinations
transaction 1 and 2 are reversed
#
Sources
instrument1_tx = keysight_tse.FdsPortAddress(source1_port, source1_address)
instrument2_tx = keysight_tse.FdsPortAddress(source2_port, source2_address)
Destinations
instrument1_rx = keysight_tse.FdsPortAddress(dst1_port, dst1_address)
instrument2_rx = keysight_tse.FdsPortAddress(dst2_port, dst2_address)
instrument3_rx = keysight_tse.FdsPortAddress(dst3_port, dst3_address)
#
Transaction 2
data_sharing_st.transactions.add(instrument1_tx, [instrument3_rx], num_bits_to_share)
#
Transaction 1
data_sharing_st.transactions.add(instrument1_tx, [instrument2_rx], num_bits_to_share)
#
Transaction 3
data_sharing_st.transactions.add(instrument2_tx, [instrument1_rx], num_bits_to_share)

tr1_tx, tr2_tx, and tr3_tx, refers to the transmission of the data from the transmit ports.

tr1_rx, tr2_rx, and tr3_rx, refer to reception of the data at the receive ports.

tr1_duration is the total time from the beginning of transmission (tr1_tx) to the end of reception of the
data at receive point 1 (tr1_rx_end).

tr2_duration and tr3_duration are the total times for tr2 and tr3 respectively.

Find us at www.keysight.com Page 382

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

In this case Transaction2 starts first, The duration for t2 is 59 cycles, same as tr1_rx2 in example 1:

Ttransaction2_start = Ttransaction2_transmission_start = Texecution_start = 0 cycles

This time transaction2 starts at 0:

Ttr2_tx_end = Nnum_bits/4 = 8 cycles

Ttr2_end = Ttr2_start + Ttr2_duration = 0 + 59 = 59 cycles

Transaction1 starts as soon as Transaction2 finishes transmission. The duration for tr1 remains at 43
cycles (same duration as tr1_rx1 in example 1), however it starts 8 cycles later and the timing
becomes:

Ttr1_start = Ttr1_tx_start = Ttr2_tx_end = 8 cycles

Ttr1_end = Ttr1_start + Ttr1_duration = 8 + 43 = 51 cycles

Transaction 3 (tr3) is the same as tr3 in example 2. The duration is 43 cycles, same as tr1_rx1 in
example 1. The timing is:

Ttr3_end = Ttr3_start + Ttr3_duration = 0 + 43 = 43 cycles

The execution time of the Sync Data-Sharing Statement is:

Texecution_end = max(Ttr2_end, Ttr1_end, Ttr3_end) = max(59,51,43) = 59 cycles

In this case, by starting Transaction2 first, you can save 8 cycles compared to example 2.

Tdifference = Texample3_end - Texample2_end = 67 - 59 = 8 cycles

Find us at www.keysight.com Page 383

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Example 4: Multiple simultaneous transactions with a resource conflict

Transactions are sent across different types of link between instruments. These can be DSTARB/C
links between SSMs and instruments that are in the same chassis or point-to-point SystemSync links
between two SSMs located on different chassis. The difference is that DSTARB/C links allow only a
single data path, whereas the SystemSync connections have multiple data paths. The multiple data
paths in SystemSync connections allow the SSMs to route multiple transactions simultaneously. On
the contrary, DSTARB/C links can only send one transaction at a time. Different data packets cannot
use the same link simultaneously and must be queued instead. Therefore, DSTARB/C links are much
more prone to transaction conflicts.

In principle, when all the transactions being sent are from different Tx ports, HVI tries to execute them
in parallel. If this is possible, the execution time of the Sync Data-Sharing Statement is just the
maximum of the duration of the individual transactions. However, this is not always possible because
in some case there is a conflict if two or more transactions try to use the same path at the same time,
for example, if they both arrive at the same Rx port at the same time. In these cases, the HVI delays
some of the transactions to avoid the conflict, where any delay added is kept as small as possible.

The following example is similar to example 3, except for transaction 3 which in this case, goes from
instrument 2 to instrument 3.

Transaction 2 (tr2) and transaction 3(tr3) both start at the same time and send data to SSM1. This is
possible because both transactions are sent to different ports on SSM1.

SSM1 then sends this data to SSM2, the SSMs have multiple paths for data between them so both
transactions can be sent at the same time.

SSM2 then sends the data for tr2 and tr3 to instrument 3, but there is a conflict at this point because
the data from both transactions cannot be sent at the same time to the same DSTARB port.
DSTARB/C links have only one data path and the packets cannot cross it simultaneously, as
explained before. To resolve this conflict, the HVI delays transaction3 at compilation time. This is
shown as Transaction 3b (tr3b) in the diagram. The delay enables the transaction to be sent to
instrument 3 with no conflicts.

Sync Data-Sharing definition with a 3 transactions to 2 destinations
transaction 1 and 2 are reversed
transaction 3 goes to instrument 3
#
Sources
instrument1_tx = keysight_tse.FdsPortAddress(source1_port, source1_address)
instrument2_tx = keysight_tse.FdsPortAddress(source2_port, source2_address)
Destinations
instrument1_rx = keysight_tse.FdsPortAddress(dst1_port, dst1_address)
instrument2_rx = keysight_tse.FdsPortAddress(dst2_port, dst2_address)
instrument3_rx = keysight_tse.FdsPortAddress(dst3_port, dst3_address)
#
Transaction 2
data_sharing_st.transactions.add(instrument1_tx, [instrument3_rx], num_bits_to_share)

Find us at www.keysight.com Page 384

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

#
Transaction 1
data_sharing_st.transactions.add(instrument1_tx, [instrument2_rx], num_bits_to_share)
#
Transaction 3 - This will be delayed
data_sharing_st.transactions.add(instrument2_tx, [instrument3_rx], num_bits_to_share)

Find us at www.keysight.com Page 385

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

tr1_tx, tr2_tx, tr3_tx, and tr3b_tx, refers to the transmission of the data from the transmit ports.

tr1_rx, tr2_rx, and tr3b_rx, refer to reception of the data at the receive ports.

tr1_duration is the total time from the beginning of transmission (tr1_tx) to the end of reception of the
data at receive point 1 (tr1_rx_end).

tr2_duration and tr3b_duration are the total times for tr2 and tr3b respectively.

SSM1 and SSM2 indicate the System Synchronization Modules. In the boxes, these indicate when
data is transmitted from the SSM.

Find us at www.keysight.com Page 386

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

In this example, first 32 bits of data from Instrument1 to Instrument3 (transaction2, tr2), and then 32
bits of data from Instrument2 to Instrument3 (transaction3, tr3). By checking the topology in the
system diagram, you can see that both transactions pass through SSM1 and then SSM2 before they
reach Instrument3.

To see if there is going to be a collision, calculate the time when each transaction is at the exit of
SSM2, if it started at time 0.

For Transaction2, this is:

Ttr2_at_SSM2_start = Ttx_instrument_latency + Tlink_latency + Tssm_latency + Tlink_latency + Tssm_latency = 4 + 12 + 4 +

12 + 4 = 36 cycles

Ttr2_at_SSM2_end = Ttr2_at_SSM1_start + Nnum_bits/4 = 36 + 32/4 = 44 cycles

For Transaction3 the numbers are the same, so there is an overlap from clock cycle 36 to 44. To
resolve this, you must delay the second transaction, tr3, to start at SSM2 when tr2 ends. That is, you
must delay tr3 by:

Ttr3_delay = Ttr2_at_SSM2_end - Ttr3_at_SSM2_start = 44 - 36 = 8 cycles

In the diagram the delayed transaction3 is shown as transaction3b (tr3b). Given this delay, you can
now calculate the timing for both transactions:

For Transaction2, you don't need to change anything, so the timing is the same as in example 3:

Ttr2_end = Ttr2_start + Ttr2_duration = 0 + 59 = 59 cycles

As soon as Transaction2 finishes transmission, Transaction3b starts.

Transaction3b starts 8 cycles after tr2 and sends its data to SSM1 and then onto SSM2. SSM2 can
then pass the data Instrument3. The duration remains at 59 cycles, so the timing is:

Ttr3b_start = Ttr2_start + 8 = 0 + 8 = 8 cycles

Ttr3b_end = Ttr3b_start + Ttr3b_duration = 8 + 59 = 67 cycles

Transaction1 (tr1) goes through SS1, at time=8 which is also when tr3b goes through SSM1.
However, these transactions go in different direction and use different ports so there is no conflict,
therefore tr1 and tr3b can go ahead.

For Transaction1, the timing is the same as in example 3:

Ttr1_end = Ttr1_start + Ttr1_duration = 8 + 43 = 51 cycles

The execution time of the Sync Data-Sharing Statement is:

Texecution_end = max(Ttr1_end, Ttr2_end, Ttr3b_end) = max(51,59,67) = 67 cycles

Find us at www.keysight.com Page 387

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Local Flow-Control Statement Timing
This section describes Local Flow-Control Statement timing, it contains the following sections:

l Local While

Local While Statement Timing Tables

l Local If

Local If with matched branches

Local If Statement Timing Tables

l Local Wait (for Event or time in register)

Local Wait-For-Time Statement Timing Tables

Local Wait-For-Event Statement Timing Tables

l Local Delay Statement

Local Delay Statement Timing Tables

Find us at www.keysight.com Page 388

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Local Flow-Control Statements and Sync Statements consume HVI Engine execution time and do not
overlap their execution. When you are calculating the timing of a Sequence, you must consider the
execution time of these Statements.

The following diagram shows the timing for a Sync Multi-Sequence Block that contains a pair of HVI
instructions and a Local While:

Find us at www.keysight.com Page 389

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Local While

The Local While Statement continues execution while a condition is met and finishes the execution
when the condition is no longer met. This has the same timing as Sync while Statements.

The following diagram shows a Local While Statement with other instructions.

The total execution time for a Local While is T1 x N, where T1 is the iteration time and N is the number
of times it iterates. The time cannot be indicated exactly on a diagram or in code because the number
of iterations is not known until runtime.

For Statements coming after a Local While Statement, the Start Delay is measured from the end of
the Local While Statement. In the following diagram, Start Delay D is measured from the end of the
Local While Statement.

The dotted line indicates that the execution time of the Local While block T1 is not known at compile
time.

Local While Statement Timing Tables

Local While timing value:

Find us at www.keysight.com Page 390

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Execution time (cycles) (1)

#Iterations * [sumfor_all_internal_statements(Start-Delay) + sumfor_all_internal_flow_control_statements(Duration)]

(1) This value applies if duration property of the Statement is set to Minimum (default). If a
fixed-duration has been set, then this is the Execution time is equal to that value.

Local While latency values:

Parameter Description Time (cycles)

Start-Latency
Minimum start-delay for
the Statement

5 + #Register_Conditions

Entry/Iteration
latency

Minimum
start-delay
for first
Statement
inside the
while loop

Minimum
Duration

8 + #Register_Conditions + End-LatencyLast-statement

Fixed
Duration

8 + #Register_Conditions

End-Latency

Minimum
start-delay
for the next
instruction
outside the
while loop

Minimum
Duration

8 + #Register_Conditions + End-LatencyLast-statement

Fixed
Duration

8 + #Register_Conditions

Fixed-Duration
Minimum fixed-duration for
Statement

[sumfor_all_internal_statements(Start-Delay) + sumfor_all_

internal_flow_control_statements(Duration) + End-LatencyLast-

statement](1)

Register Evaluation
Latency

Time to evaluate the
register condition

l From start: 3

l For each iteration: -(2 + #Register_Conditions)

(1) If the branch is empty, then the duration is equal to the Entry-Latency of the branch.

Find us at www.keysight.com Page 391

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Local If

For Local If Statements (if-elseif-else), the following Start Delay is measured from the end of the
Local If Statement. The time taken is only known at runtime, so it is not possible to indicate them on a
diagram or in code. This is the same as while Statements.

This following diagram shows the timing of Local If Statements. The Start Delay D is measured from
the end of the Local If Statement.

The Local If has two branching options with times T1 and T2. These times can be different. Since the
choice of branch is not known at compile time, the time for the Local If block cannot be known.

The line for the Local If block is dotted. This indicates that the execution time of the Local If block Tx is
unknown. The time of the containing block is also therefore unknown, and it is also dotted. The time
of the Sync Multi-Sequence Block is indicated as T min.

Find us at www.keysight.com Page 392

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Local If with matched branches

In the following diagram the branches in the If and else branches are matched. This ensures the Local
If ends at the same time irrespective of the branch taken.

The total branch time is marked with the time TM, this represents the matched time. The choice of
branch is not known at compile time, but since the times are matched the time TM is known.

The times are known at compile time so the timelines of the Local If block and the Sync Multi-
Sequence Block that contains it are both solid.

Local If Statement Timing Tables

For if Statements with multiple If / Else-If / Else branches, the Entry delays are the same for all
branches.

If the match-branches attribute is enabled, the HVI ensures that the execution of all of the branches
have the same overall delay. If match-branches is not enabled, some branches might take less time
than others.

The If Statement latency depends on the number or register-conditions used: #Register_Conditions.

Find us at www.keysight.com Page 393

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Local If timing value:

Execution time (cycles) (1) (2)

sumfor_all_internal_statements(Start-Delay) + sumfor_all_internal_flow_control_statements(Duration) (3)

(1) The value provided here applies if the duration property of the Statement is set to Minimum
(default). If a fixed-duration has been set, then the Execution time is equal to that value.

(2) This value is only calculated for the branch that is executed, if there are multiple branches avail-
able.

(3) If the branch is empty, the execution time becomes Entry-Latencybranch - 1 .

The following table shows Local If latency values:

Find us at www.keysight.com Page 394

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Parameter Description Minimum time (cycles)

Start-
Latency

Contributes to the minimum-
possible start-delay for the
Statement

5 + #Register_Conditions_IfBranch

Entry-
latency

Contributes to the minimum-
possible start-delay for first
Statement in branch #

l If-Branch: 3

l Else-If-Branch:

F or each else-if branch, we need to add:
o 6 + #Register_Conditions_Else-If-Branch

o For the 1st else-if branch we will have:
o 2 + #Register_Conditions_IfBranch + 7 +

#Register_Conditions_Else-If-Branch1

o For the 2nd else-if branch we will have:

o 2 + #Register_Conditions_IfBranch + 7 +
#Register_Conditions_Else-If-Branch1 + 7
+ #Register_Conditions_Else-If-Branch2

o and so on, so forth...

l Else-Branch: Equal to last Else-If-Branch value

End-
Latency

Contributes
to the
minimum-
possible
start-delay of
the next
Statement
outside the if
Statement

Matching
Branches

disabled
3 + maxfor_all_Branches[End-LatencyLast-statement] (1)

Matching
Branches

enabled

3 + End-LatencyLast-statement-of-longest-branch (2)

Where longest branch means the branch with
longer execution time.

Fixed-Duration 1

Find us at www.keysight.com Page 395

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Fixed-
Duration

Minimum fixed-duration for
Statement

2 + maxfor_all_Branches[Branch-Duration](3)

Where Branch-Duration is calculated as follows:

[sumfor_all_internal_statements(Start-Delay) + sumfor_all_

internal_flow_control_statements(Duration) + End-LatencyLast-

statement]
(4)

Register
Evaluation
Latency

Time to evaluate the register
condition

3

Then, for registers used in the condition of any
else-if branch, we need to substract:

6 + #Register_Conditions_Else-If-Branch

Therefore, for the 1st else-if branch we will have:

3 - (6 + #Register_Conditions_Else-If-Branch1)

For the 2nd else-if branch we will have:

3 - (6 + #Register_Conditions_Else-If-Branch1) -
(6 + #Register_Conditions_Else-If-Branch2)

and so on, so forth...

(1) If the maximum end latency used in this equation corresponds to the if-branch, and the calculated
latency is greater than 4, then the End-latency is the calculated value minus 1.

(2) If the longest branch is the if-branch, then the End-latency is the calculated value minus 1.

(3) If the maximum branch duration used in the equation corresponds to the if-branch, then the dur-
ation is the calculated value minus 1.

(4) If a branch is empty, then the branch duration is equal to the Entry-latency of the branch.

Find us at www.keysight.com Page 396

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Local Wait (for Event or time in register)

For Local Wait Statements, the following Start Delay is measured from the end of the Local Wait
Statement. As with Sync while Statements, the time taken is only known at runtime, so it is not
possible to indicate them on a diagram or in code.

The following diagram shows the timing of a Local Wait Statement. The following Start Delay D is
measured from the end of the Local Wait Statement.

The execution time of the Local Wait Statement T1 is not known at compile time, this is indicated by
the dotted line.

The time of the Sync Multi-Sequence Block is indicated as T min. The dotted line indicates an
unknown time.

Local Wait-For-Time Statement Timing Tables

A Wait-for-time Statement blocks HVI execution in a Local Sequence until a specific amount of time
passes. This amount of time is defined in a register that is specified as an argument in the Wait-for-
time Statement. The value of the register specifies the number of cycles to wait.

Local Wait-for-time Statement timing value:

Find us at www.keysight.com Page 397

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Execution time (cycles)

RegisterValue

Local Wait-for-time Statement latency values:

Parameter Time (cycles)

Start-Latency 1

End-Latency 1

Register Evaluation Latency 1

Local Wait-For-Event Statement Timing Tables

A Local Wait-for-Event Statement blocks HVI execution in a Local Sequence until an Event occurs.
Events sources can be the Trigger IOs, or internal to the instrument (including User FPGA-Sandbox
Events).

Local Wait-for-Event Statement timing values:

Event
type

Execution time (cycles)
Fetch time

(cycles)

Internal
Event

MAX(Event_Arrival_Time(1) + Instrument_Event_Latency(2) + 1, Fetch_Time) +
1 3

Trigger IO MAX(Event_Arrival_Time(1) + Instrument_Event_Latency(2) + Instrument_
Event_Condition_Latency(3), Fetch_Time) + 1

1 + Instrument_
Event_Condition_

Latency

(1) Event_arrival_time is:

l Internal Events

Event_Arrival_Time = Internal_Event_Generation_Time - WaitForEvent_Start_Time

l External Events
Event_Arrival_Time = Event_At_Module_Connector_Time – WaitForEvent_Start_Time

The Event time can be measured at the front panel or PXIe backplane connector depending on
the Event.

Find us at www.keysight.com Page 398

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

(2) Instrument_Event_Latency is the delay from the Event source until the Event state is available
inside the HVI Engine. Events sources can be the Trigger IOs, or internal to the product (including
User FPGA-Sandbox Events). It is an instrument and Event specific value. Refer to the instrument doc-
umentation for more information.

(3) Instrument_Event_Condition_Latency is the time needed for the condition evaluation to be
executed once the Event has settled inside the HVI Engine. It is an instrument specific value. Refer to
the instrument documentation for more information.

NOTE The Event_Arrival_Time can be a negative value if the Event enters the module
before the Wait-For-Event instruction Start Time. A number of scenarios are shown
in the diagrams below.

Local Wait-for-Event latency values:

Parameter Time (cycles)

Start-Latency 0

End-Latency 1

The following diagrams shows scenarios where the execution time of a Wait-For-Event Statement
can vary:

Find us at www.keysight.com Page 399

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Local Delay Statement

The Local Delay Statement delays the execution of a Local Sequence for a time you specify. The
default unit is nanoseconds but the delay is specified in any unit of seconds. The delay is fixed and
cannot be changed during HVI execution, so the delay value must be known at the time of creating
the HVI Sequence.

The delay Statement works in a similar way as the Start Delay Statement parameter, however the
difference is that the Start Delay can only be specified before the other Statements in a Sequence.
The delay Statement enables you to place a fixed delay at the end of Sync Multi-Sequence Block or a
flow control Statement.

Unlike a wait-for-time Statement, the delay Statement does not introduce a de-synchronization and
therefore does not trigger a resynchronization. This therefore avoids the timing overhead introduced
by the Triggered re-synchronization point.

The following diagram shows the timing of a delay Statement Delay Z:

Find us at www.keysight.com Page 400

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Local Delay Statement Timing Tables

A Delay Statement delays HVI execution in a Local Sequence until a specific amount of time passes.
This amount of time is specified in a parameter in the Statement.

Local Delay Statement timing value:

Execution time (cycles)

Delay Specified

Local Delay latency values:

Parameter Time (cycles)

Start-Latency 0

End-Latency 1

Find us at www.keysight.com Page 401

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

HVI Instruction Timing
This section describes HVI Instruction timing, it contains the following sections:

l HVI Instruction Parameters

l Instruction position

l Overlapping instruction execution

l Trigger Write

l Action Execute

l Arithmetic Logic Unit Instructions

l FPGA-User Sandbox Instructions

l FPGA-Instruction Statement

l Instrument-Specific HVI Instruction Timing Values

l HVI Instruction Position Mapping

l Examples of HVI Instruction Timing Calculation across Sync and Local Flow-Control Statements

The following sections list the fetch and execution latency for HVI Instructions. Unless stated oth-
erwise, all times are in HVI Engine clock cycles. The HVI Engine clock frequency is instrument-
specific. For information about the HVI Engine clock frequency and Instrument-Specific HVI Instruc-
tion latencies, See your instrument documentation.

HVI Instruction Parameters

HVI Instructions have a number of parameters and properties you must be aware of for calculating
timing:

TriggerIO groups and Action groups

The following additional parameters are used for calculating timing for some HVI Instructions.

Triggers and Actions are organized into groups and the timing can change depending on these:

TriggerIO groups

Trigger Inputs / Outputs are organized together in groups of 16 called TriggerIO groups. Any
number of TriggerIO groups can be written at the same time.

Action groups

HVI Actions are organized together in groups of up to 16 called Action groups. Any number of
Action groups can be executed synchronously.

Find us at www.keysight.com Page 402

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Instruction position

This section describes the concept of instruction position.

NOTE This is provided for your information, you are not typically required to program an
HVI at this level of performance.

Instructions are broken into internal-instructions that the compiler maps onto the HVI Engine
hardware. During one HVI Engine cycle, the HVI Engine can fetch, dispatch and execute multiple
instructions in parallel.

Instructions can be scheduled for execution together, however, depending on the Instructions
involved, this is not always possible because of the inner structure of the HVI Engine. To understand
why, you must understand the concept of instruction position.

An HVI Engine is a processor with a set of execution pipelines, each of which has a numbered
position. The individual internal-instructions are mapped across the different pipeline positions for
execution.

For parallel instruction fetching to be possible, the internal-instructions must use different positions
inside the instruction register of the HVI Engine. If two internal-instructions are using overlapping
positions, then they cannot be fetched in parallel. The positions where each internal-instruction is to
be mapped depends on the instruction. This means the hardware can only execute certain internal-
instruction in specific positions. The internal-instructions are mapped by the compiler. This process is
not user programmable.

A table with the per-instruction mapping is provided in the documentation for each instrument.

The following diagram provides an example table.

Position

Instruction 1 2 3 4 5 6 7 8 9 10
n

(n > 10)

A 5 - 7

B 1 - 4

C 8 - 9

D 5 - 7 8 - 10

E 1 - 7

Find us at www.keysight.com Page 403

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

From the table, you can see that:

l Instruction A can be mapped, one at a time, to positions 5 to 7.

l Instruction B can be mapped, one at a time, to positions 1 to 4.

l Instruction C can be mapped, one at a time, to positions 8 to 10.

l Instruction D can be mapped, two at a time, to positions 5 to 7, positions 8 to 10, or both.

l Instruction E can be mapped, one at a time, to positions 1 to 7.

At compile time, HVI maps the instructions to be executed to their respective supported positions. If
an instruction cannot be mapped to its supported position because another instruction is already
mapped there, HVI generates an error and informs the user. For example:

l If an instruction is A is followed by a second instruction A at the same time, HVI assigns the first
instruction A to positions 5-7, but generates an error with the second instruction A because
positions 5-7 are already used.

l If an instruction D is followed by another instruction D at the same time, HVI will assign the first
instruction D to positions 5-7 and will then assign the second instruction D to positions 8-10.
However, if there is a third instruction D to be fetched at the same time, HVI generates an error
because neither possible position for D are available for the third instruction.

l If there are instructions A, B and C at the same time, HVI assigns them to positions 5-7, 1-4 and 8-
10, respectively, without any issue.

l If there are instructions A, B and D at the same time, HVI assigns them to positions 5-7, 1-4 and 8-
10, respectively, without any issue. If, however, the order was B, D and A, then HVI assigns B to
positions 1-4, D to positions 5-7 and, then, HVI generates an error because positions 5-7 are not
be available for instruction A.

l If there is an instruction E, then if it is fetched at the same time with any of the instructions A, B or
E, then HVI generates an error. However, if it is fetched in parallel with C or D, then there will be no
issue.

NOTE When there is no fetching in parallel, An HVI Engine is capable of executing
instructions in parallel irrespective of their instruction position.

Find us at www.keysight.com Page 404

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Overlapping instruction execution

The following diagram shows Instruction B and Instruction E are executed in parallel, even though
they are using the conflicting positions in the instruction register (positions 1-4 are overlapping as
seen in the table earlier). This is possible, as long as the Start delay T3 for instruction E is such that its
fetch cycle does not coincide with the fetch cycles of instruction B. The green dotted line indicates
the minimum extent that T3 should have.

Find us at www.keysight.com Page 405

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Overlapping instruction fetching

An HVI Engine is capable of fetching and executing multiple instructions in parallel, providing their
instruction positions are not overlapping. Most instructions have only 1 fetch cycle, but it is possible
for instructions to require multiple fetch cycles. Refer to the instructions timing tables for details on
the fetch cycles of the different instructions.

The following figures show examples of instruction fetching in parallel. For the instruction positions
that are being used by each instruction, the values are from the previously defined example table.

Example A. In this example it is assumed that:

l Start delay T1 > 0 cycles.

l T2 = 0 cycles.

l T3 = 1 cycle.

l T4 > 3 cycles.

At real-time execution, after the T1 delay has passed, Instruction A and Instruction B are fetched at
the same time, since the Start delay T2 for instruction B is equal to 0. Then, after one cycle, that is,
the Start delay T3, instruction C is fetched before the fetching of Instructions A and B is completed.
Finally, after delay T4 from the beginning of instruction C, instruction D is fetched.

As shown in the diagram, instructions A and B are fetched in parallel for 2 Engine cycles and
instructions A, B and C are fetched in parallel for 1 Engine cycle. Looking at the table, instructions A,
B and C can be fetched in parallel as they are not using the same positions. Instruction D is fetched
later, so there is no conflict in the available positions.

Find us at www.keysight.com Page 406

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Example B. In this example start delay T1 > 0 cycles, T2 = 0 cycles, T3 = 1 cycle, and T4 = 0 cycles.

At real-time execution, after the T1 delay has passed, instructions A and Instruction B are fetched at
the same time because the Start delay T2 for instruction B is equal to 0.

Then, after one cycle, that is the Start delay T3, instruction C is being fetched and at the same time
(T4 = 0) instruction D is fetched.

Compared to the previous example, in this case, instruction D cannot be placed to either positions 5-
7 (assigned to instruction A) or positions 8-10 (assigned to instruction C), so it is not possible to fetch
instruction D at the same time. as A and C. This example generates an error during the HVI
compilation.

Find us at www.keysight.com Page 407

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

One way to fix the issue is to increase the Start delay T4 of instruction D so that it is not fetched at the
same time as instruction A and C. This can be done by increasing T4 by at least 1 cycle. This is shown
in the following figure:

Find us at www.keysight.com Page 408

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Overlapping instruction execution with result dependencies

HVI is capable of processing instructions in parallel. This is a powerful capability, but it can lead to
unexpected results when there are dependencies between the instructions, that is, when one
instruction depends on the result of the other. For example, an instruction might update the value of
an HVI register and the following instruction might need to use that updated register value. To avoid
unexpected results, the user needs to ensure that the delay between the independent and the
dependent instructions is big enough so that the processing of the independent (Instr1) is completed
before or when the processing of the dependent instruction (Instr2) start. The minimum delay to
achieve this can be expressed with the following formula:

MinDelay_Instr1_to_Instr2 = Instr1_ExecutionTime - Instr2_FetchTime

The following diagram shows an example with two HVI Instructions and the timing when executed by
the HVI Engine. Assuming that instruction B is using the result of instruction A, you must ensure that
the value of StartDelayB is greater or equal to the Processing Time of instruction A, minus the Fetch
Time of instruction B. This way, the processing of instruction B will start after the end of processing of
instruction A.

NOTE It is important to consider the effects of overlapping instructions with dependencies,
because HVI does not track dependencies. This is because in some cases it is
desirable to implement pipelines of operations and exploit the fact that the next
instruction uses the previous value of a register, before the previous operation is
completed. It is your responsibility to ensure you have specified sufficient Start
delay between instructions with dependencies.

Find us at www.keysight.com Page 409

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Overlapping instruction execution with Sync or Flow-Control Statement with result dependencies

For the case that the result of an instruction is used from a sync or a flow-control Statement (e.g.
register used in the condition of a While or a Sync While), the RegisterEvaluationLatency of that
Statement need to be taken into account. Therefore, the formula is updated to:

MinDelay_Instr_to_Statement = Instr_ExecutionTime + Statement_RegisterEvaluationLatency

NOTE If the flow-control (or sync) Statement comes right after the instruction from which
it needs the result, this imposes a minimum value for the StartDelay of that
Statement. The final StartDelay to be used should be the maximum between the
MinDelay calculated with the previous formula and the MinStartDelay applicable
(see Minimum Start Delay Calculation for Local Flow-Control and Sync Statements)

If there are more Statements/instructions between the flow-control (or sync)
Statement and the instruction from which it needs the result, then the MinDelay
imposes a minimum to the sum of the StartDelays of all the intermediate
Statements/instructions and the flow-control (or sync) Statement.

Find us at www.keysight.com Page 410

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Example cases with instruction result dependencies

The following examples show how to calculate the minimum delay required when the result of HVI
Instructions is used by Flow-Control Statements. The latency information is provided in the Timing
Tables and in the instrument documentation.

Example 1: Instruction "ADD" followed by a Local If Statement

In this example an Add instruction writes to a register and the new value of the register is used for the
if condition.

1. Reg1 = RegN + 10 (Add).

2. If(Reg1 > 10) (the if uses the result of the previous Add instruction).

In this case, the minimal delay between the If and the previous Add using the fetch and execution
timing is calculated with this equation:

MinDelay_If = Add_ExecutionTime + If_RegisterEvaluationLatency = 8 + 3 = 11 cycles

Example 2: Instruction "ADD" inside a While Statement

In this example there is an Add instruction that writes to a register and the new value of the register is
used by the while condition.

1. Reg1 = 0

2. While(Reg1 < 1) (the While uses the result of the internal Add instruction).

3. Reg1 = Reg1 + 1 (Add).

In this case, the minimal delay between the Add inside the While and the condition check for executing
one more iteration is calculated with the following equation.

MinDelay_While = Add_ExecutionTime + While_RegisterEvaluationLatency = 8 - 3 = 5 cycles

To add this extra time at the end of the internal while Sequence a Delay Statement can be added.
The Delay Statement will need at least 4 cycles of delay which with the EndLatency of the Delay
Statement, will give the total the added delay of 5 cycles.

Trigger Write

Trigger Inputs / Outputs are organized together in groups of 16 called TriggerIOs. Each value can be
ON or OFF.

Any number of TriggerIOs can be written at the same time.

Find us at www.keysight.com Page 411

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

l #TriggerIOGroupsON is the number of TriggerIOGroups that contain values set to ON.

l #TriggerIOGroupsOFF is the number of TriggerIOGroups that contain values set to OFF.

The Fetch time of the instruction depends on the number of different TriggerIO groups included in the
instruction for the two possible values (#TriggerIOGroupsON or #TriggerIOGroupsOFF).

The following table provides some examples.

Triggers
ON

Triggers
OFF

#TriggerIOGroupsON #TriggerIOGroupsOFF
Execution time

(cycles)
Fetch time

(cycles)

1, 2 1 0 2 1

1, 2, 17,
18

2 0 2 1

1, 2 3, 4 1 1 2 1

1, 2, 17,
18

3, 4 2 1 3 2

1, 2, 17,
18

3, 4, 19, 20 2 2 3 2

See your instrument documentation for information about instrument-specific TriggerIO definitions.

Example Trigger write basic timing values:

Instruction Execution time (cycles) Fetch time (cycles)

TriggerWrite Instrument_Trigger_Execution + (#TriggerWriteGroups - 1) #TriggerWriteGroups

#TriggerWriteGroups = ceil[(TriggerIOGroupsON + TriggerIOGroupsOFF)/2], where

l #TriggerIOGroupsON is the number of TriggerIOGroups that contain values set to ON.

l #TriggerIOGroupsOFF is the number of TriggerIOGroups that contain values set to OFF.

NOTE Trigger execution time is instrument-specific. For Trigger execution timing
information, see your instrument documentation.

Find us at www.keysight.com Page 412

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Action Execute

The Action-execute HVI instruction synchronously executes a list of HVI Actions defined by the user.
HVI Actions are organized in groups called ActionGroups that can contain up to 16 Actions. Each
instrument defines its own groups of Actions. See the instrument documentation for information
about instrument Action definitions and the way they are grouped. Any number of HVI Actions can be
executed synchronously, regardless of the group that each Action user belongs to.

However, the number of Action groups included in the Action-execute instruction (#ActionGroups)
affects both the Fetch time and the Execution time of the instruction, as shown by the equations in
the following table.

Example Action execute basic timing values:

Instruction Execution time (cycles) Fetch time (cycles)

ActionExecute
Instrument_Action_Execution + INT[(#ActionGroups-1)

/ 2]
1 + INT[(#ActionGroups -1) / 2]

Where INT is the integer part of a decimal number, for instance INT(1.0)=INT(1.5)=1.

NOTE Action execution timing is instrument-specific. For Action execution timing
information, see your instrument documentation.

Arithmetic Logic Unit Instructions

Arithmetic Logic Unit (ALU) instructions are the register add, subtract or assign operations that are
available in the HVI-native instruction set.

ALU instructions basic timing values:

Instruction Execution time (cycles) Fetch time (cycles)

Add 8 1

Subtract 8 1

Assign 5 1

Find us at www.keysight.com Page 413

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

FPGA-User Sandbox Instructions

The access latency of the FPGA-Registers and memory map from HVI depends on the
implementation of the specific instrument. The following table summarizes the latency for all FPGA-
Read FPGA-Write instructions. For the specific value of Instrument_HVI_FPGA_Latency, see
your instrument documentation.

Example FPGA-User Sandbox operations basic timing values:

Instruction Execution time (cycles)
Fetch time

(cycles)

FpgaArrayRead 2 * Instrument_HVI_FPGA_Latency + 4 1

FpgaArrayRead
(Address from
HviRegister)

2 * Instrument_HVI_FPGA_Latency + 6 1

FpgaArrayWrite Instrument_HVI_FPGA_Latency + 2 1

FpgaArrayWrite
(Address or data from
HviRegister)

Instrument_HVI_FPGA_Latency + 4 1

FpgaRegisterRead 2 * Instrument_HVI_FPGA_Latency + 4 1

FpgaRegisterWrite Instrument_HVI_FPGA_Latency + 2 1

FpgaRegisterWrite
(Address or data from
HviRegister)

Instrument_HVI_FPGA_Latency + 4 1

NOTE FPGA-User Sandbox timing is instrument-specific. For FPGA-User Sandbox timing
information, see your instrument documentation.

NOTE l Consecutive FPGA-Read instructions must be issued with at least 1 cycle of delay
between them.

l If an FPGA-Instruction that uses an HVI register is issued before an FPGA-
Instruction that does not use an HVI register, the delay between both instructions
must be at least 3 cycles.

FPGA-Instruction Statement

FPGA-Instruction Statement latency depends on a number of factors:

Find us at www.keysight.com Page 414

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

l Instruction fetch time.

l Time to fetch data from any HVI registers it uses.

l Instrument-specific delays.

Apart from fetch time and the first two execution cycles spent inside the HVI Engine, the rest of the
latency is defined by the instrument, this is condensed into the single parameter Instrument_FpgaIn-

struction_Latency. See your instrument documentation for information about the HVI Engine clock fre-
quency and FPGA-Instruction timing information.

FPGA-Instruction Statement timing values:

Instruction Execution Time (cycles)
Fetch Time

(cycles)

FPGA-
Instruction

Instrument_FpgaInstruction_Latency + 2 1

Instrument-Specific HVI Instruction Timing Values

Instrument-Specific HVI Instruction latency depends on a number of factors:

l Instruction fetch time.

l Time to fetch data from any HVI registers it uses.

l Instrument-specific delays.

Apart from fetch time and the first two execution cycles spent inside the HVI Engine, the rest of the
latency is defined by the instrument and condensed into the single parameter Instrument_LocalIn-

struction_Latency. See your instrument documentation for information about the HVI Engine clock fre-
quency and instrument-specific instruction timing information.

 Instrument-Specific HVI Instruction timing values:

Instruction Execution Time (cycles)
Fetch Time

(cycles)

Instrument-
Specific HVI
Instruction

Instrument_LocalInstruction_Latency + 2 1

Find us at www.keysight.com Page 415

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

HVI Instruction Position Mapping

The following table show the instruction positions that each HVI-native HVI Instruction uses during
fetch time, for more information see HVI Instruction Timing Concepts. For instrument custom
instructions, see your instrument documentation:

Positions

HVI Native Instruction 1 2 3 4 5 ...

ActionExecute Y - -

Add Y - -

Assign Y - -

Fpga Array-Read Y - -

Fpga Array-Write Y - -

FPGA-Register-Read Y - -

FPGA-Register-Write Y - -

Subtract Y - -

TriggerWrite Y - -

Examples of HVI Instruction Timing Calculation across Sync and Local Flow-Control Statements

This section shows basic examples of HVI Instruction across within Sync and Local Flow-Control
Statements and how the timing is calculated.

HVI Instruction timing across Sync Multi-Sequence Blocks example

This example shows a pair of Sync Multi-Sequence Blocks each with a HVI Instruction each. A
diagram and the code and timing calculations are shown.

Find us at www.keysight.com Page 416

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

The following is a diagram of the example:

The code for the example:

mse1 = sequencer.sync_sequence.add_sync_multi_sequence_block("mse1", 50)
seq = mse1.sequences['EngineA']
instA = seq.add_instruction("instA", 20, seq.instruction_set.trigger_write.id)
#
mse2 = sequencer.sync_sequence.add_sync_multi_sequence_block("mse2", 20)
seq = mse2.sequences['EngineA']
instB = seq.add_instruction("instB", 10, seq.instruction_set.trigger_write.id)

The timing calculations for the example:

InstA Execution Start time from HVI-Start (InstA_start):

InstA_start = start_delay(mse1) + start_delay(instA) = 50ns + 20ns = 70ns

Time from InstA to InstB (T_InstA_InstB) :

T_InstA_InstB = start_delay(mse2) + start_delay(instB) = 20ns + 10ns = 30ns

HVI Instruction timing across Sync Multi-Sequence Blocks and Local If example

This example shows cascaded Local If Statements within a Sync Multi-Sequence Block followed by a
HVI Instruction in a Sync Multi-Sequence Block. The code and timing calculations are also shown:

The following is a diagram of the example:

Find us at www.keysight.com Page 417

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

The code for the example:

mse1 = sequencer.sync_sequence.add_sync_multi_sequence_block("mse1", 50)
seq = mse1.sequences['EngineA']
if1 = seq.add_if('if1', 70, if1_cond, True)
if1_branch_seq = if1.if_branch.sequence
if2 = if1_branch_seq.add_if('if2', 80, if2_cond, True)
if2_branch_seq = if2.if_branch.sequence
instA = if2_branch_seq.add_instruction("instA", 20, seq.instruction_set.trigger_write.id)
#
mse2 = sequencer.sync_sequence.add_sync_multi_sequence_block("mse2", 20)
seq = mse2.sequences['EngineA']
instB = seq.add_instruction("instB", 10, seq.instruction_set.trigger_write.id)

The timing calculations for the example:

The formula to calculate the InstA execution start time from HVI-Start, InstA_start is:

InstA_start = start_delay(mse1) + start_delay(if1) + start_delay(if2) + start_delay(instA) = 50ns +

70ns + 80ns + 20ns = 220ns

Find us at www.keysight.com Page 418

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

The formula to calculate time from InstA to InstB, T_InstA_InstB is:

T_InstA_InstB = start_delay(mse2) + start_delay(instB) = 20ns + 10ns = 30ns

NOTE The end_latency(mse1) is accounted for in the start_delay(mse2), this imposes a
minimum value.

HVI Instruction timing across Sync While and Sync Multi-Sequence Blocks example

This example shows how time is calculated for a Sync while Statement that contains a Sync Multi-
Sequence Block and a single instruction:

The following diagram shows the example:

The following block shows the example code:

sync_while = sequencer.sync_sequence.add_sync_while('sync_while', 170, sync_while_condition)
mse1_sequence = sync_while.sync_sequence.add_sync_multi_sequence_block("mse1", 250).sequences['EngineA']
instA = mse1_sequence.add_instruction("InstA", 20, seq.instruction_set.assign.id)
#
mse2_sequence = sequencer.sync_sequence.add_sync_multi_sequence_block("mse2", 230).sequences['EngineA']
instB = mse2_sequence.add_instruction("InstB", 50, seq.instruction_set.assign.id)

The following are the equations used to calculate the timing in the example:

InstA Execution Start time from HVI-Start, InstA_start:

Find us at www.keysight.com Page 419

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

InstA_start = start_delay(sync_while) + start_delay(mse1) + start_delay(instA) = 170ns + 250ns + 20ns

= 440ns

Sync Multi-Sequence Block Execution time, Tmse1:

Tmse1 = SequenceTime = 20ns

Sync while Execution time for 1 loop when looping, Twhile_loop:

Twhile_loop = Twhile = {start_delay(mse1) + Tmse1} = {250ns + 20ns} = 270ns

Time from InstA to InstA in consecutive repetitions, Tloop_InstA:

Tloop_InstA = Twhile_loop

Time from InstA to InstB (the last Sync while execution), T_InstA_InstB:

T_InstA_InstB = start_delay(mse2) + start_delay(instB) = 230ns + 50ns = 280ns

NOTE The end_latency(sync_while) is accounted for in the start_delay(mse2). This imposes a
minimum value.

Find us at www.keysight.com Page 420

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Minimum Start Delay Calculation for Local Flow-Control and Sync State-
ments
This section describes minimum Start Delay calculations for Local Flow-Control and Sync State-
ments, it contains the following sections:

l Minimum Start Delay for Local Flow-Control Statements

l Minimum Start Delay for Sync Statements

To calculate the minimum valid Start Delay for a given Local Flow-Control or Sync Statement, the
general rule is to add the End-Latency of the previous Statement with the Start-Latency of the cur-
rent Statement:

Statement_MinStartDelayEngineX = PreviousStatement_EndLatencyEngineX + Statement_StartLatencyEngineX

From this general rule, we can distinguish 2 subcases:

Find us at www.keysight.com Page 421

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

n First Statement of the global HVI Sequence: Use the End-Latency of the HVI Start.
n First Statement of a sub Sequence: Instead of the End-Latency use the Entry-Latency of the parent

Statement.

The values for each latency can be found in the Timing tables for Local Flow-Control Statements and
Sync Statements.

Minimum Start Delay for Local Flow-Control Statements

The Local Flow-Control Statements are following the general rule described above to calculate the
minimum Start Delay.

Minimum Start Delay after HVI Instructions

As explained earlier, to find out the minimum Start-Delay of a Statement, it is important to know the
end-latency of the previous Statement. If the previous Statement of a Local Flow-Control Statement
is one or more HVI Instructions, the end-latency is calculated as the remaining fetch-cycles of all the
HVI Instructions starting from the beginning of the last instruction.

This can be seen in the following figure. Starting from the beginning of Instruction C (last HVI Instruc-
tion), we calculate the remaining fetch cycles of all the instructions executed before Statement D.
From the picture we see that there is one fetch cycle where instructions A, B, C are executed together
and then, one more fetch cycle for instruction B. So, in total, there are 2 remaining fetch cycles, there-
fore, the end-latency is 2 cycles.

Find us at www.keysight.com Page 422

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

End-Latency of Local Flow-Control Statements with internal Sequence (If and While)

The End-Latency of Local Flow-Control Statements with internal Sequence, like If and While State-
ments, depend on the End-Latency of the last Statement of their internal Sequences. When the last
Statement of the internal Sequence is one or more HVI Instructions, for the calculation of the End-
Latency, the same principle applies as described in the previous section, i.e. the end-latency is cal-
culated as the remaining fetch-cycles of all the HVI Instructions starting from the beginning of the
last instruction.

Minimum Start Delay for Sync Statements

For the Sync Statements, the minimum Start Delay is the maximum of all the minimum Start Delays
calculated for each HVI Engine rounded to the next multiple of the HVI Common Clock period:

Statement_MinStartDelay = roundncc(max{Statement_MinStartDelayEngine1, Statement_

MinStartDelayEngine2,..., Statement_MinStartDelayEngineN})

where Roundncc roundncc(.) is an operation that rounds to the next multiple of the HVI Common
Clock period.

In the following diagram, we show graphically the minimum Start Delay calculation process between
two Sync Statements in a system that has two Engines with different frequencies, EngineA and
EngineB:

Find us at www.keysight.com Page 423

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Example: Minimum Start Delay from HVI Start to Sync While

In this example we show how to calculate the minimum Start Delay value acceptable for a Sync While
Statement that is placed as the first Statement of the HVI root SyncSequence.

Create SystemDefinition object
system_definition = keysight_tse.SystemDefinition("MySystemDefinition")
system_definition.engines.add(instrument_1.hvi.engines.leader, "HVI_Engine_1")
system_definition.engines.add(instrument_1.hvi.engines.leader, "HVI_Engine_2")
...

Find us at www.keysight.com Page 424

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Create Sequencer object
sequencer = keysight_tse.Sequencer("MySequencer", system_definition)
Iteration counter register for "HVI_Engine_2"
iteration_counter = sequencer.sync_sequence.scopes["HVI_Engine_2"].registers.add("MyRegister", keysight_
tse.RegisterSize.SHORT)
iteration_counter.initial_value = 0
Define sync while condition
num_loops = 5
sync_while_condition = keysight_tse.Condition.register_comparison(iteration_counter, keysight_
tse.ComparisonOperator.LESS_THAN, num_loops)
SyncWhile_MinStartDelay = ... # The calculation for the minimum is explained below
sequencer.sync_sequence.add_sync_while("MySyncWhileStatement", SyncWhile_MinStartDelay, sync_while_
condition)

We assume the following values to be used in the calculations:

Variable Value Description

#Register_

Conditions
1 In the example above, we used only one register condition for the Sync While

Engine1Period
5 ns

We assume HVI Engine 1 to run at frequency of 200 MHz which results in a 5 ns

period

Engine2Period

3.333

ns

We assume HVI Engine 2 to run at frequency of 300 MHz which results in a 3.333 ns

period

HVI_Leader_
Engine_

ClockPeriod

3.333

ns

The leader Engine for the Sync While in the example is HVI Engine 2, since the register
used in the condition of the Sync While belongs to that Engine. So, the frequency of the
leader Engine is that of Engine 2

HVI_Common_

ClockPeriod
10 ns This is the result of the GCD of the Engines included in HVI: LCM

{Engine1Period,Engine2Period}

Engine 1:

Using the timing table of HVI Start, we calculate the End Latency for this Engine:

HVI Start

Parameter Time (cycles) Result (n s)

HviStart_EndLatencyEngine1 2 10

Using the timing table of the Sync While Statement, we calculate the Start Latency for this Engine:

Find us at www.keysight.com Page 425

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Sync While

Parameter Time (cycles) Result (n s)

SyncWhile_StartLatencyEngine1 Follower Engine: 2 10

Therefore, the minimum for this Engine is:

SyncWhile_MinStartDelayEngine1 = HviStart_EndLatencyEngine1 + SyncWhile_StartLatencyEngine1 = 20 ns

Engine 2:

Using the timing table of HVI Start, we calculate the End Latency for this Engine:

HVI Start

Parameter Time (cycles) Result (n s)

HviStart_EndLatencyEngine2 2 6.666

Using the timing table of the Sync While Statement, we calculate the Start Latency for this Engine:

Sync While

Parameter Time (cycles) Result (n s)

SyncWhile_StartLatencyEngine1
Leader Engine: 6 +

#Register_Conditions
23.333

Therefore, the minimum Start Delay for this Engine is:

SyncWhile_MinStartDelayEngine2 = HviStart_EndLatencyEngine2 + SyncWhile_StartLatencyEngine2 = 30 ns

Minimum Start Delay:

SyncWhile_MinStartDelay = roundncc(max{SyncWhile_MinStartDelayEngine1, SyncWhile_MinStartDelayEngine2}) = 30 ns

Find us at www.keysight.com Page 426

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Example: Minimum Start Delay for the first Statement inside a Sync While

Continuing from the previous example, in this example we show how to calculate the minimum Start
Delay value acceptable for a Sync Multi-Sequence Statement that is placed as the first Statement of
a Sync While internal SyncSequence.

#...
SyncWhile_MinStartDelay = 30 # As calculated earlier
sync_while_statement = sequencer.sync_sequence.add_sync_while("MySyncWhileStatement", SyncWhile_
MinStartDelay, sync_while_condition)
SyncMultiSequence_MinStartDelay = ... # The calculation for the minimum is explained below
sync_while_statement.sync_sequence.add_sync_multi_sequence_block("empty_multisequence", SyncMultiSequence_
MinStartDelay)

In addition to the Variables provided in the previous example, we assume the following values to be
used in the following calculations:

Variable Value Description

Instrument_
SyncResources_

Latency
0 cy This is an instrument dependent value. We assume it to be 0 for this example.

Propagation_

delayCycles
30 cy

Assuming that we use only 1 chassis in this example, the Propagation delay would
be 100 ns. Translating it to cycles of the leader Engine of the Sync While, that gives
us 30 cycles.

End-LatencyLast-
statement

0 cy
The last Statement is an empty Sync Multi-Sequence Block which, according to the
timing tables, will have 0 cycles of end-latency.

Find us at www.keysight.com Page 427

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Engine 1:

Using the timing table of the Sync While Statement, we calculate the End Latency for this Engine:

HVI Start

Parameter Time (cycles) Result (n s)

SyncWhile_
EntryLatencyEngine1

match{LatencyAEngine1, LatencyAEngine2_inEngine1Cycles} +

2 + End-LatencyLast-statement
160*

*Calculation:

LatencyAEngine1 = 2 cy (Engine1 cycles)

LatencyAEngine2 = 12 + #Register_Conditions + Instrument_SyncResources_Latency + Propagation_delay Cycles = 43

cy (Engine2 cycles)

LatencyAEngine2_inEngine1Cycles = ceil(43 * Engine2Period / Engine1Period) = 29 cy (Engine1 cycles)

SyncWhile_EntryLatencyEngine1 = (match{2,29} + 2 + 0) * Engine1Period = (roundncc(29) + 2) * 5 = 160 ns

Using the timing table of the Sync Multi-Sequence Statement, we calculate the Start Latency for this
Engine:

Sync While

Parameter Time (cycles) Result (n s)

SyncMultiSequence_
StartLatencyEngine1

1 5

Therefore, the minimum for this Engine is:

SyncMultiSequence_MinStartDelayEngine1 = SyncWhile_EntryLatencyEngine1 + SyncMultiSequence_StartLatencyEngine1

= 165 ns

Engine 2:

Using the timing table of the Sync While Statement, we calculate the End Latency for this Engine:

Find us at www.keysight.com Page 428

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

HVI Start

Parameter Time (cycles) Result (n s)

SyncWhile_
EntryLatencyEngine2

match{LatencyAEngine1_inEngine2Cycles, LatencyAEngine2} + 2 + End-

LatencyLast-statement
156.666

*

*Calculation:

LatencyAEngine1_inEngine2Cycles= ceil(LatencyAEngine1 * Engine1Period / Engine2Period) = 3 cy (Engine2 cycles)

LatencyAEngine2 = 43 cy (Engine2 cycles)

SyncWhile_EntryLatencyEngine2 = (match{3,43} + 2 + 0) * Engine2Period = (roundncc(43) + 2) * 3.333 = 156.66 6

 ns

For an explanation of the match() function, see Sync Statement Timing.

Using the timing table of the Sync Multi-Sequence Statement, we calculate the Start Latency for this
Engine:

Sync While

Parameter Time (cycles) Result (n s)

SyncMultiSequence_
StartLatencyEngine2

1 3.333

Therefore, the minimum Start Delay for this Engine is:

SyncMultiSequence_MinStartDelayEngine2 = SyncWhile_EntryLatencyEngine2 + SyncMultiSequence_

StartLatencyEngine2 = 160 ns

Minimum Start Delay:

SyncMultiSequence_MinStartDelay = roundncc(max{SyncMultiSequence_MinStartDelayEngine1, SyncMultiSequence_

MinStartDelayEngine2}) = 170 ns

Find us at www.keysight.com Page 429

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Errors in Start Delay or Duration specification
This section describes Error and Warnings.

Errors when setting Start Delays and how to deal with them

The previous section explains how to calculate the Start Delay for each type of Statement. Depending
on the type of Statements as well as the number of Engines with different frequencies, this can be a
complex and error-prone procedure.

In the case of an error, the HVI compiler will validate the provided values and generate a message
with the minimum Start Delay applicable.

Example: Fixing a Start Delay with a compiler message

In the following example code, a Sync Multi-Sequence Block is added as the first Statement to a Sync
Sequence. To get the compiler to generate an error that indicates the minimum Start Delay value that
can be used to add the Sync Multi-Sequence Block, you can set the Start Delay to 0 as shown in the
following example code snippet.

Create SystemDefinition object
my_system = kthvi.SystemDefinition("MySystem")
...
Create Sequencer object
sequencer = kthvi.Sequencer("MySequencer", my_system)
Add a Sync Multi-Sequence Block (SMSB) with a 0 ns Start Delay
sync_block = sequencer.sync_sequence.add_sync_multi_sequence_block("TriggerAWGs", 0)

When the Sequencer object is compiled, the compiler detects that 0 ns does not comply with the min-
imum latency for the Sync Multi-Sequence Block in the HVI Sequence. It returns an error message
stating that the specified Start Delay shall be at least 30 ns. See the following image for an example
of the returned error message.

The reason why a minimum latency of 30 ns is required is explained in this chapter in the section Sync
Statement Timing. In a similar way, you can set any Start Delay to 0 ns and let the compiler error mes-
sages provide the minimum latency required for each of those Start Delays. The reasons behind the
specific minimum values advised by the compiler are explained in the rest of this chapter.

Find us at www.keysight.com Page 430

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

NOTE Limitations:

The compiler provides an indication of the minimum Start Delay for each Engine. If
you are using different instruments these can be different values. That is because
the clock cycle duration is different in each instrument. For example, a minimum
latency of 3 cycles lasts 30 ns on M3xxxA instruments and 10 ns on M5xxxA
instruments. In case the compiler error messages suggest different values, pick the
highest value of those indicated and round it to the next HVI Common Clock cycle
to set a Start Delay value that can accommodate the requirements for all the
different instruments that are included in the HVI.

Error and Warning Margins Related to Timing Resolution

PathWave Test Sync Executive implements a policy for error and warning margins when you specify
the timing for a Start Delay or a duration.

The following table shows example values for an instrument with a 300MHz clock (3.3ns clock
period):

Range Type Range Example Description

No Error or
Warning

±10ps 3.323ns to 3.343ns
If you set a value with ±10ps error from the exact clock
period multiplier value, no error or warning is
generated.

Warning ±100ps
3.233ns to 3.323ns, or
3.343ns to 3.433ns

If you set a value between ±10ps and ±100ps of the
exact clock period multiplier value, a warning
is generated.

Error >100ps
0.000ns to 3.233ns, or
3.433ns to 6.566ns

If you set a value with more than ±100ps error from the
exact clock period multiplier value, an error is
generated.

The following diagram shows an example where the exact clock period multiplier value is 3. 3 ns, this
is the same as the example in the table.

Find us at www.keysight.com Page 431

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

To calculate the margins for other period multiplier values, warnings are +-10ps from the exact value
and errors are +-100ps away from the exact value.

Find us at www.keysight.com Page 432

KS2201A - PathWave Test Sync Executive User Manual Chapter 10: HVI Time Management and Latency

Appendix A: Supported Instruments
PathWave Test Sync Executive supports a number of instruments and PXIe chassis, these require spe-
cific minimum software and firmware versions to work with PathWave Test Sync Executive.

The software and firmware version requirements for the supported instruments and chassis are listed
on-line here: Instrument and Chassis Software and Firmware Requirements for KS2201A.

Product specific documentation

For product-specific information and documentation please refer to the product pages.

Firmware is available at Keysight PXI Products, on the Technical Support page for your specific
instruments, see the Drivers, Firmware & Software tab.

M3000 Series

The M3000 series (SD1) software provides drivers, programming libraries and software front panels
for the M3000 series.

Instruments are shipped with the latest versions of firmware and SD1 software. To use an older
instrument with PathWave Test Sync Executive, the firmware and SD1 software must be upgraded to
the versions recommended in the product page following the guidelines at the link above. SD1
software is available at Keysight SD1 Software.

Other Instruments

Instruments are provided with their own drivers, programming libraries, and software front panels,
and are shipped with the latest versions of firmware and software. To use an older instrument
with PathWave Test Sync Executive, the firmware and software must be upgraded to the versions
recommended in the product page following the guidelines at the link above.

Find us at www.keysight.com Page 433

KS2201A - PathWave Test Sync Executive User Manual Appendix A: Supported Instruments

https://www.keysight.com/find/ks2201a-firmware-version-requirements
http://www.keysight.com/find/pxi
https://www.keysight.com/es/en/lib/software-detail/instrument-firmware-software/sd1-3x-software-3120392.html

PXIe Chassis

The Chassis software provides drivers, programming libraries and software front panels for the
Keysight chassis.

Chassis are shipped with the latest versions of firmware and software. To use an older chassis
with PathWave Test Sync Executive, the firmware and software must be upgraded to the versions
recommended in the product page following the guidelines at the link above.

Compatibility with M3601A

M3601A is an older generation of HVI technology that is only programmable by the M3601A Hard
Virtual Instrument Design Environment. PathWave Test Sync Executive is a new generation and is not
backward compatible with the M3601A generation.

Both PathWave Test Sync Executive and M3601A work with the M3000 series of PXIe products.
However, PathWave Test Sync Executive requires newer firmware while M3601A requires older
firmware.

Find us at www.keysight.com Page 434

KS2201A - PathWave Test Sync Executive User Manual Appendix A: Supported Instruments

Appendix B: Additional Documentation and Examples
This appendix lists the PathWave Test Sync Executive Programming Examples and additional doc-
umentation that you can download from the KS2201A Programming Examples page.

NOTE The Programming Examples are often updated so ensure you check for the latest
versions.

Programming Example 1: Multi-Channel Sync Playback using M32xxA Arbitrary
Waveform Generators

In Programming Example 1, PathWave Test Sync Executive is used to program multiple M3xxxA
Arbitrary Waveform Generators (AWG)s. The AWGs synchronously output a front panel trigger pulse
followed by a previously queued waveform. All instruments run fully synchronized and Actions across
the instruments can be controlled at the timing resolution of the M3xxxA AWGs, which is 10ns.

Programming Example 2: Synchronous Signal Generation and Acquisition using M3xxxA
PXI Instruments

In Programming Example 2, a M3102A
digitizer performs sequenced acquisition of heterogeneous signals generated by multiple M320xA
AWGs. The first AWG generates a train of RF pulses and the other AWGs output a
queued arbitrary waveform. By using PathWave Test Sync Executive, each cycle of the digitizer
measurements is precisely synchronized with the AWG output signals.

Programming Example 3: PathWave Test Sync Executive Integration with PathWave FPGA

This Programming Example shows how to use Keysight PathWave Test Sync Executive together with
Keysight PathWave FPGA. A custom FPGA block is designed using Keysight PathWave FPGA and
loaded into the FPGA-Sandbox of two modular instruments. The two instruments execute HVI
Sequences that can communicate with the custom FPGA blocks programmed into the FPGA-
Sandbox of the module FPGA. Using an HVI Port, the HVI Sequence can read/write values in any HVI
Port Register inserted among the custom FPGA blocks. This example also shows how the HVI
Sequence and FPGA-Sandbox of an instrument can communicate by using Actions and Events. The
exchanged information can also be written to PXI lines.

Find us at www.keysight.com Page 435

KS2201A - PathWave Test Sync Executive User Manual Appendix B: Additional Documentation and Examples

http://www.keysight.com/find/ks2201a-programming-examples

Programming Example 4: Real-Time Pulsed Characterization of a Device-Under-Test

In this Programming Example, an M3202A AWG and an M3102A digitizer are used to perform a real-
time pulsed characterization experiment on a Device Under Test.

A pool of different waveforms is loaded to the AWG RAM. The digitizer uses the register-sharing
functionality to select a real-time the waveform to be played by the AWG at each iteration of the
experiment. The selected waveform is used by AWG CH1 and CH2 to play I-Q modulated pulses and
re-play them after a Variable delay. In the same iteration, AWG CH3 and CH4 play a second burst
of I-Q pulses after another Variable delay. The second burst pulse length can be increased after each
iteration. The experiment can be repeated for a user-defined number of loops, allowing you to choose
the delay between each loop and the delay necessary for example to let the DUT return to its
equilibrium state. Example use cases for this programming example include power amplifier
characterization for 5G mobile communications and quantum bit characterization experiments for
physics applications. In the physics case, the AWG generates the control and readout pulses
necessary for characterization of quantum bits.

Programming Example 5 - Synchronized Multi-Channel Mixed-Signal Generation using
M3xxA PXI Instruments

In this Programming Example, KS2201A PathWave Test Sync Executive is used to program multiple
M3xxx Arbitrary Waveform Generators to synchronously generate mixed signals. Each instrument can
be programmed to output either a front panel marker pulse or a previously queued waveform. All
signal channels run fully synchronized and Actions across instruments can be controlled with the
timing resolution of the M3xxxA AWGs, which is 10ns.

Programming Example 6 - Synchronized MIMO Measurements using M5302A Digital I-O
and M3xxxA PXI Instruments

In this programming example, PathWave Test Sync Executive is used to program multiple M5302A
Digital I/O (DIO) and M3xxxA PXI instruments. By using HVI (Hard Virtual Instrument) capabilities, DIO
instruments can output a pulsed signal from any of their Front Panel (FP) SMB trigger ports and
M320xA AWGs can synchronously play a previously queued waveform. Multiple M3102A Digitizers
can also be included in the same HVI to synchronously capture all the generated analog and digital
signals. This way the example can showcase a Multiple-Input Multiple-Output (MIMO) measurement
setup having all his input and output channels fully synchronized.

Find us at www.keysight.com Page 436

KS2201A - PathWave Test Sync Executive User Manual Appendix B: Additional Documentation and Examples

Programming Example 7 - RF Sweeps using M320x AWGs M5300 RF AWGs and M9046
Chassis

In this programming example, PathWave Test Sync Executive is used to define a real-time algorithm
to be executed by the FPGA (Field Programmable Gate Array) of Arbitrary Waveform Generators
(AWGs). This enables the AWG channels to be used to output pulsed signals that are swept in
amplitude and frequency, to perform a pulsed characterization of a Device-Under-Test.

System Setup Guide

This document describes the different ways you can set up a single or multi-chassis system, with
clocking and communications.

Transitioning from M3601A HVI Programming Environment to KS2201A PathWave Test
Sync Executive

This Transition Guide is intended for M3601A users and explains how to translate an M3601A project
into TSE API Python code programmed using Keysight KS2201A PathWave Test Sync Executive.

Find us at www.keysight.com Page 437

KS2201A - PathWave Test Sync Executive User Manual Appendix B: Additional Documentation and Examples

Appendix C: Timing Tables
This appendix lists statement timing tables for quick access. It contains the following sections:

l Sync Statement Timing Tables

l Local Flow-Control Statement Timing Tables

l HVI Instruction Timing Tables

Find us at www.keysight.com Page 438

KS2201A - PathWave Test Sync Executive User Manual Appendix C: Timing Tables

Sync Statement Timing Tables

Sync Multi-Sequence Block

Timing value for Sync Multi-Sequence Blocks:

Execution time (cycles) (1)

roundncc_cycles (sumfor_all_internal_statements(StartDelayCycles) + sumfor_all_internal_flow_control_statements

(DurationCycles)) (2)

The following tables shows latency values for Sync Multi-Sequence Blocks:

Find us at www.keysight.com Page 439

KS2201A - PathWave Test Sync Executive User Manual Appendix C: Timing Tables

Parameter Description Time(cycles)

Start-
Latency

Minimum start-delay for
Statement

1

Entry-
latency

Minimum start-delay for
first Statement inside any
of the contained Sequences

1

End-
Latency

Minimum
start-delay
for the next
Statement

timed-sync
(5)

Minimum
Duration

roundncc_cycles(End-LatencyLast-statement-of-longest-branch(3) -

1)

* If the last Statement of the longest branch is not
starting from a common clock cycle (see section Sync
Multi-Sequence Block Timing and Time Matching in
Sync Statement Timing), the formula is updated to:

roundncc_cycles(End-LatencyLast-statement-of-longest-branch(3) -

1 - DistanceToNextCommonClock)

where:

- DistanceToNextCommonClock is the number of Engine
Cycles from the start of the last Statement to the
following common clock cycle.

timed-sync
(5)

Fixed
Duration

0

triggered-
sync (5) 0

Fixed-
Duration

Minimum fixed-duration for
Statement

roundncc_cycles([maxfor_all_Sequences[Sequence-Duration]])(4),

where Sequence-Duration is calculated as follows:

sumfor_all_internal_statements(Start-Delay) + sumfor_all_

internal_flow_control_statements(Duration) + End-LatencyLast-

statement - 1

Find us at www.keysight.com Page 440

KS2201A - PathWave Test Sync Executive User Manual Appendix C: Timing Tables

(1) The values provided here apply if the duration property of the Statement is set to Minimum
(default). If a fixed-duration has been set, then the Execution time is equal to that value.

(2) The values are only calculated for the branch that is being executed, if there are multiple
branches available.

(3) If the Sequence is empty, the value is 0.

(4) If the Sequence is empty, then the duration is 0.

(5) Triggered-sync is required if any of the Sequences in a Sync Multi-Sequence Block contains
a Statement that has unknown execution time at compile time.

Find us at www.keysight.com Page 441

KS2201A - PathWave Test Sync Executive User Manual Appendix C: Timing Tables

Sync While

Timing value for Sync While Statement:

Execution time (cycles) (1)

roundncc_cycles (#Iterations * [sumfor_all_internal_statements(StartDelayCycles) + sumfor_all_internal_flow_

control_statements(DurationCycles)])

The following tables shows latency values for the Sync While Statement:

Find us at www.keysight.com Page 442

KS2201A - PathWave Test Sync Executive User Manual Appendix C: Timing Tables

Parameter Description Time (cycles)

Start-Latency Minimum start-delay for Statement

l Leader Engine: 6 + #Register_Conditions

l Follower Engine(s): 2

Entry/Iteration
latency

Minimum start-
delay for first
Statement inside
the while loop

Minimum
Duration

match{LatencyALeaderEngine, LatencyAFollowerEngine1,

...} + 2 + End-LatencyLast-statement(2)

where LatencyA is :

l Leader Engine(3): 12 + #Register_Conditions
+ Instrument_SyncResources_Latency (4) +
Propagation_delayCycles

l Follower Engine(s): 2

Fixed Duration

match{LatencyBLeaderEngine, LatencyBFollowerEngine1,

...} + 2

where :

l LatencyB = LatencyA - 1

l LatencyA as defined above

Find us at www.keysight.com Page 443

KS2201A - PathWave Test Sync Executive User Manual Appendix C: Timing Tables

Parameter Description Time (cycles)

End-Latency

Minimum start-
delay for next
Statement outside
the while loop

Minimum
Duration

match{LatencyALeaderEngine, LatencyAFollowerEngine1,

...} + match{LatencyCLeaderEngine,

LatencyCFollowerEngine1, ...} + End-LatencyLast-

statement(2),

where:

l LatencyA as defined above

l LatencyC is 2 for each Engine.

Fixed Duration

match{LatencyBLeaderEngine, LatencyBFollowerEngine1,

...} + match{LatencyCLeaderEngine,

LatencyCFollowerEngine1, ...},

where:

l LatencyB as defined above

l LatencyC as defined above

Fixed-Duration
Minimum fixed-
duration for
Statement

Sync-While
Branch with at
least one
Statement
inside

roundncc_cycles(sumfor_all_internal_statements

(StartDelayCycles) + sumfor_all_internal_flow_control_

statements(DurationCycles) + 1 + End-LatencyLast-

statement)

Empty Sync-
While Branch

match{LatencyBLeaderEngine, LatencyBFollowerEngine1,

...} + match{LatencyCLeaderEngine,

LatencyCFollowerEngine1, ...} + 1,

where:

l LatencyB as defined above

l LatencyC as defined above

Find us at www.keysight.com Page 444

KS2201A - PathWave Test Sync Executive User Manual Appendix C: Timing Tables

Parameter Description Time (cycles)

Register
Evaluation
Latency

Time to evaluate the Register
condition

Leader Engine (Only):

l From start: 2

l For each iteration: -(3 + #Register_Conditions)

(1)This value applies if the duration property of the statement is set to Minimum (default). If a fixed-
duration has been set, then the Execution time is equal to that value.

(2)If the sequence is empty, the value of End-LatencyLast-statement is 0.

(3)In the context of this statement, Leader is the engine that contains the Register or Registers used
in the while condition.

(4) Instrument_SyncResources_Latency is an instrument specific value. For more information see the
instrument documentation.

Find us at www.keysight.com Page 445

KS2201A - PathWave Test Sync Executive User Manual Appendix C: Timing Tables

Sync For

Timing value for Sync For Statement:

Execution time (cycles) (1)

roundncc_cycles (#Iterations * [sumfor_all_internal_statements(StartDelayCycles) + sumfor_all_internal_flow_

control_statements(DurationCycles)])

The following tables shows latency values for the Sync For Statement:

Parameter Description Time (cycles)

Start-Latency Minimum start-delay for Statement
8

Entry/Iteration
latency

Minimum start-
delay for first
Statement inside
the while loop

Minimum
Duration

14 + End-LatencyLast-statement(2)

Fixed Duration
14

End-Latency

Minimum start-
delay for next
Statement outside
the while loop

Minimum
Duration

14 + End-LatencyLast-statement(2)

Fixed Duration
14

Fixed-Duration
Minimum fixed-
duration for
Statement

Branch with at
least one
Statement
inside

[sum for_all_internal_statements(Start-Delay) +
sumfor_all_internal_flow_control_statements
(Duration) + End-Latency Last-statement] (1)

Empty Branch 14

Register
Evaluation
Latency

Time to evaluate the Register
condition

N/A

Find us at www.keysight.com Page 446

KS2201A - PathWave Test Sync Executive User Manual Appendix C: Timing Tables

Sync Delay

Timing value for Sync Delay Statement:

Execution time (cycles)

Literal Value(1) / Register Value(2)

Latency values for Sync Delay Statement:

Parameter Description Time (cycles)

Start-Latency Minimum start-delay for Statement
1

End-Latency
Minimum start-delay for the next
Statement

0

Fixed-
Duration

Minimum fixed-duration for Statement
N/A

Register
Evaluation
Latency

Time to evaluate the Register condition 1(2)

(1) Applies only when delay value is specified as a Literal.

(2) Applies only when delay value is specified as a Sync Register.

Find us at www.keysight.com Page 447

KS2201A - PathWave Test Sync Executive User Manual Appendix C: Timing Tables

Sync Register-Sharing

Timing value for Sync Register-Sharing Statement:

Execution time (cycles) (1)

roundncc_cycles(5 + Propagation_delayCycles)(2)

Latency values for Sync Register-Sharing Statement:

Parameter Description Time (cycles)

Start-Latency Minimum start-delay for Statement
1

End-Latency
Minimum start-delay for the next
Statement

0

Fixed-
Duration

Minimum fixed-duration for Statement
roundncc_cycles(5 + Propagation_delayCycles)(2)

Register
Evaluation
Latency

Time to evaluate the Register condition -1

(1) The value provided here applies if the duration property of the Statement is set to
Minimum (default). If a fixed-duration has been set, then the Execution Time is equal to that
value.

(2) This latency needs to be calculated only on the Leader Engine. In the context of this
Statement, Leader is the Engine that contains the Register(s) used as source.

Find us at www.keysight.com Page 448

KS2201A - PathWave Test Sync Executive User Manual Appendix C: Timing Tables

Sync Data-Sharing

Latency values for Sync Data-Sharing Statement:

Parameter Description Time (cycles)

Start-Latency Minimum start-delay for Statement
1

End-Latency Minimum start-delay for the next Statement
0

Find us at www.keysight.com Page 449

KS2201A - PathWave Test Sync Executive User Manual Appendix C: Timing Tables

Local Flow-Control Statement Timing Tables

Local While Statement Timing Tables

Local While timing value:

Execution time (cycles) (1)

#Iterations * [sumfor_all_internal_statements(Start-Delay) + sumfor_all_internal_flow_control_statements(Duration)]

(1) This value applies if duration property of the Statement is set to Minimum (default). If a
fixed-duration has been set, then this is the Execution time is equal to that value.

Find us at www.keysight.com Page 450

KS2201A - PathWave Test Sync Executive User Manual Appendix C: Timing Tables

Local While latency values:

Parameter Description Time (cycles)

Start-Latency
Minimum start-delay for
the Statement

5 + #Register_Conditions

Entry/Iteration
latency

Minimum
start-delay
for first
Statement
inside the
while loop

Minimum
Duration

8 + #Register_Conditions + End-LatencyLast-statement

Fixed
Duration

8 + #Register_Conditions

End-Latency

Minimum
start-delay
for the next
instruction
outside the
while loop

Minimum
Duration

8 + #Register_Conditions + End-LatencyLast-statement

Fixed
Duration

8 + #Register_Conditions

Fixed-Duration
Minimum fixed-duration for
Statement

[sumfor_all_internal_statements(Start-Delay) + sumfor_all_

internal_flow_control_statements(Duration) + End-LatencyLast-

statement](1)

Register Evaluation
Latency

Time to evaluate the
register condition

l From start: 3

l For each iteration: -(2 + #Register_Conditions)

(1) If the branch is empty, then the duration is equal to the Entry-Latency of the branch.

Find us at www.keysight.com Page 451

KS2201A - PathWave Test Sync Executive User Manual Appendix C: Timing Tables

Local If Statement Timing Tables

Local If timing value:

Execution time (cycles) (1) (2)

sumfor_all_internal_statements(Start-Delay) + sumfor_all_internal_flow_control_statements(Duration) (3)

(1) The value provided here applies if the duration property of the Statement is set to Minimum
(default). If a fixed-duration has been set, then the Execution time is equal to that value.

(2) This value is only calculated for the branch that is executed, if there are multiple branches
available.

(3) If the branch is empty, the execution time becomes Entry-Latencybranch - 1 .

The following table shows Local If latency values:

Find us at www.keysight.com Page 452

KS2201A - PathWave Test Sync Executive User Manual Appendix C: Timing Tables

Parameter Description Minimum time (cycles)

Start-
Latency

Contributes to the minimum-
possible start-delay for the
Statement

5 + #Register_Conditions_IfBranch

Entry-
latency

Contributes to the minimum-
possible start-delay for first
Statement in branch #

l If-Branch: 3

l Else-If-Branch:

F or each else-if branch, we need to add:
o 6 + #Register_Conditions_Else-If-Branch

o For the 1st else-if branch we will have:
o 2 + #Register_Conditions_IfBranch + 7 +

#Register_Conditions_Else-If-Branch1

o For the 2nd else-if branch we will have:

o 2 + #Register_Conditions_IfBranch + 7 +
#Register_Conditions_Else-If-Branch1 + 7
+ #Register_Conditions_Else-If-Branch2

o and so on, so forth...

l Else-Branch: Equal to last Else-If-Branch value

End-
Latency

Contributes
to the
minimum-
possible
start-delay of
the next
Statement
outside the if
Statement

Matching
Branches

disabled
3 + maxfor_all_Branches[End-LatencyLast-statement] (1)

Matching
Branches

enabled

3 + End-LatencyLast-statement-of-longest-branch (2)

Where longest branch means the branch with
longer execution time.

Fixed-Duration 1

Find us at www.keysight.com Page 453

KS2201A - PathWave Test Sync Executive User Manual Appendix C: Timing Tables

Fixed-
Duration

Minimum fixed-duration for
Statement

2 + maxfor_all_Branches[Branch-Duration](3)

Where Branch-Duration is calculated as follows:

[sumfor_all_internal_statements(Start-Delay) + sumfor_all_

internal_flow_control_statements(Duration) + End-LatencyLast-

statement]
(4)

Register
Evaluation
Latency

Time to evaluate the register
condition

3

Then, for registers used in the condition of any
else-if branch, we need to substract:

6 + #Register_Conditions_Else-If-Branch

Therefore, for the 1st else-if branch we will have:

3 - (6 + #Register_Conditions_Else-If-Branch1)

For the 2nd else-if branch we will have:

3 - (6 + #Register_Conditions_Else-If-Branch1) -
(6 + #Register_Conditions_Else-If-Branch2)

and so on, so forth...

(1) If the maximum end latency used in this equation corresponds to the if-branch, and the calculated
latency is greater than 4, then the End-latency is the calculated value minus 1.

(2) If the longest branch is the if-branch, then the End-latency is the calculated value minus 1.

(3) If the maximum branch duration used in the equation corresponds to the if-branch, then the
duration is the calculated value minus 1.

(4) If a branch is empty, then the branch duration is equal to the Entry-latency of the branch.

Find us at www.keysight.com Page 454

KS2201A - PathWave Test Sync Executive User Manual Appendix C: Timing Tables

Local Wait-For-Time Statement Timing Tables

A Wait-for-time Statement blocks HVI execution in a Local Sequence until a specific amount of time
passes. This amount of time is defined in a register that is specified as an argument in the Wait-for-
time Statement. The value of the register specifies the number of cycles to wait.

Local Wait-for-time Statement timing value:

Execution time (cycles)

RegisterValue

Local Wait-for-time Statement latency values:

Parameter Time (cycles)

Start-Latency 1

End-Latency 1

Register Evaluation Latency 1

Find us at www.keysight.com Page 455

KS2201A - PathWave Test Sync Executive User Manual Appendix C: Timing Tables

Local Wait-For-Event Statement Timing Tables

A Local Wait-for-Event Statement blocks HVI execution in a Local Sequence until an Event occurs.
Events sources can be the Trigger IOs, or internal to the instrument (including User FPGA-Sandbox
Events).

Local Wait-for-Event Statement timing values:

Event
type

Execution time (cycles)
Fetch time

(cycles)

Internal
Event

MAX(Event_Arrival_Time(1) + Instrument_Event_Latency(2) + 1, Fetch_Time) +
1 3

Trigger IO MAX(Event_Arrival_Time(1) + Instrument_Event_Latency(2) + Instrument_
Event_Condition_Latency(3), Fetch_Time) + 1

1 + Instrument_
Event_Condition_

Latency

(1) Event_arrival_time is:

l Internal Events

Event_Arrival_Time = Internal_Event_Generation_Time - WaitForEvent_Start_Time

l External Events
Event_Arrival_Time = Event_At_Module_Connector_Time – WaitForEvent_Start_Time

The Event time can be measured at the front panel or PXIe backplane connector depending on
the Event.

(2) Instrument_Event_Latency is the delay from the Event source until the Event state is available
inside the HVI Engine. Events sources can be the Trigger IOs, or internal to the product (including
User FPGA-Sandbox Events). It is an instrument and Event specific value. Refer to the instrument
documentation for more information.

(3) Instrument_Event_Condition_Latency is the time needed for the condition evaluation to be
executed once the Event has settled inside the HVI Engine. It is an instrument specific value. Refer to
the instrument documentation for more information.

NOTE The Event_Arrival_Time can be a negative value if the Event enters the module
before the Wait-For-Event instruction Start Time. A number of scenarios are shown
in the diagrams below.

Local Wait-for-Event latency values:

Find us at www.keysight.com Page 456

KS2201A - PathWave Test Sync Executive User Manual Appendix C: Timing Tables

Parameter Time (cycles)

Start-Latency 0

End-Latency 1

Local Delay Statement Timing Tables

Local Delay Statement timing value:

Execution time (cycles)

Delay Specified

Local Delay latency values:

Parameter Time (cycles)

Start-Latency 0

End-Latency 1

Find us at www.keysight.com Page 457

KS2201A - PathWave Test Sync Executive User Manual Appendix C: Timing Tables

HVI Instruction Timing Tables

Trigger Write

Example Trigger write basic timing values:

Instruction Execution time (cycles) Fetch time (cycles)

TriggerWrite Instrument_Trigger_Execution + (#TriggerWriteGroups - 1) #TriggerWriteGroups

#TriggerWriteGroups = ceil[(TriggerIOGroupsON + TriggerIOGroupsOFF)/2], where

l #TriggerIOGroupsON is the number of TriggerIOGroups that contain values set to ON.

l #TriggerIOGroupsOFF is the number of TriggerIOGroups that contain values set to OFF.

NOTE Trigger execution time is instrument-specific. For Trigger execution timing
information, see your instrument documentation.

Action Execute

Example Action execute basic timing values:

Instruction Execution time (cycles) Fetch time (cycles)

ActionExecute
Instrument_Action_Execution + INT[(#ActionGroups-1)

/ 2]
1 + INT[(#ActionGroups -1) / 2]

Where INT is the integer part of a decimal number, for instance INT(1.0)=INT(1.5)=1.

NOTE Action execution timing is instrument-specific. For Action execution timing
information, see your instrument documentation.

Find us at www.keysight.com Page 458

KS2201A - PathWave Test Sync Executive User Manual Appendix C: Timing Tables

Arithmetic Logic Unit Instructions

ALU instructions basic timing values:

Instruction Execution time (cycles) Fetch time (cycles)

Add 8 1

Subtract 8 1

Assign 5 1

FPGA User Sandbox Instructions

Example FPGA-User Sandbox operations basic timing values:

Instruction Execution time (cycles)
Fetch time

(cycles)

FpgaArrayRead 2 * Instrument_HVI_FPGA_Latency + 4 1

FpgaArrayRead
(Address from
HviRegister)

2 * Instrument_HVI_FPGA_Latency + 6 1

FpgaArrayWrite Instrument_HVI_FPGA_Latency + 2 1

FpgaArrayWrite
(Address or data from
HviRegister)

Instrument_HVI_FPGA_Latency + 4 1

FpgaRegisterRead 2 * Instrument_HVI_FPGA_Latency + 4 1

FpgaRegisterWrite Instrument_HVI_FPGA_Latency + 2 1

FpgaRegisterWrite
(Address or data from
HviRegister)

Instrument_HVI_FPGA_Latency + 4 1

NOTE FPGA-User Sandbox timing is instrument-specific. For FPGA-User Sandbox timing
information, see your instrument documentation.

Find us at www.keysight.com Page 459

KS2201A - PathWave Test Sync Executive User Manual Appendix C: Timing Tables

FPGA-Instruction Statement

FPGA-Instruction Statement timing values:

Instruction Execution Time (cycles)
Fetch Time

(cycles)

FPGA-
Instruction

Instrument_FpgaInstruction_Latency + 2 1

Instrument-Specific Local Instruction Statement Timing Values

 Instrument-Specific HVI Instruction timing values:

Instruction Execution Time (cycles)
Fetch Time

(cycles)

Instrument-
Specific HVI
Instruction

Instrument_LocalInstruction_Latency + 2 1

Find us at www.keysight.com Page 460

KS2201A - PathWave Test Sync Executive User Manual Appendix C: Timing Tables

This information is subject to change

without notice.

© Keysight Technologies 2020-2023

Edition 2023B_U0_00, September, 2023

Keysight Technologies, USA

KS2201-90000

www.keysight.com

http://www.keysight.com/

	KS2201A - PathWave Test Sync Executive User Manual
	Chapter 1: Introduction
	Chapter 2: Install PathWave Test Sync Executive
	System Requirements
	Install Main Components
	Install Additional Components

	Chapter 3: Installing Licenses
	PathWave Test Sync Executive License Requirements
	Supported Licensing Modes
	The Licensing Process
	Installing Licenses with PathWave License Manager

	Chapter 4: HVI Technology Elements
	About Instruments
	About PathWave Test Sync Executive
	Language Support
	HVI Use Model
	HVI Engines
	Resources
	HVI Sequences
	HVI Statements
	HVI Diagrams
	Timing

	Chapter 5: HVI integration with PathWave FPGA
	PathWave FPGA and HVI Overview
	Using FPGA-Sandbox Resources with HVI
	HVI FPGA-Memory Maps and HVI FPGA-Register Banks in FPGA-Sandboxes
	Actions, Events and Triggers in an FPGA-Sandbox
	FPGA Fast Data Sharing
	FPGA-Instruction
	HVI Statements for using FPGAs

	Chapter 6: Multi-Chassis Systems and System Synchronization Modules
	System Synchronization Modules
	Configuring a System with SSMs and System Sync Connectivity
	Clocking

	Chapter 7: The TSE API
	TSE API Use Model
	TSE API Common Functionalities
	System Initialization
	The SystemDefinition Object
	HVI Engines and their Resources
	Chassis and Interconnects (SyncModule)
	Synchronization Resources
	Synchronization Signals and Sync Modes
	Non-HVI Clocks
	System Initialization in the SystemDefinition Object
	User-Defined Trigger Routing
	System Clocking Configuration

	The Sequencer Object
	SyncSequence and Sequence objects
	Sequence Statements
	Sync Statements
	Local Statements
	EngineView Components
	InstructionSet Object
	HVI Registers and Scopes
	HVI Compilation
	System Initialization in the Sequencer Object
	Sequence Representation

	The Hvi Object
	Engine Runtime Components
	Load to Hardware and Run
	System Initialization during Load To Hardware
	Real-time Hardware Execution Error Handling
	Fast Data Sharing (FDS) Execution Errors

	Chapter 8: Building an Application with the TSE API
	Planning an HVI with the HVI Use Model
	1 Create the SystemDefinition
	2. Program HVI Sequences
	3. Compile Your Sequences
	4. Load To Hardware
	5. Modify Initial Register Values (Optional)
	6. Execute Sequences
	7. Release All Resources
	HVI Logging and Troubleshooting

	Chapter 9: TSE Service and Multi-Host support
	About TSE Service and Multi-Host Systems
	TSE Service Operation Modes
	TSE Service Configuration
	Accessing Remote Resources
	Using TSE Service in an Application

	Chapter 10: HVI Time Management and Latency
	Timing Concepts
	Synchronization Clocks, Signals, and Modes
	General Timing Concepts
	Sync and Local Flow-Control Statement Timing Concepts
	HVI Instruction Timing Concepts

	Sync Statement Timing
	Local Flow-Control Statement Timing
	HVI Instruction Timing
	Minimum Start Delay Calculation for Local Flow-Control and Sync Statements
	Errors in Start Delay or Duration specification

	Appendix A: Supported Instruments
	Appendix B: Additional Documentation and Examples
	Appendix C: Timing Tables
	Sync Statement Timing Tables
	Local Flow-Control Statement Timing Tables
	HVI Instruction Timing Tables

