
Programming
Guide

Keysight M9391A PXIe
Vector Signal Analyzer &
M9381A PXIe
Vector Signal Generator

Notice: This document contains references to Agilent. Please note that Agilent’s Test and Measurement
business has become Keysight Technologies. For more information, go to www.keysight.com.

Notices

Copyright Notice
©Keysight Technologies 2013 - 2015

No part of this manual may be
reproduced in any form or by any
means (including electronic storage
and retrieval or translation into a foreign
language) without prior agreement and
written consent from Keysight
Technologies, Inc. as governed by
United States and international
copyright laws.

Manual Part Number
M9300-90080

Published By
Keysight Technologies
Ground Floor and Second Floor, CP-11
Sector-8, IMT Manesar – 122051
Gurgaon, Haryana, India

Edition
Edition 2.1, July, 2015

Regulatory Compliance
This product has been designed and
tested in accordance with accepted
industry standards, and has been
supplied in a safe condition. To review
the Declaration of Conformity, go to
http://www.keysight.com/go/conformity.

Warranty
THE MATERIAL CONTAINED IN THIS
DOCUMENT IS PROVIDED “AS IS,” AND
IS SUBJECT TO BEING CHANGED,
WITHOUT NOTICE, IN FUTURE
EDITIONS. FURTHER, TO THE
MAXIMUM EXTENT PERMITTED BY
APPLICABLE LAW, KEYSIGHT
DISCLAIMS ALL WARRANTIES, EITHER
EXPRESS OR IMPLIED, WITH REGARD
TO THIS MANUAL AND ANY
INFORMATION CONTAINED HEREIN,
INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE. KEYSIGHT
SHALL NOT BE LIABLE FOR ERRORS
OR FOR INCIDENTAL OR
CONSEQUENTIAL DAMAGES IN
CONNECTION WITH THE
FURNISHING, USE, OR

PERFORMANCE OF THIS DOCUMENT
OR OF ANY INFORMATION CONTAINED
HEREIN. SHOULD KEYSIGHT AND THE
USER HAVE A SEPARATE WRITTEN
AGREEMENT WITH WARRANTY TERMS
COVERING THE MATERIAL IN THIS
DOCUMENT THAT CONFLICT WITH
THESE TERMS, THE WARRANTY
TERMS IN THE SEPARATE
AGREEMENT SHALL CONTROL.

KEYSIGHT TECHNOLOGIES DOES NOT
WARRANT THIRD-PARTY SYSTEM-
LEVEL (COMBINATION OF CHASSIS,
CONTROLLERS, MODULES, ETC.)
PERFORMANCE, SAFETY, OR
REGULATORY COMPLIANCE, UNLESS
SPECIFICALLY STATED.

Technology Licenses
The hardware and/or software
described in this document are
furnished under a license and may be
used or copied only in accordance with
the terms of such license.

U.S. Government Rights
The Software is “commercial computer
software,” as defined by Federal
Acquisition Regulation (“FAR”) 2.101.
Pursuant to FAR 12.212 and 27.405-3
and Department of Defense FAR
Supplement (“DFARS”) 227.7202, the
U.S. government acquires commercial
computer software under the same
terms by which the software is
customarily provided to the public.
Accordingly, Keysight provides the
Software to U.S. government customers
under its standard commercial license,
which is embodied in its End User
License Agreement (EULA), a copy of
which can be found at
http://www.keysight.com/find/sweula. The
license set forth in the EULA represents
the exclusive authority by which the
U.S. government may use, modify,
distribute, or disclose the Software. The
EULA and the license set forth therein,
does not require or permit, among other
things, that Keysight: (1) Furnish
technical information related to
commercial computer software or
commercial computer software
documentation that is not customarily
provided to the public; or (2) Relinquish
to, or otherwise provide, the

government rights in excess of these
rights customarily provided to the
public to use, modify, reproduce,
release, perform, display, or disclose
commercial computer software or
commercial computer software
documentation. No additional
government requirements beyond
those set forth in the EULA shall apply,
except to the extent that those terms,
rights, or licenses are explicitly required
from all providers of commercial
computer software pursuant to the FAR
and the DFARS and are set forth
specifically in writing elsewhere in the
EULA. Keysight shall be under no
obligation to update, revise or otherwise
modify the Software. With respect to
any technical data as defined by FAR
2.101, pursuant to FAR 12.211 and
27.404.2 and DFARS 227.7102, the U.S.
government acquires no greater than
Limited Rights as defined in FAR 27.401
or DFAR 227.7103-5 (c), as applicable in
any technical data.

Safety Notices

A CAUTION notice denotes a hazard. It
calls attention to an operating
procedure, practice, or the like that, if
not correctly performed or adhered to,
could result in damage to the product
or loss of important data. Do not
proceed beyond a CAUTION notice until
the indicated conditions are fully
understood and met.

A WARNING notice denotes a hazard. It
calls attention to an operating
procedure, practice, or the like that, if
not correctly performed or adhered to,
could result in personal injury or death.
Do not proceed beyond a WARNING
notice until the indicated conditions are
fully understood and met.

The following safety precautions should
be observed before using this product
and any associated instrumentation.

This product is intended for use by
qualified personnel who recognize
shock hazards and are familiar with the

iii

http://www.keysight.com/go/conformity
http://www.keysight.com/find/sweula

safety precautions required to avoid
possible injury. Read and follow all
installation, operation, and
maintenance information carefully
before using the product.

If this product is not used as specified,
the protection provided by the
equipment could be impaired. This
product must be used in a normal
condition (in which all means for
protection are intact) only.

The types of product users are:

Responsible body is the individual or
group responsible for the use and main-
tenance of equipment, for ensuring that
the equipment is operated within its spe-
cifications and operating limits, and for
ensuring operators are adequately trained.

Operators use the product for its intended
function. They must be trained in electrical
safety procedures and proper use of the
instrument. They must be protected from
electric shock and contactwith hazardous
live circuits.

Maintenancepersonnel perform routine
procedures on the product to keep it oper-
ating properly (for example, setting the line
voltage or replacing consumablemater-
ials). Maintenanceprocedures are
described in the user documentation. The
procedures explicitly state if the operator
may perform them. Otherwise, they should
beperformed only by service personnel.

Service personnel are trained to work on
live circuits, perform safe installations, and
repair products. Only properly trained ser-
vice personnel may perform installation
and service procedures.

Operator is responsible to maintain safe
operating conditions. To ensure safe
operating conditions, modules should
not be operated beyond the full
temperature range specified in the
Environmental and physical
specification. Exceeding safe operating
conditions can result in shorter
lifespans, improper module
performance and user safety issues.

When the modules are in use and
operation within the specified full
temperature range is not maintained,
module surface temperatures may
exceed safe handling conditions which
can cause discomfort or burns if
touched. In the event of a module
exceeding the full temperature range,
always allow the module to cool before
touching or removing modules from
chassis.

Keysight products are designed for use
with electrical signals that are rated
Measurement Category I and
Measurement Category II, as described
in the International Electrotechnical
Commission (IEC) Standard IEC 60664.
Most measurement, control, and data
I/O signals are Measurement Category I
and must not be directly connected to
mains voltage or to voltage sources with
high transient over-voltages.
Measurement Category II connections
require protection for high transient
over-voltages often associated with
local AC mains connections. Assume all
measurement, control, and data I/O
connections are for connection to
Category I sources unless otherwise
marked or described in the user
documentation.

Exercise extreme caution when a shock
hazard is present. Lethal voltage may
be present on cable connector jacks or
test fixtures. The American National
Standards Institute (ANSI) states that a
shock hazard exists when voltage levels
greater than 30V RMS, 42.4V peak, or
60VDC are present. A good safety
practice is to expect that hazardous
voltage is present in any unknown
circuit before measuring.

Operators of this product must be
protected from electric shock at all
times. The responsible body must
ensure that operators are prevented
access and/or insulated from every
connection point. In some cases,
connections must be exposed to
potential human contact. Product
operators in these circumstances must
be trained to protect themselves from
the risk of electric shock. If the circuit is
capable of operating at or above 1000V,
no conductive part of the circuit may be
exposed.

Do not connect switching cards directly
to unlimited power circuits. They are
intended to be used with impedance-
limited sources. NEVER connect
switching cards directly to AC mains.
When connecting sources to switching
cards, install protective devices to limit
fault current and voltage to the card.

Before operating an instrument, ensure
that the line cord is connected to a
properly-grounded power receptacle.
Inspect the connecting cables, test
leads, and jumpers for possible wear,
cracks, or breaks before each use.

When installing equipment where
access to the main power cord is
restricted, such as rack mounting, a
separate main input power disconnect
device must be provided in close
proximity to the equipment and within
easy reach of the operator.

For maximum safety, do not touch the
product, test cables, or any other
instruments while power is applied to
the circuit under test. ALWAYS remove
power from the entire test system and
discharge any capacitors before:
connecting or disconnecting cables or
jumpers, installing or removing
switching cards, or making internal
changes, such as installing or removing
jumpers.

Do not touch any object that could
provide a current path to the common
side of the circuit under test or power
line (earth) ground. Always make
measurements with dry hands while
standing on a dry, insulated surface
capable of withstanding the voltage
being measured.

The instrument and accessories must
be used in accordance with its
specifications and operating
instructions, or the safety of the
equipment may be impaired.

Do not exceed the maximum signal
levels of the instruments and
accessories, as defined in the
specifications and operating
information, and as shown on the
instrument or test fixture panels, or
switching card.

When fuses are used in a product,
replace with the same type and rating

iv

for continued protection against fire
hazard.

Chassis connections must only be used
as shield connections for measuring
circuits, NOT as safety earth ground
connections.

If you are using a test fixture, keep the
lid closed while power is applied to the
device under test. Safe operation
requires the use of a lid interlock.

Instrumentation and accessories shall
not be connected to humans.

Before performing any maintenance,
disconnect the line cord and all test
cables.

To maintain protection from electric
shock and fire, replacement
components in mains circuits –
including the power transformer, test
leads, and input jacks – must be
purchased from Keysight. Standard
fuses with applicable national safety
approvals may be used if the rating and
type are the same. Other components
that are not safety-related may be
purchased from other suppliers as long
as they are equivalent to the original
component (note that selected parts
should be purchased only through
Keysight to maintain accuracy and
functionality of the product). If you are
unsure about the applicability of a
replacement component, call an
Keysight office for information.

No operator serviceable parts inside.
Refer servicing to qualified personnel.
To prevent electrical shock do not
remove covers. For continued
protection against fire hazard, replace
fuse with same type and rating.

PRODUCT MARKINGS:

The CE mark is a registered trademark
of the European Community.

Australian Communication and Media
Authority mark to indicate regulatory
compliance as a registered supplier.

This symbol indicates product
compliance with the Canadian
Interference-Causing Equipment
Standard (ICES-001). It also identifies
the product is an Industrial Scientific
and Medical Group 1 Class A product
(CISPR 11, Clause 4).

South Korean Class A EMC Declaration.
This equipment is Class A suitable for
professional use and is for use in
electromagnetic environments outside
of the home. A급 기기 (업무용 방송통
신기자재)이 기기는 업무용 (A급)전자
파적합기기로서 판 매자 또는 사용자는

이 점을 주 의하시기 바라 며 ,가정외의
지역에서 사용하는 것을 목적으 로 합니

다 .

This product complies with the WEEE
Directive marketing requirement. The
affixed product label (above) indicates
that you must not discard this
electrical/electronic product in
domestic household waste. Product
Category: With reference to the
equipment types in the WEEE directive
Annex 1, this product is classified as
“Monitoring and Control
instrumentation” product. Do not
dispose in domestic household waste.
To return unwanted products, contact
your local Keysight office, or for more
information see
http://about.keysight.com/en/companyinfo/e
nvironment/takeback.shtml.

This symbol indicates the instrument is
sensitive to electrostatic discharge
(ESD). ESD can damage the highly
sensitive components in your
instrument. ESD damage is most likely
to occur as the module is being
installed or when cables are connected
or disconnected. Protect the circuits
from ESD damage by wearing a
grounding strap that provides a high
resistance path to ground. Alternatively,
ground yourself to discharge any built-
up static charge by touching the outer
shell of any grounded instrument
chassis before touching the port
connectors.

This symbol on an instrument means
caution, risk of danger. You should refer
to the operating instructions located in
the user documentation in all cases
where the symbol is marked on the
instrument.

This symbol indicates the time period
during which no hazardous or toxic
substance elements are expected to
leak or deteriorate during normal use.
Forty years is the expected useful life of
the product.

CLEANING PRECAUTIONS:

To prevent electrical shock, disconnect
the Keysight Technologies instrument
from mains before cleaning. Use a dry
cloth or one slightly dampened with
water to clean the external case parts.
Do not attempt to clean internally. To
clean the connectors, use alcohol in a
well-ventilated area. Allow all residual
alcohol moisture to evaporate, and the
fumes to dissipate prior to energizing
the instrument.

v

http://about.keysight.com/en/companyinfo/environment/takeback.shtml
http://about.keysight.com/en/companyinfo/environment/takeback.shtml

vi

vii

Contents

What You Will Learn in This Programming Guide 11

Related Websites 12

Related Documentation 12

Overall Process Flow 15

Documentation Map 16

Installing Hardware, Software, and Licenses 17

APIs for the M9391A PXIe VSA and M938xA PXIe VSG 19

IVI Compliant or IVI Class Compliant 19

IVI Driver Types 20

IVI Driver Hierarchy 21

Instrument-Specific Hierarchies for the M9391A and M938xA 22

When Using Visual Studio 23

Naming Conventions Used to Program IVI Drivers 24

General IVI Naming Conventions 24

IVI-COM Naming Conventions 24

Creating a Project with IVI-COM Using C-Sharp 27

Step 1 - Create a Console Application 27

Step 2 - Add References 27

Step 3 - Add Using Statements 29

To Access the IVI Drivers Without Specifying or Typing The Full Path 29

Step 4 - Create Instances of the IVI-COM Drivers 30

To Create Driver Instances 30

Step 5 - Initialize the Driver Instances 30

Resource Names 30

Initialize() Parameters 32

Initialize() Options 33

M9300A Reference Sharing 36

Example: M9300A PXIe Reference with M9381A PXIe VSG 36

Example: M9300A PXIe Reference with M9391A PXIe VSA 37

Example: M9300A PXIe Reference Shared With Both Modules 37

Step 6 - Write the Program Steps 38

Using the Soft Front Panel to Write Program Commands 38

Step 7 - Close the Driver 39

Step 8 - Building and Running a Complete Program Using Visual C-Sharp 40

Example Program 1- Code Structure 40

Example Program 1- How to Print Driver Properties, Check for Errors, and Close
Driver Sessions 41

Working with PA_FEM Measurements 45

Test Challenges Faced by Power Amplifier Testing 45

Performing a Channel Power Measurement, Using Immediate Trigger 47

Example Program 2 - Code Structure 47

Example Program 2 - Pseudo-code 48

Example Program 2 - Channel Power Measurement Using Immediate Trigger 49

Performing a WCDMA Power Servo and ACPR Measurement 51

Example Program 3 - Code Structure 52

Example Program 3 - Pseudo-code 53

Example Program 3 - WCDMA Power Servo and ACPR Measurement 55

Disclaimer 60

Working with 802.11ac MIMO RnD and DVT Tests 61

Preparing the Hardware and Software for 802.11ac MIMO RnD DVT Tests 62

Example Program 4 - How to Perform Transmitter Tests with 89600 VSA Software 64

Example Program4 - Pseudo-Code 65

Step 1 : Create a Console Application 67

Step 2 : Add References 67

Step 3 : Add Using Statements 68

Step 4 - Create Driver Instances 68

To create driver instances 68

Step 5 - Initialize Driver Instances and Check for Errors 69

To Establish a Communication Link, get the Resource Name Addresses 69

Step 6 - Route Backplane Triggers and Bus Segments on the M9018A PXIe Chassis 70

Routing an External Trigger Input and ALC Hold on each M9381A PXIe VSG 70

Routing a Synchronization Playback Trigger from the M9300A PXIe Reference to
each M9381A PXIe VSG 71

Routing MASTER_SLAVE Backplane Triggers for each M9391A PXIe VSA 71

2x2 MIMO 72

3x3 MIMO 73

4x4 MIMO 75

Step 7 - Set Up the M9381A PXIe VSGs for WLAN Rx Testing 79

Disable ALC for WLAN waveforms to achieve best Residual EVM 79

Enable Pulse Blanking - Achieve Best Off Time Rejection 79

Set PLL MODE to Best Wide Offset 79

Set RF Frequency 80

Set Amplitude (Power_Level) 80

Enable Modulation 80

Enable RF Output 80

Step 8 - Start Continuous Waveform Playback without Power Search or IQ DC
Calibration 81

Overview of the Process to Start Continuous Waveform Playback without Power
Search or IQ DC Cal 81

viii

ix

1. Specify a Waveform File to Upload and Play 81

2. Upload the Specified Waveform File 81

3. Set Up M9300A PXIe Reference to Generate a User-Defined Trigger on PXI TRIG
0 82

4. Configure all M9381A PXIe VSGs to Listen for an External Trigger on PXI TRIG 0 82

5. Arm All M9381A PXIe VSGs and Prepare for Playing the Specified Waveform file
when an External Trigger is Received on PXI TRIG 0 83

6. Generate a Sync Pulse from the M9300A PXIe Reference on PXI TRIG 0 to Start
Waveform Playback on all of the M9381A PXIe VSGs 83

(Optional) Step 8 - Start Continuous or Sequence waveform Playback with Power
Search and IQ DC Cal 83

Overview of Starting Continuous Waveform Playback with Power Search and IQ
DC Cal 84

Overview of Starting Sequence Waveform Playback with Power Search and IQ DC
Cal 88

Step 9 - Create an N-Channel Analyzer Hardware Configuration with 89600 VSA
Software 92

Create a 2-Channel Analyzer of M9391A PXIe VSAs 92

Step 10 - Start 89600 VSA Software to Analyze M9381A PXIe VSGs Waveform
Output 94

Step 11 - Optimize 89600 VSA Settings for WLAN Demodulation 94

Using Shared LO for Phase-Coherent Signal Generation and Signal Acquisition 97

Using a Shared LO 97

Implementation of Shared LO 97

Prerequisites for Using a Shared LO 98

LO Level Field Alignment 98

Cabling of Instruments When Sharing Local Oscillator 98

Initialization Settings for Shared LO 98

Initialization Steps 99

LO Level Field Alignment 100

Example Programs 100

Assumptions for Example Programs 101

Example Program 5 - Pseudo-Code 101

Example Program 5 - Program Steps with Code Snippets 103

Example Program 6 - Pseudo-Code 113

Example Program 6 - Program Steps with Code Snippets 115

Hints for Various Configuration Tasks 125

Restarting an Already Playing Waveform in M9381A VSG 125

Use Case 125

Description 125

Program Steps 126

Appendix - Determining Resource Name Address Strings 127

Appendix - Verify Instruments Connect, Pass Self-Test, and are Updated 131

Verify that VSG 1 is Connected, Passes Self-Test, and Contains Up to Date Firmware 131

Verify that VSG 2 is Connected, Passes Self-Test, and Contains Up to Date Firmware 132

Verify that VSA 1 is Connected, Passes Self-Test, and Contains Up to Date Firmware 133

Verify that VSA 2 is Connected, Passes Self-Test, and Contains Up to Date Firmware 133

Appendix - Using LO Distribution Network in Multi-Channel Systems 135

Initialization Settings for LO Distribution Network 135

LO Level Field Alignment 135

VSG Code Snippet 136

VSA Code Snippet 136

References 139

Glossary 141

x

What You Will Learn in This Programming Guide

M9391A and M9381A Programming Guide 11

What You Will Learn in This Programming Guide
This programming guide is intended for individuals who write and run programs to
control test-and-measurement instruments. Specifically, in this programming guide,
you will learn how to use Visual Studio 2010 with the .NET Framework to write IVI-
COM Console Applications in Visual C#. Knowledge of Visual Studio 2010 with the
.NET Framework and knowledge of the programming syntax for Visual C# is required.

Our basic user programming model uses the IVI-COM driver directly and allows
customer code to:

Access the IVI-COM driver at the lowest level

Access IQ Acquisition Mode, Power Acquisition Mode, and Spectrum Acquisition
Mode

Control the Keysight M9391A PXIe Vector Signal Analyzer (VSA) and Keysight
M9381A PXIe Vector Signal Generator (VSG) while performing PA/FEM Power
Measurement Production Tests

Generate waveforms created by Signal Studio software (licenses are required)

The Working with 802.11ac MIMO RnD and DVT Tests (page 61) section focuses on
802.11ac MIMO R&D/DVT Tests related to Rx/Tx PHY Layer characterization. This
section shows how IVI-COM Console Applications are used to route backplane
triggers on the M9018A PXIe Chassis for the M9381A PXIe VSGs, M9300A PXIe
References, and M9391A PXIe VSAs. It then sets the controls for multiple M9381A
PXIe VSGs and starts them playing a waveform file. The results of these waveform
files are analyzed with Keysight 89600 VSA Software that is used to control M9391A
PXIe VSAs while performing transmitter tests for PHY Layer characterization.

The Using Shared LO for Phase-Coherent Signal Generation and Signal Acquisition
(page 97) section focuses on creating programs for multichannel operations for
M9381A PXIe VSGs and M391A PXIe VSAs using shared local oscillator (LO) for each
set of transmitters (M9381A) and receivers (M9391A).

Example Program 1: How to Print Driver Properties, Check for Errors, and Close
Driver Sessions

What You Will Learn in This Programming Guide

Related Websites

Example Program 2: How to Perform a Channel Power Measurement Using
Immediate Trigger

Example Program 3: How to Perform a WCDMA Power Servo and ACPR
Measurement

Example Program 4: How to Perform Transmitter Tests with 89600 VSA
Software,(Playing Waveforms on M9381A PXIe VSGs Using External Trigger)

Example Program 5: How to Perform Multi-Channel Synchronous Modulated
Signal Generation Using Shared LO

Example Program 6: How to Perform Multi-Channel IQ Acquisition Using
Shared LO

Related Websites

Keysight Technologies PXI and AXIe Modular Products
M9391A PXIe Vector Signal Analyzer

M9381A PXIe Vector Signal Generator

Keysight Technologies
IVI Drivers & Components Downloads

Keysight I/O Libraries Suite

GPIB, USB, & Instrument Control Products

Keysight VEE Pro

Technical Support, Manuals, & Downloads

Contact Keysight Test & Measurement

IVI Foundation - Usage Guides, Specifications, Shared Components Downloads

MSDN Online

Related Documentation

To access documentation related to the Keysight M9391A PXIe Vector Signal
Analyzer and M9381A PXIe Vector Signal Generator Programming Guide , use one of
the following methods:

If the product software is installed on your PC, the related documents are also
available in the software installation directory.

Document Description
Default Location on 64-bitWindows
system

Format

Startup
Guide

Includes
procedures to
help you to
unpack,

For M9381: C:/Program Files (x86)
/Agilent/M938x/Help\M9391_and_
M9381_StartupGuide.pdf

For M9391A:C:\Program Files (x86)

PDF

12 M9391A and M9381A Programming Guide

http://www.keysight.com/find/Modular
http://www.keysight.com/find/M9391A
http://www.keysight.com/find/M9381A
http://www.keysight.com/
http://www.keysight.com/find/ivi
http://www.keysight.com/find/iosuite
http://www.keysight.com/find/io
http://www.keysight.com/find/vee
http://www.keysight.com/find/support
http://www.keysight.com/find/contactus
http://www.ivifoundation.org/
http://msdn.microsoft.com/

What You Will Learn in This Programming Guide

RelatedDocumentation

M9391A and M9381A Programming Guide 13

Document Description
Default Location on 64-bitWindows
system

Format

inspect, install
(software and
hardware),
perform
instrument
connections,
verify
operability, and
troubleshoot
your product.

Also includes
an annotated
block diagram.

\Agilent\M9391\Help\M9391_and_
M9381_StartupGuide.pdf

IVI Driver
reference
(help
system)

Provides
detailed
documentation
of the IVI-COM
and IVI-C
driver API
functions, as
well as
information to
help you get
started with
using the IVI
drivers in your
application
development
environment.

For M9381: C:/Program Files (x86)
/Agilent/M938x/Help\AgM938x.chm

For M9391A:C:\Program Files (x86)
\Agilent\M9391\Help\AgM9391.chm

CHM
(Microsoft

Help
Format)

Data
Sheet

In addition to a
detailed
product
introduction,
the data sheet
supplies full
product
specifications.

For M9381: C:/Program Files (x86)
/Agilent/M938x/Help\M9381_
DataSheet_5991-0279EN.pdf

For M9391A:C:\Program Files (x86)
\Agilent\M9391\Help\M9391_
DataSheet_5991-2603EN.pdf

PDF

LabVIEW
Driver

Provides
detailed

For M9381: C:/Program Files (x86)
/Agilent/M938x/Help\AgM938x_

CHM
(Microsoft

What You Will Learn in This Programming Guide

RelatedDocumentation

Document Description
Default Location on 64-bitWindows
system

Format

Reference documentation
of the LabVIEW
G Driver API
functions.

LabVIEW_Help.chm

For M9391A:C:\Program Files (x86)
\Agilent\M9391\Help\AgM9391_
LabVIEW_Help.chm

Help
Format)

SCPI
Reference

Describes the
SCPI
commands
supported by
the M9381A
PXIe Vector
Signal
Generator.

C:/Program Files (x86)
/Agilent/M938x/Help\M938x_SCPI_
Reference.chm

CHM
(Microsoft

Help
Format)

Software
Release
Notes

Includes
recent
changes,
enhancements,
and bug
fixesin the
current
release.

For M9381: C:/Program Files (x86)
/Agilent/M938x/Help\M938x_
SoftwareReleaseNotes.pdf

For M9391A:C:\Program Files (x86)
\Agilent\M9391\Help\M9391_
SoftwareReleaseNotes.pdf

PDF

Alternatively, you can find these documents under:

Start > All Programs > Keysight >
M938x.

Start > All Programs > Keysight >
M9391.

The documentation listed above is also available on the product CD.

To understand the available user documentation in context to your workflow,
Documentation Map (page 16).

To find the very latest versions of the user documentation, go to the product
web site (www.keysight.com/find/M9381A or www.keysight.com/find/M9391A
) and download the files from the Manuals support page (go to Document
Library > Manuals):

14 M9391A and M9381A Programming Guide

http://www.keysight.com/find/M9381A
http://www.keysight.com/find/M9391A

What You Will Learn in This Programming Guide

Overall ProcessFlow

M9391A and M9381A Programming Guide 15

Overall Process Flow

Perform the following steps:

1. Write source code using Microsoft Visual Studio 2010 with .NET Visual C#
running on Windows 7.

2. Compile source code using the .NET Framework Library.

3. Produce an Assembly.exe file – this file can run directly from Microsoft Windows
without the need for any other programs.

When using the Visual Studio Integrated Development Environment
(IDE), the Console Applications you write are stored in conceptual
containers called Solutions and Projects.

You can view and access Solutions and Projects using the Solution
Explorer window (View > Solution Explorer).

What You Will Learn in This Programming Guide

Documentation Map

Documentation Map

16 M9391A and M9381A Programming Guide

Installing Hardware, Software, and Licenses

M9391A and M9381A Programming Guide 17

Installing Hardware, Software, and Licenses
Perform the following steps:

1. Unpack and inspect all hardware.

2. Verify the shipment contents.

3. Install the software. Note the following order when installing software.

a. Install Microsoft Visual Studio 2010 with .NET Visual C# running on
Windows 7.

You can also use a free version of Visual Studio Express 2010 tools from:
http://www.microsoft.com/visualstudio/eng/products/visual-studio-
2010-express

The following steps, defined in the Keysight M9391A PXIe VSA and
M9381A PXIe VSG Startup Guide, M9300-90090, but repeated here
must be completed before programmatically controlling the M9391A
PXIe VSA and M9381A PXIe VSG hardware with their IVI drivers.

b. Install Agilent/Keysight IO Libraries Suite (IOLS), Version 16.3.16603.3 or
newer;this installation includes Agilent/Keysight Connection Expert.

c. (Required for MIMO) Install Agilent/Keysight 89600 Vector Signal
Analyzer Software, Version 16.2 or newer.

d. Install the M9391A PXIe VSA driver software, Version 1.1.228.0 or
newer.

e. Install the M938xA PXIe VSG driver software, Version 1.3.105.0 or
newer.

f. Install the M9018A PXIe Chassis driver software, Version 1.3.443.1 or
newer.

Driver software includes all IVI-COM, IVI-C, and LabVIEW G Drivers
along with Soft Front Panel (SFP) programs and documentation. All of
these items may be downloaded from the Keysight product websites:

http://www.keysight.com/find/iosuite > Select Technical Support
> Select the Drivers, Firmware & Software tab > Download the
Keysight IO Libraries Suite Recommended

http://www.keysight.com/find/89600 (Required for MIMO) >
Select Technical Support > Select the Drivers, Firmware &
Software tab > Download the Instrument Driver that corresponds
to "89600 VSA software".

http://www.microsoft.com/visualstudio/eng/products/visual-studio-2010-express
http://www.microsoft.com/visualstudio/eng/products/visual-studio-2010-express
http://www.keysight.com/find/iosuite
http://www.keysight.com/find/89600

Installing Hardware, Software, and Licenses

http://www.keysight.com/find/m9391a > Select Technical
Support > Select the Drivers, Firmware & Software tab >
Download the Instrument Driver.

http://www.keysight.com/find/m9381a > Select Technical
Support > Select the Drivers, Firmware & Software tab >
Download the Instrument Driver.

http://www.keysight.com/find/m9018a > Select Technical
Support > Select the Drivers, Firmware & Software tab >
Download the Instrument Driver.

http://www.keysight.com/find/ivi - download other installers for
Keysight IVI-COM drivers

4. Install the hardware modules and make cable connections.

5. Verify operation of the modules (or the system that the modules create).

Before programming ormakingmeasurements, conduct a
Self-Test on eachM9391A PXIe VSA and eachM9381A PXIe
VSG to make sure there are no problems with the modules,
cabling, or backplane trigger mapping.

Running Self-Test will fail if the modules that form anM9381A
PXIe VSG or anM9391A PXIe VSA spans across slot 6 or slot
12 of the M9018A PXIe Chassis; if they do span across slot 6 or
slot 12, the backplane triggers and bus segments must be
routed properly. For details, see Step 6 - Route Backplane
Triggers and Bus Segments on the M9018A PXIe Chassis
(page 70).

Once the software and hardware are installed and Self-Test has been
performed, they are ready to be programmatically controlled.

18 M9391A and M9381A Programming Guide

http://www.keysight.com/find/m9391a
http://www.keysight.com/find/m9381a
http://www.keysight.com/find/m9018a
http://www.keysight.com/find/ivi

APIs for the M9391A PXIe VSA and M938xA PXIe VSG

IVI Compliant or IVI Class Compliant

M9391A and M9381A Programming Guide 19

APIs for the M9391A PXIe VSA and M938xA PXIe VSG
The following IVI driver terminology may be used when describing the Application
Programming Interfaces (APIs) for the M9391A PXIe VSA and M938xA PXIe VSG.

IVI[Interchangeable Virtual Instruments] - a standard instrument driver model defined
by the IVI Foundation that enables engineers to exchange instruments made by
different manufacturers without rewriting their code. www.ivifoundation.org

IVI Instrument Classes (Defined by the IVI Foundation)

Currently, there are 13 IVI Instrument Classes defined by the IVI Foundation. The
M9391A PXIe VSA and the M9381A PXIe VSG do not belong to any of these 13 IVI
Instrument Classes and are therefore described as "NoClass" modules.

DC Power Supply

AC Power Supply

DMM

Function Generator

Oscilloscope

Power Meter

RF Signal Generator

Spectrum Analyzer

Switch

Upconverter

Downconverter

Digitizer

Counter/Timer

IVI Compliant or IVI Class Compliant

The M9391A PXIe VSA and M9381A PXIe VSG are IVI Compliant, but not IVI Class
Compliant; none of these belongs to one of the 13 IVI Instrument Classes defined by
the IVI Foundation.

IVI Compliant– means that the IVI driver follows architectural specifications for
these categories:

Installation

Inherent Capabilities

Cross Class Capabilities

Style

Custom Instrument API

http://www.ivifoundation.org/

APIs for the M9391A PXIe VSA and M938xA PXIe VSG

IVI Driver Types

IVI Class Compliant– means that the IVI driver implements one of the 13 IVI
Instrument Classes

If an instrument is IVI Class Compliant, it is also IVI Compliant

Provides one of the 13 IVI Instrument Class APIs in addition to a Custom
API

Custom API may be omitted (unusual)

Simplifies exchanging instruments

IVI Driver Types

IVI Driver

Implements the Inherent Capabilities Specification

Complies with all of the architecture specifications

May or may not comply with one of the 13 IVI Instrument Classes

Is either an IVI Specific Driver or an IVI Class Driver

IVI Class Driver
Is an IVI Driver needed only for interchangeability in IVI-C environments

The IVI Class may be IVI-defined or customer-defined

IVI Specific Driver
Is an IVI Driver that is written for a particular instrument such as the
M9391A PXIe VSA or M938xA PXIe VSG

20 M9391A and M9381A Programming Guide

APIs for the M9391A PXIe VSA and M938xA PXIe VSG

IVI DriverHierarchy

M9391A and M9381A Programming Guide 21

IVI Class-Compliant Specific Driver
IVI Specific Driver that complies with one (or more) of the IVI
defined class specifications

Used when hardware independence is desired

IVI Custom Specific Driver
Is an IVI Specific Driver that is not compliant with any one of the 13
IVI defined class specifications

Not interchangeable

This release is not binary compatible with prior releases of the IVI-C
driver. Programs using the C/C++ IVI-C driver must be recompiled for
this version of the driver. Similarly, programs compiledwith this
version of the driver will not be compatible with older versions of the
IVI-C driver. This incompatibility is due to renumbering of attribute
constants defined in the AgM9391.h include file.

IVI Driver Hierarchy

When writing programs, you will be using the interfaces (APIs) available to the IVI-
COM driver.

The core of every IVI-COM driver is a single object with many interfaces.

These interfaces are organized into two hierarchies: Class-Compliant
Hierarchy and Instrument-Specific Hierarchy – and both include the IIviDriver
interfaces.

Class-Compliant Hierarchy - Since the M9391A PXIe VSA and M9381A
PXIe VSG do not belong to one of the 13 IVI Classes, there is noClass-
Compliant Hierarchy in their IVI Driver.

Instrument-Specific Hierarchy
The M9391A PXIe VSA's instrument-specific hierarchy has
IAgM9391 at the root (where AgM9391 is the driver name).

IAgM9391 is the root interface and contains references to
child interfaces, which in turn contain references to other
child interfaces. Collectively, these interfaces define the
Instrument-Specific Hierarchy.

The M938xA PXIe VSG's instrument-specific hierarchy has
IAgM938x at the root (where AgM938x is the driver name).

IAgM938x is the root interface and contains references to
child interfaces, which in turn contain references to other
child interfaces. Collectively, these interfaces define the
Instrument-Specific Hierarchy.

The IIviDriver interfaces are incorporated into both hierarchies: Class-
Compliant Hierarchy and Instrument-Specific Hierarchy.

The IIviDriver is the root interface for IVI Inherent Capabilities which are

APIs for the M9391A PXIe VSA and M938xA PXIe VSG

Instrument-Specific Hierarchies for the M9391A and M938xA

what the IVI Foundation has established as a set of functions and
attributes that all IVI drivers must include – irrespective of which IVI
instrument class the driver supports. These common functions and
attributes are called IVI inherent capabilities and they are documented in
IVI-3.2 – Inherent Capabilities Specification. Drivers that do not support
any IVI instrument class such as the M9391A PXIe VSA or M938xA PXIe
VSG must still include these IVI inherent capabilities.

| | IiviDriver
Close
DriverOperation
Identity
Initialize
Initialized
Utility |

Instrument-Specific Hierarchies for the M9391A and
M938xA

The following table lists the instrument-specific hierarchy interfaces for M9391A PXIe
VSA and M938xA PXIe VSG.

Keysight M9391A PXIe VSA Instrument-
Specific Hierarchy

Keysight M938xA PXIe VSG Instrument-
Specific Hierarchy

AgM9391 is the driver name AgM938x is the driver name

IAgM9391Ex is the root interface IAgM938xEx is the root interface

22 M9391A and M9381A Programming Guide

APIs for the M9391A PXIe VSA and M938xA PXIe VSG

Instrument-Specific Hierarchies for the M9391A and M938xA

M9391A and M9381A Programming Guide 23

Keysight M9391A PXIe VSA Instrument-
Specific Hierarchy

Keysight M938xA PXIe VSG Instrument-
Specific Hierarchy

All new code being created should use the IAgM9391Ex and
IAgM938xEx extended interfaces in place of the IAgM9391 and
IAgM938x interfaces. New functionalities have been added to the
IAgM9391Ex and IAgM938xEx extended interfaces. These new
functionalities were not available in the original IAgM9391 and
IAgM938x interfaces, and have been left unchanged to support
previously written code; this helps support backward code
compatibility.

When Using Visual Studio

To view the interfaces available in the M9381A PXIe VSG, right-click
AgM938xLib library file, in the References folder, from the Solution Explorer

APIs for the M9391A PXIe VSA and M938xA PXIe VSG

Naming Conventions Used to Program IVI Drivers

window and select View in Object Browser.

To view interfaces available in the M9391A PXIe VSA, right-click AgM9391Lib
library file, in the References folder, from the Solution Explorer window and
select View in Object Browser.

Naming Conventions Used to Program IVI Drivers

General IVI Naming Conventions

All instrument class names start with "Ivi"
Example: IviScope, IviDmm

Function names
One or more words use PascalCasing

First word should be a verb

IVI-COM Naming Conventions

Interface naming
Class compliant: Starts with "IIvi"

I<ClassName>

Example: IIviScope, IIviDmm

Sub-interfaces add words to the base name that match the C hierarchy as
close as possible

Examples: IIviFgenArbitrary, IIviFgenArbitraryWaveform

Defined values
Enumerations and enum values are used to represent discrete values in
IVI-COM

24 M9391A and M9381A Programming Guide

APIs for the M9391A PXIe VSA and M938xA PXIe VSG

Naming Conventions Used to Program IVI Drivers

M9391A and M9381A Programming Guide 25

<ClassName><descriptive words>Enum

Example: IviScopeTriggerCouplingEnum

Enum values don't end in "Enum" but use the last word to differentiate
Examples: IviScopeTriggerCouplingAC and IviScopeTriggerCouplingDC

26 M9391A and M9381A Programming Guide

Creating a Project with IVI-COM Using C-Sharp

Step 1 - Create a Console Application

M9391A and M9381A Programming Guide 27

Creating a Project with IVI-COM Using C-Sharp
This tutorial will walk through the various steps required to create a console
application using Visual Studio and C#. It demonstrates how to instantiate two driver
instances, set the resource names and various initialization values, initialize the two
driver instances, print various driver properties to a console for each driver instance,
check drivers for errors and report the errors if any occur, and close both drivers.

Step 1. - Create a "Console Application"
Step 2. - Add References
Step 3. - Add using Statements
Step 4. - Create an Instance
Step 5. - Initialize the Instance
Step 6. - Write the Program Steps (Create a Signal or Perform a Measurement)
Step 7. - Close the Instance

At the end of this tutorial is a complete example program that shows what the
console application looks like if you follow all of these steps.

Step 1 - Create a Console Application

Projects that use a Console Application do not show a Graphical User
Interface (GUI) display.

1. Launch Visual Studio and create a new Console Application in Visual C# by
selecting: File > New > Project and select a Visual C# Console Application.

2. Enter "VsaVsgProperties" as the Name of the project and click OK.

When you select New, Visual Studio will create an
emptyProgram.csfile that includes some necessary code,
including using statements. This code is required, so do not
delete it.

3. Select Project and click Add Reference. The Add Reference dialog appears.
For this step, Solution Explorer must be visible (View > Solution Explorer) and
the "Program.cs" editor window must be visible; select the Program.cs tab to
bring it to the front view.

Step 2 - Add References

In order to access the M9391A PXIe VSA and M9381A PXIe VSG driver interfaces,
references to their drivers (DLL) must be created.

1. In Solution Explorer, right-click on References and select Add Reference.

2. From the Add Reference dialog, select the COM tab.

Creating a Project with IVI-COM Using C-Sharp

Step 2 - AddReferences

3. Click on any of the type libraries under the "Component Name" heading and
enter the letter "I".(All IVI drivers begin with IVI so this will move down the list of
type libraries that begin with "I".)

If you have not installed the IVI driver for the M9391A PXIe VSA
andM9381A PXIe VSG products (as listed in the previous
section titled "Before Programming, Install Hardware,
Software, and Software Licenses"), their IVI drivers will not
appear in this list.

Also, the TypeLib Version that appears will depend on the version of the IVI
driver that is installed. The version numbers change over time and typically
increase as new drivers are released.
If the TypeLib Version that is displayed on your system is higher than the ones
shown in this example, your system simply has newer versions – newer
versions may have additional commands available.
To get the IVI drivers to appear in this list, you must close this Add Reference
dialog, install the IVI drivers, and come back to this section and repeat "Step 2 –
Add References".

4. Scroll to IVI section and, using Shift-Ctrl, select the following type libraries
then select OK.
IVI AgM938x 1.2 Type Library
IVI AgM9391 1.0 Type Library

When any of the references for the AgM9391A or AgM938x are
added, the IVIDriver 1.0 Type Library is also automatically
added. This is visible as IviDriverLib under the project
Reference; this reference houses the interface definitions for
IVI inherent capabilities which are located in the file
IviDriverTypeLib.dll (dynamically linked library).

5. These selected type libraries appear under the References node, in Solution
Explorer, as:

28 M9391A and M9381A Programming Guide

Creating a Project with IVI-COM Using C-Sharp

Step 3 -Add Using Statements

M9391A and M9381A Programming Guide 29

The program looks same as before you added the References,
with the difference that the IVI drivers that are referenced are
now available for use.

To allow your program to access the IVI drivers without specifying full path
names of each interface or enum, you need to add using statements to your
program.

Step 3 - Add Using Statements

All data types (interfaces and enums) are contained within namespaces. (A
namespace is a hierarchical naming scheme for grouping types into logical categories
of related functionality. Design tools, such as Visual Studio, can use namespaces
which makes it easier to browse and reference types in your code.)The C# using
statement allows the type name to be used directly. Without the using statement, the
complete namespace-qualified name must be used. To allow your program to access
the IVI driver without having to type the full path of each interface or enum, type the
following using statements immediately below the other using statements. The
following example illustrates how to add using statements.

To Access the IVI Drivers Without Specifying or Typing The Full Path

These using statements should be added to your program:
using Ivi.Driver.Interop;
using Agilent.AgM938x.Interop;
using Agilent.AgM9391.Interop;

You can create sections of code in your program that can be
expanded and collapsed by surrounding the code with #region and
#endregion keywords. Select – or + symbol to collapse or expand the
region.

Creating a Project with IVI-COM Using C-Sharp

Step 4 - Create Instances of the IVI-COM Drivers

Step 4 - Create Instances of the IVI-COM Drivers

There are two ways to instantiate (create an instance of) the IVI-COM drivers:

Direct Instantiation

COMSession Factory

Since the M9391A PXIe VSA and M9381A PXIe VSG are both considered NoClass
modules(because they do not belong to one of the 13 IVI Classes), the COM Session
Factory is not used to create instances of their IVI-COM drivers. So, the M9391A PXIe
VSA and M938xA PXIe VSG IVI-COM drivers use direct instantiation. Because direct
instantiation is used, their IVI-COM drivers may not be interchangeable with other
VSA and VSG modules.

To Create Driver Instances

The new operator is used in C# to create an instance of the driver.

IAgM9391 VsaDriver = new AgM9391(); IAgM9381 VsgDriver = new AgM9381();

Step 5 - Initialize the Driver Instances

The Initialize()method is required when using any IVI driver. It establishes a
communication link (an "I/O session") with an instrument and it must be called before
the program can do anything with an instrument or work in simulation mode.

The Initialize()method has a number of options that can be defined. In this
example, we prepare the Initialize()method by defining only a few of the
parameters, then we call the Initialize()method with these parameters:

Resource Names

If you are using Simulate Mode, you can set the Resource Name address string
to:
string VsaResourceName = "%";
string VsgResourceName = "%";

If you are actually establishing a communication link (an "I/O session") with an
instrument, you need to determine the Resource Name address string (VISA
address string) that is needed.You can use an IO application such as
Agilent/Keysight Connection Expert, Agilent/Keysight Command Expert,
National Instruments Measurement and Automation Explorer (MAX), or you can
use the Keysight product's Soft Front Panel (SFP) to get the physical Resource
Name string.

Using the M938xA Soft Front Panel, you might get the following Resource

30 M9391A and M9381A Programming Guide

Creating a Project with IVI-COM Using C-Sharp

Step 5 - Initialize the Driver Instances

M9391A and M9381A Programming Guide 31

Name address string.

ModuleNam
e

M9311A PXIe
Modulator

M9310A PXIe
Source Output

M9301A PXIe
Synthesizer

M9300A PXIe
Reference

Slot
Number

2 4 5 6

VISA
Address PXI8::0::0::INST

R;
PXI11::0::0::INST
R;

PXI12::0::0::INST
R;

PXI13::0::0::INST
R;

string VsgResourceName =
"PXI8::0::0::INSTR;PXI11::0::0::INSTR;PXI12::0::0::INSTR;PXI13::0::0::I
NSTR";

Using the M9391A Soft Front Panel, you might get the following Resource
Name address string.

ModuleName
M9301A PXIe
Synthesizer

M9350A PXIe
Downconverter

M9214A PXIe IF
Digitizer

Slot
Number

7 8 9

Creating a Project with IVI-COM Using C-Sharp

Step 5 - Initialize the Driver Instances

ModuleName
M9301A PXIe
Synthesizer

M9350A PXIe
Downconverter

M9214A PXIe IF
Digitizer

VISA
Address

PXI14::0::0::INSTR; PXI10::0::0::INSTR; PXI9::0::0::INSTR;

string VsaResourceName =
"PXI14::0::0::INSTR;PXI10::0::0::INSTR;PXI9::0::0::INSTR;

Initialize() Parameters

Although the Initialize()method has a number of options that can
be defined (see Initialize Options below), we are showing this
example with a minimum set of options to helpminimize complexity.

// The M9300A PXIe Reference should be included as one of the modules in
// either the M9381A PXIe VSG configuration of modules or theor the M9391A //
PXIe VSA configuration of modules).
// If the M9300A PXIe Reference is only included in one configuration,
// that configuration should be initialized first.
// See "Understanding M9300A Frequency Reference Sharing".

string VsgResourceName =
"PXI8::0::0::INSTR;PXI11::0::0::INSTR;PXI12::0::0::INSTR;PXI13::0::0::INSTR";
string VsaResourceName =
"PXI14::0::0::INSTR;PXI10::0::0::INSTR;PXI9::0::0::INSTR;

bool IdQuery = true;
bool Reset = true;

string VsgOptionString = "QueryInstrStatus=true, Simulate=false, DriverSetup=
Model=VSG, Trace=false";
string VsaOptionString = "QueryInstrStatus=true, Simulate=false, DriverSetup=
Model=VSA, Trace=false";

// Initialize the drivers
VsgDriver.Initialize(VsgResourceName, IdQuery, Reset, VsgOptionString);
Console.WriteLine("VSG Driver Initialized");

VsaDriver.Initialize(VsaResourceName, IdQuery, Reset, VsaOptionString);
Console.WriteLine("VSA Driver Initialized");

32 M9391A and M9381A Programming Guide

Creating a Project with IVI-COM Using C-Sharp

Step 5 - Initialize the Driver Instances

M9391A and M9381A Programming Guide 33

The above example shows how IntelliSense is invoked by simply rolling the cursor
over the word "Initialize".

One of the key advantages of using C# in the Microsoft Visual Studio
Integrated Development Environment (IDE) is IntelliSense.
IntelliSense is a form of auto-completion for variable names and
functions and a convenient way to access parameter lists and ensure
correct syntax. This feature also enhances software development by
reducing the amount of keyboard input required.

Initialize() Options

The following table describes options that are most commonly used with the
Initialize()method.

Property Type and Example Value Description of Property

string ResourceName = PXI[bus]::device[::function][::INSTR]

string ResourceName =
"PXI13::0::0::INSTR;PXI14::0::0::INSTR;PXI15::0::0::INSTR;PXI16::0::
0::INSTR";

VsgResourceName or
VsaResourceName – The
driver is typically initialized
using a physical resource
name descriptor, often a
VISA resource descriptor.

See the procedure in the
Resource Names section.

bool IdQuery = true; Setting the ID query to
false prevents the driver
from verifying that the
connected instrument is
the one the driver was
written for because if

Creating a Project with IVI-COM Using C-Sharp

Step 5 - Initialize the Driver Instances

Property Type and Example Value Description of Property

IdQuery is set to true, this
will query the instrument
model and fail initialization
if the model is not
supported by the driver.

bool Reset = true; Setting Reset to true
instructs the driver to
initially reset the
instrument.

string OptionString = "QueryInstrStatus=true, Simulate=true, OptionString - Setup the
following initialization
options:

QueryInstrStatus=t
rue (Specifies
whether the IVI
specific driver
queries the
instrument status at
the end of each
user operation.)

Simulate=true
(Setting Simulate to
true instructs the
driver to not to
attempt to connect
to a physical
instrument, but use
a simulation of the
instrument
instead.)

Cache=false
(Specifies whether
or not to cache the
value of
properties.)

InterchangeCheck=
false (Specifies
whether the IVI
specific driver
performs
interchangeability

34 M9391A and M9381A Programming Guide

Creating a Project with IVI-COM Using C-Sharp

Step 5 - Initialize the Driver Instances

M9391A and M9381A Programming Guide 35

Property Type and Example Value Description of Property

checking.)

RangeCheck=false
(Specifies whether
the IVI specific
driver validates
attribute values and
function
parameters.)

RecordCoercions=f
alse (Specifies
whether the IVI
specific driver
keeps a list of the
value coercions it
makes for ViInt32
and ViReal64
attributes.)

DriverSetup= Trace=false"; DriverSetup= (This
is used to specify
settings that are
supported by the
driver, but not
defined by IVI. If the
Options String
parameter
(OptionString in
this example)
contains an
assignment for the
Driver Setup
attribute, the
Initialize function
assumes that
everything
following
'DriverSetup=' is
part of the
assignment.)

Model=VSG or
Model=VSA
(Instrument model
to use during

Creating a Project with IVI-COM Using C-Sharp

Step 5 - Initialize the Driver Instances

Property Type and Example Value Description of Property

simulation.)

Trace=false (If false,
an output trace log
of all driver calls is
not saved in an XML
file.)

If these drivers were installed, additional information can be found under Initializing
the IVI-COMDriver from the following:

AgM938x IVI Driver Reference
Start > All Programs > Keysight Instrument Drivers > IVI-COM-C Drivers > AgM938x
Source > AgM938x IVI Driver Help

AgM9391 IVI Driver Reference
Start > All Programs > Keysight Instrument Drivers > IVI-COM-C Drivers > AgM9391A
VSA > AgM9391 IVI Driver Help

M9300A Reference Sharing

The M9300A PXIe Reference can be shared by up to five configurations of modules
that can be made up of the M9391A PXIe VSA or the M9381A PXIe VSG or both. The
M9300A PXIe Reference must be included as one of the modules in at least one of
these configurations. The configuration of modules that is initialized first must include
the M9300A PXIe Reference so that the other configurations that depend on the
reference signal get the signal they are expecting. If the configuration of modules that
is initialized first does not include the M9300A PXIe Reference, unlock errors will
occur.

Example: M9300A PXIe Reference with M9381A PXIe VSG

The M9381A PXIe VSG should be initialized first before initializing the VSA if:

M9381A PXIe VSG configuration of modules includes:
M9311A PXIe Modulator

M9310A PXIe Source Output

M9301A PXIe Synthesizer

M9300A PXIe Reference // Note that the M9300A PXIe Reference is part
of the M9381A PXIe VSG configuration of modules.

string VsgResourceName =
"PXI8::0::0::INSTR;PXI11::0::0::INSTR;PXI12::0::0::INSTR;PXI13::0
::0::INSTR";

36 M9391A and M9381A Programming Guide

Creating a Project with IVI-COM Using C-Sharp

Step 5 - Initialize the Driver Instances

M9391A and M9381A Programming Guide 37

M9391A PXIe VSA configuration of modules includes:
M9301A PXIe Synthesizer

M9350A PXIe Downconverter

M9214A PXIe IF Digitizer

string VsaResourceName =
"PXI14::0::0::INSTR;PXI10::0::0::INSTR;PXI9::0::0::INSTR";

Example: M9300A PXIe Reference with M9391A PXIe VSA

The M9391A PXIe VSA should be initialized first before initializing the M9381A PXIe
VSG if:

M9381A PXIe VSG configuration of modules includes:
M9311A PXIe Modulator

M9310A PXIe Source Output

M9301A PXIe Synthesizer

string VsgResourceName =
"PXI8::0::0::INSTR;PXI11::0::0::INSTR;PXI12::0::0::INSTR";

M9391A PXIe VSA configuration of modules includes:
M9300A PXIe Reference* // Note that the M9300A PXIe Reference is part
of the M9391A PXIe VSA configuration of modules.

M9301A PXIe Synthesizer

M9350A PXIe Downconverter

M9214A PXIe IF Digitizer

string VsaResourceName =
"PXI14::0::0::INSTR;PXI10::0::0::INSTR;PXI9::0::0::INSTR;PXI13::0
::0::INSTR;

Example: M9300A PXIe Reference Shared With Both Modules

The M9391A PXIe VSA or the M9381A PXIe VSG can be initialized first since the
M9300A PXIe Reference is included in both configurations of modules:

M9381A PXIe VSG configuration of modules includes:
M9311A PXIe Modulator

M9310A PXIe Source Output

M9301A PXIe Synthesizer

M9300A PXIe Reference* // Note that the M9300A PXIe Reference is part
of the M9381A PXIe VSG configuration of modules.

string VsgResourceName =
"PXI8::0::0::INSTR;PXI11::0::0::INSTR;PXI12::0::0::INSTR";PXI13::
0::0::INSTR;

Creating a Project with IVI-COM Using C-Sharp

Step6 - Write the Program Steps

M9391A PXIe VSA configuration of modules includes:
M9300A PXIe Reference* // Note that the M9300A PXIe Reference is part
of the M9391A PXIe VSA configuration of modules.

M9301A PXIe Synthesizer

M9350A PXIe Downconverter

M9214A PXIe IF Digitizer

string VsaResourceName =
"PXI14::0::0::INSTR;PXI10::0::0::INSTR;PXI9::0::0::INSTR;PXI13::0
::0::INSTR;

Step 6 - Write the Program Steps

At this point, you can add program steps that use the driver instances to perform
tasks.

Using the Soft Front Panel to Write Program Commands

In this example, open the Soft Front Panel for the M938xA PXIe VSG and perform the
following steps:

1. Set the output frequency to 1 GHz.

2. Set the output level to 0 dBm.

3. Enable the ALC.

4. Enable the RF Output.

The illustration below shows the Driver Call Log created by the steps above.

Below is the corresponding code in C#:

38 M9391A and M9381A Programming Guide

Creating a Project with IVI-COM Using C-Sharp

Step 7 - Closethe Driver

M9391A and M9381A Programming Guide 39

AgM938x is the driver name used by the SFP.

VsgDriver is the instance of the driver that is used in this example. This instance
would have been created in, "Step 4 – Create Instances of the M9381A PXIe
VSG and M9391A PXIe VSA".

IAgM938x VsgDriver = new AgM938x();

// Set the output frequency to 1 GHz
VsgDriver.RF.Frequency = 1000000000;
// Set the output level to 0 dBm
VsgDriver.RF.Level = 0;
// Enables the ALC
VsgDriver.ALC.Enabled = true;
// Enables the RF Output
VsgDriver.RF.OutputEnabled = true;
// Waits until the list is finished or the specified time passes
bool retval = VsgDriver.List.WaitUntilComplete();

//...or you could use the following:

// Waits 100 ms until output is settled before producing signal
bool retval = VsgDriver.RF.WaitUntilSettled(100);

Step 7 - Close the Driver

Calling Close() at the end of the program is required by the IVI specification when
using any IVI driver.

Important! Close() may be the most commonly missed step when using an IVI driver.
Failing to do this could mean that system resources are not freed up and your
program may behave unexpectedly on subsequent executions.

{
if(VsaDriver!= null && VsaDriver.Initialized)
{

// Close the VSA driver{color}
VsaDriver.Close();
Console.WriteLine("VSA Driver Closed\n");

}

if(VsgDriver != null && VsgDriver.Initialized)
{

// Close the VSG driver

Creating a Project with IVI-COM Using C-Sharp

Step 8 - Building and Running a Complete Program Using VisualC-Sharp

VsgDriver.Close();
Console.WriteLine("VSG Driver Closed");

}
}

Step 8 - Building and Running a Complete Program
Using Visual C-Sharp

Build your console application and run it to verify it works properly.

1. Open the solution file SolutionNameThatYouUsed.sln in Visual Studio 2010.

2. Set the appropriate platform target for your project.
In many cases, the default platform target (Any CPU) is appropriate.

However, if you are using a 64-bit PC (such as Windows 7) to build a .NET
application that uses a 32-bit IVI-COM driver, you may need to specify
your project's platform target as x86.

3. Choose Project > ProjectNameThatYouUsed Properties and select Build |
Rebuild Solution.

Tip: You can also do the same thing from the Debug menu by clicking
Start Debugging or pressing the F5 key.

Example programs may be found by selecting: C:\Program Files (x86)
\Agilent\M9391\Help\Examples

Example Program 1- Code Structure

The following example code builds on the previously presented Tutorial: Creating a
Project with IVI-COMUsing C# and demonstrates how to instantiate two driver
instances, set the resource names and various initialization values, initialize the two
driver instances, print various driver properties for each driver instance, check drivers
for errors and report the errors if any occur, and close the drivers.

Example programs may be found in C:\Program Files (x86)
\Agilent\M9391\Help\Examples

40 M9391A and M9381A Programming Guide

Creating a Project with IVI-COM Using C-Sharp

Step 8 - Building and Running a Complete Program Using VisualC-Sharp

M9391A and M9381A Programming Guide 41

Example Program 1- How to Print Driver Properties, Check for
Errors, and Close Driver Sessions

// Copy the following example code and compile it as a C# Console Application
// Example__VsaVsgProperties.cs
#region Specify using Directives
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Ivi.Driver.Interop;
using Agilent.AgM938x.Interop;
using Agilent.AgM9391.Interop;
#endregion

namespace VsaVsgProperties
{

Creating a Project with IVI-COM Using C-Sharp

Step 8 - Building and Running a Complete Program Using VisualC-Sharp

class Program
{

static void Main(string[] args)
{

// Create driver instances
IAgM938x VsgDriver = new AgM938x();
IAgM9391 VsaDriver = new AgM9391();

try
{
#region Initialize Driver Instances
string VsgResourceName =

"PXI8::0::0::INSTR;PXI11::0::0::INSTR;PXI12::0::0::INSTR;PXI13::0::0::INSTR";
string VsaResourceName =

"PXI14::0::0::INSTR;PXI10::0::0::INSTR;PXI9::0::0::INSTR";

bool IdQuery = true;
bool Reset = true;

string VsgOptionString = "QueryInstrStatus=true, Simulate=false,
DriverSetup= Model=VSG, Trace=false";

string VsaOptionString = "QueryInstrStatus=true, Simulate=false,
DriverSetup= Model=VSA, Trace=false";

VsgDriver.Initialize(VsgResourceName, IdQuery, Reset,
VsgOptionString);

Console.WriteLine("VSG Driver Initialized");

VsaDriver.Initialize(VsaResourceName, IdQuery, Reset,
VsaOptionString);

Console.WriteLine("VSA Driver Initialized\n\n");
#endregion

#region Print Driver Properties
// Print IviDriverIdentity properties for the PXIe VSG
Console.WriteLine("Identifier: {0}", VsgDriver.Identity.Identifier);
Console.WriteLine("Revision: {0}", VsgDriver.Identity.Revision);
Console.WriteLine("Vendor: {0}", VsgDriver.Identity.Vendor);
Console.WriteLine("Description: {0}",

VsgDriver.Identity.Description);
Console.WriteLine("Model: {0}",

VsgDriver.Identity.InstrumentModel);
Console.WriteLine("FirmwareRev: {0}",

VsgDriver.Identity.InstrumentFirmwareRevision);
Console.WriteLine("Simulate: {0}\n",

VsgDriver.DriverOperation.Simulate);

// Print IviDriverIdentity properties for the PXIe VSA
Console.WriteLine("Identifier: {0}", VsaDriver.Identity.Identifier);
Console.WriteLine("Revision: {0}", VsaDriver.Identity.Revision);

42 M9391A and M9381A Programming Guide

Creating a Project with IVI-COM Using C-Sharp

Step 8 - Building and Running a Complete Program Using VisualC-Sharp

M9391A and M9381A Programming Guide 43

Console.WriteLine("Vendor: {0}", VsaDriver.Identity.Vendor);
Console.WriteLine("Description: {0}",

VsaDriver.Identity.Description);
Console.WriteLine("Model: {0}",

VsaDriver.Identity.InstrumentModel);
Console.WriteLine("FirmwareRev: {0}",

VsaDriver.Identity.InstrumentFirmwareRevision);
Console.WriteLine("Simulate: {0}\n",

VsaDriver.DriverOperation.Simulate);
#endregion

#region Perform Tasks
// TO DO: Exercise driver methods and properties.
// Put your code here to perform tasks with PXIe VSG and PXIe VSA.
#endregion

#region Check for Errors
// Check VSG instrument for errors
int VsgErrorNum = -1;
string VsgErrorMsg = null;
while (VsgErrorNum != 0)
{

VsgDriver.Utility.ErrorQuery(ref VsgErrorNum, ref VsgErrorMsg);
Console.WriteLine("VSG ErrorQuery: {0}, {1}\n", VsgErrorNum,

VsgErrorMsg);
}

// Check VSA instrument for errors
int VsaErrorNum = -1;
string VsaErrorMsg = null;
while (VsaErrorNum != 0)
{

VsaDriver.Utility.ErrorQuery(ref VsaErrorNum, ref VsaErrorMsg);
Console.WriteLine("VSA ErrorQuery: {0}, {1}\n", VsaErrorNum,

VsaErrorMsg);
}
#endregion

}
catch (Exception ex)
{
Console.WriteLine(ex.Message);

}
finally
{
if (VsgDriver != null && VsgDriver.Initialized)
{
// Close the driver
VsgDriver.Close();
Console.WriteLine("VSG Driver Closed");

}

Creating a Project with IVI-COM Using C-Sharp

Step 8 - Building and Running a Complete Program Using VisualC-Sharp

if (VsaDriver != null && VsaDriver.Initialized)
{

// Close the driver
VsaDriver.Close();
Console.WriteLine("VSA Driver Closed\n");

}
}

Console.WriteLine("Done - Press Enter to Exit");
Console.ReadLine();

}
}

}

44 M9391A and M9381A Programming Guide

Working with PA_FEM Measurements

Test Challenges Faced by Power Amplifier Testing

M9391A and M9381A Programming Guide 45

Working with PA_FEM Measurements
The RF front end of a product includes all of the components between an antenna and
the baseband device. The purpose of an RF front end is to upconvert a baseband
signal to RF that can be used for transmission by an antenna. An RF front end can also
be used to downconvert an RF signal that can be processed with ADC circuitry. As an
example, the RF signal that is received by a cellular phone is the input into the front
end circuitry and the output is a down-converted analog signal in the intermediate
frequency (IF) range. This down-converted signal is the input to a baseband device, an
ADC. For the transmit side, a DAC generates the signal to be up-converted, amplified,
and sent to the antenna for transmission. Depending on whether the system is a Wi-
Fi, GPS, or cellular radio will require different characteristics of the front end devices.

RF front end devices fall into a few major categories: RF Power Amplifiers, RF Filters
and Switches, and FEMs [Front End Modules].

RF Power Amplifiers and RF Filters and Switches typically require the following:
PA[Power Amplifier] – Production Tests which include:

Channel Power - Power Acquisition Mode is used to return one
value back through the API.

ACPR [Adjacent Channel Power Ratio] – When making fast ACPR
measurements, "Baseband Tuning" is used to digitally tune the
center frequency in order to make channel power measurements,
at multiple offsets, using the Power Acquisition interface.

Servo Loop- When measuring a power amplifier, one of the key
measurements is performing a Servo Loop because when you
measure a power amplifier:

it is typically specified at a specific output power

there is a need to adjust the source input level until you
measure the exact power level - to do this, you will
continually adjust the source until you achieve the specified
output power then you make all of the ACPR and harmonic
parametric measurements at that level.

FEMs [Front End Modules] – which could be a combination of multiple front end
functions in a single module or even a "Switch Matrix" that switches various
radios (such as Wi-Fi, GSM, PCS, Bluetooth, etc.) to the antenna.

Test Challenges Faced by Power Amplifier Testing

The following are the test challenges faced by Power Amplifier Testing:

Working with PA_FEM Measurements

Test Challenges Faced by Power Amplifier Testing

The need to quickly adjust power level inputs to the device under test (DUT).

The need to assess modulation performance (i.e., ACPR and EVM) at high
output power levels.

The figure below shows a simplified block diagram for the M9381A PXIe VSG and
M9391A PXIe VSA in a typical PA / FEM test system.

Typical power amplifier modules require an input power level of 0 to + 5 dBm, digitally
modulated according to communication standards such as WCDMA or LTE. The
specified performance of the power amplifier or front end module is normally set at a
specific output level of the DUT. If the devices have small variations in gain, it may be
necessary to adjust the power level from the M9381A PXIe VSG to get the correct
output level of the DUT. Only after the DUT output level is set at the correct value can
the specified parameters be tested. The time spent adjusting the M9381A PXIe VSG
to get the correct DUT output power can be a major contributor to the test time and
the overall cost of test.

The M9381A PXIe VSG is connected to the DUT using a cable and switches. The
switching may be used to support testing of multi-band modules or multi-site testing.
The complexity of the switching depends on the number of bands in the devices and
the number of test sites supported by the system. The DUTs are typically inserted into
the test fixture using an automated part handler. In some cases, several feet of cable
is required between the M9381A PXIe VSG and the input of the DUT.

The combination of the RF cables and the switching network can add several dB of
loss between the output of the M9381A PXIe VSG and the input of the DUT, which
requires higher output levels from the M9381A PXIe VSG. Since the tests are
performed with a modulated signal, the M9381A PXIe VSG must also have adequate
modulation performance at the higher power levels.

46 M9391A and M9381A Programming Guide

Working with PA_FEM Measurements

Performing a Channel Power Measurement, Using ImmediateTrigger

M9391A and M9381A Programming Guide 47

Performing a Channel Power Measurement, Using
Immediate Trigger

Standard
Sample
Rate

Channel Filter
Type

Channel Filter
Parameter

Channel Filter
Bandwidth

Channel
Offsets

WCDMA 5 MHz RRC 0.22 3.84 MHz 5, 10
MHz

LTE 10 MHz FDD 11.25
MHz

Rectangular N/A 9 MHz 10, 20
MHz

LTE 10 MHz TDD 11.25
MHz

Rectangular N/A 9 MHz 10, 20
MHz

1xEV-DO 2 MHz RRC 0.22 1.23 MHz 1.25, 2.5
MHz

TD-SCDMA 2 MHz RRC 0.22 1.28 MHz 1.6, 3.2
MHz

GSM/EDGE
Channel

1.25
MHz

Gaussian 0.3 271 kHz

GSM/EDGEORFS 1.25
MHz

TBD TBD 30 kHz 400,
600kHz

Example Program 2 - Code Structure

The following example code demonstrates how to instantiate a driver instance, set
the resource name and various initialization values, initialize the driver instances, and
perform other relevant tasks:

1. Send RF and Power Acquisition commands to the M9391A PXIe VSA driver and
Apply changes to hardware,

2. Check the instrument queue for errors.

3. Perform a Channel Power Measurement,

4. Report errors if any occur, and close the drivers.

Example programs may be found at C:\Program Files (x86)
\Agilent\M9391\Help\Examples

Working with PA_FEM Measurements

Performing a Channel Power Measurement, Using ImmediateTrigger

Example Program 2 - Pseudo-code

Initialize Driver for VSA, Check for Errors

Send RF Settings to VSA Driver:
Frequency

Level

Peak to Average Ratio

Conversion Mode

IF Bandwidth

Set Acquisition Mode to "Power"

48 M9391A and M9381A Programming Guide

Working with PA_FEM Measurements

Performing a Channel Power Measurement, Using ImmediateTrigger

M9391A and M9381A Programming Guide 49

Send Power Acquisition Setting to VSA Driver:
Sample Rate

Duration

Channel Filter

Apply Method to Send Changes to Hardware
Wait for Hardware to Settle

Send Arm Method to VSA

Send Read Power Method to VSA

Close Driver for VSA

Example Program 2 - Channel Power Measurement Using
Immediate Trigger

// Copy the following example code and compile it as a C# Console Application
// Example__ChannelPowerImmediateTrigger.cs
#region Specify using Directives

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Ivi.Driver.Interop;
using Agilent.AgM9391.Interop;

#endregion

namespace ChannelPowerImmTrigger
{

class Program
{

static void Main(string[] args)
{

// Create driver instances
VsaDriver = new AgM9391();

try
{
#region Initialize Driver Instances

string VSAResourceName =
"PXI14::0::0::INSTR;PXI10::0::0::INSTR;PXI9::0::0::INSTR;PXI13::0::0::INSTR";

bool IdQuery = true;
bool Reset = true;

string VSAOptionString = "QueryInstrStatus=true, Simulate=false,
DriverSetup= Model=M9391A, Trace=false";

VsaDriver.Initialize(VSAResourceName, IdQuery, Reset,
VSAOptionString);

Working with PA_FEM Measurements

Performing a Channel Power Measurement, Using ImmediateTrigger

Console.WriteLine("VSA Driver Initialized\n");
#endregion

#region Check Instrument Queue for Errors
// Check VSA instrument for errors
int VsaErrorNum = -1;
string VsaErrorMsg = null;
while (VsaErrorNum != 0)
{

VsaDriver.Utility.ErrorQuery(ref VsaErrorNum, ref
VsaErrorMsg);

Console.WriteLine("VSA ErrorQuery: {0}, {1}\n", VsaErrorNum,
VsaErrorMsg);

}
#endregion

#region Receiver Settings
// Receiver Settings
double Frequency = 2000000000.0;
double Level = 5;
double RmsValue = 5;
double ChannelTime = 0.0001;
double MeasureBW = 5000000.0;
AgM9391ChannelFilterShapeEnum FilterType =

AgM9391ChannelFilterShapeEnum.AgM9391ChannelFilterShapeRootRaisedCosine;
double FilterAlpha = 0.22;
double FilterBw = 3840000.0;
double MeasuredPower = 0;
bool Overload = true;

#endregion

#region Run Commands
// Setup the RF Path in the Receiver
VsaDriver.RF.Frequency = Frequency;
VsaDriver.RF.Power = Level;
VsaDriver.RF.Conversion =

AgM9391ConversionEnum.AgM9391VsaConversionAuto;
VsaDriver.RF.PeakToAverage = RmsValue;
VsaDriver.RF.IFBandwidth = 40000000.0; // Use IF filter wide

enough for all adjacent channels
// Configure the Acquisition
VsaDriver.AcquisitionMode =

AgM9391AcquisitionModeEnum.AgM9391AcquisitionModePower;
VsaDriver.PowerAcquisition.Bandwidth = MeasureBW; // 5 MHz
VsaDriver.PowerAcquisition.Duration = ChannelTime; // 100 us
VsaDriver.PowerAcquisition.ChannelFilter.Configure(FilterType,

FilterAlpha, FilterBw);
// Send Changes to hardware
VsaDriver.Apply();
VsaDriver.WaitUntilSettled(100);

50 M9391A and M9381A Programming Guide

Working with PA_FEM Measurements

Performing a WCDMA Power Servo and ACPR Measurement

M9391A and M9381A Programming Guide 51

string response = "y";
while (string.Compare(response, "y") == 0) {

Console.WriteLine("Press Enter to Run Test");
Console.ReadLine();

VsaDriver.Arm();
VsaDriver.PowerAcquisition.ReadPower(0,

AgM9391PowerUnitsEnum.AgM9391PowerUnitsdBm, ref MeasuredPower, ref Overload);
Console.WriteLine("Measured Power: " + MeasuredPower + "

dBm");
Console.WriteLine(String.Format("Overload = {0}", Overload ?

"true" : "false"));
Console.WriteLine("Repeat? y/n");
response = Console.ReadLine();

}
#endregion

}
catch (Exception ex)
{

Console.WriteLine("Exceptions for the drivers:\n");
Console.WriteLine(ex.Message);

}
finally
#region Close Driver Instances
{
if (VsaDriver != null && VsaDriver.Initialized)
{

// Close the driver
VsaDriver.Close();
Console.WriteLine("VSA Driver Closed\n");

}
}
#endregion

Console.WriteLine("Done - Press Enter to Exit");
Console.ReadLine();

}
}

}

Performing a WCDMA Power Servo and ACPR
Measurement

When making a WCDMA Power Servo and ACPR measurement, Servo is performed
using "Baseband Tuning" to adjust the source amplitude and then "Baseband Tuning"
is used to digitally tune the center frequency in order to make channel power

Working with PA_FEM Measurements

Performing a WCDMA Power Servo and ACPR Measurement

measurements, at multiple offsets, using the Power Acquisition interface of the
M9391A PXIe VSA.

The M9391A PXIe VSA and the M9381A PXIe VSG offers two modes for adjusting
frequency and amplitude:

RF Tuning – allows the M9381A PXIe VSG to be set across the complete
operating frequency and amplitude range.

Baseband Tuning – allows the frequency and amplitude to be adjusted within
the IF bandwidth (160 MHz) and over a range of the output level.

Example Program 3 - Code Structure

The following example code demonstrates how to instantiate two driver instances,
set the resource names and various initialization values, initialize the two driver
instances, and perform the other relevant tasks:

1. Send RF and Modulation commands to the M9381A PXIe VSG driver and Apply
changes to hardware,

2. Send RF and Power Acquisition commands to the M9391A PXIe VSA driver and
Apply changes to hardware,

3. Run a Servo Loop until it is at the required output power from DUT,

4. Perform an ACPR Measurement for each Adjacent Channel to be measured,

5. Check drivers for errors and report the errors, if any, and close the drivers.

52 M9391A and M9381A Programming Guide

Working with PA_FEM Measurements

Performing a WCDMA Power Servo and ACPR Measurement

M9391A and M9381A Programming Guide 53

Example programs are available at C:\Program Files (x86)
\Agilent\M9391\Help\Examples

Example Program 3 - Pseudo-code

Initialize Drivers for VSG and VSA and check for errors

Send RF Settings to VSG Driver:
Frequency

RF Level to Maximum Needed

RF Enable On

ALC Enable Off (for baseband power changes)

Working with PA_FEM Measurements

Performing a WCDMA Power Servo and ACPR Measurement

Send Modulation Commands to VSG Driver:
Load WCDMA Signal Studio File

Enable Modulation

Play ARB File

Set ARB Scale to 0.5

Set Baseband Power Offset to -10 dB

Apply Method to Send Changes to Hardware
Wait for Hardware to Settle

Send RF Settings to VSA Driver:
Frequency

Level

Peak to Average Ratio

Conversion Mode

IF Bandwidth

Set Acquisition Mode to "Power"

Send Power Acquisition Setting to VSA Driver:
Sample Rate

Duration

Channel Filter

Apply Method to Send Changes to Hardware
Wait for Hardware to Settle

Servo Loop:

Set Baseband Power Offset on VSG to expected value

Send Apply Method to VSG

Send Arm Method to VSA

Send ReadPower Method to VSA

Repeat Until at Required Output Power from DUT

Last Reading is Channel Power Measurement

ACPR Measurement:

Set Acquisition Duration Property on VSA to Value for Adjacent Channel
Measurements

Set Frequency Offset Property on VSA to Channel Offset Frequency

Send Apply Method to VSA

Send Arm Method to VSA

Send ReadPower Method to VSA

Repeat for each Adjacent Channel to be Measured

54 M9391A and M9381A Programming Guide

Working with PA_FEM Measurements

Performing a WCDMA Power Servo and ACPR Measurement

M9391A and M9381A Programming Guide 55

Example Program 3 - WCDMA Power Servo and ACPR
Measurement

// Copy the following example code and compile it as a C# Console Application
// Example__PaServoAcpr.cs
// WCDMA Power Servo and ACPR Measurement
#region Specify using Directives

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Ivi.Driver.Interop;
using Agilent.AgM938x.Interop;
using Agilent.AgM9391.Interop;

#endregion

namespace PaServoAcpr
{

class Program
{

static void Main(string[] args)
{

// Create driver instances
IAgM938x VsgDriver = new AgM938x();
IAgM9391 VsaDriver = new AgM9391();

try
{
#region Initialize Driver Instances

string VsgResourceName =
"PXI8::0::0::INSTR;PXI11::0::0::INSTR;PXI12::0::0::INSTR;PXI13::0::0::INSTR";

string VsaResourceName =
"PXI14::0::0::INSTR;PXI10::0::0::INSTR;PXI9::0::0::INSTR";

bool IdQuery = true;
bool Reset = true;

string VsgOptionString = "QueryInstrStatus=true, Simulate=false,
DriverSetup= Model=VSG, Trace=false";

string VsaOptionString = "QueryInstrStatus=true, Simulate=false,
DriverSetup= Model=VSA, Trace=false";

VsaDriver.Initialize(VsaResourceName, IdQuery, Reset,
VsaOptionString);

Console.WriteLine("VSA Driver Initialized\n");

VsgDriver.Initialize(VsgResourceName, IdQuery, Reset,
VsgOptionString);

Working with PA_FEM Measurements

Performing a WCDMA Power Servo and ACPR Measurement

Console.WriteLine("VSG Driver Initialized");

#endregion

#region Check Instrument Queue for Errors
// Check VSG instrument for errors
int VsgErrorNum = -1;
string VsgErrorMsg = null;
while (VsgErrorNum != 0)
{

VsgDriver.Utility.ErrorQuery(ref VsgErrorNum, ref
VsgErrorMsg);

Console.WriteLine("VSG ErrorQuery: {0}, {1}", VsgErrorNum,
VsgErrorMsg);

}

// Check VSA instrument for errors
int VsaErrorNum = -1;
string VsaErrorMsg = null;
while (VsaErrorNum != 0)
{

VsaDriver.Utility.ErrorQuery(ref VsaErrorNum, ref
VsaErrorMsg);

Console.WriteLine("VSA ErrorQuery: {0}, {1}\n", VsaErrorNum,
VsaErrorMsg);

}
#endregion

#region Create Default Settings for WCDMA Uplink Signal
// Source Settings
double Frequency = 1000000000.0;
double Level = 3;
// If a Signal Studio waveform file is used, it may require a

software
// license.

string ExamplesFolder = "C:Program Files (x86)AgilentM938xExample
Waveforms";

string WaveformFile = "WCDMA_UL_DPCHH_2DPDCH_1C.wfm";
string FileName = ExamplesFolder + WaveformFile;
string ArbRef = "Mod Waveform";

// Receiver Settings
double ChannelTime = 0.0001;
double AdjacentTime = 0.0005;
double IfBandwidth = 40000000.0;
double PowerOffset = 0;
double MeasureBW = 5000000.0;
AgM9391ChannelFilterShapeEnum FilterType =

AgM9391ChannelFilterShapeEnum.AgM9391ChannelFilterShapeRootRaisedCosine;
double FilterAlpha = 0.22;

56 M9391A and M9381A Programming Guide

Working with PA_FEM Measurements

Performing a WCDMA Power Servo and ACPR Measurement

M9391A and M9381A Programming Guide 57

double FilterBw = 3840000.0;
double[] FreqOffset = new double[] {-5000000.0, 5000000.0, -

10000000.0, 10000000.0};

double MeasuredPower = 0;
bool Overload = true;
double MeasuredChannelPower;
bool ChannelPowerOverload;
double[] MeasuredACPR = new double[4];
double SampleRate = 0;
double RmsValue = 0;
double ScaleFactor = 0;

#endregion

#region Run Commands
// These commands are sent to the VSG Driver, "Apply" or

"PlayArb"
// methods send to hardware

VsgDriver.RF.Frequency = Frequency;
VsgDriver.RF.Level = Level;
VsgDriver.RF.OutputEnabled = true;
VsgDriver.ALC.Enabled = false;
VsgDriver.Modulation.IQ.UploadArbAgilentFile(ArbRef, FileName);
VsgDriver.Modulation.Enabled = true;
VsgDriver.Modulation.BasebandPower = -10;
// Play the ARB, sending all changes to hardware
VsgDriver.Modulation.PlayArb(ArbRef,

AgM938xStartEventEnum.AgM938xStartEventImmediate);
VsgDriver.Modulation.Scale = 0.5;
VsgDriver.Apply();

// Get the Sample Rate and RMS Value (Peak to Average Ratio) of
// the Current Waveform

AgM938xMarkerEnum RfBlankMarker =
AgM938xMarkerEnum.AgM938xMarkerNone;

AgM938xMarkerEnum AlcHoldMarker =
AgM938xMarkerEnum.AgM938xMarkerNone;

VsgDriver.Modulation.IQ.ArbInformation(ArbRef, ref SampleRate,
ref RmsValue, ref ScaleFactor, ref RfBlankMarker, ref AlcHoldMarker);

// Setup the RF Path in the Receiver
VsaDriver.RF.Frequency = Frequency;
VsaDriver.RF.Power = Level + PowerOffset;
VsaDriver.RF.Conversion =

AgM9391ConversionEnum.AgM9391ConversionAuto;
VsaDriver.RF.PeakToAverage = RmsValue;
VsaDriver.RF.IFBandwidth = IfBandwidth;
// Configure the Acquisition
VsaDriver.AcquisitionMode =

AgM9391AcquisitionModeEnum.AgM9391AcquisitionModePower;

Working with PA_FEM Measurements

Performing a WCDMA Power Servo and ACPR Measurement

VsaDriver.PowerAcquisition.Bandwidth = MeasureBW;
VsaDriver.PowerAcquisition.Duration = ChannelTime;
VsaDriver.PowerAcquisition.ChannelFilter.Configure(FilterType,

FilterAlpha, FilterBw);
// Send Changes to hardware
VsaDriver.Apply();
VsaDriver.WaitUntilSettled(100);

string response = "y";
while (string.Compare(response, "y") == 0) {

Console.WriteLine("Press Enter to Run Test");
Console.ReadLine();

// Run a group of baseband power commands to change the
source

// level and make a power measurement at each
step.

// Simulates Servo loop timing, but does not use the measured
// power to adjust the next source level

VsaDriver.PowerAcquisition.Duration = ChannelTime;
VsaDriver.Apply();
double[] LevelOffset = new double[] {-3, -2, -1, -0.5, -

0.75};
for (int Index = 0;Index < LevelOffset.Length - 1;Index++) {

VsgDriver.Modulation.BasebandPower = LevelOffset[Index];
VsgDriver.Apply();
VsaDriver.Arm();
VsaDriver.PowerAcquisition.ReadPower(0,

AgM9391PowerUnitsEnum.AgM9391PowerUnitsdBm, ref MeasuredPower, ref Overload);
}

// Loop Through the channel offset frequencies for an
// ACPR measurement

// Use the last value of the servo loop for the channel power
MeasuredChannelPower = MeasuredPower;
ChannelPowerOverload = Overload;
VsaDriver.PowerAcquisition.Duration = AdjacentTime;
for (int Index = 0;Index < FreqOffset.Length;Index++) {

VsaDriver.PowerAcquisition.OffsetFrequency = FreqOffset
[Index];

VsaDriver.Apply();
VsaDriver.Arm();
VsaDriver.PowerAcquisition.ReadPower(0,

AgM9391PowerUnitsEnum.AgM9391PowerUnitsdBm, ref MeasuredPower, ref Overload);
MeasuredACPR[Index] = MeasuredPower -

MeasuredChannelPower;
}

// Make sure the VSA frequency offset is back to 0 (on
repeat)

58 M9391A and M9381A Programming Guide

Working with PA_FEM Measurements

Performing a WCDMA Power Servo and ACPR Measurement

M9391A and M9381A Programming Guide 59

VsaDriver.PowerAcquisition.OffsetFrequency = 0;
VsaDriver.Apply();
if (ChannelPowerOverload == true) {

Console.WriteLine("Channel Power Measurement Overload");
}
Console.WriteLine("Channel Power: {0} dBm",

MeasuredChannelPower);
Console.WriteLine("ACPR1 L: {0} dBc", MeasuredACPR[0]);
Console.WriteLine("ACPR1 U: {0} dBc", MeasuredACPR[1]);
Console.WriteLine("ACPR2 L: {0} dBc", MeasuredACPR[2]);
Console.WriteLine("ACPR2 U: {0} dBc", MeasuredACPR[3]);

Console.WriteLine("Repeat? y/n");
response = Console.ReadLine();

}
#endregion

}
catch (Exception ex)
{

Console.WriteLine("Exceptions for the drivers:\n");
Console.WriteLine(ex.Message);

}
finally
#region Close Driver Instances
{
if (VsgDriver != null && VsgDriver.Initialized)
{
// Close the driver
VsgDriver.Close();
Console.WriteLine("VSG Driver Closed");

}

if (VsaDriver != null && VsaDriver.Initialized)
{

// Close the driver
VsaDriver.Close();
Console.WriteLine("VSA Driver Closed\n");

}

}
#endregion

Console.WriteLine("Done - Press Enter to Exit");
Console.ReadLine();

}
}

}

Working with PA_FEM Measurements

Performing a WCDMA Power Servo and ACPR Measurement

Disclaimer

© 2013-2015 Keysight Technologies Inc. All rights reserved.

You have a royalty-free right to use, modify, reproduce and distribute this Sample
Application (and/or any modified version) in any way you find useful, provided that you
agree that Keysight Technologies has no warranty, obligations or liability for any
Sample Application Files.

Keysight Technologies provides programming examples for illustration only. This
sample program assumes that you are familiar with the programming language being
demonstrated and the tools used to create and debug procedures. Keysight
Technologies support engineers can help explain the functionality of Keysight
Technologies software components and associated commands, but they will not
modify these samples to provide added functionality or construct procedures to meet
your specific needs.

60 M9391A and M9381A Programming Guide

Working with 802.11ac MIMO RnD and DVT Tests

M9391A and M9381A Programming Guide 61

Working with 802.11ac MIMO RnD and DVT Tests
This section of the programming guide focuses on performing 802.11ac MIMO
R&D/DVT Tests related to Receiver and Transmitter (Rx/Tx) Physical Layer
performance characterization.

This programming guide may also be usedwhen creating programs
for 802.11a,b,g and n.

Receiver Tests, with IVI-COM controlling M9381A PXIe VSGs and M9018A PXIe
Chassis

In this section, you will learn how to use Visual
Studio 2010 to write source code for an IVI-COM
Console Application in Visual C#. You will compile
the source code using the .NET Framework
Library and produce an Assembly.exe file that
routes backplane triggers on the M9018A PXIe
Chassis for the M9381A PXIe VSGs, M9300A PXIe
References, and M9391A PXIe VSAs. It then sets
the controls for the M9381A PXIe VSGs and starts
them playing a waveform file.

Knowledge of Visual Studio 2010 with the .NET
Framework, knowledge of the programming
syntax for Visual C#, and knowledge of 802.11ac
PHY Layer receiver tests is required.

Transmitter Tests, with 89600 VSA Software controlling M9391A PXIe Vector Signal
Analyzers

Also, you will learn how to use Keysight 89600
VSA Software to control M9391A PXIe VSAs that
perform transmitter tests for PHY Layer
characterization.

Knowledge of 89600 VSA Software and
knowledge of 802.11ac PHY Layer transmitter
tests is required.

The following 802.11ac MIMO R&D/DVT Tests
related to Rx/Tx PHY Layer characterization are
covered:

Working with 802.11ac MIMO RnD and DVT Tests

Preparing the Hardware and Software for 802.11ac MIMO RnD DVTTests

Example Program 4: How to Perform Transmitter
Tests with 89600 VSA Software(Playing
Waveforms on M9381A PXIe VSGs, Using
External Trigger)

Preparing the Hardware and Software for 802.11ac
MIMO RnD DVT Tests

1. Select and Configure a Hardware Configuration for 802.11ac MIMO R&D/DVT
Test

An overview of all hardware modules and their cable connections are shown
here for convenience, but detailed steps on each of the following
configurations, as well as configurations with external controllers, are defined
in the Keysight MIMO PXI Test Solution Startup Guide, Y1299-90001–
complete all hardware configuration steps before trying to programmatically
control M9381A PXIe VSGs and M9018A PXIe Chassis hardware with an IVI
driver or to control M9391A PXIe VSAs with 89600 VSA Software.

Configuration Description

2x2 MIMO in One M9018A PXIe Chassis This configuration (occupying
16 slots) consists of two
M9381A PXIe VSGs and two
M9391A PXIe VSAs in a single
M9018A PXIe Chassis - with or
without an M9036A PXIe
Embedded Controller (the
configuration shown includes
an M9036A PXIe Embedded
Controller).A single M9300A
PXIe Reference is shared
across both M9381A PXIe
VSGs and both M9391A PXIe
VSAs.

3x3 MIMO in Two M9018A PXIe Chassis The top of this configuration
(occupying 14 slots) consists of
three M9381A PXIe VSGs in a
single M9018A PXIe Chassis –
with an M9021A PCIe Cable
Interface. A single M9300A
PXIe Reference, in slot 10, is

62 M9391A and M9381A Programming Guide

Working with 802.11ac MIMO RnD and DVT Tests

Preparing the Hardware and Software for 802.11ac MIMO RnD DVTTests

M9391A and M9381A Programming Guide 63

Configuration Description

shared across all three
M9381A PXIe VSGs.

The bottom of this
configuration (occupying 11
slots) consists of three M9391A
PXIe VSAs in a single M9018A
PXIe Chassis – with an M9021A
PCIe Cable Interface and an
M9036A PXIe Embedded
Controller.A single M9300A
PXIe Reference, in slot 10, is
shared across all three
M9391A PXIe VSAs.

4x4 MIMOin Two M9018A PXIe Chassis The top of this configuration
(occupying 18 slots) consists of
four M9381A PXIe VSGs in a
singleM9018A PXIe Chassis –
with an M9021A PCIe Cable
Interface.A single M9300A
PXIe Reference, in slot 10, is
shared across all four M9381A
PXIe VSGs.

The bottom of this
configuration (occupying 14
slots) consists of four M9391A
PXIe VSAs in a single M9018A
Chassis – with an M9021A
PCIe Cable Interface and an
M9036A PXIe Embedded
Controller.A single M9300A
PXIe Reference, in slot 10, is
shared across all four M9391A
PXIe VSAs.

2. Install / Verify Software for 802.11ac MIMO R&D/DVT Test
Refer to the Installing Hardware, Software, and Licenses section for a list of
software that is needed as well as the order that software must be installed.

3. Programmatically control M9381A PXIe VSGs with C# Console Application

4. Create driver instances, set resource names and various initialization values.

Working with 802.11ac MIMO RnD and DVT Tests

Preparing the Hardware and Software for 802.11ac MIMO RnD DVTTests

5. Add references, initialize drivers, and clear the error queues for an M9018A
PXIe Chassis, an M9300A PXIe Reference, and two, three, or four M9381A PXIe
VSG driver instances.

6. Route/Configure a number of backplane triggers on the M9018A PXIe Chassis.

Running Self-Test will fail if the modules that form anM9381A
PXIe VSG or anM9391A PXIe VSA spans across slot 6 or slot
12 of the M9018A PXIe Chassis; if they do span across slot 6 or
slot 12, the backplane triggers and bus segments must be
routed properly. For details, see Step 6 – Route Backplane
Triggers and Bus Segments on the M9018A PXIe Chassis.

7. On each M9381A PXIe VSG in the selected configuration:
Set up some initial values on each M9381A PXIe VSG.

Load and start playing a waveform file on each M9381A PXIe VSG.

The waveform file continues playing until the console application is
closed.

8. Create an N-Channel M9391A PXIe VSA Configuration in the 89600 VSA
Software.
Include the M9300A PXIe Reference module in Channel 1, but not in
subsequent channels.

When creating Channel 1, 2, 3, and 4 configurations with
89600 VSA software, note the order in which you addM9391
channels to the hardware configuration. This is needed later to
determine which channel is used to receive an external,
software or magnitude trigger, and it will be needed for trigger
allocation on the PXI backplane as well.

9. Use 89600 VSA Software to Control M9391A PXIe VSAs and Perform
Transmitter Tests

For each M9391A PXIe VSA, M9381A PXIe VSG, and M9018A PXIe Chassis used
in the configuration, use their soft front panels to verify that they have the most
up to date FPGA bits, and after routing backplane triggers and bus segments, run
self-test on each M9391A PXIe VSA, M9381A PXIe VSG, M9300A PXIe
Reference, and M9018A PXIe Chassis - one at a time.

Example Program 4 - How to Perform Transmitter Tests with 89600
VSA Software

The following example code builds on the previously presented Tutorial: Creating a
Project with IVI-COMUsing C#. It demonstrates how to instantiate two, three, or four
M9381A PXIe VSG driver instances, set resource names and various initialization
values, initialize and clear the error queues for the M9018A PXIe Chassis, an M9300A
PXIe Reference, and two, three, or four M9381A PXIe VSG driver instances.

Once initialized, a number of backplane triggers on the M9018A PXIe Chassis are

64 M9391A and M9381A Programming Guide

Working with 802.11ac MIMO RnD and DVT Tests

Preparing the Hardware and Software for 802.11ac MIMO RnD DVTTests

M9391A and M9381A Programming Guide 65

configured, initial values are set on each M9381A PXIe VSG, and a waveform file is
loaded and played on each M9381A PXIe VSG – this waveform can then be analyzed
with 89600 VSA Software that is controlling two, three, or four M9391A PXIe VSAs.

The console application window that is running remains open while the waveform file
is playing – if the console application window is closed by selecting the Enter key, the
waveform file will stop playing and all of the M9381A PXIe VSG drivers will be closed.

This example program can be accessed from C:\Program Files (x86)

\Agilent\M9391\Help\Examples\Example__MIMOConsoleApp.cs and C:\Program Files
(x86)\Agilent\M938x\Help\Examples\Example__MIMOConsoleApp.cs.

Example Program4 - Pseudo-Code

Initialize Drivers for M9300A, M9018A, M9381A Channel 1 and Channel 2 // For
a 2x2 MIMO Configuration

Initialize Drivers for M9300A, M9018A, M9381A Channel 1, Channel 2, and
Channel 3 // For a 3x3 MIMO Configuration

Working with 802.11ac MIMO RnD and DVT Tests

Preparing the Hardware and Software for 802.11ac MIMO RnD DVTTests

Initialize Drivers for M9300A, M9018A, M9381A Channel 1, Channel 2, Channel
3, and Channel 4 // For a 4x4 MIMO Configuration

Check each Driver for Errors

Route/Configure the Backplane Triggers on the M9018A PXIe Chassis (2x2
MIMO)

Route Backplane External Trigger from M9300Ato each M9311A (VSG)
Connect Bus 2 to 1 and 3 so that the M9300A PXIe Reference can
generate a 'Synchronization Playback Trigger' on PXI TRIG 0 ...this
trigger will be received by VSG 1 and VSG 2// (M9300A trigger
from slot 10 to 2, 15, 7, 11)

Use Default Backplane Triggers for VSG1
Uses Bus Segment 1: 'EXTERNAL TRIGGER' M9301A to M9311A
(slot 5 to 2)

VSG1 TRIG 7: Uses Bus Segment 1: 'ALC TRIGGER' M9311A to
M9310A (slot 2 to 4)

Use Default Backplane Triggers for VSG2
VSG2 TRIG 6: Uses Bus Segment 3: 'EXTERNAL TRIGGER' M9301A
to M9311A" (slot 18 to 15)

VSG2 TRIG 7: Uses Bus Segment 3: 'ALC TRIGGER' M9311A to
M9310A" (slot 15 to 17)

Route MASTER/SLAVE Backplane Triggers for VSAs in 2x2 MIMO Chassis
1:

MASTER/SLAVE Backplane Triggers are used to coordinate the
capture alignments on the VSA

M9391A PXIe VSA1 to VSA2 TRIG 1: Connect Bus 2 to 3: MASTER
to SLAVE

M9391A PXIe VSA2 to VSA1 TRIG 2: Connect Bus 3 to 2: SLAVE to
MASTER

See the following code examples for additional trigger changes
needed for a 3x3 or 4x4MIMO configuration.

Set Controls for all M9381A PXIe VSGs

Configure PXI TRIG 0 to listen for 'Playback Synchronization Pulse'

Disable ALC

Enable Pulse Blanking

Set PLL Mode to Best Wide Offset

Set RF Frequency

Set Amplitude

Enable Modulation

Enable RF Out

Start Waveform Playback on all M9381A PXIe VSGs

66 M9391A and M9381A Programming Guide

Working with 802.11ac MIMO RnD and DVT Tests

Preparing the Hardware and Software for 802.11ac MIMO RnD DVTTests

M9391A and M9381A Programming Guide 67

Play a Waveform on all M9381A PXIe VSGs - Using External Trigger Mode (This
trigger is from M9300A on PXI TRIG 0.)

Analyze the Waveform being produced from M9381A PXIe VSGs with 89600 VSA
Software controlling M9391A PXIe VSAs.

Step 1 : Create a Console Application

Perform the following steps:

1. Launch Visual Studio and create a new Console Application in Visual C# by
selecting: File > New > Project and select a Visual C# Console Application.
Enter "MIMOConsoleApp" as the Name of the project and click OK.

2. Select Project and click Add Reference.
The Add Reference dialog appears.For this step, Solution Explorer must be
visible (View > Solution Explorer) and the "Program.cs" editor window must be
visible – select the Program.cs tab to bring it to the front view.

Step 2 : Add References

In order to access the M9018A PXIe Chassis, M9300A PXIe Reference, and M9381A
PXIe VSG driver interfaces, references to their drivers (DLL) must be created.

1. In Solution Explorer, right-click on References and select Add Reference.

2. From the Add Reference dialog, select the COM tab.

3. Click on any of the type libraries under the "Component Name" heading and
enter the letter "I".(All IVI drivers begin with IVI so this will move down the list of
type libraries that begin with "I".)

4. Scroll to the IVI section and, using Shift-Ctrl, select the following type libraries
then select OK.

IVI AgM9018 1.3 Type Library

Working with 802.11ac MIMO RnD and DVT Tests

Preparing the Hardware and Software for 802.11ac MIMO RnD DVTTests

IVI AgM9300 1.3 Type Library
IVI AgM938x 1.3 Type Library

When any of the references for AgM9018, AgM9300, or
AgM938x are added, the IVIDriver 1.0 Type Library is also
automatically added. This reference houses the interface
definitions for IVI inherent capabilities which are located in the
file IviDriverTypeLib.dll (dynamically linked library).

Step 3 : Add Using Statements

To allow your program to access the IVI drivers without specifying full path names of
each interface or enum, you need to add using statements to your program.

Step 4 - Create Driver Instances

Change the value of numChannels to either: 2, 3, or 4 depending on the number of
channels you would like to control with the console application.

To create driver instances

When creating driver instances for the M9381A PXI VSG, note that the IAgM938xEx
interface is needed for MIMO in place of the IAgM938x interface. The IAgM938xEx
interface is an "extended" interface and includes additional commands that are
needed for MIMO that were not previously available in IAgM938x.

68 M9391A and M9381A Programming Guide

Working with 802.11ac MIMO RnD and DVT Tests

Preparing the Hardware and Software for 802.11ac MIMO RnD DVTTests

M9391A and M9381A Programming Guide 69

Step 5 - Initialize Driver Instances and Check for Errors

To Establish a Communication Link, get the Resource Name Addresses

Use either Agilent/Keysight Connection Expert or see "Appendix – Determining
Resource Name Address Strings".

The above is a partial view of code that shows how to initialize each of the drivers
needed. The complete example program can be accessed from C:\Program Files (x86)

Working with 802.11ac MIMO RnD and DVT Tests

Preparing the Hardware and Software for 802.11ac MIMO RnD DVTTests

\Agilent\M9391\Help\Examples\Example__MIMOConsoleApp.cs and C:\Program Files
(x86)\Agilent\M938x\Help\Examples\Example__MIMOConsoleApp.cs.

Step 6 - Route Backplane Triggers and Bus Segments on the
M9018A PXIe Chassis

In a MIMO configuration, there are a number of backplane triggers that are required
for each M9381A PXIe VSG and they must be routed properly across backplane
trigger bus segments on the M9018A PXIe Chassis.

The M9018A PXIe Chassis contains three PXI Trigger Bus Segments:
Bus Segment 1 is used by Slots 1 to 6

Bus Segment 2 is used by Slots 7 to 12

Bus Segment 3 is used by Slots 13 to 18

By default, each Bus Segment is isolated from the other two Bus Segments.

Also, each Bus Segment has its own set of PXI Trigger lines named:PXI TRIG 0,
PXI TRIG 1, PXI TRIG 2, PXI TRIG 3, PXI TRIG 4, PXI TRIG 5, PXI TRIG 6, PXI TRIG
7.

Routing an External Trigger Input and ALC Hold on each M9381A PXIe
VSG

There are three requirements for each M9381A PXIe VSG in the system:

1. There must be a PXI trigger from
M9301A to M9311A for front panel
External Trigger Input (Default: PXI
TRIG 6).

2. There must be a PXI trigger from
M9311A to M9310A for ALC Hold
(Default: PXI TRIG 7).

3. None of these triggers can conflict
with each other. For example, if
there are two or more M9381A
PXIe VSGs (or portions of a
M9381A PXIe VSG) occupying a
single Bus Segment, they cannot
all use the default trigger lines.

To satisfy the requirements for each M9381A PXIe VSG in the system, listed above:

1. Route triggers between bus segments on the M9018A PXIe Chassis

2. Redefine the triggers used by the M9381A PXIe VSGs.

If a hardware configuration withM9381A PXIe VSGmodules spans
across anM9018A PXIe Chassis bus segment (slot 6 or slot 12), it is
necessary to route/configure the backplane triggers on the M9018A

70 M9391A and M9381A Programming Guide

Working with 802.11ac MIMO RnD and DVT Tests

Preparing the Hardware and Software for 802.11ac MIMO RnD DVTTests

M9391A and M9381A Programming Guide 71

PXIe Chassis for External Trigger Input (Default: PXI TRIG 6) and ALC
Hold (Default: PXI TRIG 7) – this routing/configuringmust be
performed prior to verifying that eachM9381A PXIe VSG can connect
and run self-test.

Routing a Synchronization Playback Trigger from the M9300A PXIe
Reference to each M9381A PXIe VSG

Because the M9018A PXIe Chassis has three isolated Bus Segments, a PXI TRIG line
must be selected to deliver a 'Synchronization Playback Trigger' that will be sent to
each M9381A PXIe VSG in the system – in order for each M9381A PXIe VSG to receive
this trigger, the Bus Segments must be connected when coming from the M9300A
PXIe Reference.

Since the M9300A PXIe Reference is located in slot 10, which is in Bus Segment 2,
the Bus Segment 1 and Bus Segment 3 must be connected on the PXI TRIG line that
will be used; in our examples, PXI TRIG 0 has been selected to be this PXI TRIG line.

So, the following command allows the 'Synchronization Playback Trigger' to be sent
from the M9300A PXIe Reference to each M9381A PXIe VSG in the system.
M9018A_CHASSIS1.TriggerBus.Connect(0,
Agilent.AgM9018.Interop.AgM9018TrigBusEnum.AgM9018TrigBus2To1And3);

Routing MASTER_SLAVE Backplane Triggers for each M9391A PXIe VSA

The MASTER/SLAVE Backplane Triggers are used to coordinate the capture
alignments on the M9391A PXIe VSAs. In each system, one of the M9391A PXIe VSAs
must be designated as the MASTER and each of the other M9391A PXIe VSAs in a
system must be designated as a SLAVE to this MASTER.

Because the M9018A PXIe Chassis has three isolated Bus Segments, a PXI TRIG line
must be selected to deliver MASTER/SLAVE Backplane Triggers that will be sent from
the MASTER to the last SLAVE in each system – and each SLAVE must also be able to
send back a signal to the MASTER.

Each of these MASTER/SLAVE Backplane Triggers must be on a separate PXI TRIG
line and must be able to propagate from one Bus Segment to the other.

2x2 MIMO Configuration

In our example, PXI TRIG 1 is used to send the MASTER/SLAVE Backplane Triggers
from the MASTER to the SLAVE and the Bus Segments must be connected coming
from Bus Segment 2 to Bus Segment 3.
In order for the MASTER/SLAVE Backplane Triggers to be sent between the MASTER
and each SLAVE:

Working with 802.11ac MIMO RnD and DVT Tests

Preparing the Hardware and Software for 802.11ac MIMO RnD DVTTests

M9018A_CHASSIS1.TriggerBus.Connect(1,
Agilent.AgM9018.Interop.AgM9018TrigBusEnum.AgM9018TrigBus2To3);
Console.WriteLine("\tVSA1 to VSA2 TRIG 1: Connect Bus 2 to 3: MASTER to
SLAVE");

M9018A_CHASSIS1.TriggerBus.Connect(2,
Agilent.AgM9018.Interop.AgM9018TrigBusEnum.AgM9018TrigBus3To2);
Console.WriteLine"\tVSA2 to VSA1 TRIG 2: Connect Bus 3 to 2: SLAVE to
MASTER");

Examples with a 3x3 and 4x4 MIMO configuration are shown in the following code
examples. The complete example program can be accessed from C:\Program Files
(x86)\Agilent\M9391\Help\Examples\Example__MIMOConsoleApp.cs and
C:\Program Files (x86)\Agilent\M938x\Help\Examples\Example__
MIMOConsoleApp.cs.

The following code examples show the backplane trigger routings for:

2x2 MIMO

3x3 MIMO

4x4 MIMO

2x2 MIMO

//(numChannels == 2)
{
// Two M9381A PXIe VSGs and Two M9391A PXIe VSAs in one M9018A PXIe Chassis
// /--------:-----------------:-----------------:-----------------
// | : : : :
// | :<-Bus Segment 1->:<-Bus Segment 2->:<-Bus Segment 3->:
// | : : : :
// | : 1| 2--3| 4| 5| 6: 7| 8| 9|10|11|12:13|14|15-16|17|18:
// | : %<---VSG1-->% %<-VSA1->%R %<-VSA2->% %<---VSG2-->%
// | : : e : :
// | : : f : :
// | : : : :
// \--/
//
Console.WriteLine("\nRoute Backplane Triggers for VSGs in 2x2 MIMO Chassis
1:");
// Route Backplane External Trigger from M9300A to each M9311A (VSG) for
// Playback synchronization (slot 10 to 2, 15, 7, 11)
M9018A_CHASSIS1.TriggerBus.Connect(0,

72 M9391A and M9381A Programming Guide

Working with 802.11ac MIMO RnD and DVT Tests

Preparing the Hardware and Software for 802.11ac MIMO RnD DVTTests

M9391A and M9381A Programming Guide 73

Agilent.AgM9018.Interop.AgM9018TrigBusEnum.AgM9018TrigBus2To1And3);
Console.WriteLine("\tVSGs TRIG 0: Connect Bus 2 to 1 and 3: \n\tso that the
M9300A PXIe Reference can generate a \n\t\'Synchronization Playback Trigger\'
on PXI TRIG 0 \n\t...this trigger will be received by VSG 1 and VSG 2.\n");

// Use Default Backplane Triggers for VSG1
Console.WriteLine("\tVSG1 TRIG 6: Uses Bus Segment 1: 'EXTERNAL TRIGGER'
M9301A to M9311A"); // (slot 5 to 2)
Console.WriteLine("\tVSG1 TRIG 7: Uses Bus Segment 1: 'ALC HOLD TRIGGER'
M9311A to M9310A"); // (slot 2 to 4)

// Use Default Backplane Triggers for VSG2
Console.WriteLine("\tVSG2 TRIG 6: Uses Bus Segment 3: 'EXTERNAL TRIGGER'
M9301A to M9311A"); // (slot 18 to 15)
Console.WriteLine("\tVSG2 TRIG 7: Uses Bus Segment 3: 'ALC HOLD TRIGGER'
M9311A to M9310A"); // (slot 15 to 17)

Console.WriteLine("\nRoute MASTER/SLAVE Backplane Triggers for VSAs in 2x2
MIMO Chassis 1:");
// MASTER/SLAVE Backplane Triggers are used to coordinate the
// capture alignments on the VSAs
M9018A_CHASSIS1.TriggerBus.Connect(1,
Agilent.AgM9018.Interop.AgM9018TrigBusEnum.AgM9018TrigBus2To3);
Console.WriteLine("\tVSA1 to VSA2 TRIG 1: Connect Bus 2 to 3: MASTER to
SLAVE");

M9018A_CHASSIS1.TriggerBus.Connect(2,
Agilent.AgM9018.Interop.AgM9018TrigBusEnum.AgM9018TrigBus3To2);
Console.WriteLine("\tVSA2 to VSA1 TRIG 2: Connect Bus 3 to 2: SLAVE to
MASTER");
}

3x3 MIMO

// (numChannels == 3)
{
// Three M9381A PXIe VSGs in Chassis 1 (Chassis 2 holds Three M9391A PXIe
VSAs)
// /--------:-----------------:-----------------:-----------------
// | : : : :
// | :<-Bus Segment 1->:<-Bus Segment 2->:<-Bus Segment 3->:
// | : : : :
// | : 1| 2--3| 4| 5| 6--7| 8| 9|10|11-12:13|14|15|16|17|18:
// | : %<---VSG1-->%<---VSG2-->%R %<---VSG3-->%<--Blank-->%
// | : : e : :
// | : : f : :
// \--/
//

Working with 802.11ac MIMO RnD and DVT Tests

Preparing the Hardware and Software for 802.11ac MIMO RnD DVTTests

// M9381A PXIe VSG1 in slots 2-5, VSG2 in 6-9, and VSG3 in 11-14
// M9300A PXIe Reference in slot 10
// To assure the ALC Hold and front panel External Trigger routings within
each VSG
// don't conflict with adjacent VSGs, assign a trigger to use for the user
generated
// backplane trigger, from the M9300A PXIe Reference to all M9311As (VSGs),
// that does not conflict with any other trigger and then route it
appropriately on
// the chassis backplane.
//
// VSG1 and VSG3 use default triggers, PXI TRIG 6 for front panel 'EXTERNAL
TRIGGER'
// and PXI TRIG 7 for 'ALC HOLD'.
// VSG2 uses PXI TRIG 4 for front panel 'EXTERNAL TRIGGER' and PXI TRIG 5 for
// 'ALC HOLD'.
// Use PXI TRIG 0 for the Backplane External Trigger for playback
synchronization.
//
Console.WriteLine("\nRoute Backplane Triggers for VSGs in 3x3 MIMO Chassis
1:");
// Route Backplane External Trigger from M9300A to each M9311A (VSG) for
// Playback synchronization (slot 10 to 2, 6, 11)
M9018A_CHASSIS1.TriggerBus.Connect(0,
Agilent.AgM9018.Interop.AgM9018TrigBusEnum.AgM9018TrigBus2To1And3);
Console.WriteLine("\tVSGs TRIG 0: Connect Bus 2 to 1 and 3: \n\tso that the
M9300A PXIe Reference can generate a \n\t\'Synchronization Playback Trigger\'
on PXI TRIG 0 \n\t...this trigger will be received by VSG 1, VSG 2, and VSG
3.\n");
// Use Default Backplane Triggers for VSG1
Console.WriteLine("\tVSG1 TRIG 6: Uses Bus Segment 1: 'EXTERNAL TRIGGER'
M9301A to M9311A"); // (slot 5 to 2)
Console.WriteLine("\tVSG1 TRIG 7: Uses Bus Segment 1: 'ALC TRIGGER' M9311A to
M9310A"); // (slot 2 to 4)

// Redefine Backplane Triggers for VSG2
M9018A_CHASSIS1.TriggerBus.Connect(4, AgM9018TrigBusEnum.AgM9018TrigBus2To1);
// 'EXTERNAL TRIGGER' from M9301A to M9311A (slot 9 to 6)

M9381A_VSG2.System.PXIResources.AddHint("M9301A", "M9311A", "EXTERNAL
TRIGGER",
Agilent.AgM938x.Interop.AgM938xPXIResourceTypeEnum.AgM938xPXIResourceTypeTTL_
TRIGGER,
Agilent.AgM938x.Interop.AgM938xPXIResourcesEnum.AgM938xPXIResourcesTTL_
TRIGGER_4);
Console.WriteLine("\tVSG2 TRIG 4: Connect Bus 2 to 1: 'EXTERNAL TRIGGER'
M9301A to M9311A");

M9018A_CHASSIS1.TriggerBus.Connect(5, AgM9018TrigBusEnum.AgM9018TrigBus1To2);
// 'ALC HOLD' from M9311A to M9310A (slot 6 to 8)

74 M9391A and M9381A Programming Guide

Working with 802.11ac MIMO RnD and DVT Tests

Preparing the Hardware and Software for 802.11ac MIMO RnD DVTTests

M9391A and M9381A Programming Guide 75

M9381A_VSG2.System.PXIResources.AddHint("M9311A", "M9310A", "ALC HOLD",
Agilent.AgM938x.Interop.AgM938xPXIResourceTypeEnum.AgM938xPXIResourceTypeTTL_
TRIGGER,
Agilent.AgM938x.Interop.AgM938xPXIResourcesEnum.AgM938xPXIResourcesTTL_
TRIGGER_5);
Console.WriteLine("\tVSG2 TRIG 5: Connect Bus 1 to 2: 'ALC HOLD' M9311A to
M9310A");

// Use Default Backplane Triggers for VSG3, but have to connect Bus Segment 2
and 3
M9018A_CHASSIS1.TriggerBus.Connect(6, AgM9018TrigBusEnum.AgM9018TrigBus3To2);
// 'EXTERNAL TRIGGER' from M9301A to M9311A (slot 14 to 11)

Console.WriteLine("\tVSG3 TRIG 6: Connect Bus 3 to 2: 'EXTERNAL TRIGGER'
M9301A to M9311A");
M9018A_CHASSIS1.TriggerBus.Connect(7, AgM9018TrigBusEnum.AgM9018TrigBus2To3);
// 'ALC HOLD' from M9311A to M9310A (slot 11 to 13)
Console.WriteLine("\tVSG3 TRIG 7: Connect Bus 2 to 3: 'ALC HOLD' M9311A to
M9310A");

// Since VSA Chassis 2 is required for a 3x3 MIMO, set up its triggers as
well.
if (M9018A_CHASSIS2 != null && M9018A_CHASSIS2.Initialized)
{
Console.WriteLine("\nRoute MASTER/SLAVE Backplane Triggers for VSAs in 3x3
MIMO Chassis 2:");
// MASTER/SLAVE Backplane Triggers are used to coordinate the capture
alignments on the VSAs
M9018A_CHASSIS2.TriggerBus.Connect(1,
Agilent.AgM9018.Interop.AgM9018TrigBusEnum.AgM9018TrigBus1To2To3);
Console.WriteLine("\tVSA1 to VSA3 TRIG 1: Connect Bus 1 to 2 to 3: MASTER to
SLAVE 2");
M9018A_CHASSIS2.TriggerBus.Connect(2,
Agilent.AgM9018.Interop.AgM9018TrigBusEnum.AgM9018TrigBus2To1);
Console.WriteLine("\tVSA2 to VSA1 TRIG 2: Connect Bus 2 to 1: SLAVE 1 to
MASTER");
M9018A_CHASSIS2.TriggerBus.Connect(3,
Agilent.AgM9018.Interop.AgM9018TrigBusEnum.AgM9018TrigBus3To2To1);
Console.WriteLine("\tVSA3 to VSA1 TRIG 3: Connect Bus 3 to 2 to 1: SLAVE 2 to
MASTER");
}
}

4x4 MIMO

// (numChannels == 4)
{
// Four M9381A PXIe VSGs in Chassis 1 (Chassis 2 holds Four M9391A PXIe

Working with 802.11ac MIMO RnD and DVT Tests

Preparing the Hardware and Software for 802.11ac MIMO RnD DVTTests

VSAs)
// /--------:-----------------:-----------------:-----------------
// | : : : :
// | :<-Bus Segment 1->:<-Bus Segment 2->:<-Bus Segment 3->:
// | : : : :
// | : 1| 2--3| 4| 5| 6--7| 8| 9|10|11-12:13|14|15-16|17|18:
// | : %<---VSG1-->%<---VSG2-->%R %<---VSG3-->%<---VSG4-->%
// | : : e : :
// | Four M9381A PXIe VSGs : f : :
// \--/
//
// M9381A PXIe VSG1 in slots 2-5, VSG2 in 6-9, VSG3 in 11-14, and VSG4 in 15-
18
// M9300A PXIe Reference in slot 10
// To assure the ALC Hold and front panel External Trigger routings within
each
// VSG do not conflict with adjacent VSGs, assign a trigger to use for the
user
// generated backplane trigger, from the M9300A PXIe Reference to all M9311As
// (VSGs), that does not conflict with any other trigger and then route it
// appropriately on the chassis backplane.
//
// VSG1 and VSG3 use default triggers, PXI TRIG 6 for front panel 'EXTERNAL
// TRIGGER' and PXI TRIG 7 for 'ALC HOLD'.
// VSG2 and VSG4 uses PXI TRIG 4 for front panel 'EXTERNAL TRIGGER' and PXI
// TRIG 5 for 'ALC HOLD'.
// Use PXI TRIG 0 for the Backplane External Trigger for playback
synchronization.
//

Console.WriteLine("\nRoute Backplane Triggers for VSGs in 4x4 MIMO Chassis
1:");
// Route Backplane External Trigger from M9300A to each M9311A (VSG) for
Playback
// synchronization (slot 10 to 2, 6, 11, 15)
M9018A_CHASSIS1.TriggerBus.Connect(0,
Agilent.AgM9018.Interop.AgM9018TrigBusEnum.AgM9018TrigBus2To1And3);
Console.WriteLine("\tVSGs TRIG 0: Connect Bus 2 to 1 and 3: \n\tso that the
M9300A PXIe Reference can generate a \n\t\'Synchronization Playback Trigger\'
on PXI TRIG 0 \n\t...this trigger will be received by VSG 1, VSG 2, VSG 3,
and VSG 4.\n");

// Use Default Backplane Triggers for VSG1
Console.WriteLine("\tVSG1 TRIG 6: Uses Bus Segment 1: 'EXTERNAL TRIGGER'
M9301A to M9311A"); // (slot 5 to 2)
Console.WriteLine("\tVSG1 TRIG 7: Uses Bus Segment 1: 'ALC TRIGGER' M9311A to
M9310A"); // (slot 2 to 4)

// Redefine Backplane Triggers for VSG2
M9018A_CHASSIS1.TriggerBus.Connect(4, AgM9018TrigBusEnum.AgM9018TrigBus2To1);

76 M9391A and M9381A Programming Guide

Working with 802.11ac MIMO RnD and DVT Tests

Preparing the Hardware and Software for 802.11ac MIMO RnD DVTTests

M9391A and M9381A Programming Guide 77

// 'EXTERNAL TRIGGER' from M9301A to M9311A (slot 9 to 6)
M9381A_VSG2.System.PXIResources.AddHint("M9301A", "M9311A", "EXTERNAL

TRIGGER",

Agilent.AgM938x.Interop.AgM938xPXIResourceTypeEnum.AgM938xPXIResourceTypeTTL_
TRIGGER,
Agilent.AgM938x.Interop.AgM938xPXIResourcesEnum.AgM938xPXIResourcesTTL_
TRIGGER_4);
Console.WriteLine("\tVSG2 TRIG 4: Connect Bus 2 to 1: 'EXTERNAL TRIGGER'
M9301A to M9311A");

M9018A_CHASSIS1.TriggerBus.Connect(5, AgM9018TrigBusEnum.AgM9018TrigBus1To2);
// 'ALC HOLD' from M9311A to M9310A (slot 6 to 8)
M9381A_VSG2.System.PXIResources.AddHint("M9311A", "M9310A", "ALC HOLD",
Agilent.AgM938x.Interop.AgM938xPXIResourceTypeEnum.AgM938xPXIResourceTypeTTL_
TRIGGER,
Agilent.AgM938x.Interop.AgM938xPXIResourcesEnum.AgM938xPXIResourcesTTL_
TRIGGER_5);
Console.WriteLine("\tVSG2 TRIG 5: Connect Bus 1 to 2: 'ALC HOLD' M9311A to
M9310A");

// Use Default Backplane Triggers for VSG3, but have to connect Bus Segment 2
and 3
M9018A_CHASSIS1.TriggerBus.Connect(6, AgM9018TrigBusEnum.AgM9018TrigBus3To2);
// 'EXTERNAL TRIGGER' from M9301A to M9311A (slot 14 to 11)

M9381A_VSG3.System.PXIResources.AddHint("M9301A", "M9311A", "EXTERNAL
TRIGGER",
Agilent.AgM938x.Interop.AgM938xPXIResourceTypeEnum.AgM938xPXIResourceTypeTTL_
TRIGGER,
Agilent.AgM938x.Interop.AgM938xPXIResourcesEnum.AgM938xPXIResourcesTTL_
TRIGGER_6);
Console.WriteLine("\tVSG3 TRIG 6: Connect Bus 3 to 2: 'EXTERNAL TRIGGER'
M9301A to M9311A");

M9018A_CHASSIS1.TriggerBus.Connect(7, AgM9018TrigBusEnum.AgM9018TrigBus2To3);
// 'ALC HOLD' from M9311A to M9310A (slot 11 to 13)
M9381A_VSG3.System.PXIResources.AddHint("M9311A", "M9310A", "ALC HOLD",
Agilent.AgM938x.Interop.AgM938xPXIResourceTypeEnum.AgM938xPXIResourceTypeTTL_
TRIGGER,
Agilent.AgM938x.Interop.AgM938xPXIResourcesEnum.AgM938xPXIResourcesTTL_
TRIGGER_7);
Console.WriteLine("\tVSG3 TRIG 7: Connect Bus 2 to 3: 'ALC HOLD' M9311A to
M9310A");

// Redefine Backplane Triggers for VSG4
// 'EXTERNAL TRIGGER' from M9301A to M9311A (slot 9 to 6)

M9381A_VSG4.System.PXIResources.AddHint("M9301A", "M9311A", "EXTERNAL

Working with 802.11ac MIMO RnD and DVT Tests

Preparing the Hardware and Software for 802.11ac MIMO RnD DVTTests

TRIGGER",
Agilent.AgM938x.Interop.AgM938xPXIResourceTypeEnum.AgM938xPXIResourceTypeTTL_
TRIGGER,
Agilent.AgM938x.Interop.AgM938xPXIResourcesEnum.AgM938xPXIResourcesTTL_
TRIGGER_4);
Console.WriteLine("\tVSG4 TRIG 4: Uses Bus Segment 3: 'EXTERNAL TRIGGER'
M9301A to M9311A");

// 'ALC HOLD' from M9311A to M9310A (slot 6 to 8)
M9381A_VSG4.System.PXIResources.AddHint("M9311A", "M9310A", "ALC HOLD",
Agilent.AgM938x.Interop.AgM938xPXIResourceTypeEnum.AgM938xPXIResourceTypeTTL_
TRIGGER,
Agilent.AgM938x.Interop.AgM938xPXIResourcesEnum.AgM938xPXIResourcesTTL_
TRIGGER_5);
Console.WriteLine("\tVSG4 TRIG 5: Uses Bus Segment 3: 'ALC HOLD' M9311A to
M9310A");

// Since VSA Chassis 2 is required for a 4x4 MIMO, set up its triggers as
well.
if (M9018A_CHASSIS2 != null && M9018A_CHASSIS2.Initialized)
{
// M9391A PXIe VSAs in slots 2-4, 6-8, 12-14, 16-18
// Route PXI TRIG 1 from the MASTER M9214A to the last SLAVE 3 M9214A.
// Route PXI TRIG 2 from SLAVE 1 to MASTER
// Route PXI TRIG 3 from SLAVE 2 to MASTER
// Route PXI TRIG 4 from SLAVE 3 to MASTER
Console.WriteLine("\nRoute MASTER/SLAVE Backplane Triggers for VSAs in 4x4
MIMO Chassis 2:");
// MASTER/SLAVE Backplane Triggers are used to coordinate the capture
alignments
// on the VSAs
M9018A_CHASSIS2.TriggerBus.Connect(1,
Agilent.AgM9018.Interop.AgM9018TrigBusEnum.AgM9018TrigBus1To2To3);
Console.WriteLine("\tVSA1 to VSA4 TRIG 1: Connect Bus 1 to 2 to 3: MASTER to
SLAVE 3");
M9018A_CHASSIS2.TriggerBus.Connect(2,
Agilent.AgM9018.Interop.AgM9018TrigBusEnum.AgM9018TrigBus2To1);
Console.WriteLine("\tVSA2 to VSA1 TRIG 2: Connect Bus 2 to 1: SLAVE 1 to
MASTER");
M9018A_CHASSIS2.TriggerBus.Connect(3,
Agilent.AgM9018.Interop.AgM9018TrigBusEnum.AgM9018TrigBus3To2To1);
Console.WriteLine("\tVSA3 to VSA1 TRIG 3: Connect Bus 3 to 2 to 1: SLAVE 2 to
MASTER");
M9018A_CHASSIS2.TriggerBus.Connect(4,
Agilent.AgM9018.Interop.AgM9018TrigBusEnum.AgM9018TrigBus3To2To1);
Console.WriteLine("\tVSA4 to VSA1 TRIG 4: Connect Bus 3 to 2 to 1: SLAVE 3 to
MASTER");
}
}

78 M9391A and M9381A Programming Guide

Working with 802.11ac MIMO RnD and DVT Tests

Preparing the Hardware and Software for 802.11ac MIMO RnD DVTTests

M9391A and M9381A Programming Guide 79

Step 7 - Set Up the M9381A PXIe VSGs for WLAN Rx Testing

This section covers all of the settings needed to set up the M9381A PXIe VSGs – code
snippets are shown for a 2x2 MIMO configuration, but the code needed for 2x2, 3x3,
and 4x4 are available in an example file.

The complete example program can be accessed from C:\Program Files (x86)
\Agilent\M9391\Help\Examples\Example__MIMOConsoleApp.cs and C:\Program
Files (x86)\Agilent\M938x\Help\Examples\Example__MIMOConsoleApp.cs.

Disable ALC for WLAN waveforms to achieve best Residual EVM

M9381A_VSG1.ALC.Enabled = false;
... on VSG 1
M9381A_VSG2.ALC.Enabled = false;
... on VSG 2

Enable Pulse Blanking - Achieve Best Off Time Rejection

NOTE The following commands are dependent on whether or not the waveform being
used contains pulse blanking markers. Notice the logic is shown for a waveform that
contains pulse blanking markers.

if (waveform being played contains pulse blanking markers)
{
Enable Pulse Blanking to achieve Best Off Time Rejection:
M9381A_VSG1.RF.OutputPulseMode =
AgM938xOutputPulseModeEnum.AgM938xOutputPulseModePulseOnWithTrigger;
... on VSG 1
M9381A_VSG2.RF.OutputPulseMode =
AgM938xOutputPulseModeEnum.AgM938xOutputPulseModePulseOnWithTrigger;
... on VSG 2
}
else // Waveform being played DOES NOT CONTAIN pulse blanking
// markers, and must do one of the following:
{

(Disable Pulse Blanking) || (Define Pulse Blanking Markers
Using Commands from the M938x API)
}

Set PLL MODE to Best Wide Offset

Set PLL MODE to Best Wide Offset:
M9381A_VSG1.Modules.Synthesizer.PLLMode =

Working with 802.11ac MIMO RnD and DVT Tests

Preparing the Hardware and Software for 802.11ac MIMO RnD DVTTests

AgM938xSynthesizerPLLModeEnum.AgM938xSynthesizerPLLModeBestWideOffset;
... on VSG 1
M9381A_VSG2.Modules.Synthesizer.PLLMode =
AgM938xSynthesizerPLLModeEnum.AgM938xSynthesizerPLLModeBestWideOffset;
... on VSG 2"

Set RF Frequency

double Frequency = 5.2e9; // Use 5.2 GHz for testing 802.11ac WLAN
Set RF Frequency:
M9381A_VSG1.RF.Frequency = Frequency;
... on VSG 1
M9381A_VSG2.RF.Frequency = Frequency;
... on VSG 2

Set Amplitude (Power_Level)

double Level = -2;
Set the amplitude (power/level) of the RF output signal in dBm:
M9381A_VSG1.RF.Level = Level;
... on VSG 1
M9381A_VSG2.RF.Level = Level;
... on VSG 2

Enable Modulation

Enable Modulation:
M9381A_VSG1.Modulation.Enabled = true;
... on VSG 1
M9381A_VSG2.Modulation.Enabled = true;
... on VSG 2

Enable RF Output

Enable RF Output:
M9381A_VSG1.RF.OutputEnabled = true;
... on VSG 1
M9381A_VSG2.RF.OutputEnabled = true;
... on VSG 2

80 M9391A and M9381A Programming Guide

Working with 802.11ac MIMO RnD and DVT Tests

Preparing the Hardware and Software for 802.11ac MIMO RnD DVTTests

M9391A and M9381A Programming Guide 81

Step 8 - Start Continuous Waveform Playback without Power
Search or IQ DC Calibration

A waveform file can be played on the M9381A PXIe VSGs in Continuous Mode or
Sequence Mode.It can also be played with or without performing a Power Search or
an IQ DC Calibration.Running a Power Search can improve amplitude accuracy and
running an IQ DC Calibration can improve carrier feed-through.

To learn more, refer to the next topic titled (Optional) Step 8 – Start Continuous or
Sequence Waveform Playback with Power Search and IQ DC Cal

Overview of the Process to Start Continuous Waveform Playback without
Power Search or IQ DC Cal

Perform the following steps:

1. Specify a waveform file to upload and play.

2. Upload the SpecifiedWaveform File.

3. Set up M9300A PXIe Reference to generate a user-defined Trigger on PXI TRIG
0.

4. Configure all M9381A PXIe VSGs to listen for an External Trigger on PXI TRIG 0.

5. Arm all M9381A PXIe VSGs and prepare for playing the SpecifiedWaveform
File when an External Trigger is received on PXI TRIG 0.

6. Generate a Sync Pulse from the M9300A PXIe Reference on PXI TRIG 0 to start
waveform playback on all of the M9381A PXIe VSGs.

1. Specify a Waveform File to Upload and Play

If a Signal Studio waveform file is used, it may require a software
license.

string ExamplesFolder = "C:Program Files (x86)AgilentM938xExample Waveforms";
string WaveformFile = "WLAN_11ac_256QAM_80MHz.wfm";
string ArbFileName = ExamplesFolder + WaveformFile;
string mWaveformHandle = "Mod Waveform";

2. Upload the Specified Waveform File

M9381A_VSG1.Modulation.IQ.UploadArbAgilentFile(mWaveformHandle, ArbFileName);
// ... VSG 1
M9381A_VSG2.Modulation.IQ.UploadArbAgilentFile(mWaveformHandle, ArbFileName);
// ... VSG 2

Working with 802.11ac MIMO RnD and DVT Tests

Preparing the Hardware and Software for 802.11ac MIMO RnD DVTTests

3. Set Up M9300A PXIe Reference to Generate a User-Defined Trigger
on PXI TRIG 0

This user-defined trigger (Playback Synchronization Trigger) on PXI TRIG 0 is used to
initiate waveform playback. The M9300A PXIe Reference has
ProgrammableOutputTrigger2.Destination, which specifies the destination of the
programmable output trigger. This had a default value
AgM9300TriggerFrontPanelTrigger2 (which was Trig 2 on the M9300A front panel), but
its default value is being reassigned in this code so that the M9300A PXIe Reference
backplane trigger is on PXI TRIG 0.This ProgrammableOutputTrigger2.Destination
then comes from AgM9300TriggerEnum.AgM9300TriggerPXITrigger0. Later, when trying
to play a waveform, the trigger is generated inside the M9300A and comes out on PXI
TRIG 0; this triggers the VSGs to start playing the specified waveform.

// Define that the 'Playback Synchronization Trigger', from the M9300A PXIe
// Reference, is to come out on PXI TRIG 0 - this backplane trigger
// line will then be used to
// start waveform playback on all M9381A PXIe VSGs.
M9300A_REF1.ReferenceBase2.ProgrammableOutputTrigger2.Destination =
AgM9300TriggerEnum.AgM9300TriggerPXITrigger0;
M9300A_REF1.Apply();

Every time waveform playback is started, the trigger destination on
the M9300A PXIe Reference must be configured. This is to avoid a
potential conflict with other processes, such as the 89600 VSA
Software or other software, whichmay be sharing the M9300A PXIe
Reference and could reset this setting.

4. Configure all M9381A PXIe VSGs to Listen for an External Trigger on
PXI TRIG 0

This External Trigger will be generated by the M9300A PXIe Reference and output on
the chassis backplane PXI TRIG 0 line and is used to start Waveform Playback on
each M9381A PXIe VSG.

// Configure the 'External Trigger' on the backplane PXI TRIG 0 line to
deliver a
// 'Synchronization Playback Trigger' from the M9300A PXIe Reference:
M9381A_VSG1.Triggers.ExternalTrigger.Configure(true, 0.01, 0.5,
AgM938xTriggerSlopeEnum.AgM938xTriggerSlopePositive,
AgM938xTriggerEnum.AgM938xTriggerPXITrigger0,
AgM938xTriggerTerminationEnum.AgM938xTriggerTermination50Ohm, 10000,
AgM938xTimeoutModeEnum.AgM938xTimeoutModeTimeoutAbort); // ...to VSG 1
M9381A_VSG2.Triggers.ExternalTrigger.Configure(true, 0.01, 0.5,
AgM938xTriggerSlopeEnum.AgM938xTriggerSlopePositive,

82 M9391A and M9381A Programming Guide

Working with 802.11ac MIMO RnD and DVT Tests

Preparing the Hardware and Software for 802.11ac MIMO RnD DVTTests

M9391A and M9381A Programming Guide 83

AgM938xTriggerEnum.AgM938xTriggerPXITrigger0,
AgM938xTriggerTerminationEnum.AgM938xTriggerTermination50Ohm, 10000,
AgM938xTimeoutModeEnum.AgM938xTimeoutModeTimeoutAbort); // ...to VSG 2

5. Arm All M9381A PXIe VSGs and Prepare for Playing the Specified
Waveform file when an External Trigger is Received on PXI TRIG 0

// Play the uploaded waveform file:
M9381A_VSG1.Modulation.PlayArb(mWaveformHandle,
AgM938xStartEventEnum.AgM938xStartEventExternalTrigger);
// ...using VSG 1
M9381A_VSG2.Modulation.PlayArb(mWaveformHandle,
AgM938xStartEventEnum.AgM938xStartEventExternalTrigger);
// ...using VSG 2

6. Generate a Sync Pulse from the M9300A PXIe Reference on PXI TRIG 0
to Start Waveform Playback on all of the M9381A PXIe VSGs

This sync pulse is a user-defined trigger (Playback Synchronization Trigger) on PXI
TRIG 0 that is used to initiate waveform playback.

M9300A_REF1.ReferenceBase2.ProgrammableOutputTrigger2.GenerateTrigger();

Once a Sync Pluse has been triggered from the M9300A PXIe Reference and a
waveform is playing, use 89600 VSA Software to control all M9391A PXIe VSAs and
perform Transmitter Tests.

(Optional) Step 8 - Start Continuous or Sequence waveform
Playback with Power Search and IQ DC Cal

A waveform file can be played on the M9381A PXIe VSGs in Continuous Mode or
Sequence Mode. Improvements of repeatability and accuracy to the output power
can be achieved by including an optional Power Search and an optional IQ DC
Calibration (that improves carrier feedthrough).

Continuous Waveform Playback – the same waveform is played repeatedly
until stopped.

Sequence Waveform Playback – the same waveform repeated for a specified
number of times and then the Zeros Waveform File is played until the sequence
is stopped.

Power Search – is a calibration routine which is used to set an accurate RF level
with the ALC off. During a power search cycle, modulation is temporarily
switched off, the ALC system is temporarily switched on (just long enough to
determine and store the ALC modulator value). This value gives the correct RF
level (gain), then the modulation is switched back on. The gain of the RF system

Working with 802.11ac MIMO RnD and DVT Tests

Preparing the Hardware and Software for 802.11ac MIMO RnD DVTTests

is held constant so that the RF level is accurate even though there is no closed-
loop feedback from the ALC. Power Search is useful for running a quick
calibration that can help determine a power offset – this power offset can refine
the output power level to more closely match the desired output power. Power
Search could be thought of as an "open loop" power correction, compared to
the use of the ALC which would be a "closed-loop" power correction.

Overview of Starting Continuous Waveform Playback with Power Search
and IQ DC Cal

1. Specify a Waveform File to upload and play.

2. Upload the SpecifiedWaveform File.

3. Create a Zeros Waveform File with the same Sample Rate and RMS Value as
the SpecifiedWaveform File. When creating the Zeros Waveform File, recover
the Sample Rate and RMS Value from the SpecifiedWaveform File that is
loaded (with the reference name that is stored in the string variable
mWaveformHandle).

4. Perform Power Search to obtain power offsets to the SpecifiedWaveform File,
then play the SpecifiedWaveform Filewith offsets in Continuous or Sequence
Mode.

a. Play the Zeros Waveform File in Immediate Trigger mode.

b. Turn on RF Blanking - to prevent unwanted signals from coming out
during Power Search.

c. Perform Power Search; obtain offsets to the SpecifiedWaveform File.

d. (Optional) Cache the Power Search offset data.

e. (Optional) Perform IQ DC Calibration to improve carrier feedthrough.

f. Stop the Zeros Waveform File playback.

5. Apply the Power Search offsets to the SpecifiedWaveform File.

6. Continuously play the SpecifiedWaveform File with Power Search Offsets
applied.

7. Set up an M9300A PXIe Reference to generate a user-defined trigger on PXI
TRIG 0.

8. Configure all M9381A PXIe VSGs to listen for an External Trigger on PXI TRIG 0.

9. Arm all M9381A PXIe VSGs and Prepare for continuously playing the Specified
Waveform File in External Trigger mode, that have had the Power Search
offsets applied when an External Trigger is Received on PXI TRIG 0.

10. Generate a Sync Pulse from the M9300A PXIe Reference on PXI TRIG 0 to start
waveform playback on all of the M9381A PXIe VSGs.

1 Specify a Waveform File to Upload and Play

If a Signal Studio waveform file is used, it may require a software
license.

84 M9391A and M9381A Programming Guide

Working with 802.11ac MIMO RnD and DVT Tests

Preparing the Hardware and Software for 802.11ac MIMO RnD DVTTests

M9391A and M9381A Programming Guide 85

string ExamplesFolder = "C:Program Files (x86)AgilentM938xExample Waveforms";
string WaveformFile = "WLAN_11ac_256QAM_80MHz.wfm";
string ArbFileName = ExamplesFolder + WaveformFile;
string mWaveformHandle = "Mod Waveform";

2 Upload the Specified Waveform File

M9381A_VSG1.Modulation.IQ.UploadArbAgilentFile(mWaveformHandle, ArbFileName);
// ... VSG 1
M9381A_VSG2.Modulation.IQ.UploadArbAgilentFile(mWaveformHandle, ArbFileName);
// ... VSG 2

3. Create a Zeros Waveform File with Same Sample Rate and RMS Value as
the Specified Waveform File

This Zeros Waveform File is for use with Power Search and for ending a Sequence
Waveform Playback.

When creating the Zeros Waveform File, recover the Sample Rate and RMS Value
from the SpecifiedWaveform File that is loaded (with the reference name that is
stored in the string variable mWaveformHandle); in order to reuse the Power Search
result, the SpecifiedWaveform File and the Power Search result must have the same
RMS Value.

The ArbInformationmethod is used to get the Sample Rate, RMS Value, and other
parameters from the desired waveform:

// Create a zeros waveform file with zeros to end a sequence waveform
playback
// Create file w/ zeros at same Sample Rate and RMS Values as Specified
Waveform File
double[] ArbData = { 0, 0, 0, 0, 0, 0, 0, 0, 0 };
double sampleRateVSG1 = 0;
double sampleRateVSG2 = 0;
double rmsValueVSG1 = 0;
double rmsValueVSG2 = 0;
double scaleFactor = 0;
AgM938xMarkerEnum alcMarker = AgM938xMarkerEnum.AgM938xMarkerNone;
AgM938xMarkerEnum blankingMarker = AgM938xMarkerEnum.AgM938xMarkerNone;

// Remove the sequence if it already exists
M9381A_VSG1.Modulation.Sequence.Remove("Seq");
M9381A_VSG2.Modulation.Sequence.Remove("Seq");

Working with 802.11ac MIMO RnD and DVT Tests

Preparing the Hardware and Software for 802.11ac MIMO RnD DVTTests

// Remove the zeros waveform if it already exists
M9381A_VSG1.Modulation.IQ.RemoveArb("zeros");
M9381A_VSG2.Modulation.IQ.RemoveArb("zeros");

// Recover the Sample Rate and RMS Value from the waveform

4. Perform Power Search to Obtain Offsets to the Specified Waveform File

Performing a Power Search improves amplitude accuracy. The SpecifiedWaveform
File can then be played with offsets applied in continuous or sequence mode.
Play the Zeros Waveform File in Immediate Trigger Mode

M9381A_VSG1.Modulation.PlayArb("zeros",
AgM938xStartEventEnum.AgM938xStartEventImmediate);
M9381A_VSG2.Modulation.PlayArb("zeros",
AgM938xStartEventEnum.AgM938xStartEventImmediate);

// Allow some time for all waveforms to start playing
System.Threading.Thread.Sleep(100);

Turn on RF Blanking to prevent unwanted signals from coming out during Power
Search.

M9381A_VSG1.Calibration.PowerSearch.BlankRFDuringSearch = true;
M9381A_VSG2.Calibration.PowerSearch.BlankRFDuringSearch = true;

Perform Power Search and Obtain Offsets to the Specified Waveform File

double powOffsetVSG1;
double scaleOffsetVSG1;
double powOffsetVSG2;
double scaleOffsetVSG2;
M9381A_VSG1.Calibration.PowerSearch.DoPowerSearch(ref powOffsetVSG1,
ref scaleOffsetVSG1);
M9381A_VSG2.Calibration.PowerSearch.DoPowerSearch(ref powOffsetVSG2,
ref scaleOffsetVSG2);

(Optional) Cache the Power Search Data

// Store these values for future use - they are not used in this routine.
double cachepowOffsetVSG1 = powOffsetVSG1;
double cachescaleOffsetVSG1 = scaleOffsetVSG1;
double cachepowOffsetVSG2 = powOffsetVSG2;
double cachescaleOffsetVSG2 = scaleOffsetVSG2;

(Optional) Perform IQ DC Calibration - Improves Carrier Feedthrough

M9381A_VSG1.Calibration.IQAlignment.AlignIQAtDC();

86 M9391A and M9381A Programming Guide

Working with 802.11ac MIMO RnD and DVT Tests

Preparing the Hardware and Software for 802.11ac MIMO RnD DVTTests

M9391A and M9381A Programming Guide 87

M9381A_VSG2.Calibration.IQAlignment.AlignIQAtDC();

Stop the Zeros Waveform File playback

M9381A_VSG1.Modulation.Stop();
M9381A_VSG2.Modulation.Stop();

// Allow some time for all waveforms to stop playing
System.Threading.Thread.Sleep(100);

5. Apply the Power Search Offsets to the Specified Waveform File

// Must apply the result we measured in power search previously when we
replay
M9381A_VSG1.Calibration.PowerSearch.UsePowerSearchResult(powOffsetVSG1,
scaleOffsetVSG1);
M9381A_VSG2.Calibration.PowerSearch.UsePowerSearchResult(powOffsetVSG2,
scaleOffsetVSG2);

6. Continuously Play the Specified Waveform File with Power Search Offsets
Applied

Set Up M9300A PXIe Reference to Generate a User-Defined Trigger on PXI TRIG 0

// Define that the 'Playback Synchronization Trigger', from the
// M9300A PXIe Reference, is to come out on PXI TRIG 0 - this backplane
trigger
// line will then be used to start waveform playback on all M9381A PXIe VSGs.
M9300A_REF1.ReferenceBase2.ProgrammableOutputTrigger2.Destination =
AgM9300TriggerEnum.AgM9300TriggerPXITrigger0; M9300A_REF1.Apply();

Every time waveform playback is started, the trigger destination on
the M9300A PXIe Reference must be configured. This is to avoid a
potential conflict with other processes, such as the 89600 VSA
Software or other software, whichmay be sharing the M9300A PXIe
Reference and could reset this setting.

Configure all M9381A PXIe VSGs to Listen for an External Trigger on PXI TRIG 0

This External Trigger will be generated by the M9300A PXIe Reference and output on
the chassis backplane PXI TRIG 0 line and is used to start Waveform Playback on
each M9381A PXIe VSG.

Working with 802.11ac MIMO RnD and DVT Tests

Preparing the Hardware and Software for 802.11ac MIMO RnD DVTTests

// Configure the 'External Trigger' on the backplane PXI TRIG 0 line to
deliver // a 'Synchronization Playback Trigger' from the M9300A PXIe
Reference:
M9381A_VSG1.Triggers.ExternalTrigger.Configure(true, 0.01, 0.5,
AgM938xTriggerSlopeEnum.AgM938xTriggerSlopePositive,
AgM938xTriggerEnum.AgM938xTriggerPXITrigger0,
AgM938xTriggerTerminationEnum.AgM938xTriggerTermination50Ohm, 10000,
AgM938xTimeoutModeEnum.AgM938xTimeoutModeTimeoutAbort);
// ...to VSG 1
M9381A_VSG2.Triggers.ExternalTrigger.Configure(true, 0.01, 0.5,
AgM938xTriggerSlopeEnum.AgM938xTriggerSlopePositive,
AgM938xTriggerEnum.AgM938xTriggerPXITrigger0,
AgM938xTriggerTerminationEnum.AgM938xTriggerTermination50Ohm, 10000,
AgM938xTimeoutModeEnum.AgM938xTimeoutModeTimeoutAbort);
// ...to VSG 2

Arm All M9381A PXIe VSGs and Prepare for Continuosly Playing the Specified
Waveform File when an External Trigger is Received on PXI TRIG 0

M9381A_VSG1.Modulation.PlayArb(mWaveformHandle,
AgM938xStartEventEnum.AgM938xStartEventExternalTrigger);
// ...using VSG 1
M9381A_VSG2.Modulation.PlayArb(mWaveformHandle,
AgM938xStartEventEnum.AgM938xStartEventExternalTrigger);
// ...using VSG 2

Generate a Sync Pulse from the M9300A PXIe Reference on PXI TRIG 0 to Start
Waveform Playback on all of the M9381A PXIe VSGs

// Generate a Sync Pulse on the M9300A PXIe Reference, on PXI TRIG 0,
// and use it to initiate waveform playback.
M9300A_REF1.ReferenceBase2.ProgrammableOutputTrigger2.GenerateTrigger();

Once a Sync Pulse has been triggered from the M9300A PXIe Reference and a
waveform is playing, use 89600 VSA Software to control all M9391A PXIe VSAs and
perform Transmitter Tests.

Overview of Starting Sequence Waveform Playback with Power Search
and IQ DC Cal

1. Specify a Waveform File to upload and play.

2. Upload the SpecifiedWaveform File.

3. Create a Zeros Waveform File with the same Sample Rate and RMS Value as
the SpecifiedWaveform File. When creating the Zeros Waveform File, recover
the Sample Rate and RMS Value from the SpecifiedWaveform File that is
loaded (with the reference name that is stored in the string variable
mWaveformHandle).

88 M9391A and M9381A Programming Guide

Working with 802.11ac MIMO RnD and DVT Tests

Preparing the Hardware and Software for 802.11ac MIMO RnD DVTTests

M9391A and M9381A Programming Guide 89

4. Perform Power Search to obtain power offsets to the SpecifiedWaveform File,
then play the SpecifiedWaveform File with offsets in Sequence Mode.

a. Play the Zeros Waveform File in Immediate Trigger mode.

b. Turn on RF Blanking to prevent unwanted signals from coming out during
Power Search.

c. Perform Power Search; obtain offsets to the SpecifiedWaveform File.

d. (Optional) Cache the Power Search offset data.

e. (Optional) Perform IQ DC Calibration to improve carrier feedthrough.

f. Stop the Zeros Waveform File playback.

5. Apply the Power Search offsets to the SpecifiedWaveform File.

TheZeros Waveform Filecreation was described in the above
section.

6. Create a Sequence that is made up of two steps. The first step in the sequence
is the SpecifiedWaveform File (that is played a specified number of times); the
second step in the sequence is the Zeros Waveform File (that essentially turns
off the RF output). This Zeros Waveform File is played until a Sequence.End
command is issued.
Sequence = Specified Waveform File repeated X times + Zeros Waveform File
repeated until end

Create a Sequence.

Set the RMS power in the Sequence definition.

Add the SpecifiedWaveform File as Step 1 in the Sequence.

Set the number of times to repeat the SpecifiedWaveform File in the
Sequence.

Add the Zeros Waveform File as Step 2 in the Sequence.

Set the number of times to repeat the Zeros Waveform File in the
Sequence to continue forever until a "Stop" command is issued.

a. Set up an M9300A PXIe Reference to Generate a User-Defined Trigger
on PXI TRIG 0.

b. Configure all M9381A PXIe VSGs to Listen for an External Trigger on PXI
TRIG 0.

c. Arm all M9381A PXIe VSGs and Prepare for Playing a Sequence in
External Trigger mode that have had the Power Search offsets applied
when an External Trigger is Received on PXI TRIG 0.

d. Generate a Sync Pulse from the M9300A PXIe Reference on PXI TRIG 0
to start waveform playback on all of the M9381A PXIe VSGs.

6. Create a Sequence that is Made Up of Two Steps

The RMS value must be set during theSequencedefinition or the power level
will be in error.

Working with 802.11ac MIMO RnD and DVT Tests

Preparing the Hardware and Software for 802.11ac MIMO RnD DVTTests

// Create the sequence
M9381A_VSG1.Modulation.Sequence.Create("Seq");
M9381A_VSG2.Modulation.Sequence.Create("Seq");

// RMS power must be set in the sequence definition.
M9381A_VSG1.Modulation.RmsPower = rmsValueVSG1;
M9381A_VSG2.Modulation.RmsPower = rmsValueVSG2;

M9381A_VSG1.Modulation.Sequence.AddStep("Step1");
M9381A_VSG2.Modulation.Sequence.AddStep("Step1");

// Add a segment with the waveform we want to play
M9381A_VSG1.Modulation.Sequence.AddSegment(mWaveformHandle);
M9381A_VSG2.Modulation.Sequence.AddSegment(mWaveformHandle);

// Specify how many times to play this waveform
M9381A_VSG1.Modulation.Sequence.StepRepetitions = (int)
repetitionsControl.Value;
M9381A_VSG2.Modulation.Sequence.StepRepetitions = (int)
repetitionsControl.Value;

M9381A_VSG1.Modulation.Sequence.AddStep("Step2");
M9381A_VSG2.Modulation.Sequence.AddStep("Step2");

// After the Specified Waveform File, play a waveform that is all 0's
// to turn off RF output
M9381A_VSG1.Modulation.Sequence.AddSegment("zeros");
M9381A_VSG2.Modulation.Sequence.AddSegment("zeros");

M9381A_VSG1.Modulation.Sequence.StepRepetitions = 1;
M9381A_VSG2.Modulation.Sequence.StepRepetitions = 1;

// Play Step 2, with the zeros, forever, until the "Stop" command is issued
M9381A_VSG1.Modulation.Sequence.NextStep("Step2");
M9381A_VSG2.Modulation.Sequence.NextStep("Step2");

M9381A_VSG1.Modulation.Sequence.End();
M9381A_VSG2.Modulation.Sequence.End();

// Scale factor must be set in order to avoid modulation quality issues.
// Scale factor is not automatically set from the waveform settings
// for a sequence.
M9381A_VSG1.Modulation.Scale = scaleFactor;
M9381A_VSG2.Modulation.Scale = scaleFactor;

Set Up M9300A PXIe Reference to Generate a User-Defined Trigger on PXI TRIG 00

// Define that the 'Playback Synchronization Trigger', from the
// M9300A PXIe Reference, is to come out on PXI TRIG 0 - this backplane
trigger
// line will then be used to start waveform playback on all M9381A PXIe VSGs.

90 M9391A and M9381A Programming Guide

Working with 802.11ac MIMO RnD and DVT Tests

Preparing the Hardware and Software for 802.11ac MIMO RnD DVTTests

M9391A and M9381A Programming Guide 91

M9300A_REF1.ReferenceBase2.ProgrammableOutputTrigger2.Destination =
AgM9300TriggerEnum.AgM9300TriggerPXITrigger0;
M9300A_REF1.Apply();

Every time waveform playback is started, the trigger destination on
the M9300A PXIe Reference must be configured. This is to avoid a
potential conflict with other processes, such as the 89600 VSA
Software or other software, whichmay be sharing the M9300A PXIe
Reference and could reset this setting.

Configure all M9381A PXIe VSGs to Listen for an External Trigger on PXI TRIG 00

This External Trigger will be generated by the M9300A PXIe Reference and output on
the chassis backplane PXI TRIG 0 line and is used to start Sequence Playback on each
M9381A PXIe VSG.

// Configure the 'External Trigger' on the backplane PXI TRIG 0 line to
deliver
// a 'Synchronization Playback Trigger' from the M9300A PXIe Reference:
M9381A_VSG1.Triggers.ExternalTrigger.Configure(true, 0.01, 0.5,
AgM938xTriggerSlopeEnum.AgM938xTriggerSlopePositive,
AgM938xTriggerEnum.AgM938xTriggerPXITrigger0,
AgM938xTriggerTerminationEnum.AgM938xTriggerTermination50Ohm, 10000,
AgM938xTimeoutModeEnum.AgM938xTimeoutModeTimeoutAbort); // ...to VSG 1

M9381A_VSG2.Triggers.ExternalTrigger.Configure(true, 0.01, 0.5,
AgM938xTriggerSlopeEnum.AgM938xTriggerSlopePositive,
AgM938xTriggerEnum.AgM938xTriggerPXITrigger0,
AgM938xTriggerTerminationEnum.AgM938xTriggerTermination50Ohm, 10000,
AgM938xTimeoutModeEnum.AgM938xTimeoutModeTimeoutAbort); // ...to VSG 2

Arm All M9381A PXIe VSGs and Prepare for Playing the Sequence when an External
Trigger is Received on PXI TRIG 0

M9381A_VSG1.Modulation.Sequence.Play("Seq",
AgM938xStartEventEnum.AgM938xStartEventExternalTrigger); // ...using VSG 1
M9381A_VSG2.Modulation.Sequence.Play("Seq",
AgM938xStartEventEnum.AgM938xStartEventExternalTrigger); // ...using VSG 2
System.Threading.Thread.Sleep(100);

Generate a Sync Pulse from the M9300A PXIe Reference on PXI TRIG 0 to Start
Sequence Playback on all of the M9381A PXIe VSGs

// Generate a Sync Pulse on the M9300A PXIe Reference, on PXI TRIG 0,
// and use it to initiate sequence playback.
M9300A_REF1.ReferenceBase2.ProgrammableOutputTrigger2.GenerateTrigger();

Once a Sync Pluse has been triggered from the M9300A PXIe Reference and a
sequence is playing, use 89600 VSA Software to control all M9391A PXIe VSAs and
perform Transmitter Tests.

Working with 802.11ac MIMO RnD and DVT Tests

Preparing the Hardware and Software for 802.11ac MIMO RnD DVTTests

Step 9 - Create an N-Channel Analyzer Hardware Configuration
with 89600 VSA Software

Create a 2-Channel Analyzer of M9391A PXIe VSAs

Channel 1 Configuration

1. Select Start > All
Programs >
Agilent/Keysight >
Agilent/Keysight 89600
VSA 16.2 or newer.

2. Select Utilities >
Hardware >
Configurations. Select
(green plus icon) Add new
configuration.

3. Add the Agilent/Keysight
M9391 Analyzer two
times with the > arrow
button – this will create a
two channel analyzer.

4. Select the first
"Agilent/Keysight M9391
Analyzer" under the
Configuration group.

5. Select the Synthesizer,
Reference,
Downconverter, and
ADC/Digitizer that form
the Channel 1
configuration; include the
M9300A Reference
module in Channel 1, but
not in Channel 2.

If you are using the
"Recommended"
configuration for a 2x2
MIMO Configuration in
One M9018A PXIe
Chassis, the Synthesizer,

92 M9391A and M9381A Programming Guide

Working with 802.11ac MIMO RnD and DVT Tests

Preparing the Hardware and Software for 802.11ac MIMO RnD DVTTests

M9391A and M9381A Programming Guide 93

Reference,
Downconverter, and
ADC/Digitizer will look as
shown in the above
screen capture.

Note the order in which
the Agilent/Keysight
M9391 Analyzers
(channels) are added to
the hardware
configuration. In this
example, it is the first (top)
configuration. This
information will be needed
later to determine which
channel is used to receive
an external, software or
magnitude trigger, and it
is also needed for trigger
allocation on the PXI
backplane.

Channel 2 Configuration

1. Select the second
"Agilent/Keysight M9391
Analyzer" under the
Configuration group.

2. Select the Synthesizer,
Reference,
Downconverter, and
ADC/Digitizer that form
the Channel 2
configuration – do not
include the M9300A
Reference in this Channel
2 configuration.

3. Connect to the new
hardware configuration.

4. Exit the 89600 VSA
Software to ensure all
settings are saved.

Working with 802.11ac MIMO RnD and DVT Tests

Preparing the Hardware and Software for 802.11ac MIMO RnD DVTTests

After completing the previous
steps, the system should be
properly configured and is ready
to make measurements.

Step 10 - Start 89600 VSA Software to Analyze M9381A PXIe VSGs
Waveform Output

1. Click Start > All Programs > Agilent/Keysight 89600 Software 16.2 or newer >
Agilent/Keysight 89600 VSA 16.2 (64-bit).

2. Click File > Recall / Recall Setup and select 80211ac_MCS8_1SS_
80MHzBW.setx. A display similar to the following should appear.

Step 11 - Optimize 89600 VSA Settings for WLAN Demodulation

The Input / Extensions menu on the 89600 VSA contains several settings that are
needed for optimizing WLAN EVM performance.

94 M9391A and M9381A Programming Guide

Working with 802.11ac MIMO RnD and DVT Tests

Preparing the Hardware and Software for 802.11ac MIMO RnD DVTTests

M9391A and M9381A Programming Guide 95

Phase Noise Optimization should always be set to BestWideOffset for WLAN
demodulation.

Peak to Average (dB) should be set as close as possible to the actual PAR of
the signal, to optimize mixer drive level and IF attenuation. This should be used
in conjunction with the Range setting in Analog settings.

Additionally, the Mixer Level Offset (dB) can be used to provide additional
adjustment to mixer drive level.

Conversion mode should always be set to Auto or SingleHighSide or
SingleLowSide for best WLAN EVM performance.

The peak to average settingmust be set for EACH channel, while the
PLLmode is "shared" andwill automatically be set on all channels
when you change it for one.

Working with 802.11ac MIMO RnD and DVT Tests

Preparing the Hardware and Software for 802.11ac MIMO RnD DVTTests

Once all measurements have been made with the 89600 VSA software, you can
close all driver instances by pressing the Enter key on the Console Application.

96 M9391A and M9381A Programming Guide

Using Shared LO for Phase-Coherent Signal Generation and SignalAcquisition

Using a Shared LO

M9391A and M9381A Programming Guide 97

Using Shared LO for Phase-Coherent Signal Generation
and Signal Acquisition

This section of the Programming Guide focuses on creating programs for multichannel
(MIMO) operations for M9381A PXIe VSGs and M9391A PXIe VSAs when using a
shared local oscillator (LO) for each set of transmitters (M9381A) and receivers
(M9391A).

Using a Shared LO

Sharing the LO (M9301A Synthesizer) between sets of M9381A or M9391A
instruments enables you to build multi-channel phase-coherent measurement
systems.

Multi-channel signal generation and signal acquisition has conventionally been
performed using independent LOs for each set of M9381A and M9391A instruments.
Such setups yield less than 1 degree phase jitter. This, however, does not serve the
purpose of several applications in the wireless communication domain that require
phase stability and coherence, for example, phased array and beam steering
applications. Since using separate LOs in a multi-channel environment can
substantially contribute to phase incoherence, more robust techniques must be
adopted for these applications. Sharing the M9301A Synthesizer between sets of
M9381A or M9391A instruments minimizes phase drifts and ensures constant phase
relationships between the channels. Phase noise affects all the channels of such a
test system in a consistent manner, thus, its effect is considerably minimized.

Implementation of Shared LO

You can use the four output ports of an M9301A Synthesizer to provide an LO signal
for up to four M9381 VSGs or M9391 VSAs in a single chassis. For more than four
instruments, you can use a single output port routed through a V2802A LO distribution
unit to split the signal. For more information, refer to Sharing the M9301A
Synthesizer's LO topic in the Keysight M9391A andM9381A Startup Guide.

Sharing the M9300A Frequency Reference between the drivers is different from
sharing the M9301A Synthesizer Module. When the M9300A Frequency Reference is
shared by multiple instances of M9381A or M9391A drivers, the latest instance of the
driver, by default, takes full control of the M9300A Frequency Reference. In case of
shared M9301A Synthesizer Module, a single instance of the M9381A or M9391A
driver is designated as Master while the other drivers are specified as Slaves. Only the
Master driver can tune the shared LO; the slaves have read-only access to the
hardware registers to query the state of the hardware. Instruments designated as

Using Shared LO for Phase-Coherent Signal Generation and SignalAcquisition

Prerequisites for Using a Shared LO

using a shared synthesizer in a slave role periodically read back the current state of
the synthesizer module:

Whenever any changes are applied to the hardware via a call to Apply()

Once every second via a polling mechanism

The designation of Master and Slave drivers should occur at the time of initialization
and cannot be changed during program execution. For more information, you may
refer to the Initialize Method topic in the M938x/M9391A IVI driver documentation.

The Initialization Settings for Shared LO (page 98) section explains all the startup
options that need to be set for sharing the M9301A synthesizer between M938x or
M9391 drivers.

Prerequisites for Using a Shared LO

Before you use a shared LO for phase coherent multichannel operation, ensure that
you configure the following required hardware options:

M9311A-012 for M9381A VSG. Look for the option on the M9311A Modulator.

M9350A-012 for M9391A VSA. Look for the option on the M9214A Digitizer.

LO Level Field Alignment

The LO Level Field Alignment is performed to offset the effects of losses arising from
non-standard cabling and temperature variation. This alignment is mandatory when
using an LO distribution unit, such as the V2801A LO Distribution Network. For both
M9381A VSG and M9391A VSA, the LO Level Field Alignment must be performed on all channels
and must be performed on the Master first.

Cabling of Instruments When Sharing Local Oscillator

For an overview of all the hardware modules and their cable connections and
configurations to be performed for Multi-Channel operation using a shared LO, refer
to the Sharing the M9301A Synthesizer's LO topic in the Keysight M9391A and
M9381A Startup Guide. Complete all the hardware configuration steps before trying
to programmatically control M9381A PXIe VSGs and M9391A VSAs with their
respective IVI drivers.

Initialization Settings for Shared LO

Most of the shared LO functionality is configured during the driver initialization phase.
You must configure the following options in the "DriverSetup=" section of the
OptionString.

Option Name Description Default

ShareSynthesizerVisaSession Set this option to true for all the M938x or M9391 False

98 M9391A and M9381A Programming Guide

Using Shared LO for Phase-Coherent Signal Generation and SignalAcquisition

Initialization Settings for Shared LO

M9391A and M9381A Programming Guide 99

drivers that need to share a synthesizer module.

An instrument that tries to connect to a synthesizer
module that is already a part of a session without
setting this option to true encounters an error and
initialization fails.

SynthesizerRole By default, an instrument driver in the Shared LO
model assumes the role of a Master. Declare one
instrument as Master and all the other instruments
as slaves by setting the option
SynthesizerRole=slave.

1. After initialization, you
cannot change the
role of a driver within
the session.

2. If you set an
instrument as slave
without having the
optionM9311A-012
present for VSG or
optionM9350A-012
present for VSA, an
error is generated
when the Apply()
method is called.

Master

SynthesizerOutputPort The M9301A synthesizer has four output ports. Each
output port has been individually calibrated, and you
can declare which output port the instrument is
connected to for the highest accuracy. The output
port is declared by setting the option
SynthesizerOutputPort=XXwhere XX is the
name of the port (1a, 1b, 2a, or 2b).
You can change the value for this option within a
session.

1a

For more information, refer to the Initialize Method topic in the M938x/M9391A IVI driver
documentation.

Initialization Steps

Perform the following steps to configure the shared LO functionality in the
"DriverSetup=" section of the OptionString:

Using Shared LO for Phase-Coherent Signal Generation and SignalAcquisition

Example Programs

1. Set the ShareSynthesizerVisaSession option to true or 1.

2. By default, SynthesizerRole is set to Master. So, for the Master driver, you need
not configure any settings. For all the slave drivers, set SynthesizerRole=slave.

3. By default, SynthesizerOutputPort is set to port 1A. Any instrument connected
to a different port must set SynthesizerOutputPort=XXwhere XX is the name of
the port (1a, 1b, 2a, or 2b).

The following code snippet depicts a typical driver construction when using shared LO
for a set of M9381A drivers.

string masterOptions = "DriverSetup=ShareSynthesizerVisaSession=true";
string slaveOptions = "DriverSetup=ShareSynthesizerVisaSession=true,
SynthesizerRole=slave,SynthesizerOutputPort=1b";

IAgM938xEx2 driver1 = new AgM938xClass();
IAgM938xEx2 driver2 = new AgM938xClass();

driver1.Initialize(resources, idquery, reset, masterOptions);
driver2.Initialize(resources, idquery, reset, slaveOptions);

LO Level Field Alignment

When using an LO Distribution unit, set the ExtLoDistributionUnit option to 1. This
informs the driver to prepare itself for use with the unit by loading the LO Level field
alignment data. For more information, see Appendix - Using LO Distribution Network
in Multi-Channel Systems (page 135).

Example Programs

In this section, you will learn how to write IVI-COM Console Applications that make
use of the multi-channel capability of M9381A and M9391A using shared LO.

For M9381A, the example programs may be found in:C:\Program Files (x86)\IVI
Foundation\IVI\Drivers\AgM938x\Examples.For M9391A, example programs may be
found in: C:\Program Files (x86)\IVI Foundation\IVI\Drivers\AgM9391\Examples

To understand and write these example programs, you require knowledge of the
following:

Visual Studio 2010 with the .NET framework

Programming syntax for Visual C#

Multi-channel capability of M9381A VSG and M9391A VSA using shared LO

100 M9391A and M9381A Programming Guide

Using Shared LO for Phase-Coherent Signal Generation and SignalAcquisition

Example Programs

M9391A and M9381A Programming Guide 101

To compile your program, use the .NET Framework library and produce an Assembly
.exe file.

Example Program 5: Transmitter program to demonstrate how to perform a multi-
channel synchronous modulated signal generation using M9381A IVI commands. Use
of shared M9301A Synthesizer is also demonstrated.

Example Program 6: Receiver program to demonstrate how to perform a multi-
channel IQ acquisition using M9391A IVI commands. Use of shared M9301A
Synthesizer is also demonstrated.

These example programs demonstrate a two channel system. One channel is the
Master, the other a Slave. The example programs can be extended to add more Slave
channels.

Assumptions for Example Programs

The example programs make the following assumptions:

There are two predefined IVI connection aliases for both M9381A and M9391A,
"M9381A-Master" and "M9381A-Slave", and "M9391A-Master" and "M9391A-
Slave", respectively.

At least one of the channels includes the M9300 Reference module and it is located in the
chassis System Timing Slot. For simplicity, the Master is assumed to include an M9300
Reference module, while the Slave is assumed to not include an M9300 Reference
module. For most situations, this is adequate and recommended to avoid additional
considerations of Reference sharing between instances, for example, 1 second latency
for settings to propagate between shared Reference instances.

Information for scenarios in which slave also shares the M9300A Reference has
also been provided in the programming example.

For the use of a shared M9301A Synthesizer module for phase-coherent multi-
channel systems, the following are the assumptions:

Hardware option M9311A-012 is available for M9381A and M9350A-012 for
M9391A.

The Master channel uses Output Port 1A of the M9301A Synthesizer module,
and the Slave channel uses Output Port 1B.

Example Program 5 - Pseudo-Code

This section presents the flow of the program. Code snippets are provided in the next
section.

1. Create a Visual C# Console Application.

2. Add References.
a. Add reference to IVI AgM938x 2.0 Type Library.

3. Add Using Statements.

4. Prepare for creation and initialization of drivers.

Using Shared LO for Phase-Coherent Signal Generation and SignalAcquisition

Example Programs

a. Declare master and slave drivers as instances of IAgM938xEx2.

b. Specify the mode of operation (simulation or non-simulation) and the
resource descriptor.

c. Set the initialization properties for the shared synthesizer.

5. Create and initialize driver instances.

a. Create Master and Slave drivers.

b. Initialize the Master driver.

c. Clear startup messages and warnings, if any, on Master.

d. Print Ivi Driver Identity and Shared Synthesizer properties for Master.

e. Initialize the Slave driver.

f. Clear startup messages and warnings, if any, on Slave.

g. Print Ivi Driver Identity and Shared Synthesizer properties for Slave.

6. Enable an external reference, if planned.

7. Multichannel Sync Setup

a. Set up the Reference module to drive the 10 MHz backplane clock.

b. Initialize synchronization clocks for all source channels.

c. Set up the master/slave roles. Exactly one system must be the
SystemMaster.

d. On the Master channel, configure the GroupSynchronizationSignal which
is used to trigger slave channels.

e. On each Slave channel set the SlaveSynchronizationSignal handshaking
line to a unique PXI backplane trigger line.

f. On each Slave channel, set the GroupSynchronizationSignal to the
master's GroupSynchronizationSignal.

g. On the Master channel, set GroupSynchronizationMask to the sum (or
"or'ing") of all the values (2^SlaveSyncSignal)for the slaves it will trigger.

8. Set up and print the RF properties.

9. Play an ARB waveform file.

a. Set up and load the encrypted ARB file.

i. An encrypted ARB file is loaded into a catalog where it is
referenced by a unique string key value.

ii. Get the path of the executing assembly to prepend it to the
waveform filename.

iii. Load the ARB sequences into the modulator.

b. To ensure power accuracy, turn off MIMO synchronization, play the ARB
and use the DoPowerSearch method to do a power search.

c. Play encrypted ARB file.

10. Disable the Modulation and RF Output.

11. Close all the drivers.

102 M9391A and M9381A Programming Guide

Using Shared LO for Phase-Coherent Signal Generation and SignalAcquisition

Example Programs

M9391A and M9381A Programming Guide 103

12. Close the Console Application.

Example programs may be found in: C:\Program Files (x86)\IVI
Foundation\IVI\Drivers\AgM938x\Examples

Example Program 5 - Program Steps with Code Snippets

Step 1: Create a Visual C# Console Application

1. Launch Visual Studio and create a new Console Application in Visual C# by
selecting: File > New > Project. Select a Visual C# Console Application.
Enter "CS_MultiChannel" as the Name of the project and click OK .

2. Select Project and click Add Reference .
The Add Reference dialog appears. For this step, Solution Explorer must be
visible (View > Solution Explorer) and the "Program.cs" editor window must be
visible; select the Program.cs tab to bring it to the front view.

Step 2: Add References

In order to access the M9381A PXIe VSG driver interfaces, reference to its driver (DLL)
must be created.

1. In Solution Explorer, right-click on References and select Add Reference.

2. From the Add Reference dialog, select the COM tab.

3. Click on any of the type libraries under the "Component Name" heading and
enter the letter "I".(All IVI drivers begin with IVI so this will move down the list of
type libraries that begin with "I".)

4. Scroll to the IVI section and select the following type library; then select OK.
IVI AgM938x 2.0 Type Library.

When a reference for the AgM938x is added, the IVIDriver 2.0
Type Library is also automatically added. This reference
houses the interface definitions for IVI inherent capabilities
which are located in the file IviDriverTypeLib.dll (dynamically
linked library).

Step 3: Add Using Statements

To allow your program to access the IVI drivers without specifying full path names of
each interface or enum, you need to add using statements to your program.

using System;
using System.IO;
using System.Reflection;
using Agilent.AgM938x.Interop;

Using Shared LO for Phase-Coherent Signal Generation and SignalAcquisition

Example Programs

Step 4: Prepare for Creation and Initialization of Drivers

1. If an external reference signal can be supplied to the M9300A "Ref In" port, then
connect it and set this property to true. It will yield better results.

private const Boolean USE_EXTERNAL_REFERENCE = false;

2. Declare master and slave drivers as instances of IAgM938xEx2.

IAgM938xEx2 driverMaster = null;
IAgM938xEx2 driverSlave = null;

When creating driver instances for the M9381A PXI VSG, note that the
IAgM938xEx2 interface is needed for multi-channel operation in place of the
IAgM938x interface. The IAgM938xEx2 interface is an "extended" interface and
includes additional commands that are needed for multi-channel capability
that were not previously available in IAgM938x. This interface also exposes the
Shared Synthesizer properties.

3. Specify the mode of operation (simulation or non-simulation) and the resource
descriptor.
The resource descriptor is the same value as the "Selected Instrument" field of
the SFP's (Soft Front Panel) connection dialog. This can be a comma or
semicolon separated list of module addresses such as
PXI10::15::0::INSTR;PXI10::16::0::INSTR;PXI10::17::0::INSTR;PXI10::18::0::INS
TR or the name of a saved "Instrument Connection" created by the SFP such as
M9381A. Refer to the SFP Help topic Connect to Instruments andModules for more
details.
You have two options to specify the resource descriptor and mode of operation:

Change the code to modify the default values, if required. Hard-code
your resource descriptor and set the simulation mode to true or false.

string resourceMaster = "M9381A-Master"; // Use the hardware
associated with the connection named "M9381A-Master"
string resourceSlave = "M9381A-Slave"; // Use the hardware
associated with the connection named "M9381A-Slave"
resourceSlave = "M9301A;M9310A;M9311A"; // Simulation mode:
Initial Slave M9381A without M9300A

bool simulated = true;

Pass the resource descriptor in the command line when you run the
example program to use that hardware in non-simulated mode. The
following program code takes care of the command-line arguments:

if (args.Length > 1)

104 M9391A and M9381A Programming Guide

Using Shared LO for Phase-Coherent Signal Generation and SignalAcquisition

Example Programs

M9391A and M9381A Programming Guide 105

{
resourceMaster = args[0];
resourceSlave = args[1];
simulated = false;

}

4. When using a shared synthesizer, set the following initialization properties:
ShareSynthesizerVisaSession flag to 1 or true

Each slave instance must set the SynthesizerRole flag to slave

Each instance should specify which output port of the synthesizer they
are connected to by setting the SynthesizerOutputPort to the
appropriate value. i.e. 1b, 2a, or 2b.

string masterDriverSetup = string.Empty;
string slaveDriverSetup = string.Empty;
masterDriverSetup = "ShareSynthesizerVisaSession=1,"; // Default for
SynthesizerRole=master. Default for SynthesizerOutputPort=1a.
slaveDriverSetup =
"ShareSynthesizerVisaSession=1,SynthesizerRole=slave,SynthesizerOutputP
ort=1b,";

string masterOptions =
string.Format("QueryInstrStatus=true, Simulate={0},

DriverSetup={1} Model=, Trace=false",
simulated ? "true" : "false",

masterDriverSetup);
string slaveOptions =

string.Format("QueryInstrStatus=true, Simulate={0},
DriverSetup={1} Model=, Trace=false",

simulated ? "true" : "false",
slaveDriverSetup);

Step 5: Create and Initialize Driver Instances

1. Create Master and Slave drivers.

driverMaster = new AgM938xClass();
driverSlave = new AgM938xClass();

const bool idquery = true;
const bool reset = true;

2. Initialize the Master driver. See the Initializing the IVI-COM Driver topic in the
M938x IVI documentation for additional information.

driverMaster.Initialize(resourceMaster, idquery, reset, masterOptions);

3. Clear startup messages and warnings, if any, on Master.

Using Shared LO for Phase-Coherent Signal Generation and SignalAcquisition

Example Programs

int errorcode = 0;
string message = string.Empty;
do
{

driverMaster.Utility.ErrorQuery(ref errorcode, ref message);
if (errorcode != 0)
{

Console.WriteLine(message);
}

} while (errorcode != 0);

Console.WriteLine("Master Driver Initialized");

4. You may also want to print IVI Driver Identity and Shared Synthesizer
properties.

Console.WriteLine("Identifier: {0}", driverMaster.Identity.Identifier);
Console.WriteLine("Revision: {0}", driverMaster.Identity.Revision);
Console.WriteLine("Vendor: {0}", driverMaster.Identity.Vendor);
Console.WriteLine("Description: {0}",
driverMaster.Identity.Description);
Console.WriteLine("Model: {0}", driverMaster.Identity.InstrumentModel);
Console.WriteLine("FirmwareRev: {0}",
driverMaster.Identity.InstrumentFirmwareRevision);
Console.WriteLine("Serial #: {0}", driverMaster.System.SerialNumber);
Console.WriteLine("Simulate: {0}",
driverMaster.DriverOperation.Simulate);
Console.WriteLine();

Console.WriteLine("Shared Synthesizer Role: {0}",
driverMaster.Modules3.Synthesizer3.SharedRole);
Console.WriteLine("Synthesizer Output Port: {0}",
driverMaster.Modules3.Synthesizer3.OutputPort);
Console.WriteLine();

5. Similarly, initialize the Slave Driver, clear startup messages and warnings, and
print its properties.

driverSlave.Initialize(resourceSlave, idquery, reset, slaveOptions);

errorcode = 0;
message = string.Empty;
do
{

driverSlave.Utility.ErrorQuery(ref errorcode, ref message);
if (errorcode != 0)
{

Console.WriteLine(message);

106 M9391A and M9381A Programming Guide

Using Shared LO for Phase-Coherent Signal Generation and SignalAcquisition

Example Programs

M9391A and M9381A Programming Guide 107

}
} while (errorcode != 0);

Console.WriteLine("Slave Driver Initialized");

Console.WriteLine("Identifier: {0}", driverSlave.Identity.Identifier);
Console.WriteLine("Revision: {0}", driverSlave.Identity.Revision);
Console.WriteLine("Vendor: {0}", driverSlave.Identity.Vendor);
Console.WriteLine("Description: {0}",
driverSlave.Identity.Description);
Console.WriteLine("Model: {0}", driverSlave.Identity.InstrumentModel);
Console.WriteLine("FirmwareRev: {0}",
driverSlave.Identity.InstrumentFirmwareRevision);
Console.WriteLine("Serial #: {0}", driverSlave.System.SerialNumber);
Console.WriteLine("Simulate: {0}",
driverSlave.DriverOperation.Simulate);
Console.WriteLine();

Console.WriteLine("Shared Synthesizer Role: {0}",
driverSlave.Modules3.Synthesizer3.SharedRole);
Console.WriteLine("Synthesizer Output Port: {0}",
driverSlave.Modules3.Synthesizer3.OutputPort);
Console.WriteLine();

When initializing the instruments, create the master first, followed by
all the slaves.

Step 6: Enable an External Reference, if planned
If the Master driver uses an external reference then enable it.

driverMaster.Modules.Reference.ExternalReferenceEnabled = USE_EXTERNAL_
REFERENCE;

If the Slave uses an external reference then enable it.

driverSlave.Modules.Reference.ExternalReferenceEnabled = USE_
EXTERNAL_REFERENCE;

Step 7: Multichannel Sync Setup

You need to perform the following steps to configure the system for multi-channel
operations.

1. The Reference module must be in the System Timing Slot. Set it up to drive the
10 MHz backplane clock. Usually, you can configure the Reference module to
be in just one channel, for example, the Master.

driverMaster.Modules2.Reference2.BackPlaneReferenceEnabled = true;

If the Slave contains the Reference module, set it to drive the 10MHz

Using Shared LO for Phase-Coherent Signal Generation and SignalAcquisition

Example Programs

backplane.

driverSlave.Modules2.Reference2.BackPlaneReferenceEnabled = true;

2. Initialize synchronization clocks for all source channels.

driverMaster.MultiChannelSync.InitializeSynchronizationClocks();
driverSlave.MultiChannelSync.InitializeSynchronizationClocks();

3. Set up the master/slave roles. Exactly one system must be the SystemMaster.

driverMaster.MultiChannelSync.SynchronizationRole =
AgM938xMultiChannelSyncRoleEnum.AgM938xMultiChannelSyncRoleSystemMaste
r;
driverSlave.MultiChannelSync.SynchronizationRole =
AgM938xMultiChannelSyncRoleEnum.AgM938xMultiChannelSyncRoleSlave;

4. On the Master channel, configure the GroupSynchronizationSignal which is
used to trigger slave channels.

driverMaster.MultiChannelSync.GroupSynchronizationSignal =
AgM938xPXIResourcesEnum.AgM938xPXIResourcesTTL_TRIGGER_1;

5. On each Slave channel set the SlaveSynchronizationSignal handshaking line
to a unique PXI backplane trigger line.

driverSlave.MultiChannelSync.SlaveSynchronizationSignal =
AgM938xPXIResourcesEnum.AgM938xPXIResourcesTTL_TRIGGER_2;

6. On each Slave channel, set the GroupSynchronizationSignal to the master's
GroupSynchronizationSignal.

driverSlave.MultiChannelSync.GroupSynchronizationSignal =
AgM938xPXIResourcesEnum.AgM938xPXIResourcesTTL_TRIGGER_1;

7. On the Master channel, set GroupSynchronizationMask to the sum (or "or'ing")
of all the values (2^SlaveSyncSignal)for the slaves it will trigger. The
exponentiation (2^SlaveSyncSignal) can be accomplished via Pow
(2,SlaveSyncSignal) or as below.

driverMaster.MultiChannelSync.GroupSynchronizationMask = 1 << (int)
driverSlave.MultiChannelSync.SlaveSynchronizationSignal;

After these steps, you can use the chassis interface and configure the chassis to
properly route trigger lines between trigger segments. This step is critical for proper
multi-channel operation when source channels span different bus segments.

Step 8: Set Up the RF Properties

To ensure that you have control over the drivers, print the RF properties of the drivers,
change the values for these properties, and again display these properties.

const double frequency = 2.4e9; // 2.4 GHz

108 M9391A and M9381A Programming Guide

Using Shared LO for Phase-Coherent Signal Generation and SignalAcquisition

Example Programs

M9391A and M9381A Programming Guide 109

const double level = -3; // -3 dBm

Console.WriteLine("\t* Initial Master Frequency: {0:###0.#} MHz",
driverMaster.RF.Frequency / 1e6);
Console.WriteLine("\t* Initial Master Level: {0:0.#} dBm",
driverMaster.RF.Level);
Console.WriteLine("\t* Initial Slave Frequency: {0:###0.#} MHz",
driverSlave.RF.Frequency / 1e6);
Console.WriteLine("\t* Initial Slave Level: {0:0.#} dBm",
driverSlave.RF.Level);
Console.WriteLine();

driverMaster.RF.Frequency = frequency;
driverMaster.RF.Level = level;
driverMaster.RF.OutputEnabled = true;
driverMaster.Apply();

driverSlave.RF.Frequency = frequency;
driverSlave.RF.Level = level;
driverSlave.RF.OutputEnabled = true;
driverSlave.Apply();

Console.WriteLine("\t* New Master Frequency: {0:###0.#} MHz",
driverMaster.RF.Frequency / 1e6);
Console.WriteLine("\t* New Master Level: {0:0.#} dBm",
driverMaster.RF.Level);
Console.WriteLine("\t* New Slave Frequency: {0:###0.#} MHz",
driverSlave.RF.Frequency / 1e6);
Console.WriteLine("\t* New Slave Level: {0:0.#} dBm", driverSlave.RF.Level);

Step 9: Play an ARB Waveform File

This step involves creating the proper setup for loading an ARB file, performing a
power search to ensure power accuracy, and playing the encrypted ARB file.

1. Set up and Load the Encrypted ARB file.1
You need to perform the following steps to create the proper setup for loading
an ARB file:

a. An encrypted ARB file is loaded into a catalog where it is referenced by a
unique string key value:

const string catalogReferenceName = "ExampleArb";

const string encryptedArbFileName = "12TONE.wfm";
Console.WriteLine("\t* Catalog Reference Name = {0}",
catalogReferenceName);
Console.WriteLine("\t* Encrypted ARB filename = {0}",
encryptedArbFileName);
Console.WriteLine("\t* Upload encrypted ARB file.");

Using Shared LO for Phase-Coherent Signal Generation and SignalAcquisition

Example Programs

b. Get the path of the executing assembly to prepend it to the waveform
filename.

string location = Path.GetDirectoryName
(Assembly.GetExecutingAssembly().Location);
string arbFilePath = (location == null)
? encryptedArbFileName
: Path.Combine(location, encryptedArbFileName);

c. Load the ARB sequences into the modulator. Although it is known that
this is the first ARB that is being played in the session, as a best practice,
perform the following sequence of steps before you upload the file:

driverMaster.Modulation.Enabled = false;
driverMaster.Apply();
driverMaster.Modulation.Stop();
driverMaster.Modulation.IQ.RemoveArb(catalogReferenceName);

Now upload the ARB file.

driverMaster.Modulation.IQ.UploadArbAgilentFile
(catalogReferenceName, arbFilePath);

Perform similar steps for the slave driver.

driverSlave.Modulation.Enabled = false;
driverSlave.Apply();
driverSlave.Modulation.Stop();
driverSlave.Modulation.IQ.RemoveArb(catalogReferenceName);
driverSlave.Modulation.IQ.UploadArbAgilentFile
(catalogReferenceName, arbFilePath);

2. Power Search
To ensure power accuracy, turn off MIMO synchronization, play the ARB and
use the DoPowerSearch method to do a power search.

Console.WriteLine();
Console.WriteLine("Power Search For Level Accuracy.");

double powerOffset = 0, scaleOffset = 0;

driverSlave.MultiChannelSync.SynchronizationRole =
AgM938xMultiChannelSyncRoleEnum.AgM938xMultiChannelSyncRoleOff;
driverSlave.Modulation.Enabled = true;
driverSlave.Apply();
driverSlave.Modulation.PlayArb(catalogReferenceName,
AgM938xStartEventEnum.AgM938xStartEventImmediate);
driverSlave.Calibration.PowerSearch.DoPowerSearch(ref powerOffset, ref
scaleOffset);

Console.WriteLine("\t* Slave Power Offset: {0:0.###} dBm",
powerOffset);

110 M9391A and M9381A Programming Guide

Using Shared LO for Phase-Coherent Signal Generation and SignalAcquisition

Example Programs

M9391A and M9381A Programming Guide 111

Console.WriteLine("\t* Slave Scale Offset: {0:0.###}", scaleOffset);

powerOffset = 0; scaleOffset = 0;

driverMaster.MultiChannelSync.SynchronizationRole =
AgM938xMultiChannelSyncRoleEnum.AgM938xMultiChannelSyncRoleOff;
driverMaster.Modulation.Enabled = true;
driverMaster.Apply();
driverMaster.Modulation.PlayArb(catalogReferenceName,
AgM938xStartEventEnum.AgM938xStartEventImmediate);
driverMaster.Calibration.PowerSearch.DoPowerSearch(ref powerOffset, ref
scaleOffset);

Console.WriteLine("\t* Master Power Offset: {0:0.###} dBm",
powerOffset);
Console.WriteLine("\t* Master Scale Offset: {0:0.###}", scaleOffset);

3. Play Encrypted ARB file.
Re-enable MIMO synchronization and start a synchronous ARB playback.
Always play the ARB on the slave channels first. This is analogous to the Arm()
sequence for Multi-Channel PXIe VSAs.

Console.WriteLine();
Console.WriteLine("Play Synchronous ARB file.");

driverSlave.MultiChannelSync.SynchronizationRole =
AgM938xMultiChannelSyncRoleEnum.AgM938xMultiChannelSyncRoleSlave;
driverSlave.Modulation.Enabled = true;
driverSlave.Apply();
driverSlave.Modulation.PlayArb(catalogReferenceName,
AgM938xStartEventEnum.AgM938xStartEventImmediate);

driverMaster.MultiChannelSync.SynchronizationRole =
AgM938xMultiChannelSyncRoleEnum.AgM938xMultiChannelSyncRoleSystemMaste
r;
driverMaster.Modulation.Enabled = true;
driverMaster.Apply();
driverMaster.Modulation.PlayArb(catalogReferenceName,
AgM938xStartEventEnum.AgM938xStartEventImmediate);

Step 10: Disable the Modulation and RF Output

driverMaster.Modulation.Enabled = false;
driverMaster.RF.OutputEnabled = false;
driverMaster.Apply();

driverSlave.Modulation.Enabled = false;
driverSlave.RF.OutputEnabled = false;
driverSlave.Apply();

Using Shared LO for Phase-Coherent Signal Generation and SignalAcquisition

Example Programs

Step 11: Close all the drivers

When closing the instruments it is recommended that you close all the slaves first
and then close the master. Although no errors will be encountered if any other order
is used, but this helps ensure that the "owner" of the synthesizer can cleanly
shutdown the module. Note the use of the finally syntax, which implies that the
preceding code was wrapped in a try/catch block.

finally
{

if (driverSlave != null && driverSlave.Initialized)
{

driverSlave.Close();
Console.WriteLine();
Console.WriteLine("M9381A Slave driver closed.");

}

if (driverMaster != null && driverMaster.Initialized)
{

driverMaster.Close();
Console.WriteLine();
Console.WriteLine("M9381A Master driver closed.");

}
}

Step 12: Close the Console Application

Prompt the user to press the Enter key to close the application.

Console.WriteLine();
Console.WriteLine("Done - Press Enter to Exit");
Console.ReadLine();

112 M9391A and M9381A Programming Guide

Using Shared LO for Phase-Coherent Signal Generation and SignalAcquisition

Example Programs

M9391A and M9381A Programming Guide 113

Example Program 6 - Pseudo-Code

This section presents the flow of the program. Code snippets are provided in the next
section.

Using Shared LO for Phase-Coherent Signal Generation and SignalAcquisition

Example Programs

1. Create a Visual C# Console Application.

2. Add References. Add reference to IVI AgM9391 2.0 Type Library.

3. Add Using Statements.

4. Prepare for creation and initialization of drivers.
a. Declare and set values for some configurable parameters to be used in

the example.

b. If an external reference signal can be supplied to the M9300A "Ref In"
port, then connect it and set this property to true.

c. Declare master and slave drivers as instances of AgM9391.

d. Specify the mode of operation (simulation or non-simulation) and the
resource descriptor.

e. Set the initialization properties for the shared synthesizer.

5. Create and initialize driver instances.

a. Create Master and Slave drivers.

b. Initialize the Master driver.

c. Clear startup messages and warnings, if any, on Master.

d. Print Ivi Driver Identity and Shared Synthesizer properties for Master.

e. Initialize the Slave driver.

f. Clear startup messages and warnings, if any, on Slave.

g. Print Ivi Driver Identity and Shared Synthesizer properties for Slave.

6. Enable an external reference, if planned.

7. Multichannel Sync Setup

a. Set up the Reference module to drive the 10 MHz backplane clock.

b. Initialize synchronization clocks for all source channels.

c. Set up the master/slave roles. Exactly one system must be the
SystemMaster.

d. On the Master channel, configure the GroupSynchronizationSignal which
is used to trigger slave channels.

e. On each Slave channel set the SlaveSynchronizationSignal handshaking
line to a unique PXI backplane trigger line.

f. On each Slave channel, set the GroupSynchronizationSignal to the
master's GroupSynchronizationSignal.

g. On the Master channel, set GroupSynchronizationMask to the sum (or
"or'ing") of all the values (2^SlaveSyncSignal)for the slaves it will trigger.

h. Using the chassis interface, configure the chassis to properly route
trigger lines between trigger segments.

8. Set the RF parameters.

9. Set up the receiver to make IQ measurements for a 40 MHz bursted signal.

10. Set up the triggering properties.

114 M9391A and M9381A Programming Guide

Using Shared LO for Phase-Coherent Signal Generation and SignalAcquisition

Example Programs

M9391A and M9381A Programming Guide 115

a. Set up for a magnitude triggered mode acquisition.

b. The triggering has to happen on the rising edge of the trigger and it
happens when the signal crosses through the trigger level. Configure the
master for the same.

c. If unable to detect a burst, try a lower magnitude level or increase the
output power level on the signal generator.

d. Set up a bit of "off" time before the signal burst ramps up so that you can
detect the beginning of the burst.

e. Auto trigger on 10 second timeout if you never see a burst.

11. Apply the changes to the hardware.

12. Arm the receivers.

13. Set the timeout value on WaitForData.

14. Retrieve the IQ data.

15. Perform some actions on the interleaved IQ vector.

16. Close all the drivers.

17. Close the Console Application.

Example programs may be found in: C:\Program Files (x86)\IVI
Foundation\IVI\Drivers\AgM9391\Examples

Example Program 6 - Program Steps with Code Snippets

Step 1: Create a Visual C# Console Application

1. Launch Visual Studio and create a new Console Application in Visual C# by
selecting: File > New > Project. Select a Visual C# Console Application.
Enter "CS_MultiChannel" as the Name of the project and click OK .

2. Select Project and click Add Reference.
The Add Reference dialog appears. For this step, Solution Explorer must be
visible (View > Solution Explorer) and the "Program.cs" editor window must be
visible; select the Program.cs tab to bring it to the front view.

Step 2: Add References

In order to access the M9391A PXIe VSA driver interfaces, reference to its driver (DLL)
must be created.

1. In Solution Explorer, right-click on References and select Add Reference.

2. From the Add Reference dialog, select the COM tab.

3. Click on any of the type libraries under the "Component Name" heading and
enter the letter "I".(All IVI drivers begin with IVI so this will move down the list of
type libraries that begin with "I".)

4. Scroll to the IVI section, select the following type library, and then select OK.
IVI AgM9391 2.0 Type Library

Using Shared LO for Phase-Coherent Signal Generation and SignalAcquisition

Example Programs

When a reference for the AgM9391 is added, the IVIDriver 2.0
Type Library is also automatically added. This reference
houses the interface definitions for IVI inherent capabilities
which are located in the file IviDriverTypeLib.dll (dynamically
linked library).

Step 3: Add Using Statements

To allow your program to access the IVI drivers without specifying full path names of
each interface or enum, you need to add using statements to your program.

using System;
using Agilent.AgM9391.Interop;

Step 4: Prepare for Creation and Initialization of Drivers

Perform the following steps.

1. Declare and set values for some configurable parameters to be used in the
example.

private const Double CENTER_FREQUENCY = 1000000000.0;
private const Double EXPECTED_POWER = 2;
private const Double IF_BANDWIDTH = 40000000.0;

private const Double SAMPLE_RATE = 50000000.0;
private const Double DURATION = 640e-6;

private const Double MAGNITUDE_TRIGGER_LEVEL = -20.0;

2. If an external reference signal can be supplied to the M9300A "Ref In" port, then
connect it and set this property to true. It will yield better results.

private const Boolean USE_EXTERNAL_REFERENCE = false;

3. Declare the drivers.

AgM9391 driverMaster = null;
AgM9391 driverSlave = null;

4. Specify the mode of operation (simulation or non-simulation) and the resource
descriptor.
The resource descriptor is the same value as the "Selected Instrument" field of
the SFP's (Soft Front Panel) connection dialog. This can be a comma or
semicolon separated list of module addresses such as
PXI10::15::0::INSTR;PXI10::16::0::INSTR;PXI10::17::0::INSTR;PXI10::18::0::INS
TR or the name of a saved "Instrument Connection" created by the SFP such as
M9391A. Refer to the SFP Help topic "Connect to Instruments and Modules" for
more details.
You have two options to specify the resource descriptor and mode of operation:

116 M9391A and M9381A Programming Guide

Using Shared LO for Phase-Coherent Signal Generation and SignalAcquisition

Example Programs

M9391A and M9381A Programming Guide 117

Change the code to modify the default values, if required. Hard-code
your resource descriptor and set the simulation mode to true or false.

string resourceMaster = "M9391A-Master"; // Use the hardware
associated with the connection named "M9391A-Master"
string resourceSlave = "M9391A-Slave"; // Use the hardware
associated with the connection named "M9391A-Slave"
resourceSlave = "M9301A;M9214A;M9350A"; // Simulation mode:
Initial Slave M9391A without M9300A

bool simulated = true;

Pass the resource descriptor in the command line when you run the
example program to use that hardware in non-simulated mode.

if (args.Length > 1)
{

resourceMaster = args[0];
resourceSlave = args[1];
simulated = false;

}

5. When using a shared synthesizer, set the following initialization properties:
ShareSynthesizerVisaSession flag to 1 or true

Each slave instance must set the SynthesizerRole flag to slave

Each instance should specify which output port of the synthesizer they
are connected to by setting the SynthesizerOutputPort to the
appropriate value. i.e. 1b, 2a,, or 2b.

string masterDriverSetup = string.Empty;
string slaveDriverSetup = string.Empty;

masterDriverSetup = "ShareSynthesizerVisaSession=1,"; // Default
for SynthesizerRole=master. Default for SynthesizerOutputPort=1a.
slaveDriverSetup =
"ShareSynthesizerVisaSession=1,SynthesizerRole=slave,SynthesizerO
utputPort=1b,";
string masterOptions =
string.Format("QueryInstrStatus=true, Simulate={0}, DriverSetup=
{1} Model=, Trace=false",
simulated ? "true" : "false", masterDriverSetup);
string slaveOptions =
string.Format("QueryInstrStatus=true, Simulate={0}, DriverSetup=
{1} Model=, Trace=false",
simulated ? "true" : "false", slaveDriverSetup);

Step 5: Create and Initialize Drivers

Perform the following steps.

Using Shared LO for Phase-Coherent Signal Generation and SignalAcquisition

Example Programs

1. Create Master and Slave Drivers.

driverMaster = new AgM9391Class();
driverSlave = new AgM9391Class();

const bool idquery = true;
const bool reset = true;

2. Initialize the Master driver. See driver help topic "Initializing the IVI-COM Driver"
for additional information.

driverMaster.Initialize(resourceMaster, idquery, reset, masterOptions);

3. Clear startup messages & warnings if any, on Master.

int errorcode = 0;
string message = string.Empty;

do
{

driverMaster.Utility.ErrorQuery(ref errorcode, ref message);
if (errorcode != 0)
{

Console.WriteLine(message);
}

} while (errorcode != 0);

Console.WriteLine("Master Driver Initialized");

4. You may also want to print IVI Driver Identity and Shared Synthesizer
properties.

Console.WriteLine("Identifier: {0}", driverMaster.Identity.Identifier);
Console.WriteLine("Revision: {0}", driverMaster.Identity.Revision);
Console.WriteLine("Vendor: {0}", driverMaster.Identity.Vendor);
Console.WriteLine("Description: {0}",
driverMaster.Identity.Description);
Console.WriteLine("Model: {0}", driverMaster.Identity.InstrumentModel);
Console.WriteLine("FirmwareRev: {0}",
driverMaster.Identity.InstrumentFirmwareRevision);
Console.WriteLine("Serial #: {0}", driverMaster.System.SerialNumber);
Console.WriteLine("Simulate: {0}",
driverMaster.DriverOperation.Simulate);
Console.WriteLine();

Console.WriteLine("Shared Synthesizer Role: {0}",
driverMaster.Modules3.Synthesizer2.SharedRole);
Console.WriteLine("Synthesizer Output Port: {0}",
driverMaster.Modules3.Synthesizer2.OutputPort);
Console.WriteLine();

5. Similarly, initialize the Slave Driver, clear startup messages and warnings, and

118 M9391A and M9381A Programming Guide

Using Shared LO for Phase-Coherent Signal Generation and SignalAcquisition

Example Programs

M9391A and M9381A Programming Guide 119

print its properties.

driverSlave.Initialize(resourceSlave, idquery, reset, slaveOptions);

errorcode = 0;
message = string.Empty;

do
{

driverSlave.Utility.ErrorQuery(ref errorcode, ref message);
if (errorcode != 0)
{

Console.WriteLine(message);
}

} while (errorcode != 0);

Console.WriteLine("Slave Driver Initialized");

Console.WriteLine("Identifier: {0}", driverSlave.Identity.Identifier);
Console.WriteLine("Revision: {0}", driverSlave.Identity.Revision);
Console.WriteLine("Vendor: {0}", driverSlave.Identity.Vendor);
Console.WriteLine("Description: {0}",
driverSlave.Identity.Description);
Console.WriteLine("Model: {0}", driverSlave.Identity.InstrumentModel);
Console.WriteLine("FirmwareRev: {0}",
driverSlave.Identity.InstrumentFirmwareRevision);
Console.WriteLine("Serial #: {0}", driverSlave.System.SerialNumber);
Console.WriteLine("Simulate: {0}",
driverSlave.DriverOperation.Simulate);
Console.WriteLine();

Console.WriteLine("Shared Synthesizer Role: {0}",
driverSlave.Modules3.Synthesizer2.SharedRole);
Console.WriteLine("Synthesizer Output Port: {0}",
driverSlave.Modules3.Synthesizer2.OutputPort);
Console.WriteLine();

When initializing the instruments it is recommended that the master
be created first, followed by all the slaves.

Step 6: Enable an External Reference, if planned

If the Master driver uses an external reference then enable it.

driverMaster.Modules.Reference.ExternalReferenceEnabled = USE_EXTERNAL_
REFERENCE;

If the Slave driver uses an external reference then enable it.

driverSlave.Modules.Reference.ExternalReferenceEnabled = USE_EXTERNAL_
REFERENCE;

Using Shared LO for Phase-Coherent Signal Generation and SignalAcquisition

Example Programs

Step 7: Multichannel Sync Setup

Configure the system for multi-channel.

1. The Reference module must be in the System Timing Slot. Set it up to drive the
10 MHz backplane clock.

driverMaster.Modules2.Reference2.BackPlaneReferenceEnabled = true;

If the Slave contains the Reference module, you need to set it to drive the
10MHz backplane too.

driverSlave.Modules2.Reference2.BackPlaneReferenceEnabled = true;

2. Initialize synchronization clocks for all receiver channels.

driverMaster.MultiChannelSync.InitializeSynchronizationClocks();
driverSlave.MultiChannelSync.InitializeSynchronizationClocks();

3. Set up the Master/Slave roles. Exactly one system must be the SystemMaster.

driverMaster.MultiChannelSync.SynchronizationRole =
AgM9391MultiChannelSyncRoleEnum.AgM9391MultiChannelSyncRoleSystemMaste
r;
driverSlave.MultiChannelSync.SynchronizationRole =
AgM9391MultiChannelSyncRoleEnum.AgM9391MultiChannelSyncRoleSlave;

4. On the Master channel, configure the GroupSynchronizationSignal which is
used to trigger slave channels.

driverMaster.MultiChannelSync.GroupSynchronizationSignal =
AgM9391PXIResourcesEnum.AgM9391PXIResourcesTTL_TRIGGER_1;

5. On each Slave channel set the SlaveSynchronizationSignal handshaking line to
a unique PXI backplane trigger line.

driverSlave.MultiChannelSync.SlaveSynchronizationSignal =
AgM9391PXIResourcesEnum.AgM9391PXIResourcesTTL_TRIGGER_2;

6. On each Slave channel, set the GroupSynchronizationSignal to the master's
GroupSynchronizationSignal.

driverSlave.MultiChannelSync.GroupSynchronizationSignal =
AgM9391PXIResourcesEnum.AgM9391PXIResourcesTTL_TRIGGER_1;

7. On the Master channel, set GroupSynchronizationMask to the sum (or "or'ing")
of all the values (2^SlaveSyncSignal) for the slaves it will trigger. The
exponentiation (2^SlaveSyncSignal) can be accomplished via Pow
(2,SlaveSyncSignal) or as below.

driverMaster.MultiChannelSync.GroupSynchronizationMask = 1 << (int)
driverSlave.MultiChannelSync.SlaveSynchronizationSignal;

120 M9391A and M9381A Programming Guide

Using Shared LO for Phase-Coherent Signal Generation and SignalAcquisition

Example Programs

M9391A and M9381A Programming Guide 121

8. Using the chassis interface, configure the chassis to properly route trigger lines
between trigger segments. This step is critical for proper multi-channel
operation when receiver channels span different bus segments.

Step 8: Set the RF parameters

Set the measurement at the center frequency. Set a low power and we will search for
an optimum power level where the receiver is not overloaded. Let the receiver pick
the suggested conversion mode for the frequency. Use the largest IF bandwidth
supported by the hardware.

driverMaster.RF.Frequency = CENTER_FREQUENCY;
driverMaster.RF.Power = EXPECTED_POWER;
driverMaster.RF.Conversion = AgM9391ConversionEnum.AgM9391ConversionAuto;
driverMaster.RF.IFBandwidth = IF_BANDWIDTH;

driverSlave.RF.Frequency = CENTER_FREQUENCY;
driverSlave.RF.Power = EXPECTED_POWER;
driverSlave.RF.Conversion = AgM9391ConversionEnum.AgM9391ConversionAuto;
driverSlave.RF.IFBandwidth = IF_BANDWIDTH;

Step 9: Set up the receiver to make IQ measurements for a 40 MHz bursted
signal with which we will use a magnitude trigger

driverMaster.AcquisitionMode =
AgM9391AcquisitionModeEnum.AgM9391AcquisitionModeIQ;
driverMaster.IQAcquisition.SampleRate = SAMPLE_RATE;
driverMaster.IQAcquisition.SampleSize =
AgM9391SampleSizeEnum.AgM9391SampleSize64Bits;
driverMaster.IQAcquisition.Samples = (int)(DURATION * SAMPLE_RATE);

driverSlave.AcquisitionMode =
AgM9391AcquisitionModeEnum.AgM9391AcquisitionModeIQ;
driverSlave.IQAcquisition.SampleRate = SAMPLE_RATE;
driverSlave.IQAcquisition.SampleSize =
AgM9391SampleSizeEnum.AgM9391SampleSize64Bits;
driverSlave.IQAcquisition.Samples = (int)(DURATION * SAMPLE_RATE);

Step 10: Set up the triggering properties

Perform the following steps.

1. Since we anticipate a bursted signal we will set for a magnitude triggered mode
acquisition.

driverMaster.Triggers.AcquisitionTrigger.Mode =
AgM9391AcquisitionTriggerModeEnum.AgM9391AcquisitionTriggerModeMagnitud
e;

Using Shared LO for Phase-Coherent Signal Generation and SignalAcquisition

Example Programs

2. The Slave channel also needs to know what triggering mode is set.

driverSlave.Triggers.AcquisitionTrigger.Mode =
AgM9391AcquisitionTriggerModeEnum.AgM9391AcquisitionTriggerModeMagnitud
e;

3. The triggering has to happen on the rising edge of the trigger and it happens
when the signal crosses through the trigger level. If triggering is to be used,
only the master is configured for the trigger. The master will hold off the slaves
until trigger is received.

IAgM9391TriggersAcquisitionTrigger acqTriggerMaster =
driverMaster.Triggers.AcquisitionTrigger;

acqTriggerMaster.MagnitudeTrigger.Slope =
AgM9391TriggerSlopeEnum.AgM9391TriggerSlopePositive;

4. If unable to detect a burst, try a lower magnitude level or increase the output
power level on the signal generator.

acqTriggerMaster.MagnitudeTrigger.Level = MAGNITUDE_TRIGGER_LEVEL;

5. A bit of "off" time is required before the signal burst ramps up so we can detect
the beginning of the burst.

acqTriggerMaster.MagnitudeTrigger.PulseOffTime = 1e-6; // 1 usec should
be enough.

6. You need to decide what to do if you never see a burst. As an example, you can
auto trigger on 10 second timeout if no burst meets the criteria and just acquire
what you can.

acqTriggerMaster.TimeoutMode =
AgM9391TriggerTimeoutModeEnum.AgM9391TriggerTimeoutModeAutoTriggerOnTim
eout;
acqTriggerMaster.Timeout = 10000; // ms

Step 11: Apply the changes to hardware

Apply changes to the Master first, then the Slave(s).

The MultichannelSync.DelayAdjust property must be copied from the
Master (after Master Apply()) to the Slave(s) (before Slave Apply()).

driverMaster.Apply();
driverSlave.MultiChannelSync.DelayAdjust =
driverMaster.MultiChannelSync.DelayAdjust;
driverSlave.Apply();

Step 12: Arm the receivers

The Slave(s) must be Armed before the Master.

122 M9391A and M9381A Programming Guide

Using Shared LO for Phase-Coherent Signal Generation and SignalAcquisition

Example Programs

M9391A and M9381A Programming Guide 123

driverSlave.Arm();
driverMaster.Arm();

bool overloaded = false;

Step 13: Set the timeout value on WaitForData

When trigger time out mode is set to auto trigger on time out, the timeout value on
WaitForData should be longer than the auto trigger timeout and long enough to allow
data acquisition to complete. This example waits 10 seconds before auto triggering if
no magnitude trigger has occurred and waits for 11 seconds for data acquisition to
complete.

int waitForDataTimeout = (int)(acqTriggerMaster.Timeout * 1.1);
if(!driverMaster.WaitForData(waitForDataTimeout)) // in milliseconds
{

throw new ApplicationException("WaitForData failed. No acquisition was
made.");
}

Step 14: Retrieve the IQ data

double[] interleavedIQBlockMaster = new double
[driverMaster.IQAcquisition.Samples * 2];
double[] interleavedIQBlockSlave = new double
[driverSlave.IQAcquisition.Samples * 2];

driverMaster.IQAcquisition.ReadIQData(0,

AgM9391IQUnitsEnum.AgM9391IQUnitsSquareRootMilliWatts,
0,
driverMaster.IQAcquisition.Samples,
ref interleavedIQBlockMaster,
ref overloaded);

driverSlave.IQAcquisition.ReadIQData(0,

AgM9391IQUnitsEnum.AgM9391IQUnitsSquareRootMilliWatts,
0,
driverSlave.IQAcquisition.Samples,
ref interleavedIQBlockSlave,
ref overloaded);

Step 15: Perform some action on the interleaved IQ vector

Here, you can enter your own program logic.

Using Shared LO for Phase-Coherent Signal Generation and SignalAcquisition

Example Programs

Step 16: Close all the drivers

When closing the instruments it is recommended that you close all the slaves first
and then close the master. Although no errors will be encountered if any other order
is used, but this helps ensure that the "owner" of the synthesizer can cleanly
shutdown the module. Note the use of the finally syntax, which implies that preceding
code was wrapped in a try/catch block.

finally
{

if (driverMaster != null && driverMaster.Initialized)
{

driverMaster.Close();
Console.WriteLine();
Console.WriteLine("M9391A Master driver closed.");

}
if (driverSlave != null && driverSlave.Initialized)
{

driverSlave.Close();
Console.WriteLine();
Console.WriteLine("M9391A Slave driver closed.");

}
}

Step 17: Close the Console Application

Prompt the user to press the Enter key to close the application.

Console.WriteLine();
Console.WriteLine("Done - Press Enter to Exit");
Console.ReadLine();

124 M9391A and M9381A Programming Guide

Hints for Various Configuration Tasks

Restartingan Already Playing Waveform in M9381A VSG

M9391A and M9381A Programming Guide 125

Hints for Various Configuration Tasks
This section focuses on providing helpful pointers for programmatically performing
some configuration tasks for M9391A VSG and M9381A VSG.

Restarting an Already Playing Waveform in M9381A VSG (page 125)

Restarting an Already Playing Waveform in M9381A
VSG

You can configure an already playing arbitrary waveform on the M9381A VSG to
restart in response to an external trigger.

Use Case

You might need to synchronize the meta information between a base station and an
M9381A VSG emulating a mobile handset. For example, in an LTE system,
infrequently changing information like cell identity and frequency plan is not
transmitted in every 10 ms frame. However, the base station and mobile unit are
required to be in sync on where they are in the frame sequence to agree upon things
like the Master Information Block (MIB) and various types of System Information
Blocks (SIB). The frame sequence is 1024 frames long and there is a counter called
the System Frame Number (SFN) from 0 to 1023 frames. So, the base station issues a
sync command on its SFN zero, and the mobile device transmits back a frame at its
SFN zero. Once this agreement is reached, the user equipment can keep transmitting
the same block of 1024 frames. Hence, the VSG must reset its System Frame Number
when the base station issues an external trigger.

Description

This external trigger can be applied on the Trig 1 port of the Synthesizer (M9301A)
module. Once the trigger is received, playback restarts in less than 14 usec of the
trigger being received. During this time, a continuous waveform is played with the
same RMS power as that of the original arbitrary waveform.
This feature is supported for both single channel and multi-channel synchronization
operation for up to four channels contained in a single chassis. For multi-channel
operation, there is an additional 0-100ns latency which varies on each restart due to
the internal multi-channel synchronization mechanism.

The initial waveform playback starts immediately; there is no
provision for the initial waveform playback to start on receiving an
external trigger.

The Arb Restart feature is not supported in the List Mode.

Hints for Various Configuration Tasks

Restartingan Already Playing Waveform in M9381A VSG

Program Steps

The following is the sequence of steps to be followed:

1. Configure the External Trigger using the External Trigger IVI commands. Refer
to the IVI documentation for more information about the External Trigger IVI
commands. The following is an example:

driver.Triggers3.ExternalTrigger3.Configure(true, 1.6e-8, 0.5,
AgM938xTriggerSlopeEnum.AgM938xTriggerSlopePositive,
AgM938xTriggerEnum.AgM938xTriggerFrontPanelTrigger1,
AgM938xTriggerTerminationEnum.AgM938xTriggerTermination50Ohm, timeout,
AgM938xTimeoutModeEnum.AgM938xTimeoutModeWaitInfinite);

Applying an external trigger in a multi-channel setup
For a multi-channel setup, the external trigger must be routed to all the
channels (master and slaves). The master channel receives the trigger from the
front panel Trig1 on the Synthesizer module. The slave channel(s) can share
the backplane trigger that routes the front panel Trig1 from the master channel
Synthesizer to the master channel Digital Vector Modulator (M9311A). By
default, the backplane trigger line Trig6 is used. Configure the chassis so Trig6
is routed to all the trigger segments, radiating out from the master Synthesizer.
Set the master External Trigger source to FrontPanelTrigger1 and configure the
slave modules to use PXITriggerTrig6 as the External Trigger Source. Ensure
that Ext Trig is enabled on the slave.

2. Enable the ArbRestart feature by setting the ExternalTrigger3.ArbRestart
property to true and calling the Applymethod.

driver.Triggers3.ExternalTrigger3.ArbRestart = true;
driver.Apply();

For a multi-channel setup, perform this step for all masters and slaves.

The Arb Restart is generally enabled before playing the Arb
waveform, but can also be enabled or disabled after the
arbitrary waveform has started playing.

3. Play an arbitrary waveform using the PlayArb() function, specifying StartEvent
as immediate.

driver.Modulation.PlayArb(catalogReferenceName,
AgM938xStartEventEnum.AgM938xStartEventImmediate);

where catalogReferenceName is the name used to reference the uploaded
waveform.
The playback starts immediately.
For a multi-channel setup, perform this step on all the slaves first, followed by
the master.

126 M9391A and M9381A Programming Guide

Appendix - Determining Resource Name Address Strings

M9391A and M9381A Programming Guide 127

Appendix - Determining Resource Name Address Strings
The following information is for 2x2 MIMO in one M9018A PXIe Chassis.

Using the M9381A PXIe VSG #1 Soft Front Panel to get a Resource Name address
string:
string VsgResourceName =
"PXI8::0::0::INSTR;PXI11::0::0::INSTR;PXI12::0::0::INSTR;PXI20::0::0::INSTR";

Slot Model/Module Name VISA Address

2 M9311A PXIe Modulator PXI8::0::0::INSTR;

4 M9310A PXIe Source
Output

PXI11::0::0::INSTR;

5 M9301A PXIe Synthesizer PXI12::0::0::INSTR;

10 M9300A PXIe Reference PXI20::0::0::INSTR;

Using the M9391A PXIe VSA #1 Soft Front Panel to get a Resource Name address
string:
string VsaResourceName =
"PXI14::0::0::INSTR;PXI10::0::0::INSTR;PXI9::0::0::INSTR;PXI20::0::0::INSTR";

Slot Model/Module Name VISA Address

7 M9301A PXIe Synthesizer PXI14::0::0::INSTR;

8 M9350A PXIe
Downconverter

PXI10::0::0::INSTR;

9 M9214A PXIe IF Digitizer PXI9::0::0::INSTR;

Appendix - Determining Resource Name Address Strings

10 M9300A PXIe Reference PXI20::0::0::INSTR;

Using the M9300A PXIe Reference Soft Front Panel to get a Resource Name address
string:
string ReferenceResourceName = "PXI20::0::0::INSTR";

Slot Model/Module Name VISA Address

10 M9300A PXIe Reference PXI20::0::0::INSTR;

Using the M9391A PXIe VSA #2 Soft Front Panel to get a Resource Name address
string:
string VsaResourceName =
"PXI24::0::0::INSTR;PXI25::0::0::INSTR;PXI28::0::0::INSTR";

Slot Model/Module Name VISA Address

11 M9301A PXIe
Synthesizer

PXI24::0::0::INSTR;

12 M9350A PXIe
Downconverter

PXI25::0::0::INSTR;

13 M9214A PXIe IF
Digitizer

PXI28:0::0::INSTR;

Using the M9381A PXIe VSG #2 Soft Front Panel to get a Resource Name address
string:
string VsgResourceName =
"PXI23::0::0::INSTR;PXI21::0::0::INSTR;PXI22::0::0::INSTR";

128 M9391A and M9381A Programming Guide

Appendix - Determining Resource Name Address Strings

M9391A and M9381A Programming Guide 129

Slot Model/Module Name VISA Address

15 M9311A PXIe
Modulator

PXI23::0::0::INSTR;

17 M9310A PXIe Source
Output

PXI21::0::0::INSTR;

18 M9301A PXIe
Synthesizer

PXI22::0::0::INSTR;

130 M9391A and M9381A Programming Guide

Appendix - Verify Instruments Connect, Pass Self-Test, and areUpdated

Verify that VSG 1 is Connected, Passes Self-Test, and Contains Upto Date Firmware

M9391A and M9381A Programming Guide 131

Appendix - Verify Instruments Connect, Pass Self-Test,
and are Updated

Before you attempt to programmatically control any hardware and make 802.11ac
MIMO R&D/DVT Test measurements, connect to each of the instrument soft front
panels, one at a time, perform self-test, and verify their FPGA firmware is fully
updated. If any firmware updates are made, perform the self-test again.

Running Self-Test will fail if the modules that form anM9381A PXIe
VSG or anM9391A PXIe VSA spans across slot 6 or slot 12 of the
M9018A PXIe Chassis; if they do span across slot 6 or slot 12, the
backplane triggers and bus segments must be routed properly. For
details, see "Step 6 – Route Backplane Triggers and Bus Segments
on the M9018A PXIe Chassis" on page 61.

In the following procedures, each instrument connection must be verified, each
instrument must pass self-test, and each instrument's firmware version should be
checked and updated if needed.

Verify that VSG 1 is Connected, Passes Self-Test, and
Contains Up to Date Firmware

1. Select Start > All Programs > Keysight >
M938x >M9381 SFP and run the soft front
panel of the M9381A PXIe VSG - connect to
VSG #1 and the M9300A PXIe Reference.

2. Run self-test.

Appendix - Verify Instruments Connect, Pass Self-Test, and areUpdated

Verify that VSG 2 is Connected, Passes Self-Test, and Contains Upto Date Firmware

3. Check firmware and update if necessary.

4. Close the Firmware Update dialog box if
no firmware updates are necessary.If
firmware updates are required, install the
updates, shut down the computer, cycle
power on the M9018A PXIe Chassis, and
repeat this procedure to verify connection,
perform self-test, and verify that no further
firmware updates are necessary.

Verify that VSG 2 is Connected, Passes Self-Test, and
Contains Up to Date Firmware

1. Select Start > All Programs > Keysight
> M938x >M9381 SFP and run the soft
front panel of the M9381A PXIe VSG -
connect to VSG #2 and the M9300A
PXIe Reference.

2. Run self-test.

3. Check firmware and update if
necessary.

4. Close the Firmware Update dialog box
if no firmware updates are necessary.If
firmware updates are required, install
the updates, shut down the computer,
cycle power on the M9018A PXIe
Chassis, and repeat this procedure to
verify connection, perform self-test,
and verify that no further firmware
updates are necessary.

132 M9391A and M9381A Programming Guide

Appendix - Verify Instruments Connect, Pass Self-Test, and areUpdated

Verify that VSA 1 is Connected, Passes Self-Test, and Contains Upto Date Firmware

M9391A and M9381A Programming Guide 133

Verify that VSA 1 is Connected, Passes Self-Test, and
Contains Up to Date Firmware

1. Select Start > All Programs > Keysight
> M9391 >M9391 SFP and run the
soft front panel of the M9391A PXIe
VSA - connect to VSA #1 and the
M9300A.

2. Run self-test.

3. Check firmware and update if
necessary.

4. Close the Firmware Update dialog
box if no firmware updates are
necessary.If required, install the
updates, shut down the computer,
cycle power on the M9018A PXIe
Chassis, and repeat this procedure to
verify connection, perform self-test,
and verify that no further firmware
updates are necessary.

Verify that VSA 2 is Connected, Passes Self-Test, and
Contains Up to Date Firmware

1. Select Start > All Programs > Keysight
> M9391 >M9391 SFP and run the
soft front panel of the M9391A PXIe
VSA - connect to VSA #2 and the
M9300A.

2. Run self-test.

3. Check firmware and update if
necessary.

4. Close the Firmware Update dialog
box if no firmware updates are
necessary.If firmware updates are
required, install the updates, shut
down the computer, cycle power on
the M9018A PXIe Chassis, and repeat
this procedure to verify connection,

Appendix - Verify Instruments Connect, Pass Self-Test, and areUpdated

Verify that VSA 2 is Connected, Passes Self-Test, and Contains Upto Date Firmware

perform self-test, and verify that no
further firmware updates are
necessary.

134 M9391A and M9381A Programming Guide

Appendix - Using LO Distribution Network in Multi-Channel Systems

Initialization Settings for LO Distribution Network

M9391A and M9381A Programming Guide 135

Appendix - Using LO Distribution Network in Multi-
Channel Systems

You can use the four output ports of an M9301A Synthesizer to provide an LO signal
for up to four M9381A Vector Signal Generators or M9391A Vector Signal Analyzers.
For more than four VSGs or VSAs, you can use a single output port of the M301A
Synthesizer routed through a V2802A LO Distribution Network to split the signal. For
more information, refer to the Sharing the M9301A Synthesizer's LO topic in the
Keysight M9391A andM9381A Startup Guide.

Initialization Settings for LO Distribution Network

When using an LO Distribution Network you must configure the following option in the
"DriverSetup=" section of theOptionString during the initialization process:

Option Name Description Default

ExtLoDistributionUnit Set this option to true, or use a supported model number
such as V2802A. Setting this option prepares the driver for
use with the LO Distribution Network by loading the LO Level
field alignment data.

The V2802A LO Distribution Network
has approximately +4 dBmof
nominal gain across its range of
operation. The M9311AModulator
module is highly sensitive to
excessive power levels at the LO
input port. Therefore, be sure to set
the ExtLoDistributionUnit option to
true at initialization whenever the
system is configuredwith an LO
Distribution Network to prevent
possible damage to the module(s).

False

LO Level Field Alignment

The LO Level field alignment adjusts the signal level from a shared M9301A
Synthesizer module to offset the effects of additional loss from non-standard cabling,
additional gain from V2802A LO Distribution Network, and temperature variation. This
alignment should be performed on all the instrument drivers sharing a M9301A
Synthesizer module following configuration changes, such as LO cable changes, or

Appendix - Using LO Distribution Network in Multi-Channel Systems

LO Level Field Alignment

selecting a different M9301A Synthesizer module to use as the shared synthesizer in
a system.

This alignment must be performed on the Master channel first, followed by all the
slave channels in the system and is invoked via
theLOLevelAlignment.AlignLoLevelmethod for M9381A VSG and theAlignmethod
with theAgM9391AlignmentTypeLOLeveloption for M9391A VSA.

VSG Code Snippet

mMaster.Calibration.LOLevelAlignment.AlignLoLevel();
foreach(var slave in mSlaves)
{

slave.Calibration.LOLevelAlignment.AlignLoLevel();
}

VSA Code Snippet

mMaster.Calibration.Align(
AgM9391AlignmentTypeEnum.AgM9391AlignmentTypeLOLevel);
foreach(var slave in mSlaves)
{

slave.Calibration.Align(
AgM9391AlignmentTypeEnum.AgM9391AlignmentTypeLOLevel);
}

When performing alignments, the LO level alignment should be the
first alignment invokedwhenever an LO distribution Network is being
used in the system. All subsequent alignments rely on the proper LO
signal level to be present at the LO input port. For the M9391A VSA,
this alignment will automatically be performed first when the
Alignmethodwith the AgM9391AlignmentTypeComprehensiveoption is
invoked, or if the user is performing a Keysight 89600 VSA full
calibration.

The results of the alignment are retained on the host controller and are used in
subsequent sessions. The alignment data is unique to the M9301A Synthesizer
module used as the shared synthesizer, and the M9311A Modulator module, or
M9350A Downconverter module that was used during the alignment. Reconfiguring
the system to use a different M9301A Synthesizer module as the shared synthesizer,
or changing the shared roles of the instruments in the system causes the driver to
report an error and recommend the user to rerun the alignment.

After the first alignment, a series of validations are performed at startup to verify that
the appropriate alignment data exists when operating in shared LO configuration.

The validations include:

136 M9391A and M9381A Programming Guide

Appendix - Using LO Distribution Network in Multi-Channel Systems

LO Level Field Alignment

M9391A and M9381A Programming Guide 137

Alignment data exists for the Master as well as the Slave channels.

The time elapsed since the last alignment is less than 30 days. Further, it is
verified that the Slave alignment and Master alignment were performed at the
same time, i.e., the user did not just perform the alignment on the Master which
would invalidate the Slave alignment data.

The temperature of the Modulator/Downconverter is within 10 deg. of the last
alignment.

The driver version matches the version used during the alignment.

138 M9391A and M9381A Programming Guide

References

M9391A and M9381A Programming Guide 139

References
Understanding Drivers and Direct I/O, Application Note 1465-3 (Agilent Part
Number: 5989-0110EN)

Digital Baseband Tuning Technique Speeds Up Testing, by Bill Anklam, Victor
Grothen and Doug Olney, Agilent Technologies, Santa Clara, CA, April 15,
2013, Microwave Journal

Accelerate Development of Next Generation 802.11ac Wireless LAN
Transmitters-Overview, Application Note (Agilent Part Number: 5990-9872EN)

www.ivifoundation.org

http://www.ivifoundation.org/

140 M9391A and M9381A Programming Guide

Glossary

M9391A and M9381A Programming Guide 141

Glossary
ADE (application development environment) — An integrated suite of software
development programs. ADEs may include a text editor, compiler, and
debugger, as well as other tools used in creating, maintaining, and debugging
application programs. Example: Microsoft Visual Studio.

API (application programming interface) — An API is a well-defined set of set of
software routines through which application program can access the functions
and services provided by an underlying operating system or library. Example:
IVI Drivers

C# (pronounced "C sharp") — C-like, component-oriented language that
eliminates much of the difficulty associated with C/C++.

Direct I/O — commands sent directly to an instrument, without the benefit of, or
interference from a driver. SCPI Example: SENSe:VOLTage:RANGe:AUTO Driver
(or device driver) — a collection of functions resident on a computer and used to
control a peripheral device.

DLL (dynamic link library) — An executable program or data file bound to an
application program and loaded only when needed, thereby reducing memory
requirements. The functions or data in a DLL can be simultaneously shared by
several applications.

Input/Output (I/O) layer — The software that collects data from and issues
commands to peripheral devices. The VISA function library is an example of an
I/O layer that allows application programs and drivers to access peripheral
instrumentation.

IVI (Interchangeable Virtual Instruments) — a standard instrument driver model
defined by the IVI Foundation that enables engineers to exchange instruments
made by different manufacturers without rewriting their code.
www.ivifoundation.org

IVI COM drivers (also known as IVI Component drivers) — IVI COM presents the
IVI driver as a COM object in Visual Basic. You get all the intelligence and all the
benefits of the development environment because IVI COM does things in a
smart way and presents an easier, more consistent way to send commands to
an instrument. It is similar across multiple instruments.

Microsoft COM (Component Object Model) — The concept of software
components is analogous to that of hardware components: as long as
components present the same interface and perform the same functions, they
are interchangeable. Software components are the natural extension of DLLs.
Microsoft developed the COM standard to allow software manufacturers to
create new software components that can be used with an existing application
program, without requiring that the application be rebuilt. It is this capability

http://www.ivifoundation.org/

Glossary

that allows T&M instruments and their COM-based IVI-Component drivers to
be interchanged.

.NET Framework — The .NET Framework is an object-oriented API that
simplifies application development in a Windows environment. The .NET
Framework has two main components: the common language runtime and the
.NET Framework class library.

VISA (Virtual Instrument Software Architecture) — The VISA standard was
created by the VXIplug&play Foundation. Drivers that conform to the
VXIplug&play standards always perform I/O through the VISA library. Therefore
if you are using Plug and Play drivers, you will need the VISA I/O library. The
VISA standard was intended to provide a common set of function calls that are
similar across physical interfaces. In practice, VISA libraries tend to be specific
to the vendor's interface.

VISA-COM — The VISA-COM library is a COM interface for I/O that was
developed as a companion to the VISA specification. VISA-COM I/O provides
the services of VISA in a COM-based API. VISA-COM includes some higher-
level services that are not available in VISA, but in terms of low-level I/O
communication capabilities, VISA-COM is a subset of VISA. Agilent VISA-COM
is used by its IVI-Component drivers and requires that Agilent VISA also be
installed.

142 M9391A and M9381A Programming Guide

This Page Intentionally Left Blank

M9391A and M9381A Programming Guide 143

This information is subject to change
without notice.
© Keysight Technologies 2013 - 2015
Edition 2.1, July, 2015

M9300-90080
www.keysight.com

http://www.keysight.com/

	Keysight M9391A PXIe Vector Signal Analyzer & M9381A PXIe Vector Signal Generator: Programming Guide
	Notices
	What You Will Learn in This Programming Guide
	Related Websites
	Related Documentation
	Overall Process Flow
	Documentation Map

	Installing Hardware, Software, and Licenses
	APIs for the M9391A PXIe VSA and M938xA PXIe VSG
	IVI Compliant or IVI Class Compliant
	IVI Driver Types
	IVI Driver Hierarchy
	Instrument-Specific Hierarchies for the M9391A and M938xA
	When Using Visual Studio

	Naming Conventions Used to Program IVI Drivers
	General IVI Naming Conventions
	IVI-COM Naming Conventions

	Creating a Project with IVI-COM Using C-Sharp
	Step 1 - Create a Console Application
	Step 2 - Add References
	Step 3 - Add Using Statements
	To Access the IVI Drivers Without Specifying or Typing The Full Path

	Step 4 - Create Instances of the IVI-COM Drivers
	To Create Driver Instances

	Step 5 - Initialize the Driver Instances
	Resource Names
	Initialize() Parameters
	Initialize() Options
	M9300A Reference Sharing
	Example: M9300A PXIe Reference with M9381A PXIe VSG
	Example: M9300A PXIe Reference with M9391A PXIe VSA
	Example: M9300A PXIe Reference Shared With Both Modules

	Step 6 - Write the Program Steps
	Using the Soft Front Panel to Write Program Commands

	Step 7 - Close the Driver
	Step 8 - Building and Running a Complete Program Using Visual C-Sharp
	Example Program 1- Code Structure
	Example Program 1- How to Print Driver Properties, Check for Errors, and Clos...

	Working with PA_FEM Measurements
	Test Challenges Faced by Power Amplifier Testing
	Performing a Channel Power Measurement, Using Immediate Trigger
	Example Program 2 - Code Structure
	Example Program 2 - Pseudo-code
	Example Program 2 - Channel Power Measurement Using Immediate Trigger

	Performing a WCDMA Power Servo and ACPR Measurement
	Example Program 3 - Code Structure
	Example Program 3 - Pseudo-code
	Example Program 3 - WCDMA Power Servo and ACPR Measurement
	Disclaimer

	Working with 802.11ac MIMO RnD and DVT Tests
	Preparing the Hardware and Software for 802.11ac MIMO RnD DVT Tests
	Example Program 4 - How to Perform Transmitter Tests with 89600 VSA Software
	Example Program4 - Pseudo-Code

	Step 1 : Create a Console Application
	Step 2 : Add References
	Step 3 : Add Using Statements
	Step 4 - Create Driver Instances
	To create driver instances

	Step 5 - Initialize Driver Instances and Check for Errors
	To Establish a Communication Link, get the Resource Name Addresses

	Step 6 - Route Backplane Triggers and Bus Segments on the M9018A PXIe Chassis
	Routing an External Trigger Input and ALC Hold on each M9381A PXIe VSG
	Routing a Synchronization Playback Trigger from the M9300A PXIe Reference to ...
	Routing MASTER_SLAVE Backplane Triggers for each M9391A PXIe VSA

	2x2 MIMO
	3x3 MIMO
	4x4 MIMO
	Step 7 - Set Up the M9381A PXIe VSGs for WLAN Rx Testing
	Disable ALC for WLAN waveforms to achieve best Residual EVM
	Enable Pulse Blanking - Achieve Best Off Time Rejection
	Set PLL MODE to Best Wide Offset
	Set RF Frequency
	Set Amplitude (Power_Level)
	Enable Modulation
	Enable RF Output

	Step 8 - Start Continuous Waveform Playback without Power Search or IQ DC Cal...
	Overview of the Process to Start Continuous Waveform Playback without Power S...
	1. Specify a Waveform File to Upload and Play
	2. Upload the Specified Waveform File
	3. Set Up M9300A PXIe Reference to Generate a User-Defined Trigger on PXI TRIG 0
	4. Configure all M9381A PXIe VSGs to Listen for an External Trigger on PXI TR...
	5. Arm All M9381A PXIe VSGs and Prepare for Playing the Specified Waveform fi...
	6. Generate a Sync Pulse from the M9300A PXIe Reference on PXI TRIG 0 to Star...

	(Optional) Step 8 - Start Continuous or Sequence waveform Playback with Power...
	Overview of Starting Continuous Waveform Playback with Power Search and IQ DC...
	Overview of Starting Sequence Waveform Playback with Power Search and IQ DC Cal

	Step 9 - Create an N-Channel Analyzer Hardware Configuration with 89600 VSA S...
	Create a 2-Channel Analyzer of M9391A PXIe VSAs

	Step 10 - Start 89600 VSA Software to Analyze M9381A PXIe VSGs Waveform Output
	Step 11 - Optimize 89600 VSA Settings for WLAN Demodulation

	Using Shared LO for Phase-Coherent Signal Generation and Signal Acquisition
	Using a Shared LO
	Implementation of Shared LO
	Prerequisites for Using a Shared LO
	LO Level Field Alignment
	Cabling of Instruments When Sharing Local Oscillator

	Initialization Settings for Shared LO
	Initialization Steps
	LO Level Field Alignment

	Example Programs
	Assumptions for Example Programs
	Example Program 5 - Pseudo-Code
	Example Program 5 - Program Steps with Code Snippets

	Example Program 6 - Pseudo-Code
	Example Program 6 - Program Steps with Code Snippets

	Hints for Various Configuration Tasks
	Restarting an Already Playing Waveform in M9381A VSG
	Use Case
	Description
	Program Steps

	Appendix - Determining Resource Name Address Strings
	Appendix - Verify Instruments Connect, Pass Self-Test, and are Updated
	Verify that VSG 1 is Connected, Passes Self-Test, and Contains Up to Date Fir...
	Verify that VSG 2 is Connected, Passes Self-Test, and Contains Up to Date Fir...
	Verify that VSA 1 is Connected, Passes Self-Test, and Contains Up to Date Fir...
	Verify that VSA 2 is Connected, Passes Self-Test, and Contains Up to Date Fir...

	Appendix - Using LO Distribution Network in Multi-Channel Systems
	Initialization Settings for LO Distribution Network
	LO Level Field Alignment
	VSG Code Snippet
	VSA Code Snippet

	References
	Glossary

