
PathWave Test Sync Executive
Integration with PathWave FPGA
In this programming example we show how to establish a communication
between a sequence of real-time instruction designed using PathWave Test
Sync Executive and a custom FPGA (Field Programmable Gate Array) design
integrated into the sandbox of a Keysight instrument using Keysight PathWave
FPGA software.

Find us at www.keysight.com Page 1

PROGRAMMING EXAMPLE 3

Table of Contents

KS2201A - Programming Example 3 - PathWave Test Sync Executive Integration with PathWave FPGA 3

System Setup 3

System Requirements 3

How to install Python 3.7.x 64-bit 3

How to Install Chassis Driver, SFP and Firmware 4

How to Install PathWave Test Sync Executive, SD1 SFP andM3xxxA FPGA Firmware 5

How to run this programming example 6

PathWave Test Sync Executive Integration with PathWave FPGA 7

PathWave FPGA Project 7

PathWave Test Sync ExecutiveMeasurement Results 9

Getting Started with HVI Application Programming Interface (API) 12

System Definition 14

Define Platform Resources: Chassis, PXI triggers, Synchronization 15

Define HVI engines 15

Define HVI actions, events, triggers 16

Program HVI Sequence 18

Define HVI Registers 19

SynchronizedWhile 20

SynchronizedMulti-Sequence Block 21

FPGA Register Read 22

FPGA RegisterWrite 23

FPGA Memory MapWrite 23

FPGA Memory MapRead 24

Wait Statement 25

Action Execute 25

Register Increment 25

Compile, Load, Execute the HVI 26

Compile HVI 26

Load HVI to Hardware 26

Release Hardware 27

Further HVI API Explanations 27

Conclusions 28

Find us at www.keysight.com Page 2

KS2201A - Programming Example 3 - PathWave Test Sync Executive Integration with
PathWave FPGA
In this programming example we show how to establish a communication between a sequence of real-time
instruction designed using PathWave Test Sync Executive and a custom FPGA (Field Programmable Gate
Array) design integrated into the sandbox of a Keysight instrument using Keysight PathWave FPGA software.

System Setup
Please review the following system requirements and install the software (SW), firmware (FW), and driver
version following the instructions provided in this section. To download the programming example Python code
and necessary files please visit www.keysight.com/find/KS2201A-programming-examples. To download the
latest PathWave Test Sync Executive installer and documentation please
visit www.keysight.com/find/KS2201A-downloads. The rest of software installers FPGA firmware, drivers and
other components mentioned in this section can be found on www.keysight.com

System Requirements
The versions of software, FPGA firmware, drivers, and other components that are required to run this
programming example are listed below. All pieces of SW and firmware listed below need to be installed on the
external PC or internal chassis controller that is used to control the PXI chassis. FPGA FW of PXI instruments
can be instead programmed using the "HardwareManager" window of SD1 Software Front Panel (SFP).

1. Software versions required:
l Keysight IO Libraries Suite 2020 (v18.1.25310.1 or later)
l Keysight SD1Drivers, Libraries and SFP (v3.00.95 or later)
l Keysight PathWave Test Sync Executive Update 0.2 (v1.00.18 or later)
l Keysight PathWave FPGA 2020 Update 1.0

2. Chassis firmware and driver:
l Keysight Chassis M9019A firmware (tested on v2018, v2019EnhTrig)
l Keysight PXIe Chassis Family Driver (tested on v1.7.82.1)

3. M3xxxA with -HVx HW option and following FPGA firmware versions (to be installed using Keysight SD1
SFP):
l M3202A AWGFPGA firmware (v4.00.95 or later)

How to install Python 3.7.x 64-bit
This programming example requires you to install Python 64-bit version 3.7.x for all users. The Python installer
can be downloaded from the Python webpage. Make sure you add Python 3.7.x to the PATH system Variable.
This can be done at the installation step by checking the right check-boxes as shown in the screenshot below.

Find us at www.keysight.com Page 3

http://www.keysight.com/find/KS2201A-programming-examples
http://www.keysight.com/find/KS2201A-downloads
http://www.keysight.com/

How to Install Chassis Driver, SFP and Firmware
To ensure the system compatibility described above, please install IO Libraries and chassis driver first, both are
available on www.keysight.com. This programming example was tested on chassis model M9019A using the
chassis driver and chassis firmware versions listed above. If you are using another chassis model, we advise
you to install the same firmware version and its compatible chassis driver. When installing the Keysight Chassis
Family Driver, PXIe Chassis SFP (Software Front Panel) software is automatically installed. Chassis firmware
version can be checked and updated using PXIe Chassis SFP. Please see screenshots below referring to
Keysight Chassis model M9019A as an example on how to check the chassis firmware version from the info in
the help window of the PXIe Chassis SFP. Chassis firmware update can be performed using the Utilities
window of PXIe Chassis SFP. For more info please read PXIeChassisFirmwareUpdateGuide.pdf available
on www.keysight.com.

Find us at www.keysight.com Page 4

http://www.keysight.com/
http://www.keysight.com/

How to Install PathWave Test Sync Executive, SD1 SFP and M3xxxA FPGA
Firmware
Note: Python 3.7.x 64-bit must be installed before installing Keysight KS2201A PathWave Test Sync
Executive

After installing the chassis, the next step is to install Keysight SD1 SFP and PathWave Test Sync Executive.
After installing all the necessary software, the FPGA firmware of M3xxxA PXI modules can be updated from the
HardwareManager window of the SD1 SFP. For more details on how to install SW and FPGA FW for

Find us at www.keysight.com Page 5

SD1/M3xxxA Keysight instruments, please refer to the document titled "Keysight M3xxxA Product Family
Firmware Update Instructions" and theM3xxxA User Guide available on www.keysight.com

How to run this programming example
This programming example is setup to execute in simulationmode. To execute the Python code on real HW
instruments you can change the option for simulated hardware to False:

Simulated HW Option

hardware_simulated = True

Afterwards, it is necessary to specify the actual chassis number and slot number where the real PXI
instruments are located. Model number of the used PXI instruments shall be updated, if different than the
instrument model used in this programming example. This example uses PXI instruments from the Keysight
M3xxxA family. The first step to control such instruments is to create an object using the open() method from the
SD1 API. For a complete description of the SD1 API open() method and its options please consult theSD1 3.x
Software for M320xA / M330xA Arbitrary Waveform Generators User's Guide.

Each PXI instrument is described in the code using amodule description class that contains themodulemodel
number, chassis number, slot number and options. Chassis and slot number in the code snippet below need to
be updated before running the programming example:

Previously defined engine Names
hvi_eng_Names = HVI_engine_Names()
Update module descriptors below with your instruments information
module_descriptors = [

module_descriptor('M3202A', 2, 4, options, hvi_eng_Names.primary_engine),
module_descriptor('M3202A', 2, 10, options, hvi_eng_Names.secondary_engine)]

class module_descriptor:
Descriptor for module objects
def __init__(self, model_number, chassis_number, slot_number, options, engine_Name):

self.model_number = model_number
self.chassis_number = chassis_number
self.slot_number = slot_number
self.options = options
self.engine_Name = engine_Name

The chassis to be used in the programming example need to be also specified and listed by chassis number. In
case of multi-chassis setup, please specify the connection between each pair of M9031modules using
the M9031_descriptor class.

Update list of chassis numbers included in the programming example
chassis_list = [1, 2]

Multi-chassis setup
In case of multiple chassis, chassis PXI lines need to be shared using M9031 PXI modules.
M9031 module positions need to be defined in the program.
M9031_descriptors = [M9031_descriptor(1, 11, 2, 11)]

Find us at www.keysight.com Page 6

http://www.keysight.com/
https://www.keysight.com/main/redirector.jspx?action=refcName=EDITORIALckey=3120777lc=engcc=USnfr=-33321.1193058.00
https://www.keysight.com/main/redirector.jspx?action=refcName=EDITORIALckey=3120777lc=engcc=USnfr=-33321.1193058.00

class M9031_descriptor:
Describes the interconnection between each pair of M9031 modules
def __init__(self, first_M9031_chassis_number, first_M9031_slot_number, second_M9031_

chassis_number, second_M9031_slot_number):
self.chassis_1 = first_M9031_chassis_number
self.slot_1 = first_M9031_slot_number
self.chassis_2 = second_M9031_chassis_number
self.slot_2 = second_M9031_slot_number

Please note that in every HVI programming example, PXI trigger resources need to be reserved so that the HVI
instance can use them for their execution. PXI lines to be assigned as trigger resources to HVI can be selected
by updating the code snippet below:

Assign triggers to HVI object to be used for synchronization, data sharing, etc
NOTE: In a multi-chassis setup ALL the PXI lines listed below need to be shared among
each M9031 board pair by means of SMB cable connections
pxi_sync_trigger_resources = [

kthvi.TriggerResourceId.PXI_TRIGGER0,
kthvi.TriggerResourceId.PXI_TRIGGER1,
kthvi.TriggerResourceId.PXI_TRIGGER2,
kthvi.TriggerResourceId.PXI_TRIGGER3]

PXI lines allocated to be used as HVI trigger resources cannot be used by the programming example for other
purposes. In this programming example PXI lines 4-7 are used to exchange information between primary and
secondary modules through the instrument FPGA sandbox. Therefore, PXI lines 4-7 cannot be added as HVI
PXI trigger resources in the code snippet above.

PathWave Test Sync Executive Integration with PathWave FPGA
This programming example illustrates the following functionalities:

1. Read/write data from/to an HVI sequence to/from anHVI Memory Map inserted in an instrument FPGA
sandbox

2. Read/write data from/to an HVI sequence to/from anHVI Register bank inserted in an instrument FPGA
sandbox

3. Read/write PXI line values through instrument FPGA sandbox
4. Usage of HVI Actions and Events to communicate with an instrument FPGA sandbox

These functionalities are implemented using the combination of Keysight PathWave Test Sync Executive and
Keysight PathWave FPGA software.

PathWave FPGA Project
This programming example is based on the implementation of custom blocks within the FPGA sandbox of both
the primary and secondary module. The pictures below illustrate the PathWave FPGA projects for the primary
module and secondary module respectively.

Find us at www.keysight.com Page 7

In the pictures above we can distinguish the following blocks:

l HVI Memory Map: this block allows to exchange data between an HVI sequence and an instrument FPGA
sandbox by using a serial interface based on reading/writing data arrays

l HVI Register Bank: this block allows to exchange data between an HVI sequence and an instrument FPGA
sandbox by reading/writing any of the register in the bank

l PXI Trigger I/O: these ports allow to read/write the PXI line on the chassis backplane from the FPGA
sandbox of anM3xxxA instrument

Find us at www.keysight.com Page 8

l HVI User Action: actions are signals sent from an instrument HVI engine to the outside (the FPGA sandbox
in this case). They can be associated to a PXI line, an internal/external trigger, or any of the product-defined
actions

l HVI User Event: events are signals sent from the outside (the FPGA sandbox in this case) to an instrument
HVI engine. They can be associated to a PXI line, an internal/external trigger, or any of the product-defined
events

PathWave FPGA project files provided with this programming example are targetingM3202A AWGmodel.
However, projects can be easily adapted to target different M3xxxA PXI instruments. This re-targeting
functionality is explained in thePathWave FPGA User Guide. For a complete overview of Keysight PathWave
FPGA andmore information about all its functionalities please visit www.keysight.com.

PathWave Test Sync Executive Measurement Results
When this application Python code correctly executes, it shows a list of registers andmemory blocks that are
loaded to FPGA sandbox of both primary and secondary engines when loading the .k7z files generated by
compiling the PathWave FPGA projects described in the previous sub-section of this document. Afterwards, the
HVI sequence starts to execute and waits for the user to trigger a user event and execute a user action (user
action 4) each time the user hits the enter key. The executed FPGA sandbox actions are counted at each
iteration. Another counter starting from 1000 is incremented and read back after writing it to a dual port RAM.
The user action counter value is written to PXI lines value so that it can also be read by the secondary module.

User events and actions available in an instrument FPGA sandbox depends on the specific instrument
capability and are documented in the instrument documentation and user guides. In particular, documentation of
user action 4 and user event 4 used in this programming example (represented by blocks "HVI_UserAction4"
and "HVI_UserEvent4" in the primary module PathWave FPGA project) can be found in theM32xxA Arbitrary
Waveform Generators User's Guide.

A more detailed programming example execution is described as follows. Within the Sync Multi-Sequence
Block (SMSB) 'FPGA Read/Write Operations' all the four type of possible read/write operation to/from an FPGA
sandbox register or memory map are performed. HVI register and HVI memory maps are part of the PathWave
FPGA blockset "RealTime HVI" and they are described in details in the PathWave FPGA UserManual. The first
statements reads a register in the FPGA sandbox (register 'Register_Bank_HviAction4Cnt' in the PathWave
FPGA project) that is connected to a counter of user action 4 instances. The value is read into an HVI register
Named 'Action4 Counter'. The subsequent FPGA write operation writes the user action 4 counter value into an
FPGA register connected to PXI lines 4-7 outputs. This way the user action 4 counter value is written to PXI
lines with a resolution of 4 bits. The following two statements validate thememory map read/write by first writing
the value of a register counter called 'Memory MapCounter' into thememory map (block "MainEngine_
Memory1" in the PathWave FPGA projects) and then reading it back. The counter starts from 1000 and users
can verify the counter value is written and read back correctly from thememory map during the example
execution.

The next SMSB contains a register read operation in both local HVI sequences of primary and secondary
instruments. Both primary and secondary modules have in their sandbox a register connected to PXI lines 4-7
inputs in the sandbox. This way bothmodules can read the PXI lines values through that register and hence can

Find us at www.keysight.com Page 9

http://www.keysight.com/

read the user action 4 counter value that was previously written in those lines. The HVI sequence then waits for
an user event 4 which can be generated by the user by pressing Enter from the console. Once the user event 4 is
received the HVI sequence triggers an user action 4 instance that is counted by the counter register connected
to the user action 4 input in the sandbox.

Finally in the last SMSB of the HVI sequence all the HVI register counters are incremented. The registers value
increments are printed out on the console terminal at each iteration of the programming example. See
screenshot below as an example of the programming example execution on the console terminal.

Find us at www.keysight.com Page 10

The examplemeasurement results shown in the execution screenshot above can bemeasured on an
oscillosope as well, by using anM9031A module to connect the PXI lines 4-7 to oscilloscope channels and

Find us at www.keysight.com Page 11

visualize their value update at each iteration of the programming example execution. The next section of this
document provides further details about the HVI sequences executed and each HVI statement contained in
them.

Getting Started with HVI Application Programming Interface (API)
PathWave Test Sync Executive implements the next generation of HVI technology and delivers the HVI
Application Programming Interface (API). This section explains how to implement the use case of this
programming example using HVI API. The sequence of operations executed by each of the instruments using
HVI technology are represented in the diagram below. The diagram depicts the HVI sequences executed within
this programming example and the HVI statements used to program the sequences. Every HVI statement is
presented below with a letter referencing to the equivalent block in the HVI flowchart.

Find us at www.keysight.com Page 12

Find us at www.keysight.com Page 13

NOTE Python Variable pxi_propagation_delay is used to parametrize the start delay between the
synchronizedmulti-sequence blocks "FPGA Read/Write operations" and "Wait for HVI_
UserEvent4 and Execute HVI_UserAction4". Thie pxi_propagation_delay is necessary to allow
enough time for the Action4 counter register to write its value to the PXI lines, before the primary
and secondary modules try to read that same value. This way we ensure the value read is up to
date.

To deploy HVI into an application, three fundamental steps shall be followed:

1. System definition: defines all the necessary HVI resources, including platform resources, engines, triggers,
registers, actions, events, etc.

2. Program HVI sequences: defines all the statements to be executed within each HVI sequence
3. Execute HVI: compiles, loads to HW and executes HVI

The following sub-sections describe in details how these three steps are implemented for this example.

System Definition
The API class SystemDefintion allows to define all necessary HVI resources.The definition of HVI resources is
the first step of an HVI application. HVI resources include all the platform resources, engines, triggers, registers,
actions, events, etc. that the HVI sequences are going to use and execute. Users need to declare them upfront
and add them to the corresponding collections. All HVI Engines included in the application need to be registered
into the EngineCollection class instance. HVI resources are described in details in the PathWave Test Sync
Executive User Guide. The HVI resource definitions are summarized in the code snippets below.

Python

def define_hvi_resources(module_dict, chassis_list, M9031_descriptors, pxi_sync_trigger_
resources):

Configures all the necessary resources for the HVI application to execute:
HW platform, engines, actions, triggers, etc.

Create system definition object
sys_def = kthvi.SystemDefinition('MultiChassisSetup')

#
Define HW platform: chassis, interconnections, PXI trigger resources,

#synchronization, HVI clocks
define_hw_platform(sys_def, chassis_list, M9031_descriptors, pxi_sync_trigger_

resources)
#

Define all the HVI engines to be included in the HVI
define_hvi_engines(sys_def, module_dict)
#
Define FPGA actions, events and other configurations
define_fpga_resources(sys_def, module_dict)

#
return sys_def

Find us at www.keysight.com Page 14

Define Platform Resources: Chassis, PXI triggers, Synchronization

All HVI instances need to define the chassis and eventual chassis interconnections using the
SystemDefinition class. PXI trigger lines to be reserved by HVI for its execution can be assigned using
the sync_resources interface of the SystemDefinition class. The SystemDefinition class also allows to add
additional clock frequencies that the HVI execution can synchronize with. For further information please consult
the section 'HVI Core API' of the PathWave Test Sync Executive User Guide.

Python

def define_hw_platform(sys_def, chassis_list, M9031_descriptors, pxi_sync_trigger_
resources):

Define HW platform: chassis, interconnections, PXI trigger resources,
synchronization, HVI clocks

Add chassis resources
for chassis_number in chassis_list:

if hardware_simulated:
sys_def.chassis.add_with_options(chassis_number,

'Simulate=True,DriverSetup=model=M9018B,NoDriver=True')
else:

sys_def.chassis.add(chassis_number)
#

Multi-chassis setup
In case of multiple chassis, chassis PXI lines need to be shared using M9031 PXI

modules.
M9031 module positions need to be defined in the program.
To add each interconnected pair of M9031 modules use:
interconnects.add_M9031_modules(1stM9031_chassis_number, 1stM9031_slot_number,

2ndM9031_chassis_number, 2ndM9031_slot_number);
First and last chassis have only one M9031 module in the middle segment. Middle

chassis have two M9031 modules
in middle and lateral segments respectively. Adjacent chassis have their M9031

modules connected in diagonal.
See programming example documentation for more details.

#
Add M9031 modules for multi-chassis setups
if M9031_descriptors:

interconnects = sys_def.interconnects
for descriptor in M9031_descriptors:

interconnects.add_M9031_modules(descriptor.chassis_1, descriptor.slot_1,
descriptor.chassis_2, descriptor.slot_2)

#
Assign the defined PXI trigger resources
sys_def.sync_resources = pxi_sync_trigger_resources

#
Assign clock frequencies that are outside the set of the clock frequencies of each

HVI engine
Use the code line below if you want the application to be in sync with the 10 MHz

clock
sys_def.non_hvi_core_clocks = [10e6]
#
return

Define HVI engines

Find us at www.keysight.com Page 15

All HVI Engines to be included in the HVI instance need to be registered into the EngineCollection class
instance. Each HVI Engine object added to the engine collection contains collections of its own that allow you to
access the actions, events and triggers that each specific engine will control and use within the HVI.

Python

class HVI_engine_Names:
Defines the HVI engines and their Names
def __init__(self):

self.primary_engine = 'PrimaryEngine'
self.secondary_engine = 'SecondaryEngine'

def define_hvi_engines(sys_def, module_dict):
Define all the HVI engines to be included in the HVI
For each instrument to be used in the HVI application add its HVI Engine to the HVI

Engine Collection
for engine_Name, module in zip(module_dict.keys(), module_dict.values()):

sys_def.engines.add(module.instrument.hvi.engines.main_engine, engine_Name)
#
return

Define HVI actions, events, triggers

In this programming example each AWGneeds to trigger both a FP pulse and a waveform very precisely. To do
that the AWG trigger actions are issued from within the HVI execution. In the HVI usemodel, actions need to be
added to the action collection of each HVI engine before they can be executed. FP trigger needs to be added to
the HVI Trigger Collection and configured. This is done in this programming example as explained in the code
snippets below.

Python

class HVI_resource_Names:
Defines the HVI resources and their Names
def __init__(self):

NOTE: The M3xxxA_sandbox Name is not arbitrary and cannot be changed.
The sandbox Name is defined by each instrument. See SD1 3.x M3xxxA documentation

for further info
self.M3xxxA_sandbox = 'sandbox0'
self.hvi_user_event_4 = 'FpgaUserEvent4'
self.hvi_user_action_4 = 'FpgaUserAction4'

class FPGA_resources:
Defines the resources in the FPGA sandbox
The FPGA resource Names are not arbitrary. They correspond to the Names defined in the

PathWave FPGA project files
def __init__(self):

self.primary_project_file = '../bitfiles/HviPortExamplePrimary.k7z'
self.secondary_project_file = '../bitfiles/HviPortExampleSecondary.k7z'
self.num_primary_regs = 6 # number of mem. maps and registers placed in the primary

PathWave FPGA project
self.num_secondary_regs = 3 # number of mem. maps and registers placed in the

secondary PathWave FPGA project

Find us at www.keysight.com Page 16

self.memory_map = 'MainEngine_Memory_1'
self.reg_action4_cnt = 'Register_Bank_HviAction4Cnt'
self.reg_event4 = 'Register_Bank_HviEvent4'
self.reg_pxi_out = 'Register_Bank_HviPxiTrigOut'
self.reg_pxi_in = 'Register_Bank_HviPxiTrigIn'
self.secondary_reg_pxi_in = 'Register_Bank_HviPxiTrigIn'

def define_fpga_resources(sys_def, module_dict):
Define FPGA actions, events and other configurations
Load previously defined resources
hvi_res_Names = HVI_resource_Names()
hvi_eng_Names = HVI_engine_Names()
fpga_resources = FPGA_resources()

#
Primary module, secondary module
primary_module = module_dict[hvi_eng_Names.primary_engine].instrument
secondary_module = module_dict[hvi_eng_Names.secondary_engine].instrument

#
Events: add FpgaUserEvent4 to the list of events of the primary engine
fpga_user_event4 = primary_module.hvi.events.fpga_user_4
sys_def.engines[hvi_eng_Names.primary_engine].events.add(fpga_user_event4, hvi_res_

Names.hvi_user_event_4)
#

Actions: add FpgaUserAction4 to the list of actions of the primary engine
fpga_user_action4 = primary_module.hvi.actions.fpga_user_4
sys_def.engines[hvi_eng_Names.primary_engine].actions.add(fpga_user_action4, hvi_res_

Names.hvi_user_action_4)
#

Get engine sandbox
sandbox_Name = hvi_res_Names.M3xxxA_sandbox
primary_sandbox = sys_def.engines[hvi_eng_Names.primary_engine].fpga_sandboxes[sandbox_

Name]
secondary_sandbox = sys_def.engines[hvi_eng_Names.secondary_engine].fpga_sandboxes

[sandbox_Name]
Load to the sandboxes .k7z project created using Pathwave FPGA
This operation is necessary for HVI to list all the FPGA blocks contrined in the

designed FPGA FW
primary_sandbox.load_from_k7z(fpga_resources.primary_project_file)
secondary_sandbox.load_from_k7z(fpga_resources.secondary_project_file)
#
Enable PXI lines to be written from the FPGA sandbox of primary engine only using

FPGATriggerOutConfig()
NOTE: Only one PXI module per segment shall be allowed to write backplane PXI lines.

It would cause conflicts and misbehavior to configure the PXI lines for the secondary
engine also

primary_module.FPGATriggerConfig(externalSource=keysightSD1.SD_
TriggerExternalSources.TRIGGER_PXI4, direction =keysightSD1.SD_FpgaTriggerDirection.INOUT,
polarity= keysightSD1.SD_TriggerPolarity.ACTIVE_LOW, syncMode = keysightSD1.SD_
SyncModes.SYNC_NONE, delay5Tclk=0)

primary_module.FPGATriggerConfig(externalSource=keysightSD1.SD_
TriggerExternalSources.TRIGGER_PXI5, direction =keysightSD1.SD_FpgaTriggerDirection.INOUT,
polarity= keysightSD1.SD_TriggerPolarity.ACTIVE_LOW, syncMode = keysightSD1.SD_
SyncModes.SYNC_NONE, delay5Tclk=0)

primary_module.FPGATriggerConfig(externalSource=keysightSD1.SD_
TriggerExternalSources.TRIGGER_PXI6, direction =keysightSD1.SD_FpgaTriggerDirection.INOUT,

Find us at www.keysight.com Page 17

polarity= keysightSD1.SD_TriggerPolarity.ACTIVE_LOW, syncMode = keysightSD1.SD_
SyncModes.SYNC_NONE, delay5Tclk=0)

primary_module.FPGATriggerConfig(externalSource=keysightSD1.SD_
TriggerExternalSources.TRIGGER_PXI7, direction =keysightSD1.SD_FpgaTriggerDirection.INOUT,
polarity= keysightSD1.SD_TriggerPolarity.ACTIVE_LOW, syncMode = keysightSD1.SD_
SyncModes.SYNC_NONE, delay5Tclk=0)

#
secondary_module.FPGATriggerConfig(externalSource=keysightSD1.SD_

TriggerExternalSources.TRIGGER_PXI4, direction =keysightSD1.SD_FpgaTriggerDirection.IN,
polarity= keysightSD1.SD_TriggerPolarity.ACTIVE_LOW, syncMode = keysightSD1.SD_
SyncModes.SYNC_NONE, delay5Tclk=0)

secondary_module.FPGATriggerConfig(externalSource=keysightSD1.SD_
TriggerExternalSources.TRIGGER_PXI5, direction =keysightSD1.SD_FpgaTriggerDirection.IN,
polarity= keysightSD1.SD_TriggerPolarity.ACTIVE_LOW, syncMode = keysightSD1.SD_
SyncModes.SYNC_NONE, delay5Tclk=0)

secondary_module.FPGATriggerConfig(externalSource=keysightSD1.SD_
TriggerExternalSources.TRIGGER_PXI6, direction =keysightSD1.SD_FpgaTriggerDirection.IN,
polarity= keysightSD1.SD_TriggerPolarity.ACTIVE_LOW, syncMode = keysightSD1.SD_
SyncModes.SYNC_NONE, delay5Tclk=0)

secondary_module.FPGATriggerConfig(externalSource=keysightSD1.SD_
TriggerExternalSources.TRIGGER_PXI7, direction =keysightSD1.SD_FpgaTriggerDirection.IN,
polarity= keysightSD1.SD_TriggerPolarity.ACTIVE_LOW, syncMode = keysightSD1.SD_
SyncModes.SYNC_NONE, delay5Tclk=0)

#
return

Program HVI Sequence
Once the HVI resources are defined, users can program the HVI sequence of measurement actions to be
executed by each HVI engine. HVI sequences can be programmed using the Sequencer class. HVI execution
happens through a global sequence (defined by the SyncSequence class) that takes care of synchronizing and
encapsulating the local sequences corresponding to each HVI engine included in the application. In this
programming example, the HVI global sync sequence consists of a synchronized while statement containing
three synchronizedmulti-sequence blocks.

Python

def program_hvi_sequence(sys_def):
This method programs the HVI sequence of this programming example.
Different HVI statements are encapsulated as much as possible in separated SW methods

to help users visualize the programmed HVI sequences.
The programming example documentation on www.keysight.com contains an HVI diagram

that graphically represents the programmed HVI sequence.
Create sequencer object
sequencer = kthvi.Sequencer('mySequencer', sys_def)

#
Define registers within the scope of the outmost sync sequence
define_registers(sequencer)

#
Add and program a Sync While statement
program_sync_while(sequencer.sync_sequence)

#
return sequencer

Find us at www.keysight.com Page 18

Define HVI Registers

HVI registers correspond to very fast access physical memory registers in the HVI Engine located in the
instrument HW (e.g. FPGA or ASIC). HVI Registers can be used as parameters for operations andmodified
during the sequence execution (same as Variables in any programming language). The number and size of
registers is defined by each instrument. The registers that users want to use in the HVI sequences need to be
defined beforehand into the register collection within the scope of the corresponding HVI Sequence. This can be
done using the RegisterCollection class that is within the Scope object corresponding to each sequence. HVI
Registers belong to a specific HVI Engine because they refer to HW registers of that specific instrument.
Register from one HVI Engine cannot be used by other engines or outside of their scope. Note that currently,
registers can only be added to the HVI top SyncSequence scopes, whichmeans that only global registers
visible in all child sequences can be added. HVI registers are defined in this programming example by the code
snippet below.

Python

class HVI_register_Names:
Defines the HVI register Names to be used within the scope of each HVI engine
def __init__(self):

self.hvi_quit = 'HVI Quit'
self.action4_cnt = 'Action4 Counter'
self.counter_reg = 'Loop Counter'
self.mem_map = 'Memory Map Value'
self.mem_map_counter = 'Memory Map Counter'
self.pxi_values = 'PXI Values'
self.secondary_pxi_values = 'Secondary PXI Values'
self.secondary_counter_reg = 'Secondary Counter'

def define_registers(sequencer):
Defines all registers for each HVI engine in the scope af the global sync sequence
Load previously defined resource Names
hvi_eng_Names = HVI_engine_Names()
register_Names = HVI_register_Names()

#
Define registers for primary engine
hvi_quit = sequencer.sync_sequence.scopes[hvi_eng_Names.primary_engine].registers.add

(register_Names.hvi_quit, kthvi.RegisterSize.SHORT)
hvi_quit.initial_value = 0
action4_cnt = sequencer.sync_sequence.scopes[hvi_eng_Names.primary_

engine].registers.add(register_Names.action4_cnt, kthvi.RegisterSize.SHORT)
action4_cnt.initial_value = 0
counter_reg = sequencer.sync_sequence.scopes[hvi_eng_Names.primary_

engine].registers.add(register_Names.counter_reg, kthvi.RegisterSize.SHORT)
counter_reg.initial_value = 0
mem_map = sequencer.sync_sequence.scopes[hvi_eng_Names.primary_engine].registers.add

(register_Names.mem_map, kthvi.RegisterSize.SHORT)
mem_map.initial_value = 0
mem_map_counter = sequencer.sync_sequence.scopes[hvi_eng_Names.primary_

engine].registers.add(register_Names.mem_map_counter, kthvi.RegisterSize.SHORT)
mem_map_counter.initial_value = 1000

Find us at www.keysight.com Page 19

pxi_values = sequencer.sync_sequence.scopes[hvi_eng_Names.primary_engine].registers.add
(register_Names.pxi_values, kthvi.RegisterSize.SHORT)

pxi_values.initial_value = 0
Define registers for primary engine
secondary_counter_reg = sequencer.sync_sequence.scopes[hvi_eng_Names.secondary_

engine].registers.add(register_Names.secondary_counter_reg, kthvi.RegisterSize.SHORT)
secondary_counter_reg.initial_value = 0
secondary_pxi_values = sequencer.sync_sequence.scopes[hvi_eng_Names.secondary_

engine].registers.add(register_Names.secondary_pxi_values, kthvi.RegisterSize.SHORT)
secondary_pxi_values.initial_value = 0

#
return

SynchronizedWhile

It corresponds to statement (a) in the HVI diagram. SynchronizedWhile (Sync While) statements belongs to the
set of HVI Sync Statements and are defined by the API class SyncWhile. A Sync While allows you to
synchronously executemultiple local HVI sequences until a user-defined condition is met, that is, the sync
while condition. For local sequences to be defined within the Sync While, it is necessary to use synchronized
multi-sequence blocks.

Python

Define sync while condition
sync_while_condition = kthvi.Condition.register_comparison(hvi_quit,
kthvi.ComparisonOperator.NOT_EQUAL_TO, 1)
Add Sync While Statement
sync_while = sync_sequence.add_sync_while('User-controlled sync loop', 10, sync_while_
condition)

def program_sync_while(sync_sequence):
Adds and programs the outmost Sync While statement of the HVI Sync Sequence
Load previously defined resource Names
hvi_eng_Names = HVI_engine_Names()
register_Names = HVI_register_Names()
#Previously defined registers
hvi_quit = sync_sequence.scopes[hvi_eng_Names.primary_engine].registers[register_

Names.hvi_quit]
#

Define sync while condition
sync_while_condition = kthvi.Condition.register_comparison(hvi_quit,

kthvi.ComparisonOperator.NOT_EQUAL_TO, 1)
Add Sync While Statement
sync_while = sync_sequence.add_sync_while('User-controlled sync loop', 60, sync_while_

condition)
#

Add and program 1st Sync Multi-Sequence Block
program_sync_block_1(sync_while.sync_sequence)

#
Add and program 2nd Sync Multi-Sequence Block
program_sync_block_2(sync_while.sync_sequence)

#
Add and program 3rd Sync Multi-Sequence Block
program_sync_block_3(sync_while.sync_sequence)

Find us at www.keysight.com Page 20

#
return

SynchronizedMulti-Sequence Block

It corresponds to statements (b, g, l) in the HVI diagram. Synchronizedmulti-sequence blocks are defined by the
API class SyncMultiSequenceBlock. This type of sync statement synchronizes all the HVI engines that are
part of the sync sequence. It allows you to program each HVI Engine to do specific operations by exposing a
local sequence for each engine. By calling the API method add_multi_sequence_block() a synchronizedmulti-
sequence block is added to the Sync (global) Sequence.

Python

Add 1st Sync Multi-Sequence Block to the Sync While sequence
sync_block_1 = sync_sequence.add_sync_multi_sequence_block('FPGA Read/Write Operations',
210)
primary_sequence = sync_block_1.sequences[hvi_eng_Names.primary_engine]

Within the SynchronizedMulti-Sequence Block (SMSB), users can define which statement each local engine is
going to execute in parallel with the other engines. Local HVI sequences start and end synchronously their
execution within the sync multi-sequence block. Users can define the exact amount of time each local HVI
statement starts to execute with respect to the previous one. HVI automatically calculates the execution time of
each local sequence and adjusts the execution of all local sequences within themulti-sequence block so that
they can deterministically end altogether within the synchronizedmulti-sequence block. See the general case
example in the figure below for additional details.

Find us at www.keysight.com Page 21

Please note that the SyncMulti-Sequence Block has an execution duration time labeled as "T Min" in
the figure above. The "T min" default value for any sync statement corresponds to the minimum time
necessary to complete the operations included inside. In future releases, the user will be able to
specify specific execution time values or allowed ranges. The timing at the end of each local
sequence is automatically adjusted by HVI according to the duration specified by the user for the
SMSB. In case of duration "T min" HVI will automatically add no time to the local sequence having
longest duration and adjust the other sequences accordingly, as in the example depicted in the figure
above. The resolution for HVI-defined time adjustment at the end of a syncmulti-sequence block
corresponds to the 10 ns FPGA clock period for an application including instruments that are all
within the Keysight M3xxxA family. For further explanations about the timing of HVI sequence
execution please refer to "HVI Timing" section of the KS2201APathWave Test Sync Executive User
Manual available on www.keysight.com
FPGA Register Read

It corresponds to statements (c, h, k) in the HVI diagram. InstructionFpgaRegisterRead is an HVI core
instruction that allows reading an HVI Register Bank placed into an FPGA sandbox design. The value read from
the HVI Port Register will be written into a destination HVI register.

Find us at www.keysight.com Page 22

Python

AWG local sequences can be accessed from within the Sync Multi-Sequence Block
primary_sequence = sync_block_1.sequences[hvi_eng_Names.primary_engine]
Previously defined registers and FPGA resources
action4_cnt = sync_sequence.scopes[hvi_eng_Names.primary_engine].registers[register_
Names.action4_cnt]
fpga_reg_action4_cnt = primary_sequence.engine.fpga_sandboxes[hvi_res_Names.M3xxxA_
sandbox].fpga_registers[fpga_resources.reg_action4_cnt]

Read FPGA Register Register_Bank_HviAction4Cnt
readFpgaReg0 = primary_sequence.add_instruction('Read FPGA Register_Bank_HviAction4Cnt',
10, primary_sequence.instruction_set.fpga_register_read.id)
readFpgaReg0.set_parameter(primary_sequence.instruction_set.fpga_register_
read.destination.id, action4_cnt)
readFpgaReg0.set_parameter(primary_sequence.instruction_set.fpga_register_read.fpga_
register.id, fpga_reg_action4_cnt)

FPGA RegisterWrite

It corresponds to statement (d) in the HVI diagram. InstructionFpgaRegisterWrite is an HVI core instruction that
allows writing an HVI Register Bank placed into an FPGA sandbox. The value to be written into the HVI
Register Bank is taken from anHVI register or from a literal.

Python

AWG local sequences can be accessed from within the Sync Multi-Sequence Block
primary_sequence = sync_block_1.sequences[hvi_eng_Names.primary_engine]
Previously defined registers and FPGA resources
action4_cnt = sync_sequence.scopes[hvi_eng_Names.primary_engine].registers[register_
Names.action4_cnt]
fpga_reg_pxi_out = primary_sequence.engine.fpga_sandboxes[hvi_res_Names.M3xxxA_
sandbox].fpga_registers[fpga_resources.reg_pxi_out]

Write FPGA Register Register_Bank_HviPxiTrigOut
Register_Bank_HviPxiTrigOut is connected to PXI lines Outputs.
The value written to the FPGA register will be written to PXI lines
NOTE: Please allow at least 60 ns between these instructions to ensure
the HVI register action4_cnt is updated before writing its content to PXI lines
writeFpgaReg0 = primary_sequence.add_instruction('Write FPGA Register_Bank_HviPxiTrigOut',
60, primary_sequence.instruction_set.fpga_register_write.id)
writeFpgaReg0.set_parameter(primary_sequence.instruction_set.fpga_register_write.fpga_
register.id, fpga_reg_pxi_out)
writeFpgaReg0.set_parameter(primary_sequence.instruction_set.fpga_register_write.value.id,
action4_cnt)

FPGAMemory MapWrite

Find us at www.keysight.com Page 23

It corresponds to statement (e) in the HVI diagram. InstructionFpgaArrayWrite is an HVI core instruction that
allows writing to an HVI Memory Map placed into an FPGA sandbox. The value to be written into the HVI
Memory Map is taken from anHVI register or from a literal.

Python

AWG local sequences can be accessed from within the Sync Multi-Sequence Block
primary_sequence = sync_block_1.sequences[hvi_eng_Names.primary_engine]
Previously defined registers and FPGA resources
mem_map_counter = sync_sequence.scopes[hvi_eng_Names.primary_engine].registers[register_
Names.mem_map_counter]
fpga_memory_map = primary_sequence.engine.fpga_sandboxes[hvi_res_Names.M3xxxA_
sandbox].fpga_memory_maps[fpga_resources.memory_map]

Write Memory Map
At each iteration a different value is written to the memory map
writeMemoryMap = primary_sequence.add_instruction('Write FPGA Memory Map', 10, primary_
sequence.instruction_set.fpga_array_write.id)
writeMemoryMap.set_parameter(primary_sequence.instruction_set.fpga_array_write.fpga_memory_
map.id, fpga_memory_map)
writeMemoryMap.set_parameter(primary_sequence.instruction_set.fpga_array_write.value.id,
mem_map_counter)
writeMemoryMap.set_parameter(primary_sequence.instruction_set.fpga_array_write.fpga_memory_
map_offset.id, 0)

FPGAMemory Map Read

It corresponds to statement (f) in the HVI diagram. InstructionFpgaArrayRead is an HVI core instruction that
allows reading an HVI Memory Map. The value read from the HVI Memory Mapwill be written into a destination
HVI register.

Python

AWG local sequences can be accessed from within the Sync Multi-Sequence Block
primary_sequence = sync_block_1.sequences[hvi_eng_Names.primary_engine]
Previously defined registers and FPGA resources
mem_map = sync_sequence.scopes[hvi_eng_Names.primary_engine].registers[register_Names.mem_
map]
fpga_memory_map = primary_sequence.engine.fpga_sandboxes[hvi_res_Names.M3xxxA_
sandbox].fpga_memory_maps[fpga_resources.memory_map]

Read Memory Map
Reads the value that was written to the block RAM connected to the memory map
NOTE: Please allow at least 30 ns between these instructions to ensure data is written
correctly through the memory map before you read it back
readMemoryMap = primary_sequence.add_instruction('Read FPGA Memory Map', 30, primary_
sequence.instruction_set.fpga_array_read.id)
readMemoryMap.set_parameter(primary_sequence.instruction_set.fpga_array_read.fpga_memory_
map.id, fpga_memory_map)
readMemoryMap.set_parameter(primary_sequence.instruction_set.fpga_array_
read.destination.id, mem_map)

Find us at www.keysight.com Page 24

readMemoryMap.set_parameter(primary_sequence.instruction_set.fpga_array_read.fpga_memory_
map_offset.id, 0)

Wait Statement

It corresponds to statement (i) in the HVI diagram. The wait statement is a local flow control statement that can
be implemented using the API class WaitStatement. This sequence block sets an instrument to wait for a
condition. The condition ca be defined by a trigger, an event, or any combination of them through the usage of
logical operators. In this programming example, the wait statement is used to set the primary engine to wait for
an event generated by the FPGA sandbox, more specifically the event called 'HVI_UserEvent4'. The wait
condition is defined by the wait mode and the sync mode. The wait mode .WaitMode.TRANSITION makes sure
the wait condition is triggered precisely at the time instant when the event is activated. The sync
mode .SyncMode.IMMEDIATE sets the wait event statement to let the execution continue immediately, i.e. as
soon as the event is received.

Python

Wait for FPGA_User_Event4
Define the condition for the wait statement
wait_condition = kthvi.Condition.event(hvi.engines[hvi_resources.primary_engine_
Name].events[hvi_resources.hvi_user_event_4])
Add wait statement
primary_sequence = sync_block_2.sequences[hvi_eng_Names.primary_engine]
waitEvent = primary_sequence.add_wait('Wait for FPGA_User_Event4', 10, wait_condition)
waitEvent.set_mode(kthvi.WaitMode.TRANSITION, kthvi.SyncMode.IMMEDIATE)

Action Execute

It corresponds to statement (j) in the HVI diagram. Actions to be used within an HVI sequence need to be added
to the instrument HVI engine using the API 'add' method of the ActionCollection class. Once the wanted actions
are added within the list of the instruments' HVI engine actions, an instruction to execute them can be added to
the instrument's HVI sequence using the HVI API class InstructionsActionExecute. One or multiple actions can
be executed at the same time within the same 'Action Execute' instruction.

Python

AWG local sequences can be accessed from within the Sync Multi-Sequence Block
primary_sequence = sync_block_2.sequences[hvi_eng_Names.primary_engine]
Action execute instruction: execute action 4
instAction4 = primary_sequence.add_instruction('Execute Action 4', 20, primary_
sequence.instruction_set.action_execute.id)
instAction4.set_parameter(primary_sequence.instruction_set.action_execute.action.id,
primary_sequence.engine.actions[hvi_res_Names.hvi_user_action_4])

Register Increment

It corresponds to statements (m, n, o) in the HVI diagram. A register increment can be implemented within an
HVI sequence using an instance of the API instruction class InstructionsAdd. The same instruction can be used
to add registers and constant values (operands) and put the result in another register (result). The register to be
incremented needs to be added previously to the scope of the corresponding HVI engine.

Find us at www.keysight.com Page 25

Python

AWG local sequences can be accessed from within the Sync Multi-Sequence Block
primary_sequence = sync_block_2.sequences[hvi_eng_Names.primary_engine]
#
Increment counter register
instr = primary_sequence.add_instruction('Increment counter register', 10, primary_
sequence.instruction_set.add.id)
instr.set_parameter(primary_sequence.instruction_set.add.left_operand.id, counter_reg)
instr.set_parameter(primary_sequence.instruction_set.add.right_operand.id, 1)
instr.set_parameter(primary_sequence.instruction_set.add.destination.id, counter_reg)

Compile, Load, Execute the HVI
Once the HVI sequences are programmed by defining all the necessary HVI statements, users can compile,
load and execute the HVI. Compile, load and run functionalities can be accessed from the Hvi class.

Compile HVI

The compilation operation is performed by calling the compile() API method. This operation processes all the
info related to the HVI application, including the necessary HVI resources and the HVI statements included in
the HVI sequences. The compilation generates a binary compiled output that can be loaded to the hardware
instruments for their HVI engine to execute it. As an output, the compile() API method provides an object that
can tell to the user how many PXI sync resources are necessary to be reserved to execute the HVI application.

Python

Compile HVI sequences

hvi = sequencer.compile()

print("HVI Compiled")

print("This HVI programming example needs to reserve {} PXI trigger resources to

execute".format(len(hvi.compile_status.sync_resources)))

Load HVI to Hardware

The API method load_to_hw() loads to each HVI engine the binary output obtained from the HVI compilation so
that the HVI engine programmed into their digital HW (FPGA or ASIC) can execute it.

Python

Load HVI to HW: load sequences, configure actions/triggers/events, lock resources, etc.

hvi.load_to_hw()

Execute HVI

HVI execution is controlled by the run() API method. HVI can be run in a blocking or non-blockingmode. In this
programming example the non-blockingmode is used. By using this executionmode, SW execution can interact
through registers read/write with the HVI sequence execution.

Python

Find us at www.keysight.com Page 26

Execute HVI in non-blocking mode
This mode allows SW execution to interact with HVI execution
hvi.run(hvi.no_wait)
print('HVI Running...')

Release Hardware

API method release_hw() shall be called once the HVI execution is finished to release all the HW resources that
were reserved during the HVI execution, including the PXI trigger resources that had been locked by HVI for its
execution.

Python

Unlock and release HW resources
hvi.release_hw()
print("Releasing HW...")

Further HVI API Explanations
Detailed explanations of each class and functionality of the HVI API can be found in the PathWave Test Sync
Executive User Manual or in the Python help file that is provided with the HVI installer, available at: C:\Program
Files\Keysight\PathWave Test Sync Executive 2020\api\python\Help\index.htm.

Find us at www.keysight.com Page 27

Conclusions
This Programming Example illustrated how to use Keysight PathWave Test Sync Executive together with
Keysight PathWave FPGA. Custom FPGA block are designed using Keysight PathWave FPGA and loaded to
the sandbox of twomodular instrument. The two instruments execute HVI sequences that can communicate
with the custom FPGA blocks programmed into the sandbox of themodule FPGA. Using an HVI Port the HVI
sequence can read/write values to any HVI Port Register inserted among the custom FPGA blocks. This
application note has also shown how HVI sequence and FPGA sandbox of an instrument can communicate by
using actions and events. The exchanged information can also be written to PXI lines.

Find us at www.keysight.com Page 28
This information is subject to change without notice. © Keysight Technologies, 2020, Published in USA, October 07 2020,KS2201-90003

	KS2201A - Programming Example 3 - PathWave Test Sync Executive Integration wi...
	System Setup
	System Requirements
	How to install Python 3.7.x 64-bit
	How to Install Chassis Driver, SFP and Firmware
	How to Install PathWave Test Sync Executive, SD1 SFP and M3xxxA FPGA Firmware
	How to run this programming example

	PathWave Test Sync Executive Integration with PathWave FPGA
	PathWave FPGA Project
	PathWave Test Sync Executive Measurement Results

	Getting Started with HVI Application Programming Interface (API)
	System Definition
	Define Platform Resources: Chassis, PXI triggers, Synchronization
	Define HVI engines
	Define HVI actions, events, triggers

	Program HVI Sequence
	Define HVI Registers
	Synchronized While
	Synchronized Multi-Sequence Block
	FPGA Register Read
	FPGA Register Write
	FPGA Memory Map Write
	FPGA Memory Map Read
	Wait Statement
	Action Execute
	Register Increment

	Compile, Load, Execute the HVI
	Compile HVI
	Load HVI to Hardware
	Release Hardware

	Further HVI API Explanations
	Conclusions

