User's Guide

Keysight
M320TA/M3202A PXle

Arbitrary Waveform Generators (AWGs)
& M3300A/M3302A AWG & Digitizer Combos

'W KEYSIGHT
TECHNOLOGIES

Notices

Copyright Notice
© Keysight Technologies 2013-2020

No part of this manual may be
reproduced in any form or by any
means (including electronic storage
and retrieval or translation into a foreign
language) without prior agreement and
written consent from Keysight
Technologies, Inc. as governed by
United States and international
copyright laws.

Manual Part Number
M3201-90001

Published By

Keysight Technologies

1400 Fountaingrove Parkway
Santa Rosa

CA 95403

Edition
Edition 2, March, 2020
Printed In USA

Regulatory Compliance

This product has been designed and
tested in accordance with accepted
industry standards, and has been
supplied in a safe condition. To review
the Declaration of Conformity, go to
http://www.keysight.com/go/conformity.

Warranty

THE MATERIAL CONTAINED IN THIS
DOCUMENT IS PROVIDED “AS IS,” AND
IS SUBJECT TO BEING CHANGED,
WITHOUT NOTICE, IN FUTURE
EDITIONS. FURTHER, TO THE
MAXIMUM EXTENT PERMITTED BY
APPLICABLE LAW, KEYSIGHT
DISCLAIMS ALL WARRANTIES, EITHER
EXPRESS OR IMPLIED, WITH REGARD
TO THIS MANUAL AND ANY
INFORMATION CONTAINED HEREIN,
INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE. KEYSIGHT
SHALL NOT BE LIABLE FOR ERRORS
OR FOR INCIDENTAL OR
CONSEQUENTIAL DAMAGES IN
CONNECTION WITH THE

FURNISHING, USE, OR
PERFORMANCE OF THIS DOCUMENT
OR OF ANY INFORMATION CONTAINED
HEREIN. SHOULD KEYSIGHT AND THE
USER HAVE A SEPARATE WRITTEN
AGREEMENT WITH WARRANTY TERMS
COVERING THE MATERIAL IN THIS
DOCUMENT THAT CONFLICT WITH
THESE TERMS, THE WARRANTY
TERMS IN THE SEPARATE
AGREEMENT SHALL CONTROL.

KEYSIGHT TECHNOLOGIES DOES NOT
WARRANT THIRD-PARTY SYSTEM-
LEVEL (COMBINATION OF CHASSIS,
CONTROLLERS, MODULES, ETC.)
PERFORMANCE, SAFETY, OR
REGULATORY COMPLIANCE, UNLESS
SPECIFICALLY STATED.

Technology Licenses

The hardware and/or software
described in this document are
furnished under a license and may be
used or copied only in accordance with
the terms of such license.

U.S. Government Rights

The Software is “commercial computer
software,” as defined by Federal
Acquisition Regulation (“FAR”) 2.101.
Pursuant to FAR 12.212 and 27.405-3
and Department of Defense FAR
Supplement (“DFARS”) 227.7202, the
U.S. government acquires commercial
computer software under the same
terms by which the software is
customarily provided to the public.
Accordingly, Keysight provides the
Software to U.S. government customers
under its standard commercial license,
which is embodied in its End User
License Agreement (EULA), a copy of
which can be found at
http://www.keysight.com/find/sweula. The
license set forth in the EULA represents
the exclusive authority by which the
U.S. government may use, modify,
distribute, or disclose the Software. The
EULA and the license set forth therein,
does not require or permit, among other
things, that Keysight: (1) Furnish
technical information related to
commercial computer software or
commercial computer software
documentation that is not customarily
provided to the public; or (2) Relinquish

to, or otherwise provide, the
government rights in excess of these
rights customarily provided to the
public to use, modify, reproduce,
release, perform, display, or disclose
commercial computer software or
commercial computer software
documentation. No additional
government requirements beyond
those set forth in the EULA shall apply,
except to the extent that those terms,
rights, or licenses are explicitly required
from all providers of commercial
computer software pursuant to the FAR
and the DFARS and are set forth
specifically in writing elsewhere in the
EULA. Keysight shall be under no
obligation to update, revise or otherwise
modify the Software. With respect to
any technical data as defined by FAR
2.101, pursuant to FAR 12.211 and
27.404.2 and DFARS 227.7102, the U.S.
government acquires no greater than
Limited Rights as defined in FAR 27.401
or DFAR 227.7103-5 (c), as applicable in
any technical data.

Safety Notices

A CAUTION notice denotes a hazard. It
calls attention to an operating
procedure, practice, or the like that, if
not correctly performed or adhered to,
could result in damage to the product
or loss of important data. Do not
proceed beyond a CAUTION notice until
the indicated conditions are fully
understood and met.

A WARNING notice denotes a hazard. It
calls attention to an operating
procedure, practice, or the like that, if
not correctly performed or adhered to,
could result in personal injury or death.
Do not proceed beyond a WARNING
notice until the indicated conditions are
fully understood and met.

The following safety precautions should

be observed before using this product
and any associated instrumentation.

This product is intended for use by
qualified personnel who recognize

http://www.keysight.com/go/conformity
http://www.keysight.com/find/sweula

shock hazards and are familiar with the
safety precautions required to avoid
possible injury. Read and follow all
installation, operation, and
maintenance information carefully
before using the product.

If this product is not used as specified,
the protection provided by the
equipment could be impaired. This
product must be used in a normal
condition (in which all means for
protection are intact) only.

The types of product users are:

— Responsible body is the individual or
group responsible for the use and main-
tenance of equipment, for ensuring that
the equipmentis operated within its spe-
cifications and operating limits, and for
ensuring operators are adequately trained.

Operators use the product for its intended
function. They mustbetrained in electrical
safety procedures and proper use of the
instrument. They must be protected from
electric shock and contactwith hazardous
live circuits.

— Maintenance personnel perform routine
procedures on the product to keep itoper-
ating properly (for example, setting the line
voltage or replacing consumable mater-
ials). Maintenance procedures are
described in the user documentation. The
procedures explicitly state if the operator
may perform them. Otherwise, they should
be performed anly by service personnel.

Service personnel are trained to work on
live circuits, perform safe installations, and
repair products. Only properly trained ser-
vice personnel may perform installation
and service procedures.

Operator is responsible to maintain safe
operating conditions. To ensure safe
operating conditions, modules should
not be operated beyond the full
temperature range specified in the
Environmental and physical
specification. Exceeding safe operating
conditions can result in shorter
lifespans, improper module

performance and user safety issues.
When the modules are in use and
operation within the specified full
temperature range is not maintained,
module surface temperatures may
exceed safe handling conditions which
can cause discomfort or burns if
touched. In the event of a module
exceeding the full temperature range,
always allow the module to cool before
touching or removing modules from
chassis.

Keysight products are designed for use
with electrical signals that are rated
Measurement Category | and
Measurement Category Il, as described
in the International Electrotechnical
Commission (IEC) Standard IEC 60664.
Most measurement, control, and data
I/0 signals are Measurement Category |
and must not be directly connected to
mains voltage or to voltage sources with
high transient over-voltages.
Measurement Category Il connections
require protection for high transient
over-voltages often associated with
local AC mains connections. Assume all
measurement, control, and data I/0
connections are for connection to
Category | sources unless otherwise
marked or described in the user
documentation.

Exercise extreme caution when a shock
hazard is present. Lethal voltage may
be present on cable connector jacks or
test fixtures. The American National
Standards Institute (ANSI) states that a
shock hazard exists when voltage levels
greater than 30V RMS, 42.4V peak, or
60VDC are present. A good safety
practice is to expect that hazardous
voltage is present in any unknown
circuit before measuring.

Operators of this product must be
protected from electric shock at all
times. The responsible body must
ensure that operators are prevented
access and/or insulated from every
connection point. In some cases,
connections must be exposed to
potential human contact. Product
operators in these circumstances must
be trained to protect themselves from
the risk of electric shock. If the circuit is
capable of operating at or above 1000V,

no conductive part of the circuit may be
exposed.

Do not connect switching cards directly
to unlimited power circuits. They are
intended to be used with impedance-
limited sources. NEVER connect
switching cards directly to AC mains.
When connecting sources to switching
cards, install protective devices to limit
fault current and voltage to the card.

Before operating an instrument, ensure
that the line cord is connected to a
properly-grounded power receptacle.
Inspect the connecting cables, test
leads, and jumpers for possible wear,
cracks, or breaks before each use.

When installing equipment where
access to the main power cord is
restricted, such as rack mounting, a
separate main input power disconnect
device must be provided in close
proximity to the equipment and within
easy reach of the operator.

For maximum safety, do not touch the
product, test cables, or any other
instruments while power is applied to
the circuit under test. ALWAYS remove
power from the entire test system and
discharge any capacitors before:
connecting or disconnecting cables or
jumpers, installing or removing
switching cards, or making internal
changes, such as installing or removing
jumpers.

Do not touch any object that could
provide a current path to the common
side of the circuit under test or power
line (earth) ground. Always make
measurements with dry hands while
standing on a dry, insulated surface
capable of withstanding the voltage
being measured.

The instrument and accessories must
be used in accordance with its
specifications and operating
instructions, or the safety of the
equipment may be impaired.

Do not exceed the maximum signal
levels of the instruments and
accessories, as defined in the
specifications and operating
information, and as shown on the
instrument or test fixture panels, or
switching card.

When fuses are used in a product,
replace with the same type and rating
for continued protection against fire
hazard.

Chassis connections must only be used
as shield connections for measuring
circuits, NOT as safety earth ground
connections.

If you are using a test fixture, keep the
lid closed while power is applied to the
device under test. Safe operation
requires the use of a lid interlock.

Instrumentation and accessories shall
not be connected to humans.

Before performing any maintenance,
disconnect the line cord and all test
cables.

To maintain protection from electric
shock and fire, replacement
components in mains circuits -
including the power transformer, test
leads, and input jacks — must be
purchased from Keysight. Standard
fuses with applicable national safety
approvals may be used if the rating and
type are the same. Other components
that are not safety-related may be
purchased from other suppliers as long
as they are equivalent to the original
component (note that selected parts
should be purchased only through
Keysight to maintain accuracy and
functionality of the product). If you are
unsure about the applicability of a
replacement component, call an
Keysight office for information.

No operator serviceable parts inside.
Refer servicing to qualified personnel.
To prevent electrical shock do not
remove covers. For continued
protection against fire hazard, replace
fuse with same type and rating.

PRODUCT MARKINGS:

The CE mark is a registered trademark
of the European Community.

&

Australian Communication and Media
Authority mark to indicate regulatory
compliance as a registered supplier.

ICES/NMB-001
ISM GRP.1 CLASS A

This symbol indicates product
compliance with the Canadian
Interference-Causing Equipment
Standard (ICES-001). It also identifies
the product is an Industrial Scientific
and Medical Group 1 Class A product
(CISPR 11, Clause 4).

¢ ST
cex

South Korean Class A EMC Declaration.
This equipment is Class A suitable for
professional use and is for use in
electromagnetic environments outside
ofthe home. A 2717 (HFE Y& S
IR 0121721 LR 2 (A2) BAOHY
221712 HOjRE= MBAHE0 EE
Z olttA| 7| Hrebof ZHE Rl [0 M Ar
Bo=Z48 880 2 ®LULL

)74

This product complies with the WEEE
Directive marketing requirement. The
affixed product label (above) indicates
that you must not discard this
electrical/electronic product in
domestic household waste. Product
Category: With reference to the
equipment types in the WEEE directive
Annex 1, this product is classified as
“Monitoring and Control
instrumentation” product. Do not
dispose in domestic household waste.
To return unwanted products, contact
your local Keysight office, or for more
information see
http://about.keysight.com/en/companyinfo/e
nvironment/takeback.shtml.

y)
Atad

This symbol indicates the instrument is
sensitive to electrostatic discharge
(ESD). ESD can damage the highly
sensitive components in your
instrument. ESD damage is most likely
to occur as the module is being
installed or when cables are connected
or disconnected. Protect the circuits
from ESD damage by wearing a
grounding strap that provides a high
resistance path to ground. Alternatively,
ground yourself to discharge any built-
up static charge by touching the outer
shell of any grounded instrument
chassis before touching the port
connectors.

A

This symbol on an instrument means
caution, risk of danger. You should refer
to the operating instructions located in
the user documentation in all cases
where the symbol is marked on the
instrument.

&

This symbol indicates the time period
during which no hazardous or toxic
substance elements are expected to
leak or deteriorate during normal use.
Forty years is the expected useful life of
the product.

http://about.keysight.com/en/companyinfo/environment/takeback.shtml
http://about.keysight.com/en/companyinfo/environment/takeback.shtml

Contents

1 Overview of Keysight M320xA PXle AWGs and Theory _............................. 1
1.7 Working with Signal Generation/Channel Structure 3
1.7.1 Channel Numbering and Compatibility Mode 4
1.1.2 ChannelWaveshape Types 5
1.1.2.1 Signal Generation with the Function Generator 7
1.1.2.2 Signal Generation with the Arbitrary Waveform Generator 8
1.7.3 Channel Frequency and Phaseo 9
1.7.4 Channel Amplitude and DC Offset, 10
1.2 Working with AWG Waveformso i 11
1.2.7 AWG Programming Process 12
1.2.2 AWG Waveform Queue System oL 13
1.2.3 AWG Prescaler and Sampling Rate 15
1.2.4 AWG Trigger Mode ..o oL 16
1.2.5 AWG External Trigger SOUrCe ... 17
1.2.6 AWG External Trigger Behavior 17
1.2.7 AWG Markers ... 17
1.2.8 AWG FlexCLK Synchronization (models with variable sampling rate)_. 18
1.2.9 AWG Waveform Array and *.cvs File Structure 20
1.2.10 AWG Waveform Types 21
1.3 Working with Signal Modulation 22
1.3.1 Frequency and Phase Modulation (Angle Modulator Block) _..................... 22
1.3.2 AM and DC Offset (Amplitude Modulator Block) 25
1.3.3 1Q Modulation (Quadrature Modulator Block) ._................................... 28
1.4 Working With 1/0 TrigQQers .l 31
1.5 Working with the Clock System ... e 32
1.5.7T CLK OUtpUt OptioNS oo 33
1.5.2 FlexCLK Technology (models w/ variable samplingrate) 33
1.5.3 CLKref Frequency in AWG Modules with Option CLV _...._...................... 34

2 Overview of Keysight Software and Programming Tools 35
2.7 Keysight SDT SFP Software ... e 35
2.2 Keysight Programming ToOLlSo 36
2.2.1 Keysight SD1 Programming Libraries 37
2.2.2 Keysight M3601A Hard Virtual Instrument (HVI) Design Environment Software 38
2.2.3 Keysight M3602A FPGA Design Environment Software 43

3 Using Keysight SDT SFP Software ... o 53
3.1 Main Soft Front Panel Controlso i, 54
3.2 Signal Generation Controls oL 55
3.3 Arbitrary Waveform Generation Controls 56
3.4 Signal Modulation Controlso oL 57

Vi

4 Using Keysight SD1 Programming Libraries 59

4.1 Overall AWG Work Flow Using Python 59
4.2 Example Programs Using Python 59
4.2.7 Example Program of Overall Work Flow for Python 60
4. 2.2 Example Program Using Python to Produce a Sine Wave _._..................... 63
4.2.3 Example Program Using Python to Produce a Sawtooth Wave from an Array ..65

5 Keysight SDT Command Reference 67
5.1 Keysight Supplied Native Programming Libraries 67
5.2 Support for Other Programming Languagescooooemoeimoiii i, 68
5.3 Functions in SDT Programming Libraries 69
5.3.71 SD_Module FUNCHIONS 72
ST T I B o= o 72
5.3, 1.2 ClOSE ..o 74
5.3.1.3 moduleCount ... 75
5.3.1.4 getProductName L 76
5.3.1.5 getSerialNumber ..o L 77
5.3.1.6 getChassis ... 78

5. 3. 1.7 getSlOt Lo 79
5.3. 7.8 PXUriggerWrite il 80
5.3.1.9 PXItriggerRead 81
5.3.2 SD_AOU FUNCTIONS 82
5.3.2.7T channelWaveShape 82
5.3.2.2 channelFreqQUENCY ... 84
5.3.2.3 channelPhase 85
5.3.2.4 channelPhaseReset il 86
5.3.2.5 channelPhaseResetMultiple 87
5.3.2.6 channelAmplitude 88
5.3.2.7 channelOffset L 89
5.3.2.8 modulationAngleConfigo 90
5.3.2.9 modulationAmplitudeConfig 92
5.3.2.10 modulationlQconfig 94
5.3. 211 clocklOcoNfig ... 95
5.3.2.12 waveformload ... o 96
5.3.2.13 waveformReload 98
5.3.2. 14 waveformFlush ... 100
5.3, 2. 08 AW 101
5.3.2.16 AWGqueueWaveform L 104
5.8, 2. 17 AWGTIUSN . 106
5.3.2.18 AWGStart L. 107
5.3.2.19 AWGSstartMultiple 109
5.3.2.20 AWGPAUSEl 110

5.3.2.21 AWGpauseMultiple ...l 111

5.3.2.22 AWGIESUME 112
5.3.2.23 AWGresumeMultiple 113
5.3.2.24 AWGSTOD ..ol 114
5.3.2.25 AWGStopMULtiple . ..o 115
5.3, 2. 26 AWGIeset .. 116
5.3.2.27 AWGjumpNextWaveform 117
5.3.2.28 AWGjumpNextWaveformMultiple 118
5.3.2.29 AWGISRUNNING 119
5.3.2.30 AWGNWEPRLAYINGo 120
5.3.2.31 AWGtriggerExternalConfig 121
5.3.2.32 AWGHIQUET <.l 123
5.3.2.33 AWGtriggerMullipleo 124
5.3.2.34 triggerlOconfig ... 125
5.3.2.35 triggeriOWIite 126
5.3.2.36 triggerlOread 128
5.3.2.37 clockSetFrequency (Requires Option CLV) oo, 129
5.3.2.38 clockGetFrequency 131
5.3.2.39 clockGetSyncFrequency il 132
5.3.2.40 clockResetPhase 133
5.3.2.47 AWGQUeUeCoNfig ... 135
5.3.2.42 AWGqueueConfigRead 136
5.3.2.43 AWGqueueMarkerConfig 137
5.3.2.44 AWGqueueSyncMode ...l 139
5.3.3 SD_Wave Functions (new and delete)o oo 140
D, 8. B MBW L 140
5.3.3. 2 delete .. 142
5.3.4 SD_Module Functions (M3601A HVI-related)o .. 143
5.3.4.1 wWriteRegiSter . . 143
5.3.4.2 readRegister .. 145
5.3.5 SD_Module Functions (M3602A FPGA-related)o, 147
5.3.5.1 FPGAWritePC ROt « .l 147
5.3.5.2 FPGAreadPCport 149
5.3.5.83 FPGAIOAT . 157
5.3. 5.4 FPGAreset il 152
B Error COAES il 153
T RO O BN CES .o 157

Vii

viii

1 Overview of Keysight M320xA PXle AWGs and Theory

1 Overview of Keysight M320xA PXle AWGs and Theory

Keysight M320TA/M3202A PXle Arbitrary Waveform Generators include an
embedded Function Generator (FG), Arbitrary Waveform Generator (AWG), and
modulator blocks; together, they form a powerful signal generator that is capable of
generating standard waveforms (sinusoidal, triangular, square, and DC voltages) or
arbitrary waveforms defined by the user and stored on its onboard RAM. With
embedded modulator blocks, the output channels can be modulated in phase,
frequency, amplitude, or |Q to create analog or digital modulation.

This chapter describes the following topics:

— Working with Signal Generation/Channel Structure on page 3
— Channel Numbering and Compatibility Mode on page 4

- Channel Waveshape Types on page 5
— Signal Generation with the Function Generator on page 7

— Signal Generation with the Arbitrary Waveform
Generator on page 8

— Channel Frequency and Phase on page 9
— Channel Amplitude and DC Offset on page 10

- Working with AWG Waveforms on page 11
- AWG Programming Process on page 12
- AWG Waveform Queue System on page 13
- AWG Prescaler and Sampling Rate on page 15
- AWG Trigger Mode on page 16
- AWG External Trigger Source on page 17
- AWG External Trigger Behavior on page 17
- AWG Markers on page 17
— AWG FlexCLK Synchronization (models with variable sampling
rate) on page 18
- AWG Waveform Array and *.cvs File Structure on page 20
- AWG Waveform Types on page 21

— Working with Signal Modulation on page 22
— Frequency and Phase Modulation (Angle Modulator Block) on page 22
- AMand DC Offset (Amplitude Modulator Block) on page 25
- 1Q Modulation (Quadrature Modulator Block) on page 28

Keysight M3201A/M3202A PXle AWG User's Guide 1

1 Overview of Keysight M320xA PXle AWGs and Theory

= Working with I/0 Triggers on page 31

= Working with the Clock System on page 32
— CLK Qutput Options on page 33
- FlexCLK Technology (models w/ variable sampling rate) on page 33
— CLKref Frequency in AWG Modules with Option CLV on page 34

2 Keysight M3201A/M3202A PXle AWG User's Guide

1 Overview of Keysight M320xA PXle AWGs and Theory

1.1 Working with Signal Generation/Channel Structure

Each channel (Channel 1 to Channel n) has an identical structure that contains a
Function Generator (FG), Arbitrary Waveform Generator (AWG), Frequency and Phase
Angle Modulator, Amplitude and DC Offset Amplitude Modulator, and an

|Q Modulator.
Channel 1 : _.@
E - Channel 1
= Output
Channel x

Frequency Phase Amplitude Offset

Angle Amplitude
Modulator Modulator

FM AM
PM

Function
Generator

(FGx) Channel x

Output

||

Dual []
Arbitrary L
Waveform i
Generator :

(AWG x) I Quadrature
Modulator
[e]

Channel n v _,@

Channeln

0Odd channels only [l Even channels only i Dualmodulation option enly Output

This section describes the following topics:
— Channel Numbering and Compatibility Mode on page 4

- Channel Waveshape Types on page 5
- Signal Generation with the Function Generator on page 7

— Signal Generation with the Arbitrary Waveform Generator on page 8
- Channel Frequency and Phase on page 9
—= Channel Amplitude and DC Offset on page 10

Keysight M3201A/M3202A PXle AWG User's Guide 3

1 Overview of Keysight M320xA PXle AWGs and Theory

1.1. 7T Channel Numbering and Compatibility Mode

Compatibility mode, can be changed by open on page 72, is available to support
legacy modules and allows the channel numbering (channel enumeration) to start

with either

CHO or CHT.

Option Description Name Value
Legacy Channel enumeration starts with CHO COMPATIBILITY_LEGACY 0
Keysight ~ Channel enumeration starts with CH1 COMPATIBILITY_KEYSIGHT 1

Legacy modules refer to SD1 modules that were manufactured by
Signadyne before they were acquired by Keysight Technologies.

If the hardware equipment configuration being used only contains

modules from Keysight Technologies, channel enumeration
should start with CH1.

4 Keysight M3201A/M3202A PXle AWG User's Guide

1 Overview of Keysight M320xA PXle AWGs and Theory

1.1.2 Channel Waveshape Types

Each channel has a Function Generator (FG) block that generates basic periodic
signals and an Arbitrary Waveform Generator (AWG) block that generates arbitrary
waveforms.

— Signal Generation with the Function Generator on page 7
- Signal Generation with the Arbitrary Waveform Generator on page 8

FG vs AWG: When the generation of periodic signals is needed, an
FG has many advantages over a pure AWG solution:

— The FG does not use onboard RAM.

— The channelWaveShape, frequency, and phase can be
changed in real time without having to modify a static
waveform loaded in memory.

— Achieving the same precision in frequency and phase with a
pure AWG solution requires a huge amount of memory.

waveShape Description Name Value

HIZ The output signal is set to HIZ AOU_HIZ -1
(No output signal is provided.) *

No Signal The output signal is set to 0. AOU_OFF (default) 0
All other channel settings are maintained.

Sinusoidal Generated by the Function Generator AOU_SINUSOIDAL 1

Triangular Generated by the Function Generator AOU_TRIANGULAR 2

Square Generated by the Function Generator AOU_SQUARE 4

DC Voltage Generated by the Amplitude Modulator AOU_DC 5

Arbitrary Waveform Generated by the Arbitrary Waveform Generator AOU_AWG 6

(See AWG Waveform Types on page 21)

Partner Channel Only for odd channels. It is the output of the AOU_PARTNER 8
previous channel (to create differential signals, etc.)
*Only available for Keysight M3202A PXle AWG models

AOU_PARTNER (8) is used for channels 1 and 3; the signal comes
from AWG mode and not the Function Generator.

To produce differential I/Q signals for channels 1 and 3:
1. SetwaveShape to AOU_PARTNER (8).

2. Setthe amplitude in Channel 1 to (Amplitude 1).
For example, Amplitude 1 could be setto 1 V.

3. Setthe amplitude in Channel 3 to (Amplitude 3).
For example, Amplitude 3 could be setto 1 V.

Keysight M3201A/M3202A PXle AWG User's Guide 5

1 Overview of Keysight M320xA PXle AWGs and Theory

To produce differential I/Q signals for channels 2 and 4:
1. SetwaveShape to AOU_AWG (6)

2. Setthe amplitude in Channel 2 to (—Amplitude 1).
3. Setthe amplitude in Channel 4 to (—Amplitude 3).

Channel 2 amplitude must be equal to and opposite to
Channel 1 amplitude.

Channel 4 amplitude must be equal to and opposite to
Channel 3 amplitude.

Programming Information

Function Name Comments Details
channelWaveShape Sets the channel waveshape type channelWaveShape on page 82

6 Keysight M3201A/M3202A PXle AWG User's Guide

1 Overview of Keysight M320xA PXle AWGs and Theory

1.1.2.1 Signal Generation with the Function Generator

Each channel has a Function Generator (FG) that generates basic periodic signals
(sinusoidal, triangular, square, etc.) and is commonly used to generate the RF carrier
in modulation schemes. These periodic signals can be modulated in frequency, phase,
amplitude, or IQ.

Channel 1 . _,@

Channel1

Output
Channel x
Frequency Phase Amplitude Offset
Function M:(;‘lf:laetor Amplitude
Generator : Modulator S ﬂ
(FGx) i AM iy - ’(:)
PM Channel x
Output

Dual
Arbitrary -

Waveform
Generator
(AWG x)

Channeln ; _@

Channeln

Odd channels only | Even channels only Output

Waveform harmonics: Non-sinusoidal wave shapes (triangular,
square, etc.) have high frequency components that may fall
outside the bandwidth of the reconstruction filter if the
fundamental frequency is too high. In this situation, the output
analog signal may suffer some distortion due to the missing
harmonics, becoming a sinusoidal as the fundamental frequency
approaches the cutoff frequency of the reconstruction filter.

Keysight M3201A/M3202A PXle AWG User's Guide 7

1 Overview of Keysight M320xA PXle AWGs and Theory

1. 1. 2.2 Signal Generation with the Arbitrary Waveform Generator

Each channel has an Arbitrary Waveform Generator (AWG) block that generates
arbitrary waveforms that can be sent directly to each output channel or they can be
used as a modulating signal for the frequency, phase, amplitude, or IQ modulators.

See Working with AWG Waveforms on page 11.

Channel 1 . _.@

Channel1
Output

Frequency Phase Amplitude Offset

Channel x

Angle Amplitude
Modulator Modulator
FM AM :
PM Channel x
. < Output

Function
Generator
(FG x)

Dual
Arbitrary
Waveform

Generator
(AWG x)

4---

Channel n @
Channeln
0Odd channels only Even channels only Output

8 Keysight M3201A/M3202A PXle AWG User's Guide

1 Overview of Keysight M320xA PXle AWGs and Theory

1.1.3 Channel Frequency and Phase

Each channel has an Angle Modulator block that has a frequency and phase control.

In angle modulation schemes, these controls set the frequency and phase of the
carrier. See Frequency and Phase Modulation (Angle Modulator Block) on page 22.

Channel 1

Channel x

Function
Generator
(FG x)

Dual

Amplitude Offset

Frequency Phase

Angle
Modulator
M
PM

Amplitude
Modulator
AM

Arbitrary |

Waveform
Generator
(AWG x)

Channeln

Odd channels only [l Even channels only

_.©

Channel 1
Output

SO

Channel x
Output

_,@

Channeln
Output

Phase coherent vs. phase continuous: Changes in the output
signal are always phase continuous, not phase coherent. For
example, the frequency is changed from freq1 to freq2 and
changed back to freq1, the phase will not be the initial one. To
achieve phase coherent behavior the channel accumulated phase
can be reset using channelPhaseReset on page 86. In addition, in
HVI operation (when using the Keysight M3601A

Hard Virtual Instrument (HVI) Design Environment Software

on page 38) the execution time is deterministic, which allows the
user to calculate the new phase and adjust it after any frequency

change.

Programming Information

Function Name
channelFrequency

Comments
Sets the frequency of the FG

Details
channelFrequency on page 84

channelPhase

Sets the phase of the FG

channelPhase on page 85

channelPhaseReset

Keysight M3201A/M3202A PXle AWG U

Resets the accumulated phase

ser's Guide

channelPhaseReset on page 86

1 Overview of Keysight M320xA PXle AWGs and Theory

1.1.4 Channel Amplitude and DC Offset

Each channel has an Amplitude Modulator block that has an amplitude and DC offset

control; these controls have a combined range from

1.5Vto-1.5V.

See Frequency and Phase Modulation (Angle Modulator Block) on page 22.

Channel 1

Channel x

Frequency Phase Amplitude Offset

Angle Amplitude
Modulator Modulator
FM AM

PM

Function
Generator
(FG x)

Dual
Arbitrary

Waveform
Generator
(AWG x)

I’

4---

Channeln

Odd channels only @l Even channels only

Programming Information

_.@

Channel 1
Output

Channel x
Output

Channeln
Output
Details

channelAmplitude on page 88

Function Name Comments
channelAmplitude Sets the output amplitude
channelOffset Sets the output DC offset

10 Keysight

channelOffset on page 89

M3201A/M3202A PXle AWG User's Guide

1 Overview of Keysight M320xA PXle AWGs and Theory

1.2 Working with AWG Waveforms

Each channel has an Arbitrary Waveform Generator (AWG) block that generates
arbitrary waveforms.

Channel 1

Channel1
Output

Frequency Phase Amplitude Offset

Channel x

Angle Amplitude

Function
Generator Modulator Modulator
FM AM

(FGx) PM Channel x
Output

Dual
Arbitrary

Waveform
Generator
(AWG x)

'

Channel n v @

Channeln

0Odd channels only Even channels only Output

This section describes the following topics:
- AWG Programming Process on page 12
- AWG Waveform Queue System on page 13
— AWG Prescaler and Sampling Rate on page 15
- AWG Trigger Mode on page 16
- AWG External Trigger Source on page 17
— AWG External Trigger Behavior on page 17
- AWG Markers on page 17
- AWG FlexCLK Synchronization (models with variable sampling rate) on page 18
- AWG Waveform Array and *.cvs File Structure on page 20
- AWG Waveform Types on page 21

Keysight M3201A/M3202A PXle AWG User's Guide N

1 Overview of Keysight M320xA PXle AWGs and Theory

1.2.17 AWG Programming Process

AWG block operation can be configured with a one-step programming process
or with a step-by-step programming process.

One-Step AWG programming process
AWG on page 107 provides a one-step solution to load, queue, and run a single wave-
form directly from a file or from an array in the PC.
This function simplifies the generation of a single waveform, but it does not allow con-
trol over the following aspects of waveform generation:

— The possibility to prepare the AWG queue with multiple waveforms in advance

before starting the generation; this may be important to create more complex
generation sequences.

— The possibility to have a variety of waveforms in the onboard RAM in order to

gueue them repeatedly in the AWGs in an efficient way.

— The precise moment when waveforms are transferred from a file to the PC RAM

and to the onboard RAM. This may be important for long waveforms and time-
critical applications.

Step-by-Step AWG programming process
Keysight SDT Programming Libraries provide full control of all aspects of arbitrary

waveform generation:

1.

Create waveforms inthe PC RAM

with new on page 140; waveforms can be created from points in an array

or from points in a file stored on hard disk.

Transfer waveforms to a module's onboard RAM with waveformLoad

on page 96.

Queue waveforms in an AWG with AWGqueueWaveform on page 104 to create
the desired generation sequence.

4. Select the sync mode of the queue with AWGqueueSyncMode on page 139.

Start the generation with AWGstart on page 107 and provide triggers if
required.
See AWG Waveform Queue System on page 13.

PC Module

Onboard RAM AWG 0

Waveform 0 w1 wo w2

Waveform 1 Waveform 1

Waveform 2 Waveform 2

new (SD_Wave) waveformLoad AWGqueueWaveform AWGstart
(+triggers)

Keysight M3201A/M3202A PXle AWG User's Guide

1 Overview of Keysight M320xA PXle AWGs and Theory

1.2.2 AWG Waveform Queue System

Each AWG block has a flexible waveform queue system that can be used to configure
complex generation sequences. In order to generate waveforms, they must be loaded
into the module onboard RAM and queued in each corresponding AWG.

The AWG waveform queue system has the following advantages:

- Provides a way to generate a sequence of waveforms:

one after the other with no discontinuities.

— Allows selection of many parameters: (trigger mode, start delay, cycles,

prescaler, etc.) individually per queued waveform.

- Waveforms can have many instances in many AWG queues: but only one copy

is required in the onboard RAM,; this feature saves onboard RAM memory.

Each AWG queued waveform has the following parameters:

Trigger Mode: selects the trigger for the waveform.

Start Delay: adds an optional delay from the reception of the trigger to the
beginning of the waveform generation.

Cycles: the number of times the waveform is repeated. Using the right trigger
mode, the AWG can be set to require one trigger per cycle or just one trigger at
the beginning of all cycles.

Cyclic Mode: sets the repetition cycles for the complete queue. The default
mode is one shot: the complete queue will be reproduced one time. Complete
gueues with a number of waveforms with a limited number of cycles can be
repeated with AWGqueueConfig on page 135.
= For Cyclic mode, the minimum play time per cycle should be 1 ps for
M320TA/M330xA and 2 s for M3202A modules.

- Forfast trigger rates, it is recommended to consolidate all waveforms
into a single bigger waveform.
Prescaler: divides the effective waveform sampling rate.
See AWG Prescaler and Sampling Rate on page 15.

Keysight M3201A/M3202A PXle AWG User's Guide 13

1 Overview of Keysight M320xA PXle AWGs and Theory

1.2.2. 1 AWG Waveform Queue System Examples

Queue One shot
Waveform Trigger Delay Cycles Prescaler

T —
*»

& 4 Delay

[SW/HWI 1 | |
o Auto 100 1 (i} jaer Ext Trigger SW/HVI Trigger Auto

Queue One shot
Waveform Trigger Delay Cycles Prescaler

2 & Delay 3
L SW/HW 10 1

o Auto o 1 1] 1 Trigger SW/HV Trigger Auto

Queue One shot
Waveform Trigger Delay Cycles Prescaler o Cycles
: ; . i st A wavetormd M wavetormc [l vioor o [LLTEEL I
B Aut | & 4 4 +
(SWIHW | 1 | |
o Ext o i) o) t qger SW/HVI Trigger Ext
Gueue Cyclic
Waveform Trigger Delay Cycles Prescaler
Auto = Cycios
S _ D ——_ I
D Auto o 1 0 Fr T &

Inter-waveform/inter-cycles discontinuities: The AWG Queue System allows the user
to queue many waveforms one after the other. It also provides the capability to set
repetition cycles per waveform and repetition cycles for the complete queue. In all
these cases, there are absolutely no discontinuities between waveforms or cycles,
providing a continuous waveform generation from the last sample point of the finished
waveform to the first sample point of the starting waveform.

HVI Generation Sequences: The queue system of the AWGs
provide a way to create generation sequences. For more complex
sequences, the best solution is the use of Keysight’s Hard Virtual
Instruments (HVIs), which are time deterministic sequences with
nanosecond resolution, providing a hard real-time execution.

HVIs are programmed with Keysight M360TA
Hard Virtual Instrument (HVI) Design Environment Software
on page 38, a user-friendly flowchart-style design environment.

14 Keysight M3201A/M3202A PXle AWG User's Guide

1 Overview of Keysight M320xA PXle AWGs and Theory

1.2.3 AWG Prescaler and Sampling Rate

The user can set a different prescaler value for each of the waveforms queued in the
AWG. This prescaler reduces the effective sampling frequency of each individual
waveform as follows:

M3201TA
0=>fs=500 MS/s
>=1=>fs=100/n MS/s

M3202A
0=>fs=1GS/s
1=>fs=200 MS/s
>1=>1s=100/n MS/s

fs = forksys prescaler = 0)
fa = %b’!”—r prescaler = 0
where:

- fgisfinal effective sampling frequency.
- prescaleris anintegervalue (0 to 4095).

An important advantage of this method is the possibility to change the sampling
frequency in real time from one waveform to another, reducing waveform sizes and
maximizing the flexibility of the AWG.

Prescaler vs. Upsampling: Note that reducing the effective
sampling rate of the waveform with the prescaler is not the same
as using a full upsampler, as the prescaler does not contain any
filter and therefore it generates aliasing inside the reconstruction
filter bandwidth. For applications were full Upsampling is required,
the user must use an IF Generator or Transceiver with DUC
(Digital Up Converter) capabilities.

Keysight M3201A/M3202A PXle AWG User's Guide 15

1 Overview of Keysight M320xA PXle AWGs and Theory

1.2.4 AWG Trigger Mode

A different trigger mode can be configured in each queued waveform.

Option Description Name Value

Auto The waveform is launched automatically after AWGstart AUTOTRIG 0
on page 107, or when the previous waveform in the queue finishes

Software / Software trigger. The AWG is triggered by the SWHVITRIG 1

HVI AWGtrigger on page 123, provided that the AWG is running.

AWGtrigger can be executed from the user application (V1) or from
an HVI. (See HVIin Keysight M360TA Hard Virtual Instrument (HVI)
Design Environment Software on page 38.)

Software / Software trigger. Identical to the previous option, but the triggeris SWHVITRIG_ 5

HVI required per each waveform cycle CYCLE

(per cycle)

External Hardware trigger. The AWG waits for an external trigger EXTTRIG 2
Trigger

External Hardware trigger. Identical to the previous option, but the triggeris EXTTRIG_ 6
Trigger required per each waveform cycle CYCLE

(per cycle)

1 VIHVITRIG is equivalent, but is considered obsolete

Programming Information

Function Name Comments Details
AWG Provides a one-step method to load, queue, and AWG on page 101
start a single waveform
AWGqueueWaveform Queues a waveform in the specified AWG AWGqueueWaveform
on page 104

Ifthe queued waveforms are going to use any of the External Trigger modes, the
source of this trigger must be configured using AWGtriggerkExternalConfig
on page 121. The available external trigger options.

External Trigger Connector/Line Usage: Apart from the AWG
trigger settings, an external trigger connector/line may have
additional settings (input/output direction,
sampling/synchronization options, etc.) that need to be
configured for proper operation.

16 Keysight M3201A/M3202A PXle AWG User's Guide

1 Overview of Keysight M320xA PXle AWGs and Theory

1.2.5 AWG External Trigger Source

Option Description Name Value
External I/O The AWG trigger is a TRG connector/line TRIG_EXTERNAL 0
Trigger of the module. PXI form factor only:
this trigger can be synchronized to CLK10.
PXI Trigger [0 PXI form factor only. The AWG external trigger is a TRIG_PXI +Trigger 4000 +
to n] PXI trigger line and it is synchronized to CLK10. No. Trigger
No.
1.2.6 AWG External Trigger Behavior
Option Description Name Value
Active High Trigger is active when it is at level high TRIG_HIGH 1
Active Low Trigger is active when it is at level Low TRIG_LOW 2
Rising Edge Trigger is active on the rising edge TRIG_RISE 3
TRIG_FALL 4

Falling Edge Trigger is active on the falling edge

1.2.7 AWG Markers

A different marker can be configured for each AWG channel. All waveforms must
already be queued (AWGqueueMarkerConfig on page 137) in one of the module's

AWGs.

Keysight M3201A/M3202A PXle AWG User's Guide

17

1 Overview of Keysight M320xA PXle AWGs and Theory

1. 2.8 AWG FlexCLK Synchronization
(models with variable sampling rate)

FlexCLK Technology (models w/ variable sampling rate) on page 33 shows the
internal diagram and the operation of the M3201A/M3202A PXle AWGFlexCLK
system. This advanced technology allows you to change the sampling frequency of
the AWGs (CLKsys), while maintaining full synchronization capabilities due to the
internal CLKsync signal.

CLKsyncis aninternal signal used to start the AWGs and it is aligned with CLKsys and
PXI CLK10. Its frequency depends on the FlexCLK Technology (models w/ variable
sampling rate) on page 33, resulting in the following scenarios:

fCLKsync = fPXI CLK10

When both frequencies coincide, there is no phase uncertainty between both signals
and a trigger synchronized with PXI CLK10 will start the AWGs always with the same
skew, independently of the clock boot conditions. This ensures proper
synchronization between different modules.

PXI_CLK10 | | | | | | I | I
Trigger E I | I !

CLKsys

CLKsync J_I_I_I_I_I_I_I_I Boot Conditions 1/
i i | Module 1
AWGout ' /\/\/\/—
: |
' |

—
| fixed AWG delay
!

CLKsys
i | |
CLKsync I | | | I | I I | Boot Conditions 2 /
1 I i Module 2
I I |
AWGout . . W
i — :

fixed AWG delay

fCLKsync! = fP XI CLK10

18 Keysight M3201A/M3202A PXle AWG User's Guide

1 Overview of Keysight M320xA PXle AWGs and Theory

When both frequencies do not coincide, both signals are still aligned, but there is a
phase uncertainty due to their frequency difference. In this case, if a trigger
synchronized with PXI CLK10 is sent to the system, there might be a skew between

the start of different AWGs.
PXI_CLK10 I | | | I I I I l
Trigger E I | | I 3
Clisye J I I I I Boot Conditions 1/
i i i Module 1
AWGout . . |
i — |
i fixed AWG delay | i
CLKsync -I I I i I l Boot Conditions 2 /
] | ' Module 2
AWGout : : /_/'\

| —p
| fixed AWG delay |
| '

CLKsync phase-dependent skew

This phase uncertainty can be easily corrected using clockResetPhase on page 133.
This function sets the modules in a sync mode and the next trigger is used to reset the
phase of the CLKsync and CLKsys signals, not to start the AWGs. In this way, the
phase uncertainty between different modules or between different boot conditions
can be eliminated, resulting in a predictable and repeatable skew.

PXICLK10 I—-l [—:U_|_I._|_I_|_I
| I i
| clockResetPhase() ! 4
Trigger I has been called |] I y | : I

|
I
/ ' !

N : :
]
SRS YIS | CLKsync & CLKsys phase . I I I Boot Conditions 1/
! adjustment . ! . i Module 1
i ' i i 5 i
Mot - —— e N
i H | — !
! f] fixed AWG delay i
! CLKsync & CLKsys phase| JfJf ! ! .
CLKsync -I adjustment I L I I I Boot Conditions 2/
i i 1 Module 2
| ' I ! !
1] l D
AWGout .. L ; (\/\
: ‘e ' | | ‘
CLK synchronization time fixed AWG delay

Keysight M3201A/M3202A PXle AWG User's Guide 19

1 Overview of Keysight M320xA PXle AWGs and Theory

1.2.9 AWG Waveform Array and *.cvs File Structure

The two possible sources of waveforms are an array in the PC RAM and a file in the PC
HDD. The memory array is just an array of waveform points, without header and
without any particular structure. A waveform file is simply a text file with values
separated by commas (*.csv).

One-component Waveform File

Template Example
Waveform waveformName,name Waveform waveformName,myGaussian
Header waveformPoints,nPoints Header waveformPoints,100
waveformType,type waveformType WAVE_ANALOG_16
Point 0 0.59
Point 1 0.37
Waveform | Point2 Waveform | 090
Points Point 3 Points 0.13
Point (nPoints-1) 0.34

Two-component Waveform File

Template Example
Waveform waveformName,name Waveform waveformName,myDualGaussian
Header waveformPoints,nPoints Header waveformPoints,100
waveformType,type waveformType, WAVE_ANALOG_16_DUAL
Point AO,Point BO 047,087
Point A1,Point B1 -0.78,0.98
Waveform Point A2,Point B2 Waveform 0.79,-0.47
Points Point A3,Point B3 Points 1.00,0.15
Point A(nPoints-1),Point B(nPoints-1) -1.41,0.90

The waveformType is a parameter that tells the module which kind of waveform it
used to configure the AWG internally.

20 Keysight M3201A/M3202A PXle AWG User's Guide

1 Overview of Keysight M320xA PXle AWGs and Theory

1.2.10 AWG Waveform Types

See waveformType in waveform file orin new on page 140.

Madulation Option Description Name Value

Analog 16 Bits Analog normalized waveforms (-1t0 1)~ WAVE_ANALOG_16 0
defined with doubles

Analog 32 Bits Analog normalized waveforms (-1to 1)~ WAVE_ANALOG_32 1
defined with doubles

Analog 16 Bits Dual Analog normalized waveforms (-1to 1) WAVE_ANALOG_16_ 4
defined with doubles, with two com- DUAL
ponents (A and B)

Analog 32 Bits Dual Analog normalized waveforms (-1to 1) WAVE_ANALOG_32_ 6
defined with doubles, DUAL
with two components (A and B)

1Q Analog normalized waveforms (-1to 1)~ WAVE_IQ 2
defined with doubles,
with two components (I and Q)

IQ Polar Analog waveforms (-1to 1 module, WAVE_IQPOLAR 3
-180 to +180 phase) defined with
doubles, with two components
(Module and Phase)

Digital Digital waveforms defined with integers ~ WAVE_DIGITAL 5

21

Keysight M3201A/M3202A PXle AWG User's Guide

1 Overview of Keysight M320xA PXle AWGs and Theory

1.3 Working with Signal Modulation

Signals can be modulated in frequency, phase, amplitude, or IQ.
— Frequency and Phase Modulation (Angle Modulator Block) on page 22
- AMand DC Offset (Amplitude Modulator Block) on page 25
- 1Q Modulation (Quadrature Modulator Block) on page 28

1.3.1 Frequency and Phase Modulation (Angle Modulator Block)

The output signal of the Function Generator (FG) block or the Arbitrary Waveform
Generator (AWG) block can be modulated.

Channel 1 . _,@

= Channel 1
= Output
Channel x
Frequency Phase Amplitude Offset
Function M:;Lﬂlaetor Amplitude
Generator Modulator S ﬂ
(FGx) i AM . B ’(:)
PM Channel x
Output
Dual

Arbitrary

Waveform
Generator
(AWG x)

Channeln ; _@

cg?’::ﬁltn
Option Description Name Value
No Modulation Modulation is disabled AQOU_MOD_OFF (default) 0
Frequency Modulation AWG is used to modulate the channel frequency AOU_MOD_FM 1
Frequency Modulation AWG is used to modulate the channel frequency AOU_MOD_FM_32b 1
(32 bits)*
Phase Modulation AWG is used to modulate the channel phase AOU_MOD_PM 2

*Models with Option DM1 dual modulation capability (amplitude and angle modulation simultaneously)

The modulating signal is generated using the AWG associated to that particular
channel, forexample, AWG1 for channel 1. The angle modulator allows the user to
create any analog/digital frequency or phase modulation, for example: FM, FSK, PM,
PSK, DPSK, etc.

22 Keysight M3201A/M3202A PXle AWG User's Guide

1 Overview of Keysight M320xA PXle AWGs and Theory

1.3. 1.1 The output signal of a channel using the frequency modulation
is the following:

Output(t) = A - cos[2n(f. + G -AWG(t)) - £ + &) (2)

where:

A'is the channel amplitude (set by channelAmplitude on page 88)

G is the deviation gain or peak frequency deviation

(set by modulationAngleConfig on page 90). G is only used for 16-bit wave-
forms.

AW G(t) is the normalized modulating signal generated by the AWGs
cos(2mf t+d.) is the carrier signal, generated with the

Function Generators

As an example, for the generation of an FM signal with an amplitude of 0.8 Vp, a
modulation index (h) equal to 0.5 and a maximum frequency of the modulating signal
of 10 MHz, the settings must be A=0.8 and G=5,000,000 (G = h*maxf req[AW G(t))).

1.3. 1.2 The output signal of a channel using the phase modulation is

the following:
Output(t) = A - cos(2rfot + ¢ + G - AWGE(L)) (3)
where:

A'is the channel amplitude (set by channelAmplitude on page 88)

G is the deviation gain or peak frequency deviation
(set by modulationAngleConfig on page 90). G is only used for 16-bit wave-
forms.

- AW G(t) is the normalized modulating signal generated by the AWGs

cos(2mf t+d.) is the carrier signal, generated with the
Function Generators

As an example, for the generation of a PM signal with an amplitude of 0.8 Vpand a
modulation index (h) equal to 1800, the settings must be A=0.8 and G=180 (G=h).

Keysight M3201A/M3202A PXle AWG User's Guide 23

1 Overview of Keysight M320xA PXle AWGs and Theory

Programming Information

Function Comments Details

modulationAngleConfig Configures the angle modulator modulationAngleConfig
on page 90

AWG functions Control the modulating signal Signal Generation with
the Arbitrary Waveform
Generator on page 8

FG functions Control the carrier signal Working with Signal Gen-

eration/Channel Struc-
ture on page 3

24 Keysight M3201A/M3202A PXle AWG User's Guide

1 Overview of Keysight M320xA PXle AWGs and Theory

1.3.2 AMand DC Offset (Amplitude Modulator Block)

The amplitude modulator can be used to modulate the amplitude or change the
DC offset of the output signal.

Mutual Exclusions for Modulations: Internally, IQ modulation

uses the amplitude and the angle modulators so they cannot be
used when the module is working in 1Q mode.

Channel 1

Channel x

Function
Generator
(FG x)

Dual
Arbitrary
Waveform
Generator
(AWG x)

= Channel1
= Output
Frequency Phase Amplitude Offset
Angle Amplitude
Modulator Modulator _
FM AM —
PM Channel x
! Output

&

Channel n v _>©
Channeln
0Odd channels only Even channels only Output

The modulating signal is generated using the AWG associated with a particular
channel (for example, AWGT corresponds to Channel 1). The Amplitude Modulator
can be used to create analog/digital amplitude modulation (for example, AM, ASK,

etc.).

Keysight M3201A/M3202A PXle AWG User's Guide 25

1 Overview of Keysight M320xA PXle AWGs and Theory

1.3.2. 7T The output signal of a channel using the Amplitude Modulator
is the following:

where:

Output(t) = (A + G - AWG(t)) - cos(2r fot + o¢) 4)

- Aisthe channel amplitude (set by channelAmplitude on page 88).

- Gis the deviation gain (set by modulationAmplitudeConfig on page 92). Gis
only used for 16-bit waveforms.

- AWG(t) is the normalized modulating signal generated by the AWG.

— cos(2nf t+d,) is the carrier signal, generated with the
Function Generators

As an example, for generation of an AM signal with an amplitude of 0.8 Vpand a
modulation index (h) equal to 0.5, the settings must be A=0.8 and G=0.32 (G = h ‘A2).

26 Keysight M3201A/M3202A PXle AWG User's Guide

1 Overview of Keysight M320xA PXle AWGs and Theory

1.3. 2.2 The output signal of a channel using the amplitude modulator
to modulate the offset is the following:

Output(t) = A - cos(2n fof 4+ &) + G- AWG(t) (5)

Options

Mutual Exclusions for Modulations: The Amplitude Modulator
can be used with signals coming from the Function Generator
directly, the AWG, or the frequency/phase modulators. Therefore,
the latter can be combined with amplitude modulation at will
(although it only makes sense for frequency/amplitude
modulations, because for phase/amplitude modulations there is a
dedicated IQ operation, 1Q Modulation (Quadrature Modulator
Block) on page 28, which uses the internal amplitude and the
angle modulator).

modulationType

Function Description
(const & value)
No Modulation AOU MOD OFF 0 (default) Modulation is disabled. The channel amplitude
and offset are only set by the main registers.
Amplitude Modulation ~ AOU MOD AM 1 The modulating signal is used to modulate the
channel amplitude.
Offset Modulation AOU MOD OFFSET 2 The modulating signal is used to modulate the

channel offset.

Programming Information

Function Comments Details

modulationAmplitudeConfig ~ Configures the amplitude modulator modulationAmplitudeConfig
on page 92

AWG functions Controls the modulating signal Signal Generation with the

Arbitrary Waveform Gen-
erator on page 8

FG functions Controls the carrier signal Warking with Signal Gen-
eration/Channel
Structure on page 3

Keysight M3201A/M3202A PXle AWG User's Guide 27

1 Overview of Keysight M320xA PXle AWGs and Theory

1.3.3 1Q Modulation (Quadrature Modulator Block)

The output signal of the Function Generator can be modulated simultaneously in
amplitude and angle (frequency or phase). This allows the creation of an IF signal with
amplitude modulation while the frequency is scanned.

However, the most common use of dual modulations is the amplitude and angle
modulation decomposed to in-phase (I) and quadrature (Q) components, commonly
known as IQ modulation. In order to make the creation of IQ modulations easier, there
are dedicated programming functions for that purpose.

Channel 1

Channel 1
Output

Channel x

Frequency Phase Amplitude Offset

Function o ;\:Lf:laetor Amplitude
Generator Modulator

FM AM
(FGx) PM Channel x
3 Output

Dual
Arbitrary
Waveform
Generator
(AWG x)

Quadrature
Modulator
1Q

Channel n v @

Channeln

Odd channels only @l Even channels only Output

The modulating signals are generated using the 1Q Modulation (Quadrature
Modulator Block) on page 28 associated to that particular channel, for example,
AWGT for channel 1. In this case, the waveform loaded into the AWG is composed by
the two waveforms (for example, I and Q components, see AWG FlexCLK
Synchronization (models with variable sampling rate) on page 18).

Keysight M3201A/M3202A PXle AWG User's Guide

1 Overview of Keysight M320xA PXle AWGs and Theory

1.3.3. T The output signal of a channel using the IQ modulator is the
following:

IQ waveforms are sometimes called complex waveforms due to
the mathematical form I(t)+iQ(t).

Cutput(t) = i"ﬁ [AW G (t) - cos(2mfet + de) — AWGG(1) - sin(2mfot +)] (6)
v

where:
- Ais the channel amplitude (set by channelAmplitude on page 88).

— AWG(t) and AWGq(t) are the normalized modulating signals generated by the
AWGs.

= cos/sin(2nf.t + ¢) is the carrier signal, generated with the Function Generator.
Itis also possible to use the IQ modulator with amplitude and phase com-
ponents:
Output(t) = A - AWG,(t) - cos(2mft + ¢, + /2 -AWG¢(t)) (7)
where:
- Ais the channel amplitude (set by channelAmplitude on page 88).
— AWGA(t) and AWG(t) are the modulating signals generated by the AWGs.
— cos(2mfst +) is the carrier signal, generated with the Function Generators.

Mathematical Background of IQ Modulation
A -cos(2mft + dg + @) = A - cos(2nf it + d) cos() — A -sin(2nf t + ¢) sin(d) (8)

where the I and Q components are defined as follows:

I=A -cos(d) 9)
Q=A-sin(d)

and the IQ components become very useful to set the amplitude (A) and the phase(¢)
of the output signal, resulting in IQ modulation (or QAM, Quadrature Amplitude
Modulation).

A -cos(2mft + ¢ + ¢) = | - cos(2nf t +) — Q- sin(2nf .t + §,) (10)

Mutual Exclusions for Modulations: Internally, IQ modulation
uses the amplitude and the angle modulators so they cannot be
used when the module is working in 1Q mode.

Keysight M3201A/M3202A PXle AWG User's Guide 29

1 Overview of Keysight M320xA PXle AWGs and Theory

Programming Information

Function Comments Details
modulationlQconfig Configures the 1Q modulationlQconfig on page 94
modulation
AWG functions Control the modulating Signal Generation with the Arbitrary Waveform
signal Generator on page 8
FG functions Control the carrier signal ~ Signal Generation with the Function Generator on page 7

30 Keysight M3201A/M3202A PXle AWG User's Guide

1 Overview of Keysight M320xA PXle AWGs and Theory

1.4 Working with /0 Triggers

The M3201A/M3202A PXle AWG has general purpose input/output triggers

(TRG connectors/lines). A trigger can be used as a general purpose digital 10 or as a
trigger input, and can be sampled using the options shown below in

Trigger Synchronization/Sampling Options.

Because the Keysight M3201A and M3202A PXle AWGs have
different output latencies, triggering both at the same time from
HVI will always result in a 65 to 70 ns offset between their

outputs.

Option Description Name Value
Trigger Output TRG operates as a general purpose digital output AOU_TRG_OUT 0
(readable) signal, that can be written by the user software
Trigger Input TRG operates as a trigger input, or as general purpose AOU_TRG_IN 1

digital input signal, that can be read by the

user software
Option Description Name Value

Non-synchronized mode The trigger is sampled with an internal 100 MHz clock ~ SYNC_NONE 0
Synchronized mode (PXI form factor only) The trigger is sampled using CLK10 SYNC_CLK10 1

Keysight M3201A/M3202A PXle AWG User's Guide 31

1 Overview of Keysight M320xA PXle AWGs and Theory

32

1.5 Working with the Clock System

The M3201A/M3202A PXle AWG uses an internally generated high-quality clock
(CLKref) which is phase-locked to the chassis clock. Therefore, this clock is an
extremely jitter-cleaned copy of the chassis clock. This implementation achieves a
jitter and phase noise above 100 Hz which is independent of the chassis clock,
depending on it only for the absolute frequency precision and long term stability.
A copy of CLKrefis available at the CLK connector.

CLKrefis used as a reference to generate CLKsys, the high-frequency clock used to

sample data.

Chassis Clock Replacement for High-Precision Applications:
For applications where clock stability and precision is crucial (for
example: GPS, experimental physics, etc.), the user can replace
the chassis clock with an external reference.

In the case of PXI/PXle, this is possible via a chassis clock input
connector or with a PXI/PXle timing module. These options are
not available in all chassis; see the corresponding chassis
specifications.

Keysight M3201A/M3202A PXle AWG User's Guide

1 Overview of Keysight M320xA PXle AWGs and Theory

1.5. 1T CLK Output Options

Option Description Name Value
Disable The CLK connector is disabled n/a 0(default)
CLKref Output A copy of the reference clock is available at the CLK connector n/a 1

1. 5.2 FlexCLK Technology (models w/ variable sampling rate)

The sampling frequency of the M3201A/M3202A PXle AWG (CLKsys frequency) can
be changed using the advanced clocking system.

CLK
Qutput

GCLKref GCLKsys A/D, DIA
enerator enerator Converters
PXI_CLK10
ClKsync
Trigger .« AWGs, DAQs
FlexCLK System
where:

- CLKrefis the internal reference clock, and is phase-locked to the chassis clock.
— CLKsys is the system clock, used to sample data.

— CLKsyncis aninternal clock used for the synchronization features of the
M320TA/M3202A PXle AWG.

— PXICLK1Ois the 10 MHz clock of the PXI/PXle backplane.

The CLKsys frequency can be changed within the range indicated in the datasheet of
the corresponding product (clockSetFrequency (Requires Option CLV) on page 129).
The CLKsync frequency changes with the CLKsys frequency as follows:

. fork
forLk syne = GreatestCommenDivisor (_fpx 1. CLK10s %) (11)
5

The CLKsync frequency is returned by clockSetFrequency (Requires Option CLV)

on page 129.

Option Description Name Value
Low Jitter The clock system is set to achieve the lowest jitter, sacrificing CLK_LOw_ 0
Mode tuning speed JITTER

Fast Tuning The clock system is set to achieve the lowest tuning time, sacrificing CLK_FAST_ 1
Mode jitter performance TUNE

Keysight M3201A/M3202A PXle AWG User's Guide 33

1 Overview of Keysight M320xA PXle AWGs and Theory

34

1. 5.3 CLKref Frequency in AWG Modules with Option CLV

In M3201A-CLV modules, CLKref frequency (freqCLKref) changes as follows, as a
function of CLKsys frequency (freqCLKsys):

Between 400 MHz and 500 MHz => freqCLKref = freqCLKsys/40
Between 300 MHz and 400 MHz => freqCLKref = freqCLKsys/30
Between 200 MHz and 300 MHz => freqCLKref = freqCLKsys/20
Between 150 MHz and 200 MHz => freqCLKref = freqCLKsys/15
Between 100 MHz and 150 MHz => freqCLKref = freqCLKsys/10
Below 100 MHz => error

In M3202A-CLV modules, CLKref frequecy (freqCLKref) changes as follows, as a
function of CLKsys frequency (freqCLKsys):

Between 800 MHz and 1000 MHz => freqCLKref = freqCLKsys/80
Between 600 MHz and 800 MHz => freqCLKref = freqCLKsys/60
Between 400 MHz and 600 MHz => freqCLKref = freqCLKsys/40
Below 400 MHz => error

Keysight M3201A/M3202A PXle AWG User's Guide

2 Overview of Keysight Software and Programming Tools

2 Overview of Keysight Software and Programming Tools

This chapter contains an overview of the following software and programming tools:
— Keysight SD1 SFP Software on page 35
— Keysight Programming Tools on page 36
— Keysight SD1 Programming Libraries on page 37

- Keysight M3601A Hard Virtual Instrument (HVI)
Design Environment Software on page 38

- Keysight M3602A FPGA Design Environment Software on page 43

2.1 Keysight SD1 SFP Software

2.1.7 Overview of Keysight SD1 SFP Software

Keysight M320TA/M3202A PXle AWGs, M3100A/M3102A PXle Digitizers, and
M3300A/M3302A PXle AWG/Digitizer Combos can be operated as classical bench-
top instruments using Keysight SD1 SFP software; no programming is required.
When SD1 SFP is opened, it identifies all Keysight PXle hardware modules that are
connected to the embedded controller or desktop computer, and opens a
corresponding soft front panel for each piece of hardware.

SD1SFP

ggggg

12000 o wowB o

Keysight M3201A/M3202A PXle AWG User's Guide 35

2 Overview of Keysight Software and Programming Tools

36

2.2 Keysight Programming Tools

The following programming tools are available to control Keysight M3100A/M3102A
PXle Digitizers, M320TA/M3202A PXle AWGs, and M3300A/M3302A PXle AWG
& Digitizer Combinations:

- Keysight SD1 Programming Libraries on page 37

- Keysight M3601A Hard Virtual Instrument (HVI) Design Environment Software
on page 38

- Keysight M3602A FPGA Design Environment Software on page 43

ﬂw Programming Keysight Libraries > Keysight Programming Libraries
* Full software compatibility
/_ = Easy integration in the final application
- * Native libraries for most common languages:
|‘ w « Full interoperability with other

manufacturers

= Windows and Linux

Keysight HVI Technology > Keysight M3601A Keysight HVI Technology E

Intuitive flowchart-style programming:
e
o=

Keysight M3601A
* True hard real-time

* Ultra-fast execution and decision making
= Off-the-shelf inter-module synchronization
* Seamless interaction with 5D Libraries

HW Programming

f i
. '
{1 o—d§e—tn] o] 1

Keysight FPGA Programming Keysight M3602A Keysight FPGA Technology !

M3100A/M31024 PXle Digitizers * Intuitive graphical hardware customization

M3201A/M3202A PXle Arbitrary Waveform Generators (AWGs) interface: Keysight M3602A

M3300A/M3302A PXle AWG & Digitizer Combinations = Graphical FPGA programming using
MATLAB/Simulink

* VHDL and Verilog programming

* Distributed real-time signal processing with
P2P capabilities

Keysight M3201A/M3202A PXle AWG User's Guide

2 Overview of Keysight Software and Programming Tools

2.2. 7 Keysight SDT Programming Libraries

Keysight supplies a comprehensive set of highly optimized software instructions that
can control off-the-shelf functionalities of Keysight hardware. These software
instructions are compiled into the Keysight SD1 Programming Libraries. Programs can
be written with these libraries and run on an embedded controller or desktop
computer.

The use of customizable software to create user-defined control, test and
measurement systems is commonly referred as Virtual Instrumentation. In Keysight
documentation, the concept of a Virtual Instrument (or VI) describes user software
that uses programming libraries and is executed by a computer.

Keysight provides native programming libraries for a comprehensive set of
programming languages, such as C, C++, Visual Studio (VC++, C#, VB), MATLAB,
National Instruments LabVIEW, Python, etc., ensuring full software compatibility and
seamless multivendor integration. Keysight also provides dynamic libraries, for
example: DLLs, that can be used in virtually any programming language.

Keysight native programming libraries ensure full compatibility, providing effortless
and seamless software integration user interaction, etc. The I/0 modules runin
parallel, completely synchronized, and exchange data and decisions in real-time. The
result is a set of modules that behave like a single integrated real-time instrument.

For more information, refer to the following sections:

- Keysight Supplied Native Programming Libraries on page 67

— Support for Other Programming Languages on page 68

= Functions in SD1 Programming Libraries on page 69
— SD_Module Functions on page 72
— SD_AOU Functions on page 82
— SD_Wave Functions (new and delete) on page 140
— SD_Module Functions (M3601A HVI-related) on page 143
— SD_Module Functions (M3602A FPGA-related) on page 147

Keysight M3201A/M3202A PXle AWG User's Guide 37

2 Overview of Keysight Software and Programming Tools

38

2.2.2 Keysight M3601A Hard Virtual Instrument (HVI)
Design Environment Software

Keysight M3201A/M3202A PXle AWGs and M3100A/M3102A
PXle digitizer must have Option HV1 to use Keysight M3601A
software; Option HV1 is only available at time of purchase.

Because the Keysight M3201A and M3202A PXle AWGs have
different output latencies, triggering both at the same time from
HVI will always result in a 65 to 70 ns offset between their
outputs.

The following section is only an overview of the Keysight M3601A
software; To learn how to use Keysight M3601A software, refer to
the User's Guide for the [3] Keysight M3601A Hard Virtual
Instrument (HVI) Design Environment Software.

2.2.2.17 HVIProgramming

Keysight's HVI technology provides the capability to create time-deterministic
execution sequences that are executed by the Keysight M3201A/M3202A PXle AWGs
and M3100A/M3102A PXle digitizers with Option HV1. HVIs are programmed with
Keysight M3601A, an HVI design environment with a user-friendly flowchart-style
interface.

2.2.2.2 HVIFunctions

Keysight’s HVI Technology uses the same programming instructions that are
available in the Keysight SD1 Programming Libraries, with the difference thatin an
HVI, those instructions are executed by the hardware modules in hard real-time, not
by the embeded controller or desktop computer.

Virtual Instrumentation is the use of customizable software and modular hardware to
create user-defined measurement systems, called Virtual Instruments (VIs). Thus, a
Virtual Instrument is based on a software which is executed by a computer, and
therefore its real-time performance (speed, latency, etc.) is limited by the computer
and by its operating system. In many cases, this real-time performance might not be
enough for the application, even with a real-time operating system. In addition, many
modern applications require tight triggering and precise intermodule synchronization,
making the development of final systems very complexand time consuming. For all
these applications, Keysight has developed an exclusive technology called Hard
Virtual Instrumentation. In a hard virtual instrument (HVI), the user application is
executed by the hardware modules independently of the computer, which stays free
for other VI tasks, like visualization.

Keysight M3201A/M3202A PXle AWG User's Guide

2 Overview of Keysight Software and Programming Tools

HVIs vs. Vls: Virtual Instrumentation is fully supported making use
of the Keysight SD1 Programming Libraries. On the other hand,
Keysight’s exclusive Hard Virtual Instrumentation (HVI)
technology provides the capability to create time-deterministic
execution sequences which are executed by the hardware
modules in parallel and with perfect intermodule synchronization.
HVIs provide the same programming instructions available in the
Keysight SD1 Programming Libraries.

HVIs are programmed with Keysight M3601A Hard Virtual Instrument (HVI) Design
Environment Software, with a user-friendly flowchart-style interface, compatible with
Keysight M320TA/M3202A PXle AWGs and M3100A/M3102A PXle digitizers.

Keysight M3201A/M3202A PXle AWG User's Guide 39

2 Overview of Keysight Software and Programming Tools

40

M360TA

Keysight M3607TA is based on flowchart programming, providing an easy-
to-use environment to develop hard real-time applications.

Keysight M3601A Hard Virtual Instrument (HVI) Design Environment Software
provides:

Ultra-fast hard real time execution, processing, and decision making: Execution
is hardware-timed and can be as fast as 1 nanosecond, matching very high-per-
formance FPGA-based systems and outperforming any real-time operating sys-
tem.

User-friendly flowchart-style programming interface: Keysight M3601A
provides an intuitive flowchart-style programming environment that makes

HVI programming extremely fast and easy. Using M360TA and its set of built-in
instructions (the same instructions available for Vls), the user can program the
hardware modules without any knowledge in FPGA technology, VHDL, etc.

Off-the-shelf intermodule synchronization and data exchange: Each HVI is
defined by a group of hardware modules which work perfectly synchronized,
without the need of any external trigger or additional external hardware.

In addition, Keysight modules exchange data and decisions for ultra-fast con-
trol algorithms.

Complete robustness: Execution is performed by hardware, without operating
system, and independently of the user PC.

Seamless integration with Keysight FPGA technology: HVIs can interact with

user-defined FPGA functions, making the real-time processing capabilities of
HVIs unlimited.

Keysight M3201A/M3202A PXle AWG User's Guide

2 Overview of Keysight Software and Programming Tools

- Seamless integration with Keysight SD1 Programming Libraries: In a complex
control or test system, there are still some non-time-critical tasks that can
only be performed by a VI, like for example: user interaction, visualization, or
processing and decision tasks which are too complex to be implemented by
hardware. Therefore, in a real application, the combination of VIs and HVIs is
required. This task can be performed seamlessly with Keysight programming
tools, for example, the user can have many HVIs and can control them froma VI
using instructions like start, stop, pause, etc.

Tip: New hardware functionalities without FPGA programming:
Keysight’s HVI technology is the perfect tool to create new
hardware functionalities with FPGA-like performance and without
any FPGA programming knowledge. Users can create a repository
of HVIs that can be launched from VIs using the Keysight SD1
Programming Libraries.

Timing Define the execution [:l-'> l B
Arrows timing -

Sheci 4 M les with
o -FP1 enabled option

Conditional J iy o -
Flow-control ety Tt = Custom FPGA
Statements If and Case Structures, e - Functionalities
For and While Loops, etc. l vl

Bullt-in Ifo _Instrucﬁrfns. B:s_‘n: Math an_d l __VHDlNerio;_.
Instructions Logic Operations, Trigonometric 70 Ap<agt
Functions, etc. l o

=

-trelv t._"‘
Inter-Module / Trigger and Wait for Events :> _m_l ==
PC Interaction Read/Write data e

Keysight M3201A/M3202A PXle AWG User's Guide 41

2 Overview of Keysight Software and Programming Tools

Ve N Ve N
Start) Start)
My Sync ... My Sync ...
S0ns 30ns

My Instructions My Instructions
00 03

l 10ns

My Instructions
10ns Hy

l 20rs
Start -~ Start

T MySyncF | T MySyncF |
120ns 120ns
120ns 120ns

ELSE My ...
My Ir\sg;mmns My IF .
40ns
l 40ns l 50ns
My Instructions
——p MyFoR
F e .. =
My Instructions LR UT
02 r Ons
My IF
l s0ms ELSEMyIF
My FOR
L) mexT-My FOR l 30 ns
Ons
My Instructions
3
l 10ns
0rs L— cowr
1790 ns
v
- N (Y
(" ma) ([e)
—_—— —_—

Inan HVI, all Keysight modules run in parallel and completely synchronized,
executing one flowchart per module. This results in simpler systems without the need
of triggers.

42 Keysight M3201A/M3202A PXle AWG User's Guide

2 Overview of Keysight Software and Programming Tools

2.2.3 Keysight M3602A FPGA Design Environment Software

Keysight FPGA programming technology is managed with Keysight M3602A FPGA
Design Environment Software, an intuitive graphical FPGA programming environment.

Keysight M3201A/M3202A PXle AWGs and M3100A/M3102A
PXle digitizers must have Option FP1 to use Keysight M3602A
software; Option FP1 is only available at time of purchase.

The following section is only an overview of the Keysight M3602A
software; To learn how to use Keysight M3602A software, refer to
the User's Guide for the Keysight M3602A FPGA Design
Environment Software.

Some applications require the use of custom on-board real-time processing which
might not be covered by the comprehensive off-the-shelf functionalities of standard
hardware products. For these applications, Keysight supplies Option FP1 (Enabled
FPGA Programming), that provide the capability to program the on-board FPGA.

All Keysight M320TA/M3202A PXle AWGs and M3100A/M3102A PXle digitizers can
add Option FP1, which provide the same built-in functionalities of their standard
counterparts, giving the users more time to focus on their specific functionalities. For
example, using Option FP1 on a Keysight M3100A/M3102A PXle digitizer, the user
has all the off-the-shelf functionalities of the hardware (data capture, triggering, etc.),
but custom real-time FPGA processing can be added in the data path, between the
acquisition and the transmission of data to the computer.

Keysight M3201A/M3202A PXle AWG User's Guide 43

2 Overview of Keysight Software and Programming Tools

44

M3602A

FPGA programming made simple: Full language compatibility
(including the graphical environment MATLAB/Simulink) and an
easy-to-use FPGA graphical IDE, make Keysight FPGA
programming extremely simple.

An FPGA programming environment provides the following features:

Keysight M3602A is a complete FPGA programming environment that allows the user
to customize Keysight M3201A/M3202A PXle AWGs and M3100A/M3102A PXle
digitizers with Option FP1. Keysight M3602A provides the necessary tools to design,
compile, and program the FPGA of the module.

User-friendly graphical FPGA programming environment:

— Complete platform, from design to FPGA programming: Keysight M3602A
provides the necessary tools to design, compile, and program the FPGA of the
module.

bxfaster project development

Graphical environment without performance penalty

- FPGA know-how requirement minimized: The graphical environment provides a
tool which does not require an extensive know-how in FPGA technology, improv-
ing the learning curve.

Keysight M3201A/M3202A PXle AWG User's Guide

2 Overview of Keysight Software and Programming Tools

Streamlined design process:
- Ready-to-use Keysight Block Library: M3602A provides a continuously-growing
library of blocks which reduces the need for custom FPGA-code development.

= Include VHDL, Verilog, or Xilinx VIVADO/ISE projects: Experienced FPGA users
can squeeze the power of the onboard FPGA.

Include MATLAB/Simulink
Projects: MATLAB/Simulinkin conjunction with Xilinx

System Generator for DSP provides a powerful tool to implement digital signal
processing. The user can go from the design/simulation power of MATLAB/Simulink to
M3602A code in just a few clicks.

= Include Xilinx CORE Generator IP cores: Xilinx CORE Generator can be launched
by M3602A to create IP cores that can be seamlessly included in the design.
Add and remove built-in resources to free up space: The user can remove unused
built-in resources to free up more FPGA space.

One-click compiling and programming:
— 3xfaster ultra-secure cloud FPGA compiling: An ultra-fast cloud compiling sys-
tem provides up to 3 times faster compiling. An ultra-secure TLS encrypted com-
munication protects the IP of the user.

— 100xfaster hot programming via PCI Express without rebooting: Hardware can
be reprogrammed without external cables and without rebooting the system.

Standard Inslrun.mnt : M3602A
-FP1enabled option | FPGA Design Environment
]

Hardware-customized
Instrument

1
i

'

1

1

i '

'* o

ol 'é,) 1

a 4 R Ultra-fast .01011001.. \/ N :

" > Cloud Compiling - »

User-friendly Streamlined Hot Programming .
Design Process i

1

Design Process: Customization vs. Complete Design

Keysight FPGA technology allows the user to customize Keysight M320TA/M3202A
PXle AWGs and M3100A/M3102A PXle digitizers with Option FPT; these products are
delivered with all the off-the-shelf functionalities of the standard products, and
therefore the development time is dramatically reduced. The user can focus
exclusively on expanding the functionality of the standard instrument, instead of
developing a complete new one.

In Keysight M3602A, FPGA code is represented as boxes (called blocks) with 10 ports.
An empty project contains the "Default Product Blocks” (off-the-shelf functionalities),
and the "Design |0 Blocks” that provide the outer interface of the design. The user can
add/remove blocks from the Keysight Block Library, External Blocks, or Xilinx IP cores.

Keysight M3201A/M3202A PXle AWG User's Guide 45

2 Overview of Keysight Software and Programming Tools

2.2.3. 17 FPGA Programming Overview

Keysight FPGA Block Library: Keysight M3602A provides a ready-
to-use FPGA block library that reduces the requirement on FPGA
know-how. Please check the M3602A User Guide to see a full
description of the available FPGA blocks.

Keysight M3602A provides up to x3 faster FPGA compiling and hot programming
without having to reboot the system.

46 Keysight M3201A/M3202A PXle AWG User's Guide

2 Overview of Keysight Software and Programming Tools

M3602A Diagram Blocks

&
© CONTROL_CH_1
AmpModay| <—
AngleModar! <
WawsShape 80—
Amplitude
Frequency -~ #—11
Offset: <
Phase
PhaseRst ®
& (ModGain_1
= e AmpModCr 2
mp!
g::,; : T I —— = AWGsignal
s & Amplitude
Wrstart ®— FuncGen_1 L= offset £
Control -4 La»-> AngleModar! ® Westart Signalout > data D_OUT_1 &
Queuer] @B : pe 7:0) 0) Partnerout
> AGsignal Sine - > sine
Frequency Triangular Triangular

Phase ‘Sawtooth Sawtooth
® Wrstart Square & Square
® PhaseRst - partnerIn

M3602A ControlCH Block

This block provides all the control parameters set by the user software using the
Keysight SDT Programming Libraries.

=) CONTROL_CH_1

AmpModGrl -l
AngleModGrl =
WaveShape <

Amplitude =

Frequency -

Offset =

Phase - @

PhaseRst =

Parameters

Name Description

Outputs

AngleModCtrl Angle modulation control (frequency or phase)
AmpMadCtrl Amplitude modulation control

WaveShape Selects the output waveform

Amplitude Signal amplitude value

Offset DC offset value

Frequency Signal frequency value

Phase Signal phase value

PhaseRst Signal to reset the phase of the function generator

Keysight M3201A/M3202A PXle AWG User's Guide 47

2 Overview of Keysight Software and Programming Tools

M3602A AWG Block
This block is the Dual Arbitrary Waveform Generator.

:rfl
= AWG_1
Data_A "I
Data_B "I
WFstart =
Control @@
QueueCr| @B
Parameters
Name Description
Inputs
Control AWG operation control
QueueCtrl AWG queue control
Outputs
Data_A Waveform A output (for dual waveforms), main waveform for single waveforms
Data B Waveform B output (for dual waveforms only)
Wkstart Signal that indicates when the AWG starts a waveform

48 Keysight M3201A/M3202A PXle AWG User's Guide

2 Overview of Keysight Software and Programming Tools

M3602A FuncGen Block

This block is a function generator with angle modulation capabilities.

FuncGen_1
== AngleModCrl
<+ WaveShape WaveShape Out(7:0)
<= AWGSsignal Sine
<~ Frequency Triangular
<> Phase Sawtooth -
WFstart Square
PhaseRst
Parameters
Name Description
Inputs

AngleModCtrl Configures the angle modulation (frequency or phase)
WaveShape Selects the output waveform between Sine, Triangular or Square

AWGsignal Arbitrary waveform coming from the AWG. It is used as the modulating signal
Frequency Signal frequency value

Phase Signal phase value

Wkstart Signal that indicates when the AWG signal starts a waveform
PhaseRst Signal to reset the phase of the function generator

Outputs

WaveShapeOut Indicates which of the output signals is valid

Sine Sinusoidal waveform

Triangular Triangular waveform

Sawtooth Not used

Square Square waveform

Keysight M3201A/M3202A PXle AWG User's Guide 49

2 Overview of Keysight Software and Programming Tools

M3602A ModGain Block

This block has the following functionalities:

- It selects the output waveform between Sine, Triangular, Sawtooth, Square,
Partner Channel, or AWG

— It modulates the amplitude and the offset of the signal

ModGain_1

<+ AmpModCirl
< AWGsignal
<= Amplitude
< Offset
WFstart

WaveShape(7:0)

< Sine

<+ Triangular
<+ Sawtooth
<+ Square

<> PartnerIn

Signal Out ‘-'.‘—'I
PartnerOut -

Parameters

Name
Inputs

Description

AmpModCtrl

Configures the amplitude modulator

WaveShape

Selects the output waveform between:
Sine, Triangular, Square, Partner Channel, or AWG

WFstart

Signal that indicates when the AWGsignal starts a waveform

Amplitude

Signal amplitude value

OffsetDC

offset value

Sine

Sinusoidal waveform coming from the Function Generator

Triangular

Triangular waveform coming from the Function Generator

Sawtooth

Not used

Square

Square waveform coming from the Function Generator

Partnerin

Waveform coming from the Partner Channel.

Used only in odd channels

AWGsignal

Arbitrary waveform coming from the AWG. It can be routed
to SignalOut, or it can be used as the modulating signal

Outputs

SignalOut

Output signal

PartnerOut

50

Copy of the output signal used for the even Partner Channel.

Keysight M3201A/M3202A PXle AWG User's Guide

2 Overview of Keysight Software and Programming Tools

M3602A DOut Block

This block sends the data directly to the hardware analog output.

® data D_OUT_1 f !

Parameters

Name Description

Inputs

data data to be sent to the analog output channel

Keysight M3201A/M3202A PXle AWG User's Guide 51

52

Keysight M3201A/M3202A PXle AWG User's Guide

3 Using Keysight SD1 SFP Software

3 Using Keysight SD1 SFP Software

This chapter describes how to use Keysight SD1 SFP software:
= Main Soft Front Panel Controls on page 54
— Signal Generation Controls on page 55
= Arbitrary Waveform Generation Controls on page 56
— Signal Modulation Controls on page 57

Keysight M320TA/M3202A PXle AWGs, M3100A/M3102A PXle Digitizers, and
M3300A/M3302A PXle AWG/Digitizer Combos can be operated as classical bench-
top instruments using Keysight SD1 SFP software; no programming is required.

When SD1 SFP is opened, it identifies all Keysight PXle hardware modules that are
connected to the embedded controller or desktop computer and opens a
corresponding soft front panel for each piece of hardware.

SD1SFP

Soce

,,,,,,,,

zzzzz

Presal impedonce: Frescler mpessres

Keysight SD1 SFP Software provides a fast and intuitive way of operating
Keysight M320TA/M3202A PXle AWGs, M3100A/M3102A PXle Digitizers, and
M3300A/M3302A PXle AWG/Digitizer Combos.

Keysight M3201A/M3202A PXle AWG User's Guide 53

3 Using Keysight SD1 SFP Software

3. T Main Soft Front Panel Controls

The M3201A/M3202A PXle AWGs soft front panel appears automatically when
SD1 SFP is launched and the module is connected to the chassis. If there are no
modules available, SD1T SFP will launch "Demo Offline" modules.

/ Settings: AWG,, Triggers, etc.

New Channel Panels = |

Channel Panel

O=®Xx

Demo module 1: M3
File Settiffgs View FPGA Help

Channel 1
Main Modulation
Waveform shape Sinusoidal
AWG

Amplitude

P | Modulation disabled

Frequency (MHz)
Phase

Channel 2
Mairy Modulation

Waveform shape AWG 2

AWG B | Modulation disabled
Amplitude

Frequency (MHz) l

Phase .

DC offset |

M3202A-CHA-CLV-M12 |Demo

™ Reset Phase Control

— New Channel Tab

[offine

M320TA/M3202A PXle AWGs Soft Front Panel Controls

When SD1 SFP is launched, the M3201A/M3202A PXle AWGs soft front panel
appears empty, waiting for the user to add "Channels”, which are windows that
control the channel operation. For maximum visualization flexibility, output channels
can be added as new Panels or as Tabs within an existing Panel.

54

Keysight M3201A/M3202A PXle AWG User's Guide

3. 2 Signal Generation Controls

3 Using Keysight SD1 SFP Software

Signal generation controls are available for the M3201A/M3202A PXle AWGs.

Channel 1 | }

Signal Selection

main Modulation

___-—‘""_-—-

el

AWG Control Waveform shape [Sinusoidal +| Clon B—..\‘ Visualization Settings

AWG E] 'Modulation disabled
LI BB N T S p—
Amplitude i
Signal Parameters Frequency (MHz) * D
Phase * D
DC offset (.}

——

- e | = ON-OFF Switch

100.000 3

0.00 [

M320TA/M3202A PXle AWGs signal generation control

Keysight M3201A/M3202A PXle AWG User's Guide

56

3 Using Keysight SD1 SFP Software

3. 3 Arbitrary Waveform Generation Controls

AWG dialogs and the workflow to generate arbitrary waveforms is available using the

AWGs.
Dema module 1: MI2024 o*Xx B Configure ANG Tnggers L S
File Settings View FPGA Help
Foarre TriggerMode Triggen Line
- AWG Bt 0 #we 1 okl
Che AWG Memery. B AWG 2 Actree Hagh Extern
Ma AWG Configuraticn.... I B awe3 Fallrng Edge P2
AWG Queue =l — '
Wa
AWG Trigger
AW
| : Cancel
amp Reset Accumulstedhaze *) =])
Free Toigger/Clack... 0 = [P — T X
Phase ,00 /= i Husber Mame Loune
. SO] Grnman Co/lbars/Pubbe/ Documents Keymght S0 /Examples Waviform.
DC offset = | .. 1 Exgoretial U Fubise Dourmenty Keyight_501 Easmphes Wieehomma T
X7 B)OMBE 0mengles Tiopoe., T Pubin Documents Keysight S0 Examphes Wavel crmas.
Charrel 1 X
Main Modulation
Lo] on
Waveform shape | AWG 1 -
¢ odeguraian
AWG B | Modiation deabled o o
e T
¥ Aoty
Frequency (MHI) l
A Ty Male Sy 130 (T
Phase
e by -
DC offset
o
| B 2G 0 Waweform Quewe X
Poatos Wpetom Trigepes Mode S Delay (sa] Cpoles Prescaler
0 Gounman ATO 0 : L)
1 Erpaneril SN START 0 1]
MIZ02A-CHA-CLV-M 12 | D Offine
Lo o
AWG Workflow:

1. (Optional) Configuration of the external AWG triggers: If external triggers are
required, this dialog must be used to configure the source (external trigger con-
nector, PXI trigger lines, etc.,) and the behavior (logic level high/low, rising/-
falling edge, etc.).

2. Waveforms loading: Waveforms must be transferred to the onboard RAM in
order to put them in the AWG queue. This dialog allows the user to select the
waveform files and to assign custom waveform names. The waveforms are
transferred to the onboard RAM when the dialog is closed.

3. AWG queue configuration: The waveforms loaded into the onboard RAM can be
pushed into the corresponding AWG queue. This dialog allows the user to
select the AWG queue options.

Once the waveforms are queued in the corresponding AWG, they can be launched
using the AWG control button.

56 Keysight M3201A/M3202A PXle AWG User's Guide

3 Using Keysight SD1 SFP Software

3.4 Signal Modulation Controls

This tab configures the modulations.

Angle ModulationT
g ype ~
Modulating Signal
g >igl —
Amplitude Modulation Type ~

Modulating Signal
g >ig ~

Channel1l X -

main Modulation

\Wiequency Modulation

Type

[Frequency Modulaton

¥ Modulation Deviation

m AWG

Amplitude / Offset Modulation

+ | Deviation (MHz)

-——
u
0.0000 = “

%)

Modulation Deviation

}’[Disabled

Sour

A

A"-/

v | Deviation (V) |0.2000 &

M3201A/M3202A PXle AWGs signal modulation control

As described in Working with Signal Modulation on page 22, the modulating signal for
the modulators of one channel comes from the AWG corresponding to that particular
channel. Therefore, the user must configure the AWG (See AWG workflow in SD1 SFP
and the modulators). After this process, the user must run the AWG in the channel

panel.

IQ modulators use both the amplitude modulator and the phase modulator.
Therefore, the IQ modulator can be selected from any of the "modulation type” combo

boxes.

Keysight M3201A/M3202A PXle AWG User's Guide

57

58

Keysight M3201A/M3202A PXle AWG User's Guide

4 Using Keysight SD1 Programming Libraries

4 Using Keysight SD1 Programming Libraries

This chapter describes how to use the Keysight SD1 Programming Libraries with
Python:

- QOverall AWG Work Flow Using Python on page 59
- Example Programs Using Python on page 59

4.1 Overall AWG Work Flow Using Python

In some languages, such as Python, objects (high-lighted in bold) have to be created.
(Optional) Create an AWG object with SD_AOU
Open an AWG with open

Flush waveforms with waveformFlush

Select channelWaveShape

(Optional) Create a wave object with SD_Wave
Load a waveform file with newFromFile

Load an AWG waveform with waveformlLoad
Queue a waveform with AWGqueueWaveform
Start a waveform with AWGstart

Trigger a waveform with AWGtrigger

© © o0 N3Ok wNhd =

Y

4.2 Example Programs Using Python

Default locations of Keysight SD1 Programming Libraries, example programs, and
waveform files for Python:

— C:\Program Files (x86)\Keysight\SD1\Libraries\Python

— C:\Users\Public\Documents\Keysight\SD1\Examples\Python

— C:\Users\Public\Documents\Keysight\SD1\Examples\Waveforms

- Example Program of Overall Work Flow for Python on page 60
— Example Program Using Python to Produce a Sine Wave on page 63

= Example Program Using Python to Produce a Sawtooth Wave from an
Array on page 65

Keysight M3201A/M3202A PXle AWG User's Guide 59

4 Using Keysight SD1 Programming Libraries

4. 2.1 Example Program of Overall Work Flow for Python

This example program shows Python using the Keysight SD1 Programming Libraries.

Import required system components
import sys

Append the system path to include the

location of Keysight SD1 Programming Libraries then import the library
sys.path.append('C:\Program Files (x86)\Keysight\SD1\Libraries\Python")
import keysightSD1 as key # Import SD1 library and AWG/Digitizer commands.

Specify values for variables related to the AWG and Chassis
AWG_PRODUCT = "M3202A" # Product's model number

CHASSIS =1 # Chassis number holding product
AWG_SLOT = 4 # Slot number of product in chassis
H ommmmmee -

Specify values for variables related to the AWG waveform
waveform_number = 1 # Numerical label of AWG waveform

cycles =1 # Number of times to play a waveform from same channel
start_delay = © # Delay the start of the waveform playback

prescalar = © # How much to scale the outgoing waveform

- S

Select settings and use specified variables

awg = key.SD_AOU() # Create an AWG object

- S

Open and connect to the specific AWG, using openWithSlot().
If any errors occur, they are negative numbers and saved into aoulD.
aouID = awg.openWithSlot(AWG_PRODUCT, CHASSIS, AWG_SLOT)
Check aouID for errors and close connection if an error is found
if aoulD < O:
If aoulD is a negative number, an error occurred so print it out
print("ERROR")
Print error code so it can be looked up in the Keysight SD1 error list.
print("aouID:", aoulD)
Since there was an error, close the connection with the AWG.
awg.close()
Print out a message that the connection is closed.
print()
print("AOU connection closed")

If NO errors occur, flush/remove remaining old waveforms from AWG memory
awg.waveformFlush()

Set all four channels (1 to 4) of the AWG output mode
awg.channelWaveShape(1, key.SD_Waveshapes.AOU_AWG)

60 Keysight M3201A/M3202A PXle AWG User's Guide

4 Using Keysight SD1 Programming Libraries

awg.channelWaveShape(2, key.SD_Waveshapes.AOU_AWG)
awg.channelWaveShape(3, key.SD_Waveshapes.AOU_AWG)
awg.channelWaveShape(4, key.SD_Waveshapes.AOU_AWG)

Create a new wave object
wave = key.SD Wave()

Load a .csv file as the wave data
wave.newFromFile
("C:\\Users\Public\Documents\Keysight\SD1\Examples\Waveforms\Gaussian.csv")

Load the wave csv file into AWG memory,
assigning it the arbitrary number set earlier in this program.
awg.waveformLoad(wave, waveform_number)

Queue everything that will be playing, with AWGqueueWaveform()

AWGqueueWaveform(CHANNEL, number assigned to wave you want,

trigger mode, delay before start (ns), number of times to play, prescaler)
awg . AWGgueueWaveform(1, waveform_number, key.SD_TriggerModes.SWHVITRIG,
start_delay, cycles, prescalar)

awg . AWGqueueWaveform(2, waveform_number, key.SD_TriggerModes.SWHVITRIG,
start_delay, cycles, prescalar)

awg . AWGqueueWaveform(3, waveform_number, key.SD TriggerModes.SWHVITRIG,
start_delay, cycles, prescalar)

awg . AWGqueueWaveform(4, waveform_number, key.SD_TriggerModes.SWHVITRIG,
start_delay, cycles, prescalar)

Set the relative amplitudes for each channel.

CSV waveforms are normalized between -1 and 1 * amplitude.
awg.channelAmplitude(1, 1.5)

awg.channelAmplitude(2, 1.5)

awg.channelAmplitude(3, 1.5)

awg.channelAmplitude(4, 1.5)

Start each channel's waveform - If trigger mode was set to AUTO, they would
start playing automatically but, since SD_TriggerModes.SWHVITRIG was
selected, a software trigger is required to play each channel's waveform
awg.AWGstart (1)

awg.AWGstart(2)

awg.AWGstart(3)

awg.AWGstart(4)

Trigger waveforms with software triggers to play the loaded waveforms
awg.AWGtrigger(1)
awg . AWGtrigger(2)
awg . AWGtrigger(3)
awg.AWGtrigger(4)

Keysight M3201A/M3202A PXle AWG User's Guide 61

4 Using Keysight SD1 Programming Libraries

62

#

Close the connection with the AWG hardware.

awg.close()

HoH HHHHHHHEHHHHEHEHEHHHEH

+*

© Keysight Technologies, 2018

All rights reserved.

You have a royalty-free right to use, modify, reproduce

and distribute this Sample Application (and/or any modified
version) in any way you find useful, provided that

you agree that Keysight Technologies has no warranty,
obligations or liability for any Sample Application Files.

Keysight Technologies provides programming examples

for illustration only. This sample program assumes that
you are familiar with the programming language being
demonstrated and the tools used to create and debug
procedures. Keysight Technologies support engineers can
help explain the functionality of Keysight Technologies
software components and associated commands, but they
will not modify these samples to provide added
functionality or construct procedures to meet your
specific needs.

Keysight M3201A/M3202A PXle AWG User's Guide

4 Using Keysight SD1 Programming Libraries

4. 2.2 Example Program Using Python to Produce a Sine Wave

This example program shows Python using the Keysight SD1 Programming Libraries
to produce a Sine Wave out of Keysight M3202A PXle AWG's channel 1, at 1 MHz,
and 0.1 V.

Optional example routines follow this code that demonstrate how to change the
amplitude and frequency specified by values from an array; these optional routines
require the time library to be imported.

Python - Sample Application to set up the AWG
to output a sine wave out of channel 1, at 1 MHz, and at ©.1 Vpp.

Import required system components
import sys

Append the system path to include the

location of Keysight SD1 Programming Libraries then import the library
sys.path.append('C:\Program Files (x86)\Keysight\SD1\Libraries\Python")
import keysightSD1 # Import Python SD1 library and AWG/Digitizer commands.

Specify values for variables
product = 'M3202A' # Product's model number

chassis =1 # Chassis number holding product

slot = 4 # Slot number of product in chassis

channel =1 # Channel being used

amplitude = 0.1 # (Unit: Vpp) Amplitude of AWG output signal (0.1 Vpp)
frequency = le6 # (Unit: Hz) Frequency of AWG output signal (1 MHz)
waveshape = keysightSD1.SD_Waveshapes.AOU_SINUSOIDAL # Specify sine wave

- S

Select settings and use specified variables

awg = keysightSD1.SD_AOU() # Creates SD_AOU object called awg

awg.openWithSlot(product, chassis, slot) # Connects awg object to module
awg.channelAmplitude(channel, amplitude) # Sets output amplitude for awg
awg.channelFrequency(channel, frequency) # Sets output frequency for awg
awg.channelWaveShape(channel, waveshape) # Sets output signal type for awg

Start playing the sine wave on the specified channel
awg.AWGstart(channel)

Keysight M3201A/M3202A PXle AWG User's Guide 63

4 Using Keysight SD1 Programming Libraries

(Optional) Example: To vary the amplitude of the sine wave
import time

amps = [0.1, 0.2, 0.3, 0.4, 0.1]
def varyAmplitude():
for amplitude in amps:
time.sleep(3) # Add delays before amplitude changes
awg.channelAmplitude(channel, amplitude)

(Optional) Example: To vary the frequency of the sine wave
freqs = [le6, 2e6, 3e6, 4e6, le6]
def varyFrequency():
for frequency in freqgs:
time.sleep(3) # Add delays before frequency changes
awg.channelFrequency(channel, frequency)

varyAmplitude()
varyFrequency ()

Close the connection between the AWG object and the physical AWG hardware
awg.close()

© Keysight Technologies, 2018

All rights reserved.

You have a royalty-free right to use, modify, reproduce

and distribute this Sample Application (and/or any modified
version) in any way you find useful, provided that

you agree that Keysight Technologies has no warranty,
obligations or liability for any Sample Application Files.

+*

Keysight Technologies provides programming examples

for illustration only. This sample program assumes that
you are familiar with the programming language being
demonstrated and the tools used to create and debug
procedures. Keysight Technologies support engineers can
help explain the functionality of Keysight Technologies
software components and associated commands, but they
will not modify these samples to provide added
functionality or construct procedures to meet your
specific needs.

HoH HHHHHHEHHHHHHEHHHEH

+*

64 Keysight M3201A/M3202A PXle AWG User's Guide

4 Using Keysight SD1 Programming Libraries

4. 2.3 Example Program Using Python to Produce a Sawtooth Wave
from an Array

This example program shows Python using the Keysight SD1 Programming Libraries
to produce a Sawtooth Wave out of Keysight M3202A PXle AWG's channel 1.

Python - Sample Application to set up the AWG
to output an array that was created with numpy.

Import required system components
import sys

Append the system path to include the

location of Keysight SD1 Programming Libraries then import the library
sys.path.append('C:\Program Files (x86)\Keysight\SD1\Libraries\Python")
import keysightSD1 # Import Python SD1 library and AWG/Digitizer commands.
import numpy # Import numpy which is used to make an array

Specify values for variables
product = 'M3202A' # Product's model number

chassis =1 # Chassis number holding product

slot = 4 # Slot number of product in chassis

channel =1 # Channel being used

amplitude = 0.1 # (Unit: Vpp) Amplitude of AWG output signal (0.1 Vpp)
waveshape = keysightSD1.SD_Waveshapes.AOU_AWG # Specify AWG output

delay = 0 # (Unit: ns) Delay after trigger before generating output.

cycles = @ # Number of cycles. Zero specifies infinite cycles.
Otherwise, a new trigger is required to actuate each cycle
prescaler = @ # Integer division reduces high freq signals to lower frequency

B oo -
Select settings and use specified variables
awg = keysightSD1.SD_AOU() # Creates SD_AOU object called awg

awg.openWithSlot(product, chassis, slot) # Connects awg object to module
awg.channelAmplitude(channel, amplitude) # Sets output amplitude for awg
awg.channelWaveShape(channel, waveshape) # Sets output signal type for awg

awg.waveformFlush() # Cleans the queue
awg.AWGflush(channel) # Stops signal from outputing out of channel 1

Create an array that represents a sawtooth signal using "numpy"
array = numpy.zeros(1000) # Create array of zeros with 1000 elements
array[@] = -0.5 # Initialize element @ as -0.5

for i in range(1, len(array)): # This for..loop will increment from -0.5
array[i] = array[i-1] + .001 # Increment by .001 every iteration

wave = keysightSD1.SD_Wave() # Create SD_Wave object and call it "wave"
(will place the array inside "wave"

error = wave.newFromArrayDouble(keysightSD1.SD_WaveformTypes.WAVE_ANALOG,
array.tolist()) # Place the array into the "wave" object

Keysight M3201A/M3202A PXle AWG User's Guide 65

4 Using Keysight SD1 Programming Libraries

66

wavelD = @ # This number is arbitrary and used to identify the waveform

awg.waveformLoad(wave, waveID) # Load the "wave" object and give it an ID
awg . AWGqueueWaveform(channel, waveID, keysightSD1.SD_TriggerModes.SWHVITRIG,
delay, cycles, prescaler) # Queue waveform to prepare it to be output

awg.AWGstart(channel) # Start the AWG
awg.AWGtrigger(channel) # Trigger the AWG to begin

Close the connection between the AWG object and the physical AWG hardware.
awg.close()

© Keysight Technologies, 2018

All rights reserved.

You have a royalty-free right to use, modify, reproduce

and distribute this Sample Application (and/or any modified
version) in any way you find useful, provided that

you agree that Keysight Technologies has no warranty,
obligations or liability for any Sample Application Files.

Keysight Technologies provides programming examples

for illustration only. This sample program assumes that
you are familiar with the programming language being
demonstrated and the tools used to create and debug
procedures. Keysight Technologies support engineers can
help explain the functionality of Keysight Technologies
software components and associated commands, but they
will not modify these samples to provide added
functionality or construct procedures to meet your
specific needs.

HoH HHHHHHEHHHHEHEHEHHHEH

Keysight M3201A/M3202A PXle AWG User's Guide

5 Keysight SD1 Command Reference

5 Keysight SD1T Command Reference

This chapter contains the following sections:

— Keysight Supplied Native Programming Libraries on page 67

— Support for Other Programming Languages on page 68

= Functions in SD1 Programming Libraries on page 69
— SD_Module Functions on page 72
— SD_AOU Functions on page 82
- SD_Wave Functions (new and delete) on page 140
— SD_Module Functions (M3601A HVI-related) on page 143
- SD_Module Functions (M3602A FPGA-related) on page 147

Programs can run on an embedded controller or desktop computer and be controlled
with Keysight SD1 Programming Libraries. Keysight supplies a comprehensive set of
highly optimized software instructions that controls off-the-shelf functionalities of
Keysight hardware. These software instructions are compiled into the Keysight SD1
Programming Libraries. The use of customizable software to create user-defined
control, testand measurement systems is commonly referred as Virtual
Instrumentation. In Keysight documentation, the concept of a Virtual Instrument (or
V1) describes user software that uses programming libraries and is executed by a
computer.

5.1 Keysight Supplied Native Programming Libraries

Keysight provides ready-to-use native programming libraries for a comprehensive set
of programming languages, such as C, C++, Visual Studio (VC++, C#, VB), MATLAB,
National Instruments LabVIEW, Python, etc., ensuring full software compatibility and
seamless multivendor integration. Ready-to-use native libraries are supplied for the
following programming languages and compilers:

Language Compiler Library Files
C Microsoft Visual Studio . NET NET Library *dll
MinGW (Qt), GCC C Library *h, *.a
Any C compiler C Library *h, *lib
C++ Microsoft Visual Studio . NET NET Library *dll
MinGW (Qt), GCC C++ Library *h,*a
C++ Builder / Turbo C++ C++ Library *h, *lib
C# Microsoft Visual Studio .NET NET Library *dll
MATLAB MathWorks MATLAB NET Library *dll
Python Any Python compiler Python Library *.py
Basic Microsoft Visual Studio .NET NET Library *dll
LabVIEW National Instruments LabVIEW LabVIEW Library Vi

Keysight M3201A/M3202A PXle AWG User's Guide 67

5 Keysight SD1 Command Reference

68

b. 2 Support for Other Programming Languages

Keysight provides dynamic libraries, e.g. DLLs, that can be used in virtually any
programming language. Dynamic-link libraries are compatible with any programming
language that has a compiler capable of performing dynamic linking. Here are some
case examples:

- Compilers not listed above.

= Other programming languages: Java, PHP, Perl, Fortran, Pascal.

— Computer Algebra Systems (CAS): Wolfram Mathematica, Maplesoft Maple.
Dynamic-link libraries available:

Exported Functions Language Operating System Files
C Microsoft Windows *dll

DLL function prototypes: The exported functions of the dynamic
libraries have the same prototype as their counterparts of the
static libraries.

Function Parameters: Some of the parameters of the library
functions are language dependent. The table of input and output
parameters for each function is a conceptual description,
therefore, the user must check the specific language function to
see how to use it. One example are the ID parameters (modulelD,
etc.), which identify objects in non object-oriented languages. In
object-oriented languages, the objects are identified by their
instances and therefore the IDs are not present.

Function Names: Some programming languages like C++ or
LabVIEW have a feature called function overloading or
polymorphism, that allows creating several functions with the
same name, but with different input/output parameters. In
languages without this feature, functions with different
parameters must have different names.

Keysight M3201A/M3202A PXle AWG User's Guide

5 Keysight SD1 Command Reference

5. 3 Functionsin SD1 Programming Libraries

The following functions are available in Keysight SD1 Programming Libraries.

SD_Module Functions on page 72

Function Name
open on page 72

Comments
Initializes a hardware module and must be called before using
any other module-related function.

close on page 74

Releases all resources that were allocated for a module with
open on page 72 and must always be called before exiting the
application.

moduleCount on page 75

Returns the number of Keysight SD1 modules in the system.

getProductName on page 76

Returns the product name of the specified module.

getSerialNumber on page 77

Returns the serial number of the specified module.

getChassis on page 78

Returns the chassis number of where a module is located.

getSlot on page 79

Returns the slot number of where a module is located.

PXItriggerWrite on page 80

Sets the digital value of a PXI trigger in the PXI backplane.
Only available in PXI/PXI Express form factors.

PXItriggerRead on page 81

SD_AOU Functions on page 82

Function Name
channelWaveShape on page 82

Reads the digital value of a PXI trigger in the PXI backplane.
Only available in PXI/PXI Express form factors.

Comments
Sets the channel waveshape type.

channelFrequency on page 84

Sets the channel frequency for the periodic signal generated
by the Function Generator.

channelPhase on page 85

Sets the channel phase for the periodic signals generated by
the Function Generator.

channelPhaseReset on page 86

Resets the accumulated phase of the selected channel.

channelPhaseResetMultiple on page 87

Resets the accumulated phase of multiple selected
channels, simultaneously.

channelAmplitude on page 88

Sets the amplitude of a channel.

channelOffset on page 89

Sets the DC offset of a channel.

modulationAngleConfig on page 90

Configures the modulation in frequency/phase for the
selected channel.

modulationAmplitudeConfig on page 92

Configures the modulation in amplitude/offset for the
selected channel.

modulationlQconfig on page 94

Sets the 1Q modulation for the selected channel.

clocklOconfig on page 95

Configures the operation of the clock output connector.

waveformLoad on page 96

Loads a waveform into the module's onboard RAM.

waveformRelLoad on page 98

Replaces a waveform located in the module's onboard RAM.

waveformFlush on page 100

Deletes all waveforms from the module's onboard RAM and
flushes all AWG queues.

AWG on page 101

Provides a one-step method to load, queue, and start a

Keysight M3201A/M3202A PXle AWG User's Guide

69

5 Keysight SD1 Command Reference

Function Name

Comments
single waveform.

AWGqueueWaveform on page 104

Queues a waveform in the specified AWG.

AWGflush on page 106

Empties the queue of the AWG.

AWGstart on page 107

Runs the AWG starting from the beginning of its queue.

AWGstartMultiple on page 109

Runs the AWG starting from the beginning of its queue, but
acting on more than one AWG at once.

AWGpause on page 110

Pauses the AWG.

AWGpauseMultiple on page 111

Pauses the AWG, but acting on more than one AWG at
once.

AWGresume on page 112

Resumes the AWG.

AWGresumeMultiple on page 113

Resumes the AWG, but acting on more than one AWG at
once.

AWGstop on page 114

Stops the AWG, resetting the queue to its initial position.

AWGstopMultiple on page 115

Stops the AWG, but acting on more than one AWG at once.

AWGreset on page 116

Resets the pointer variable that manages the AWG queue.

AWGjumpNextWaveform on page 117

Forces the AWG to jump to the next waveform in the queue.

AWGjumpNextWaveformMultiple
on page 118

Forces the AWG to jump to the next waveform in the queue,
but acting on more than one AWG at once.

AWGisRunning on page 119

Returns if the AWG is running or stopped.

AWGNnWFplaying on page 120

Returns if the AWG is running or stopped, but acting on
more than one AWG at once.

AWGtriggerExternalConfig on page 121

Configures the external triggers of the AWG.

AWGtrigger on page 123

Triggers the AWG.

AWGtriggerMultiple on page 124

Triggers the AWG, but acting on more than one AWG at
once.

triggerlOconfig on page 125

Configures the trigger line direction.

triggerlOwrite on page 126

Sets the trigger output.

triggerlOread on page 128

Reads the trigger input.

clockSetFrequency (Requires Option CLV)
on page 129

Sets the module clock frequency. This function is only
usable for modules with the variable clock Option CLV.

clockGetFrequency on page 131

Returns the value in Hz of the module sample rate
frequency.

clockGetSyncFrequency on page 132

Returns the frequency of the internal CLKsync signal in Hz.

clockResetPhase on page 133

Set modules in sync state, waiting for first trigger to reset
the phase of the internal clocks CLKsync and CLKsys.

AWGqueueConfig on page 135

Configures the cyclic mode of the queue.

AWGqueueConfigRead on page 136

Reads the value of the cyclic mode of the queue.

AWGqueueMarkerConfig on page 137

Configures the Marker generation for each AWG.

AWGqueueSyncMode on page 139

Configures the sync mode of the queue.

SD_Wave Functions (new and delete) on page 140

Function Name Comments
new on page 140 Creates a new waveform object in the PC RAM from a file or from
an array.

70 Keysight M3201A/M3202A PXle AWG User's Guide

5 Keysight SD1 Command Reference

Function Name Comments
delete on page 142 Deletes the waveform object from the PC RAM.

SD_Module Functions (M3601A HVI-related) on page 143

Function Name Comments

writeRegister on page 143 Writes a value in an HVI register of a hardware module
(Option HV1 required).

readRegister on page 145 Reads a value from an HVI register of a hardware module

(Option HV1 required).

SD_Module Functions (M3602A FPGA-related) on page 147

Function Name Comments

FPGAwritePCport on page 147 Writes data at the PCport FPGA block
(Option FP1 required).

FPGAreadPCport on page 149 Reads data at the PCport FPGA block
(Option FP1 required).

FPGAload on page 151 Loads a bitstream file generated using M3602A software to
FPGA (Option FP1 required).

FPGAreset on page 152 Sends a reset signal to FPGA

(Option FP1 required).

Keysight M3201A/M3202A PXle AWG User's Guide 71

5 Keysight SD1 Command Reference

72

H.3.1T SD_Module Functions

5.3. 1.1 open

Initializes a hardware module and must be called before using any other module-
related function.

A module can be opened using the serial number or the chassis and slot number.
Using the serial number ensures the same module is always opened regardless of its
chassis or slot location.

Parameters

Name Description
Inputs
productName ~ Module's product name (for example, "M3202A").
The product name can be found on the product
or can be retrieved with getProductName on page 76.
serialNumber ~ Module's serial number (for example, "ES5641").
The serial number can be found on the product
or can be retrieved with getSerialNumber on page 77.
chassis Chassis number where the module is located.
The chassis number can be found in Keysight SD1 software
or can be retrieved with getChassis on page 78.

slot Slot number in the chassis where the module is located.
The slot number can be found on the chassis
or can be retrieved with getSlot on page 79.

compatibility Forces the channel numbers to be compatible with legacy models.
Channel numbering (channel enumeration) can start as CHO or CH1.
See Channel Numbering and Compatibility Mode on page 4.

errorin (LabVIEW only) If it contains an error, the function will not be executed
and errorln will be passed to errorOut

Outputs

modulelD (Non-object-oriented languages only) Module identifier
or a negative number that indicates an error, see Error
Codes on page 153.

errorOut See Error Codes on page 153

C

int SD_Module_openWithSerialNumber(const char* productName, const char*
serialNumber);

int SD_Module_openWithSlot(const char* productName, int chassis, int slot);

int SD_Module_openWithSerialNumberCompatibility(const char* productName,
const char* serialNumber, int compatibility);

int SD_Module_openWithSlotCompatibility(const char* productName, int chassis,
int slot, int compatibility);

Keysight M3201A/M3202A PXle AWG User's Guide

5 Keysight SD1 Command Reference

C++

int SD_Module: :open(const char* productName, const char* serialNumber);
int SD_Module: :open(const char* productName, int chassis, int slot);

int SD_Module: :open(const char* productName, const char* serialNumber, int
compatibility);

int SD_Module::open(const char* productName, int chassis, int slot, int
compatibility);

Visual Studio .NET, MATLAB

int SD_Module: :open(string productName, string serialNumber);
int SD_Module: :open(string productName, int chassis, int slot);

int SD_Module: :open(string productName, string serialNumber, int
compatibility);

int SD_Module: :open(string productName, int chassis, int slot, int
compatibility);

Python

SD_Module.openWithSerialNumber (productName, serialNumber)
SD_Module.openWithSlot(productName, chassis, slot)

SD_Module.openWithSerialNumberCompatibility(productName, serialNumber,
compatibility)

SD_Module.openWithSlotCompatibility(productName, chassis, slot,

compatibility)
LabVIEW
openWithSerialNumber.vi
openWithSerialNumber.vi
partNumber modulelD
serialNumber : errorOut
errorin ==
openWithSlot.vi
openWithSlot.vi
partNumber modulelD
nChassis
errorOut

nSlot
errorin

M360TA
Available: No

Keysight M3201A/M3202A PXle AWG User's Guide 73

5 Keysight SD1 Command Reference

74

H.3.1.2 close

Releases all resources that were allocated for a module with open on page 72
and must always be called before exiting the application.

Parameters

Name Description
Inputs

modulelD (Non-object-oriented languages only) Module identifier, returned by open on page 72

errorin (LabVIEW only) If it contains an error, the function will not be executed and errorln will be

passed to errorOut.

Outputs

errorOut ~ See Error Codes on page 1563

C
int SD_Module close(int modulelD);

C++

int SD Module: :close();

Visual Studio .NET, MATLAB
int SD Module: :close();

Python
SD_Module.close()

LabVIEW

close.vi

modulelD
errorin

errorQut

M3601TA
Available: No

Keysight M3201A/M3202A PXle AWG User's Guide

5 Keysight SD1 Command Reference

5.3. 1.3 moduleCount
Returns the number of Keysight SD1 modules (M31xxA/M32xxA/M33xxA) installed in

the system.
Static Function: (Object-oriented languages only)
moduleCount is a static function
Parameters
Name Description
Inputs
errorin (LabVIEW only) If it contains an error, the function will not be executed and errorin will be
passed to errorOut
Outputs
nModules Number of Keysight SDT modules installed in the system.
Negative numbers indicate an error, see Error Codes on page 153.
errorOut (LabVIEW only) See Error Codes on page 153
C

int SD_Module moduleCount();

C++

int SD_Module: :moduleCount();

Visual Studio .NET, MATLAB
int SD_Module: :moduleCount();

Python
SD_Module.moduleCount()

LabVIEW
Available: No

M3601TA
Available: No

Keysight M3201A/M3202A PXle AWG User's Guide 75

5 Keysight SD1 Command Reference

76

5.3. 1.4 getProductName

Returns the product name of the specified module.

NOTE Static Function: (Object-oriented languages only)
getProductName is a static function

Parameters

Name Description

Inputs

index Module index. It must be in the range (0 to nModules-1),
where nModules is returned by moduleCount on page 75.

chassis Chassis number where the module is located.
The chassis number can be found in Keysight SD1 software
or can be retrieved with getChassis on page /8.

slot Slot number in the chassis where the module is located.

The slot number can be found on the chassis
or can be retrieved with getSlot on page 79.

errorin (LabVIEW only) If it contains an error, the function will not be
executed and errorln will be passed to errorOut.

Outputs
productName Product name of the specified module.
This product name can be used in open on page 72.
errorOut See Error Codes on page 153
C

int SD_Module_getProductNameByIndex(int index, char *productName);
int SD_Module_ getProductNameBySlot(int chassis, int slot, char* productName);

C++

int SD_Module::getProductName(int index, char *productName);
int SD_Module::getProductName(int chassis, int slot, char* productName);

Visual Studio .NET, MATLAB

int SD_Module::getProductName(int index, string productName);
int SD_Module::getProductName(int chassis, int slot, string productName);

Python

SD_Module.getProductNameByIndex(index, productName)
SD_Module.getProductNameBySlot(chassis, slot, productName)

LabVIEW
Available: No

M360TA
Available: No

Keysight M3201A/M3202A PXle AWG User's Guide

5 Keysight SD1 Command Reference

5.3. 1.5 getSerialNumber

Returns the serial number of the specified module.

Static Function: (Object-oriented languages only)
getSerialNumber is a static function

Parameters

Name Description

Inputs

index Module index. It must be in the range (0 to nModules-1),
where nModules is returned by moduleCount on page 75.

chassis Chassis number where the module is located.

The chassis number can be found in Keysight SD1 software
or can be retrieved with getChassis on page 78.
slot Slot number in the chassis where the module is located.
The slot number can be found on the chassis
or can be retrieved with getSlot on page 79.
errorin (LabVIEW only) If it contains an error, the function will not be executed
and errorln will be passed to errorOut

Outputs
serialNumber Serial number of the specified module.
This serial number can be used in open on page 72.

errorOut See Error Codes on page 153

C

int SD_Module_getSerialNumberByIndex(int index, char *serialNumber);
int SD_Module_getSerialNumberBySlot(int chassis, int slot, char*
serialNumber);

C++

int SD_Module::getSerialNumber(int index, char *serialNumber);
int SD_Module::getSerialNumber(int chassis, int slot, char* serialNumber);

Visual Studio .NET, MATLAB

int SD_Module::getSerialNumber(int index, string serialNumber);
int SD_Module::getSerialNumber(int chassis, int slot, string serialNumber);

Python

SD_Module.getSerialNumberByIndex(index, serialNumber)
SD_Module.getSerialNumberBySlot(chassis, slot, serialNumber)

LabVIEW
Available: No

M360TA
Available: No

Keysight M3201A/M3202A PXle AWG User's Guide 77

5 Keysight SD1 Command Reference

5.3. 1.6 getChassis

Returns the chassis number of where a module is located.

Static Function: (Object-oriented languages only)
getChassis is a static function

Parameters

Name Description

Inputs

index Module index. It must be in the range (0 to nModules-1),
where nModules is returned by moduleCount on page 75.

errorin (LabVIEW only) If it contains an error, the function will not be executed and
errorin will be passed to errorOut.

Outputs

chassis Chassis number of where a module is located.

Negative numbers indicate an error, see Error Codes on page 153.
errorQut (LabVIEW only) See Error Codes on page 153

C
int SD_Module_getChassis(int index);

C++

int SD_Module::getChassis(int index);

Visual Studio .NET, MATLAB
int SD_Module::getChassis(int index);

Python

SD_Module.getChassis()
SD_Module.getChassisByIndex(index)

LabVIEW
Available: No

M360TA
Available: No

78 Keysight M3201A/M3202A PXle AWG User's Guide

5 Keysight SD1 Command Reference

5.3. 1.7 getSlot

Returns the slot number of where a module is located in the chassis.

Static Function: (Object-oriented languages only)
getSlot is a static function

Parameters

Name Description

Inputs

index Module index. It must be in the range (0 to nModules-1)
where nModules is returned by moduleCount on page 75.

errorln (LabVIEW only) If it contains an error, the function will not be executed and errorin will be passed
to errorOut

Outputs

slot Slot number of where the module is located in the chassis.
Negative numbers indicate an error, see Error Codes on page 153.

errorOut (LabVIEW only) See Error Codes on page 153

C
int SD_Module_getSlot(int index);

C++

int SD_Module::getSlot(int index);

Visual Studio .NET, MATLAB
int SD_Module::getSlot(int index);

Python

SD_Module.getSlot()
SD_Module.getSlotByIndex(index)

LabVIEW
Available: No

M360TA
Available: No

Keysight M3201A/M3202A PXle AWG User's Guide 79

5 Keysight SD1 Command Reference

5.3. 1.8 PXltriggerWrite

Sets the digital value of a PXI trigger in the PXI backplane.
This function is only available in PXI/PXI Express form factors.

Parameters

Name Description

Inputs

modulelD (Non-object-oriented languages only)
Madule identifier, returned by open on page 72.

nPXItrigger PXI trigger number
Option Description Name Value
External TheAWG triggerisa TRG connector/line TRIG_ 0
170 ofthemodule. PXIform factor only: this EXTERNAL
Trigger trigger can be synchronized to CLK10.
PXI PXI form factor only. TRIG_PXI 4000 +
Trigger Selects between trigger lines on the +Trigger Trigger
[0ton] backplaneor the PXI chassis. No. No.
See also, table after AWG External Trigger Source on page 17

value Digital value with negated logic: 0 (ON) or T (OFF)

errorin (LabVIEW only) If it contains an error, the function will not be
executed and errorln will be passed to errorOut.

Outputs

modulelDOut (LabVIEW only) A copy of modulelD

errorOut See Error Codes on page 153

C

int SD_Module PXItriggerWrite(int moduleID, int nPXItrigger, int value);

C++

int SD_Module: :PXItriggerWrite(int nPXItrigger, int value);

Visual Studio .NET, MATLAB
int SD_Module: :PXItriggerWrite(int nPXItrigger, int value);

Python
SD_Module.PXItriggerWrite(nPXItrigger, value)

LabVIEW
Available: No

M360TA
Available: No

80 Keysight M3201A/M3202A PXle AWG User's Guide

5 Keysight SD1 Command Reference

5.3. 1.9 PXltriggerRead

Reads the digital value of a PXI trigger in the PXI backplane.
This function is only available in PXI/PXI Express form factors.

Parameters

Name Description

Inputs

modulelD (Non-object-oriented languages only)
Madule identifier, returned by open on page 72

nPXltrigger PXI trigger number
Option Description Name Value
External TheAWGtriggerisa TRG connector/line TRIG_ 0
170 ofthe module. PXI form factor only: this ~ EXTERNAL
Trigger trigger can be synchronized to CLK10.
PXI PXIform factor only. The AWG external ~ TRIG_PXI 4000 +
Trigger triggeris a PXItrigger lineand is syn- +Trigger Trigger
[0ton] chronized to CLK10. No. No.
See also, table after AWG External Trigger Source on page 17

errorin (LabVIEW only) If it contains an error, the function will not be
executed and errorin will be passed to errorQOut.

Outputs

modulelDOut (LabVIEW only) A copy of modulelD

value Digital value with negated logic: 0 (ON) or T (OFF).
Negative numbers indicate an error, see Error Codes on page 153.

errorOut See Error Codes on page 153

C

int SD_Module_PXItriggerRead(int moduleID, int nPXItrigger);

C++

int SD_Module_PXItriggerRead(int moduleID, int nPXItrigger);

Visual Studio .NET, MATLAB
int SD_Module: :PXItriggerRead(int nPXItrigger);

Python
SD_Module.PXItriggerRead(nPXItrigger, value)

LabVIEW
Available: No

M360TA

Available: No
(The value can be accessed using math operations: for example, MathAssign.)

Keysight M3201A/M3202A PXle AWG User's Guide 81

5 Keysight SD1 Command Reference

82

H.3.2 SD_AQOU Functions

5.3.2. 1 channelWaveShape

Sets the waveshape type for the selected channel.

Parameters
Name Description
Inputs

modulelD (Non-object-oriented languages only)
Madule identifier, returned by open on page 72

nChannel Channel number

waveShape Channel waveshape type

waveShape Description Name Value

HIZ The outputsignal is setto HIZ AQU_HIZ -1
(No outputsignalis provided.) *

No Signal Theoutputsignalis setto 0. AQU_OFF (default) 0
All other channel settings are maintained.

Sinusoidal ~ Generated by the Function Generator AOU_SINUSOIDAL 1

Triangular Generated by the Function Generator AOU_TRIANGULAR 2

Square Generated by the Function Generator AOU_SQUARE 4

DC Voltage Generated by the Amplitude Modulator AOU_DC 5

Arbitrary Generated by the Arbitrary Waveform Generator AOU_AWG 6

Waveform See AWG Waveform Types on page 21.

Partner Only for odd channels. Itis the outputof the AOU_PARTNER 8

Channel previous channel (to create differential signals, etc.)

*Only available for Keysight M3202A PXle AWG model

errorin (LabVIEW only) If it contains an error, the function will not be executed and errorln will be
passed to errorOut.

Outputs

modulelDout (LabVIEW only) A copy of modulelD

errorQOut See Error Codes on page 153

Keysight M3201A/M3202A PXle AWG User's Guide

5 Keysight SD1 Command Reference

C
int SD_AOU_channelWaveShape(int moduleID, int nChannel, int waveShape);

C++

int SD_AOU::channelWaveShape(int nChannel, int waveShape);

Visual Studio .NET, MATLAB
int SD_AOU: :channelWaveShape(int nChannel, int waveShape);

Python
SD_AOU. channelWaveShape(nChannel, waveShape)

LabVIEW

channelWaveShape.vi

channelWaveShape.vi

modulelD
nChannel
waveShape
errorln

modulelDOut

errorQut

M3601A

Available: Yes

Keysight M3201A/M3202A PXle AWG User's Guide 83

5 Keysight SD1 Command Reference

5. 3. 2.2 channelFrequency

Sets the frequency, for the selected channel, of the periodic signals generated by the
Function Generator block.

Parameters
Name Description
Inputs

modulelD (Non-object-oriented languages only)
Madule identifier, returned by open on page 72

nChannel Channel number

frequency Frequency in Hz.
(Refer to the product's datasheet for frequency specifications.)

errorin (LabVIEW only) If it contains an error, the function will not be executed and errorln will be
passed to errorOut.

Outputs

modulelDout (LabVIEW only) A copy of modulelD

errorOut See Error Codes on page 1563

C
int SD_AOU_channelFrequency(int moduleID, int nChannel, double frequency);

C++

int SD_AOU: :channelFrequency(int nChannel, double frequency);

Visual Studio .NET, MATLAB
int SD_AOU: :channelFrequency(int nChannel, double frequency);

Python
SD_AOU.channelFrequency(nChannel, frequency)

LabVIEW

channelFrequency.vi

channelFrequency.vi

modulelD
nChannel
frequency
errorin

modulelDOut

errorQut

M3601TA
Available: Yes

84 Keysight M3201A/M3202A PXle AWG User's Guide

5 Keysight SD1 Command Reference

H.3.2.3 channelPhase

Sets the phase, for the selected channel, of the periodic signals generated by the
Function Generator block.

Parameters
Name Description
Inputs

modulelD (Non-object-oriented languages only)
Madule identifier, returned by open on page 72

nChannel Channel number
phase Phase in degrees.
(Refer to the product's datasheet for phase specifications.)
errorin (LabVIEW only) If it contains an error, the function will not be executed and errorln will be

passed to errorOut.

Outputs
modulelDout (LabVIEW only) A copy of modulelD
errorQOut See Error Codes on page 153

C
int SD_AOU_channelPhase(int moduleID, int nChannel, double phase);

C++

int SD_AOU::channelPhase(int nChannel, double phase);

Visual Studio .NET, MATLAB
int SD_AOU::channelPhase(int nChannel, double phase);

Python
SD_AOU. channelPhase(nChannel, phase)

LabVIEW

channelPhase.vi

channelPhase.vi

modulelD
nChannel
phase
errorin

modulelDOut

errorQut

M360TA

Available: Yes

Keysight M3201A/M3202A PXle AWG User's Guide 85

5 Keysight SD1 Command Reference

86

H.3. 2.4 channelPhaseReset

Resets the accumulated phase for the selected channel. The accumulated phase is
the result of the phase continuous operation of the Function Generator block.

Parameters
Name Description
Inputs

modulelD (Non-object-oriented languages only)
Madule identifier, returned by open on page 72

nChannel Channel to reset

errorin (LabVIEW only) If it contains an error, the function will not be executed and errorln will be
passed to errorOut.

Outputs

modulelDout (LabVIEW only) A copy of modulelD
errorOut See Error Codes on page 1563

C

int SD_AOU_channelPhaseReset(int moduleID, int nChannel);

C++

int SD_AOU: :channelPhaseReset(int nChannel);

Visual Studio .NET, MATLAB
int SD_AOU::channelPhaseReset(int nChannel);

Python
SD_AOU.channelPhaseReset(nChannel)

LabVIEW

channelPhaseReset.vi

channelPhaseReset.vi

modulelD
nChannel

errorin ==

modulelDOut

errorQut

M3601TA
Available: Yes

Keysight M3201A/M3202A PXle AWG User's Guide

5 Keysight SD1 Command Reference

b. 3. 2.5 channelPhaseResetMultiple

Resets the accumulated phase of multiple selected channels, simultaneously.
This accumulated phase is the result of the phase continuous operation of each
channel's Function Generator block.

Parameters

Name Description

Inputs

modulelD (Non-object-oriented languages only)
Module identifier, returned by open on page 72

channelMask Mask to select the channels to reset
(LSB is channel 1, bit 1is channel 2, and so forth)

errorin (LabVIEW only) If it contains an error, the function will not be executed and errorin will be
passed to errorOut.

Outputs

modulelDout (LabVIEW only) A copy of modulelD
errorQOut See Error Codes on page 153

C

int SD_AOU_channelPhaseResetMultiple(int moduleID, int channelMask);

C++

int SD_AOU: :channelPhaseResetMultiple(int channelMask);

Visual Studio .NET, MATLAB
int SD_AOU: :channelPhaseResetMultiple(int channelMask);

Python
SD_AOU.channelPhaseResetMultiple(channelMask)
LabVIEW
channelPhaseResetMultiple.vi
channelPhaseResetMultiple.vi
modulelD modulelDOut
channelMask enorOut

errorln ===

M360TA

Available: No
(Multiple PhaseReset from different channels can be executed at once.)

Keysight M3201A/M3202A PXle AWG User's Guide 87

5 Keysight SD1 Command Reference

88

5.3.2.6 channelAmplitude

Sets the amplitude of a channel.
See Channel Amplitude and DC Offset on page 10.

Parameters
Name Description
Inputs

modulelD (Non-object-oriented languages only)
Madule identifier, returned by open on page 72

nChannel Channel number

amplitude Amplitude in volts (-1.5V to 1.5V)

errorin (LabVIEW only) If it contains an error, the function will not be executed and errorln will be
passed to errorOut.

Outputs

modulelDout (LabVIEW only) A copy of modulelD

errorOut See Error Codes on page 153

C
int SD_AOU_channelAmplitude(int moduleID, int nChannel, double amplitude);

C++

int SD_AOU: :channelAmplitude(int nChannel, double amplitude);

Visual Studio .NET, MATLAB
int SD_AOU: :channelAmplitude(int nChannel, double amplitude);

Python
SD_AOU. channelAmplitude(nChannel, amplitude)
LabVIEW
channelAmplitude.vi
channelAmplitude.vi
modulelD modulelDOut
nChannel

. g Out
amplitude —'; s

errorin

M3601TA
Available: Yes

Keysight M3201A/M3202A PXle AWG User's Guide

5 Keysight SD1 Command Reference

5.3.2.7 channelOffset

Sets the DC offset of a channel.
See Channel Amplitude and DC Offset on page 10.

Parameters
Name Description
Inputs

modulelD (Non-object-oriented languages only)
Madule identifier, returned by open on page 72
nChannel Channel number

offset DC offset involts (-1.5Vt0 1.5 V)

errorin (LabVIEW only) If it contains an error, the function will not be executed and errorln will be
passed to errorOut.

Outputs

modulelDout (LabVIEW only) A copy of modulelD

errorOut See Error Codes on page 153

C

int SD_AOU_channelOffset(int moduleID, int nChannel, double offset);

C++

int SD_AOU::channelOffset(int nChannel, double offset);

Visual Studio .NET, MATLAB
int SD_AOU::channelOffset(int nChannel, double offset);

Python
SD_AOU.channelOffset(nChannel, offset)

LabVIEW

channelOffset.vi

channelOffset.vi

modulelD
nChannel
offset
errorin

modulelDOut

errorOut

M360TA
Available: Yes

Keysight M3201A/M3202A PXle AWG User's Guide 89

5 Keysight SD1 Command Reference

90

5. 3. 2.8 modulationAngleConfig

Configures the modulation in frequency or phase for the selected channel.
See Channel Frequency and Phase on page 9.

Parameters
Name Description
Inputs
modulelD (Non-object-oriented languages only)
Madule identifier, returned by open on page 72
nChannel Channel number

modulationType

Angle modulation options

Option Description Name Value
No Modulation is disabled AOU_MOD_OFF 0
Modulation (default)

Frequency The AWG is used to modulate the channel frequency AOU_MOD_FM 1
Modulation
Frequency The AWG is used to modulate the channel frequency AOU_MOD_FM_ 1

Modulation with 32 bitresolution 32b

(32 bits)

Phase The AWG is used to modulate the channel phase AOU_MOD_PM 2
Modulation

deviationGain

Gain for the normalized modulating signal

errorin (LabVIEW only) If it contains an error, the function will not be executed and errorin will be
passed to errorOut.

Outputs

modulelDout (LabVIEW only) A copy of modulelD

errorOut See Error Codes on page 153

C

int SD_AOU_modulationAngleConfig(int moduleID, int nChannel, int
modulationType, int deviationGain);

C++

int SD_AOU: :modulationAngleConfig(int nChannel, int modulationType, int
deviationGain);

Visual Studio .NET, MATLAB

int SD_AOU: :modulationAngleConfig(int nChannel, int modulationType, int
deviationGain);

Python

SD_AOU.modulationAngleConfig(nChannel, modulationType, deviationGain)

Keysight M3201A/M3202A PXle AWG User's Guide

5 Keysight SD1 Command Reference

LabVIEW

modulationAngleConfig.vi

modulationAngleConfig.vi

dulelD modulelDOut
nChannel
modulationType :
deviationGain — §
errorln ool

--------- errorQut

M3601TA
Available: Yes

Keysight M3201A/M3202A PXle AWG User's Guide 91

5 Keysight SD1 Command Reference

5. 3. 2.9 modulationAmplitudeConfig

Configures the modulation in amplitude or offset for the selected channel.
See Channel Amplitude and DC Offset on page 10.

Parameters

Name Description

Inputs

modulelD (Non-object-oriented languages only)
Madule identifier, returned by open on page 72

nChannel Channel number

modulationType Amplitude modulation options
Option Description Name Value
No Madulation is disabled. The channel amplitude and offset AOU_MOD_ 0
Modulation areonly setby the main registers. OFF (default)

Amplitude Themodulating signal is used to modulatethechannel ~ AOU_MOD_AM 1
Modulation amplitude

Offset The modulating signal is used to modulate thechannel ~ AOU_MOD_ 2
Modulation offset. OFFSET

deviationGain Gain for the normalized modulating signal
errorin (LabVIEW only) If it contains an error, the function will not be executed and errorin will be
passed to errorOut.

Outputs

modulelDout (LabVIEW only) A copy of modulelD
errorOut See Error Codes on page 153

C

int SD_AOU_modulationAmplitudeConfig(int moduleID, int nChannel, int
modulationType, int deviationGain);

C++

int SD_AOU: :modulationAmplitudeConfig(int nChannel, int modulationType, int
deviationGain);

Visual Studio .NET, MATLAB

int SD_AOU: :modulationAmplitudeConfig(int nChannel, int modulationType, int
deviationGain);

Python
SD_AOU.modulationAmplitudeConfig(nChannel, modulationType, deviationGain)

92 Keysight M3201A/M3202A PXle AWG User's Guide

5 Keysight SD1 Command Reference

LabVIEW
modulationAmplitudeConfig.vi
modulationAmplitudeConfig.vi
modulelD modulelDOut
nChannel
modulationType — [§ errorOut

deviationGain — |
errorln s

M3601TA
Available: Yes

Keysight M3201A/M3202A PXle AWG User's Guide 93

5 Keysight SD1 Command Reference

9%

5.3.2.10 modulationlQconfig

Configures the 1Q modulation for the selected channel.
See 1Q Modulation (Quadrature Modulator Block) on page 28.

Parameters
Name Description
Inputs

modulelD (Non-object-oriented languages only)
Madule identifier, returned by open on page 72

nChannel Channel number

enable Enable (value 1) or Disable (value 0) the 1Q modulation

errorin (LabVIEW only) If it contains an error, the function will not be executed and errorln will be
passed to errorOut.

Outputs

modulelDout (LabVIEW only) A copy of modulelD

errorOut See Error Codes on page 153

C
int SD_AOU_modulationIQconfig(int moduleID, int nChannel, int enable);

C++
int SD_AOU: :modulationIQconfig(int nChannel, int enable);

Visual Studio .NET, MATLAB
int SD-AOQU: :modulationIQconfig(int nChannel, int enable);

Python
SD_AOU.modulationIQconfig(nChannel, enable)
LabVIEW
modulationIQconfig.vi
modulationlQconfig.vi
modulelD modulelDOut
nChannel errorQut
enable

errorin

M3601TA
Available: No

Keysight M3201A/M3202A PXle AWG User's Guide

5 Keysight SD1 Command Reference

5.3.2. 11 clocklOconfig

Configures the operation of the clock output connector.
See CLK Output Options on page 33.

Parameters
Name Description
Inputs

modulelD (Non-object-oriented languages only)
Madule identifier, returned by open on page 72
clockConfig Enable (value 1) or Disable (value 0) clock connector

Option Description Value
Disable The CLK connector is disabled. 0
CLKref The reference clock is available at the CLK connector. 1
Output

errorin (LabVIEW only) If it contains an error, the function will not be executed and errorln will be
passed to errorOut.

Outputs

modulelDout (LabVIEW only) A copy of modulelD

errorOut See Error Codes on page 153

C

int SD_AOU_clockIOconfig(int moduleID, int clockConfig);

C++

int SD_AOU::clockIOconfig(int clockConfig);

Visual Studio .NET, MATLAB
int SD_AOU::clockIOconfig(int clockConfig);

Python
SD_AOU.clockIOconfig(clockConfig)

LabVIEW

clockIOconfig.vi

clocklOconfig.vi

modulelD
clockConfig —
errorln ==*

modulelDOut

errorQut

M3601TA
Available: No

Keysight M3201A/M3202A PXle AWG User's Guide 95

5 Keysight SD1 Command Reference

9%

h.3.2.12 waveformlLoad

Loads the specified waveform into the module's onboard RAM.
Waveforms must first be created with new on page 140.

Waveforms are loaded at different speeds depending on their length, longer
waveforms will load at a faster rate. (e.g. 1000 point waveforms will load at 2 MB/s,
waveforms with 10,000 points will load at 20 MB/s, and waveforms with 1,000,000
points will load at 44 MB/s). Regardless of waveform size, a maximum of 1024
waveforms can be loaded into the module's onboard RAM.

Parameters
Name Description
Inputs
modulelD (Non-object-oriented languages only) Module identifier, returned by open on page 72
waveformlID Waveform identifier
waveformObject ~ Pointer to the waveform object
waveformType Waveform type, used in the waveform file and in this function, defines the type of
waveform to create; this parameter is used to internally configure the AWG.
Option Description Name Value
Analog Analog normalized waveforms (-1to 1) defined with doubles WAVE_ 0
ANALOG
Analog Analog normalized waveforms (-1to 1) defined with doubles, ~ WAVE_ 7
Dual with two components (Aand B) ANALOG_
DUAL

[Q* Analog normalized waveforms (-1 to 1) defined with doubles, ~ WAVE_IQ 2
with two components (I and Q)

1Q Analog waveforms (-1to 1 module, -180to +180 phase) WAVE_ 3
Polar* defined with doubles, with two components (Magnitude and IQPOLAR
Phase)
Digital Digital waveforms defined with integers WAVE_ 5
DIGITAL

*When using 1Q or IQ Polar, each component will only play at a maximum rate of 500 MSa/s.

See AWG Waveform Types on page 21.

waveformPoints ~ Number of points of the waveform, which must be a multiple of a certain number of
paints. See AWG specifications.

waveformDataRaw Array with waveform points. In dual and 1Q waveforms, the waveform points
are interleaved (WaveformAO, WaveformBO, WaveformA1, etc.)

waveformNumber Waveform number to identify the waveform in subsequent related function calls. This
value must be in the (0 to n) range, and in order to optimize the memory usage, it
should be as low as possible

paddingMode If O, the waveform is loaded as is and the zeros are added at the end if the number of
points is not a multiple of the number required by the AWG.
If 1, the waveform is loaded n times (using DMA) until the total number of points is a
multiple of the number of points required by the AWG (only for waveforms with an even
number of points).

errorln (LabVIEW only) If it contains an error, the function will not be executed and errorin will
be passed to errorOut.

Keysight M3201A/M3202A PXle AWG User's Guide

5 Keysight SD1 Command Reference

Name Description
Outputs
modulelDOut (LabVIEW only) A copy of modulelD
availableRAM Available onboard RAM in waveform points,
or negative numbers that indicate an error, see Error Codes on page 153.
errorOut See Error Codes on page 153
C
int SD_AOU_waveformLoad(int moduleID, int waveformID, int waveformNumber, int
paddingMode);

int SD_AOU_waveformLoadArrayIntl6(int moduleID, int waveformType, int
waveformPoints, short *waveformDataRaw, int waveformNumber, int paddingMode);

C++

int SD_AOU: :waveformLoad(SD_Wave* waveformObject, int waveformNumber, int
paddingMode);

int SD_AOU: :waveformLoad(int waveformType, int waveformPoints, short*
waveformDataRaw, int waveformNumber, int paddingMode);

Visual Studio .NET, MATLAB

int SD_AOU: :waveformLoad(SD_Wave waveformObject, int waveformNumber, int
paddingMode);

int SD_AOU: :waveformLoad(int waveformType, short[] waveformDataRaw, int
waveformNumber, int paddingMode);

Python

SD_AOU.waveformLoad(waveformObject, waveformNumber, paddingMode)

SD_AOU.waveformLoadIntl6(waveformType, waveformDataRaw, waveformNumber,

paddingMode)
LabVIEW
waveformLoadWave.vi (Note that LabVIEW uses a different function name.)
waveformLoadWave.vi
modulelD modulelDOut

availableRAM
== errorQut

waveformNumber
waveform|D
errorin
paddingMode

M360TA
Available: No

Keysight M3201A/M3202A PXle AWG User's Guide 97

5 Keysight SD1 Command Reference

98

H.3.2.13 waveformReload

Replaces an existing waveform located in a module's onboard RAM. The size of the
new waveform must be smaller than or equal to the existing waveform.

Parameters

Name Description

Inputs

modulelD (Non-object-oriented languages only) Module identifier, returned by open on page 72
waveformID Waveform identifier, see SD_Wave Functions (new and delete) on page 140
waveformObject Pointer to the waveform object, see SD_Wave Functions (new and delete) on page 140
waveformType Waveform type, used in the waveform file and in this function, defines the type of

waveform to create; this parameter is used to internally configure the AWG.

Option Description Name Value
Analog Analog normalized waveforms (-1 to 1) defined with doubles ~ WAVE_ 0
ANALOG
Analog Analog normalized waveforms (-1 to 1) defined with doubles, ~ WAVE_ 7
Dual withtwo components (Aand B) ANALOG_
DUAL

[Q* Analog normalized waveforms (-1to 1) defined with doubles, ~ WAVE_IQ 2
with two components (I and Q)

1Q Analog waveforms (-1to 1 module, -180to +180 phase) WAVE_ 3
Polar* defined with doubles, with two components (Magnitude and IQPOLAR
Phase)
Digital Digital waveforms defined with integers WAVE_ 5
DIGITAL

*When using |Q or 1Q Polar, each component will only play at a maximum rate of 500 MSa/s.

See AWG Waveform Types on page 21.

waveformPoints

Number of points of the waveform, which must be a multiple of a certain number of
points. See AWG specifications.

waveformDataRaw Array with waveform points. In dual and |Q waveforms, the waveform points
are interleaved (WaveformAO, WaveformB0, WaveformA1, etc.).

waveformNumber — Waveform number to identify the waveform in subsequent related function calls.
This value must be in the (0 to n) range, and in order to optimize the memory usage, it
should be as low as possible.

paddingMode If O, waveform is loaded as is, and zeros are added at the end if the number of points is
nat a multiple of the number required by the AWG.
If 1, waveform is loaded n times (using DMA) until the total number of points is a
multiple of the number required by the AWG (only for waveforms with an even number
of points).

errorin (LabVIEW only) If it contains an error, the function will not be executed and errorln will
be passed to errorQOut.

Outputs

modulelDOut (LabVIEW only) A copy of modulelD

availableRAM Available onboard RAM in waveform points.
Negative numbers indicate an error, see Error Codes on page 153.

errorOut See Error Codes on page 153

Keysight M3201A/M3202A PXle AWG User's Guide

5 Keysight SD1 Command Reference

C

int SD_AOU_waveformReLoad(int moduleID, int waveformID, int waveformNumber,
int paddingMode);

int SD_AOU_waveformReLoadArrayIntl6(int moduleID, int waveformType, int
waveformPoints, short *waveformDataRaw, int waveformNumber, int paddingMode);

C++
int SD_AOU: :waveformReLoad(SD_Wave* waveformObject, int waveformNumber, int

paddingMode);

int SD_AOU: :waveformReLoad(int waveformType, int waveformPoints, short*
waveformDataRaw, int waveformNumber, int paddingMode);

Visual Studio .NET, MATLAB
int SD_AOU: :waveformReLoad(SD_Wave waveformObject, int waveformNumber, int

paddingMode);

int SD_AOU: :waveformReLoad(int waveformType, short[] waveformDataRaw, int
waveformNumber, int paddingMode);

Python

SD_AOU.waveformReLoad (waveformObject, waveformNumber, paddingMode)

SD_AOU.waveformReLoadArrayIntl6(waveformType, waveformDataRaw,
waveformNumber, paddingMode)

LabVIEW

waveformReLoadWave.vi (Note that LabVIEW uses a different function name.)

waveformReloadWave.vi

modulelDOut
. availableRAM
== errorQut

modulelD
waveformNumber
waveform|D
errorln
paddingMode

M3601TA
Available: No

Keysight M3201A/M3202A PXle AWG User's Guide 9

5 Keysight SD1 Command Reference

h.3.2. 14 waveformFlush

Deletes all waveforms from the module's onboard RAM
and flushes all the AWG queues. See also AWGflush on page 106.

Parameters

Name Description

Inputs

modulelD (Non-object-oriented languages only)
Module identifier, returned by open on page 72

errorin (LabVIEW only) If it contains an error, the function will not be executed and errorln will be
passed to errorOut

Outputs

modulelDOut (LabVIEW only) A copy of modulelD

errorOut See Error Codes on page 153

C

int SD_AOU_waveformFlush(int moduleID);

C++
int SD_AOU: :waveformFlush();

Visual Studio .NET, MATLAB
int SD_AOU: :waveformFlush();

Python
SD_AOU.waveformFlush()

LabVIEW

waveformFlush.vi

waveformFlush.vi

modulelD Egm-m modulelDOut
errorin way | errorQut

M360TA
Available: No

100 Keysight M3201A/M3202A PXle AWG User's Guide

5 Keysight SD1 Command Reference

5.3.2. 15 AWG

Provides a one-step method to load, queue, and start a single waveform in one of the
module's AWGs. The waveform can be loaded from an array of points in memory or
from a file.

Step-by-Step Programming: This AWG function is equivalent to:
creating a waveform with new on page 140

calling waveformLoad on page 96
followed by AWGqueueWaveform on page 104
and then calling AWGstart on page 107

Powbd -

Using these functions sequentially allows complete control of
memory usage, data transfer times between the PC and the
module, and the ability to create generation sequences and
control the generation start time precisely.

See Working with AWG Waveforms on page 11.

Parameters

Name Description
Inputs
modulelD (Non-object-oriented languages only)
Module identifier, returned by open on page 72
nAWG AWG channel number
triggerMode Trigger method to launch the waveforms queued in an AWG.

Option Description Name Value
Immediate Thewaveform is launched immediately after AWGstart AUTOTRIG 0
(Auto) on page 107, or when the previous waveform in the

queuefinishes.
Software/ Softwaretrigger. The AWG is triggered by AWGtrigger SWHVITRIG 1
HVI on page 123 provided thatthe AWG is running. AWGtrig-

ger can be executed from the user application (VI) or

from an HVI. See Overview of Keysight Software and Pro-

gramming Tools on page 35.

Software/ Softwaretrigger. Identical to the previous option, buta ~ SWHVITRIG_ 5

HVI trigger is required per each waveform cycle. CYCLE
(per cycle)
External Hardware trigger. The AWG waits for an external trigger ~ EXTTRIG 2

Trigger sourcefor the AWGs. (This is set by the "externalSource"
in AWGtriggerExternalConfig on page 121.)

External ~ Hardwaretrigger. Identical to the previous option, EXTTRIG_ 6
Trigger butatrigger is required per each waveform cycle. CYCLE
(per cycle)

startDelay Defines the delay between the trigger and the waveform launch in tens of ns
cycles Number of times the waveform is played once launched. (Zero specifies infinite cycles.)
prescaler Waveform prescaler value, to reduce the effective sampling rate by prescaler x 5

Keysight M3201A/M3202A PXle AWG User's Guide 101

5 Keysight SD1 Command Reference

102

Name Description
waveformType Waveform type, used in the waveform file and in this function, defines the type of
waveform to create; this parameter is used to internally configure the AWG.

Option Description Name Value
Analog Analog normalized waveforms (-1 to 1) defined with doubles WAVE_ 0
ANALOG
Analog Analog normalized waveforms (-1 to 1) defined with doubles, with WAVE_ 7
Dual twocomponents (Aand B) ANALOG_
DUAL

1Q* Analog normalized waveforms (-1 to 1) defined with doubles, with WAVE_IQ 2
two components (I and Q)

1Q Analog waveforms (-1to 1 module, -180to +180 phase) defined WAVE_ 3

Polar* with doubles, with two components (Magnitude and Phase) IQPOLAR

Digital Digital waveforms defined with integers WAVE_ 5
DIGITAL

*When using IQ or 1Q Polar, each component will only play at a maximum rate of 500 MSa/s.
See AWG Waveform Types on page 21.

waveformPoints Number of points of the waveform, which must be a multiple of a certain number of paints.
See AWG specifications.

waveformDataA Array with waveform points. Analog waveforms are defined with floating point numbers,
which correspond to a normalized amplitude (-1to 1).

waveformDataB Array with waveform points, only the waveforms which have a second component
(for example, Q in IQ modulations defined in Cartesian, or phase in IQ modulations defined

with polar)
waveformFile File containing the waveform points
errorin (LabVIEW only) If it contains an error, the function will not be executed and errorln will be

passed to errorOut.

Outputs

modulelDOut (LabVIEW only) A copy of modulelD

availableRAM Available onboard RAM in waveform points.
Negative numbers indicate an error, see Error Codes on page 153.

errorOut See Error Codes on page 153

C

int SD_AOU_AWGfromArray(int moduleID, int nAWG, int triggerMode, int
startDelay, int cycles, int prescaler, int waveformType, int waveformPoints,
double* waveformDataA, double* waveformDataB=0);

int SD_AOU_AWGfromFile(int moduleID, int nAWG, char* waveformFile, int
triggerMode, int startDelay, int cycles, int prescaler);
C++

int SD_AOU: :AWG(int nAWG, int triggerMode, int startDelay, int cycles, int
prescaler, int waveformType, int waveformPoints, double* waveformDataA,
double* waveformDataB=0);

int SD_AOU: :AWG(int nAWG, char* waveformFile, int triggerMode, int
startDelay, int cycles, int prescaler);

Keysight M3201A/M3202A PXle AWG User's Guide

5 Keysight SD1 Command Reference

Visual Studio .NET, MATLAB

int SD_AOU::AWG(int nAWG, int triggerMode, int startDelay, int cycles, int
prescaler, int waveformType, double[] waveformDataA);

int SD_AOU::AWG(int nAWG, int triggerMode, int startDelay, int cycles, int
prescaler, int waveformType, double[] waveformDataA, double[] waveformDataB);

int SD_AOU: :AWG(int nAWG, string waveformFile, int triggerMode, int
startDelay, int cycles, int prescaler);

Python

SD_AOU.AWGfromArray(nAWG, triggerMode, startDelay, cycles, prescaler,
waveformType, waveformDataA, waveformDataB=0)

SD_AOU.AWGfromFile(nAWG, waveformFile, triggerMode, startDelay, cycles,
prescaler)

LabVIEW
AWGfromFile.vi

AWGfromFile.vi

nAWG
waveformFile
modulelD
triggerMode
startDelay
cycles

errorln
prescaler
paddingMode

modulelDOut

errorQut

AWGfromArray.vi

AWGfromArray.vi

nAWG
waveformType
modulelD
triggerMode
startDelay
cycles

errorin
prescaler
paddingMode
waveformData =

modulelDOut

errorOut

M360TA
Available: No

Keysight M3201A/M3202A PXle AWG User's Guide 103

5 Keysight SD1 Command Reference

5.3.2. 16 AWGqueueWaveform

Queues the specified waveform in one of the module's AWGs. The waveform must be
already loaded in the module's onboard RAM. See waveformlLoad on page 96. The
number of queued waveforms (regardless of cycles) is limited to 1024;
AWGqueueWaveform can only be called 1024 times until the waveforms need to
start being consumed by playing them.

Parameters
Name Description
Inputs
modulelD (Non-object-oriented languages only) Module identifier, returned by open on page 72
nAWG AWG channel number
waveformNumber Waveform to be queued into the AWG. It must be already loaded using waveformload
on page 96.
triggerMode Trigger method to launch the waveforms queued in an AWG.
Option Description Name Value
Immediate Thewaveform is launched immediately after AWGstart AUTOTRIG 0
(Auto) on page 107, or when the previous waveform in the queue
finishes.
Software/ Softwaretrigger. The AWG is triggered by AWGtrigger SWHVITRIG 1
HVI on page 123 provided that the AWG is running. AWGtrig-
ger can be executed from the user application (V1) or from
an HVI.
See Overview of Keysight Software and Programming
Tools on page 35.
Software/ Softwaretrigger. Identical to the previous option, SWHVITRIG_ 5
HVI butatrigger is required per each waveform cycle CYCLE
(per cycle)
External Hardware trigger. The AWG waits for an external trigger EXTTRIG 2
Trigger source for the AWGs (This is set by the "externalSource" in
AWGtriggerExternalConfig on page 121.)
External ~ Hardwaretrigger. Identical to the previous option, EXTTRIG_ 6
Trigger butatrigger is required per each waveform cycle. CYCLE
(per cycle)
startDelay Defines the delay between the trigger and the waveform launch in tens of ns.
The startDelay parameter can be up to (2 16) - 1 cycles = (65535 * 10 ns) = 655.35 us.
cycles Number of times the waveform is repeated once launched. (Zero specifies infinite
cycles.)
prescaler Waveform prescaler value, to reduce the effective sampling rate by prescaler x 5
errorin (LabVIEW only) If it contains an error, the function will not be executed and errorln will
be passed to errorQOut.
Outputs
modulelDOut (LabVIEW only) A copy of modulelD
errorOut See Error Codes on page 153

104 Keysight M3201A/M3202A PXle AWG User's Guide

5 Keysight SD1 Command Reference

C

int SD_AOU_AWGqueueWaveform(int moduleID, int nAWG, int waveformNumber, int
triggerMode, int startDelay, int cycles, int prescaler);

C++

int SD_AOU: :AWGqueueWaveform(int nAWG, int waveformNumber, int triggerMode,
int startDelay, int cycles, int prescaler);

Visual Studio .NET, MATLAB

int SD_AOU: :AWGqueueWaveform(int nAWG, int waveformNumber, int triggerMode,
int startDelay, int cycles, int prescaler);

Python

SD_AOU.AWGqueueWaveform(nAWG, waveformNumber, triggerMode, startDelay,
cycles, prescaler)

LabVIEW

AWGqueueWaveform.vi

AWGqueueWaveform.vi

nAWG
waveformNumber
modulelD modulelDOut
triggerMode m
startDelay

errorin

cycles

prescaler

errorOut

M3601TA
Available: Yes

Keysight M3201A/M3202A PXle AWG User's Guide 105

5 Keysight SD1 Command Reference

5.3.2. 17 AWGflush

Empties the queue of the selected AWG channel. Waveforms are not removed from
the module's onboard RAM.

Parameters

Name Description
Inputs

modulelD (Non-object-oriented languages only)
Module identifier, returned by open on page 72

nAWG AWG channel number

errorin (LabVIEW only) If it contains an error, the function will not be executed and errorin will be
passed to errorOut.

Outputs

modulelDOut (LabVIEW only) A copy of modulelD

errorOut See Error Codes on page 153

C

int SD_AOU_AWGflush(int moduleID, int nAWG);

C++

int SD_AOU: :AWGflush(int nAWG);

Visual Studio .NET, MATLAB
int SD_AOU: :AWGflush(int nAWG);

Python

SD_AOU.AWGflush (nAWG)

LabVIEW

AWGflush.vi

AWGflush.vi

modulelD I modulelDOut
nAWG Em errorQut
errorin .

M3601TA

Available: Yes

106 Keysight M3201A/M3202A PXle AWG User's Guide

5 Keysight SD1 Command Reference

h.3.2.18 AWGstart

Starts the selected AWG from the beginning of its queue. The generation starts
immediately or when a trigger is received, depending on the trigger selection of the
first waveform in the queue and provided that at least one waveform is queued in the
AWG. See AWGqueueWaveform on page 104 or AWG on page 101.

After calling AWGstart, there is a minimum amount of time delay (in nanoseconds)
required before the AWG can be triggered. This minimum amount of time delay is
dependent on the waveform size (number of samples) to be played by the AWG; this
time delay could be up to 900 ns.

-, AWG Start Time vs. Waveform Sample Length

e el

iy

®
850
‘I—:D" ol
E TR
= 750
E J00
£ 850
= 600
550
500
0 500 1000 1500 2000 2500
Waveform Size (# of samples)
Parameters
Name Description
Inputs
modulelD (Non-object-oriented languages only) Module identifier, returned by open on page 72
nAWG AWG channel number
errorin (LabVIEW only) If it contains an error, the function will not be executed and errorln will be
passed to errorOut
Outputs
modulelDOut (LabVIEW only) A copy of modulelD
errorOut See Error Codes on page 153
C

int SD_AOU_AWGstart(int moduleID, int nAWG);

C++

int SD_AOU: :AWGstart(int nAWG);

Visual Studio .NET, MATLAB
int SD_AOU: :AWGstart(int nAWG);

Keysight M3201A/M3202A PXle AWG User's Guide 107

5 Keysight SD1 Command Reference

Python

SD_AOU.AWGstart (nAWG)

LabVIEW

AWGstart.vi

AWGstart.vi
modulelD modulelDOut

nAWG | XAY errorQut
errorln

M3601A

Available: Yes

108

Keysight M3201A/M3202A PXle AWG User's Guide

5 Keysight SD1 Command Reference

5.3.2.19 AWGstartMultiple

Starts the selected AWGs from the beginning of their queues. The generation will
start immediately or when a trigger is received, depending on the trigger selection of
the first waveform in their queues and provided that at least one waveform is queued
inthese AWGs. See AWGqueueWaveform on page 104 or AWG on page 1071.

Parameters

Name Description

Inputs

modulelD (Non-object-oriented languages only)

Module identifier, returned by open on page 72

AWGmask Mask to select the AWGs to be started
(LSBis AWG 0, bit 1is AWG 1, and so forth)

errorin (LabVIEW only) If it contains an error, the function will not be executed and errorln will be
passed to errorOut.

Outputs

modulelDOut (LabVIEW only) A copy of modulelD
errorOut See Error Codes on page 153

C

int SD_AOU_AWGstartMultiple(int moduleID, int AWGmask);

C++

int SD_AOU: :AWGstartMultiple(int AWGmask);

Visual Studio .NET, MATLAB
int SD_AOU: :AWGstartMultiple(int AWGmask);

Python
SD_AOU.AWGstartMultiple (AWGmask)
LabVIEW
AWGstartMultiple.vi
AWGstartMultiple.vi
modulelD ﬁ%’ modulelDOut
AWGmask POy errorQut
errorin

M360TA

Available: No
(Multiple AWGstart from different channels can be executed at once.)

Keysight M3201A/M3202A PXle AWG User's Guide 109

5 Keysight SD1 Command Reference

110

5.3.2.20 AWGpause

Pauses the selected AWG leaving the last waveform point at the output, and ignoring
allincoming triggers. The AWG can be resumed by calling AWGresume on page 112.

Parameters

Name Description

Inputs

modulelD (Non-object-oriented languages only)
Madule identifier, returned by open on page 72

nAWG AWG channel number

errorin (LabVIEW only) If it contains an error, the function will not be executed and errorln will be
passed to errorOut.

Outputs

modulelDOut (LabVIEW only) A copy of modulelD

errorOut See Error Codes on page 1563

C

int SD_AOU_AWGpause(int moduleID, int nAWG);

C++

int SD_AOU: :AWGpause(int nAWG);

Visual Studio .NET, MATLAB
int SD_AOU: :AWGpause(int nAWG);

Python

SD_AOU.AWGpause (nAWG)

LabVIEW

AWGpause.vi

AWGpause.vi

modulelD

M3601A

modulelDOut
—_
nAW|G J‘“’ﬂm errorQut
errorln

Available: Yes

Keysight M3201A/M3202A PXle AWG User's Guide

5 Keysight SD1 Command Reference

5.3.2.21 AWGpauseMultiple

Pauses the selected AWGs leaving the last waveform point at the output of each
channel, and ignoring all incoming triggers. The AWGs can be resumed by calling
AWGresumeMultiple on page 113.

Parameters
Name Description
Inputs
modulelD (Non-object-oriented languages only)

Module identifier, returned by open on page 72

AWGmask Mask to select the AWG channels to be paused
(LSB is Channel 1, bit 1is Channel 2, and so forth)

errorin (LabVIEW only) If it contains an error, the function will not be executed and errorln will be
passed to errorOut.

Outputs

modulelDOut (LabVIEW only) A copy of modulelD
errorQOut See Error Codes on page 153

C

int SD_AOU_AWGpauseMultiple(int moduleID, int AWGmask);

C++

int SD_AOU: :AWGpauseMultiple(int AWGmask);

Visual Studio .NET, MATLAB
int SD_AOU: :AWGpauseMultiple(int AWGmask);

Python
SD_AOU.AWGpauseMultiple (AWGmask)

LabVIEW
AWGpauseMultiple.vi

AWGpauseMultiple.vi
modulelD modulelDOut
— Tl
AWGmask ﬂm errorQut
errorin mrm

M3601A

Available: No
(Multiple AWGpause from different channels can be executed at once.)

Keysight M3201A/M3202A PXle AWG User's Guide m

5 Keysight SD1 Command Reference

h.3.2.22 AWGresume

Resumes the operation of the selected AWG from the current position of the queue.
The waveform generation can be paused by calling AWGpause on page 110.

Parameters
Name Description
Inputs
modulelD (Non-object-oriented languages only)
Module identifier, returned by open on page 72
nAWG AWG channel number
errorin (LabVIEW only) If it contains an error, the function will not be executed and errorin will be

passed to errorOut

Outputs

modulelDOut (LabVIEW only) A copy of modulelD

errorOutS See Error Codes on page 153

C
int SD_AOU_AWGresume(int moduleID, int nAWG);

C++

int SD_AOU: :AWGresume(int nAWG);

Visual Studio .NET, MATLAB
int SD_AOU: :AWGresume(int nAWG);

Python
SD_AOU.AWGresume (NAWG)

LabVIEW

AWGresume.vi

AWGresume.vi

modulelD iﬂ“ modulelDOut
“AWIG i AT errorQOut
errorin

M3601TA

Available: Yes

112 Keysight M3201A/M3202A PXle AWG User's Guide

5 Keysight SD1 Command Reference

b.3.2.23 AWGresumeMultiple

Resumes the operation of the selected AWGs from the current position of their
respective queues. The waveform generation of multiple AWGs can be paused by
calling AWGpauseMultiple onpage 111.

Parameters

Name Description

Inputs

modulelD (Non-object-oriented languages only)

Module identifier, returned by open on page 72

AWGmask Mask to select the AWG channels to be resumed
(LSB is Channel 1, bit 1is Channel 2, and so forth)

errorin (LabVIEW only) If it contains an error, the function will not be executed and errorln will be
passed to errorOut.

Outputs

modulelDOut (LabVIEW only) A copy of modulelD
errorQOut See Error Codes on page 153

C

int SD_AOU_AWGresumeMultiple(int moduleID, int AWGmask);

C++

int SD_AOU: :AWGresumeMultiple(int AWGmask);

Visual Studio .NET, MATLAB
int SD_AOU: :AWGresumeMultiple(int AWGmask);

Python

SD_AOU.AWGresumeMultiple (AWGmask)

LabVIEW

AWGresumeMultiple.vi

AWGresumeMultiple.vi
modulelD ﬁm'-m.n modulelDOut

AWGmask BT AN errorQut

errorin

M3601A

Available: No
(Multiple AWGresume from different channels can be executed at once.)

Keysight M3201A/M3202A PXle AWG User's Guide 113

5 Keysight SD1 Command Reference

114

b.3.2.24 AWGstop

Stops the selected AWG, setting the output to zero, and resetting the AWG queue to
its initial position. All following incoming triggers are ignored.

Parameters

Name Description

Inputs

modulelD (Non-object-oriented languages only)
Module identifier, returned by open on page 72

nAWG AWG channel number

errorin (LabVIEW only) If it contains an error, the function will not be executed and errorin will be
passed to errorOut

Outputs

modulelDOut (LabVIEW only) A copy of modulelD

errorOut See Error Codes on page 153

C

int SD_AOU_AWGstop(int moduleID, int nAWG);

C++

int SD_AOU: :AWGstop(int nAWG);

Visual Studio .NET, MATLAB
int SD_AOU: :AWGstop(int nAWG);

Python
SD_AOU.AWGstop (nAWG)
LabVIEW
AWGstop.vi
AWGstop.vi
modn:l‘(:g ﬁm mod:)lelDOut
errorQu
errorln .
M3601TA

Available: Yes

Keysight M3201A/M3202A PXle AWG User's Guide

5 Keysight SD1 Command Reference

5. 3.2.25 AWGstopMultiple

Stops the selected AWGs, setting their outputs to zero, and resetting their respective
queues to the initial positions. All following incoming triggers are ignored.

Parameters

Name Description

Inputs

modulelD (Non-object-oriented languages only)

Module identifier, returned by open on page 72

AWGmask Mask to select the AWG channels to be stopped
(LSBis Channel 1, bit 1is Channel 2, and so forth)

errorin (LabVIEW only) If it contains an error, the function will not be executed and errorin will be
passed to errorOut.

Outputs

modulelDOut (LabVIEW only) A copy of modulelD
errorOut See Error Codes on page 153

C

int SD_AOU_AWGstopMultiple(int moduleID, int AWGmask);

C++
int SD_AOU: :AWGstopMultiple(int AWGmask);

Visual Studio .NET, MATLAB
int SD_AOU: :AWGstopMultiple(int AWGmask);

Python
SD_AOU.AWGstopMultiple(AWGmask)

LabVIEW
AWGstopMultiple.vi

AWGstopMultiple.vi
|
:\:g:i?(%m mod;le DOut
| errorOut
errorin - e

M3601A

Available: No
(Multiple AWGstop from different channels can be executed at once.)

Keysight M3201A/M3202A PXle AWG User's Guide 115

5 Keysight SD1 Command Reference

h.3.2.26 AWGreset

Resets the pointer variable that manages the AWG queue. After a call to AWGreset,
the pointer variable is pointing to the first queued waveform. Whenever an AWGreset
is performed, it is necessary to call AWGresume on page 112 or AWGstart

on page 107 for the waveform reproduction to start again.

AWGstart consists of a sequential call of AWGreset and
AWGresume functions.

AWGreset is available in [3] Keysight M3601A Hard Virtual
Instrument (HVI) Design Environment Software on page 157 only,
it cannot be used in any programming language. In M3601A,
AWGreset is available to allow the user to execute, at FPGA level,
the reset of the queue pointer variable without an automatic
AWGresume immediately afterwards.

C
Available: No

C++

Available: No

Visual Studio .NET, MATLAB
Available: No

Python
Available: No

LabVIEW
Available: No

M360TA
Available: Yes

116 Keysight M3201A/M3202A PXle AWG User's Guide

5 Keysight SD1 Command Reference

b.3.2.27 AWGjumpNextWaveform

Forces a jump to the next waveform in the AWG queue. The jump is executed once the
current waveform has finished a complete cycle.

Parameters

Name Description
Inputs
modulelD (Non-object-oriented languages only)
Module identifier, returned by open on page 72

nAWG AWG channel number

errorin (LabVIEW only) If it contains an error, the function will not be executed and errorln will be
passed to errorOut

Outputs

modulelDOut (LabVIEW only) A copy of modulelD

errorOut See Error Codes on page 153

C

int SD_AOU_AWGjumpNextWaveform(int moduleID, int nAWG);

C++

int SD_AOU: : AWGjumpNextWaveform(int nAWG);

Visual Studio .NET, MATLAB
int SD_AOU: : AWGjumpNextWaveform(int nAWG);

Python
SD_AOU.AWGjumpNextWaveform(nAWG)

LabVIEW
AWGjumpNextWaveform.vi

AWGjumpNextWaveform.vi

modulelD modulelDOut
& T
nAWG - A A,

errorOut

errorln

M3601TA
Available: Yes

Keysight M3201A/M3202A PXle AWG User's Guide 17

5 Keysight SD1 Command Reference

b.3.2.28 AWGjumpNextWaveformMultiple

Forces a jump to the next waveform in the queue of several AWGs. The jumps are
executed once the current waveforms have finished a complete cycle.

Parameters

Name Description

Inputs

modulelD (Non-object-oriented languages only)

Module identifier, returned by open on page 72

AWGmask Mask to select the AWG channel numbers
(LSB is Channel 1, bit Tis Channel 2, and so forth)

errorln (LabVIEW only) If it contains an error, the function will not be executed and errorln will be
passed to errorOut.

Outputs

modulelDOut (LabVIEW only) A copy of modulelD
errorOut See Error Codes on page 153

C

int SD_AOU_AWGjumpNextWaveformMultiple(int moduleID, int AWGmask);

C++

int SD_AOU: : AWGjumpNextWaveformMultiple(int AWGmask);

Visual Studio .NET, MATLAB
int SD_AOU: : AWGjumpNextWaveformMultiple(int AWGmask);

Python
SD_AOU . AWGjumpNextWaveformMultiple (AWGmask)

LabVIEW
AWGjumpNextWaveformMultiple.vi

AWGjumpNextWaveformMultiple.vi

modulelD 5;@ modulelDOut
AWGmask an, errorOut
errorin
M3601A

Available: Yes

118 Keysight M3201A/M3202A PXle AWG User's Guide

5 Keysight SD1 Command Reference

5.3.2.29 AWGisRunning

Returns a value of 1 ifthe AWG is running or a value of O if it is stopped.

Parameters
Name Description
Inputs
modulelD (Non-object-oriented languages only)
Module identifier, returned by open on page 72
nAWG AWG channel number
errorin (LabVIEW only) If it contains an error, the function will not be executed and errorln will be

passed to errorOut.

Outputs

modulelDOut (LabVIEW only) A copy of modulelD
running 1ifthe AWG is running, O if it is stopped
errorOut See Error Codes on page 153

C
int SD_AOU_AWGisRunning(int moduleID, int nAWG);

C++

int SD_AOU: :AWGisRunning(int nAWG);

Visual Studio .NET, MATLAB
int SD_AOU: :AWGisRunning(int nAWG);

Python
SD_AOU.AWGisRunning(nAWG)

LabVIEW

AWGisRunning.vi

AWGisRunning.vi

modulelD modulelDOut
nAWG - A\, P2 ey - 1SRUNNING
errorin —d Em'errorOut

M360TA
Available: No

Keysight M3201A/M3202A PXle AWG User's Guide 119

5 Keysight SD1 Command Reference

5.3.2.30 AWGnWFplaying

Returns the waveformNumber (waveform identifier) of the waveform which is
currently being generated by the AWG.

Parameters

Name Description

Inputs

modulelD (Non-object-oriented languages only)
Madule identifier, returned by open on page 72

nAWG AWG channel number

errorin (LabVIEW only) If it contains an error, the function will not be executed and errorln will
be passed to errorQOut.

Outputs

modulelDOut (LabVIEW only) A copy of modulelD

waveformNumber Waveform identifier (see waveformLoad on page 96)

errorOut See Error Codes on page 153

C
int SD_AOU_AWGnWFplaying(int moduleID, int nAWG);

C++
int SD_AOU: :AWGnWFplaying(int nAWG);

Visual Studio .NET, MATLAB
int SD_AOU: :AWGnWFplaying(int nAWG);

Python
SD_AOU.AWGnWFplaying(nAWG)
LabVIEW
AWGnWFplaying.vi
AWGnWFplaying.vi
modulelD Loy modulelDOut
AWG — | 21 W
errorin == e errorOut
M360TA

Available: No

120 Keysight M3201A/M3202A PXle AWG User's Guide

5 Keysight SD1 Command Reference

b.3.2.31 AWGtriggerExternalConfig

Configures the external triggers for the selected AWG. The external trigger is used in
case the waveform is queued with the external trigger mode option.
See AWGqueueWaveform on page 104.

Parameters

Name Description

Inputs

modulelD (Non-object-oriented languages only)
Module identifier, returned by open on page 72

nAWG AWG channel number

externalSource AWG external trigger source
Option Description Name Value
External The AWG trigger is a TRG connector/line of themodule. PXI TRIG_ 0
170 form factor only: this trigger can be synchronized to CLK10. EXTERNAL
Trigger
PXI PXI form factor only. The AWG external trigger is a TRIG_PXI+ 4000+
Trigger PX| trigger line and is synchronized to CLK10. Trigger No. Trigger
[0ton] No.

For example, to use PXI trigger line 1
on the PXI backplane, use TRIG_PXI1 or 4001.

triggerBehavior AWG external trigger behavior

Option Description Name Value
Active High Trigger is active when itis at level high TRIGGER_HIGH 1
Active Low Trigger is active when itis at level low TRIGGER_LOW 2
Rising Edge Trigger is active on therising edge TRIGGER_RISE 3
Falling Edge Trigger is active on thefalling edge TRIGGER_FALL 4

sync 0 for immediate trigger, 1 to synchronize with nearest CLK edge

errorin (LabVIEW only) If it contains an error, the function will not be executed and errorin will be
passed to errorOut.

Outputs

modulelDOut (LabVIEW only) A copy of modulelD

errorOut See Error Codes on page 153

C

int SD_AOU_AWGtriggerExternalConfig(int moduleID, int nAWG, int
externalSource, int triggerBehavior, int sync);

C++

int SD_AOU: :AWGtriggerExternalConfig(int nAWG, int externalSource, int

triggerBehavior, int sync);

Visual Studio .NET, MATLAB

int SD_AOU: :AWGtriggerExternalConfig(int nAWG, int externalSource, int
triggerBehavior, int sync);

Keysight M3201A/M3202A PXle AWG User's Guide 121

5 Keysight SD1 Command Reference

SD_AOU.AWGtriggerExternalConfig(nAWG, externalSource, triggerBehavior, sync)

Python
LabVIEW
AWGtriggerExternalConfig.vi
AWGtriggerExternalConfig.vi
modulelD modulelDOut
I LLIIAN errorOut
source
triggerBehavior
sync

i

M360TA
Available: No

122

Keysight M3201A/M3202A PXle AWG User's Guide

5 Keysight SD1 Command Reference

b.3.2.32 AWGtrigger

Triggers the selected AWG. The waveform waiting in the current position of the queue
is launched provided it is configured with VI/HVI Trigger (triggerMode = 1 or 5).

Parameters

Name Description

Inputs

modulelD (Non-object-oriented languages only)
Module identifier, returned by open on page 72

nAWG AWG channel number

errorin (LabVIEW only) If it contains an error, the function will not be executed and errorln will be
passed to errorOut

Outputs

modulelDOut (LabVIEW only) A copy of modulelD

errorOut See Error Codes on page 153

C

int SD_AOU_AWGtrigger(int moduleID, int nAWG);

C++

int SD_AOU: :AWGtrigger(int nAWG);

Visual Studio .NET, MATLAB
int SD_AOU: :AWGtrigger(int nAWG);

Python
SD_AOU.AWGtrigger (nAWG)

LabVIEW
AWGtrigger.vi
AWGtrigger.vi

modulelD SDRoL modulelDOut
DAWG —Y

TRG ™,
errorin -

errorOut

M3601A

Available: Yes

Keysight M3201A/M3202A PXle AWG User's Guide 123

5 Keysight SD1 Command Reference

b.3.2.33 AWGtriggerMultiple

Triggers the selected AWGs. The waveforms waiting in the current position of their
respective queues is launched provided they are configured with an VI/HVI Trigger
(triggerMode =1 or b).

Parameters

Name Description

Inputs

modulelD (Non-object-oriented languages only)

Module identifier, returned by open on page 72

AWGmask Mask to select the AWG channels to be triggered
(LSB is Channel 1, bit 1is Channel 2, and so forth)

AWG AWG to be triggered

errorln (LabVIEW only) If it contains an error, the function will not be executed and errorln will be
passed to errorOut.

Outputs

modulelDOut (LabVIEW only) A copy of modulelD

errorOut See Error Codes on page 153

C

int SD_AOU_AWGtriggerMultiple(int moduleID, int AWGmask);

C++

int SD_AOU: :AWGtriggerMultiple(int AWGmask);

Visual Studio .NET, MATLAB
int SD_AOU: :AWGtriggerMultiple(int AWGmask);

Python

SD_AOU.AWGtriggerMultiple (AWGmask)

LabVIEW

AWGtriggerMultiple.vi

AWGtriggerMultiple.vi
modulelD E’ﬂ&m modulelDOut
AWGmask rRe My errorQut
errorin
M3601A

Available: No
(Multiple AWGtrigger from different channels can be executed at once.)

124 Keysight M3201A/M3202A PXle AWG User's Guide

5 Keysight SD1 Command Reference

b. 3. 2. 34 triggerlOconfig

Configures the trigger line direction.
See Working with 1/0 Triggers on page 31.

Parameters
Name Description
Inputs
modulelD (Non-object-oriented languages only)
Madule identifier, returned by open on page 72
direction Output (0) or Input (1)

Option Description Name Value
Trigger Output TRG operates as a general purpose digital output ~ AOU_TRG_ 0
(readable) signal, that can be written by the user software out
Trigger Input TRG operates as a trigger input, or as ageneral AOU_TRG_ 1
purpose digital inputsignal, that can be read by IN
the user software
errorin (LabVIEW only) If it contains an error, the function will not be executed and errorln will be

passed to errorOut.

Outputs
modulelDout (LabVIEW only) A copy of modulelD
errorOut See Error Codes on page 153

C
int SD_AOU_triggerIOconfig(int moduleID, int direction);

C++

int SD_AOU: :triggerIOconfig(int direction);

Visual Studio .NET, MATLAB
int SD_AOU: :triggerIOconfig(int direction);

Python
SD_AOU.triggerIOconfig(direction)

LabVIEW

triggerIOconfig.vi

triggerlOconfig.vi

modulelD
direction -,
errorin ==

modulelDOut
errorQut

M3601TA
Available: No

Keysight M3201A/M3202A PXle AWG User's Guide 125

5 Keysight SD1 Command Reference

b.3.2.35 triggerlOwrite

Sets the trigger output to be ON or OFF. The trigger must be configured as output

using triggerlOconfig on page 125.

Parameters
Name Description
Inputs

modulelD (Non-object-oriented languages only)

Madule identifier, returned by open on page 72

value Trigger output value: 1 (ON), 0 (OFF)

syncMode Sampling/synchronization mode

0 for immediate triggers, 1 to synchronize trigger to nearest CLK edge

Option Description Name Value
Non-synchronized Thetriggeris sampled ~ SYNC_NONE 0
mode with an internal 100

MHz clock
Synchronized mode (PXIform factor only) ~ SYNC_CLK10 1

Thetrigger is sampled

using CLK10*

*In synchronized mode, the trigger is synchronized to the nearest clock edge of the 10 MHz clock
from the PXI chassis backplane. If using an external trigger, it should also be synchronized to the
same 10 MHz reference. The trigger is sampled using CLKsync. (If itis a multiple of 10 MHz,

the maximum processing time would be < 100 ns, varying depending on trigger arrival.

If CLKsyncis <10 MHz, the processing time will be >100 ns).

errorin (LabVIEW only) If it contains an error, the function will not be executed and errorln will be

passed to errorOut.

Outputs

modulelDout (LabVIEW only) A copy of modulelD

errorQOut See Error Codes on page 153

C

int SD_AOU_triggerIOwrite(int moduleID, int value, int syncMode);

C++

int SD_AOU: :triggerIOwrite(int value, int syncMode);

Visual Studio .NET, MATLAB

int SD_AOU: :triggerIOwrite(int value, int syncMode);

Python

SD_AOU.triggerIOwrite(value, syncMode)

126

Keysight M3201A/M3202A PXle AWG User's Guide

5 Keysight SD1 Command Reference

LabVIEW
triggerIOwrite.vi
triggerlOwrite.vi
modulelD modulelDOut
value errorOut

syncMode
errorin

M3601A

Available: Yes

Keysight M3201A/M3202A PXle AWG User's Guide 127

5 Keysight SD1 Command Reference

128

b5.3.2.36 triggerlOread
Reads the trigger input.

Parameters
Name Description
Inputs

modulelD (Non-object-oriented languages only)

Module identifier, returned by open on page 72

errorin (LabVIEW only) If it contains an error, the function will not be executed and errorln will be
passed to errorOut.

Outputs

modulelDout (LabVIEW only) A copy of modulelD

value Trigger output value: 1 (ON), O (OFF).

Negative numbers indicate an error, see Error Codes on page 153.

errorOut See Error Codes on page 1563

C
int SD_AOU_triggerIOread(int moduleID);

C++
int SD_AOU: :triggerIOread();

Visual Studio .NET, MATLAB
int SD_AOU: :triggerIOread();

Python
SD_AOU.triggerIOread()

LabVIEW

triggerIOread.vi

triggerlOread.vi

modulelDOut
. - trigger
%o errorQut

modulelD

errorin

M360TA

Available: No
(Can be accessed using math operations.)

Keysight M3201A/M3202A PXle AWG User's Guide

5 Keysight SD1 Command Reference

B.3.2.37 clockSetFrequency (Requires Option CLV)

Sets the module clock frequency. (See CLKsys in FlexCLK Technology (models w/
variable sampling rate) on page 33.)

This clockSetFrequency function is only usable for modules with
the variable clock Option CLV. This Option is no longer for sale as

of November of 2019.
Parameters
Name Description
Inputs

modulelD (Non-object-oriented languages only)
Module identifier, returned by open on page 72
frequency Frequency in Hz. See datasheet for complete specifications.

mode Operation mode of the variable clock system
Option Description Name Value
Low Jitter The clock system is setto achieve the lowest jitter, sac- CLK_LOW_ 0
Mode rificing tuning speed JITTER
FastTuning The clock system is set to achieve the fastest tuning time, CLK_FAST_ 1
Mode sacrificing jitter performance TUNE

errorin (LabVIEW only) If it contains an error, the function will not be executed and errorln will be

passed to errorOut.

Outputs
modulelDout (LabVIEW only) A copy of modulelD
CLKsysFreg® It returns the real frequency applied to the hardware in Hz.

It may differ from the desired frequency due to hardware frequency resolution.
Negative numbers indicate an error, see Error Codes on page 153.

errorOut See Error Codes on page 153

*In Keysight Programming Libraries v.1.57.67 or older, clockSetFrequency returns CLKsyncFreq, the
frequency of the internal CLKsync in Hz (Equation 11)

C
double SD_AOU_clockSetFrequency(int moduleID, double frequency, int mode);

C++

double SD_AOU::clockSetFrequency(double frequency, int mode);

Visual Studio .NET, MATLAB
double SD_AOU::clockSetFrequency(double frequency, int mode);

Python
SD_AOU.clockSetFrequency(frequency, mode)

Keysight M3201A/M3202A PXle AWG User's Guide 129

5 Keysight SD1 Command Reference

LabVIEW

clockSetFrequency.vi

clockSetFrequency.vi

modulelD modulelDOut

frequency ~]2 k MU fmmnesg - syncFreq
mode — § beex errorQut
errorin s

M360TA
Available: No

130

Keysight M3201A/M3202A PXle AWG User's Guide

5 Keysight SD1 Command Reference

5. 3.2.38 clockGetFrequency

Returns the value in Hz of the module sample rate frequency. (See CLKsys in FlexCLK
Technology (models w/ variable sampling rate) on page 33.) It may differ from the
frequency set with the clockSetFrequency (Requires Option CLV) on page 129 due to
the hardware frequency resolution.

Parameters
Name Description
Inputs

modulelD (Non-object-oriented languages only)
Madule identifier, returned by open on page 72

errorin (LabVIEW only) If it contains an error, the function will not be executed and errorln will be
passed to errorOut.

Outputs

modulelDout (LabVIEW only) A copy of modulelD

CLKsysFreg® It returns the real frequency applied to the hardware in Hz.
It may differ from the desired frequency due to hardware frequency resolution.
Negative numbers indicate an error, see Error Codes on page 153.

errorOut See Error Codes on page 153

C
double SD_AOU_clockGetFrequency(int moduleID);

C++

double SD_AOU::clockGetFrequency();

Visual Studio .NET, MATLAB
double SD_AOU::clockGetFrequency();

Python
SD_AOU. clockGetFrequency()

LabVIEW

clockGetFrequency.vi

clockGetFrequency.vi

modulelD modulelDOut
.~ frequency

boo errorQOut

errorln

M3601TA
Available: No

Keysight M3201A/M3202A PXle AWG User's Guide 131

5 Keysight SD1 Command Reference

5.3.2.39 clockGetSyncFrequency

Returns the frequency of the internal CLKsync signal in Hz. (See CLKsync in FlexCLK
Technology (models w/ variable sampling rate) on page 33.)

Parameters
Name Description
Inputs
modulelD (Non-abject-oriented languages only)
Module identifier, returned by open on page 72
errorin (LabVIEW only) If it contains an error, the function will not be executed and errorln will be

passed to errorOut.

Outputs

modulelDout ~ (LabVIEW only) A copy of modulelD

CLKsyncFreg* It returns the real frequency applied to the hardware in Hz.
It may differ from the desired frequency due to hardware frequency resolution.
Negative numbers indicate an error, see Error Codes on page 153.

errorOut See Error Codes on page 153

C
int SD_AOU_clockGetSyncFrequency(int modulelD);

C++

int SD_AOU: :clockGetSyncFrequency();

Visual Studio .NET, MATLAB
int SD_AOU: :clockGetSyncFrequency();

Python
SD_AOU. clockGetSyncFrequency()

LabVIEW

clockGetSyncFrequency.vi

clockGetSyncFrequency.vi

modulelD modulelDOut
frequency

box errorQut

errorin

M360TA
Available: No

132 Keysight M3201A/M3202A PXle AWG User's Guide

5 Keysight SD1 Command Reference

h.3.2.40 clockResetPhase

Sets the module in a synchronous state, waiting for the first trigger to reset the phase
of the internal clocks CLKsync and AWG on page 101. (See CLKsys in FlexCLK
Technology (models w/ variable sampling rate) on page 33.)

Parameters

Name Description

Inputs

modulelD (Non-object-oriented languages only)

Module identifier, returned by open on page 72
triggerBehavior AWG external trigger behavior

Option Description Name Value
Active High Trigger is active when itis at level high TRIGGER_HIGH 1
Active Low Trigger is active when itis at level low TRIGGER_LOW 2
Rising Edge Trigger is active on therising edge TRIGGER_RISE 3
Falling Edge Trigger is active on the falling edge TRIGGER_FALL 4

PXItrigger PXI trigger number
Option Description Name Value
External The AWG trigger is a TRG connector/line of themodule. PXI TRIG_ 0
170 form factor only: this trigger can be synchronized to CLK10. EXTERNAL
Trigger
PXI PXI form factor only. The AWG external trigger is a PXI trigger TRIG_PXI+ 4000 +
Trigger lineandis synchronized to CLK10. Trigger No. Trigger
[0Oton] No

skew Skew between PXI CLK10 and CLKsync in multiples of 10 ns

errorin (LabVIEW only) If it contains an error, the function will not be executed and errorin will be
passed to errorOut.

Outputs

modulelDout (LabVIEW only) A copy of modulelD

errorOut See Error Codes on page 153

C

int SD_AOU_clockResetPhase(int moduleID, int triggerBehavior, int PXItrigger,
double skew);

C++

int SD_AOU::clockResetPhase(int triggerBehavior, int PXItrigger, double
skew);

Visual Studio .NET, MATLAB

int SD_AOU: :clockResetPhase(int triggerBehavior, int PXItrigger, double
skew);

Python
SD_AOU.clockResetPhase(triggerBehavior, PXItrigger, skew)

Keysight M3201A/M3202A PXle AWG User's Guide 133

5 Keysight SD1 Command Reference

LabVIEW
clockResetPhase.vi
clockResetPhase.vi
dulelD modulelDOut
triggerBehavior o

triggerSource
errorln
skew

M360TA
Available: No

134

Keysight M3201A/M3202A PXle AWG User's Guide

5 Keysight SD1 Command Reference

5.3.2.41 AWGqueueConfig

Configures the cyclic mode of the queue. All waveforms must be already queuedin
one of the AWGs of the module. See AWG Waveform Queue System on page 13.

Parameters
Name Description
Inputs

modulelD (Non-object-oriented languages only)
Madule identifier, returned by open on page 72

nAWG AWG channel number

mode Operation mode of the queue: 0 One shot, 1 Cyclic. See AWG Waveform Queue System
on page 13.

errorin (LabVIEW only) If it contains an error, the function will not be executed and errorln will be

passed to errorOut.

Outputs
modulelDout (LabVIEW only) A copy of modulelD
errorQOut See Error Codes on page 153

C
int SD_AOU_AWGqueueConfig(int moduleID, int nAWG, int mode);

C++
int SD_AOU: :AWGqueueConfig(int nAWG, int mode);

Visual Studio .NET, MATLAB
int SD_AOU: :AWGqueueConfig(int nAWG, int mode);

Python
SD_AOU.AWGqueueConfig(nAWG, mode)
LabVIEW
AWGqueueConfig.vi
AWGqueueConfig.vi
modulelD modulelDOut
nAWG errorQut
mode

errorin

M360TA
Available: No

Keysight M3201A/M3202A PXle AWG User's Guide 135

5 Keysight SD1 Command Reference

136

5. 3.2. 42 AWGqueueConfigRead

Reads the value of the cyclic mode of the queue. All waveforms must be already
queued (AWG Waveform Queue System on page 13) in one of the module's Arbitrary
Waveform Generators.

Parameters
Name Description
Inputs

modulelD (Non-object-oriented languages only)
Module identifier, returned by open on page 72

nAWG AWG channel number

errorin (LabVIEW only) If it contains an error, the function will not be executed and errorln will be
passed to errorOut.

Outputs

modulelDout (LabVIEW only) A copy of modulelD

value Cyclic mode value: O (OFF: One shat), 1 (ON).
Negative numbers indicate an error, see Error Codes on page 153.

errorOut See Error Codes on page 153

C

int SD_AOU_AWGqueueConfigRead(int moduleID, int nAWG);

C++
int SD_AOU: :AWGqueueConfigRead(int nAWG);

Visual Studio .NET, MATLAB
int SD_AOU: :AWGqueueConfigRead(int nAWG);

Python
SD_AOU. AWGqueueConfigRead (nAWG)

LabVIEW
AWGqueueConfigRead.vi

AWGqueueConfigRead.vi

mode
modulelD —f modulelDOut
nawG LI

errorin ==

M3601TA
Available: No

Keysight M3201A/M3202A PXle AWG User's Guide

5 Keysight SD1 Command Reference

b. 3. 2. 43 AWGqueueMarkerConfig

Configures the marker generation for each AWG. All waveforms must be already
queued (AWG Waveform Queue System on page 13) in one of the module's Arbitrary
Waveform Generators.

For this function to operate correctly, the markers must be configured before the
waveforms start to play. Each AWG channel can be configured to output a marker on
the PXI backplane or the front panel trigger.

Parameters
Name Description
Inputs

modulelD (Non-object-oriented languages only)
Madule identifier, returned by open on page 72

nAWG AWG channel number to be configured

markerMode Operation mode of the marker O=Disabled, 1=0n Start Event (when Start trigger is received)
2=0n First Sample of Waveform (after WF startDelay), 3=On Every Cycle

trgPXImask Mask to select PXI triggers to use (bit0->PXItrgQ, bit1->PXitrgl, ...)
trglOmask Mask to select front-panel triggers to use (bit0->TriggerlO)

value O=Low, T=High (PXItrigger are active low signals, then 1 will generate a O pulse)
syncMode Qs synchronized to CLKsys, 1 is synchronized to 10 MHz reference clock
length Pulse length of the marker = length x Te g, X 5 (length >1) (Tgy ke,= 1/CLKsYs)
delaly Delay to add before the marker pulse = delay x T kg5 X ©
(markerMode selects the start point of the marker, after which the delay is added)
errorin (LabVIEW only) If it contains an error, the function will not be executed and errorln will be

passed to errorOut.

Outputs
modulelDout (LabVIEW only) A copy of modulelD
errorOut See Error Codes on page 153

C
int SD_AOU_AWGqueueMarkerConfig(int moduleID, int nAWG, int markerMode, int

trgPXImask, int trgIOmask, int value, int syncMode, int length, int delay);
C++

int SD_AOU: :AWGqueueMarkerConfig(int nAWG, int markerMode, int trgPXImask,
int trgIOmask, int value, int syncMode, int length, int delay);

Visual Studio .NET, MATLAB

int SD_AOU: :AWGqueueMarkerConfig(int nAWG, int markerMode, int trgPXImask,
int trgIOmask, int value, int syncMode, int length, int delay);

Python

SD_AOU.AWGqueueMarkerConfig(nAWG, markerMode, trgPXImask, trgIOmask, value,
syncMode, length, delay)

Keysight M3201A/M3202A PXle AWG User's Guide 137

5 Keysight SD1 Command Reference

LabVIEW

AWGqueueMarkerConfig.vi

AWGqueueMarkerConfig.vi
: modulelDOut

errorOut

modulelD
nAWG
errorin ==

M360TA
Available: No

138

Keysight M3201A/M3202A PXle AWG User's Guide

5 Keysight SD1 Command Reference
b.3.2. 44 AWGQqueueSyncMode
Configures the synchronization mode of the queue.

All waveforms must be already queued (AWGqueueWaveform on page 104) in one of
the module's AWGs.

Parameters
Name Description
Inputs

modulelD (Non-object-oriented languages only)
Module identifier, returned by open on page 72

nAWG AWG channel number
syncMode For Oitis synchronized to CLKSYS, for 1 it is synchronized to the 10 MHz reference clock
errorin (LabVIEW only) If it contains an error, the function will not be executed and errorln will be

passed to errorOut.

Outputs
modulelDout (LabVIEW only) A copy of modulelD
errorOut See Error Codes on page 1563

C
int SD_AOU_AWGqueueSyncMode(int moduleID, int nAWG, int syncMode);

C++
int SD_AOU: :AWGqueueSyncMode(int nAWG, int syncMode);

Visual Studio .NET, MATLAB
int SD_AOU: :AWGqueueSyncMode(int nAWG, int syncMode);

Python
SD_AOU. AWGqueueSyncMode (nAWG, syncMode)

LabVIEW
AWGqueueSyncMode. vi

AWGqueueSyncMode.vi

modulelD
nAWG

errorln ==

modulelDOut
errorQut

M360TA
Available: No

Keysight M3201A/M3202A PXle AWG User's Guide 139

5 Keysight SD1 Command Reference

140

5.3.3 SD_Wave Functions (new and delete)

H.3.3. 17 new

Creates a waveform object from data points contained in an array in memory
orinafile.

ADVANCED
Memory Usage: Waveforms created with new are stored in the
PC RAM, not in the module's onboard RAM.
The limitation in the number of waveforms and their sizes is given
by the amount of PC RAM.

Parameters

Name Description

Inputs

waveformType ~ Waveform type, defines the type of waveform to create; this parameter is used to
internally configure the AWG and selects the waveform type which matches the
organizational structure of the waveform data file being loaded.

Option Description Name Value
Analog Analog normalized waveforms (-1 to 1) defined with doubles WAVE_ 0
ANALOG
Analog Analog normalized waveforms (-1 to 1) defined with doubles, with WAVE_ 7
Dual twocomponents (Aand B) ANALOG_
DUAL

1Q* Analog normalized waveforms (-1 to 1) defined with doubles, with WAVE_IQ 2
two components (land Q)

1Q Analog waveforms (-1to 1 module, -180to +180 phase) defined WAVE_ 3

Polar* with doubles, with two components (Magnitude and Phase) IQPOLAR

Digital Digital waveforms defined with integers WAVE_ 5
DIGITAL

*When using IQ or 1Q Polar, each component will only play at a maximum rate of 500 MSa/s.
See AWG Waveform Types on page 21.

waveformPoints Number of paint of the waveform, which must be a multiple of a certain number of points.
See AWG specifications in the Data Sheet.

waveformDataA Array with waveform points.
Analog waveforms are defined with floating point numbers,
which correspond to a normalized amplitude (-1to 1).

waveformDataB Array with waveform points, only for dual/IQ waveforms.

waveformFile File containing the waveform points.

errorin (LabVIEW only) If it contains an error, the function will not be executed and errorin will be
passed to errorOut.

Outputs

waveformID (Non-object-oriented languages only) Waveform identifier.
Negative numbers indicate an error, see Error Codes on page 153.

errorOut See Error Codes on page 153

Keysight M3201A/M3202A PXle AWG User's Guide

5 Keysight SD1 Command Reference

C

int SD_Wave_newFromArrayDouble(int waveformType, int waveformPoints, double*
waveformDataA double* waveformDataB=0);

int SD_Wave_newFromFile(char* waveformFile);

C++

int SD_Wave SD AOU::SD AOU (int waveformType, int waveformPoints, double*
waveformDataA, double* waveformDataB=90);

int SD_Wave SD AOU::SD AOU (char* waveformFile);

Visual Studio .NET, MATLAB

SD_Wave(int waveformType, double[] waveformDataA);
SD_Wave(int waveformType, double[] waveformDataA, double[] waveformDataB);
SD_Wave(string waveformFile);

Python

SD_Wave.newFromArrayDouble(waveformType, waveformDataA, waveformDataB=0)
SD_Wave.newFromFile(waveformFile)

LabVIEW

newFromArrayInteger.vi

newFromArrayinteger.vi

waveformType _éé!n-m waveformID
waveformData =I e errorQut
errorin

newFromFile.vi

newFromFile.vi

. waveform|D
waveformFile =
errorln NEW errorOut
M3601TA

Available: No

Keysight M3201A/M3202A PXle AWG User's Guide 141

5 Keysight SD1 Command Reference

h.3.3.2 delete
Removes a waveform created with the new function.
ADVANCED

NOTE Onboard waveforms: Waveforms are removed
from the PC RAM only, not from the module onboard RAM.

Parameters

Name Description
Inputs

waveform!D Waveform identifier (returned by new on page 140)

errorin (LabVIEW only) If it contains an error, the function will not be executed and errorln will be
passed to errorQut

Outputs

errorQOut See Error Codes on page 153

C

int SD_Wave_delete(int waveformID);

C++

delete <SD_Wave object pointer>;
int SD_AOU: :delete();

Visual Studio .NET, MATLAB
Automatically destroyed by the .NET garbage collector.

Python
Managed by Python.
LabVIEW
delete.vi
delete.vi

waveformID _gﬁm

errorin DELETE errorQut
M3601A

Available: No

142 Keysight M3201A/M3202A PXle AWG User's Guide

5 Keysight SD1 Command Reference

5.3.4 SD_Module Functions (M3601A HVI-related)

The writeRegister and readRegister functions are related to the [3] Keysight M36071A
Hard Virtual Instrument (HVI) Design Environment Software on page 157.

5.3. 4.1 writeRegister

Writes a value in an HVI register of a hardware module (Option HV1 required).

Parameters
Name Description
Inputs

modulelD (Non-object-oriented languages only)
Module identifier, returned by open on page 72

regNumber Register number
regName Register name
regValue Register value

unit Unit of the register value

errorin (LabVIEW only) If it contains an error, the function will not be executed and errorln will be
passed to errorOut

Outputs

modulelDout (LabVIEW only) A copy of modulelD

errorOut See Error Codes on page 1563

C

int SD_Module_writeRegister(int moduleID, int regNumber, int regValue);

int SD_Module_writeDoubleRegister(int moduleID, int regNumber, double
regValue, const char* unit);

C++

int SD_Module::writeRegister(int regNumber, int regValue);
int SD_Module::writeRegister(const char* regName, int regValue);

int SD_Module::writeRegister(int regNumber, double regValue, const char*
unit);

int SD_Module::writeRegister(const char* regName, double regValue, const
char* unit);

Visual Studio .NET, MATLAB

int SD_Module::writeRegister(int regNumber, int regValue);
int SD_Module::writeRegister(string regName, int regValue);
int SD_Module::writeRegister(int regNumber, double regValue, string unit);

int SD_Module::writeRegister(string regName, double regValue, string unit);

Keysight M3201A/M3202A PXle AWG User's Guide 143

5 Keysight SD1 Command Reference

Python

SD_Module.writeRegisterByNumber(regNumber, varValue)

SD_Module.writeRegisterByName(regName, varValue)

SD_Module.writeRegisterDoubleByNumber(regNumber, value, unit)

SD_Module.writeRegisterDoubleByName(regName, value, unit)

LabVIEW

writeRegisterWithIndex.vi

writeRegisterWithIndex.vi

ModulelD ModulelDOut
Number errorQut
Value

errorln

M360TA
Available: No

(The value can be accessed using math operations: for example, MathAssign.)

144

Keysight M3201A/M3202A PXle AWG User's Guide

5 Keysight SD1 Command Reference

b.3. 4.2 readRegister

Reads a value from an HVI register of a hardware module (Option HV1 required).

Parameters
Name Description
Inputs

modulelD (Non-object-oriented languages only) Module identifier, returned by open on page 72

regNumber Register number
regName Register name
unit Unit of the register value

errorin (LabVIEW only) If it contains an error, the function will not be executed and errorln will be
passed to errorOut

Outputs

regValue Register value

modulelDout (LabVIEW only) A copy of modulelD
errorQOut See Error Codes on page 153

C

int SD_Module readRegister(int moduleID, int regNumber, int regValue);
double SD_Module readDoubleRegister(int moduleID, int regNumber, const char*

unit, int& erroroOut);

C++

int SD_Module: :readRegister(int regNumber, int regValue);
int SD Module: :readRegister(const char* regName, int regValue);

double SD Module::readRegister(int regNumber, const char* unit, int&
errorOut);

double SD_Module::readRegister(const char* regName, const char* unit, int&

errorOut);

Visual Studio .NET, MATLAB

int SD_Module::readRegister(int regNumber, int regValue);
int SD_Module::readRegister(string regName, int regValue);
int SD_Module::readRegister(int regNumber, string unit, int errorOut);

int SD_Module::readRegister(string regName, string unit, int errorOut);

Keysight M3201A/M3202A PXle AWG User's Guide 145

5 Keysight SD1 Command Reference

Python
SD_Module

SD_Module
SD_Module

SD_Module

LabVIEW

.readRegisterByNumber (regNumber)

.readRegisterByName (regName)

.readRegisterDoubleByNumber (regNumber, unit)

.readRegisterDoubleByName(regName, unit)

readRegisterWithIndex.vi

readRegisterWithIndex.vi

ModulelD
Number

errorln ==

M360TA
Available

146

ModulelDOut
.~ registerValue
Beca errorQut

: No
(The value can be accessed using math operations:

for example, MathAssign.)

Keysight M3201A/M3202A PXle AWG User's Guide

5 Keysight SD1 Command Reference

5.3.5 SD_Module Functions (M3602A FPGA-related)

The FPGAwritePCport, FPGAreadPCport, FPGAload, and FPGAreset functions are related to
the [4] Keysight M3602A FPGA Design Environment Software on page 157.

5.3.5. 1 FPGAwritePCport
Writes data at the PCport FPGA block (Option FP1 required).

Parameters
Name Description
Inputs

modulelD (Non-object-oriented languages only) Module identifier, returned by open on page 72
nPCport PC port number

data Data buffer to write through PC port to FPGA

dataSize Number of 32-bit words to write (maximum is 128 words)

address Address that appears in the PCport interface

addressMode Selects between the two address modes shown below:
addressMode Description Name Value
Auto Initial address is incremented ADDRESSING_AUTOINCREMENT 0
Increment after each access
Fixed Initial address is used ADDRESSING_FIXED 1

for the whole access

accessMode Selects between the two memory access modes shown below:

accessMode Description Name Value
Non-DMA Memary access is splitinto multiple accesses NONDMA 0
DMA Memory access is done with a DMA transaction DMA 1

errorin (LabVIEW only) If it contains an error, the function will not be executed and errorln will be
passed to errorOut

Outputs

modulelDout (LabVIEW only) A copy of modulelD

errorQOut See Error Codes on page 153

C

int SD_Module_FPGAwritePCport(int moduleID, int nPCport, int* data, int
dataSize, int address, int addressMode, int accessMode);

C++

int SD_Module: :FPGAwritePCport(int nPCport, int* data, int dataSize, int
address, SD_AddressingMode addressMode, SD_AccessMode accessMode);

Visual Studio .NET, MATLAB

int SD_Module: :FPGAwritePCport(int nPCport, int [] data, int address, SD_
AddressingMode addressMode, SD_AccessMode accessMode);

Keysight M3201A/M3202A PXle AWG User's Guide 147

5 Keysight SD1 Command Reference

Python
SD_Module.FPGAwritePCport(nPCport, data, address, addressMode, accessMode)

LabVIEW

writePCport.vi

writePCport.vi

—— modulelDout

addressMode — [¢ errorOut

M360TA
Available: No

148 Keysight M3201A/M3202A PXle AWG User's Guide

5 Keysight SD1 Command Reference

5.3.5.2 FPGAreadPCport
Reads data at the PCport FPGA block (Option FP1 required).

Parameters

Name Description
Inputs
modulelD (Non-object-oriented languages only)
Module identifier, returned by open on page 72
nPCport PCport number (as if appears in the M3602A software)

address Address that appears in the PCport interface

dataSize Number of 32-bit words to read (maximum is 128 words)

addressMode Selects between the two address modes shown below:
addressMode ~ Description Name Value
Auto Initial address is incremented ADDRESSING_AUTOINCREMENT 0
Increment after each access
Fixed Initial address is used ADDRESSING_FIXED 1

for the whole access

accessMode Selects between the two memory access modes shown below:

accessMode Description Name Value
Non-DMA Memary access is splitinto multiple accesses NONDMA 0
DMA Memory access is done with a DMA transaction DMA 1

errorin (LabVIEW only) If it contains an error, the function will not be executed and errorln will be
passed to errorOut

Outputs

data Rx data buffer

modulelDout (LabVIEW only) A copy of modulelD

errorQOut See Error Codes on page 153

C

int SD_Module FPGAreadPCport(int moduleID, int nPCport, int* data, int
dataSize, int address, int addressMode, int accessMode);

C++

int SD_Module: :FPGAreadPCport(int nPCport, int* data, int dataSize, int
address, SD_AddressingMode addressMode, SD_AccessMode accessMode);

Visual Studio .NET, MATLAB

int SD Module: :FPGAreadPCport(int nPCport, int address, int[] data, SD_
AddressingMode addressMode, SD_AccessMode accessMode);

Python
SD_Module.FPGAreadPCport(nPCport, dataSize, address, addressMode, accessMode)

Keysight M3201A/M3202A PXle AWG User's Guide 149

5 Keysight SD1 Command Reference

LabVIEW

readPCport.vi

readPCport.vi

modulelD
port modulelDout
nDW # buffer
PORT
address errorQut
addressMode
accessMode

Errorln seeecesoooaood

M3601TA
Available: No

150

Keysight M3201A/M3202A PXle AWG User's Guide

5 Keysight SD1 Command Reference

H.3.5.3 FPGAload

Loads a bitstream file generated using [4] Keysight M3602A FPGA Design
Environment Software on page 157 to FPGA. (Option FP1 required).

Parameters
Name Description
Inputs

modulelD (Non-object-oriented languages only) Module identifier, returned by open on page 72

fileName File to load

errorin (LabVIEW only) If it contains an error, the function will not be executed and errorln will be
passed to errorOut

Outputs
modulelDout (LabVIEW only) A copy of modulelD
errorQOut See Error Codes on page 153

C
int SD_Module_ FPGAload(int moduleID, const char *fileName);

C++

int SD_Module: :FPGAload(const char *fileName);

Visual Studio .NET, MATLAB
int SD_Module: :FPGAload(string fileName);

Python
SD_Module.FPGAload(fileName)

LabVIEW

load.vi

M3601TA
Available: No

Keysight M3201A/M3202A PXle AWG User's Guide 151

5 Keysight SD1 Command Reference

5.3.5.4 FPGAreset
Sends a reset signal to FPGA (Option FP1 required).

Parameters
Name Description
Inputs
modulelD (Non-object-oriented languages only) Module identifier, returned by open on page 72
mode Reset mode desired
Option Description Programming Definitions Name Value
Low Low active reset RESET_LOW 0
High High active reset RESET_HIGH 1
Pulse Pulsereset RESET_PULSE 2
errorin (LabVIEW only) If it contains an error, the function will not be executed and errorln will be

passed to errorOut

Outputs

modulelDout (LabVIEW only) A copy of modulelD

errorOut See Error Codes on page 153

C
int SD_Module FPGAreset(int moduleID, int mode);

C++

int SD_Module: :FPGAreset(SD_ResetMode: :SD_ResetMode mode);

Visual Studio .NET, MATLAB
int SD_Module: :FPGAreset(SD_ResetMode mode);

Python
SD_Module.FPGAreset(mode)

LabVIEW

reset.vi

M3601TA
Available: No

152 Keysight M3201A/M3202A PXle AWG User's Guide

6 Error Codes

© Error Codes

SD1 Error ,Iilr(;or Refer to keysightSD1.py for Definition.
SD_Error.OPENING_MODULE -8000 Opening module
SD_Error.CLOSING_MODULE -8001 Closing module
SD_Error.OPENING_HVI -8002 Opening HVI
SD_Error.CLOSING_HVI -8003 Closing HVI
SD_Error MODULE_NOT_OPENED -8004 Module not opened
SD_Error. MODULE_NOT_OPENED_BY_USER -8005 Madule not opened by user
SD_Error MODULE_ALREADY_OPENED -8006 Module already opened
SD_Error.HVI_NOT_OPENED -8007 HVI not opened, see SDT commands:
assignHardwareWithIndexAndSerialNumber()
assignHardwareWithIndexAndSlot()
assignHardwareWithUserNameAndSerialNumber()
assignHardwareWithUserNameAndSlot()
assignHardwareWithUserNameAndModuleID()
compile()
compilationErrorMessage()
getNumberOfModules ()
getModuleIndex()
getModuleByIndex()
getModuleByName()
load()
pause()
readIntegerConstantWithIndex()
readIntegerConstantWithUserName()
readDoubleConstantWithIndex()
readDoubleConstantWithUserName()
reset()
resume()
start()
stop()
writeIntegerConstantWithIndex()
writeIntegerConstantWithUserName()
writeDoubleConstantWithIndex()
writeDoubleConstantWithUserName()
SD_Error.INVALID_OBJECTID -8008 Invalid objectID
SD_Error.INVALID_MODULEID -8009 Invalid modulelD, see getType().
SD_Error.INVALID_MODULEUSERNAME -8010 Invalid moduleUsername
SD_Error.INVALID_HVIID -8011 Invalid HVIID
SD_Error.INVALID_OBJECT -8012 Invalid object
SD_Error. INVALID_NCHANNEL -8013 Invalid channelNumber
SD_Error.BUS_DOES_NOT_EXIST -8014 Bus does not exist
SD_Error. BITMAP_ASSIGNED_DOES_NOT_ -8015 Any input assigned to the bitMap does not exist
EXIST
SD_Error.BUS_INVALID_SIZE -8016 Input size does not fit on this bus
SD_Error.BUS_INVALID_DATA -8017 Input data does not fit on this bus
SD_Error.INVALID_VALUE -8018 Invalid value, see newFromArrayDouble().

Keysight M3201A/M3202A PXle AWG User's Guide 153

6 Error Codes

154

SD1 Error ’Elrc:or Refer to keysightSD1.py for Definition.
SD_Error.CREATING_WAVE -8019 Creating waveform

SD_Error. NOT_VALID_PARAMETERS -8020 Invalid parameters
SD_Error AWG -8021 AWG failed
SD_Error.DAQ_INVALID_FUNCTIONALITY -8022 DAQ invalid functionality
SD_Error.DAQ_POOL_ALREADY_RUNNING -8023 DAQ buffer pool is already running
SD_Error. UNKNOWN -8024 Unknown error
SD_Error.INVALID_PARAMETERS -8025 Invalid parameters, see FFT().
SD_Error. MODULE_NOT_FOUND -8026 Module not found
SD_Error.DRIVER_RESOURCE_BUSY -8027 Driver resource busy
SD_Error.DRIVER_RESOURCE_NOT_READY -8028 Driver resource not ready
SD_Error.DRIVER_ALLOCATE_BUFFER -8029 Driver cannot allocate buffer
SD_Error ALLOCATE_BUFFER -8030 Cannot allocate buffer
SD_Error. RESOURCE_NOT_READY -8031 Resource not ready
SD_Error. HARDWARE -8032 Hardware error
SD_Error.INVALID_OPERATION -8033 Invalid operation
SD_Error.NO_COMPILED_CODE -8034 No compiled code in the module
SD_Error.FW_VERIFICATION -803b Firmware verification failed
SD_Error. COMPATIBILITY -8036 Compatibility error
SD_Error.INVALID_TYPE -8037 Invalid type

SD_Error. DEMO_MODULE -8038 Demo module
SD_Error.INVALID_BUFFER -8039 Invalid buffer
SD_Error.INVALID_INDEX -8040 Invalid index
SD_Error.INVALID_NHISTOGRAM -8041 Invalid histogram number
SD_Error.INVALID_NBINS -8042 Invalid number of bins
SD_Error.INVALID_MASK -8043 Invalid mask
SD_Error.INVALID_WAVEFORM -8044 Invalid waveform
SD_Error.INVALID_STROBE -8045 Invalid strobe
SD_Error.INVALID_STROBE_VALUE -8046 Invalid strobe value
SD_Error.INVALID_DEBOUNCING -8047 Invalid debouncing
SD_Error. INVALID_PRESCALER -8048 Invalid prescaler
SD_Error.INVALID_PORT -8049 Invalid port
SD_Error.INVALID_DIRECTION -8050 Invalid direction
SD_Error.INVALID_MODE -8051 Invalid mode
SD_Error.INVALID_FREQUENCY -8052 Invalid frequency
SD_Error.INVALID_IMPEDANCE -8053 Invalid impedance
SD_Error.INVALID_GAIN -8054 Invalid gain
SD_Error.INVALID_FULLSCALE -8055 Invalid full scale
SD_Error.INVALID_FILE -8056 Invalid file
SD_Error.INVALID_SLOT -8057 Invalid slot
SD_Error.INVALID_NAME -8058 Invalid name
SD_Error.INVALID_SERIAL -8059 Invalid serial number
SD_Error.INVALID_START -8060 Invalid start

Keysight M3201A/M3202A PXle AWG User's Guide

6 Error Codes

SD1 Error Eroror Refer to keysightSD1.py for Definition.
SD_Error.INVALID_END -8061 Invalid end
SD_Error.INVALID_CYCLES -8062 Invalid cycles
SD_Error.HVI_INVALID_NUMBER_ -8063 Invalid number of modules on HVI
MODULES

SD_Error.DAQ_P2P_ALREADY_RUNNING -8064 DAQ P2P is already running
SD_Error.OPEN_DRAIN_NOT_SUPPORTED -8065 Open drain not supported
SD_Error.CHASSIS_PORTS_NOT_ -8066 Chassis port not supported
SUPPORTED

SD_Error.CHASSIS_SETUP_NOT_ -8067 Chassis setup not supported
SUPPORTED

SD_Error.OPEN_DRAIN_FAILED -8068 Open drain failed
SD_Error.CHASSIS_SETUP_FAILED -8069 Chassis setup failed
SD_Error.INVALID_PART -8070 Invalid part
SD_Error.INVALID_SIZE -8071 Invalid size
SD_Error.INVALID_HANDLE -8072 Invalid handle

Keysight M3201A/M3202A PXle AWG User's Guide

155

156 Keysight M3201A/M3202A PXle AWG User's Guide

7 References

/ References

Software
[1] Keysight SD1 SFP [Soft Front Panels] Software

[2] Keysight SD1 Programming Libraries
[3] Keysight M3601A Hard Virtual Instrument (HVI) Design Environment Software

[4] Keysight M3602A FPGA Design Environment Software

Hardware
(6] Keysight M3201A PXle Arbitrary Waveform Generator, 500 MSa/s, 16 bit, 200 MHz

[6] Keysight M3202A PXle Arbitrary Waveform Generator, 1 GSa/s, 14 bit, 400 MHz
[7] Keysight M3100A PXle Digitizer: 100 MSa/s, 14 bit, 100 MHz

[8] Keysight M3102A PXle Digitizer: 500 MSa/s, 14 bit, 200 MHz

[9] Keysight M3300A PXle AWG and Digitizer Combination,
500 MSa/s, 16 bitand 100 MSa/s, 14 bit

[10] Keysight M3302A PXle AWG and Digitizer Combination
500 MSa/s, 16 bit, and 500 MSa/s, 14 bit

Tested PCs
[11] Tested PC and PXI/AXle Chassis Configurations

Keysight M3201A/M3202A PXle AWG User's Guide 157

http://www.keysight.com/find/sd1software_windows
http://www.keysight.com/find/sd1software_windows
http://www.keysight.com/find/m3601a
http://www.keysight.com/find/m3602a
http://www.keysight.com/find/M3201A
http://www.keysight.com/find/M3202A
http://www.keysight.com/find/M3100A
http://www.keysight.com/find/M3102A
http://www.keysight.com/find/M3300A
http://www.keysight.com/find/M3302A
https://literature.cdn.keysight.com/litweb/pdf/5990-7632EN.pdf

KEYSIGHT

TECHNOLOGIES

This information is subject to change
without notice.

© Keysight Technologies 2013-2020
Edition 2, March, 2020

Printed In USA

M3201-90001
www.keysight.com

http://www.keysight.com/

	 1 Overview of Keysight M320xA PXIe AWGs and Theory
	1. 1 Working with Signal Generation/Channel Structure
	1. 1. 1 Channel Numbering and Compatibility Mode
	1. 1. 2 Channel Waveshape Types
	1. 1. 2. 1 Signal Generation with the Function Generator
	1. 1. 2. 2 Signal Generation with the Arbitrary Waveform Generator

	1. 1. 3 Channel Frequency and Phase
	1. 1. 4 Channel Amplitude and DC Offset

	1. 2 Working with AWG Waveforms
	1. 2. 1 AWG Programming Process
	1. 2. 2 AWG Waveform Queue System
	1. 2. 3 AWG Prescaler and Sampling Rate
	1. 2. 4 AWG Trigger Mode
	1. 2. 5 AWG External Trigger Source
	1. 2. 6 AWG External Trigger Behavior
	1. 2. 7 AWG Markers
	1. 2. 8 AWG FlexCLK Synchronization (models with variable sampling rate)
	1. 2. 9 AWG Waveform Array and *.cvs File Structure
	1. 2. 10 AWG Waveform Types

	1. 3 Working with Signal Modulation
	1. 3. 1 Frequency and Phase Modulation (Angle Modulator Block)
	1. 3. 2 AM and DC Offset (Amplitude Modulator Block)
	1. 3. 3 IQ Modulation (Quadrature Modulator Block)

	1. 4 Working with I/O Triggers
	1. 5 Working with the Clock System
	1. 5. 1 CLK Output Options
	1. 5. 2 FlexCLK Technology (models w/ variable sampling rate)
	1. 5. 3 CLKref Frequency in AWG Modules with Option CLV

	 2 Overview of Keysight Software and Programming Tools
	2. 1 Keysight SD1 SFP Software
	2. 2 Keysight Programming Tools
	2. 2. 1 Keysight SD1 Programming Libraries
	2. 2. 2 Keysight M3601A Hard Virtual Instrument (HVI) Design Environment Software
	2. 2. 3 Keysight M3602A FPGA Design Environment Software

	 3 Using Keysight SD1 SFP Software
	3. 1 Main Soft Front Panel Controls
	3. 2 Signal Generation Controls
	3. 3 Arbitrary Waveform Generation Controls
	3. 4 Signal Modulation Controls

	 4 Using Keysight SD1 Programming Libraries
	4. 1 Overall AWG Work Flow Using Python
	4. 2 Example Programs Using Python
	4. 2. 1 Example Program of Overall Work Flow for Python
	4. 2. 2 Example Program Using Python to Produce a Sine Wave
	4. 2. 3 Example Program Using Python to Produce a Sawtooth Wave from an Array

	 5 Keysight SD1 Command Reference
	5. 1 Keysight Supplied Native Programming Libraries
	5. 2 Support for Other Programming Languages
	5. 3 Functions in SD1 Programming Libraries
	5. 3. 1 SD_Module Functions
	5. 3. 1. 1 open
	5. 3. 1. 2 close
	5. 3. 1. 3 moduleCount
	5. 3. 1. 4 getProductName
	5. 3. 1. 5 getSerialNumber
	5. 3. 1. 6 getChassis
	5. 3. 1. 7 getSlot
	5. 3. 1. 8 PXItriggerWrite
	5. 3. 1. 9 PXItriggerRead

	5. 3. 2 SD_AOU Functions
	5. 3. 2. 1 channelWaveShape
	5. 3. 2. 2 channelFrequency
	5. 3. 2. 3 channelPhase
	5. 3. 2. 4 channelPhaseReset
	5. 3. 2. 5 channelPhaseResetMultiple
	5. 3. 2. 6 channelAmplitude
	5. 3. 2. 7 channelOffset
	5. 3. 2. 8 modulationAngleConfig
	5. 3. 2. 9 modulationAmplitudeConfig
	5. 3. 2. 10 modulationIQconfig
	5. 3. 2. 11 clockIOconfig
	5. 3. 2. 12 waveformLoad
	5. 3. 2. 13 waveformReLoad
	5. 3. 2. 14 waveformFlush
	5. 3. 2. 15 AWG
	5. 3. 2. 16 AWGqueueWaveform
	5. 3. 2. 17 AWGflush
	5. 3. 2. 18 AWGstart
	5. 3. 2. 19 AWGstartMultiple
	5. 3. 2. 20 AWGpause
	5. 3. 2. 21 AWGpauseMultiple
	5. 3. 2. 22 AWGresume
	5. 3. 2. 23 AWGresumeMultiple
	5. 3. 2. 24 AWGstop
	5. 3. 2. 25 AWGstopMultiple
	5. 3. 2. 26 AWGreset
	5. 3. 2. 27 AWGjumpNextWaveform
	5. 3. 2. 28 AWGjumpNextWaveformMultiple
	5. 3. 2. 29 AWGisRunning
	5. 3. 2. 30 AWGnWFplaying
	5. 3. 2. 31 AWGtriggerExternalConfig
	5. 3. 2. 32 AWGtrigger
	5. 3. 2. 33 AWGtriggerMultiple
	5. 3. 2. 34 triggerIOconfig
	5. 3. 2. 35 triggerIOwrite
	5. 3. 2. 36 triggerIOread
	5. 3. 2. 37 clockSetFrequency (Requires Option CLV)
	5. 3. 2. 38 clockGetFrequency
	5. 3. 2. 39 clockGetSyncFrequency
	5. 3. 2. 40 clockResetPhase
	5. 3. 2. 41 AWGqueueConfig
	5. 3. 2. 42 AWGqueueConfigRead
	5. 3. 2. 43 AWGqueueMarkerConfig
	5. 3. 2. 44 AWGqueueSyncMode

	5. 3. 3 SD_Wave Functions (new and delete)
	5. 3. 3. 1 new
	5. 3. 3. 2 delete

	5. 3. 4 SD_Module Functions (M3601A HVI-related)
	5. 3. 4. 1 writeRegister
	5. 3. 4. 2 readRegister

	5. 3. 5 SD_Module Functions (M3602A FPGA-related)
	5. 3. 5. 1 FPGAwritePCport
	5. 3. 5. 2 FPGAreadPCport
	5. 3. 5. 3 FPGAload
	5. 3. 5. 4 FPGAreset

	 6 Error Codes
	 7 References

