MXG X-Series Signal Generators N5183B Microwave Analog 9 kHz to 13, 20, 31.8, or 40 GHz ### **Definitions** # Specification (spec): Specifications represent warranted performance of a calibrated instrument that has been stored for a minimum of 2 hours within the operating temperature range of 0 to 55 °C, unless otherwise stated, and after a 45 minutes warm-up period. The specifications include measurement uncertainty. Data represented in this document are specifications unless otherwise noted. ## Typical (typ): Typical (typ) describes additional product performance information. It is performance beyond specifications that 80 percent of the units exhibit with a 95 percent confidence level at room temperature (approximately 25 °C). Typical performance does not include measurement uncertainty. ### Nominal (nom) or measured (meas): Nominal (nom) or measured (meas) describes a performance attribute that is by design or measured during the design phase for the purpose of communicating sampled, mean, or average performance, such as the 50-ohm connector or amplitude drift vs. time. This data is not warranted and is measured at room temperature (approximately 25 °C). # **Frequency Specifications** | Range | | | | | | | |---|-----------|---------------------------------------|----------------------------|-----------------|----------------------------|--| | Frequency range | | Option 513 | | 9 kHz to | 13 GHz | | | | | Option 520 | | 9 kHz to | 9 kHz to 20 GHz | | | | | Option 532 | | 9 kHz to | 9 kHz to 31.8 GHz | | | | | Option 540 | | 9 kHz to 40 GHz | | | | Resolution | 0.001 Hz | | | | | | | Phase offset | | Adjustable in nominal 0.1° increments | | | | | | Frequency switching speed ¹ () | = typical | | | | | | | | Standard | | Option UNZ ^{2, 4} | | Option UZ2 ^{3, 4} | | | CW mode | | | | | | | | SCPI mode | (≤ 5 ms) | | ≤ 1.15 ms (≤ 750 μ | us) | < 1.65 ms (1 ms) | | | List/step sweep mode | (≤ 5 ms) | | ≤ 900 µs (≤ 600 µs) | | < 1.4 ms (850 µs) | | Time from receipt of SCPI command or trigger signal to within 0.1 ppm of final frequency or within 100 Hz, For export control purposes CW switching speed to within 0.05% of final frequency is 190 μs (meas). For export control purposes CW switching speed to within 0.05% of final frequency is > 400 μs (nom) below 20 GHz and > 600 μs (nom) above 20 GHz. Specifications apply when status register updates are off. | F | | |---|---| | Frequency reference | | | Accuracy | ± aging rate ± temperature effects ± line voltage effects ± initial setting accuracy | | Internal time base reference oscillator aging rate ¹ | $< \pm 1 \times 10^{-7}$ /year ² $< \pm 5 \times 10^{-10}$ /day after 30 days | | Initial achievable calibration accuracy | ± 4 x 10 ⁻⁸ or ± 40 ppb | | Adjustment resolution | < 1 x 10 ⁻¹⁰ (nom) | | Temperature effects | $<\pm$ 2 x 10 ⁻⁸ from 20 to 30 °C (nom) | | Line voltage effects | < ± 1 x 10 ⁻⁹ for ± 10% change (nom) | | Reference output | | | Frequency | 10 MHz | | Amplitude | \geq +4 dBm, (nom) into 50 Ω load | | External reference input | | | Input frequency standard | 10 MHz | | Input frequency Option 1ER | 1 to 50 MHz (in multiples of 0.1 Hz) | | Lock range | ± 1 ppm (nom) | | Amplitude | $5 \text{ dBm} \pm 2 \text{ dB (nom)}^3$ | | Impedance | 50 Ω (nom) | | Waveform | Sine or square | | Stability | Follows the stability of external reference input signal | | Sweep modes (frequency and amplitude) | | | Operating modes | Step sweep (equally spaced frequency and amplitude or logarithmically spaced frequency steps) List sweep (arbitrary list of frequency and amplitude steps) Simultaneously sweep waveforms with N5172B; see Baseband Generator section for more detail | | Sweep range | Within instrument frequency range | | Dwell time | 100 μs to 100s | | Number of points | 2 to 65535 (step sweep)
1 to 3201 (list sweep) | | Step change | Linear or logarithmic | | Triggering | Free run, trigger key, external, timer, bus (GPIB, LAN, USB) | Not verified by Keysight N7800A TME Calibration and Adjustment Software. Daily aging rate may be verified as a supplementary chargeable service, on request. After one year of operation, aging rate drops to $<\pm$ 3 x 10⁻⁸ per year or \pm 30 ppb/year. Inputs between +3 dBm to +20 dBm are allowed. # **Amplitude Specifications** | Output parameters | | | | | | |--|--|-----------------------|--|--|--| | Settable range
(with Option 1E1 and 1EA) | +30 to -135 dBm | | | | | | Settable range
(without Option 1E1 and 1EA) | +19 to -20 dBm | | | | | | Resolution | 0.01 dB | | | | | | Step attenuator (1E1) | 0 to 115 dB in 10 dB steps mechanica | ıl type | | | | | Attenuator hold range | -15 dBm to maximum specified output power with step attenuator in 0 dB state; can be offset using option 1E1 mechanical attenuator | | | | | | Connector | $513/520$ = 3.5 SMA male, $532/540$ = 2.4 mm male, $50~\Omega$ (nom) (Option 1ED adds Type-N connector to a 513 or 520) | | | | | | Max output power 1 (dBm, with or without s | tep attenuator, Option 1E1) | | | | | | Frequency | Standard | High-power Option 1EA | | | | | Option 513, 520 | | | | | | | 9 kHz to 3.2 GHz | +18 | +23 | | | | | > 3.2 to 13 GHz | +18 | +20 | | | | | > 13 to 20 GHz | +15 +19 | | | | | | Option 532, 540 | | | | | | | 9 kHz to 3.2 GHz | +14 | +21 | | | | | > 3.2 to 17 GHz | +14 | +16 | | | | | | | | | | | ^{1.} Quoted specifications between 15 and 35 °C. Maximum output power typically decreases by 0.05 dB/°C for temperatures outside this range. +13 +11 +15 > 17 to 31.8 GHz > 31.8 to 40 GHz | Absolute level accuracy in CW mode ^{1, 2} (ALC on) () = typical | | | | | | | | |--|----------------------|---------------------|------------------|------------------|---------------------|----------------------|--| | With or without Option 1E1 | | | With Option 1E1 | | | | | | | Max power to +10 dBm | < +10 to
-10 dBm | < -10 to - 20dBm | < -20 to -75 dBm | < -75 to
-90 dBm | < –90 to
–120 dBm | | | 9 kHz to 2 GHz | ± 0.6 dB | ± 0.6 dB | ± 0.7 dB | ± 0.7 dB | ± 1.4 dB | (± 0.3) | | | > 2 to 20 GHz | ± 0.9 dB | ± 0.7 dB | ± 0.7 dB | ± 0.7 dB | ± 1.6 dB | (± 0.3) | | | > 20 to 40 GHz | ± 0.9 dB | ± 0.8 dB | ± 1.1 dB | ± 1.1 dB | ± 2.0 dB | | | Level accuracy applies between 15 °C and 35 °C. Specifications do not apply above the maximum specified power. For temperatures outside this range, absolute level accuracy degrades by 0.01 dB/degree C for frequencies ≤ 4.5 GHz and 0.02 dB/degree C for frequencies > 4.5 GHz. For instruments with Type-N connectors (Option 1ED), specifications are degraded typically 0.2 dB above 18 GHz. | SWR (measured CW mode) | | | | | | |---|--|------------------|--|--|--| | Frequency | Attenuator state | | | | | | | 0 dB | 5 dB and greater | | | | | ≤ 2 GHz | < 1.7:1 | < 1.2:1 | | | | | > 2 to 8 GHz | < 1.4:1 | < 1.4:1 | | | | | > 8 to 13 GHz | < 1.6:1 | < 1.5:1 | | | | | > 13 to 20 GHz | < 1.8:1 | < 1.7:1 | | | | | > 20 to 40 GHz | < 1.6:1 | < 1.4:1 | | | | | External detector leveling ¹ | | | | | | | Range | −0.2 mV to −0.5 V (nom) | | | | | | Bandwidth | 10 kHz (typ) | | | | | | Amplitude switching speed ² | | | | | | | SCPI mode | ≤ 2 ms (typ) | | | | | | Power search SCPI mode ³ | < 12 ms (meas) | | | | | | List/step sweep mode | ≤ 2 ms (typ) | | | | | | User flatness correction | | | | | | | Number of points | 3201 | | | | | | Number of tables | Dependent on available free memory in instrument; 10,000 maximum | | | | | | Entry modes | USB/LAN direct power meter control, LAN to GPIB and USB to GPIB, remote bus, and manual USB/GPIB power meter control | | | | | | Sweep modes | | | | | | | | See Frequency Specifications section | for more detail | | | | Not intended for pulsed operation. Time from receipt of SCPI command or trigger signal to amplitude settled within 0.2 dB. Specification does not apply when switching to or from frequencies < 5 MHz, or when ALC level is < 0 dBm, or when frequency crosses 0.002, 0.02, 0.1, 2.0, 3.2, 5.0, 6.4, 8, 10, 12.8, 16, 20, 25.6, or 32 GHz. When ALC is off and power search mode is disabled amplitude switching is < 250 µs (meas). # **Spectral Purity Specifications** | | | noise (dBc/Hz) (CW) [at | t-20 KHZ UH | | | | | |----------------|-----------------|-------------------------|---------------------|-----------------|-------------|-------------|-------------| | 5 to < 250 MH | Hz | | | -129 (-133) | | | | | 250 MHz | | | | -139 (- | | | | | 500 MHz | | | | | 139) | | | | 1 GHz | | | | -130 (- | | | | | 2 GHz | | | | -124 (- | | | | | 3 GHz | | | | -119 (- | -128) | | | | 4 GHz | | | | -118 (- | -122) | | | | 6 GHz | | | | -112 (- | -122) | | | | 10 GHz | | | | -113 (- | -116) | | | | 20 GHz | | | | -106 (- | -110) | | | | 40 GHz | | | | -99 (- <i>°</i> | 104) | | | | Standard absol | ute SSB phase n | noise (dBc/Hz) (CW) [at | t 100 Hz offs | set] () = m | easured | | | | 100 MHz | | | | -103 | | | | | 250 MHz | | | | -104 | | | | | 500 MHz | | | | -95 | | | | | 1 GHz | | | | -90 | | | | | 2 GHz | | | | -85 | | | | | 3 GHz | | | | -80 | | | | | 4 GHz | | | | -75 | | | | | 6 GHz | | | | -75 | | | | | 10 GHz | | | | -69 | | | | | 20 GHz | | | | -63 | | | | | Option UNY ab | solute SSB phas | e noise (CW) () = meas | sured ¹ | | | | | | Frequency | 1 Hz | 10 Hz | 100 Hz | | 1 kHz | 10 kHz | 100kHz | | 100 MHz | (-92) | -93 (-116) | -103 (- | -125) | -130 (-137) | -138 (-142) | -137 (-141) | | 249 MHz | (-84) | -93 (-108) | -103 (- | -117) | -130 (-137) | -139 (-142) | -138 (-141) | | 250 MHz | (-84) | -96 (-111) | -104 (- | -121) | -127 (-139) | -142 (-150) | -147 (-152) | | 500 MHz | (-76) | -89 (-106) | -98 (- ⁻ | 116) | -125 (-136) | -142 (-149) | -144 (-148) | | 1 GHz | (-72) | -86 (-102) | -93 (- ⁻ | 111) | -123 (-138) | -139 (-146) | -139 (-144) | | | | | | | | | | -85 (-104) -81 (-101) -79 (-98) -134 (-141) -131 (-139) -128 (-135) -114 (-132) -111 (-129) -110 (-121) -133 (-138) -127 (-137) -127 (-131) -79 (-95) -74 (-92) -73 (-89) (-66) (-63) (-59) 2 GHz 3 GHz 4 GHz ^{1.} From 0 to 55 °C, excludes mechanic vibration, measured at +10 dBm or maximum specified power, whichever is less) | Option UNY absolute SSB phase noise (CW) () = measured ¹ | | | | | | | | |---|-------|-----------|-----------|-------------|-------------|-------------|--| | 6 GHz | (-55) | -69 (-85) | -76 (-94) | -107 (-118) | -123 (-129) | -121 (-130) | | | 10 GHz | (-51) | -63 (-82) | -71 (-90) | -101 (-116) | -119 (-129) | -121 (-126) | | | 20 GHz | (-48) | -57 (-75) | -65 (-84) | -95 (-110) | -113 (-122) | -115 (-119) | | | 40 GHz | (-43) | -51 (-70) | -59 (-78) | -89 (-104) | -107 (-116) | -109 (-114) | | From 0 to 55 °C, excludes mechanic vibration, measured at +10 dBm or maximum specified power, whichever is less) | Broadband noise ¹ () = measured | | | | | | |--|--------------------------|--------------------|---------------------------------|--|--| | 100 MHz | | (-143 dBc/Hz) | | | | | 500 MHz | | (-155 dBc/Hz) | | | | | 1 GHz | | (-163 dBc/Hz) | | | | | 10 GHz | | (-150 dBc/Hz) | | | | | 20 GHz | | (-143 dBc/Hz) | | | | | 40 GHz | | (-135 dBc/Hz) | | | | | Residual FM (CW mode, rms) See frequer | ncy band table for N val | ue | | | | | 0.3 to 3 kHz bandwidth | | < N* 0.1 Hz (meas) | | | | | 0.05 to 15 kHz bandwidth | | < N* 0.5 Hz (meas) | | | | | Residual AM (CW mode, +10 dBm, 0.3 kH | z to 3 kHz bandwidth, rr | ns) | | | | | < 2 GHz | | < 0.01% (meas) | | | | | Harmonics [CW mode] 2 () = typical | | • | | | | | Range | CW mode at +10 d | Bm | CW mode at +20 dBm ³ | | | | 9 kHz to 200 MHz | < -48 dBc (-54) | | < -38 dBc (-43) | | | | > 200 MHz to 2 GHz | < -33 dBc (-40) | | < -25 dBc (-31) | | | | > 2 to 20 GHz | < -55 dBc (-65) | | < -50 dBc (-55) | | | - CW mode at +10 dBm for offsets > 10 MHz. In high signal to noise ratio mode (optimize S/N). Specifications apply from +15 to +35 °C and are nominal for harmonics beyond specified frequency range. Or maximum specified output power, whichever is lower. | Nonharmonics (CW mod | e) ^{1, 2} () = typica <u>l</u> | | | | | | | |--------------------------------------|---|----------------------------|-------------------|----------------|------------------------|-------------|--| | Range | · · · · · · · · · · · · · · · · · · · | > 10 kHz offs | et | | | | | | | | Standard (d | UNY (d | UNY (dBc) | | | | | 9 kHz to < 5 MHz | | -65 | , | | _65 (_ 75) | | | | 5 to < 250 MHz | | – 75 | | -75 (- | 86) | | | | 250 to < 750 MHz | | - 75 | | -96 (- | 100) | | | | 750 MHz to < 1.5 GHz | <u>Z</u> | -72 | | -92 (- | 100) | | | | 1.5 to < 3.0 GHz | | -66 | | -86 (- | 93) | | | | 3 to < 5 GHz | | -60 | | -80 (- | 88) | | | | 5 to < 10 GHz | | -69 | | -74 (- | 80) | | | | 10 to < 20 GHz | | -63 | | -68 (- | 75) | | | | 20 to 40 GHz | | -57 | | -62 (- | 68) | | | | Subharmonics (CW mod | / mode, dBc) | | | | | | | | 9 kHz to 1.5 GHz | | None | | | | | | | > 1.5 to 3.2 GHz | | -75 (-83) | | | | | | | > 3.2 to 5 GHz | | -67 (-75) | | | | | | | > 5 to 10 GHz | | – 67 (– 75) | | | | | | | > 10 to 20 GHz | | -56 (-65) | | | | | | | > 20 to 40 GHz | | -53 (-63) | | | | | | | Standard jitter ³ (measur | ed) | | | | | | | | Carrier frequency | SONET/SDH da | ata rate | rms jitter BW | μUI rms | | Picoseconds | | | 155 MHz | 155 MB/s | | 100 Hz to 1.5 MHz | 99.3 | | 0.6 | | | 622 MHz | 622 MB/s | | 1 kHz to 5 MHz | 52 | | 0.08 | | | 2.488 GHz | 2488 MB/s | | 5 kHz to 20 MHz | 205 | | 0.08 | | | 9.953 GHz | | | 10 kHz to 80 MHz | 789 | | 0.08 | | | 39.812 GHz | | | 40 kHz to 320 MHz | 3252 | | 0.08 | | | UNY jitter ³ (measured) | | | | | | | | | Carrier frequency | SONET/SDH da | ata rate | rms jitter BW | μUI rms | | Picoseconds | | | 155 MHz | 155 MB/s | | 100 Hz to 1.5 MHz | 41.5 | | 0.27 | | | 622 MHz | 622 MB/s | | 1 kHz to 5 MHz | 21 | | 0.033 | | | 2.488 GHz | 2488 MB/s | | 5 kHz to 20 MHz | 71 | | 0.028 | | | 9.953 GHz | | | 10 kHz to 80 MHz | 277 | | 0.028 | | | 39.812 GHz | | | 40 kHz to 320 MHz | 1271 | | 0.032 | | CW mode at +10 dBm. Power line related non-harmonics: 60 Hz to 300 Hz: < -50 dBc. Measured from 1 MHz to 40 GHz. Calculated from phase noise performance in CW mode at +10 dBm. For other frequencies, data rates, or bandwidths, please consult your sales representative. # **Analog Modulation Specifications** | Frequency bands | | | | | | |--|---|--|--|--|--| | Band # | Frequency range | N | | | | | 1 | 9 kHz to < 5 MHz | Digital synthesis | | | | | 2 | 5 to < 250 MHz | 1 | | | | | 3 | 250 to < 375 MHz | 0.25 | | | | | 4 | 375 to < 750 MHz | 0.5 | | | | | 5 | 750 MHz to < 1.5 GHz | 1 | | | | | 6 | 1.5 to < 3 GHz | 2 | | | | | 7 | 3 to < 6 GHz | 4 | | | | | 8 | 6 to < 12 GHz | 8 | | | | | 9 | 12 to < 24 GHz | 16 | | | | | 10 | 24 to 40 GHz | 32 | | | | | Frequency modulation (Option UNT) (See N | l value above) | | | | | | Max deviation | N × 4 MHz (nom) ¹ | | | | | | Resolution | 0.025% of deviation or 1 Hz, whichever is greater (nom) | | | | | | Deviation accuracy | < ± 2% + 20 Hz ² [1 kHz rate, deviation is N x 50 kHz] | | | | | | Modulation frequency response | 1 dB bandwidth | DC/5 Hz to 3 MHz (nom) | | | | | @ 100 KHz deviation | 3 dB bandwidth | DC/1 Hz to 7 MHz (nom) | | | | | Carrier frequency accuracy | < ± 0.2% of set deviation + (N × 1 Hz) | 3 | | | | | Relative to CW after DC cal | $< \pm 0.06\%$ of set deviation + (N × 1 Hz | z) (typ) ⁴ | | | | | Distortion | < 0.4% [1 kHz rate, deviation is N x 50 | kHz] | | | | | FM using external inputs 1 or 2 | Sensitivity | +1 V peak for indicated deviation (nom) | | | | | | Input impedance | 50 Ω/600 Ω/1 MΩ (nom) | | | | | | Paths | FM path 1 and FM path 2 are summed internally for composite modulation | | | | | Phase modulation (Option UNT) (See N val | ue above) | | | | | | Maximum deviation | Normal bandwidth | N × 2 radians (nom) | | | | | | High-bandwidth mode | N × 0.2 radians (nom) | | | | | Frequency response | Normal bandwidth (3 dB) | DC to 1 MHz (nom) | | | | | | High-bandwidth mode (3 dB) | DC to 4 MHz (nom) | | | | | Resolution | 0.1% of deviation | | | | | | Deviation accuracy | < +0.5% + 0.01 rad (typ) [1 kHz rate, r | normal BW mode] | | | | | | - NALL | | | | | Digital synthesis band FM deviation is 5 MHz. Specification applies from 15 to 35 °C. Specification valid for temperature changes of less than ± 5 °C since last DC calibration. Typical performance immediately after a DC calibration. | Distortion | < 0.2% (typ) [1 kHz rate, | N x 1 radian | deviation nor | mal BW mode] | | |---|---|--------------------------------------|--|---|--| | ΦM using external inputs 1 or 2 | Sensitivity | | +1 V peak for indicated deviation (nom) | | | | | Input impedance | | 50 Ω or 600 Ω or 1 M Ω (nom) | | | | | Paths | | ΦM path 1 and ΦM path 2 are summed internally for composite modulation | | | | Amplitude modulation (Option UNT) ¹ | | | | | | | Depth | | Linear mode | | Exponential mode | | | Settable depth | | 0 to 100% | | 0 to 50 dB | | | Depth resolution | | 0.1% (nom) | | 0.01 dB (nom) | | | AM depth accuracy
ALC on 3
[@ 1KHz rate, < 80% depth] | f < 5 MHz | < 1.5% of se
(typ 0.5% of
+1%) | | ± 2 dB @ 40 dB depth (typ) ⁴ | | | | 5 MHz ≤ f ≤ 3.2 GHz | < 4% of setting + 1% | | ± 2 dB @ 40 dB depth (typ) 4 | | | | > 3.2 to 40 GHz (typ 3% of se | | ± 4 dB @ 40 dB depth (typ) 4 | | | | Total harmonic distortion (@ 1 kHz rate) | | | | | | | f < 5 MHz | 30% depth | | < 0.25% (typ) | | | | 1 × 3 IVII IZ | 80% depth | | < 0.5% (typ) | | | | 5 MHz < f ≤ 40 GHz | 30% depth | | < 2% | | | | | 80% depth | | < 3% | | | | Frequency response (30% depth 3 dB BW) | | | | | | | 9 kHz to ≤ 3.2 GHz | DC/10 Hz to 50 kHz ⁵ | | | | | | > 3.2 to 40 GHz | DC/10 Hz to 100 kHz ⁵ | | | | | | AM inputs using External Inputs 1 and 2 | | | | | | | Sensitivity | ±1 V peak for indicated d | epth (over-ra | nge can be 2 | 00% or 2.2 V peak) | | | Input impedance | 50 Ω or 600 Ω or 1 M Ω , α | damage level | ± 5 V max | | | | Paths | AM Paths 1 and 2 are su | mmed interna | ally for compo | osite modulation | | - AM specifications apply 6 dB below maximum specified power and down to -15 dBm for Option 520 or -20 dBm for Option 540 from 15 to 35 °C with ALC on. - ALC off is used for narrow pulse modulation and/or high AM depths with envelope peaks below ALC operating range. - Carrier power level will be accurate after a power search is executed. 3. Deep AM with ALC on provides increased AM depths and improved distortion, together with closed-loop internal leveling. This mode requires a repetitive AM waveform (frequency > 10 Hz) with peaks > -5 dBm (nom), excluding step-attenuator setting). - 4. ± 2 dB @ 40 dB, and 50 dB < 31.8 GHz, and ± 4 dB @ 50 dB > 31.8 GHz (meas). 5. From 5 MHz to 50 MHz carrier roll off is < 5 dB at 50 kHz rate. From 50 MHz to 3.2 GHz rate is useable up to 100 kHz. Above 3.2 GHz rate is useable to 1 MHz. | Simultaneous and composite modulation | | | | | | | |--|---|--|-----------------------|---------------|--|--| | Simultaneous modulation | All modulation types (FM, AM, ϕ M and pulse modulation) may be simultaneously enabled except FM and phase modulation cannot be combined; two modulation types cannot be simultaneously generated using the same modulation source. For example, the Pulse, AM, and FM can run concurrently, and all will modulate the output RF. This is useful for simulating signal impairments, FM chirp RADAR, or scan modulation. | | | | | | | Composite modulation | internally for comp | AM, FM, and Φ M each consist of two modulation paths which are summed internally for composite modulation. Modulation can be any combination of internal or external sources. | | | | | | | AM | FM | Phase | Pulse | | | | AM | + | + | + | + | | | | FM | + | + | - | + | | | | Phase | + | - | + | + | | | | Pulse | + | + | + | - | | | | + = compatible, - = incompatible | | | | | | | | External modulation inputs | | | | | | | | (Option UNT required for FM, AM, and phase modulation inputs; Option UNW required for pulse modulation inputs) | | | | | | | | EXT1 | | AM, FM, PM | | | | | | EXT2 | | AM, FM, PM | | | | | | PULSE | | Pulse (50 Ω only) | | | | | | Input impedance | | 50 Ω, 1 ΜΩ, 600 Ω |), DC and AC coupl | ed | | | | Standard internal analog modulation source | e | | | | | | | (Waveform generator for use with AM, | FM, phase modulati | on, and LF out; requ | ires Option UNT) | | | | | Waveform | | Sine, square, trian | gle, positive ramp, ı | negative ramp | | | | Rate range | | 0.1 Hz to 2 MHz (t | unable to 3 MHz) | | | | | Resolution | | 0.1 Hz | | | | | | Frequency accuracy | | Same as RF refere | ence source (nom) | | | | | LF audio output | | 0 to 5 V peak into 50 Ω, –5 V to 5 V offset (nom) | | | | | | Multifunction generator (Option 303) | | | | | | | | The multifunction generator option (O with up to 5 simultaneously using the | | | | independently | | | | Waveform | | | | | | | | Function generator 1 | Sine, triangle, square, pos ramp, neg ramp, pulse | | | | | | | Function generator 2 | Sine, triangle, square, pos ramp, neg ramp, pulse | | | | | | | Dual function generator | Sine, triangle, square, pos ramp, neg ramp, pulse, phase offset and amplitude ratio for Tone2 relative to Tone1 | | | | | | | Swept function generator | Sine, triangle, square, pos ramp, neg ramp
Trigger: free run, trigger key, bus, external, internal,
timer trigger, | | | | | | | Simultaneous and composite modulation | | |---|--| | Noise generator 1 | Uniform, Gaussian | | Noise generator 2 | Uniform, Gaussian | | DC | Only for LF output | | Frequency parameters | | | Sine wave | 0.1 Hz to 10 MHz | | Triangle, square, ramp, pulse | 0.1 Hz to 1 MHz | | Noise bandwidth | 10 MHz | | Resolution | 0.1 Hz | | Frequency accuracy | Same as RF reference source (nom) | | Narrow pulse modulation (Option UNW or UW2) ¹ () = typical | | | On/off ratio | > 80 dB (typ) ² | | Rise/fall times (Tr, Tf) | < 10 ns; 7 ns (typ) | | Minimum pulse width ALC on/off ³ | ≥ 1us (500 ns typ) / ≥ 20 ns | | Repetition frequency ALC on/off | 10 Hz to 500 kHz / DC to 10 MHz | | Level accuracy (relative to CW) ALC on/off ⁴ | ± 0.7 dB (± 0.5 typ) / (< ± 0.75 dB typ) | | Width compression (RF width relative to video out) | < 5ns (typ) | - Pulse specifications apply to frequencies > 100 MHz and power set to > -3 dBm. Operable down to 9 kHz. Above 35 GHz vernier > 0 dBm. For export control purposes, Option UW2 limits minimum pulse width above 31.8 GHz to ≥ 500 ns. With power search on. | Video feed-through1 < 3.2 / > 3.2GHz | (< 50 mV / < 3 mV) | |--|---| | Video delay (external input to video) | 40 ns, nominal | | RF delay (video to RF output) | 45 ns, nominal | | Pulse overshoot | (< 10%) | | Input level | +1 V peak = RF on into 50 Ω, nominal | | Td video delay (variable) Tw video pulse width (variable) Tp pulse period (variable) Tm RF delay Trf RF pulse width Tf RF pulse fall time Tr RF pulse rise time Vor pulse overshoot Vf video feedthrough | | | Internal pulse generator (included with Option UNW | or UW2) | | Modes | Free-run, square, triggered, adjustable doublet, trigger doublet, gated, and external pulse | | Square wave rate | 0.1 Hz to 10 MHz, 0.1 Hz resolution (nom) | | Pulse period | 30 ns to 42 s (nom) | | Pulse width ² | 20 ns to pulse period -10 ns (nom) | | Resolution | 10 ns | | Adjustable trigger delay | (-pulse period +10 ns) to (pulse width -10 ns) | | Settable delay | Free run | | | Triggered 0 to 40 s | 10 ns, nominal 1st pulse delay 1st pulse width 2nd pulse delay 2nd pulse width (Relative to sync out) 0 to 42 s - 0 to 42 s - (delay1 + width2) - 10 20 ns to 42 s - (delay1 + delay2) - 20 ns to 42 s - delay - 10 ns pulse width - 10 ns 10 ns Resolution (delay, width, period) Pulse doublets Video feed through applies to power levels < +10 dBm. For export control purposes, Option UW2 limits minimum pulse width above 31.8 GHz to ≥ 500 ns. | Pulse train generator Option 320 (requires Option UNW or UW2) | | |---|---------------| | Number of pulse patterns | 2047 | | On/off time range ¹ | 20 ns to 42 s | ^{1.} For export control purposes, Option UW2 limits minimum pulse width above 31.8 GHz to ≥ 500 ns. # **General Characteristics** | Remote programming | | |-------------------------|--| | Interfaces | GPIB IEEE-488.2, 1987 with listen and talk LAN 1000BaseT LAN interface, LXI Class C compliant USB Version 2.0 | | Control languages | SCPI Version 1997.0 | | Compatibility languages | Keysight Technologies: N5181A\61A, N5182A\62A, N5183A, E4438C, E4428C, E442xB, E443xB, E8241A, E8244A, E8251A, E8254A, E8247C, E8257C/D, E8267C/D, 8648 series, 8656B, E8663B, 83711B/12B, 83731B/32B, 83751B/52B, 8340B/41B, 836xx series, 8664A, 8665A/B, 8644A, 8662A/63A | | | Aeroflex Incorporated: 3410 series | | | Rohde & Schwarz: SMR, SMF100A, SMB100A, SMBV100A, SMU200A, SMJ100A, SMATE200A, SMIQ, SML, SMV | | | Anritsu: MG369xA/B/C | ### Power requirements 100/120 VAC, 50/60/400 Hz 220/240 VAC, 50/60 Hz 280 Watts maximum #### Operating temperature range 0 to 55 °C ### Storage temperature range -40 to 70 °C ### Operating and storage altitude Up to 4,600 meters ### Indoor Use For indoor use only. ### Humidity Maximum Relative Humidity (non-condensing): 95%RH up to 40°C, decreases linearly to 45%RH at 55°C.1 #### Environmental stress Samples of this product have been type tested in accordance with the Keysight Environmental Test Manual and verified to be robust against the environmental stresses of storage, transportation, and end-use; those stresses include but are not limited to temperature, humidity, shock, vibration, altitude, and power line conditions. Test Methods are aligned with IEC 60068-2 and levels are similar to MIL-PRF-28800F Class 3. 1. From 40°C to 55°C, the maximum % Relative Humidity follows the line of constant dew point. #### Safety Complies with the essential requirements of the European Low Voltage Directive as well as current editions of the following standards (dates and editions are cited in the Declaration of Conformity): - IEC/EN 61010-1 - Canada: CSA C22.2 No. 61010-1 - USA: UL std no. 61010-1 #### **EMC** Complies with European EMC Directive 2004/108/EC - IEC/EN 61326 - CISPR Pub 11 Group 1, class A - AS/NZS CISPR 11 - ICES/NMB-001 #### Memory Memory is shared by instrument states, user data files, sweep list files, and other files. Option instrument security allows storage of up to 8 GB. Depending on how the memory is utilized, a maximum of 1000 instrument states can be saved. #### Security (Option 006) Option 006 "Removable memory card & Instrument security" allows the following: - Removable 8 GB solid state memory (SD card) from rear pane - User can force all files to be stored only on external memory card including instrument states, user data files, sweep list files, and other files - · Memory sanitizing, memory sanitizing on power on, and display blanking #### Self-test Internal diagnostic routines test most modules in a preset condition. For each module, if its node voltages are within acceptable limits, the module "passes" the test. #### Weight N5183B-513/520: \leq 14.5 kg (32 lb.) net, \leq 29.5 kg (65 lb.) shipping N5183B-532/540: \leq 15.0 kg (33 lb.) net, \leq 29.9 kg (66 lb.) shipping #### **Dimensions** - 88 mm H x 426 mm W x 489 mm L (length includes rear panel feet) - (3.5 in H x 16.8 in W x 19.2 in L) - Max length (L) including RF connector tip to end of rear panel feet is 508 mm (20 in) #### Recommended calibration cycle #### 36 months #### **ISO** compliant This instrument is manufactured in an ISO-9001 registered facility in concurrence with Keysight Technologies' commitment to quality. # Inputs and Outputs | Front panel connectors (all connectors | are BNC unless otherwise stated) | |--|--| | RF output | Output impedance 50 Ω (nom) | | Option 513/520 | Precision APC-3.5 male, or Type- N with Option 1ED | | Option 532/540 | Precision 2.4 mm male; plus 2.4—2.4 mm and 2.4-2.9 mm female adapters | | Maximum reverse power | 0.5 W, 0 Vdc | | USB 2.0 | Used with a memory stick for transferring instrument states, licenses and other files into or out of the instrument. Also used with U2000 Series USB average power sensors. | | Rear panel connectors | | | Rear panel inputs and outputs are 3 CMOS, or TTL voltage levels. | .3 V CMOS, unless indicated otherwise. CMOS inputs will accept 5 V CMOS, 3 V | | RF output (1EM) | Output impedance 50 Ω (nom) Option 513/520: Precision APC-3.5 male, or Type- N with option 1ED Option 532/540: Precision 2.4 mm male; plus 2.4—2.4 mm and 2.4-2.9 mm female adapters | | Sweep out | Generates output voltage, 0 to +10 V when the signal generator is sweeping. This output can also be programmed to indicate when the source is settled or output pulse video and is TTL and CMOS compatible in this mode. Output impedance < 1 Ω , can drive 2 k Ω . Damage levels are ± 15 V. | | Ext1 | External AM/FM/PM #1 input: Nominal input impedance is 50 $\Omega/600~\Omega/1M\Omega$ nominal: Damage levels are ± 5 V. | | Ext2 | External AM/FM/PM #2 input: Nominal input impedance is 50 $\Omega/600~\Omega/1M\Omega$ nominal: Damage levels are ± 5 V. | | Pulse | External pulse modulation input. This input is TTL and CMOS compatible. Low logic levels are 0 V and high logic levels are +1 V. Nominal input impedance is $50~\Omega$. Input damage levels are $\leq -0.3~V$ and $\geq +5.3~V$. | | Trigger 1 (in) | Accepts TTL and CMOS level signals for triggering point-to-point in sweep mode. Damage levels are \leq -0.3 V and \geq +5.3 V. | | Trigger 2 (out) | Default use is with sweep mode. The signal is high at start of dwell, or when waiting for point trigger in manual sweep mode; low when dwell is over or point trigger is received. This output can also be programmed to indicate when the source is settled, pulse synchronization, or pulse video. Outputs a 2.5V into 50 Ω nominal. Input damage levels are ≤ -0.3 V and $\geq +5.3$ V. | | Reference input | Accepts a 10 MHz reference signal used to frequency lock the internal time base. Option 1ER adds the capability to lock to a frequency from 1 MHz to 50 MHz. Nominal input level –3.5 to +20 dBm, impedance 50 Ω , sine or square waveform. | | 10 MHz out | Outputs the 10 MHz reference signal used by internal time base. Level nominally +5 dBm. Nominal output impedance 50 Ω . Input damage level is +16 dBm. | | ALC in | This female BNC connector is used for negative external detector leveling.
• Input impedance: $100 \text{ k}\Omega$ (nominal)
• Signal levels: -0.2 mV to -0.5 V
• Damage levels: $<-12 \text{ V}$ and $> 1 \text{ V}$ | | Front panel connectors (all connectors are BNC unless otherwise stated) | | |---|---| | Z-Axis output | This female BNC connector supplies a +5 V (nominal) level during retrace and band switch intervals of a step or list sweep. During step or list sweep, this connector supplies a –5 V (nominal) level when the RF frequency is at a marker frequency and intensity marker mode is on. The load impedance should be $\geq 5~\text{k}\Omega$. | | USB Type-A | There are two USB 2.0 Type-A connectors on the rear panel. Used with a memory stick for transferring instrument states, licenses and other files into or out of the instrument; also used with U2000 Series USB power sensors. | | USB Type-B | There are one USB 2.0 Type-B connectors on the rear panel. The USB connector provides remote programming functions via SCPI. | | LAN (1000 BaseT) | The LAN connector provides the same SCPI remote programming functionality as the GPIB connector. The LAN connector is also used to access the internal web server and FTP server. The LAN supports DHCP, sockets SCPI, VXI-11 SCPI, connection monitoring, dynamic hostname services, TCP keep alive. This interface is LXI class C compliant. Trigger response time for the immediate LAN trigger is 0.5 ms (minimum), 4 ms (maximum), 2 ms (typ); delayed/alarm trigger is unknown. Trigger output response time is 0.5 ms (minimum), 4 ms (maximum), 2 ms typical. | | GPIB | The GPIB connector provides remote programming functionality via SCPI. | # **Related Literature** | Keysight X-Series Signal Generators | | |---|--| | EXG Microwave Signal Generator Data Sheet 5991-3132EN | | | Microwave Signal Generator Flyer 5991-3594EN | | | X-Series Signal Generator Brochure 5990-9957EN | | # Confidently Covered by Keysight Services Prevent delays caused by technical questions, or system downtime due to instrument maintenance and repairs with Keysight Services. Keysight Services are here to support your test needs with expert technical support, instrument repair and calibration, software support, training, alternative acquisition program options, and more. A KeysightCare agreement provides dedicated, proactive support through a single point of contact for instruments, software, and solutions. KeysightCare covers an extensive group of instruments, application software, and solutions and ensures optimal uptime, faster response, faster access to experts, and faster resolution. # **Keysight Services** | Offering | Benefits | |---|--| | KeysightCare | KeysightCare provides elevated support for Keysight instruments and software, with access to technical support experts that respond within a specified time and ensure committed repair and calibration turnaround | | KEYSIGHT CARE | times (TAT). KeysightCare offers multiple service agreement tiers, including KeysightCare Assured, Enhanced, and Application Software Support. See the KeysightCare data sheet for details. | | KeysightCare Assured | KeysightCare Assured goes beyond basic warranty with repair services that include committed TAT and unlimited access to technical experts. | | KeysightCare Enhanced | KeysightCare Enhanced includes all the benefits of KeysightCare Assured plus Keysight's accurate and reliable calibration services, accelerated, and committed TAT, and technical response. | | Keysight Support Portal
& Knowledge Center | All KeysightCare tiers include access to the Keysight Support Portal where you can manage support and service resources related to your assets such as service requests, and status, or browse the Knowledge Center. | | Education Services | Build confidence and gain new skills to make accurate measurements, with flexible Education Services developed by Keysight experts. Including Start-up Assistance. | | Alternative product acquisition | | | KeysightAccess | Reduce budget challenges with a subscription service enabling you to get the instruments, software, and technical support you want for your test needs. | # **Recommended Services** Maximize your test system up-time by securing technical support, repair, and calibration services with committed response and turnaround times. 1-year KeysightCare Assured is included in every new instrument purchase. Obtain multi-year KeysightCare upfront to eliminate the need for lengthy and tedious paperwork and yearly requests for maintenance budget. Plus, you benefit from secured service for 2, 3, or 5 years. | SERVICE | FUNCTION | |------------------------|--| | KeysightCare Enhanced* | Includes Tech Support, Warranty and Calibration | | R-55B-001-1 | KeysightCare Enhanced – Upgrade 1 year | | R-55B-001-2 | KeysightCare Enhanced – Extend to 2 years | | R-55B-001-3 | KeysightCare Enhanced – Extend to 3 years (Recommended) | | R-55B-001-5 | KeysightCare Enhanced – Extend to 5 years (Recommended) | | KeysightCare Assured | Includes Tech Support and Warranty | | R-55A-001-2 | KeysightCare Assured – Extend to 2 years | | R-55A-001-3 | KeysightCare Assured – Extend to 3 years | | R-55A-001-5 | KeysightCare Assured – Extend to 5 years | | Start-Up Assistance | | | PS-S10 | Included – instrument fundamentals and operations starter | | PS-S20 | Optional, technology & measurement science standard learning | ^{*} Available in select countries. For details, please view the datasheet. R-55B-001-2/3/5 must be ordered with R-55B-001-1. # Learn more at: www.keysight.com For more information on Keysight Technologies' products, applications, or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus