
Developer Migration Guide

Notices
DFARS/Restricted Rights Notice
If software is for use in the performance of a U.S. Government prime contract or subcontract, software is
delivered and licensed as “Commercial computer software” as defined in DFAR 252.227-7014 (June
1995), or as a “commercial item” as defined in FAR 2.101(a) or as “Restricted computer software” as
defined in FAR 52.227-19 (June 1987) or any equivalent agency regulation or contract clause. Use,
duplication or disclosure of Software is subject to Keysight Technologies’ standard commercial license
terms, and non-DOD Departments and Agencies of the U.S. Government will receive no greater than
Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S. Government users will receive
no greater than Limited Rights as defined in FAR 52.227-14 (June 1987) or DFAR 252.227-7015 (b)(2)
(November 1995), as applicable in any technical data.

Warranty
THE MATERIAL CONTAINED IN THIS DOCUMENT IS PROVIDED “AS IS,” AND IS SUBJECT TO BEING
CHANGED, WITHOUT NOTICE, IN FUTURE EDITIONS. FURTHER, TO THE MAXIMUM EXTENT PERMITTED BY
APPLICABLE LAW, KEYSIGHT DISCLAIMS ALL WARRANTIES, EITHER EXPRESS OR IMPLIED WITH REGARD
TO THIS MANUAL AND ANY INFORMATION CONTAINED HEREIN, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. KEYSIGHT
SHALL NOT BE LIABLE FOR ERRORS OR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN
CONNECTION WITH THE FURNISHING, USE, OR PERFORMANCE OF THIS DOCUMENT OR ANY
INFORMATION

Technology Licenses
The hardware and/or software described in this document are furnished under a license and may be
used or copied only in accordance with the terms of such license.

© Keysight Technologies, Inc. 2019
Keysight Test Automation version 9.9, 2020
Keysight Technologies, Inc.
900 South Taft Avenue, Loveland, CO, 80537-6378 USA

For support, go to the Keysight Test Automation website and click Contact an Expert.

Page 2

http://www.keysight.com/find/tap

5
5
5
5
5
5
5
6
6
6
6
6
7
7
7
7
7
8
8
8
9

10
10
10
10
10
10
10
10
11
11
11
11
11
12
14
14
14
14
14
15
15
15
15
15

Table of Contents
Migrating Plugins from Version 8.x to Version 9.x (OpenTAP)

TAP -> OpenTAP
Namespace changes
File name changes
Package payload location convention
SwitchMatrixRow/Column
CLI commands
Git Assisted Versioning
NotifyingResultListener no longer supports sounds
ShortNameAttribute Deleted
PlatformInteraction Reworked/Deleted
TapVersion Renamed
Minor changes
ITypeData / IMemberData
Builds
ICliAction
package.xml file
PackageManager
Version specification
Aborting Threads / TapThreads
IPropGridControlProvider

Migrating TAP Plugins from Version 7.x to Version 8.x
TypesToSearchFor replaced by ITapPlugin
Packages Extension Changed
PluginPackageManager renamed to PackageManager (to simplify things).
Plugin Subdirectory Support (Optional)
IDisposable is removed from Resource
.NET Framework Changed to 4.6.2
Changes to ScpiInstrument
PluginManager.Search replaced by PluginManager.SearchAsync
ResultParameters
Tap.Licensing.LicenseManager is removed
Obsolete functionality removed
IDynamicStep
Tap.Package build tasks

Migrating TAP Plugins from Version 6.x to Version 7.x
License N7400 is no longer supported, go generate a new temp license using the TAP homepage
ResultSource.Publish Rename
DisplayName and Description attributes no longer supported
Temp licenses (N7400) generated by the TAP homepage no longer supported

Migrating TAP Plugins from Version 5.x to Version 6.x
Namespace Rename
Plugins Rename
PlatformSettings Rename
“Fixed count loop” and “While loop” no longer available (still supported but obsolete).

Page 3

15
15
16
16
16
16
16
16
18
18
18
19
20
22
22
22
22

22
23
23
23
23
23
23
24
25
25
25
25
25
25
25
25
25
25
25
26
26
26
26
26

DisplayName, ShortName and Description attributes now obsolete
Database schema changed in TAP 6.0

Migrating TAP Plugins from Version 4.x to Version 5.x
Namespace Rename
Resource Log Rename
Tap TraceSource
Removal of Ksf.dll
Change in Result storage and ResultListeners.
ShortName is removed from the Resource class (and thus also from the Instrument class)
Tap.Server.Wcf changes
ComPort Type
General information to upgrade plugins: Changes to Solution, Projects and Namespaces
Small API Changes

Migrating TAP Plugins from Version 3.x to Version 4.x
Ksf.dll
.NET version has been changed to 4.5.2
TAP 64-bit
AvailableValuesAttributes moved to Tap.Engine, and changed namespace from Tap.Gui.Controls to
Tap
MacroPathAttribute
IPropGridControlProvider refactored
DataResult and Optimized Trace Source
Tap.TraceSource
Visual Studio 2015
Change in DelayStep test step
ResultListeners

Migrating TAP Plugins from Version 2.x to Version 3.x
TAP Verdict
TestStepList.Allow… Attributes
TraceBar.AllPassed
ResultListener.OnTestStepRunCompleted/OnTestPlanRunCompleted
ResultListener.DeleteResults removed
ResultProxy Transactions
TestPlan Nested Types
TestStep.PostPlanRun Call Order
TestPlan.ExecuteAsync
Tap.Package SetAssemblyInfoTask Build Event
Conversion Utils
ScpiInstrument.State Removed
SystemLogs
Predefined TestStepResultTypes removed.
Misc

Page 4

Migrating Plugins from Version 8.x to Version 9.x
(OpenTAP)
OpenTAP 9.x contains a number of breaking changes relative to TAP 8.x - hence the change in major
version number. This page contains help on how to migrate from TAP 8.x.

TAP -> OpenTAP
TAP has been renamed to OpenTAP. This has several consequences for plugins depending on OpenTAP.

It means the convention changes a bit for naming assemblies and namespaces. We recommend
[OrganizationName].OpenTap.[PluginName] for closed-source and OpenTap.[PluginName] for open-
source. So a closed-source Keysight plugin would be called Keysight.OpenTap.XSeries. These
recommendations has been applied to the OpenTAP core plugins.

Namespace changes
TAP is renamed to OpenTAP, this is also changed in the namespaces. Additionally, the core of TAP (the
Engine, CLI, PackageManager and BasicSteps) are being open sourced, so we are removing “Keysight”
from the namespace in those parts.

Keysight.Tap -> OpenTap
Keysight.Tap.Cli -> OpenTap.Cli
Keysight.Tap.Package -> OpenTap.Package
Keysight.Tap.Gui -> Keysight.OpenTap.Gui
Keysight.Tap.Sdk -> Keysight.OpenTap.Sdk
Keysight.Tap.Gui.Controls -> Keysight.OpenTap.Wpf
Keysight.Tap.TimingAnalyzer -> Keysight.OpenTap.TimingAnalyzer
Keysight.Tap.ResultsViewer -> Keysight.OpenTap.ResultsViewer
Keysight.Tap.RunExplorer -> Keysight.OpenTap.RunExplorer

File name changes
Filenames have changes as well following the namespace changes above.

Keysight.Tap.Engine.dll -> OpenTap.dll
Keysight.Tap.PackageManager.exe -> OpenTap.Package.dll
Keysight.Tap.Gui.exe -> Editor.exe
Keysight.Tap.TimingAnalyzer.exe -> TimingAnalyzer.exe
Keysight.Tap.ResultsViewer.exe -> ResultsViewer.exe
Keysight.Tap.RunExplorer.exe -> RunExplorer.exe
Keysight.Tap.Sdk.MSBuild.dll -> Keysight.OpenTap.Sdk.MSBuild.dll (in “Packages” folder)
Keysight.Tap.Gui.Controls.dll -> Keysight.OpenTap.Wpf.dll (in “PackagesControls” folder)

Package payload location convention
Previously it was the convention that packages put their payload in a subfolder with the same name as
the package. In 9.x we change the convention and recommend that packages put payload in a
Packages/<PackageName>/ subfolder. This is also where the package.xml metadata file will now be located
(moved from Package Definitions/<PackageName>.package.xml to Packages/<PackageName>/package.xml).

SwitchMatrixRow/Column
These two specializations of ViaPoint was there to ease implementing switch matrices, however they did
not support matrices on which several paths could be active at the same time. A new SwitchMatrixPath
class replaces them.

CLI commands

Page 5

Support for CLI subcommands has been implemented. An ICliAction can be grouped by using the
“Group” property in the DisplayAttribute.

New tap.exe usage:
tap <command> [<subcommand>] [<args>]

This introduces the follow breaking changes:

tap create changed to tap package create
tap download changed to tap package download
tap install changed to tap package install
tap uninstall changed to tap package uninstall
tap list changed to tap package list
tap test changed to tap package test

Running a test plan through the CLI has also changed:

Keysight.Tap.Cli MyTestPlan.TestPlan changed to tap run MyTestPlan.TestPlan
Service mode removed. Use REST-API for similar behavior.

Git Assisted Versioning
TapVersion, GitBranch and GitBranchVersion macros have been deleted. Use GitVersion instead.

The Git assisted versioning (using GitVersion) scheme has changed. Now a .gitversion file is mandatory in
the root of the repository. This file defines the version number to be used. Please see the Developer
Guide (the ‘Git Assisted Versioning’ section in the ‘Plugin Packaging and Versioning’ chapter) for more
details.

NotifyingResultListener no longer supports sounds
System sounds and Custom sounds has been removed from NotifyingResultListener in BasicSteps. Run command is the
only type of notification supported now.

ShortNameAttribute Deleted
In place of the current usage of ShortNameAttribute:
[ShortName("myInst")]
public class MyInstrument : Instrument{

}

The Name of the instrument can instead be set in the constructor:
public class MyInstrument : Instrument{
 public MyInstrument(){
 Name = "myInst";
 }
}

PlatformInteraction Reworked/Deleted
PlatformInteraction has been reworked to be more flexible and extensible. Use UserInput.Request instead of
PlatformInteraction. An example of this can be found in
%TAP_PATH%\Packages\SDK\Examples\PluginDevelopment\GUI\UserInputExample.cs.

TapVersion Renamed
TapVersion has been cleaned up and renamed to SemanticVersion.

As part of the clean-up the method to get TAP version (TapVersion.GetTapEngineVersion()) has been deleted.

Page 6

You can now do it one of these ways: - new
Installation(Directory.GetCurrentDirectory()).GetOpenTapPackage().Version - gets the version number of the
installed OpenTAP package. - PluginManager.GetOpenTapAssembly().SemanticVersion - gets the version number of
the loaded OpenTAP assembly.

Minor changes
SibelingStepControlProvider renamed to SiblingStepControlProvider
IResultStore.GetAverageDuration return value changed from TimeSpan to TimeSpan? (nullable timespan)
SessionLogs.Load() method renamed to SessionLogs.Initialize()
Removed TestPlanRun.AbortRequested event. To see if the current thread is aborted check
TapThread.Current.AbortToken,
Use System.OperationCanceledException instead of Keysight.Tap.AbortException
TestPlan.Sleep() has been removed. Instead use TapThread.Sleep().
TestPlan.Abort() and TestPlan.AbortException has been removed. Instead TestPlanRun.MainThread.Abort() can
be used.
EnabledIfAttribute.IsEnabled has been changed to use the new reflection system. See TypeData.

ITypeData / IMemberData
This applies if you previously have been using object.GetType() for C# reflection. Many APIs in OpenTAP
use TypeData.GetTypeData(object) or TypeData.FromType. This system is similar to classic C# reflection, but has
some features that makes it simpler and more flexible with regards to dynamic types. - Instead of
object.GetType() use TypeData.GetTypeData(object). - For member info, when previously PropertyInfo.PropertyType
was used, now use IMemberData.TypeDescriptor.

Builds
The assembly Keysight.Tap.Sdk.MSBuild.dll has been renamed to Keysight.OpenTap.Sdk.MSBuild.dll.
This means any C# project file has to be changed where the following is stated:
<UsingTask TaskName="Keysight.Tap.Sdk.MSBuild.PackageTask" AssemblyFile="$(TAP_PATH)\Keysight.Tap.Sdk.MSBuild.dll" />

This should be changed to
<UsingTask TaskName="Keysight.OpenTap.Sdk.MSBuild.PackageTask"
AssemblyFile="$(TAP_PATH)\Packages\SDK\Keysight.OpenTap.Sdk.MSBuild.dll" />

In previous build scripts you might have had a line similar to:
Keysight.Tap.Install.exe --uninstall --clean --install --branch release9x

In OpenTAP 9.0, you’ll need to change to using the –version specifier.
Keysight.Tap.Install.exe --uninstall --clean --install --version 9.0

ICliAction
Execute() method now takes a CancellationToken as argument. -> Execute(CancellationToken).

package.xml file
The content of the package.xml file has changed. For example this package.xml from TAP 8.x:
<?xml version="1.0" encoding="UTF-8"?>
<Package Name="Plugin Example"
 xmlns="http://keysight.com/schemas/TAP/Package"
 InfoLink="http://www.keysight.com/"
 Configuration="MyConfiguration"
 Version="$(GitVersion)">
 <Description>Some example plugin.</Description>
 <Files>
 <File Path="SomePlugin.dll" Obfuscate="true" SetAssemblyInfo="Version,Configuration" Sign="Keysight Technologies,
Inc."></File>

Page 7

 <File Path="SomeSampleData.txt"></File>
 </Files>
</Package>

Needs to be modified to this for OpenTAP 9.x:
<?xml version="1.0" encoding="UTF-8"?>
<Package Name="Plugin Example"
 xmlns="http://opentap.io/schemas/package"
 InfoLink="http://www.keysight.com/"
 Version="$(GitVersion)">
 <Description>Some example plugin.</Description>
 <Files>
 <File Path="SomePlugin.dll">
 <SetAssemblyInfo Attributes="Version"/>
 <ObfuscateWithDotfuscator/>
 <!--ObfuscateWithObfuscar/-->
 <Sign Certificate="Keysight Technologies, Inc."/>
 </File>
 <File Path="SomeSampleData.txt"></File>
 </Files>
</Package>

The ObfuscateWithDotfuscator, ObfuscateWithObfuscar and Sign actions in the above package.xml requires
installing some Keysight OpenTAP plugins (Dotfuscator, Obfuscar and Sign).

PackageManager
PluginInstaller class has been removed. Instead use package cli actions.
IPackageIdentifier.PackageName renamed to Name
RepositoryManager class has been removed
FileRepositoryManager renamed to FilePackageRepository
HttpRepositoryManager renamed to HttpPackageRepository
VersionMatcher class has been removed. Instead use VersionSpecifier and SemanticVersion
PackageReference renamed to PackageIdentifier
Package cli action have changed command line arguments:

tap-dir renamed to target
cpu renamed to architecture
prerelease has been removed. Instead use –version
Obsolete arguments have been removed

All methods from IPackageRepository have changed.

Version specification
Specifying a package version now defaults to exact match and compatible is now opt in with prepending
‘^’. You can now also use ‘Any’ to get the latest version regardless of release type. E.g.:

Specification Command
A version compatible with 9 ^9

Version 9.0.201 9.0.201

Any version Any

Aborting Threads / TapThreads
In .NET Framework it was possible to call Thread.Abort, but this feature is not supported across
platforms. The concept of TapThreads has been introduced to manage relationships between threads.
TapThreads can be ‘soft’ aborted. Each has a cancellation token that can be used. TapThreads are
heriarchical, so TapThreads remembers which thread spawned them. If a TapThread is aborted, so are
threads it spawned during its life time. To support soft aborting test plans: - Use TapThread.Sleep() instead
of Thread.Sleep() (Previously also TestPlan.Sleep()) - Use TapThread.Current.AbortToken for possibly long running
operations that take a CancellationToken. For example for socket communication. - Use
TapThread.Current.AbortToken.IsCancellationRequested to see if the current thread or one of the ‘parent’ threads

Page 8

was canceled. - For operations that may not be aborted, TapThread.WithNewContext can be used to run an
operation i a ‘virtual’ TapThread outside the threading heirarchy.

IPropGridControlProvider
The custom GUI component system has been changed to something more dynamic and flexible in order
to support alternative user interfaces, for example CLI and REST-APIs. It is still possible to create custom
WPF controls using the new IControlProvider interface inside Keysight.OpenTap.Wpf, see SDK examples for
an example of this.

For more flexibility, if something can be modified using an already existing control, like a string or drop-
down type, we suggest you create an annotator instead. This has the benefit that it reuses the already
developed TAP controls and is supported on cross platform APIs, without any extra work. Again refer to
the example code for more information.

IControlProvider does not have the PropGridControlPosition property anymore. Instead LayoutAttribute can be
used to control the positioning of a control inside on a settings level.

Page 9

Migrating TAP Plugins from Version 7.x to Version
8.x
TAP 8.x contains a number of breaking changes relative to TAP 7.x - hence the change in major version
number. This page contains help on how to migrate from TAP 7.x.

TypesToSearchFor replaced by ITapPlugin
TypesToSearchFor has been replaced with ITapPlugin. This means that your plugin must inherit from the
ITapPlugin interface to be recognized as a plugin. This also removes AddSearchType(Type type).

Packages Extension Changed
.TapPlugin is now called .TapPackage and the extension .TapPackages is supported for projects that may
bundle multiple packages in one file (it is basically a zip of .TapPackage’s).

PluginPackageManager renamed to PackageManager (to simplify
things).
TAP PluginPackageManager has been renamed to PackageManager, this effects these projects:

Project Assembly Name

Tap.PluginPackageManager –> Tap.PackageManager
Tap.PluginPackageManager.Gui –> Tap.PackageManager.Gui
Tap.PluginPackageManager.UnitTests –> Tap.PackageManager.UnitTests

Project Namespace

Keysight.Tap.PluginPackageManager –> Keysight.Tap.Package
Keysight.Tap.PluginPackageManager.Gui –> Keysight.Tap.PackageManager.Gui
Keysight.Tap.PluginPackageManager.UnitTests –> Keysight.Tap.Package.UnitTests

Plugin Subdirectory Support (Optional)
You can now build and release plugins inside a subdirectory of TAP. However, some changes are
needed:

1. First, change .csproj PackageTask Dir’s Property to simply $(TAP_PATH).
2. Then change the output directory to $(TAP_PATH)_DIRECTORY_STRUCTURE_PLUGIN.
3. Then append all files in package.xml with your desired directory structure.

IDisposable is removed from Resource
IDisposable was not used by TAP. If you were depending on IDisposable for something else, it can be
implemented on your class.

.NET Framework Changed to 4.6.2
We have changed the targeted framework for TAP to .NET 4.6.2 (required for cross platform support).
TAP plugins will need to target this version of .NET as well.

To build target .NET 4.6.2 using Visual Studio 2015 or 2017, you need this developer pack .

Changes to ScpiInstrument

Page 10

https://www.microsoft.com/en-us/download/details.aspx?id=53321

Removed usage of VISA-COM
This means that the IFormattedIO488 formatter is no longer exposed as a protected field. This change is
mandated because VISA-COM is not crossplatform. Any calls that need that low-level access are
available as higher-level methods in ScpiInstrument.

SRQ Handling
The SetSRQHandler, RemoveSRQHandler, SetupSRQ, and WaitForSRQ have been removed. These have been replaced
with an event called SRQ. The reason for the change is that it reduces the size of the public interface and
that the old approach was very hard to explain.

Now the SRQ handlers are called like a normal C# event whenever an SRQ happens. Multiple users can
also attach SRQ’s to the same instrument. SRQ handlers are automatically reattached even if the
instrument is closed and reopened. This also means that if an SRQ is attached it must be detached
when it’s no longer needed.

PluginManager.Search replaced by PluginManager.SearchAsync
As the name suggests Searching is now Async by default. You can wait for it using
PluginManager.SearchAsync().Wait() if you want to, but it should not be necessary, as any calls to the
PluginManager that need the search to be completed will now automatically wait internally.

Calling PluginManager.SearchAsync is no longer required. It can improve performance (search in the
background) if you are able to call it before you need the plugins. If it is not called, searching is
performed automatically when needed (causing a delay, roughly 0.5 seconds).

ResultParameters
ResultParameters from TestStepRun now uses an IReadOnlyList, this may effect some LINQ statements.

Tap.Licensing.LicenseManager is removed
Tap.Licensing.LicenseManager is removed. If you were depending on LicenseManager for something
else, it can be implemented in your class.

Obsolete functionality removed
Teststeps

FixedCountLoop Use Repeat step instead
WhileLoop Use Repeat step instead

Methods
LogBufferMode TAP only uses filestream as buffer now
Tap.Serializer Use TapSerializer instead
Serializer.SerializeToString Use new TapSerializer().SerializeToString
TestPlan.Load(Stream) Use Load(Stream, String) instead
PackageManager.GetAllVersions(PackageDef) Use GetCompatibleVersions instead
PackageManager.GetAllVersions(String) Use GetCompatibleVersions instead
MacroPathAttribute.Expand() Use MacroString.Expand on a MacroString instance

Interfaces
ITestStepParent no longer has a Name nor does it support GetEnabledTestSteps(). If the instance is
an ITestStep it can be casted to that and the name can be retrieved from there. Instead of
GetEnabledTestSteps() use ChildTestSteps.Where(step => step.Enabled).

IDynamicStep

Page 11

GetStepData and the argument to GetStep has been removed. Instead, it is now supported to set
properties on the IDynamicStep which then gets serialized and can be used inside GetStep(). The
easiest way to migrate, is to simply add a property that stores the data that previously GetStepData()
returned.

For example, this (TAP 7x):
public class MyStep : TestStep, IDynamicStep{
 string nonSerializedField = "MyData";
 public string GetStepData(){ return "MyData";}
 public ITestStep GetStep(string data){ return new MyStep(){nonSerializedField = data};}
 public override Run(){}
}

Would be functionally equivivalent to this (TAP 8x):
public class MyStep : TestStep, IDynamicStep{
 [Browsable(false)]
 public string mySerializedData
 {
 get { return nonSerializedField; }
 set { nonSerializedField = value; }
 }

 string nonSerializedField = "MyData";
 public ITestStep GetStep(){ return new MyStep(){nonSerializedField = mySerializedData};}
 public override Run(){}
}

Attributes
MacroPathAttribute ([MacroPath])

This used to be a way to have macros supported in a string. Now simply use the MacroString type as a
return of your property and conditionally if you want to use it as a FilePath, add the [FilePath] attribute.
An important difference is that MacroString is not necessesarily a path, so it will not automatically
expand to an absolute path, If you need an absolute path call System.IO.Path.GetFullPath with the result of
MacroString.Expand(). Example:
class MyTestStep: TestStep {

 [FilePath] // A MacroString that is also a file path.
 public MacroString Filename { get; set; }

 public MyTestStep(){
 // 'this' useful for TestStep instances.
 // otherwise a MacroString can be created without constructor arguments.
 Filename = new MacroString(this) { Text = "MyDefaultPath" };
 }
 public override Run(){
 log.Info("The full path was '{0}'.", Path.GetFullPath(Filename.Expand()));
 }
}

Properties
TestPlan.Name is now read-only and no longer settable. Remove usages of setting the name. The
name of the file without the extension is the name of the TestPlan.
With newly added support for Switch Matrix, ViaPoint (Connection.Via) has to be explicitly cast as
either ‘SwitchPosition’ or ‘SwitchMatrixRow/SwitchMatrixColumn’. Otherwise you’ll receive an
‘Unable to convert from’ error.

Tap.Package build tasks
The Keysight.Tap.Package.exe executable which houses the MSBuild tasks for building the plugins has been
renamed to Keysight.Tap.Sdk.MSBuild.dll. This to simplify things and get rid of the Tap.Package.exe (so we
only have Tap.PackageManager.exe).

Page 12

This requires that plugins that used the templates of TAP 7.x or earlier needs to be modified. The
plugins need the .csproj file modified.

A legacy plugin .csproj file will look like this:
 <UsingTask TaskName="Keysight.Tap.Package.PackageTask" AssemblyFile="$(TAP_PATH)\Keysight.Tap.Package.exe" />
 <UsingTask TaskName="Keysight.Tap.Package.SetAssemblyInfoTask" AssemblyFile="$(TAP_PATH)\Keysight.Tap.Package.exe"
/>
 <Target Name="BeforeBuild" Condition="'$(Configuration)' == 'Release'">
 <SetAssemblyInfoTask FilePath="Properties\AssemblyInfo.cs" AssemblyInformationalVersionFromGit="True" />
 </Target>
 <Target Name="AfterBuild" Condition="'$(Configuration)' == 'Release'">
 <GetAssemblyIdentity AssemblyFiles="$(TargetPath)">
 <Output TaskParameter="Assemblies" ItemName="TargetInfo" />
 </GetAssemblyIdentity>
 <PackageTask Dir="$(TAP_PATH)" ConfFile="$(ProjectDir)\package.xml" />
 </Target>

This needs to be modified to look like this:
 <UsingTask TaskName="Keysight.Tap.Sdk.MSBuild.PackageTask" AssemblyFile="$(TAP_PATH)\Keysight.Tap.Sdk.MSBuild.dll"
/>
 <Target Name="AfterBuild" Condition="'$(Configuration)' == 'Release'">
 <GetAssemblyIdentity AssemblyFiles="$(TargetPath)">
 <Output TaskParameter="Assemblies" ItemName="TargetInfo" />
 </GetAssemblyIdentity>
 <PackageTask Dir="$(TAP_PATH)" ConfFile="$(ProjectDir)\package.xml" />
 </Target>

The SetAssemblyInfoTask used previously was responsible for updating the version information of the
individual files in a plugin. If this is important you need to modify the package.xml. Here’s an example that
would do the same as previously:
<File Path="MyPlugin\Tap.Plugins.MyPlugin.dll" Obfuscate="true" SetAssemblyInfo="Version,Configuration" />

Page 13

Migrating TAP Plugins from Version 6.x to Version
7.x
License N7400 is no longer supported, go generate a new temp
license using the TAP homepage
ResultSource.Publish Rename
ResultSource.Publish() does no longer contain a overload for storing arrays of arrays. You have to use
ResultSource.PublishTable() instead.

If you did something like the sample below you would need to call PublishTable instead of Publish.
double[] array1 = new double[10];
double[] array2 = new double[10];

// .. populate the elements of array1 and array2

// TAP 6.x
Results.Publish("My Result", new List<string> { "Column A", "Column B" }, array1, array2);
// TAP 7.x
Results.PublishTable("My Result", new List<string> { "Column A", "Column B" }, array1, array2);

DisplayName and Description attributes no longer supported
These were obsoleted in 6.0, see here .

New examples can be found here .

Temp licenses (N7400) generated by the TAP homepage no longer
supported
A new link is now available on the homepage to generate KS8400A licenses supported by TAP 7.x.

Page 14

file:///builds/tap/tap/Temp3702509918146791/migrating-from-tap-5-to-6
http://gitlab.aalborg.keysight.com/tap/tap/issues/930

Migrating TAP Plugins from Version 5.x to Version
6.x
Only minor changes have been introduced between TAP 5.x and 6.x but enough to justify a jump in the
major version number.

Uninstall old versions of TAP and delete the old TAP program directory

Namespace Rename
Keysight.Tap.TapPlugin now renamed to Keysight.Tap.Plugins

It is recommended that your KS plugins are all placed within this namespace. Note the SDK templates
do not include the company name Keysight, this is up to the end customer to define.

Plugins Rename
Keysight.Tap.Plugins now renamed to Keysight.Tap.PluginManager

PlatformSettings Rename
Keysight.Tap.PlatformSettings now renamed to Keysight.Tap.EngineSettings

“Fixed count loop” and “While loop” no longer available (still
supported but obsolete).
Instead we have a ‘Repeat’ step that offer the same functionality as the other two but in a simpler and
more intuitive way.

DisplayName, ShortName and Description attributes now obsolete
They are all replaced by the Display attribute that offer all the above functionality. We know this is a
big change but we are doing it as the current display attribute is not going to be supported on cross
platform (.NET core). another benefit of using the new Display attribute is that it offers a way to ‘order’
the properties in the grid (no need to use lots of ‘spaces’ or ’ to change the order.

Database schema changed in TAP 6.0
TAP will automatically update your database schema to the new version. Prior to doing so a copy will be
made ensuring that you will still have your old data/format available.

Page 15

Migrating TAP Plugins from Version 4.x to Version
5.x
TAP 5.x contains a number of breaking changes relative to TAP 4.x - Hence the change in major version
number. This page contains help on how to migrate from TAP 4.x

VS2015 If you use VS2015 please ensure that you have Update 1 installed (the first version has
some compiler bugs)

Namespace Rename
In order to comply with Keysight’s Engineering Standards, “Keysight” has been added to all namespace
in the Tap Core project. For instance, this results in Tap.Engine.TestModule becoming
Keysight.Tap.Engine.TestModule.

This also influences dll references. E.g. Tap.Engine.dll is renamed to Keysight.Tap.Engine.dll

Resource Log Rename
Resource.log has been renamed to Resource.Log. Previously there was a public ‘log’ and a protected
‘Log’, these have been consolidated. Affects Instrument, Dut, and ResultListener classes.

Tap TraceSource
Tap.TraceSource now uses a new enumeration of possible log types to better reflect typical uses.

This means that anywhere Tap.TraceSource is used, the following must be replaced:
TraceEventType or System.Diagnostics.TraceEventType must be replaced by LogEventType.

Futermore the following log types must be replaced:
* TraceEventType.Start and TraceEventType.Stop must be replaced by LogEventType.info. * TraceEventType.Verbose
must be replaced by LogEventType.Debug.

Removal of Ksf.dll
TAP 5.x will no longer use the Ksf.dll introduced in TAP 4.x.

Any references to this DLL should be removed from plugin projects.

Change in Result storage and ResultListeners.
IVector is no longer used as the internal datatype to handle results in TAP. Instead it now uses a
simplified ResultTable class. This is the type that a ResultListener will receive when using the
OnResultPublished method which was named AddResult previously. Moreover, the OnResultPublished
method takes a Guid in its parameters instead of a TestStepRun

The previous methods and properties related to IVector can be mapped as follows to the ResultTable: 1.
Vector.Channels —> ResultTable.Colums 2. Vector.Points —> ResultTable.Rows

For the TestStep side the ResultProxy now has 4 methods of results entry, and TestStepResult has been
removed: 1. PublishResult(T result)
2. PublishResult(string name, T result)
3. PublishResult(string name, List columnNames, params IConvertible[] results)
4. PublishResult(string name, List columnNames, params Array[] results) FASTEST

Number 1 and 2 take an arbitrary object and uses reflection to retrieve public properties. This is similar
to how the TAP Gui presents teststep properties in the step settings panel.
Number 3 is identical in functionality to how the TAP 4.x StoreResult worked when given a

Page 16

TestStepResult.
Number 4 is similar to method 3, but instead takes a number of arrays. This is useful if there is a need
to enter a large amount of data.

This example shows how the RatingStep class from the Demonstration Plugin is modified to use
PublishResult instead of TestStepResult. Initially, this is the code we start with:

image

Here is a single line replacement: Note that we no longer need to construct a TestStepResult.

image

Additionally, one could use a new feature of defining a result class, and then constructing and
publishing that class. An example of the class definition and Publish statement are shown below.

This excerpt from the developers guide discusses using the new PublishResult calls.
How_to_publish_results_from_a_TestStep.docx

There are several new examples that deal with results.

Page 17

file:///uploads/38c8ad6df8ceefd6de1f98635b81845a/How_to_publish_results_from_a_TestStep.docx

For example code on publishing results, see the
…Examples.Plugin.cs file.

For example code on handling the new OnResultPublished calls to the ResultListeners, see the
…TAPExamples.Plugin.cs file

ShortName is removed from the Resource class (and thus also from the
Instrument class)
Using the ShortName PROPERTY from the Resource class in Release4x should throw a deprecation warning.
In 5x, this property will be completely removed from the Resource class and must accordingly be
removed from plugins relying on this property.

ShortName must be set through an ATTRIBUTE to the related class as shown by the following example from
the PowerAnalyzer class found in the Demonstration plugin:
namespace TapPlugin.BatteryDemo
{
 [DisplayName("Power Analyzer")]
 [Description("Insert a description here")]
 [ShortName("PSU")]
 public class PowerAnalyzer : Instrument
 {
 #region Settings
 public double CellSizeFactor { get; set; }
 #endregion
...

Tap.Server.Wcf changes
The RemoteWcfClient class has been renamed to WcfClient and the method to create a new Wcf-Server
process has been extracted into a new class named WcfServerProvider. This method had a parameter
option called isHidden, this is instead a property named ShowDebugConsole. Below is an example of the new
usage: (There is also a new example in the SDK examples, typically installed at
..Examples.Api.Api.csproj)
 class Program
 {
 static void Main(string[] args)
 {
 // Create the WCF server
 WcfServerProvider server = new WcfServerProvider() { Port = 1330, ShowDebugConsole = true };
 server.PluginSearchPaths = new List<string> { @"C:\MyTapPath" };
 server.StartLocalServerProcess();

 Thread.Sleep(500);

 // Create the WCF client
 WcfClient client = new WcfClient() { Address = "localhost", Port = 1330 };
 client.Open();
 client.LoadTestPlan(new FileStream(@"C:\MyTapPath\MyPlan.TapPlan", FileMode.Open));
 client.RunTestPlan();

 Thread.Sleep(1500);

 client.AbortRun();

 Thread.Sleep(1500);

 client.Close();

 server.Shutdown();
 }
 }

ComPort Type
If your plugin requires the use of ComPort Type, add a reference to
Keysight.Tap.Plugin.RemoteTestBench.dll and a using directive to

Page 18

Keysight.Tap.Plugin.RemoteTestBench in the file where it is being used.

General information to upgrade plugins: Changes to Solution,
Projects and Namespaces
General

Solutions, Projects, Output dlls and project directories should have consistent names as per the
following naming standards: - Namespaces will be of the form Keysight.Tap.Plugins.[Name]. For specific
cases such as ResultListeners the Namespaces will follow Keysight.Tap.Plugins.[Type].[Name]. For
example, Keysight.Tap.Plugins.ResultListener.Excel - Output Dlls will be of the form
Keysight.Tap.Plugins.[Name].dll. For specific cases such as ResultListeners the dll names will follow
Keysight.Tap.Plugins.[Type].[Name].dll. For example, Keysight.Tap.Plugins.ResultListener.Excel.dll

Instructions

Rename the Solution and Projects as per Keysight Naming Standards. This will depend on the
plugin type. For example, ResultListeners would be named Keysight.Tap.Plugins.ResultListener.
[YourPluginName]
Right-click the Solution, select Rename, and enter the new name
Right-click the project in Solution Explorer, select Rename, and enter the new name
Open Package.xml and update ‘File Path’ attribute
In the project directory, update .gitlab-ci.yml. Change release[N]x to release5x
Update references:
Unload project, right click and edit: RootNamespace, AssemblyName, Reference, HintPath,
UsingTask etc
Remove reference KSF.dll
Update AssemblyInfo.cs.
Possible modifications are Assembly version, Assembly Product
Close Solution and update folder structure. Rename folders as required.
Recommended structure is to have the solution file on the outermost directory with each project in
a directory that matches the project name. For example:

Folder PATH listing
C:.
│ .gitattributes
│ .gitignore
│ .gitlab-ci.yml
│ Keysight.Tap.Plugins.ResultListener.Excel.sln
│ tree.txt
│
└───Keysight.Tap.Plugins.ResultListener.Excel
 │ ExcelListener.cs
 │ Keysight.Tap.Plugins.ResultListener.Excel.csproj
 │ package.xml
 │
 ├───obj
 │ └───Debug
 │ │
 │ └───TempPE
 └───Properties
 AssemblyInfo.cs

Open the *.sln file in a text editor and update the project path. Project("{FAE04EC0-301F-11D3-BF4B-
00C04F79EFBC}") = "Keysight.Tap.Plugin.ResultListener.Excel",
"Keysight.Tap.Plugin.ResultListener.Excel\Keysight.Tap.Plugin.ResultListener.Excel.csproj", "{9124CCEA-D3ED-
4016-8F2F-4B6260405D30}"
Reopen the solution in Visual studio and ensure it loads correctly
Update namespaces, references, inheriting classes and interfaces
You can now manually update namespaces and using statements [recommended]
Alternatively, if you have ReSharper installed, you can use the [Right click on
project]>>Refactor>>Adjust Namespaces feature
Follow the migration guide listed above to make appropriate code changes for migration
Build and test your code.

Updating source control

Page 19

Note: It is also possible to make the changes below using Git within Visual Studio, without command
line.

Open Git Command line and close Visual Studio
On executing git status, you will notice that git still points to the older filenames and marks them
as deleted:

On branch 2_4xTo5xUpgrade
Changes not staged for commit:
 (use "git add/rm <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: .gitlab-ci.yml
 deleted: ResultListener.Excel.sln
 deleted: TapPlugin.ResultListener.Excel/ExcelListener.cs
 deleted: TapPlugin.ResultListener.Excel/Properties/AssemblyInfo.cs
 deleted: TapPlugin.ResultListener.Excel/TapPlugin.ResultListener.Excel.csproj
 deleted: TapPlugin.ResultListener.Excel/package.xml

Delete the previous solution and the older directory reference using git rm -r
E.g.
git rm ResultListener.Excel.sln
git rm -r TapPlugin.ResultListener.Excel

Add the new solution file and the project folder using git add
E.g
git add Keysight.Tap.Plugins.ResultListener.Excel.sln
git add Keysight.Tap.Plugins.ResultListener.Excel/

verify your changes using git status
On branch 2_4xTo5xUpgrade
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 modified: .gitlab-ci.yml
 renamed: ResultListener.Excel.sln -> Keysight.Tap.Plugin.ResultListener.Excel.sln
 renamed: TapPlugin.ResultListener.Excel/ExcelListener.cs ->
Keysight.Tap.Plugin.ResultListener.Excel/ExcelListener.cs
 renamed: TapPlugin.ResultListener.Excel/TapPlugin.ResultListener.Excel.csproj ->
Keysight.Tap.Plugin.ResultListener.Excel/Keysight.Tap.Plugin.ResultL
istener.Excel.csproj
 renamed: TapPlugin.ResultListener.Excel/Properties/AssemblyInfo.cs ->
Keysight.Tap.Plugin.ResultListener.Excel/Properties/AssemblyInfo.cs
 renamed: TapPlugin.ResultListener.Excel/package.xml -> Keysight.Tap.Plugin.ResultListener.Excel/package.xml

You can now go back to Visual Studio and commit your changes. Alternatively, you can also
commit from git command line

Small API Changes
HandlesTypesAttribute reordering of arguments. Now must put Priority as the first argument and
without specifying the parameter by name. Eg: [HandlesTypes(typeof(ComPort), Priority = 16)] becomes
[HandlesTypes(16, typeof(ComPort))]

PluginManager becomes Plugins

TapSerializer.Serialize becomes Serializer.Serialize or Serializer.SerializeToString depending on what you
want. TapSerializer.Deserialize becomes Serializer.Deserialize

Ksf.Diagnostic.Event becomes Keysight.Tap.Diagnostic.Event

Tap.BenchSettingsAttribute no longer exists.

RemoteTestBenchSettings.GetCurrent() becomes RemoteTestBenchSettings.Current.

[MacroPath(AllowDateTime = true)] becomes [MacroPath]

ComponentSettings.SettingsDirectory = settingsSetDir; changes to ComponentSettings.SetSettingsProfile("Bench", dir);

Page 20

log.TraceInformation("Settings: " + ComponentSettings.SettingsDirectory); changes to log.TraceInformation("Settings:
" + ComponentSettings.GetSettingsDirectory("Bench"));

SessionLogs.Rename(PlatformSettings.Current.SessionLogPath.Expand(DateTime.Now)); changes to
SessionLogs.Rename(MacroPathAttribute.Expand(PlatformSettings.Current, "SessionLogPath", date: DateTime.Now));

Page 21

Migrating TAP Plugins from Version 3.x to Version
4.x
This page is now maintained at
https://wiki2.collaboration.is.keysight.com/display/testAutomationPlatform/3.x+to+4.x

TAP 4.x contains a number of breaking changes relative to TAP 3.x - Hence the change in major version
number. This page contains help on how to migrate from TAP 3.x

(If you are currently using 2.x then follow this guide: Migrating from TAP 2.x to 3.x)

Ksf.dll
Tap executables now reference the Ksf.dll library. You should modify your TAP related project to
reference this assembly. The Ksf dll can be found in the TAP install folder.

.NET version has been changed to 4.5.2
TAP plugins compiled for previous versions of .NET will no longer work with TAP. The plugin needs to be
updated to .NET 4.5.2 and recompiled. That change is made on the Project Properties screen, as shown
here

image

TAP 64-bit
TAP now supports 32 bit (x86) and 64 bit (x64) versions and installers. You should pick up the
appropriate one from the Tap home page.
The 32 bit version will typically install to C:Files (x86) The 64 bit version will typically install to C:Files

Plugin developers should probably set your platform target to be Any CPU, as specified on the
Project/Build page, as shown here.

image

AvailableValuesAttributes moved to Tap.Engine, and changed namespace from

Page 22

file:///builds/tap/tap/Temp3702509918146791/Migrating-from-TAP-2-to-3

Tap.Gui.Controls to Tap
The AvailableValuesAttribute has been moved so a recompile of plugins might be necessesary.

MacroPathAttribute
For FileName macros. The system has been changed from a class based one to an attribute based one,
so now its possible to write the following (example from Tap.Engine project):
 /// <summary>
 /// Where the session logs are saved. Must be a valid path.
 /// </summary>
 [DisplayName("General \\ Log Path")]
 [Description("Where to save the session log file. This setting only takes effect after restart.")]
 [MacroPath(StaticOnly = true)]
 public string SessionLogPath { get; set; }

In places where MacroPath.Expand was used beforem the MacroPathAttribute.Expand method can be
used to expand macros.

IPropGridControlProvider refactored
Custom controls can now use MemberInfo instead of PropertyInfo. A method can be exposed as a button
using [Browsable(false)]. To fix issues, simply change IPropGridControlProvider implementations to use
MemberInfo instead of PropertyInfo. You will also need to change CreateContentControl to simply
CreateContent.

DataResult and Optimized Trace Source
The DataResult class and Trace Source from KSF is now used instead or in addition to the original
version. To fix issues make sure to add a reference to the library Ksf.dll in the TAP folder.

Tap.TraceSource
For improved performance we have moved away from System.Diagnostics.TraceSource and to a custom
Tap.TraceSource implementation (Core component in KSF). This means that anyhere
System.Diagnostics is imported or TraceSource is used, replace usages of TraceSource with
Tap.TraceSource.

Visual Studio 2015
All the Tap projects have been moved to Visual Studio 2015.

Change in DelayStep test step
The DelayStep teststep has been modified so that the (incorrectly named) DelayMS property is longer
supported, and has been replaced with a new DelaySecs property. Users with testplans that used the
DelayStep property will see this error on loading of their testplan.

image

User could do a mass update of testplan files by changing DelayMS to DelaySecs. For example, you
would change these values:

Page 23

image

ResultListeners
The ResultListener.AddResult has changed signature to use the more efficient KSF IVector
datastructure. This causes the following code
public override void AddResult(Tap.TestStepRun run, TestStepResult result) //...

To now become
public override void AddResult(Tap.TestStepRun run, IVector results) //...

Also remember to add a reference to Ksf.dll from the TAP folder and add
using Ksf;

to the usings in the top of the file.

Page 24

Migrating TAP Plugins from Version 2.x to Version
3.x
TAP 3.x contains a number of breaking changes relative to TAP 2.x - Hence the change in major version
number. This page contains help on how to migrate from TAP 2.x

VS2015 If you use VS2015 please ensure that you have Update 1 installed (the first version has
some compiler bugs)

TAP Verdict
Previously the verdict used by TestStep’s was of type Tap.TestStep.VerdictType. This has been renamed to
Tap.Verdict. Related, the verdicts Done and Running have been replaced by NotSet.

TestStepList.Allow… Attributes
The attributes TestStepList.AllowAnyChild, TestStepList.AllowAsChildIn and TestStepList.AllowChildType has been
moved out of the TestStepList class. To fix issues related to this just erase “TestStepList.”.

TraceBar.AllPassed
TraceBar.AllPassed boolean has been removed in favor of a TraceBar.CombinedVerdict property. To get same
behavior as before do TraceBar.CombinedVerdict == Verdict.Pass.

ResultListener.OnTestStepRunCompleted/OnTestPlanRunCompleted
The parameterlist of OnTestStepRunCompleted no longer includes duration. Instead duration is included in
TestStepRun and TestPlanRun which are arguments to the method.

ResultListener.DeleteResults removed
To simplify the ResultListener API, the DeleteResults method has been removed.

ResultProxy Transactions
The concept of transactions has been removed from ResultProxy. This means that once results has been
committed, it is no longer possible to delete them.

TestPlan Nested Types
The types TestPlan.TestStepRun and TestPlan.TestPlanRun has been moved out of the TestPlan class. So now
they are just called TestStepRun and TestPlanRun. ### TestStepRun.Step removed Instead
GetStep(TestStep.Run.TestStepId) can now be used to get the TestStep instead.

TestStep.PostPlanRun Call Order
The order of TestStep.PostPlanRun is now called in reverse order of PrePlanRun. If one has two steps
{A,B} the members will be called in the following order: * A.PrePlanRun(); * B.PrePlanRun(); * A.Run(); *
B.Run(); * B.PostPlanRun(); * A.PostPlanRun(); In the previous version the order of A and B PostPlanRun would
be reversed.

TestPlan.ExecuteAsync
TestPlan.ExecuteAsync has been removed to simplify the API. The method TestPlan.Execute is blocking, but can
be freely invoked in a new Thread or Task.

Tap.Package SetAssemblyInfoTask Build Event
A typo has been mixed in Tap.Package, causing that all plugin csproj files containing an
SetAsemblyInfoTask, needs to change it to SetAssemblyInfoTask. Note that the misspelled SetAsemblyInfoTask

Page 25

occurs two times inside the csproj files. The result should look like on the below image. Notice the
highlighted areas where it is fixed.

AssemblyInfoTask

Conversion Utils
The Conversion utils for converting between bands / channels / frequencies for various RF technologies
has been moved from Tap.Engine to the Tap.XSignalAnalyzer plugin. The namespace has been removed
so to use them one has to include TapPlugin.XSignalAnalyzer and add using TapPlugin.XSignalAnalyzer;.

ScpiInstrument.State Removed
The ScpiInstrument.State has been removed in favor of the Resource.IsConnected bool. State (ConnectionState)
Has been moved to XSignalAnalyzer.XsaCore where it should work as before.

SystemLogs
SystemLogs has been renamed to SessionLogs. SystemLogs.RenameTempFile has been renamed to
SessionLogs.Rename SystemLogs.LoadTemp has been renamed to SessionLogs.Load

Predefined TestStepResultTypes removed.
The predefined types now have to be defined by the plugin. For easy migration, here are the definitions:
public static TestStepResultType Ber = new TestStepResultType { Name = "BER", DimensionTitles = new List<string> {
"Channel", "BER [%]" } };
public static TestStepResultType Rssi = new TestStepResultType { Name = "RSSI Error", DimensionTitles = new
List<string> { "Channel", "RSSI Error [dB]" } };
public static TestStepResultType Evm = new TestStepResultType { Name = "EVM (RMS)", DimensionTitles = new
List<string> { "Channel", "EVM [%]" } };
public static TestStepResultType TxPowerError = new TestStepResultType { Name = "Tx Power Error", DimensionTitles =
new List<string> { "Channel", "Power Error [dB]" } };
public static TestStepResultType TxPower = new TestStepResultType { Name = "Tx Power", DimensionTitles = new
List<string> { "Channel", "Power [dBm]" } };
public static TestStepResultType ExpectedTxPower = new TestStepResultType { Name = "Expected Tx Power",
DimensionTitles = new List<string> { "Expected Power [dBm]", "Measured Power [dBm]" } };
public static TestStepResultType SwitchingSpectrum = new TestStepResultType { Name = "Switching Spectrum",
DimensionTitles = new List<string> { "Offset [Hz]", "Power [dBm]" } };
public static TestStepResultType RscpResult = new TestStepResultType { Name = "RSCP", DimensionTitles = new
List<string> { "Channel", "Rscp [dB]" } };
public static TestStepResultType Acp = new TestStepResultType { Name = "ACP", DimensionTitles = new List<string> {
"Channel Offset", "Power [dBc]" } };

Misc
ComPort.GetLocalComPortNames is not static anymore. An instance of ComPort can be used to get this
value instead.
TestStepRun/TestPlanRun.Children has been removed. Use a ResultListener to get this information
if needed.

Page 26

	Notices
	DFARS/Restricted Rights Notice
	Warranty
	Technology Licenses

	Table of Contents
	Migrating Plugins from Version 8.x to Version 9.x (OpenTAP)
	TAP -> OpenTAP
	Namespace changes
	File name changes
	Package payload location convention
	SwitchMatrixRow/Column
	CLI commands
	Git Assisted Versioning
	NotifyingResultListener no longer supports sounds
	ShortNameAttribute Deleted
	PlatformInteraction Reworked/Deleted
	TapVersion Renamed
	Minor changes
	ITypeData / IMemberData
	Builds
	ICliAction
	package.xml file
	PackageManager
	Version specification
	Aborting Threads / TapThreads
	IPropGridControlProvider

	Migrating TAP Plugins from Version 7.x to Version 8.x
	TypesToSearchFor replaced by ITapPlugin
	Packages Extension Changed
	PluginPackageManager renamed to PackageManager (to simplify things).
	Project Assembly Name
	Project Namespace

	Plugin Subdirectory Support (Optional)
	IDisposable is removed from Resource
	.NET Framework Changed to 4.6.2
	Changes to ScpiInstrument
	Removed usage of VISA-COM
	SRQ Handling

	PluginManager.Search replaced by PluginManager.SearchAsync
	ResultParameters
	Tap.Licensing.LicenseManager is removed
	Obsolete functionality removed
	Teststeps
	Methods
	Interfaces

	IDynamicStep
	Attributes
	MacroPathAttribute ([MacroPath])

	Properties

	Tap.Package build tasks

	Migrating TAP Plugins from Version 6.x to Version 7.x
	License N7400 is no longer supported, go generate a new temp license using the TAP homepage
	ResultSource.Publish Rename
	DisplayName and Description attributes no longer supported
	Temp licenses (N7400) generated by the TAP homepage no longer supported

	Migrating TAP Plugins from Version 5.x to Version 6.x
	Namespace Rename
	Plugins Rename
	PlatformSettings Rename
	“Fixed count loop” and “While loop” no longer available (still supported but obsolete).
	DisplayName, ShortName and Description attributes now obsolete
	Database schema changed in TAP 6.0

	Migrating TAP Plugins from Version 4.x to Version 5.x
	Namespace Rename
	Resource Log Rename
	Tap TraceSource
	Removal of Ksf.dll
	Change in Result storage and ResultListeners.
	ShortName is removed from the Resource class (and thus also from the Instrument class)
	Tap.Server.Wcf changes
	ComPort Type
	General information to upgrade plugins: Changes to Solution, Projects and Namespaces
	Small API Changes

	Migrating TAP Plugins from Version 3.x to Version 4.x
	Ksf.dll
	.NET version has been changed to 4.5.2
	TAP 64-bit
	AvailableValuesAttributes moved to Tap.Engine, and changed namespace from Tap.Gui.Controls to Tap
	MacroPathAttribute
	IPropGridControlProvider refactored
	DataResult and Optimized Trace Source
	Tap.TraceSource
	Visual Studio 2015
	Change in DelayStep test step
	ResultListeners

	Migrating TAP Plugins from Version 2.x to Version 3.x
	TAP Verdict
	TestStepList.Allow… Attributes
	TraceBar.AllPassed
	ResultListener.OnTestStepRunCompleted/OnTestPlanRunCompleted
	ResultListener.DeleteResults removed
	ResultProxy Transactions
	TestPlan Nested Types
	TestStep.PostPlanRun Call Order
	TestPlan.ExecuteAsync
	Tap.Package SetAssemblyInfoTask Build Event
	Conversion Utils
	ScpiInstrument.State Removed
	SystemLogs
	Predefined TestStepResultTypes removed.
	Misc

