\ PROGRAMMING EXAMPLE 2

Synchronous Mixed-Signal Measurements
using M3xxxA PXI Instruments PATHWAY

AV b

In this programming example a M3102A digitizer performs sequenced
acquisition of mixed signals generated by multiple M320xA Arbitrary Waveform
Generators (AWGS). The first AWG generates a train of RF pulses, and the other
AWGs output previously queued arbitrary waveforms. By using Path\Wave Test
Sync Executive, each cycle of digitizer measurements is precisely synchronized
with the AWG output signals.

PATHWAVE

Test Sync Executive

KEYSIGHT

TECHNOLOGIES

Table of Contents

KS2201A - Programming Example 2 - Synchronous Mixed-Signal Measurements using M3xxxA PXI

NS UM NS 4
SY S M SO UD . L 4
System RequUIremMeNntS L 4
How toinstall Python 3.7.X B4-bit e 4
How to Install Chassis Driver, SFP and Firmware 5
How to Install PathWave Test Sync Executive, SD1 SFP and M3xxxA FPGA Firmware _.__................. 6
How to run this programming example 7
Synchronous Signal Generation & Acquisition using M3xxxA PXI Instruments 9
Measurement ResUIts ... 10
Getting Started with HVI Application Programming Interface (API) 15
System Definition ... L 17
Define Platform Resources: Chassis, PXI triggers, Synchronization ... 17
Define HV I @NgiNeS . il 18
Define HVI actions, events, tigQers 19
Program HV | SeqUeNCes 20
Define HV I REGIS OIS e 20
Synchronized While L 22
Synchronized Multi-Sequence BlOCK 22
Wait Statement . 23

HVI Native Instruction: Register Increment 24

HVI Native Instruction: Register ASSigN 24
Action Execute: DAQ, AW G Trigger . o oo 24
Local Wil ... 25

HVI Instrument-Specific INStruCtion ... 25
IF-ELSEIF-ELSE Statement 26
Compile, Load, Execute the HV | 26
Compile HV L L 26
Load HVI to Hardware ... il 27
EXecUte HV L L 27
Release HardWare e 27
Further HVI APl EXplanations . .. 28
Multi-Chassis Setup Implementation ...l 28
Add CNasSiS ... 30

Find us at www.keysight.com Page 2

Add MO0BTA BOardS ..o 30
10 MHz Clock Reference SOUICEo e 30

CONCIUSIONS - . o 34

Find us at www.keysight.com Page 3

KS2201A - Programming Example 2 - Synchronous Mixed-Signal Measurements using
M3xxxA PXI Instruments

In this programming example a M3102A digitizer performs sequenced acquisition of heterogeneous signals
generated by multiple M320xA arbitrary waveform generators (AWGs). The first AWG

generates a train of RF pulses, and the other AWGs output a queued arbitrary waveform. By using PathWave
Test Sync Executive, each cycle of digitizer measurements are precisely synchronized with the AWG output
signals.

System Setup

Please review the following system requirements and install the software (SW), firmware (FW), and driver
version following the instructions provided in this section. To download the programming example Python code
and necessary files please visit www.keysight.com/find/KS2201A-programming-examples. To download the
latest PathWave Test Sync Executive installer and documentation please

visit www.keysight.com/find/KS2201A-downloads. The rest of software installers FPGA firmware, drivers and
other components mentioned in this section can be found on www.keysight.com

System Requirements

The versions of software, FPGA firmware, drivers, and other components that are required to run this
programming example are listed below. All pieces of SW and firmware listed below need to be installed on the
external PC or internal chassis controller that is used to control the PXI chassis. FPGA FW of PXI instruments
can be instead programmed using the "Hardware Manager" window of SD1 Software Front Panel (SFP).

1. Software versions required:
o Keysight 10 Libraries Suite 2020 (v18.1.25310.1 or later)
» Keysight SD1 Drivers, Libraries and SFP (v3.00.95 or later)
« Keysight PathWave Test Sync Executive Update 0.2 (v1.00.18 or later)

2. Chassis firmware and driver:
o Keysight Chassis M9019A firmware (tested on v2018, v2019EnhTrig)
« Keysight PXle Chassis Family Driver (tested onv1.7.82.1)

3. M3xxxA with -HVx HW option and following FPGA firmware versions (to be installed using Keysight SD1
SFP):
o M3202A AWG FPGA firmware (v4.00.95 or later)
o M3102A Digitizer FPGA firmware (v2.01.40 or later)

How to install Python 3.7.x 64-Dbit

Find us at www.keysight.com Page 4

http://www.keysight.com/find/KS2201A-programming-examples
http://www.keysight.com/find/KS2201A-downloads
http://www.keysight.com/

This programming example requires you to install Python 64-bit version 3.7.x for all users. The Python installer
can be downloaded from the Python webpage. Make sure you add Python 3.7.x to the PATH system Variable.
This can be done at the installation step by checking the right check-boxes as shown in the screenshot below.

% Python 3.7.4 (6d-hit) Setup

-/

python

for

windows

=] =]
Install Python 3.7.4 (64-bit)

Select Install Mow to install Python with default settings, or choose
Customize to enable or disable features.

< Install Now
ChUsershAdministrater\AppData‘\Local\ProgramsPython\Python37

Includes IDLE, pip and documentation
Creates shortcuts and file associations

< Customize installation
Choose location and features

Install launcher for all users (recommended)

[@ Add Python 3.7 to PATH

How to Install Chassis Driver, SFP and Firmware

To ensure the system compatibility described above, please install 10 Libraries and chassis driver first, both are

available on www.keysight.com. This programming example was tested on chassis model M9019A using the
chassis driver and chassis firmware versions listed above. If you are using another chassis model, we advise

you to install the same firmware version and its compatible chassis driver. When installing the Keysight Chassis

Family Driver, PXle Chassis SFP (Software Front Panel) software is automatically installed. Chassis firmware
version can be checked and updated using PXle Chassis SFP. Please see screenshots below referring to
Keysight Chassis model M9019A as an example on how to check the chassis firmware version from the info in
the help window of the PXle Chassis SFP. Chassis firmware update can be performed using the Utilities
window of PXle Chassis SFP. For more info please read PXleChassisFirmwareUpdateGuide.pdf available

on www.keysight.com.

Find us at www.keysight.com

Page 5

http://www.keysight.com/
http://www.keysight.com/

About M9019A PXIe Chassis SFP 1.7.82.1 Chassis 1]

M9019A PXle Chassis SFP 1.7.82.1 Chassis 1
Soft Front Panel
@ Heysight Technologies 2018

Version: 1.7.82.1

Instrument Information:

Serial Number: TW56050024
Driver Revision: 1.7.82.1
Instrument Model: MS019A

L - Left Trigger
Bridge firmware
version number

- Right Trigger
Bridge firmware
version number

C.CC - Chassis Manager M.MM - Monitor Processor P - Power Supply 5.5.5.5 - Switch version number
firmware version firmware version number for switches used in
number number PCle Switch Fabric

MO0T19A Firmware Version Components

Firmware Component 2017 2018 2019StdTrig 2019EnhTrig
Chassis Manager 2.02 2.02 2.02 2.02
Monitor Processor 3.1 3.1 412 412

Switch version number for switches | al.2.a2.2 |al.2.a2.2 al.2.a2.2 al.2.a2.2
used in PCle Switch Fabric

Right Trigger Bridge 0 10000083 |0 10000083
Left Trigger Bridge 0 10010083 |0 10010083

How to Install PathWave Test Sync Executive, SD1 SFP and M3xxxA FPGA
Firmware

Note: Python 3.7.x 64-bit must be installed before installing Keysight KS2201A PathWave Test Sync
Executive

After installing the chassis, the next step is to install Keysight SD1 SFP and PathWave Test Sync Executive.
After installing all the necessary software, the FPGA firmware of M3xxxA PXI modules can be updated from the
Hardware Manager window of the SD1 SFP. For more details on how to install SW and FPGA FW for

Find us at www.keysight.com Page 6

SD1/M3xxxA Keysight instruments, please refer to the document titled "Keysight M3xxxA Product Family
Firmware Update Instructions" and the M3xxxA User Guide available on www.keysight.com

How to run this programming example

This programming example is setup to execute in simulation mode. To execute the Python code on real HW
instruments you can change the option for simulated hardware to False:

Simulated HW Option

hardware simulated = True

Afterwards, it is necessary to specify the actual chassis number and slot number where the real PXI

instruments are located. Model number of the used PXI instruments shall be updated, if different than the
instrument model used in this programming example. This example uses PXI instruments from the Keysight
M3xxxA family. The first step to control such instruments is to create an object using the open() method from the
SD1 API. For a complete description of the SD1 API open() method and its options please consult the SD1 3.x
Software for M320xA / M330xA Arbitrary Waveform Generators User's Guide.

Each PXI instrument is described in the code using a module description class that contains the module model
number, chassis number, slot number and options. Please update the properties in each module-
descriptor object before running the programming example:

Define instruments, chassis, interconnects
hvi eng Names = HVI engine Names ()
Update module descriptors below with your instruments information
digitizer descriptor = module descriptor ('M3102A', 1, 9, options, hvi eng Names.dig engine)
rf gen descriptor = module descriptor ('M3202A', 1, 8, options, hvi eng Names.rf gen engine)
AWGl to be used as an RF Pulse Gen.
awg descriptors = [module descriptor ('M3202A', 1, 7, options, hvi eng Names.awg engine)]
Assign AWG engine Names to AWGl-AWGN in case more than 2 AWGs are used
for index in range (len(awg descriptors)):
awg descriptors[index].engine Name = hvi eng Names.awg engine + str (index)

class ModuleDescriptor:
"Descriptor for module objects" def init (self, model number, chassis number,

slot number, options, engine Name):

self.model number = model number

self.chassis number = chassis number

self.slot number = slot number

self.options = options

self.engine Name = engine Name

The chassis to be used in the programming example need to be also specified and listed by chassis number. In
case of multi-chassis setup, please specify the connection between each pair of M9031 modules using
the M9031_descriptor class.

Update list of chassis numbers included in the programming example
chassis list = [1, 2]

Find us at www.keysight.com Page 7

http://www.keysight.com/
https://www.keysight.com/main/redirector.jspx?action=refcName=EDITORIALckey=3120777lc=engcc=USnfr=-33321.1193058.00
https://www.keysight.com/main/redirector.jspx?action=refcName=EDITORIALckey=3120777lc=engcc=USnfr=-33321.1193058.00

Multi-chassis setup

In case of multiple chassis, chassis PXI lines need to be shared using M9031 PXI modules.
M9031 module positions need to be defined in the program.

M9031 descriptors = [config.M9031Descriptor(l, 11, 2, 10)]

class M9031Descriptor:

"Describes the interconnection between each pair of M9031A modules" def init
(self, first M9031 chassis number, first M9031 slot number, second M9031 chassis number,
second M9031 slot number) :

self.chassis 1 = first M9031 chassis number
self.slot 1 = first M9031 slot number
self.chassis 2 = second M9031 chassis number

self.slot 2 = second M9031 slot number

Please note that in every programming example, PXI trigger resources need to be reserved so that the HVI
instance can use them for their execution. PXI lines to be assigned as trigger resources to HVI can be selected
by updating the code snippet below:

Assign triggers to HVI object to be used for HVI-managed synchronization, data sharing,
etc
NOTE: In a multi-chassis setup ALL the PXI lines listed below need to be shared among
each M9031 board pair by means of SMB cable connections
pxi sync trigger resources = [

kthvi.TriggerResourceId.PXI TRIGGERO,

kthvi.TriggerResourceId.PXI TRIGGERI,

kthvi.TriggerResourcelId.PXI TRIGGERZ,

kthvi.TriggerResourceId.PXI TRIGGER3]

PXI lines allocated to be used as HVI trigger resources cannot be used by the programming example for other
purposes. The vector pxi_sync_trigger resources specified above must include at least the necessary number
of PXI lines for the programming example to execute.

Application-specific parameters necessary to configure the digitizer and the AWGs are listed in dedicated
classes. Before running the programming example, users shall update, if necessary, the AWG and digitizer
parameters contained in the code classes listed below. Measurment results reported in this documents were
obtained using the parameters value reported in the following code snippets.

class AWG parameters:

Configures AWG for waveform generation

def init (self):
AWG settings for all channels
self.sync mode = keysightSD1.SD SyncModes.SYNC NONE
self.queue mode = keysightSD1.SD QueueMode.ONE SHOT
self.awg mode = keysightSD1.SD Waveshapes.AOU AWG
self.start delay = 0 # x10 [ns]
self.prescaler = 0
self.wfm A cycles = 3

Il
N

self.wfm B cycles
self.amplitude = 1
self.wfm A = O
self.wfm B = 1

Find us at www.keysight.com Page 8

Trigger settings

self.trigger mode = keysightSD1.SD TriggerModes.SWHVITRIG
Latency value of AWGqueueWfm() [ns]

self.awgtrigger latency = 2000 # [ns]

self.wfm length = 100 # [ns]

class RF pulse parameters:

Configures RF pulse generator parameters

def init (self):
self.all ch mask = OxF # binary mask definig which channels to use
self.offset = 0 # [V]
self.frequency = 10e6 # [Hz]
self.num loops = 3 # sync while loops
self.num pulses = 5
self.ON value = 1 # [V]
self.OFF value = 0 # [V]
self.n AWG = 1 # channel number to be used as RF Gen
self.pulse ontime = 200 # [ns]
self.pulse offtime = 150 # [ns]
self.pulse delay = 100 # [ns]

class DIG parameters:
Configures Digitizer parameters
def init (self):
rfgen params = RF pulse parameters ()
all ch mask = OxF

sampling time = 2 # [ns] 1/sample rate, sample rate = 500 MSa/s for Digitizer

M3102A
acquisition points per cycle = 1500
self.prescaler = 0
self.fullscale = 2 # [V] enter x Volts to set the full scale to [-x, X]
self.acquisition points per cycle = acquisition points per cycle

self.acquisition time per cycle = acquisition points per cycle*sampling time
self.num cycles = rfgen params.num loops #insert -1 for infinite cycles
self.acquisition points = int(acquisition points per cycle*rfgen params.num loops)

self.acquisition delay = 150 # x2 [ns]
self.trigger mode = keysightSD1.SD TriggerModes.SWHVITRIG
self.mask = all ch mask

Synchronous Signal Generation & Acquisition using M3xxxA PXI

Instruments

This programming example illustrates the following functionalities:

1. Synchronized While Global Statement
2. Wait-for-event Statement
3. Use of registers and scopes

Find us at www.keysight.com

Page 9

4. Local Flow Control Statements: WHILE loop, IF loop
5. HVI Product-specific Instructions

AWG signal generation is controlled using local flow control loops. This way, a train of RF pulses can be
generated and previously loaded arbitrary waveforms can be queued and played. An HVI Synchronized While
Statement controls the digitizer acquisitions and enables synchronization of each acquisition cycle to capture
the AWG outputs generated within each loop of the HVI Synchronized While Statement.

Measurement Results

This section describes the measurement results obtained by deploying this programming example on a
setup including two M9019A PXI chassis, an M3102A digitizer and two M3202A AWGs. A block diagram of the
measurement setup used in this documented is reported below.

Digitizer M3102A Ep External Trigger Source
CH1 CH2 CH3 CH4 TRG ouT
F F M ™
g g L Tt
FP
TRG
CH1
AWG
M3202A
CH2
CH3
CHa
O O O

CH1 CH2 CH3 CH4

Oscilloscope

Find us at www.keysight.com Page 10

A photograph of the measurement setup used for the measurement results reported in this section is also
reported below:

Find us at www.keysight.com Page 11

gmm g

T30 Ll Amer |0

The oscilloscope measurements below show measurement results obtained using a digitizer M3102A and two
AWG M3202As. All instruments have the -HV 1 option enabled that allows to use them to execute HVI
applications. In the scope measurement we can observe the external trigger signal sent to the digitizer Front
Panel (FP) TRG Port (blue waveform). The FP trigger provides the condition necessary for the wait statement
to continue the HVI sequence execution and generate a series of RF pulses from the first AWG

(waveform) and queue'N'play an arbitrary waveform from the second AWG (green waveform in the
scope measurement screenshot).

8O 300mv/ g 1.00v/ 500.0ns/
CIf S P :

300.00mY [*4

1.500us Trig'd?
Summary

Acquisition
lor
Channels
500 1.00:1

200 1.00:1

300.00mv
500 1.00:1|DC 5000 1.00:1

The plot below depicts digitizer data acquired over three multiple cycles. Each acquisition cycle corresponds to
an iteration of the HVI Sync While statement described in the next section. The blue trace represents data
acquired by DAQ1 channel connected to the AWG used as an RF pulse generator. The red trace represents

DAQ2 channel measurements obtained from the AWG output that generates arbitrary waveforms selected by

the user.

10000

]
o
3 5000 ~
s
=1
=
<< 0 -
(O
=
©
O
B — -
= 5000
o

-10000

-

T T T
] 1000 2000 3000 4000

Samples

The screenshot below depicts the expected execution of this programming example's Python code.

OUTPUT TERMINAL DEB

Press enter to program the HVI sequence and execute it

HVI Compiled

This HVI application needs to reserve 2 PXI trigger resources to execute
HVI Loaded to HW

HVI Running...

ittt Application Parameters #ftititt

Number of HVI loops: 3

Number of RF Pulses: 3

RF Pulse ON Time: 200 [ns]

RF pulses frequency: 18 Mhz

AWG waveforms loaded to RAM: 2

Digitizer configured to acquire 1000 points in 3 cycles

Total dig. acquisition points = points_per cycle*num_cycles = 3@e@

Please connect your External Trigger source to the FP TRIG OUT connector of DIG module in chassis 1, slot 11

once the FP trigger source is connected please run 3 FP trigger events for the HVI sequences execution to complete
BRERRHRERRERNEARE AR IR AR AR ANERREAREE

Waiting for FP trigger...

HVI Execution Completed Successfully!
Releasing HW...
Modules closed

With this programming example, a provided executable GenExtTrigger M3xxxA.exe can be used to generate
the FP triggers from any M3xxxA AWG module that is external to the HVI application. It is used here to emulate
the external trigger. An example execution on the console terminal of this independent executable for FP trigger
generation is displayed in the screenshot below.

Getting Started with HVI Application Programming Interface (API)

PathWave Test Sync Executive implements the next generation of HVI technology and delivers the HVI
Application Programming Interface (API). This section explains how to implement the use case of this
programming example using HVI API. The sequence of operations executed by each of the instruments using

HVI technology are explained in the diagram below. The diagram depicts the HVI sequences executed within
this programming example and the HVI statements used to program the sequences. Every HVI statement is
described in detail later in this section, referencing with a letter the equivalent block in the HVI diagram. The
programming example is parametrized to run on an arbitrary number of AWGs. Any additional AWGs after the
second one will execute the same HVI sequence as the ones executed by the "AWG Engine 2" depicted below.
For further explanations about the elements in the diagram below, please refer to the PathWave Test Sync

Executive User Manual.

HVI
90 ns
a Sync While | "Sequenced Acquisition Loop" | while (iteration counter < num locps)
o (s 270 ns
'
H Sync Multi Block | "Loop Initiali
E | Digitizer Engine RF Gen. Engine AWG Engine 0, .. N
5 i
: 1 10ns 0ns i
" ! '
: [vwn]] ¢ S e pulse_cnt=0 ;
' ' FP Trigger I
' ' T I
: i | HVEauto ! HVI aute
0 0 d | adiusts 1 adjusts
H i iteration_counter ++ | time | lime
' ' | I
' ' | i
8 H | HVI auto adjusts 1 .
: v - auto adjusts time v +
'
H l 10ns
5 f | Sync | "Mixed Signal Generation"
3 j Digitizer Engine RF Gen. Engine AWG Engine 0, .. N
[T Min i l 10ns l 7008 i T0ns
'
x m-I'mI_IOON i g | DAQ Trigger | h o Local While | "RF Pulses" | Local IT-Else| "Queue Waveform AWGK"
0 g T : pulse cnt<Npulses H if (queue reg == 0) elss
] I H g
i E | i 20ns) m queue_wfm_latency n queue_wfm_latency
L I ! ! - [T Min]
i ! ' U I Queue Waveform A I I Queue Waveform B
i [T Min] 1 [rom]
HVI: auto
E ‘ i adjusts x num_pulses| pulse_delay HVl-auto HVl-auto
i i i tme 3] | CH1 Amplitude ON | o awg_trigger_latency
' | ' !
i ' | N
| i H | l pulse_ontime | AWG Trigger I
' I ' ' -
i ! i : kI cmn Amplitude OFF !
I f
| i H ; | HVL: auto adjusts time
' 1 ! v HVl:auto 1
H l ' | HVI- auto adjusts time |
H i ' | 0
; ¥ ¥ 4 +
'
& l HVL. auto
1 230ns
= sync ion | i p
Digitizer Engine RF Gen. Engine, AWG Engine 1,.. N
10ns
[Tmin
l HVl'auto v

NOTE: 10 ns is the FPGA clock period for M3xxxA instruments

The Python Variables pulse_delay and pulse_ontime are used to parametrize the RF pulse
generation. Users can update them before execution using the RF_pulse parameters class. AWG
queue waveform and AWG trigger operations require a minimum latency to correctly execute
which is specified using Python Variables queue wfm_latency and awq_trigger latency. These
Variables can be updated using the AWG_parameters class. AWG latency information are
documented in the M3xxxA AWG documentation and in the SD 1 documentation.

Find us at www.keysight.com

Page 16

To deploy HVI into an application, three fundamental steps shall be followed:

1. System definition: defines all the necessary HVI resources, including platform resources, engines, triggers,
registers, actions, events, etc.

2. Program HVI sequences: defines all the statements to be executed within each HVI sequence

3. Execute HVI: compiles, loads to HW and executes HVI

The following sub-sections describe in details how these three steps are implemented for this example. For
further explanations about any of the concepts, please refer to the PathWave Test Sync Executive User
Manual.

System Definition

The API class SystemDefintion allows to define all necessary HVI resources. The definition of HVI resources is
the first step of an application using HVI. HVI resources include all the platform resources, engines, triggers,
registers, actions, events, etc. that the HVI sequences are going to use and execute. Users need to declare
them upfront and add them to the corresponding collections. All HVI Engines included in the application need to
be registered into the EngineCollection class instance. HVI resources are described in details in the PathWave
Test Sync Executive User Manual. The HVI resource definitions are summarized in the code snippets below.

Python

Create system definition object
my system = kthvi.SystemDefinition ("MySystem")

def define hvi resources(sys def, module dict, chassis list, M9031 descriptors, pxi sync
trigger resources) :

e Configures all the necessary resources for the HVI application to execute: HW
platform, engines, actions, triggers, etc.

o # Define HW platform: chassis, interconnections, PXI trigger resources,
synchronization, HVI clocks

define hw platform(sys def, chassis list, M9031 descriptors, pxi sync trigger
resources)

Define all the HVI engines to be included in the HVI

define hvi engines(sys def, module dict)

Define list of actions to be executed

define hvi actions(sys def, module dict)

Defines the trigger resources

define hvi triggers(sys def, module dict)

Define Platform Resources: Chassis, PXI triggers, Synchronization

All HVI instances need to define the chassis and eventual chassis interconnections using

the SystemDefinition class. PXI trigger lines to be reserved by HVI for its execution can be assigned using

the sync_resources interface of the SystemDefinition class. SystemDefinition class also allows you to add
additional clock frequencies that the HVI execution can synchronize with. For further information please consult
the section "HVI Core API" of the PathWave Test Sync Executive User Manual.

Find us at www.keysight.com Page 17

Python

def define hw platform(sys def, chassis list, M9031 descriptors, pxi sync trigger
resources) :
e Define HW platform: chassis, interconnections, PXI trigger resources,
synchronization, HVI clocks
e # Load configuration
config = ApplicationConfig()
Add chassis resources
for chassis number in chassis list:
if config.hardware simulated:
sys def.chassis.add with options(chassis number,
'Simulate=True, DriverSetup=model=M9018B,NoDriver=True')
else:
sys_def.chassis.add(chassis number)
Add M9031 modules for multi-chassis setups
if M9031 descriptors:
interconnects = sys def.interconnects
for descriptor in M9031 descriptors:
interconnects.add M9031 modules (descriptor.chassis 1, descriptor.slot 1,
descriptor.chassis 2, descriptor.slot 2)
Assign the defined PXI trigger resources
sys_def.sync resources = pxi sync trigger resources
Assign clock frequencies that are outside the set of the clock frequencies of each
HVI engine
Use the code line below if you want the application to be in sync with the 10 MHz
clock
sys_def.non hvi core clocks = [10e6]

Define HVI engines

All HVI Engines to be included in the HVI instance need to be registered into the EngineCollection class
instance. Each HVI Engine object added to the engine collection contains collections of its own that allow to
access the actions, events and triggers that each specific engine will control and use within the HVI. In this
programming example in particular two HVI engines are used, one for the AWG, the other for the digitiizer.

Python

class HVI engine Names:
Defines the Names of HVI engine used in this programming example
def init (self):

self.awg engine = 'AWG Engine'
self.rf gen engine = 'RF Generator Engine'
self.dig engine = 'Digitizer Engine'

def define hvi engines(sys def, module dict):
Define all the HVI engines to be included in the HVI
For each instrument to be used in the HVI application add its HVI Engine to the HVI
Engine Collection
for engine Name in module dict.keys():
sys _def.engines.add(module dict[engine Name].instrument.hvi.engines.main engine,
engine Name)

Find us at www.keysight.com

Page 18

Define HVI actions, events, triggers

In this programming example both the AWG and the digitizer need to trigger waveforms or acquisition very
precisely. To do that the AWG trigger and DAQ trigger actions are issued from within the HVI execution. In the
HVI use model, actions need to be added to the action collection of each HVI engine before they can be
executed. This is done in this programming example as explained in the code snippets below.

Python

class HVI resource Names:
Defines the HVI action Names to be used by each HVI engine
def init (self):
HVI actions
self.awg trigger = 'AWG Trigger'
self.daq trigger = 'DAQ Trigger'
HVI triggers
self.fp trigger = 'FP Trigger'

def define hvi actions(sys def, module dict):

""" Defines AWG trigger actions for each module, to be executed by the "action execute"
instruction in the HVI sequence

Create a list of AWG trigger actions for each AWG module. The list depends on the
number of channels """ # Load configuration

config = ApplicationConfig ()

For each AWG, define the list of HVI Actions to be executed and add such list to its
own HVI Action Collection

for engine Name in module dict.keys():

for ch index in range(l, module dict[engine Name].num channels + 1):
Actions need to be added to the engine's action list so that they can be

executed
if engine Name == config.dig engine:
action Name = config.daq trigger + str(ch index) # arbitrary user-defined
Name
instrument action = "dag{} trigger".format (ch index) # Name decided by
instrument API
else:

action Name = config.awg trigger + str(ch index) # arbitrary user-defined
Name
instrument action = "awg{} trigger".format (ch index) # Name decided by
instrument API
action id = getattr (module dict[engine Name].instrument.hvi.actions,
instrument action)
sys_def.engines[engine Name].actions.add(action id, action Name)

def define hvi triggers(sys def, module dict):

" Defines the FP trigger to be used as a wait condition by the digitizer " # Load
configuration

config = ApplicationConfig()

Add to the HVI Trigger Collection of each HVI Engine the FP Trigger object of that
same instrument

fp trigger id = module dict[config.dig engine].instrument.hvi.triggers.front panel 1

fp trigger = sys def.engines[config.dig engine].triggers.add(fp trigger id, config.fp
trigger)

Trigger configuration

NOTE: Trigger to be used as WaitEvent conditions must be configured as

Find us at www.keysight.com Page 19

kthvi.Direction.INPUT

DriveMode (e.g. PushPull/OpenDrain) is defined by the instrument and cannot be
changed by the user

fp trigger.config.direction = kthvi.Direction.INPUT

fp trigger.config.polarity = kthvi.Polarity.ACTIVE HIGH

fp trigger.config.hw routing delay = 0

fp trigger.config.trigger mode = kthvi.TriggerMode.LEVEL

Program HVI Sequences

Once the HVI resources are defined, users can program the HVI sequence of measurement actions to be
executed by each HVI engine. HVI sequences can be programmed using the Sequencer class. HVI execution
happens through a global sequence (defined by the SyncSequence class) that takes care of synchronizing and
encapsulating the local sequences corresponding to each HVI engine included in the application. In this
programming example, the HVI global sync sequence consists of a synchronized while statement containing
two synchronized multi-sequence blocks.

Python

def program mixed sig meas sequence (sequencer, module dict):

e This method programs the HVI sequence of this application.

Different HVI statements are encapsulated as much as possible in separated SW methods
to help users visualize

the programmed HVI sequences.

The programming example documentation on www.keysight.com contains an HVI diagram that
graphically represents the programmed HVI sequence.

o # Load configuration

config = ApplicationConfig ()

Define registers within the scope of the outmost sync sequence

define registers(sequencer, module dict)

#

Define sync while condition

iteration counter = sequencer.sync sequence.scopes[config.dig engine].registers
[config.iteration counter]

sync _while condition = kthvi.Condition.register comparison(iteration counter,
kthvi.ComparisonOperator.LESS THAN, config.num loops)

Add Sync While Statement

sync_while = sequencer.sync sequence.add sync while ("Sequenced Acquisition Loop", 90,
sync_while condition)

Program Sequenced Acquisition Loops

program sequenced meas loop (sync while.sync sequence, module dict)

Add 3rd Sync Multi-Sequence Block

sync _block = sequencer.sync sequence.add sync multi sequence block ("Execution
Completed", 230)

program execution completed(sync block)

Define HVI Registers

HVI registers correspond to very fast access physical memory registers in the HVI Engine located in the
instrument HW (e.g. FPGA or ASIC). HVI Registers can be used as parameters for operations and modified

Find us at www.keysight.com Page 20

during the sequence execution (same as Variables in any programming language). The number and size of
registers is defined by each instrument. The registers that users want to use in the HVI sequences need to be
defined beforehand into the register collection within the scope of the corresponding HVI Sequence. This can be
done using the RegisterCollection class that is within the Scope object corresponding to each sequence. HVI
Registers belong to a specific HVI Engine because they refer to HW registers of that specific instrument.
Register from one HVI Engine cannot be used by other engines or outside of their scope. Note that currently,
registers can only be added to the HVI top SyncSequence scopes, which means that only global registers
visible in all child sequences can be added. HVI registers are defined in this programming example by the code
snippet below.

Python

class HVI register Names:
Defines the HVI registers (and their Names) to be used within the scope of each HVI

engine
def init (self):

self.iteration counter = 'Iteration Counter'
self.pulse counter = 'Pulse Counter'
self.awgl counter = 'AWGl Counter'
self.queue reg = 'Queue Reg'
self.reg wfm A = '"Wfm A'
self.reg wfm B = '"Wfm B'
self.counter reg = 'Counter Reg'
self.hvi done = 'HVI Done'

def define registers(sequencer, module dict):
Defines all registers for each HVI engine in the scope af the global sync sequence
Load previously defined register Names
eng Names = HVI engine Names ()
register Names = HVI register Names ()
awg params = AWG parameters ()
Digitizer registers
iteration counter = sequencer.sync sequence.scopes[eng Names.dig engine].registers.add
(register Names.iteration counter, kthvi.RegisterSize.SHORT)
iteration counter.initial value = 0
hvi done = sequencer.sync sequence.scopes|[eng Names.dig engine] .registers.add(register
Names.hvi done, kthvi.RegisterSize.SHORT)
hvi done.initial value = 0
RF Gen registers
pulse counter = sequencer.sync_ sequence.scopes|[eng Names.rf gen engine].registers.add
(register Names.pulse counter, kthvi.RegisterSize.SHORT)
pulse counter.initial value = 0
AWG 1:N Registers
for engine Name in module dict.keys():
if engine Name!=eng Names.rf gen engine and engine Name!=eng Names.dig engine:
queue reg = sequencer.sync sequence.scopes[engine Name] .registers.add(register
Names.queue reg, kthvi.RegisterSize.SHORT)
queue reg.initial value = 0
reg wfm A = sequencer.sync_sequence.scopes[engine Name].registers.add(register
Names.reg wfm A, kthvi.RegisterSize.SHORT)
reg wfm A.initial value = awg params.wfm A

Find us at www.keysight.com Page 21

reg wfm B = sequencer.sync_sequence.scopes[engine Name].registers.add(register
Names.reg wfm B, kthvi.RegisterSize.SHORT)
reg wfm B.initial value = awg params.wfm B

Synchronized While

It corresponds to statement (a) in the HVI diagram. Synchronized While (Sync While) statements belongs to the
set of HVI Sync Statements and are defined by the API class SyncWhile. A Sync While allows you to
synchronously execute multiple local HVI sequences until a user-defined condition is met, that is, the sync
while condition. For local sequences to be defined within the Sync While, it is necessary to use synchronized
multi-sequence blocks.

Python

Define sync while condition

sync while condition = kthvi.Condition.register comparison(iteration counter,
kthvi.ComparisonOperator.LESS THAN, rf pulse params.num loops)

Add Sync While Statement

sync_while = sequencer.sync sequence.add sync while ('Sequenced Acquisition Loop', 60, sync
while condition)

Synchronized Multi-Sequence Block

It corresponds to statements (b, f, p) in the HVI diagram. Synchronized multi-sequence blocks are defined by
the API class SyncMultiSequenceBlock. This type of sync statement synchronizes all the HVI engines that are
part of the sync sequence. It allows you to program each HVI Engine to do specific operations by exposing a
local sequence for each engine. By calling the APl method add_multi_sequence_block() a synchronized multi-
sequence block is added to the Sync (global) Sequence.

Python

Add 1st Sync Multi-Sequence Block to the Sync While sequence
sync_block 1 = sync sequence.add sync multi sequence block("Loop Initialization", 270)

Within the Synchronized Multi-Sequence Block (SMSB), users can define which statement each local engine is
going to execute in parallel with the other engines. Local HVI sequences start and end synchronously their
execution within the sync multi-sequence block. Users can define the exact amount of time each local HVI
statement starts to execute with respect to the previous one. HVI automatically calculates the execution time of
each local sequence and adjusts the execution of all local sequences within the multi-sequence block so that
they can deterministically end altogether within the synchronized multi-sequence block. See the general case
example in the figure below for additional details.

Find us at www.keysight.com Page 22

10 ns

Sync Multi-Sequence Block | "Alias"

Engine A I Engine B I Engine K

100 ns 10 ns 100 ns
y . 4

Instruction A Instruction 1

Instruction C

300 ns 200 ns
TMin] HVI: .
[n Instruction B 390 ns RRRmmRmREs Instruction 2
10 ns
HVI:0 ns \ 4

T

o]
[¥3]

Instruction 3
VI:
0On
¢ A4 \ 4 \ 4
\ |

Automaticallly caclulated by HVI
NOTE: Keysight M3xxxA Instruments have an FPGA clock period equal to 10 ns

Please note that the Sync Multi-Sequence Block has an execution duration time labeled as "T Min"in
the figure above. The "T min" default value for any sync statement corresponds to the minimum time
necessary to complete the operations included inside. In future releases, the user will be able to
specify specific execution time values or allowed ranges. The timing at the end of each local
sequence is automatically adjusted by HVI according to the duration specified by the user for the
SMSB. In case of duration "T min" HVI will automatically add no time to the local sequence having
longest duration and adjust the other sequences accordingly, as in the example depicted in the figure
above. The resolution for HVI-defined time adjustment at the end of a sync multi-sequence block
corresponds to the 10 ns FPGA clock period for an application including instruments that are all
within the Keysight M3xxxA family. For further explanations about the timing of HVI sequence
execution please refer to "HVI Timing" section of the KS2201APathWave Test Sync Executive User
Manual available on www.keysight.com

Wait Statement

It corresponds to statement (c) in the HVI diagram. The wait statement is a local flow control statement that can
be implemented using the API class WaitStatement. This sequence block sets an instrument to wait for a
condition. The condition ca be defined by a trigger, an event, or any combination of them through the usage of

logical operators. In this programming example, the wait is used to set the digitizer to wait for an external front
panel trigger. The wait statement is set to wait for a trigger falling edge using the .wait

mode WaitMode. TRANSITION combined with a trigger configuration as ACTIVE_LOW. The sync

mode SyncMode.IMMEDIATE sets the wait event to let the execution continue immediately, i.e. as soon as the
trigger event is received.

Python

Define the condition for the wait statement

trigger event = dig sequence.engine.triggers[config.fp trigger]

wait condition = kthvi.Condition.trigger (trigger event)

Add a Wait For Event

wait event = dig sequence.add wait ("Wait for FP Trigger", 10, wait condition)
wait event.set mode (kthvi.WaitMode.TRANSITION, kthvi.SyncMode.IMMEDIATE)

HVI Native Instruction: Register Increment

It corresponds to statement (d, i) in the HVI diagram. A register increment can be implemented within an HVI
sequence using an instance of the API instruction class InstructionsAdd. The same instruction can be used to
add registers and constant values (operands) and put the result in another register (result). The register to be
incremented needs to be added previously to the scope of the corresponding HVI engine.

Python

Increment the sync while iteration counter for each external trigger event that is
received

instruction = sequence.add instruction('Increment Counter', 50, sequence.instruction
set.add.id)

instruction.set parameter (sequence.instruction set.add.destination.id, iteration counter)
instruction.set parameter (sequence.instruction set.add.left operand.id, iteration counter)
instruction.set parameter (sequence.instruction set.add.right operand.id, 1)

HVI Native Instruction: Register Assign

It corresponds to statements (e, q) in the HVI diagram. A register assign statement can be used to initialize a
register to an initial value using the instruction class InstructionsAssign from Python HVI API. The same
instruction can be used to assign a register value (source) to another register (destination). Each register can
also be initialized outside an HVI sequence using the APl method KtviRegister.set_initial_value.

Python

In sync block 1 Initialize pulse counter = 0 in RF Gen Engine

instruction = sequence.add instruction('Initialize Pulse Counter', 10,
sequence.instruction set.assign.id)

instruction.set parameter (sequence.instruction set.assign.destination.id, pulse counter)
instruction.set parameter (sequence.instruction set.assign.source.id, 0)

Action Execute: DAQ, AWG Trigger

It corresponds to statement (g, o) in the HVI diagram. Actions to be used within an HVI sequence need to be
added to the instrument HVI engine using the API "add" method of the ActionCollection class. Once the wanted
actions are added within the list of the instruments' HVI engine actions, an instruction to execute them can be

Find us at www.keysight.com Page 24

added to the instrument's HVI sequence using the HVI API class InstructionsActionExecute. One or multiple
actions can be executed at the same time within the same "Action Execute" instruction.

Python

List of previously defined DAQ trigger actions
dag trigger all = []
for ch index in range(l, module dict[hvi eng Names.dig engine].num channels+l):
daq trigger all.append(sys def.engines[hvi eng Names.dig engine].actions[ch index-1])

Digitizer sequence: DAQ trigger

inst daq trigger = dig sequence.add instruction('DAQ Trigger', 10, dig
sequence.instruction set.action execute.id)

inst dag trigger.set parameter (dig sequence.instruction set.action execute.action.id, daqg
trigger all)

Local While

It corresponds to statement (h) in the HVI diagram. WhileStatement class allows you to add a local WHILE loop
sub-sequence within the main HVI sequence of any instrument engine. The WHILE sub-sequence runs until the
WHILE condition is met. The condition can be defined using the API class ConditionalExpression. Once the
WHILE loop sub-sequence is created, it can be programmed using the same API methods and classes used to
program the main HVI sequence.

Python

Sequence of RF Gen.

Local WHILE: amplitude ON, amplitude OFF

local while condition = kthvi.Condition.register comparison(pulse counter,
kthvi.ComparisonOperator.LESS THAN, rf pulse params.num pulses)

while loop = rfgen sequence.add while ('Generate RF pulses', 60, local while condition)
while sequence = while loop.sequence

#Increment pulse counter

instruction = while sequence.add instruction('Increment Pulse Counter', 10, while
sequence.instruction set.add.id)

instruction.set parameter (while sequence.instruction set.add.destination.id, pulse counter)
instruction.set parameter (while sequence.instruction set.add.left operand.id, pulse
counter)

instruction.set parameter (while sequence.instruction set.add.right operand.id, 1)

HVI Instrument-Specific Instruction

Instrument-specific instructions are in statements (j, k, m, n) of the HVI diagram. This block executes a product-
specific HVI instruction. Native HVI instructions are common to every Keysight product. APl method add
instruction() allows you to add the wanted instruction within the HVI sequence. Instruction parameters are set
using the APl method set_parameter(). All HVI product-specific instructions and parameters are defined in the
hvi.InstructionSet interface of each product. Instructions, actions, events and in general all the HVI definitions
specific of M3xxxA instruments can be found in the M3xxxA User Guide available on www.keysight.com.

Python

Find us at www.keysight.com Page 25

http://www.keysight.com/

Set CH1 amplitude to ON value

instruction = while sequence.add instruction('Set CHl amplitude to ON value', 100, module
dict[hvi eng Names.rf gen engine].instrument.hvi.instruction set.set amplitude.id)
instruction.set parameter (module dict[hvi eng Names.rf gen

engine] .instrument.hvi.instruction set.set amplitude.channel.id, rf pulse params.n AWG)
instruction.set parameter (module dict[hvi eng Names.rf gen
engine].instrument.hvi.instruction set.set amplitude.value.id, rf pulse params.ON value)

IF-ELSEIF-ELSE Statement

It corresponds to statement (1) in the HVI diagram. IfStatement class allows you to add an IF-ELSEIF-ELSE loop
within the main HVI sequence of any instrument engine. The IF-ELSEIF-ELSE loop contains one (or more) IF
branches and an ELSE branch. The instructions and/or statements contained in each IF or ELSE branch are
executed if the condition of each branch is met. The condition of each branch can be defined using the API class
ConditionalExpression. Branch sub-sequence can be programmed using the same APl methods and classes
used to program the main HVI sequence, by means of the API classes IfBranch and ElseBranch.

Python

Configure IF condition

if condition = kthvi.KtHviCondition.register comparison (queue reg[index],
kthvi.ComparisonOperator.EQUAL TO, O0)

Set flag that enables to match the execution time of all the IF branches
enable ifbranches time matching = True

Add If statement

if statement = awg sequence.add if ('Queue Wfm AWG' + str(index), 10, if condition, enable
ifbranches time matching)

Program IF branch

if sequence = if statement.if branch.sequence

Add statements in if-sequence

instruction = if sequence.add instruction(instrLabel, start delay, module
[index] .hvi.instructions.queue waveform.id)

instruction.set parameter(...)

Eventually add Else-If-branches (not used in this programming example)
else if condition 1 =
else if branch 1 =

Else-branch

Program Else branch

else sequence = else branch.sequence

Add statements in Else-sequence

instruction = else sequence.add instruction(...)

Compile, Load, Execute the HVI

Once the HVI sequences are programmed by defining all the necessary HVI statements, users can compile,
load and execute the HVI. Compile, load and run functionalities can be accessed from the Hvi class.

Compile HVI

Find us at www.keysight.com Page 26

The compilation operation is performed by calling the compile() APl method. This operation processes all the
info related to the HVI application, including the necessary HVI resources and the HVI statements included in
the HVI sequences. The compilation generates a binary compiled output that can be loaded to the hardware
instruments for their HVI engine to execute it. As an output, the compile() APl method provides an object that
can tell to the user how many PXI sync resources are necessary to be reserved to execute the HVI application.

Python

Compile HVI sequences

hvi = sequencer.compile ()

print ("HVI Compiled")

print ("This HVI programming example needs to reserve {} PXI trigger resources to

execute".format(len(hvi.compile_status.Sync_resources)))
Load HVI to Hardware

The API method load_to_hw() loads to each HVI engine the binary output obtained from the HVI compilation so
that the HVI engine programmed into their digital HW (FPGA or ASIC) can execute it.

Python

Load HVI to HW: load sequences, configure actions/triggers/events, lock resources, etc.

hvi.load to hw()

Execute HVI

HVI execution is controlled by the run() APl method. HVI can be run in a blocking or non-blocking mode. In this
programming example the non-blocking mode is used. By using this execution mode, SW execution can interact
through registers read/write with the HVI sequence execution.

Python

Execute HVI in non-blocking mode

This mode allows SW execution to interact with HVI execution
hvi.run(hvi.no wait)

print ('HVI Running...'")

Release Hardware

API method release_hw() shall be called once the HVI execution is finished to release all the HW resources that
were reserved during the HVI execution, including the PXI trigger resources that had been locked by HVI for its
execution.

Python
Unlock and release HW resources

hvi.release hw()
print ("Releasing HW...")

Find us at www.keysight.com Page 27

Further HVI API Explanations

Detailed explanations of each class and functionality of the HVI API can be found in the PathWave Test Sync
Executive User Manual or in the Python help file that is provided with the HVI installer, available at: C:\Program
Files\Keysight\PathWave Test Sync Executive 2020\api\python\Help\index.htm.

Multi-Chassis Setup Implementation

The reference examples provided with this document can be executed on a multiple-chassis setup with only the
few modifications explained below. In a multi-chassis setup, it is necessary to interconnect the PXI triggers and
clocking of the multiple chassis.

With the currently available infrastructure to interconnect PXle backplane triggers a pair of MO031A boards must
be placed in a specific segment in each chassis to be interconnected.

\[eyp= | The SMB cables used to connect the MO031A modules need to be as short as possible. The
chassis need to be stack in the same rack, on top of each other, as close as possible to each other
to allow the SMB cables that connect them to be as short as possible.

On the two M9031A boards, the connectors corresponding to the same PXI line(s) are connected between each
other. There are mainly three rules to consider when choosing the chassis slot where to place a M9031A board:

Only one M9031A board can be placed in a chassis segment. M9031A boards are connected in pairs. Each pair
of M9031A connects two chassis together and shares info through their PXI lines.

If no other M9031A board is already placed in the central segment, then the M9031A board should be placed
there as a preferred choice, to minimize the signal path length.

. A PXI module included in the HVI application needs to be placed in the same chassis segment where the first
M9031A board of each pair is placed, in order to control the exchange of PXI line values through the pair of
boards.

Find us at www.keysight.com Page 28

Note: SMB cables must be
of equal length
A}

\

M9023A PXI System module

Segment 1 iSegment 2 " §Segment 3
(slots 1-6) i(slots 7-12) i(slots 13-18)
i i PCle Cable
Chassis 1 BNG Gable
SMB Cable(s)
External PC M2031A Module

Chassis 2

Module with HVI support
(M3xxxA, etc.)

\ Chassis 3

|
R H 1
7
Chassis4 7 : ! I CLK 10 Source
, ! 1
Note: There are 8 PXI 1 1
'tr/g ger lines in the PXI Note: The actual number of Note: BNC cables from
trigger bus. Ensure cables - "
are placed respective to SMB cables required will clock must be of equal
be decided by HVI-2 at the length

each other (i.e. trigger line
1 to trigger line 1, trigger
line 2 to trigger line 2, etc.)

time of compilation.

The picture above illustrates in green the PXI modules that must be placed in the same segment as the M9031A
modules in blue. Basically:

The 1st chassis must include a M9031A together with a PXI module with HVI in segment 2

All Middle chassis must have a M9031A in the segment 2, and a M9031A together with a PXI Module with HVI
support in Segment 3

The last chassis must include a M9031A in segment 2.

All the chassis that are part of the multi-chassis setup should be connected in a daisy chain. Chassis
connections with M9031A are made to share the PXI lines that are used as sync resources. PXI trigger lines are
shared using MO031A boards, connecting the ports corresponding to the same PXI line on both M9031A boards.
The first and last chassis of the daisy chain each require one M9031A board; all the middle chassis in the daisy
chain require two M9031A boards. A multi-chassis including N chassis requires a number of MO031A boards
equal to 2*(N-1).

Additionally, a very clean 10 MHz source should be used to provide the same reference signal to all chassis.
One option is to use a multi-output 10 MHz source, for best performance probably driven by an atomic clock,
connecting each output to the 10 MHz reference input of each chassis using cables that have the same length. It
is extremely important for the correct operation of HVI and in particular for synchronization that all chassis are
running with their CLK10 and CLK100 fully locked and aligned, the skew between these clocks in the different
chassis will result in skew in the instrument operation.

Find us at www.keysight.com Page 29

Add Chassis

Each chassis included in the multi-chassis setup can be added using any of the HVI APl methods below. The
AddAutoDetect() method shall be called only once to automatically detect and add all the chassis connected to
the system.

Python

To add chassis resources use:
hvi.platform.chassis.add with options(1,
'Simulate=True, DriverSetup=model=M9018B, NoDriver=True')
hvi.platform.chassis.add(chassis number)

hvi.platform.chassis.add auto detect()

Add M9031A Boards

In the HVI APl each M9031A board pair needs to be declared using the following software method:

Python

To add each interconnected pair of M9031 modules use:
interconnects.add M9031 modules (lst M9031 chassis number, 1lst M9031 chassis slot, 2nd
M9031 chassis number, 2nd M9031 chassis slot)

The above-mentioned code lines are part of this application code example and they can be used to adapt the
code example to run on a multi-chassis setup.

10 MHz Clock Reference Source

One option is to use as a 10 MHz Reference source the PXI module Keysight M9300A PXle Frequency
Reference. Please place this module in one of the chassis and use splitters to divide the 10 MHz clock output
into N cables to be connected to the 10 MHz REF IN connector on the back panel of each of the chassis,
including the chassis where the M9300A module is placed. Each time the system is restarted please open the
M9300A SFP software to check the box "10 MHz Out Enabled and uncheck the box ""Drive BP 10 MHz
Reference". Please see screenshot below for clarifications. For more details on the Keysight M9300A PXle
Frequency Reference please visit www.keysight.com .

Find us at www.keysight.com Page 30

http://www.keysight.com/

E Keysight M9300A PXle Frequency Reference [;]@E

File View Utilities Tools Help

100 MHz Reference Other References
[] out 1 Enabled (] 100 MHz BP Out Enabled
[] out 2 Enabled 10 MHz Out Enabled
[] out 3 Enabled [] ocxo out Enabled
[] out 4 Enabled || Drive BP 10MHz Reference

rExternal Reference

[] use External Reference
A
Frequency: 10 MHz

Measured Frequency: 0 MHz

 IntRef
Locked -

Connected: PXI0::34-0.0::INSTR % Ne Error

Once the common 10 MHz reference source is setup, the Chassis SFP can be used to verify that each chassis
is correctly receiving the common external reference signal. This can be done from the "Reference Clock"
window shown in the screenshot below. Once you open the window please clear any "Alarm” that possibly
occurred during the 10 MHz reference setup. After clearing "Alarm occurred” icon should stay idle (white color).

Clock source shall st to "Rear 10 MHz Ref In".

Find us at www.keysight.com Page 31

@ Keysight MS019A PXIe Chassis SFP 1.7.82.1 Chassis 4 =13

File Utilities Tools Help
[] Allow Control | | Tdentify On Serial Number: TW59102148 A

[Temperature H Fans ” antage[Reference Clock] Trigger Ports ” PCIe Link]

@

Set control of 10MHz

reference clock to SFETEIEE Y
Set clock source to Rear 10MHz Ref In Y
Enable
Alarm for
Reference clock Alarm Clear
Clock Status changes Occurred Alarm

Locked LTJ o Clear

Enable rear panel BNC 10MHz Ref Out

¥

Connected: PXI0::137-0.0::INSTR] No Error

Additionally, in the case of using a remote controller card, like the M9023A PXI System Module used in this
application, it is possible to see the backplane status LEDs that also indicate the correct clocking. On the
chassis backplane REF and LOCK LED lights are lighted in green when the chassis is correctly locked to the
external reference signal. By checking the LED lights on the backplane of each chassis users can ensure the 10
MHz reference is correctly shared among the different chassis. Please see picture below showing the LED

lights on the chassis backplane, visible from the front panel by removing the panel in the chassis slot that is
preceding chassis slot 1.

Find us at www.keysight.com Page 32

For more details on the Keysight PXle Chassis Family please visit www.keysight.com .

Find us at www.keysight.com Page 33

http://www.keysight.com/

Conclusions

This Programming Example explained how to use PathWave Test Sync Executive and HVI (Hard Virtual
Instrument) technology to synchronously execute sequences of measurement actions over multiple M3xxxA
PXl instruments. Validation measurements showed how to synchronize an M3102A digitzer and an arbitrary
number of M320xA AWGs to iteratively acquire heterogeneous signals generated over multiple cycles.

Find us at www.keysight.com Page 34

Thisinformation is subject to change without notice. © Keysight Technologies, 2020, Published in USA, October07 2020,KS2201-90002

	KS2201A - Programming Example 2 - Synchronous Mixed-Signal Measurements using...
	System Setup
	System Requirements
	How to install Python 3.7.x 64-bit
	How to Install Chassis Driver, SFP and Firmware
	How to Install PathWave Test Sync Executive, SD1 SFP and M3xxxA FPGA Firmware
	How to run this programming example

	Synchronous Signal Generation & Acquisition using M3xxxA PXI Instruments
	Measurement Results

	Getting Started with HVI Application Programming Interface (API)
	System Definition
	Define Platform Resources: Chassis, PXI triggers, Synchronization
	Define HVI engines
	Define HVI actions, events, triggers

	Program HVI Sequences
	Define HVI Registers
	Synchronized While
	Synchronized Multi-Sequence Block
	Wait Statement
	HVI Native Instruction: Register Increment
	HVI Native Instruction: Register Assign
	Action Execute: DAQ, AWG Trigger
	Local While
	HVI Instrument-Specific Instruction
	IF-ELSEIF-ELSE Statement

	Compile, Load, Execute the HVI
	Compile HVI
	Load HVI to Hardware
	Execute HVI
	Release Hardware

	Further HVI API Explanations

	Multi-Chassis Setup Implementation
	Add Chassis
	Add M9031A Boards
	10 MHz Clock Reference Source
	Conclusions

