N5227B 2-Port and 4-Port PNA Microwave Network Analyzers Service Guide
 N5227B Series - (900 Hz /10 MHz - 67.5 GHz)

Notices

© Keysight Technologies, Inc. 2011-2023

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Keysight Technologies, Inc. as governed by United States and international copyright laws.

Trademark Acknowledgments

Manual Part Number
N5227-90026
Edition
Edition 1, July 2023
Printed in USA/Malaysia
Published by:
Keysight Technologies
1400 Fountaingrove Parkway
Santa Rosa, CA 95403

Warranty

THE MATERIAL CONTAINED IN THIS DOCUMENT IS PROVIDED "AS IS," AND IS SUBJECT TO BEING CHANGED, WITHOUT NOTICE, IN FUTURE EDITIONS. FURTHER, TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, KEYSIGHT DISCLAIMS ALL WARRANTIES, EITHER EXPRESS OR IMPLIED WITH REGARD TO THIS MANUAL AND ANY INFORMATION CONTAINED HEREIN, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. KEYSIGHT SHALL NOT BE LIABLE FOR ERRORS OR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING, USE, OR PERFORMANCE OF THIS DOCUMENT OR ANY INFORMATION CONTAINED HEREIN. SHOULD KEYSIGHT AND THE USER HAVE A SEPARATE WRITTEN AGREEMENT WITH WARRANTY TERMS COVERING THE MATERIAL IN THIS

DOCUMENT THAT CONFLICT WITH THESE TERMS, THE WARRANTY TERMS IN THE SEPARATE AGREEMENT WILL CONTROL.

Technology Licenses

The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

U.S. Government Rights

The Software is "commercial computer software," as defined by Federal Acquisition Regulation ("FAR") 2.101. Pursuant to FAR 12.212 and 27.405-3 and Department of Defense FAR Supplement ("DFARS") 227.7202, the U.S. government acquires commercial computer software under the same terms by which the software is customarily provided to the public. Accordingly, Keysight provides the Software to U.S. government customers under its standard commercial license, which is embodied in its End User License Agreement (EULA), a copy of which can be found at http://www.keysight.com/find/sweula The license set forth in the EULA represents the exclusive authority by which the U.S. government may use, modify, distribute, or disclose the Software. The EULA and the license set forth therein, does not require or permit, among other things, that Keysight: (1) Furnish technical information related to commercial computer software or commercial computer software documentation that is not customarily provided to the public; or (2) Relinquish to, or otherwise provide, the government rights in excess of these rights customarily provided to the public to use, modify, reproduce, release, perform, display, or disclose commercial computer software or commercial computer software documentation. No additional
government requirements beyond those set forth in the EULA shall apply, except to the extent that those terms, rights, or licenses are explicitly required from all providers of commercial computer software pursuant to the FAR and the DFARS and are set forth specifically in writing elsewhere in the EULA. Keysight shall be under no obligation to update, revise or otherwise modify the Software. With respect to any technical data as defined by FAR 2.101, pursuant to FAR 12.211 and 27.404 .2 and DFARS 227.7102, the U.S. government acquires no greater than Limited Rights as defined in FAR 27.401 or DFAR 227.7103-5 (c), as applicable in any technical data.

Safety Notices

CAUTION

A CAUTION notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met.

WARNING

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

NOTICE: This document contains references to Agilent Technologies. Agilent's former Test and Measurement business has become Keysight Technologies. For more information, go to www.keysight.com.

1. Safety and Regulatory Information
Information in This Chapter 1-1
Chapter One at-a-Glance 1-1
Safety Symbols 1-2
General Safety Considerations 1-3
Safety Earth Ground 1-3
Before Applying Power 1-3
Servicing 1-5
Electrostatic Discharge Protection 1-7
Regulatory Information 1-9
Instrument Markings 1-9
Lithium Battery Disposal 1-12
2. General Product Information Information in This Chapter 2-1
Chapter Two at-a-Glance 2-1
Maintenance 2-2
Physical Maintenance 2-2
Electrical Maintenance 2-2
Analyzer Options, Accessories, and Upgrades Available. 2-3
Pulse I/O Adapter-N1966A 2-3
Required Service Test Equipment 2-4
Keysight Support, Services, and Assistance 2-7
Service and Support Options 2-7
Contacting Keysight 2-7
Shipping Your Analyzer to Keysight for Service or Repair 2-8
3. Tests and Adjustments Information in This Chapter 3-1
Conventions Used for Hardkeys, Softkeys, and Menu Items 3-1
Chapter Three at-a-Glance 3-1
Before You Begin 3-4
Verify the Operating Environment 3-4
Protect Against Electrostatic Discharge (ESD) 3-4
Allow the Analyzer to Warm Up 3-5
Review the Principles of Connector Care 3-5
About System Verification and Performance Tests 3-7
System Specifications 3-7
Instrument Specifications 3-7
System Verification Procedure 3-8
Performance Tests 3-8
Certificate of Calibration 3-8
ANSI/NCSL Z540.3-2006 and ISO/IEC 17025 Verification 3-10
Non-Standards Compliant Verification 3-11
Preliminary Checks 3-12
The Operator's Check 3-12
The Test Port Cable Checks. 3-14
System Verification 3-21
What the System Verification Verifies 3-21
Measurement Uncertainty 3-21
Measurement Traceability 3-22
Performing System Verification 3-23
Performance Tests 3-31
Source Power Accuracy Test 3-31
Source Maximum Power Output Test 3-32
Source Power Linearity Test 3-33
Frequency Accuracy Test. 3-34
Trace Noise Test 3-34
Receiver Compression Test 3-35
Noise State Calibration Coefficients 3-37
Noise Floor Test 3-37
Calibration Coefficients Test 3-38
Dynamic Accuracy Test 3-39
Dynamic Accuracy at Low Frequency (Available with LFE Option 205/220/420/425) 3-40
DC Continuity Test the LFE Board and Test Ports (Available with LFE Option 205/220/420/425) 3-43
Adjustments 3-44
Touchscreen Adjustment and Verification. 3-44
10 MHz Frequency Reference Adjustment 3-45
Synthesizer Bandwidth Adjustment 3-47
Source Adjustment 3-47
IF Gain Adjustment 3-48
Receiver Characterization 3-48
Receiver Adjustment 3-49
EE Default Adjustment 3-51
IF Response Adjustment (Available Only with Option S93093/4A/B and or S93900/1/2/4/5/7A/B Installed) 3-51
LFE Receiver Adjustment - (Available with Option 205, 220, 405, and 420) 3-52
4. Troubleshooting
Information in This Chapter 4-1
Chapter Four at-a-Glance 4-2
Conventions Used for Hardkeys, Softkeys, and Menu Items 4-3
Operating the Analyzer With Covers Removed 4-5
Protect Against Electrostatic Discharge (ESD) 4-5
Assembly Replacement Sequence 4-6
Getting Started with Troubleshooting 4-7
Check the Basics 4-7
Troubleshooting Organization 4-7
Power Up Troubleshooting 4-9
Power Supply Check 4-10
Troubleshooting LCD Display Problems 4-15
Front Panel Troubleshooting 4-17
Front Panel Keypad and RPG Test 4-17
A3 Display Test 4-20
Checking the A2 USB Board 4-21
A1 Front Panel Interface Board 4-22
Rear Panel Troubleshooting 4-24
Checking the USB Ports 4-24
Checking the CONTROLLER Port. 4-24
LAN Troubleshooting 4-25
Measurement System Troubleshooting 4-31
Before you begin-consider: Where do you see a problem? 4-31
Verifying the A, B, C, D, and R Traces (Standard S-Parameter Mode) 4-33
Where to Begin Troubleshooting 4-34
Checking the Source Group 4-37
Checking the Signal Separation Group 4-48
Checking the Receiver Group 4-53
Instrument Simplified Block Diagrams - LFE 4-57
2-Port N5290A System Block Diagram (201 and 205) 4-57
2-Port N5290A System Block Diagram (202 and 205) 4-58
4-Port N5290A System Block Diagram (401) 4-59
Instrument Block Diagrams - 2-Port (Sheet 1), Non-LFE and Non-DDS (Version 6 Synthesizers). 4-62
Microwave PNA, N5227B - 2-Port (Version 6 Synthesizers), Non-LFE and Non-DDS 4-62
Instrument Block Diagrams - 2-Port (Sheet 2), LFE and Non-DDS (Version 6 Synthesizers)4-64
Microwave PNA, N5227B - 2-Port (LFE \& Version 6 Synthesizers), LFE and Non-DDS4-64
Instrument Block Diagrams - 2-Port (Sheet 3), Non-LFE and DDS (Version 7 SynthesizerAssemblies)4-66
Microwave PNA, N5227B - 2-Port (Version 7 Synthesizer Assembly), Non-LFE and DDS .

4-66
Instrument Block Diagrams - 2-Port (Sheet 4), LFE and DDS (Version 7 Synthesizer Assemblies) 4-68
Microwave PNA, N5227B - 2-Port (LFE \& Version 7 Synthesizer Assembly), LFE and DDS. 4-68
Instrument Block Diagrams - 4-Port (Sheet 5), Non-LFE and Non-DDS (Version 6Synthesizers)4-70Microwave PNA, N5227B - 4-Port (Version 6 Synthesizers), Non-LFE and Non-DDS. 4-70Instrument Block Diagrams - 4-Port (Sheet 6), LFE and Non-DDS (Version 6 Synthesizers) . .4-72
Microwave PNA, N5227B - 4-Port (LFE \& Version 6 Synthesizers), LFE and Non-DDS4-72
Instrument Block Diagrams - 4-Port (Sheet 7), Non-LFE and DDS (Version 7 Synthesizer Assemblies) 4-74
Microwave PNA, N5227B - 4-Port (Version 7 Synthesizer Assembly), Non-LFE and DDS4-74
Instrument Block Diagrams - 4-Port (Sheet 8), LFE and DDS (Version 7 Synthesizer Assemblies) 4-76
Microwave PNA, N5227B - 4-Port (LFE \& Version 7 Synthesizer Assembly), LFE and DDS.4-76
5. Theory of Operation Information in This Chapter 5-1
Chapter Five at-a-Glance 5-2
Network Analyzer System Operation 5-3
Functional Groups of the Network Analyzer 5-6
Synthesized Source Group Operation 5-10
Basic Operation 5-11
A4, A15, and A17 13.5 GHz Synthesizer Boards (S/N Prefixes <6021 Only) 5-22
A15 Version 7 Digital to Digital Synthesizer (DDS) Assembly (S/N Prefixes ≥ 6021 Only)5-23
A5 and A10 26.5 GHz Source Boards 5-24
A7, A8, A12, and A13 50 GHz Doubler Boards 5-24
A56, A57, A58, and A59 70 GHz Doubler Boards 5-25
A25 Multiplier/Amplifier 26.5 Board (HMA26.5) 5-25
A14 Frequency Reference Board (S/N prefixes <6021 Only) 5-26
A23 Test Set Motherboard. 5-26
A70 4-Port and A75 2-Port Low Frequency Extension (LFE) Board 5-29
Signal Separation Group Operation 5-43
Configurable Test Set 5-43
A29-A32 Receiver Couplers 5-44
A33-A36 Test Port Couplers 5-44
A38-A41 50-dB Source Step Attenuators and A471-A45 Bias Tees (Optional) 5-48
A42-A45 50-dB Source Step Attenuators and A71-74 Bias Tee Combiners (Optional)
5-48
Receiver Group Operation 5-49
A46-A49 50-dB Receiver Step Attenuators (Optional) 5-49
A37 Reference Mixer Switch 5-49
A27 and A28 Mixer Bricks 5-49
A24 IF Multiplexer Board 5-50
A16 SPAM Board (Analog Description) 5-51
Digital Processing and Digital Control Group Operation 5-54
Front Panel Subgroup 5-56
Data Acquisition and Processing Subgroup 5-57
Power Supply Group Operation 5-59
6. Replaceable Parts
Information in This Chapter 6-1
Chapter Six at-a-Glance 6-1
Ordering Information 6-2
Assembly Replacement Sequence 6-3
Rebuilt-Exchange Assemblies 6-4
Replaceable Parts Listings 6-6
Front Panel Assembly, Front Side, All Options 6-11
Front Panel N5227B Assembly, Back Side, All Options 6-14
Top Assemblies and Cables, All Options, Serial Number Prefixes <6021 6-17
Top Assemblies and Cables, All Options, Serial Number ≥ 6021 6-23
2-Port Configurations, Serial Number Prefix <6021 6-30
2-Port Configurations, Serial Number Prefix ≥ 6021 6-72
4-Port Configuration, Serial Number Prefix <6021 6-115
4-Port Configurations, Serial Number Prefix ≥ 6021 6-175
Rear-panel Assembly, All Options 6-232
Fan Assemblies, All Options 6-235
Top Hardware and Miscellaneous Parts, All Options 6-237
Bottom Hardware and Miscellaneous Parts 6-239
Internal Hardware and Miscellaneous Parts, All Options 6-242
External Hardware and Miscellaneous Parts, All Options 6-244
Miscellaneous Part Numbers 6-245
7. Repair and Replacement Procedures
Information in This Chapter 7-2
Chapter Seven at-a-Glance 7-2
Personal Safety Warnings 7-3
Electrostatic Discharge (ESD) Protection 7-3
Removal and Replacement Procedures 7-4
Removing the Covers. 7-6
Removing and Replacing the Front Panel Assembly 7-7
Removing and Replacing the A1-A3 and Other Front Panel Subassemblies 7-9
Removing and Replacing the A4-A17 Boards 7-17
Removing and Replacing the A18 System Motherboard 7-19
Removing and Replacing the A19 Midplane Board 7-22
Removing and Replacing the A20 Power Supply Assembly 7-24
Removing and Replacing the A21 CPU Board Assembly 7-26
Removing and Replacing the A22 GPIB Board 7-28
Removing and Replacing the A23 Test Set Motherboard. 7-30
Removing and Replacing the A24 IF Multiplexer Board 7-33
Removing and Replacing the A25 HMA26.5 7-35
Verify the Model/Version of HMA26.5 Installed 7-36
Removing and Replacing the A26 Splitter 7-38
Removing and Replacing the A27 and A28 Mixer Bricks 7-40
Removing and Replacing the A29 -A32 Receiver Couplers and Receiver Coupler Mounting Brackets 7-43
Removing and Replacing the A33-A36 Test Port Couplers 7-45
Removing and Replacing the A37 Reference Mixer Switch 7-47
Removing and Replacing the A38-A41 Source Attenuators and the A46-A49 Receiver Attenuators 7-49
Removing and Replacing the A42-A45 Bias Tees 7-52
Removing and Replacing the A55 Solid State Drive (SSD) 7-54
Removing and Replacing the A60-A63 70 GHz Doublers 7-56
Removing and Replacing the A70 or A75 Low Frequency Extension (LFE) Board 7-58
Removing and Replacing the A71-A74 Bias Tee Combiners 7-65
Removing and Replacing the Rear Panel 7-69
Removing and Replacing the Front Panel LED Boards 7-71
Removing and Replacing the Fans 7-73
Removing and Replacing the Lithium Battery 7-75
Post-Repair Procedures 7-77
Resetting the Mechanical Counter 7-85
EEPROM Backup 7-86
8. General Purpose Maintenance Procedures Information in This Chapter 8-1
Chapter Eight at-a-Glance 8-1
Conventions Used for Hardkeys, Softkeys, and Menu Items 8-1
Error Terms 8-2
Using Error Terms as a Diagnostic Tool 8-2
Performing Measurement Calibration 8-3
Using Flowgraphs to Identify Error Terms 8-3
Accessing Error Terms 8-6
Error Term Data 8-8
Keysight License Manager 8-11
Accessing the Keysight License Manager 8-11
Software Entitlement Certificate 8-11
Enabling or Removing Options 8-12
Repairing and Recovering Option Data 8-12
Installing or Changing a Serial Number 8-13
Firmware Upgrades 8-14
How to Check the Current Firmware Version 8-14
Downloading from the Internet 8-14
Operating System Recovery 8-15
Recovering from Hard Disk Drive Problems 8-15
Correction Constants 8-16
Storing Correction Constants 8-16
A:.EEPROM Address Assignments and Location (N5227A\&B PNA and N5247A\&B PNA-X Instruments)

Contents

Service Guide

1 Safety and Regulatory Information

Information in This Chapter

This chapter provides safety information that will help protect you and your network analyzer. It also contains information that is required by various government regulatory agencies.

Chapter One at-a-Glance

Section Titte	Summary of Content	Start Page
Safety Symbols	Descriptions of CAUTION and WARNING symbols used throughout this manual.	page 1-2
General Safety Considerations	A list of safety points to consider when servicing your network analyzer.	page 1-3
Electrostatic Discharge Protection	A discussion of electrostatic discharge (ESD) and related recommendations and requirements for ESD protection.	page 1-7
Regulatory Information	Definitions of instrument markings. Instructions for disposing of the analyzer's lithium battery.	page 1-9

Safety Symbols

The following safety symbols are used throughout this manual. Familiarize yourself with each of the symbols and its meaning before operating this instrument.

```
CAUTION
```

Caution denotes a hazard. It calls attention to a procedure that, if not correctly performed or adhered to, could result in damage to or destruction of the instrument. Do not proceed beyond a caution note until the indicated conditions are fully understood and met.

WARNING

Warning denotes a hazard. It calls attention to a procedure which, if not correctly performed or adhered to, could result in injury or loss of life. Do not proceed beyond a warning note until the indicated conditions are fully understood and met.

General Safety Considerations

Safety Earth Ground

WARNING

This is a Safety Class I product (provided with a protective earthing ground incorporated in the power cord). The mains plug shall only be inserted in a socket outlet provided with a protective earth contact. Any interruption of the protective conductor, inside or outside of the instrument, will make the instrument dangerous. Intentional interruption is prohibited.

WARNING

CAUTION

Use Keysight supplied power cord or one with same or better electrical rating.

Always use the three-prong AC power cord supplied with this product. Failure to ensure adequate grounding by not using this cord may cause product damage.

Before Applying Power

WARNING

If this product is not used as specified, the protection provided by the equipment could be impaired. This product must be used in a normal condition (in which all means for protection are intact) only.

If an instrument handle is damaged, you should replace it immediately. Damaged handles can break while you are moving or lifting the instrument and cause personal injury or damage to the instrument.

WARNING

CAUTION

CAUTION

Supply voltages which oscillate between the two normal input ranges of the autoranging line voltage input will damage the power supply. In rare cases, this damage has become a user safety concern. If unstable power levels are expected, the analyzer input power must be buffered by a line conditioner.

This instrument has autoranging line voltage input. Be sure the supply voltage is within the specified range.

This product is designed for use in Installation Category II and Pollution Degree 2 per IEC 61010-1:2001 and 664 respectively.

CAUTION

CAUTION

CAUTION

Do not operate the analyzer with the outer cover removed for more than 30 minutes, as this could cause the analyzer to overheat which could result in costly damage.

Ventilation Requirements: When installing the product in a cabinet, the convection into and out of the product must not be restricted. The ambient temperature (outside the cabinet) must be less than the maximum operating temperature of the instrument by $4^{\circ} \mathrm{C}$ for every 100 watts dissipated in the cabinet. If the total power dissipated in the cabinet is greater than 800 watts, then forced convection must be used.

The measuring terminals on this instrument are designed to be used with external signals described in Measurement Category I, but NOT with external signals described in Categories II, III, and IV. The input of this instrument cannot be connected to the mains.

Servicing

WARNING

WARNING

WARNING

WARNING

CAUTION

WARNING

WARNING

NOTE

NOTE

These servicing instructions are for use by qualified personnel only. To avoid electrical shock, do not perform any servicing unless you are qualified to do so.

Danger of explosion if battery is incorrectly replaced. Replace only with the same or equivalent type recommended. Discard used batteries according to local ordinances and/or manufacturer's instructions.

Procedures described in this document may be performed with power supplied to the product while protective covers are removed. Energy available at many points may, if contacted, result in personal injury.

No operator serviceable parts inside. Refer servicing to qualified personnel. To prevent electrical shock, do not remove covers.

Do not operate the analyzer with the outer cover removed for more than 30 minutes, as this could cause the analyzer to overheat which could result in costly damage.

The opening of covers or removal of parts may expose dangerous voltages. Disconnect the instrument from all voltage sources while it is being opened.

The detachable power cord is the instrument disconnecting device. It disconnects the mains circuits from the mains supply before other parts of the instrument. The front panel switch is only a standby switch and is not a LINE switch (disconnecting device).

There are no replaceable fuses in the mains input or within the power supply assembly.

Keysight personnel: after calibration is completed, attach four "calibration void if seal broken" stickers to the PNA as shown in Figure 1-1.

Figure 1-1 Location of Calibration Stickers on PNAs

Electrostatic Discharge Protection

Protection against electrostatic discharge (ESD) is essential while removing assemblies from or connecting cables to the network analyzer. Static electricity can build up on your body and can easily damage sensitive internal circuit elements when discharged. Static discharges too small to be felt can cause permanent damage. To prevent damage to the instrument:

- always have a grounded, conductive table mat in front of your test equipment.
- always wear a grounded wrist strap, connected to a grounded conductive table mat, having a $1 \mathrm{M} \Omega$ resistor in series with it, when handling components and assemblies or when making connections.
- always wear a heel strap when working in an area with a conductive floor. If you are uncertain about the conductivity of your floor, wear a heel strap.
- always ground yourself before you clean, inspect, or make a connection to a static-sensitive device or test port. You can, for example, grasp the grounded outer shell of the test port or cable connector briefly.
- always ground the center conductor of a test cable before making a connection to the analyzer test port or other static-sensitive device. This can be done as follows:

1. Connect a short (from your calibration kit) to one end of the cable to short the center conductor to the outer conductor.
2. While wearing a grounded wrist strap, grasp the outer shell of the cable connector.
3. Connect the other end of the cable to the test port and remove the short from the cable.

Figure 1-2 shows a typical ESD protection setup using a grounded mat and wrist strap. Refer to "ESD Supplies" on page 6-247 for part numbers.

Figure 1-2 ESD Protection Setup

Regulatory Information

This section contains information that is required by various government regulatory agencies.

Instrument Markings

The table below lists the definitions of markings that may be on or with the product. Familiarize yourself with each marking and its meaning before operating the instrument.

All labels and symbols may not apply to the instrument.

NOTE

This symbol marks the standby position of the power line switch.

This symbol identifies the Protective Conductor terminal.

This symbol indicates the equipment is protected throughout by double or reinforced insulation.
The CE mark is a registered trademark of the European Community (if accompanied
by a year, it is the year when the design was proven). It indicates that the product
complies with all the relevant directives.

身	The crossed-out wheeled bin symbol indicates that separate collection for waste electric and electronic equipment (WEEE) is required, as obligated by the EU DIRECTIVE and other National legislation. Please refer to www.keysight.com/go/takeback to understand your trade-in options with Keysight, in addition to product takeback instructions.
	China Restricted Substance Product Label. The EPUP (environmental protection use period) number in the center indicates the time period during which no hazardous or toxic substances or elements are expected to leak or deteriorate during normal use and generally reflects the expected useful life of the product.
	Universal recycling symbol. This symbol indicates compliance with the China standard GB 18455-2001 as required by the China RoHS regulations for paper/fiberboard packaging.
IP x y	This mark indicates product has been designed to meet the requirements of "IP x y", where " x " is the solid particle protection and " y " is the liquid ingress protection.
Environmental Information	
NOTE	Samples of this product have been type-tested in accordance with the Keysight Environmental Test Manual and verified to be robust against the environmental stresses of storage, transportation and end-use; those stresses include but are not limited to temperature, humidity, shock, vibration, altitude, and power-line conditions. Test methods are aligned with IEC 60068-2 and levels are similar to MIL-PRF-28800F Class 3.
Parameter	Required Values/Ranges
Operating Environment	For Indoor Use ONLY
	This instrument has no air filters on the fan ports. Operation in dirty, dusty, or similar environments must be avoided.
Operating Temperature	$0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$
	The instrument powers-up and displays no error messages within this temperature range (except for "source unleveled" error message that may occur at temperatures outside the specified performance temperature range of $25 \pm 5^{\circ} \mathrm{C}$).
Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Error-corrected range	$23{ }^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$ with less than $1^{\circ} \mathrm{C}$ deviation from calibration temperature.

Parameter	Required Values/Ranges
Operating Altitude	0 to 4,600 meters (15,000 feet)
Relative humidity	Type tested, 0% to 95% at $40^{\circ} \mathrm{C}$, non-condensing In conditions of very high humidity (below 95\%) at changing temperature, there is a small risk of internal condensation that could cause the CPU real-time clock to temporarily stop incrementing time.

Lithium Battery Disposal

If the battery on the A21 CPU board assembly needs to be disposed of, dispose of it in accordance with your country's requirements. If required, you may return the battery to Keysight Technologies for disposal. Refer to "Contacting Keysight" on page 2-7 for assistance.

DO NOT THROW BATTERIES AWAY BUT COLLECT AS SMALL CHEMICAL WASTE.

For instructions on removing and replacing the battery on the A21 CPU board assembly, refer to "Removing and Replacing the Lithium Battery" on page 7-75.

Service Guide

2 General Product Information

Information in This Chapter

Chapter Two at-a-Glance

Section Title	Summary of Content	Start Page	
Maintenance	Cleaning instructions for the external surfaces of your analyzer. Information about electrical maintenance of your analyzer.	page 2-2	
Analyzer Options, Accessories, and Upgrades Available A hyperlink to the PNA Configuration Guide, which includes list of options, accessories, and upgrades available for the microwave network analyzers. page 2-3 Required Service Test Equipment A list of service equipment that is required to perform systen verification, performance tests, adjustments, and troubleshooting. page 2-4 Keysight Support, Services, and The Internet address (URL) for on-line assistance. page 2-7 Assistance Service and support options available. Calibration options available. Important information about shipping your analyzer to Keysight for service or repair.			

Maintenance

Physical Maintenance

WARNING

To prevent electrical shock, disconnect the analyzer from the mains source before cleaning. Use a dry cloth or one slightly dampened with water to clean the external case parts. Do not attempt to clean internally.

Electrical Maintenance

Refer to "Contacting Keysight" on page 2-7 and to Chapter 3, "Tests and Adjustments."

Analyzer Options, Accessories, and Upgrades Available

To see a list of the options, accessories and upgrades available for the network analyzers, including ordering information, refer to the Keysight PNA Family Microwave Network Analyzers Configuration Guide, available online at https://www.keysight.com/us/en/assets/7018-05185/configuration-guides/ 5992-1465.pdf (5992-1465EN).

NOTE

Only Keysight approved accessories shall be used.

Pulse I/O Adapter-N1966A

An adapter for connecting between the analyzer's rear-panel PULSE I/O connector and the coaxial inputs and outputs of external pulse generators and external pulse modulators. The adapter contains 11 SMB-male coaxial connectors and a mating connector for the rear-panel PULSE I/O connector.
This adapter can be ordered as model number N1966A.
Figure 2-1 N1966A Pulse I/O Adapter

Required Service Test Equipment

Equipment ${ }^{\text {a }}$	Critical Specifications	Recommended Model or Part Number	Alternate Model or Part Number	Use ${ }^{\text {b }}$
Test Instruments and Software				
Compression test set	None specified	U3070AK01	None	P
Dynamic accuracy test set	None specified	U3020AD01	None	P
Test software ${ }^{\text {c }}$	N/A	N7840A	None	P
Frequency counter	Freq: 10 MHz to 20 GHz Accuracy: $\pm 0.5 \mathrm{ppm}$	$\begin{aligned} & \text { 53151A } \\ & \text { Opt } 001 \end{aligned}$	None	P, A, T
Signal generator	CW Freq: 1.185 GHz	N5181A, Option 503	E8257D, Option 520	P, A, T
Power meter	Accuracy: $\pm 0.0068 \mathrm{~dB}$	N1913A/14A	$\begin{aligned} & \mathrm{E} 4418 \mathrm{~A} / \mathrm{B}, \\ & \mathrm{E} 4419 \mathrm{~A} / \mathrm{B}^{\mathrm{d}} \end{aligned}$	P, A, T
Power sensor	Freq: 10 MHz to 4.2 GHz Range: -30 to +20 dBm	N8482A	8482A	P, A,T
Power sensor	Freq: 50 MHz to 40 or 50 GHz Range: -30 to +20 dBm	N8487A	8487A	P, A, T
Power sensor ${ }^{\text {e }}$	Freq: 50 MHz to 67 GHz Range: -30 to +20 dBm	V8486A	None	P, A, T
Adaptere (WR-15 to 1.85 mm)	Return Loss: $\geq 22 \mathrm{~dB}$	V281A	None	P, A, T
Spectrum analyzer	Min Freq: 1 MHz Max Freq: > 4 GHz Resolution BW: 300 Hz	E444xA PSA series, N90xxA signal analyzer family	856xE	A, T
Digital voltmeter	Resolution: 10 mV	Any	Any	T
Electronic Tool (ET) - N7840A Metrology Stability (Option 410 Only)				
Switch box (Option 410 only)	N/A	ET-55919* *Internal Keysight Only	None	P
Printer	N/A	Any printer with Microsoft Windows XP, Windows 7, or Windows 10 driver		--
Mouse	N/A	Any	Any	--

Equipment ${ }^{\mathrm{a}}$	Critical Specifications	Recommended Model or Part Number	Alternate Model or Part Number	Use $^{\mathrm{b}}$
Keyboard	N/A	Any	Any	--

a. Unless specified otherwise, equipment listed is required for all analyzer models.
b. $P=$ Performance tests, $A=$ Adjustments, $T=$ Troubleshooting, $V=$ System verification
c. The recommended model or part number for all equipment listed with a " P " in the Use column is required for proper operation of this test software.
d. If an accurate measurement of the dynamic accuracy specification is not required, the E4418A or E4419A can be used.
e. This sensor and adapter must be calibrated together by the Keysight factory. The data supplied is only valid as long as the sensor and adapter remain connected.

Required Service Test Equipment (Cont'd)

Equipment ${ }^{\text {a }}$	Critical Specifications	Recommended Model or Part Number	Alternate Model Number	Use ${ }^{\text {b }}$
Tools				
T-8 TORX driver	0.6 N-m (5 in-lb) setting	N/A	N/A	R
T-10 TORX driver	$0.5,0.8$, and $1.0 \mathrm{~N}-\mathrm{m}$ (4, 7, and 9 in-lb) settings	N/A	N/A	T, R
T-15 TORX driver	$1.5 \mathrm{~N}-\mathrm{m}(14 \mathrm{in}-\mathrm{lb})$ setting	N/A	N/A	T, R
T-20 TORX driver	$2.4 \mathrm{~N}-\mathrm{m}(21 \mathrm{in}-\mathrm{lb})$ setting	N/A	N/A	T, R
1/4 inch and 5/16 inch open-end wrench	Thin profile	8710-0510	N/A	A, R
5/16 inch, open-end torque wrench (metric equivalent is 8 mm)	1.1 and $2.4 \mathrm{~N}-\mathrm{m}$ (10 and 21 in-lb) settings (for semi-rigid cables)	N/A	N/A	T, R
1 inch, open-end torque wrench (metric equivalent is 26 mm)	8.1 N-m (72 in-lb) setting (for Port 1 and Port 2 connector nuts)	N/A	N/A	R
9-mm, socket or open-end wrench	2.38 N-m (21 in-lb) setting (for all front panel and most rear panel connector hex nuts)	N/A	N/A	R
20 mm , open-end torque wrench	$0.9 \mathrm{~N}-\mathrm{m}$ (8 in-lb) setting (for measurement port connections)	8710-1764	N/A	P, A, T

Static Safety Parts

Adjustable antistatic wrist strap	N/A	$9300-1367$	None	P, A, T
Antistatic wrist strap grounding cord (5 foot)	N/A	$9300-0980$	None	P, A, T

Equipment ${ }^{\text {a }}$	Critical Specifications	Recommended Model or Part Number	Alternate Model Number	Use ${ }^{\text {b }}$					
Static control table mat and earth ground wire	N/A	$9300-0797$	None	P, A, T					
Miscellaneous			Any	None	P, A, R	USB flash ROM drive	N/A		
:---	:---	:---	:---						

Keysight Support, Services, and Assistance

Information on the following topics is included in this section.

- "Service and Support Options"
- "Contacting Keysight"
- "Shipping Your Analyzer to Keysight for Service or Repair"

Service and Support Options

The analyzer's standard warranty period is one year from the time of initial delivery. All repairs require the analyzer to be shipped to the nearest Keysight Technologies service center. Extended warranty periods can be purchased with the initial product purchase.

There are many other repair and calibration options available from the Keysight Technologies support organization. These options cover a range of service agreements with a variety of time frames. The following support products with their associated options are available for purchase with the initial product purchase.

- R1280A Return to Keysight Warranty and Service Plan Options are available to extend the warranty period to five years.
- R1282A Return to Keysight Calibration Plan The analyzer is delivered with a one-year calibration certificate. Options are available to have Keysight Technologies provide three or five year calibration coverage (perform the annual calibration two or four times). Options for basic calibration or ISO/IEC 17025 or ANSI/NCSL Z540.3-2006 standards compliant calibrations are available. After calibration, the analyzer will be returned with a calibration label, a calibration certificate, and the calibration data.
- R1288A Return to Keysight On-Site Warranty and Service Plan Same as R1280A, but the service is provided at the customer site.
- R1298A Return to Keysight On-Site Calibration Plan Same as R1282A, but the service is provided at the customer site.

For more information on these and other service, please visit https://support.keysight.com/or refer to "Contacting Keysight" on page 2-7. If the warranty or calibration plan period has expired, these services are available on a per-incident basis. Visit this InfoLine web site or contact Keysight to obtain a quote.

Contacting Keysight

Assistance with test and measurements needs and information or finding a local Keysight office are available on the Web at: http://www.keysight.com/find/assist.

If you do not have access to the Internet, please contact your Keysight field engineer.

NOTE

In any correspondence or telephone conversation, refer to the Keysight product by its model number and full serial number. With this information, the Keysight representative can determine whether your product is still within its warranty period.

To contact Keysight for sales and technical support, refer to support links on the following Keysight websites: http://www.keysight.com/find (product specific information and support, software and documentation updates) http://www.keysight.com/find/assist (worldwide contact information for repair and service).

Shipping Your Analyzer to Keysight for Service or Repair

NOTE

Keysight Technologies reserves the right to reformat or replace the internal hard disk drive in your analyzer as part of its repair. This will erase all user information stored on the hard disk. It is imperative, therefore, that you make a backup copy of your critical test data located on the analyzer's hard disk before shipping it to Keysight for repair.

If you wish to send your network analyzer to Keysight Technologies for service or repair:

- Include a complete description of the service requested or of the failure and a description of any failed test and any error message.
- If alternate front handles and rack mount hardware have been installed, remove and retain them. The analyzer should be sent to Keysight in the same configuration as it was originally shipped.
- Reinstall front and rear impact covers.
- Ship the analyzer using the original or comparable packaging and antistatic materials. Shipping the analyzer in anything other than the original or comparable packaging and antistatic materials may result in non-warranted damage.
- Contact Keysight for instructions on where to ship your analyzer.

Keysight Microwave Network Analyzers

2-Port and 4-Port PNA Series

Service Guide

3 Tests and Adjustments

Information in This Chapter

This chapter contains procedures to help you check, verify, and adjust your PNA.

- The checks verify the operation of the assemblies in your analyzer.
- The verification compares the operation of your analyzer to a gold standard.
- The adjustments allow you to tune your analyzer for maximum response.

Conventions Used for Hardkeys, Softkeys, and Menu Items

The following conventions are used in this document:

Hardkey

$\lceil\bar{T} \overline{\text { Tab }}]$

Softkey

Menu Item

This represents a "hardkey", a key that is physically located on the instrument.

This represents a "tab", whose label is determined by the instrument firmware.
This represents a "softkey", a key whose label is determined by the instrument firmware.

This represents an item in a drop-down or pop-up menu.

Chapter Three at-a-Glance

Section Title	Summary of Content	Start Page
Before You Begin	Items to consider or procedures to perform before testing is begun:	page 3-4
	- Verify the Operating Environment	
	- Protect Against Electrostatic Discharge (ESD)	
	- Allow the Analyzer to Warm Up	
	- Review the Principles of Connector Care	

Section Title	Summary of Content	Start Page
About System Verification and Performance Tests	Descriptions of: - System Specifications - Instrument Specifications - System Verification Procedure - Performance Tests - Certificate of Calibration	page 3-7
ANSI/NCSL Z540.3-2006 and ISO/IEC 17025 Verification	The ANSI/NCSL Z540.3-2006 and ISO/IEC 17025 process of verifying your analyzer.	page 3-10
Non-Standards Compliant Verification	The Non-Standards Compliant process of verifying your analyzer.	page 3-11
Preliminary Checks	Performing the operator's check. Checking your test cables. Perform these checks before performing system verification.	page 3-12
System Verification	What the system verification does. How to perform the verification test. How to interpret the results.	page 3-21
Performance Tests ${ }^{\text {a }}$	A brief summary of each performance test: - Source Maximum Power Output Test - Source Power Linearity Test - Frequency Accuracy Test - Trace Noise Test - Receiver Compression Test - Noise State Calibration Coefficients - Noise Floor Test - Calibration Coefficients Test - Dynamic Accuracy Test - Dynamic Accuracy at Low Frequency (Available with LFE Option 205/220/420/425) - DC Continuity Test the LFE Board and Test Ports (Available with LFE Option 205/220/420/425)	page 3-31

Section Title	Summary of Content	Start Page
Adjustments ${ }^{\text {b }}$	Setups and procedures for adjusting your analyzer:	page 3-44
	- Touchscreen Adjustment and Verification	
	10 MHz Frequency Reference Adjustment	
	- Synthesizer Bandwidth Adjustment	
	- Source Adjustment	
	- IF Gain Adjustment	
	- Receiver Characterization	
	- Receiver Adjustment	
	- EE Default Adjustment	
	- IF Response Adjustment (Available Only with Option S93093/4A/B and or S93900/1/2/4/5/7A/B Installed)	
	$\begin{aligned} & \text { - LFE Receiver Adjustment - (Available with Option 205, } \\ & \text { 220, 405, and 420) } \end{aligned}$	

[^0]
Before You Begin

Before checking, verifying, or adjusting the analyzer, refer to the following paragraphs to:

- make sure the operating environment is within its requirements
- make sure that proper electrostatic discharge (ESD) protection is provided
- make sure the analyzer has warmed up properly to achieve system stability
- review the principles of connector care

NOTE

Keysight personnel: see Figure 1-1 on page 1-6 to review where the calibration stickers should be placed on the PNA.

Verify the Operating Environment

Due to their operating specifications, the verification and calibration kit devices determine the limits of your operating environment conditions. Open the calibration and verification kits and place all the devices on top of the foam inserts so they will reach room temperature. As the device dimensions change with temperature, their electrical characteristics change as well.
It is necessary to keep the environmental levels within the following limits:

- Temperature: $+23^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$ (Error-corrected temperature range) Once the measurement calibration has been done, the ambient temperature must be maintained to within $\pm 1^{\circ} \mathrm{C}$ of the calibration temperature.
- Humidity: 0% to 95% at $40^{\circ} \mathrm{C}$ maximum, non-condensing
- Altitude: 0 to 4,600 meters ($\geq 15,000$ feet.)

Protect Against Electrostatic Discharge (ESD)

This is important. If not properly protected against, electrostatic discharge can seriously damage your analyzer, resulting in costly repair.

CAUTION

To reduce the chance of electrostatic discharge, follow all of the recommendations outlined in "Electrostatic Discharge Protection" on page 1-7, for all of the procedures in this chapter.

Allow the Analyzer to Warm Up

NOTE

To achieve the maximum system stability, allow the analyzer to warm up for at least 90 minutes.

Review the Principles of Connector Care

WARNING

Cleaning connectors with alcohol shall only be done with the instrument power cord removed and in a well-ventilated area. Allow all residual alcohol moisture to evaporate, and the fumes to dissipate prior to energizing the instrument.

Proper connector care and connection techniques are critical for accurate and repeatable measurements. Refer to Table 3-1 for tips on connector care.

Prior to making connections to your analyzer, carefully review the information about inspecting, cleaning, and gaging connectors. Refer to the calibration kit documentation for detailed connector care information.

For course numbers about additional connector care instruction, contact Keysight Technologies. Refer to "Contacting Keysight" on page 2-7.
Table 3-1 Connector Care Quick Reference Guide

Handling and Storage			
Do	- Keep connectors clean - Extend sleeve or connector nut - Use plastic end-caps during storage	Do Not	- Touch mating-plane surfaces - Set connectors contact-end down - Store connectors or adapters loose
Visual Inspection			
Do	- Inspect all connectors carefully - Look for metal particles, scratches, and dents	Do Not	- Use a damaged connector - ever
Connector Cleaning			
Do	- Try compressed air first - Use isopropyl alcohol ${ }^{2}$ - Clean connector threads	Do Not	- Use any abrasives - Get liquid into plastic support beads
Gaging Connectors			
Do	- Clean and zero the gage before use - Use the correct gage type	Do Not	- Use an out-of-specification connector

Table 3-1 Connector Care Quick Reference Guide

- Use correct end of calibration block
- Gage all connectors before first use

Making Connections

Making Connections			
Do	- Align connectors carefully	Do Not	- Apply bending force to connection
	- Make preliminary connection contact lightly		- Over tighten preliminary connection
	- Turn only the connector nut		- Twist or screw any connection
	- Use a torque wrench for final connection		- Tighten past torque wrench "break" point
	Cleaning connectors with alcohol shall only be done with the instrument's power cord removed, and in a well-ventilated area. Allow all residual alcohol moisture to evaporate, and the fumes to dissipate prior to energizing the instrument.		

About System Verification and Performance Tests

The performance of the network analyzer is specified in two ways: system specifications, and instrument specifications. It is the end user's responsibility to determine which set of specifications is applicable to their use of the PNA.

A network analyzer measurement "system" includes the analyzer, calibration kit, test cables, and any necessary adapters. The system verification software in the PNA is used to verify the system's conformance to the "system" specifications. A "pass" result demonstrates that the analyzer, test cables, and adapters, perform correctly as a system. It DOES NOT demonstrate that any one component performs according to its individual specifications. A change to any part of this measurement system requires a re-verification of the system.

Instrument specifications specify the network analyzer's uncorrected measurement port characteristics and its output and input behavior. The PNA performance tests are used to verify the analyzer's conformance to "instrument" specifications.

System Specifications

System specifications specify warranted performance of the measurement system when making error-corrected measurements using the same calibration kit and test cables used during the system verification routine. System specifications are applicable only when the measurement system is used to make error-corrected measurements.

The analyzer's system specifications are described in the Data Sheet and Technical Specifications documents, available online at www.keysight.com.

System specifications are expressed in two ways:

- residual errors of the measurement system shown as tabular specification values
- graphs of measurement uncertainty versus reflection and transmission coefficients

System specifications are verified in one of the following ways:

- Complete the system verification procedure using a certified verification kit and certified calibration kit that will be used for future measurements, or
- Complete all of the performance tests using a certified calibration kit that will be used for future measurements. This alternative verifies both the system specifications and the instrument specifications for the analyzer.

Instrument Specifications

The analyzer's instrument specifications are described in the Data Sheet and Technical Specifications documents, available online at: www.keysight.com.

These specifications apply when the analyzer is used to make either raw or error-corrected measurements.

System Verification Procedure

The system verification procedure tests the network analyzer measurement "system", as defined previously, against the system specifications. If confirmation is successful, the measurement system is capable of making measurements to the accuracy specified by the graphs of measurement uncertainty.

The procedure consists of calibrating the analyzer with a calibration kit, measuring a set of characterized devices, and comparing the resultant measured data to the data and uncertainty limits supplied with the verification kit. The device data provided with the verification kit has a traceable path to NIST. The total measurement uncertainty limits for the performance verification are the sum of the factory measurement uncertainties and the uncertainties associated with measuring the same devices on the system being verified. The difference between the factory-measured data and the verification-measured data must fall within the total uncertainty limits at all frequencies for the total system uncertainty test to pass.

NOTE

Calibration kits are different from verification kits. Calibration kits are used to determine the systematic errors of a network analyzer measurement system. Verification kits are used to confirm system specifications and are not used to generate error correction.

Performance Tests

Performance tests are used to confirm analyzer performance against the "instrument" specifications. If confirmation is successful, the PNA meets the instrument specifications.

Performance tests are contained in the analyzer's firmware with Option S93898A and are described at "Performance Tests" on page 3-31.

An illustrated outline of the performance verification procedure:

- for ANSI/NCSL Z540.3-2006 and ISO/IEC 17025 verification, is shown in Figure 3-1 on page 3-10.
- for non-standards compliant verification, is shown in Figure 3-2 on page 3-11.

Certificate of Calibration

Keysight Technologies will issue a certificate of calibration upon successful completion of system verification or completion of the performance tests. The certificate of calibration will apply to the "system" (analyzer, calibration kit, test cables, and any necessary adapters) if the system verification procedure is used to confirm the system specifications. If the performance tests are used to confirm instrument specifications, the certificate of calibration will apply to the

PNA as an independent instrument. The equipment and measurement standards used for the tests must be certified and must be traceable to recognized standards.

NOTE

If you have a measurement application that does not use all of the measurement capabilities of the analyzer, you may ask your local Keysight Technologies service office to verify only a subset of the specifications. However, this "limited calibration" creates the possibility of making inaccurate measurements if you then use the analyzer in an application requiring additional capabilities.

ANSI/NCSL Z540.3-2006 and ISO/IEC 17025 Verification

To meet the criteria for ANSI/NCSL Z540.03-2006 and ISO/IEC 17025 verification, perform the preliminary checks and all performance tests without stopping to repair or adjust ${ }^{1}$. Refer to Figure 3-1 for test flow. Print data at the completion of all the tests, even if you are aware that the analyzer did not pass. If there is a failure, complete the verification before you troubleshoot, repair, and adjust. After the failure has been corrected, repeat the entire set of performance tests and generate a new set of data.

Figure 3-1 ANSI/NCSL Z540.3-2006 and ISO/IEC 17025 Verification Flowchart

sc870b

1. Stop only in case of a catastrophic failure or cable connector damage

Non-Standards Compliant Verification

To meet the criteria for non-standards compliant verification, perform the preliminary checks and the performance tests while stopping to troubleshoot. Refer to Figure 3-2 for test flow. Troubleshoot and repair the first problem encountered without continuing to other tests. After you troubleshoot, repair, and adjust, repeat the last failed portion and generate a new set of data.

Figure 3-2 Non-Standards Compliant Verification Flowchart

Preliminary Checks

Preliminary checks include the following:

- "The Operator’s Check" on page 3-12

The operator's check tests the network analyzer's basic functionality of the source, switch, and receivers.

- "The Test Port Cable Checks" on page 3-14

The test port cable checks are not required, but are recommended to verify the performance of the test port cables before performing the verification test.

The Operator's Check

NOTE

To achieve the maximum system stability, allow the analyzer to warm up for at least 90 minutes before performing the Operator's Check.

The operator's check is a software driven test that checks the basic operation of the assemblies in all of the measurement port signal paths. By performing the operator's check, the following are determined:

- attenuation ranges of all installed attenuators
- calibration of the receivers
- frequency response of the receivers
- phase lock and leveling
- basic functional test of noise floor and trace noise

Accessories Used in the Operator's Check

Equipment Type
 Part Number

Female short, 1.85 mm	(any short from the 85058B/E calibration kits)
Female open, 1.85 mm	(any open from the 85058B/E calibration kits)

Performing the Operator's Check

1. Press UTILITY System, then Service , then Operator's Check .
2. In the PNA Operator's Check dialog box (refer to Figure 3-3), under Configure, select either Prompt for attachment of Short/Open, to pause at each step in the process to allow moving the short/open to the appropriate port, or Shorts/Opens are attached to ALL ports, to run through the test without stopping. Shorts and opens can be mixed on the test ports.
3. Click Begin.
4. If shorts and opens are not connected to all ports, you will be prompted to connect them as they are needed.
5. The result of the operator's check will be shown as a PASS or FAIL next to each test (refer to Figure 3-3). The PNA Operator's Check dialog box will look different for different PNA model numbers and installed options. Some of the tests are performed only if the appropriate options are installed in the PNA.

Figure 3-3 Operator's Check Dialog Box

Operator's Check
 Help About

PNA Operator's Check

Results
\square System
Phase Lock
Leveling
Q. Revr Cal

Q Receivers
Q1 SrcAtten
(V) Revr Atten

N Noise Floor
V Trace Noise
V. Noise Figure

Op Check Passed

If the Operator's Check Fails

1. Clean the test ports, shorts, and adapters. Torque to specification. Repeat the check.
2. If the check still fails, suspect a faulty component. Refer to "Measurement System Troubleshooting" on page 4-31 to begin troubleshooting to determine the faulty component.

The Test Port Cable Checks

A faulty test port cable can cause a failure in the verification test. The following checks are not required, but are recommended to verify the performance of the test port cable.

- "Cable Return Loss Check" on page 3-14
- "Cable Insertion Loss Check" on page 3-15
- "Cable Magnitude and Phase Stability Check" on page 3-17
- "Cable Connector Repeatability Check" on page 3-19

Accessories Used in the Test Port Cable Checks

Equipment Type	Model or Part Number	Alternate Model or Part Number
Calibration kit, 1.85 mm	85058 B	85058 E
Test cable, $1.85 \mathrm{~mm}(\mathrm{f})$ to $1.85 \mathrm{~mm}(\mathrm{f})$	N4697E	N4697-60200

Cable Return Loss Check

3. Press UTILITY Preset.

4. Perform a one-port calibration on Port 1, 1-Port Reflection. Refer to the embedded help in the analyzer if necessary.
5. Connect the test port cable to Port 1. Connect a broadband load to the other end of the cable. Tighten to the specified torque for the connector type.
The analyzer now displays the return loss of the cable.
6. Press MARKER/ANALYSIS Search, then Search . In the Marker Search dialog box, in the Search Type box, make sure Maximum is selected. Click Execute, and then click OK.
7. The marker annotation on the screen indicates the worst case return loss. Refer to the cable manual to see if it meets the return loss specification. For an example of a typical return loss measurement, see Figure 3-4.

Figure 3-4

NOTE

Typical Cable Return Loss Response

If the Cable Return Loss Check Fails

1. Clean the cable and devices and torque to specification. Repeat the check.
2. If the check still fails, the cable should be repaired or replaced.

Cable Insertion Loss Check

The method below runs on the PNA environment using a mechanical Cal kit. An appropriate ECal could be used as well to replace the mechanical Cal kit if desired.

1. Press UTILITY Preset.

2. Press STIMULUS Sweep, then Number of Point, and set to 801.
3. Press RESPONSE Avg, then IF Bandwidth, and set the IF Bandwidth to 30 Hz .
4. Press STIMULUS Power and set the power level to -17 dBm .
5. Perform a 1-port calibration on the PNA Port 1 using SmartCal (Guided Calibration). Follow the calibration wizard instructions. After calibration, the PNA prompts you to save the cal set as a user Calset. Save the cal set data as CalSet_1.cst.
6. Connect the test port cable to the PNA Port 1 and perform a 1-port calibration again at the end of the cable. After calibration, save the cal set data as CalSet_2.cst.
7. Press UTILITY Macro, then Adapter Char . Select Calset 1 and Calset 2 as shown below in Figure 3-5.

Figure 3-5 Adapter Characterize Dialog Box

N5245_001_304
8. Click the Characterize And Save button in the lower-left corner of the dialog box. Save the cable S2P file.
9. Retrieve the saved cable S2P to plot out the insertion loss trace. S2P data also can be viewed directly on the PNA by pressing UTILITY Recal. Refer to the analyzer's embedded Help section "Save and Recall a File" if necessary.
10. Refer to the cable manual to see if it meets the insertion loss specification. For an example of a typical insertion loss measurement, see Figure 3-6.

Figure 3-6 Typical Cable Insertion Loss Response

N5245_001_305
If the Cable Insertion Loss Check Fails

1. Clean the cable and devices and torque to specification. Repeat the check.
2. If the check still fails, the cable should be repaired or replaced.

Cable Magnitude and Phase Stability Check

1. With the test port cable still connected to Port 1 , connect a short to the other end of the cable.
2. Press UTILITY Preset.
3. Press TRACE/CHANNEL Traces, then New Trace... . In the New Trace dialog box, click the S11 box, and then click OK.
4. Press RESPONSE Format, then Phase, then ENTRY Enter.
5. Press RESPONSE Avg. Verify that Average ON/off is ON. If not, press the Average on/OFF softkey to toggle it ON.

The Averaging Factor box will appear directly above the display. In the Averaging Factor box, type 50 or click the arrows to select 50, and then press ENTRY Enter.
6. To provide a good reference, hold the test cable in a straight line perpendicular to the front panel of the network analyzer.
7. Press RESPONSE Avg, then Averaging Restart .
8. Wait for the analyzer to average the measurement 50 times (approximately two seconds).
9. To normalize the data trace: press MARKER/ANALYSIS Memory, then Data Trace , then Data Math, then Data/Memory, then ENTRY Enter.
10.Slowly make a 180 degree bend in the middle of the cable and hold it in that position.
11.For each trace: press RESPONSE Scale, then Scale .

The Scale Per Division box will appear directly above the display. Set the Scale Per Division for optimum viewing as shown in Figure 3-7.
12. Place a marker on the largest deflection that goes above the reference line and is within the cable's specified frequency range. For a typical response of cable magnitude and phase stability, see Figure 3-7.
13.Place a marker on the largest deflection that goes below the reference line and is within the cable's specified frequency range.

In this S_{11} measurement, the displayed trace results from energy being propagated down the cable and reflected back from the short. Therefore, the measured deflection value must be divided in half to reach the correct value.

Figure 3-7 Typical Cable Magnitude and Phase Stability Response

If the Cable Magnitude and Phase Stability Check Fails

1. Clean the cable and devices and torque to specification. Repeat the check.
2. If the check still fails, the cable should be repaired or replaced.

Cable Connector Repeatability Check

NOTE

The connector repeatability measurement should be done at the test port as well as at the end of the test port cable.

1. With the test port cable still connected to Port 1, connect a broadband load to the other end of the cable.
2. Press UTILITY Preset.
3. Press RESPONSE Avg. Verify that Average ON/off is ON. If not, press the Average on/OFF softkey to toggle it ON.

The Averaging Factor box will appear directly above the display. In the Averaging Factor box, type 100 or click the arrows to select 100, and then press ENTRY Enter.
4. Wait for the analyzer to average the measurement 100 times (approximately five seconds).
5. To normalize the data trace: press MARKER/ANALYSIS Memory, then Data Trace , then Data Math, then Data/Memory, then ENTRY Enter.
6. To adjust the display scale:
a. Press RESPONSE Scale, then Scale .

The Scale Per Division box will appear directly above the display. Set the Scale Per Division for 0.5 dB . Press ENTRY Enter.

b. Press Reference Level

The Reference Level box will appear directly above the display. Set the Reference Level for 0 dB . Press ENTRY Enter.
7. Disconnect and then reconnect the cable to the test port. Tighten the connection to the specified torque for the connector type.
8. Press RESPONSE Avg, then Averaging Restart .
9. Look at the trace for spikes or modes.
10.To re-normalize the data trace of the reconnected cable: press MARKER/ANALYSIS Memory, then Data->Memory, then ENTRY Enter.
11.Repeat steps 7 through 9 at least three times to look for modes. Modes appear when a harmonic of the source fundamental frequency is able to propagate through the cable or connector. It is helpful to print a plot of the trace each time to compare several connections. If any mode appears each time the cable is connected and reconnected, measurement integrity will be affected.

For a typical response of cable connector repeatability, see Figure 3-8.
12.For the Port 2, 3, and 4 Check, connect the cable (with the load attached) to the respective port and repeat steps 2 through 11.

Figure 3-8 Typical Cable Connector Repeatability Response

If the Cable Connector Repeatability Check Fails

1. Clean the cable and devices, and torque to specification. Repeat the check.
2. If the check still fails, the cable should be repaired or replaced.

System Verification

System verification is used to verify system-level, error-corrected uncertainty limits for network analyzer measurements. The verification procedure is automated and is contained in the firmware of the analyzer.

The device data provided with the verification kit has a traceable path to a national standard. The difference between the supplied traceable data and the measured data must fall within the total uncertainty limits at all frequencies for the system verification to pass.

The total measurement uncertainty limits for the system verification are the sum of the factory measurement uncertainties for the verification devices and the uncertainties associated with the system being verified. You can determine your system measurement uncertainty limits by referring to the analyzer embedded on-line help.

NOTE

Passing this system verification does not guarantee that the analyzer meets all of its performance specifications. However, it does show that the network analyzer being verified measures the same devices with the same results as a factory system which has had all of its specifications verified and its total measurement uncertainty minimized.

What the System Verification Verifies

The system verification procedure verifies proper operation of the:

- network analyzer
- calibration kit
- test port cables
together as a "system". It DOES NOT verify that any of these components pass their specifications independently. The user is responsible for independently calibrating and verifying the proper operation of the calibration kit and test port cables prior to performing the system verification.

NOTE

Additional equipment or accessories used with the above system are not verified by system verification,

Measurement Uncertainty

Measurement uncertainty is defined as the sum of:

- the residual systematic (repeatable) errors, and
- the random (non-repeatable) errors
in the measurement system after calibration.
The systematic errors are:

Tests and Adjustments

System Verification

- directivity,
- source match,
- load match,
- reflection and transmission frequency tracking, and
- isolation (crosstalk).

The random errors include:

- noise,
- drift,
- connector repeatability, and
- test cable stability.

A complete description of system errors and how they affect measurements is provided in the analyzer's on-line embedded help.

Any measurement result is the vector sum of the actual test device response plus all error terms. The precise effect of each error term depends on its magnitude and phase relationship to the actual test device response. When the phase of an error response is not known, phase is assumed to be worst-case $\left(-180^{\circ}\right.$ to $\left.+180^{\circ}\right)$. Random errors such as noise and connector repeatability are generally combined in a root-sum-of-the-squares (RSS) manner.

Measurement Traceability

To establish a measurement traceability path to a national standard for a network analyzer system, the overall system performance is verified through the measurement of devices that have a traceable path. This is accomplished by measuring the devices in an Keysight verification kit.

The measurement of the devices in the verification kit has a traceable path because the factory system that measured the devices is calibrated and verified by measuring standards that have a traceable path to the National Institute of Standards and Technology (NIST) (see Figure 3-9). This chain of measurements defines how the verification process brings traceability to the network analyzer system.

Figure 3-9 NIST Traceability Path for Calibration and Verification Standard

Performing System Verification

The following verification procedure is automated by the analyzer firmware.
The process for the verification is:

- connect cables to the analyzer test ports
- perform a calibration or recall a recent calibration
- run the system verification program for the verification devices

Each time through the verification process, you are prompted to make necessary connections and perform or recall a calibration as part of performing the verification. If you select to perform a calibration, you are guided through the calibration procedure. This part of the process can be eliminated if you
choose to load an existing recent calibration that was created by the verification process. If necessary, refer to the analyzer's on-line embedded help for information on storing and recalling calibrations.

For each verification device, the analyzer reads a file from the verification disk and sequentially measures the magnitude and phase for all four S-parameters.

NOTE

For system verification to perform correctly, it is NECESSARY that the verification devices be measured with their female connectors connected to port 1 or 3 and their male connectors connected to port 2 or 4.

NOTE

Although the performance for all S-parameters are measured, the S_{11} and S_{22} phase uncertainties for the attenuators and airlines are less important for verifying system performance. Therefore, the limit lines will not appear on the printout.

Equipment Used in the System Verification Procedure

Equipment Type	1.85 mm	2.4 mm	3.5 mm	Type-N
Calibration kit	$\begin{aligned} & \text { 85058B/E } \\ & \text { N4694A ECal } \end{aligned}$	$\begin{aligned} & \text { 85056B/D } \\ & \text { N4692A ECal } \end{aligned}$	$\begin{aligned} & \text { 85052B, C, D } \\ & \text { N4691 ECal } \end{aligned}$	$\begin{aligned} & \text { 85054B/D } \\ & \text { N4690A E-cal } \end{aligned}$
Verification kit	85058 V	85057B	85053B	85055A
Cables	N4697E	85133C/D/E/F	Single cable: 85134E Cable pair: 85134F	Single cable: 85135 E (2.4 mm NMD to 7 mm) Cable pair: 85135F (2.4 mm NMD to 7 mm)
Adapters	None required	None required	None required	With single cable: an 85130 E adapter and a 7 mm to Type-N adapter from the 85054B calibration kit. With cable pair: Two 7 mm to Type-N adapters from the 85054B calibration kit.

Cable Substitution

The test port cables specified for the network analyzer system have been characterized for connector repeatability, magnitude and phase stability with flexing, return loss, insertion loss, and aging rate. Since test port cable performance is a significant contributor to the system performance, cables of lower performance will increase the uncertainty of your measurement. Refer to the plots in the cable tests (earlier in this chapter) that show the performance of good cables. It is highly recommended that the test port cables be regularly tested.

If the system verification is performed with a non-Keysight cable, ensure that the cable meets or exceeds the specifications for the test cable specified in the previous table, "Equipment Used in the System Verification Procedure." Refer to the cable's user's guide for specifications.

Kit Substitution

Non-Keysight calibration kits and verification kits are not recommended nor supported.

System Verification Procedure

1. If you desire printed test outputs, connect a printer to the analyzer. For the printer, ensure that the correct driver is loaded and the printer is defined as the default printer. Refer to the embedded help in the analyzer for printer setup. Let the analyzer warm up for at least 90 minutes.
2. Insert the verification kit disk into the analyzer disk drive.
3. Press UTILITY System, then Service, then System Verification . The System Verification dialog box is displayed; refer to Figure 3-10.

Figure 3-10 System Verification Dialog Box

ع PNA System Verification			
Run	Configure	Overview	Help
	PNA System Verification		

Insert the verification data disk into drive \mathbf{A} :, select the calibration kit and cable[s] being used, select the desired printer and file outputs, then click "Run".

Calibration Kit

Keysign 85052B ($3.5 \mathrm{~mm} \mathrm{w} /$ Sliding Load)
Verification Kit (Automatically selected)
Keysign 85053 B 3.5 mm

Outputs
I Print Tabular Data
\square Print Graphs
\lceil File Tabular Data
「 File Graphs

Test Cable[s]

C Single Cable [+ Adapters) © Cable Pair (+Adapters)
Cables: $85131 \mathrm{C} / \mathrm{E} 3.5 \mathrm{~mm}$ NMD to $3.5 \mathrm{~mm}(f)$ cable.
Adapters: No adapters.

4. In the Calibration Kit box, select the calibration kit or electronic calibration module (ECal) that is being used by clicking on it. The corresponding verification kit to use is selected for you and displayed in the Verification Kit box. Refer to Figure 3-10.
5. Under Printer Output, click one of the following options. Refer to Figure 3-10.

- Print Tabular Data: Prints the verification data in tabular form which includes measured data and uncertainty limits. For an example, refer to Figure 3-12 on page 3-28.
- Print Graphs: Prints the verification data in graphical form. The graphical form includes the measured data trace, factory supplied data trace, and uncertainty limits. For an example, refer to Figure 3-13 on page 3-30.
- File Tabular Data: Writes the tabular data to a text file in the Windows XP directory
C:\Program Files\Keysight\Network Analyzer\Documents \backslash or in the Windows 7 directory C:\Users\Public \backslash Public Documents\Network Analyzer\SysVer\.
- File Graphs: Saves a screen image in PNG format in the Windows XP directory
 Windows 7 directory C:\Users\Public \backslash Public Documents \backslash Network Analyzer\SysVer\.

NOTE

For printed output, it is assumed that the printer has been tested and the Windows driver is installed for the printer that is being used. The system verification test prints to the printer that has been designated as the default printer. (On the Windows Desktop display, click on My Computer, Control Panel, and then Printers to verify the printer setup.)

To modify the number of ports to be verified or to change the number of devices to measure, click on the Configure tab and make the desired selections.
6. Click Run.
7. Follow the instructions on the analyzer for performing a full calibration or recalling an existing recent calibration.
8. Follow the instructions on the analyzer for performing the system verification; inserting the verification devices as prompted.

If the System Fails the Verification Test

Inspect all connections. Do not remove the cable from the analyzer test port. This will invalidate the calibration that you performed earlier.

1. Disconnect and clean the device that failed the verification test.
2. Reconnect the device making sure that all connections are torqued to the proper specifications.
3. Measure the device again.
4. If the analyzer still fails the test, check the measurement calibration by viewing the error terms as described in "Accessing Error Terms" on page 8-6.
5. Refer to Figure 3-11 for additional troubleshooting steps.

Figure 3-11 System Verification Failure Flowchart

Interpreting the Verification Results

Figure 3-12 shows an example of typical verification results with Print Tabular Data selected in the Printer Output area of the System Verification dialog box.

At the top of the printed output is the name of the device, the serial number of the device, and the date tested.

Tests and Adjustments

System Verification

Each S-parameter measurement result is printed with frequency tested, lower and upper limit lines, the measured data, and the result of the test.

Figure 3-12 Example of Printed Tabular Verification Results

PNA System Verification

Model: N5230A 225 Ser. Num.: US43390055 Test Time: 12/8/2004 2:08:35 PM
Device: 20 dB Attenuator, Serial \#02743 S11 Results PASS

	S11 MAGNITUDE (lin)				S11 PHASE (deg)			
Freq [GHz]	Lower Limit (lin)	Meas'd Data (lin)	Upper Limit (lin)	Total Uncert +/.	Lower Limit (deg)	Meas'd Data (deg)	Upper Limit (deg)	Total Uncert +/-
0.045	0.0067	0.0045	0.0113	0.0090	n/a	177.46	n/a	n/a
0.50	0.0067	0.0046	0.0114	0.0091	n/a	155.77	n/a	n/a
1.00	0.0057	0.0047	0.0125	0.0091	n/a	127.90	n/a	n/a
1.50	0.0043	0.0050	0.0139	0.0091	n/a	99.52	n/a	n/a
2.00	0.0034	0.0055	0.0148	0.0091	n/a	72.43	n/a	n/a
2.50	0.0076	0.0061	0.0208	0.0142	n/a	46.58	n/a	n/a
3.00	0.0068	0.0067	0.0216	0.0142	n/a	21.57	n/a	п/a
3.50	0.0066	0.0075	0.0227	0.0146	n/a	-0.45	n/a	n/a
4.00	0.0060	0.0086	0.0233	0.0146	n/a	-20.94	n/a	n/a
4.50	0.0056	0.0098	0.0237	0.0147	n/a	-39.48	n/a	n/a
5.00	0.0053	0.0109	0.0241	0.0147	n/a	-56.13	n/a	n/a
5.50	0.0051	0.0118	0.0242	0.0147	n/a	-71.75	n/a	п/a
6.00	0.0050	0.0125	0.0244	0.0147	n/a	-86.47	n/a	n/a
6.50	0.0049	0.0131	0.0244	0.0147	n/a	-100.81	n/a	n/a
7.00	0.0057	0.0136	0.0236	0.0147	n/a	-113.94	n/a	n/a
7.50	0.0061	0.0138	0.0232	0.0147	n/a	-125.68	n/a	n/a
8.00	0.0059	0.0138	0.0234	0.0147	n/a	-135.63	n/a	n/a
8.50	0.0110	0.0136	0.0287	0.0198	n/a	-144.53	n/a	n/a
9.00	0.0107	0.0133	0.0290	0.0199	n/a	-152.31	n/a	n/a
9.50	0.0101	0.0130	0.0297	0.0199	n/a	-159.32	n/a	n/a
10.00	0.0092	0.0129	0.0305	0.0199	n/a	-165.12	n/a	n/a
10.50	0.0080	0.0129	0.0317	0.0199	n/a	-169.47	n/a	n/a
11.00	0.0066	0.0130	0.0332	0.0199	n/a	-172.95	n/a	n/a
11.50	0.0051	0.0135	0.0347	0.0199	n/a	-176.46	n/a	n/a
12.00	0.0035	0.0140	0.0364	0.0199	n/a	-179.98	n/a	n/a

Tests and Adjustments
System Verification

Figure 3-13 shows an example of typical verification results with Print Graphs selected in the Printer Output area of the System Verification dialog box. The printed graphical results show the following:

- the name of the device measured
- the serial number of the device
- the parameters measured
- Results of the measurements. Labeled as A in Figure 3-13.
- Data measured at the factory from the verification kit. Labeled as B in Figure 3-13.
- Upper and lower limit points as defined by the total system uncertainty system. Labeled as C in Figure 3-13.

Tests and Adjustments
System Verification

Figure 3-13 Example of Printed Graphical Verification Results

Performance Tests

The performance tests verify the electrical performance of your PNA. These performance tests are included in the analyzer's firmware with Option S93898A. Your analyzer is automatically configured for each individual test.

The model numbers of the equipment used by these performance tests are specified under "Required Service Test Equipment" on page 2-4.

There are nine tests in the Option S93898A performance test package:

- Source Power Accuracy Test
- Source Maximum Power Output Test
- Source Power Linearity Test
- Frequency Accuracy Test
- Trace Noise Test
- Receiver Compression Test
- Noise Floor Test
- Calibration Coefficients Test
- Dynamic Accuracy Test
- Dynamic Accuracy at Low Frequency (Available with LFE Option 205/220/420/425)
- DC Continuity Test the LFE Board and Test Ports (Available with LFE Option 205/220/420/425)

Source Power Accuracy Test

Function of the Test: To confirm the accuracy of the source output power of your network analyzer over its full frequency range.

Specification Tested: Test Port Output-Power Level Accuracy
Equipment Used:

- Power meter
- Power sensors
- Any necessary adapters

Description of the Test:

1. The analyzer is Preset.

2. The analyzer is set up for a CW reflection measurement on the test port to be measured.
3. A power sensor is connected to the test port, using any necessary adapters.
4. The analyzer frequency is set to the desired value.
5. The power meter correction table is set to the same frequency.
6. The output power is measured, and the value is compared to the Preset setting.
7. This process is repeated at hundreds of frequencies across the analyzer's full range. The difference between the measured power and the output setting must fall within the specified accuracy range at all points for the test to pass.
If the Analyzer Fails this Test:

- Perform the "Source Adjustment" on page 3-47 and repeat this test.
- If the analyzer still fails this test, troubleshoot the source section of the analyzer and then repeat this test. Refer to "Checking the Source Group" on page 4-37.

Source Maximum Power Output Test

Function of the Test: To confirm the maximum source output power of your network analyzer over its full frequency range.
Specification Tested: Test Port Output-Maximum Leveled Power
Equipment Used:

- Power meter
- Power sensors
- Any necessary adapters

Description of the Test:

1. The analyzer is Preset.
2. The analyzer is set up for a CW reflection measurement on the test port to be measured.
3. A power sensor is connected to the test port, using any necessary adapters.
4. The analyzer frequency is set to the desired value.
5. The power meter correction table is set to the same frequency.
6. The analyzer's output power is increased until a "Source Unleveled" error is detected. The output power is then decreased in increments of 0.01 dB until the error goes away. if the output power reaches +18 dBm without any error, the power is left at this level.
7. The power level at this point is measured and compared to the maximum output power specification.
8. This process is repeated at hundreds of frequencies across the analyzer's full range in every specified path configuration.
If the Analyzer Fails this Test:
Troubleshoot the source section of the analyzer and then repeat this test. Refer to "Checking the Source Group" on page 4-37.

Source Power Linearity Test

Function of the Test: To verify that the power level is linear over the analyzer's frequency range and to check the linearity of the automatic leveling control (ALC).

Specification Tested: Power Sweep Range and Power Level Linearity
Equipment Used:

- Test cable
- 20 dB attenuator if the analyzer does not have an internal step attenuator

Description of the Test:
Ports 1 and 2 are tested as a pair. The Port 2 receiver is used to test the linearity of the source power out of Port 1, and vice versa. Ports 3 and 4 are similarly tested as a pair on 4-Port analyzers. The receiver linearity is the standard against which the source linearity is checked.

1. The analyzer is Preset.
2. The analyzer is set up for a CW transmission measurement on the test port pair to be measured.
3. A test cable is connected between the port pair to be tested with 20 dB of attenuation in series with the cable. This is done with an internal source step attenuator or an external 20 dB attenuator. This attenuation ensures that the receiver remains in its linear range.
4. The receiver measurement is normalized at this Preset power level.
5. The source setting is then stepped from the minimum to the maximum ALC power setting range in 1 dB steps, and the receiver power is measured at each setting.
6. The non-linearity in dB at each frequency point is calculated as the difference between the change in the source power setting away from Preset and the change in the receiver power reading.
7. This power linearity measurement is repeated at several CW frequencies across the full frequency range of the analyzer.
If the Analyzer Fails this Test:

- Perform the "Source Adjustment" on page 3-47 and repeat this test.
- If the analyzer still fails this test, troubleshoot the source section of the analyzer and then repeat this test. Refer to "Checking the Source Group" on page 4-37.

Frequency Accuracy Test

Function of the Test: To verify the frequency accuracy and range of the analyzer's source output.

Specification Tested: Test Port Output-CW Accuracy
Equipment Used:

- Frequency counter
- Test cable
- Adapters

Description of the Test:
This test is performed over the full frequency range of the source synthesizer board, not the full frequency range of the analyzer. To generate the higher frequencies, the analyzer passes the synthesizer signal through a series of frequency doublers. These doublers exactly double the source frequency, so the deviation from a perfectly accurate frequency is exactly doubled. The frequency accuracy is specified as the ratio parts per million (ppm), so this ratio is unaffected by the signal doubling. Therefore, only the frequency accuracy of the synthesizer board needs to be tested.

1. The analyzer is Preset.
2. The analyzer is set up for a CW measurement on Port 1.
3. A test cable is connected between Port 1 and a frequency counter with any necessary adapters.
4. The signal frequency is measured and compared with the analyzer source frequency setting. The difference must be less than the source frequency divided by 16 for a 1 part per million (ppm) specification.
5. This test is repeated at several frequencies across the range of the source synthesizer board.
If the Analyzer Fails this Test:

- Verify the accuracy of the 10 MHz OCXO by using a frequency counter to measure the rear-panel 10 MHz REF OUT. If the 10 MHz reference is off by more than 10 Hz , perform the " 10 MHz Frequency Reference Adjustment" on page 3-45 and then repeat this test.

Trace Noise Test

Function of the Test: To measure the stability of a signal in the internal source and receiver system of your analyzer.

Specification Tested: Test Port Input-Trace Noise Magnitude and Trace Noise Phase

Equipment Used: A test cable.
Description of the Test:
Trace Noise is a calculation of the standard deviation of a 201 point CW measurement. In a healthy analyzer, this measurement is only affected by the sampling error of the analog to digital converters on the SPAM board.
Ports 1 and 2 are tested as a pair using S21 and S12 measurements. Ports 3 and 4 are similarly tested as a pair on 4-port analyzers using S43 and S34 measurements.

1. The analyzer is Preset.
2. The analyzer is set up for a 201 point CW transmission measurement for the port pair to be tested with the specified IF bandwidth (typically 1 kHz). Both a magnitude and a phase trace are displayed.
3. A test cable is connected between the port pair to be tested.
4. The analyzer is set to a series of CW frequencies across its full frequency range. The analyzer's trace statistics function is used to calculate the standard deviation of both the magnitude trace and the phase trace.
5. These standard deviation values are reported as the analyzer's trace noise and are compared with the Trace Noise magnitude and phase specifications.
If the Analyzer Fails this Test:
A failure of this test indicates a fault in the receiver's IF chain between the mixer and the A12 SPAM board. This can indicate a faulty assembly or a loose cable.

- Check for proper torquing of all semi-rigid cables in the receiver chain, and then repeat this test.
- If the analyzer still fails this test, replace the A12 SPAM board and repeat this test. Most failures are due to this board. Refer to "Removing and Replacing the A4-A17 Boards" on page 7-17.
- If the analyzer still fails this test, replace the mixer module for the failing receiver, and then repeat this test.

Receiver Compression Test

Function of the Test: To measure the compression at the analyzer's specified maximum power level for the receivers.
Specification Tested: Test Port Input-Maximum Test Port Input Level
Equipment Used:

- U3070AK01 or Z5623A Option K01 Compression Test Set
- Power meter
- Power sensors
- Two test cables
- Calibration kit
$-10-\mathrm{dB}$ and $20-\mathrm{dB}$ pads if the analyzer does not have an internal step attenuator

Description of the Test:

For most analyzer models, the receiver compression level is higher than the maximum source output power. Therefore, an external amplifier is required. This test also requires that two attenuators be switched in and out of the RF path. These requirements are met with the use of the Compression Test Set. The procedure outlined here is for those models which require the test set.

1. The analyzer is Preset. The two test set output attenuators are set to 0 dB .
2. The analyzer is set up for a 201 point CW transmission measurement for the port pair to be tested with the specified IF bandwidth (typically 1 kHz).
3. A test cable is connected between the analyzer source port and the test set input port. A test cable is connected to the test set output port.
4. A power sensor is connected to the end of the test cable.
5. For a series of CW frequencies across the analyzer's full frequency range, the source output level is adjusted to achieve the specified receiver compression power level (typically the receiver's maximum input power level).
6. The power sensor is disconnected from the test cable and the cable is connected to the port to be tested.
7. The analyzer steps through each CW frequency as the absolute log magnitude value (dBm) and the relative phase for the receiver under test is read (Pa).
8. The first test set output attenuator is set to 20 dB .
9. The magnitude and phase measurements using the receiver under test are read: (Pb).
10.The second test set output attenuator is set to 20 dB .
11.The magnitude and phase measurements using the receiver under test are read: (Pc).
12.The first test set output attenuator is set to 0 dB .
10. The magnitude and phase measurements using the receiver under test are read: (Pd).
14.The compression for each point is calculated as $(\mathrm{Pa}-\mathrm{Pb})-(\mathrm{Pd}-\mathrm{Pc})$. If the Analyzer Fails this Test:

- Run the Receiver Characterization adjustment, and repeat this test.
- If the analyzer still fails this test, replace the A23 mixer brick for a Port 1 or Port 2 failure or the A24 mixer brick for a Port 3 or Port 4 failure, then repeat this test. Refer to "Removing and Replacing the A27 and A28 Mixer Bricks" on page 7-40.

Noise State Calibration Coefficients

CAUTION

IMPORTANT!

For the most current information on the Table 7-2 "Verification, Performance, and Other Tests and Procedures" column's content, refer to https://cal.software.keysight.com/PNA/Help/N7840AWebHelp.htm.

Noise Floor Test

Function of the Test: To measure the absolute power level of the noise floor for the analyzer's receivers.

Specification Tested: Test Port Input-Test Port Noise Floor
Equipment Used:

- Power meter
- Power sensors
- Test cable
- Calibration kit

Description of the Test:
This test uses the source signal out of one analyzer test port as part of the noise floor measurement on another test port. Port 2 is the source port when measuring the noise floor of Port 1. Port 1 is the source port when measuring the noise floor of Ports 2, 3, and 4.

1. The analyzer is Preset.
2. The analyzer is set up for a CW transmission measurement between the source port and the test port to be measured. The analyzer is set to an IF bandwidth of 1 kHz and 801 points per sweep.
3. A test cable is connected to the source port.
4. A power sensor is connected to the end of the test cable with any necessary adapters.
5. For hundreds of frequencies across the analyzer's full range, a source power calibration is performed to ensure a flat power response at the end of the cable at the Preset power level.
6. The power sensor is disconnected and the cable is connected to the port to be tested.
7. A CW linear measurement sweep is measured for each test point. The receiver reference power level, Pref, in dBm is calculated for each point from the mean of each sweep.
8. The test cable is removed and loads are connected to both ports.
9. A CW linear measurement sweep is measured for each test point. The receiver test power level, Ptest, in dBm is calculated for each point from the mean of each sweep.
10.The corrected noise floor in dBm is calculated for a 10 Hz IF bandwidth using: PNoiseFloor = Ptest - 19.96 dB - (Preset Power - Pref).

If the Analyzer Fails this Test:

- If the analyzer fails this test, replace the A23 mixer brick for a Port 1 or Port 2 failure or the A24 mixer brick for a Port 3 or Port 4 failure, then repeat this test. Refer to "Removing and Replacing the A27 and A28 Mixer Bricks" on page 7-40.
- If the analyzer still fails this test, replace the A12 SPAM board and then repeat this test. Refer to "Removing and Replacing the A4-A17 Boards" on page 7-17.

Calibration Coefficients Test

Function of the Test: To verify the uncorrected calibration coefficients of your analyzer. The calibration coefficients are specified at the test port without any cables, so calibrations must be performed in both the forward and reverse directions to eliminate the effects of the test cable.

Specification Tested: Uncorrected System Performance
Equipment Used:

- Calibration kit
- Test cable

Description of the Test:
Two full SOLT 2-port calibrations are performed on each port pair. Ports 1 and 2 are tested as a pair. Ports 3 and 4 are tested as a pair on 4-port analyzers. Isolation is turned off during each calibration.

1. A test cable is connected to Port 1.
2. A calibration is performed between the end of the test cable and Port 2. The Port 2 directivity and source match and the S21 load match are retrieved from the analyzer.
3. The test cable is moved to Port 2.
4. A calibration is performed between the end of the test cable and Port 1. The Port 1directivity and source match and the S12 load match are retrieved from the analyzer.
5. On some older analyzer models, the reflection tracking and transmission tracking error terms were also specified. For those models, these error terms are also retrieved from the analyzer.
6. This process is repeated for Ports 3 and 4 on 4-port analyzers.

If the Analyzer Fails this Test:

- Failure of the directivity error term is often due to a faulty test port coupler. Replace the coupler and repeat this test.
- Failure of the source or load match error terms is due to faulty hardware between the test port and the internal source. Refer to Chapter 7, "Repair and Replacement Procedures." for instructions on replacing the suspected faulty component or assembly.

Dynamic Accuracy Test

This description applies to all N522xA, N5231A/32A/34A/35A/39A, and N5247A instruments.

Function of the Test: To measure the relative power linearity of the analyzer's receivers.

Specification Tested: Test Port Input-Dynamic Accuracy
Equipment Used:

- U3020AD01 dynamic accuracy test set
- Signal generator
- Power meter
- Power sensor
- Two test cables

Description of the Test:

1. The analyzer's test ports are tested separately at a specific CW frequency and a reference power level of -20 dBm .
2. A test cable is connected between the analyzer's source port and the dynamic accuracy test set's Source 1 In port. A test cable is connected between the signal generator and the test set's Source 2 In port. A test cable is connected to the test set's Receiver Out port, and the power sensor is connected to the end of this cable.

The test set's output attenuator is set to 20 dB . With the signal generator RF turned off, the PNA source power is adjusted until the power sensor reads -20 dBm . The PNA source is then turned off, the signal generator RF is turned on, and the signal generator power is adjusted until the power sensor reads -20 dBm .
3. The power sensor is disconnected and the test cable is attached to the analyzer port under test.
4. Both sources are turned on and the signal generator's frequency is set to 2 Hz above the analyzer's frequency. By combining these two signals together, the resultant signal will be a perfect sine wave with a magnitude which varies from -17 dBm to -23 dBm at a rate of 2 Hz .
5. The analyzer's receiver measurement is retrieved and compared with a perfect sine wave. Any deviation is due to receiver non-linearity.
6. The test set's output attenuator is changed in 5 dB steps from 0 to 60 dB , and this measurement is repeated.
7. With the 1 dB of overlap in each measurement, the data for each attenuator setting can be stitched together to provide a complete receiver linearity profile from +3 dBm to -63 dBm .
8. This test is repeated for each receiver.

If the Analyzer Fails this Test:

- If the analyzer fails this test, rerun the test.
- If the analyzer fails this test repeatedly, replace the A23 mixer brick for a Port 1 or Port 2 failure or the A24 mixer brick for a Port 3 or Port 4 failure, then repeat this test. Refer to "Removing and Replacing the A27 and A28 Mixer Bricks" on page 7-40.
- If the analyzer still fails this test, replace the A12 SPAM board and repeat this test. Refer to "Removing and Replacing the A4-A17 Boards" on page 7-17.

Dynamic Accuracy at Low Frequency (Available with LFE Option 205/220/420/425)

This description applies to all instruments with low frequency extension (LFE) Option 205, 220, 405, 420, and 425.

Function of the Test: This test will be set to the LFE path at 99.6 MHz . The test procedure is the same as the Dynamic Accuracy test process except that the LFE test process uses a 2-channel function generator as the source which has sufficient power range to cover each power step. Therefore a test set is not required.

Specification Tested: Dynamic Accuracy at Low Frequency
Equipment Used:

- Function generator (33622A)
- Power splitter (11667B)
- Fixed attenuator (10dB x2) - (8493C Option 010)
- Four test cables

Description of the Test:

NOTE

NOTE

Figure 3-14

Due to the complexity of the PNA family of analyzers, the following notes apply to illustrations in the PNA Help:

- Only a single representative model will be shown.
- Some illustrations may differ than those in TME.
- If the test procedure applies to multiple ports, illustrations will show the setup on only one test port.
- Setups for some option configurations may not appear in the Help.

For the two cables between the power splitter and attenuators, choose short but flexible cables.

Dynamic Accuracy at Low Frequency Setup

If the Analyzer Fails this Test:

- If the analyzer fails this test, rerun the test.
- If the analyzer fails this test repeatedly, run the DC continuity test. Refer to "DC Continuity Test the LFE Board and Test Ports (Available with LFE Option 205/220/420/425)" on page 3-43 and to "Removing and Replacing the A70 or A75 Low Frequency Extension (LFE) Board" on page 7-58.
- If the analyzer still fails this test, replace the A70 LFE board and repeat this test. Refer to "Removing and Replacing the A70 or A75 Low Frequency Extension (LFE) Board" on page 7-58.
- If the analyzer fails this test repeatedly, replace the A23 mixer brick for a Port 1 or Port 2 failure or the A24 mixer brick for a Port 3 or Port 4 failure, then repeat this test. Refer to "Removing and Replacing the A27 and A28 Mixer Bricks" on page 7-40.
- If the analyzer still fails this test, replace the A12 SPAM board and repeat this test. Refer to "Removing and Replacing the A4-A17 Boards" on page 7-17.

DC Continuity Test the LFE Board and Test Ports (Available with LFE Option 205/220/420/425)

The DC continuity test verifies that the LFE board is installed correctly and does not have any opens or shorts in the DC path.

1. Using a DVM, connect one test probe to the center conductor of the RF port 1 on the front panel.
2. Connect the other test probe to the port 1 bias input (BIAS 1 IN) on the rear panel.
3. Verify the DVM measures $<10 \Omega$.
4. Repeat these steps for each of the other test ports.

If the DVM value is 0Ω or $>10 \Omega$, then something is incorrectly installed or there is an open or short somewhere in the LFE board/cable path:

- Verify the gray DC bias cables installed in "Top Assemblies and Cables, All Options, Serial Number Prefixes <6021" on page 6-17 and the blue RF flexible cables installed in Chapter 6 in the "Bottom Assemblies" section-for your LFE option-are connected correctly and not open or shorted.

Adjustments

These adjustments are firmware-driven tests that are used to fine-tune your analyzer.

If multiple adjustments are to be performed, perform them in the order listed.

- "Touchscreen Adjustment and Verification" on page 3-44
-"10 MHz Frequency Reference Adjustment" on page 3-45
- "Synthesizer Bandwidth Adjustment" on page 3-47
- "Source Adjustment" on page 3-47
- "IF Gain Adjustment" on page 3-48
- "Receiver Characterization" on page 3-48
- "Receiver Adjustment" on page 3-49
- "EE Default Adjustment" on page 3-51
- "IF Response Adjustment (Available Only with Option S93093/4A/B and or S93900/1/2/4/5/7A/B Installed)" on page 3-51
- "LFE Receiver Adjustment - (Available with Option 205, 220, 405, and 420)" on page 3-52

These adjustments are described on the following pages.

Touchscreen Adjustment and Verification

NOTE

For best results, use a touchscreen soft touch pen for the following adjustments.

The touchscreen adjustment (calibration) is used to correct the touchscreen accuracy when you replace your front panel, or your SSD. Refer to "Calibration Procedure".

The touchscreen verification can be run to verify the touchscreen has been correctly calibrated. Refer to "Verification Procedure" on page 3-45.

Calibration Procedure

NOTE

If your touchscreen is not behaving as expected, you can reset your display using the Table PC Setting window and re-calibrate the touch settings using the "Calibration Procedure" below.

Step 1. Verify your instrument is powered up.
Step 2. Press Instrument > Display > Display Setup > Calibrate Touchscreen...
Step 3. In the Table PC Setting window that opens, press Calibrate...

Step 4. When the User Account Control opens, press Yes.
Step 5. After pressing all of the cross hair calibration points a Digitizer Calibration Tool window opens, press Yes.

Step 6. In the Tablet PC Settings window, press OK.

Verification Procedure

NOTE

If your display fails the verification process, you can reset your display using the Table PC Setting window. Refer to "Calibration Procedure" on page 3-44.

Step 1. Verify your instrument is powered up.
Step 2. Press System > Service > Display... > Display Setup > Calibrate Touchscreen...

Step 3. In the Table PC Setting window that opens, press Calibrate...
Step 4. Follow the instrument's display prompts.
10 MHz Frequency Reference Adjustment
The 10 MHz frequency adjustment is used to adjust the frequency accuracy of the network analyzer's 10 MHz frequency reference on the A14 frequency reference board assembly.

Touchscreen Adjustment and Verification
For best results, use a touchscreen soft touch pen for the following adjustments.

The touchscreen adjustment (calibration) is used to correct the touchscreen accuracy when you replace your front panel, or your SSD. Refer to "Calibration Procedure".

The touchscreen verification can be run to verify the touchscreen has been correctly calibrated. Refer to "Verification Procedure" on page 3-45.

Calibration Procedure

NOTE

If your touchscreen is not behaving as expected, you can reset your display using the Table PC Setting window and re-calibrate the touch settings using the "Calibration Procedure" below.

Step 1. Verify your instrument is powered up.
Step 2. Press Instrument > Display > Display Setup > Calibrate Touchscreen...
Step 3. In the Table PC Setting window that opens, press Calibrate...

Step 4. When the User Account Control opens, press Yes.
Step 5. After pressing all of the cross hair calibration points a Digitizer Calibration Tool window opens, press Yes.

Step 6. In the Tablet PC Settings window, press OK.
Verification Procedure

NOTE

If your display fails the verification process, you can reset your display using the Table PC Setting window. Refer to "Calibration Procedure" on page 3-44.

Step 1. Verify your instrument is powered up.
Step 2. Press System > Service > Display... > Display Setup > Calibrate Touchscreen...

Step 3. In the Table PC Setting window that opens, press Calibrate...
Step 4. Follow the instrument's display prompts.
Equipment Used for the 10 MHz Frequency Reference Adjustment

Equipment Type	Model or Part Number	Alternate Model or Part Number
Cable, BNC, 50, 24 inch	$8120-1839$	Any
Frequency counter	53151 A, Option 001	Any that will measure a signal at 10 MHz.

Procedure

NOTE

This adjustment typically adjusts to within ± 0.01 ppm.

1. Connect the equipment as shown in Figure 3-15. Connect a GPIB cable between the network analyzer and the frequency counter.

Figure 3-15 Equipment Setup for the 10 MHz Frequency Reference Adjustment

NETWORK ANALYZER RF COUNTER
2. Press UTILITY System, then Service , then Adjustment Routines , then click 10 MHz Freq Adjustment.
3. Ensure the GPIB settings are correct.
4. Follow the instructions and prompts as they are displayed.

Synthesizer Bandwidth Adjustment

This adjusts the bandwidth of the 13.5 GHz synthesizers.

Procedure

1. Press UTILITY System, then Service, then Adjustment Routines , then click Synthesizer Bandwidth Adj.
2. Follow the instructions and prompts as they are displayed.

Source Adjustment

The source calibration is used to adjust your network analyzer for a flat source power across its full frequency range. There are differences between each test port; therefore, an adjustment is required for each port.

Equipment Used for the Source Adjustment

Equipment Type	Model or Part Number	Alternate Model or Part Number
Power meter	$84818 \mathrm{~B} /$ /E4419B	E4418A/E4419A
Power sensor, Type-N	8487 A	None
Power sensor, 2.4 mm	None	
Power sensor, V-Band	V8486A	None
Adaptera, WR-15 to $1.85 \mathrm{~mm}(\mathrm{~m})$	V281B	None
Adapter, $1.85 \mathrm{~mm}(\mathrm{f})$ to $1.85 \mathrm{~mm}(\mathrm{f})$	$85058-60114$	None
Adapter, $2.4 \mathrm{~mm}(\mathrm{f})$ to $2.4 \mathrm{~mm}(\mathrm{f})$	11900 B	$85056-60007$
Adapter, Type-N (f) to $2.4 \mathrm{~mm}(f)^{\mathrm{b}}$	11903B	None

a. This sensor and adapter must be calibrated together by the Keysight factory. The data supplied is only valid as long as the sensor and adapter remain connected.
b. The 1.85 mm connector has the same ruggedness and is compatible with the 2.4 mm connectors. 1.85 mm and 2.4 mm adapters are interchangeable.

Procedure

1. Connect the equipment as shown in Figure 3-16. Connect a GPIB cable between the network analyzer and the power meter.

Figure 3-16 Equipment Setup for the Source Adjustment
NETWORK ANALYZER

2. .Press UTILITY System, then Service , then Adjustment Routines , then click Source Adjustment.
3. Ensure the GPIB settings are correct.
4. Follow the instructions and prompts as they are displayed.

IF Gain Adjustment

The IF gain adjustment is used to adjust the IF gain of the network analyzer.

Procedure

1. Press UTILITY System, then Service , then Adjustment Routines , then click IF Gain Adjustment.
2. Follow the instructions and prompts as they are displayed.

Receiver Characterization

This characterizes the receivers in your analyzer.

Procedure

1. Press UTILITY System, then Service , then Adjustment Routines , then click Receiver Characterization.
2. Follow the instructions and prompts as they are displayed.

Receiver Adjustment

The receiver calibration is used to adjust the network analyzer receivers for a flat response across its full frequency range:

1. A power meter/sensor is connected to Port 1, as shown in Figure 3-17, to establish a reference for flatness.
2. A cable is inserted between the power sensor and the test port, as shown in Figure 3-18, to establish a reference for the cable.
3. The same cable is connected between test port 1 and test port 2 , as shown in Figure $3-19$, and a signal from Port 1 is used to adjust the " B " receiver at Port 2.
The adjustment is repeated using a signal from Port 2 to adjust the " A " receiver at Port 1.

Data obtained during this adjustment are stored in the mxcalfile_pxx files in flash memory on the test set motherboard, with a backup copy stored on the hard disk drive. The data are used in subsequent measurements.

Solid state drives can be swapped or replaced without concern for the mxcalfile_pxx files. If the test set motherboard is replaced, the PNA firmware will automatically create new primary mxcalfile_pxx files from the backup copies on the hard drive.

These files can be recreated by performing another receiver calibration adjustment.

Equipment Used for the Receiver Adjustment

Equipment Type	Model or Part Number	Alternate Model Part Number
Power meter	E4418B/E4419B	E4418A/E4419A
Power sensor, Type-N	8482A	None
Power sensor, 2.4 mm	8487A	None
Power sensor, V-Band ${ }^{\text {a }}$	V8486A	None
Adapter ${ }^{\text {a }}$ WR-15 to 1.85 mm (m)	V281B	None
Adapter, 2.4 mm (f) to 2.4 mm (f)	11900B	85056-60007
Adapter, Type-N (f) to $2.4 \mathrm{~mm}(f)^{\text {b }}$	11903B	None
Adapter, 1.85 mm (f) to 1.85 mm (f)	85058-60114	None
Test cable, 2.4 mm (f) to 2.4 mm (f)	85133C	85133E
Test cable 1.85 mm (f) to 1.85 mm (f)	N4697E	N4697-60200

a. This sensor and adapter must be calibrated together by the Keysight factory. The data supplied is only valid as long as the sensor and adapter remain connected.
b. The 1.85 mm connector has the same ruggedness and is compatible with the 2.4 mm connectors. 1.85 mm and 2.4 mm adapters are interchangeable.

Procedure

1. Connect the equipment as shown in Figure 3-17. Connect a GPIB cable between the network analyzer and the power meter.

Figure 3-17 Equipment Setup 1 for the Receiver Adjustment

2. Press UTILITY System, then Service, then Adjustment Routines , then click Receiver Adjustment.
3. Ensure the GPIB settings are correct.
4. Follow the instructions and prompts as they are displayed.

Figure 3-18
Equipment Setup 2 for the Receiver Adjustment

Figure 3-19 Equipment Setup 3 for the Receiver Adjustment

> st509a

EE Default Adjustment

This sets the EEPROM data to their default values.

Procedure

1. Press UTILITY System, then Service, then Adjustment Routines , then click EE Default Adjustment.
2. Follow the instructions and prompts as they are displayed.

IF Response Adjustment (Available Only with Option S93093/4A/B and or S93900/1/2/4/5/7A/B Installed)

In A models these options were 090 and 093 or 094.

The IF Response adjustment is required when upgrading to Option 090, 093 and or 094. In addition, this adjustment must be performed each time a new configuration is set up or if cables are changed:

Procedure

1. Press UTILITY System, then Service , then Adjustment Routines , then click IF Response Adjustment.
2. Follow the instructions and prompts as they are displayed.

LFE Receiver Adjustment - (Available with Option 205, 220, 405, and 420)

The LFE Receiver adjustment is required when upgrading to Option 205 or 425. In addition, this adjustment must be performed each time a new configuration is set up or if cables are changed.

Procedure

1. Press UTILITY System, then Service, then Adjustment Routines , then click LFE Receiver Adjustment.
2. Follow the instructions and prompts as they are displayed.

4 Troubleshooting

Information in This Chapter

The information in this chapter helps you:

- Identify the portion of the analyzer at fault.
- Locate the specific troubleshooting procedure to identify the assembly or peripheral at fault.

The sections in this chapter are arranged in a logical troubleshooting order. The following table lists the sections and a brief summary of what to look for in that section.

Chapter Four at-a-Glance

Section Title	Summary of Content	Start Page
Getting Started with Troubleshooting	A starting point for troubleshooting.	page 4-7
Power Up Troubleshooting	Power-up problems: - Power supply problems - LCD problems - Bootup for the network analyzer interface	page 4-9
Front Panel Troubleshooting	Problems occurring after the network analyzer interface is loaded: - Does the display color appear correct? - Do the front panel keys function properly? - Does the front panel USB connector function properly?	page 4-17
Rear Panel Troubleshooting	Problems associated with the rear panel interconnects. The data found at these rear panel interconnects can be used to troubleshoot the CPU board.	page 4-24
Measurement System Troubleshooting	Problems with the measurement portion of the analyzer. - Checking the A, B, R1, and R2 signals. - Checking the source group. - Checking the signal separation group. - Checking the receiver group.	page 4-31

Instrument Block Diagrams

- "Instrument Simplified Block Diagrams - LFE" on page 57

Non-LFE Block Diagrams:

- "Instrument Block Diagrams -2-Port (Sheet 1), Non-LFE and Non-DDS (Version 6 Synthesizers)" on page 62
- "Instrument Block Diagrams -2-Port (Sheet 2), LFE and Non-DDS (Version 6 Synthesizers)" on page 64
- "Instrument Block Diagrams -2-Port (Sheet 3), Non-LFE and DDS (Version 7 Synthesizer Assemblies)" on page 66
- "Instrument Block Diagrams -2-Port (Sheet 4), LFE and DDS (Version 7 Synthesizer
Assemblies)" on page 68
- "Instrument Block Diagrams -4-Port (Sheet 5), Non-LFE and Non-DDS (Version 6 Synthesizers)" on page 70
- "Instrument Block Diagrams -4-Port (Sheet 6), LFE and Non-DDS (Version 6 Synthesizers)" on page 72
- "Instrument Block Diagrams -4-Port (Sheet 7), Non-LFE and DDS (Version 7 Synthesizer Assemblies)" on page 74
- "Instrument Block Diagrams -

4-Port (Sheet 8), LFE and DDS
(Version 7 Synthesizer
Assemblies)" on page 76

Block diagrams for the analyzer including all options.

page 4-57
page 4-62
pag
page 4-64
page 4-66
page 4-68
page 4-70
page 4-72
page 4-74
page 4-76

Conventions Used for Hardkeys, Softkeys, and Menu Items

The following conventions are used in this document:

Hardkey

This represents a "hardkey", a key that is physically located on the instrument.

This represents a "tab", whose label is determined by the instrument firmware.

Softkey

Menu Item

This represents a "softkey", a key whose label is determined by the instrument firmware.

This represents an item in a drop-down or pop-up menu.

Operating the Analyzer With Covers Removed

> CAUTION
> Do not operate the analyzer with the outer cover removed for more than 30 minutes, as this could cause the analyzer to overheat which could result in costly damage.

Protect Against Electrostatic Discharge (ESD)

This is important. If not properly protected against, electrostatic discharge can seriously damage your analyzer, resulting in costly repair.

CAUTION

To reduce the chance of electrostatic discharge, follow all of the recommendations outlined in "Electrostatic Discharge Protection" on page 1-7, for all of the procedures in this chapter.

Assembly Replacement Sequence

After identifying the problem requiring an assembly to be replaced, follow these steps:

Step 1. Order a replacement assembly. Refer to Chapter 6, "Replaceable Parts."
Step 2. Replace the faulty assembly and determine what adjustments are necessary. Refer to Chapter 7, "Repair and Replacement Procedures."

Step 3. Perform the necessary adjustments. Refer to Chapter 3, "Tests and Adjustments."

Step 4. Perform the necessary performance tests. Refer to Chapter 3, "Tests and Adjustments."

Getting Started with Troubleshooting

Where you begin troubleshooting depends upon the symptoms of the failure. Start by checking the basics as outlined in the following section. Also review the flowchart in Figure 4-1 on page 4-8. You should then be able to determine where in the troubleshooting procedure to begin, to locate the failed assembly.

Check the Basics

A problem can often be solved by repeating the procedure you were following when the problem occurred. Before calling Keysight Technologies or returning the instrument for service, please perform the following checks:

1. Is there power at the mains receptacle? If not, correct this situation and proceed.
2. Is the instrument turned on? Check to see if the front panel line switch displays a light. This indicates the power supply is on. If the front panel line switch is on but the power supply does not appear to be on, go to "Power Up Troubleshooting" on page 4-9.
3. Is the Windows® operating system running? If not, refer to "Operating System Recovery" in Chapter 8 for instructions.
4. If other equipment, cables, and connectors are being used with the instrument, make sure they are clean, connected properly and operating correctly.
5. Review the procedure for the measurement being performed when the problem appeared. Are all the settings correct? If not, correct them.
6. If the instrument is not functioning as expected, return the unit to a known state by pressing the UTILITY > Main > Preset key.
7. Is the measurement being performed, and the results that are expected, within the specifications and capabilities of the instrument? Refer to the embedded help in the analyzer for instrument specifications.
8. If the problem is thought to be due to firmware, check to see if the instrument has the latest firmware before starting the troubleshooting procedure. Refer to "Firmware Upgrades" in Chapter 8 for instructions.
9. If the necessary test equipment is available, perform the operator's check and system verification in Chapter 3, "Tests and Adjustments."

Troubleshooting Organization

Follow the flowgraph in Figure 4-1 to help direct you to the correct section for troubleshooting the analyzer.

Figure 4-1 Troubleshooting Organization Flowchart

Power Up Troubleshooting

WARNING

Immediately unplug the instrument from the ac power line if the unit shows any of the following symptoms:

- Smoke, arcing, or unusual noise from inside the analyzer.
- A circuit breaker or fuse on the main ac power line opens.

Check your network analyzer for evidence that it is powering up correctly. Perform the following steps and make sure that the analyzer is displaying correct behavior as noted in the following steps.

Step 1. Disconnect all peripherals and plug in the network analyzer. Before the analyzer is powered on, the line switch should glow yellow and no other lights should be on.

Step 2. Turn on the network analyzer.

- The line switch should glow green.
- The fans should be audible.
- The display should flash and then show the hardware boot-up sequence. This process checks the RAM and communication with the hard disk drive. These checks return an error message if a problem is detected.
- The Windows operating system should start.
- The network analyzer measurement interface should open with an S_{11} measurement displayed.

Step 3. If the analyzer powers up correctly, continue troubleshooting with "Front Panel Troubleshooting" on page 4-17.

Step 4. If the analyzer does not power up correctly, follow these troubleshooting steps:

- If the line switch does not glow, go to "Power Supply Check" on page 4-10.
- If you cannot hear the fans operating, go to "If the Fans Are Not Operating" on page 4-14.
- If the line switch displays a green light and the fans are operating (audible), but the display remains dark, go to "Troubleshooting LCD Display Problems" on page 4-15.
- If the instrument appears to abort the network analyzer measurement interface process, contact Keysight. Refer to "Contacting Keysight" on page 2-7.

Power Supply Check

NOTE

There are no fuses to replace within the power supply. If you determine that the power supply is the failed assembly, replace the power supply.

A catastrophic failure in the power supply can be determined by observing the line switch and the power supply LED indicators:

1. Ensure that the instrument is plugged in with the power switch in the standby position (power not switched on). Verify that the line switch displays a yellow light - this indicates that the power supply standby line is active and functional.
2. Turn on the instrument power and verify that the line switch displays a green light - this indication that the power supply is active and does not sense an over-current condition.
3. You can determine which power supplies are functioning by viewing the LED indicators on the A19 midplane board. Refer to Figure 4-2.

To view the LED indicators, it is necessary to remove the instrument's outer and inner covers. Refer to "Removing the Covers" on page 7-6 for removal procedures. To determine the location of the A19 midplane board, refer to "Top Assemblies and Cables, All Options, Serial Number Prefixes <6021" on page 6-17.

Do not operate the analyzer with the outer cover removed for more than 30 minutes, as this could cause the analyzer to overheat which could result in costly damage.
4. If any power supply voltage is missing, it is likely that the problem is a defective A20 power supply, the A19 midplane board, or another assembly that is loading down the A20 power supply. Continue with "If Any Supply Voltage Is Missing" on page 4-12 to determine the cause of the problem.
5. If the line switch is lit correctly, and all the power supply voltages appear to be present, as indicated by the LEDs as shown in Figure 4-2, the power supply has not suffered a catastrophic failure. However, the power supply could still be at fault. Continue at "Measure the Individual Supply Voltages" to verify that the actual supply voltages are correct.

Measure the Individual Supply Voltages

Measure the power supply voltages using a digital multi-meter. Use the point labeled ACOM as ground reference for analog supplies and the point marked DCOM as ground reference for digital supplies.

Refer to Figure 4-2 for the power supply measurement points on the A19 midplane board. Refer to Table 4-2 on page 4-12 for the correct voltages.

Figure 4-2
A19 Midplane Board Power Supply LED Indicators and Measurement Points

WARNING

CAUTION

NOTE

The instrument contains potentially hazardous voltages. Refer to the safety symbols provided on the instrument and in "General Safety Considerations" on page 1-3 before operating the unit with the cover removed. Make sure that the safety instructions are strictly followed. Failure to do so can result in personal injury or loss of life.

Do not operate the analyzer with the outer cover removed for more than 30 minutes, as this could cause the analyzer to overheat which could result in costly damage.

If any one individual voltage supply from the A20 power supply develops an over-voltage or over-current problem, all supplies are affected. The cause of the over-voltage or over-current condition can be the A20 power supply itself, or any assembly to which the A20 power supply provides voltage. To isolate the cause, continue to the assembly removal process as described in the section titled "If Any Supply Voltage Is Missing" on page 4-12.

Table 4-1 Power Supply Measurement Points

Test Point	Supply Name	Expected Level (Vdc)	Test Point	Supply Name	Expected Level (Vdc)
TP517	Analog Ground	OV	TP516	-5.2 V analog	-5.2 ± 0.1
TP509	+15 V analog	+15.0 ± 0.1	TP514	-7V analog	-7.0 ± 0.1
TP511	+9 V analog	$+9.0 \pm 0.1$	TP500	Digital Ground	0 V
TP515	+3.5 V analog	+3.5 ± 0.1	TP502	+5.1 V standby	+5.1 ± 0.1
TP513	+5.2 V analog	+5.2 ± 0.1	TP503	+12 V digital	$+12.0 \pm 0.1$
TP501	+15 V standby	+15.0 ± 0.1	TP507	+3.35 V digital	$+3.35 \pm 0.1$
TP504	+32 V analog	+32.0 ± 0.1	TP505	+5.1 V digital	$+5.1 \pm 0.1$
TP512	-15V analog	-15.0 ± 0.1	TP519	Digital Ground	OV

If All Supply Voltages are Present

If all of the supplies have measured within tolerances, and the instrument still is not functioning properly, refer to "Front Panel Troubleshooting" on page 4-17.

If Any Supply Voltage Is Missing

WARNING

Disconnect the line-power cord before removing any assembly. Procedures described in this document may be performed with power supplied to the product while protective covers are removed. Energy available at many points may, if contacted, result in personal injury or loss of life.

You must sequentially remove all of the assemblies, taking care to disconnect the line power cord before each removal, and then measure the supply voltages after each removal.

If the missing supply voltages return to a "power on" condition after removal of an assembly, suspect that assembly as being defective.

Remove the network analyzer assemblies in the order specified in the following steps (refer to Chapter 7 for removal instructions).

1. Unplug the A23 test set motherboard ribbon cable from the A23 test set motherboard (refer to "Removing and Replacing the A23 Test Set Motherboard" on page 7-30).
2. Unplug the A23 test set motherboard to A24 IF multiplexer board ribbon cable from the A24 IF multiplexer board (refer to "Removing and Replacing the A24 IF Multiplexer Board" on page 7-33).
3. Unplug the front panel interface cable from the A1 front panel interface board (refer to "Removing the A1 Front Panel Interface Board and Keypad Assembly" on page 7-9).
4. Remove the A16 SPAM board (refer to "Removing and Replacing the A4-A17 Boards" on page 7-17).
5. Remove the A10 source board (refer to "Removing and Replacing the A4-A17 Boards" on page 7-17).
6. Remove the A5 source board, if present (refer to "Removing and Replacing the A4-A17 Boards" on page 7-17).
7. Remove the A 15 13.5 GHz synthesizer board (refer to "Removing and Replacing the A4-A17 Boards" on page 7-17).
8. Remove the A17 13.5 GHz synthesizer board (refer to "Removing and Replacing the A4-A17 Boards" on page 7-17).
9. Remove the A4 13.5 GHz synthesizer board, if present (refer to "Removing and Replacing the A4-A17 Boards" on page 7-17)
10.Remove the A14 frequency reference board (refer to "Removing and Replacing the A4-A17 Boards" on page 7-17).
11.Remove the A22 GPIB board (refer to "Removing and Replacing the A22 GPIB Board" on page 7-28). Reinstall the A20 power supply assembly and the A21 CPU board assembly.
10. Unplug the A55 hard disk drive from the A21 CPU board (refer to "Removing and Replacing the A55 Solid State Drive (SSD)" on page 7-54).
The minimum required assemblies to power up the analyzer are:

- A20 power supply
- A19 midplane board
- A18 system motherboard
- A21 CPU board

To further isolate the failure in the three remaining assemblies, measure the resistance (with the power turned off) from the power supply test points to either ACOM or DCOM.

NOTE

Make sure that the only assemblies plugged in are the four minimum required assemblies listed above.

Check for shorts (zero Ω) or very low resistance (approximately 1Ω). If a short or low resistance is measured, isolate each of the remaining four boards in the following order, and recheck the shorted test point after each board is removed. You should be able to determine if the shorted condition has changed.

Isolate the remaining three assemblies:

- remove the A21 CPU board
- remove the A20 power supply
- remove the A19 midplane board
- This leaves only the A18 system motherboard installed. If the resistance measurements are still incorrect, this is the suspected faulty assembly.

If the Fans Are Not Operating

The power supply may be in thermal shutdown if the instrument has been operating without the fans running. Allow the instrument to cool down before troubleshooting.

If all five fans are not operating, suspect a power supply problem or a defective A18 system motherboard. Refer to "Power Supply Check" on page 4-10 to check the individual supplies. If the supplies are within specifications, the most probable cause is a defective A18 system motherboard. Refer to "Removing and Replacing the A18 System Motherboard" on page 7-19.

If only one or two fans are not functioning, and the power supplies are within specifications, suspect the A18 system motherboard or defective fan(s).
Perform the following procedure.

1. Remove the fan bracket, with fans attached, from the analyzer to expose the fan power cable connections on the A18 system motherboard. Refer to Figure 4-3 for location of these connections. Refer to "Removing and Replacing the Fans" on page 7-73.
2. Plug in the power cord and measure the fan voltages at all three connectors on the A18 system motherboard. THIS MUST BE DONE QUICKLY AS THE ANALYZER WILL RAPIDLY OVERHEAT WITHOUT THE COOLING EFFECT OF THE FANS. DO NOT PLUG IN THE POWER CORD UNTIL READY TO PERFORM MEASUREMENTS.

Figure 4-3
Fan Power Cable Connections

3. If the correct voltage is present at each connection and the fan connectors are in good mechanical condition, suspect a defective fan. Refer to "Removing and Replacing the Fans" on page 7-73.
4. If the correct voltage is not present, suspect a defective A18 system motherboard. Refer to "Removing and Replacing the A18 System Motherboard" on page 7-19.

Troubleshooting LCD Display Problems

This procedure is intended to isolate the faulty assembly when the display is dark. If the display is lit, but the color mix is faulty, refer to "A3 Display Test" on page 4-20.

NOTE

There are no front panel adjustments for intensity and contrast of the LCD.

1. If the display is dim, the A3 display assembly is defective. Refer to
"Removing and Replacing the A1-A3 and Other Front Panel Subassemblies" on page 7-9.
2. If the display is dark (not visible), connect an external VGA monitor to the rear panel Monitor output connector. (Be aware that some multisync monitors might not be able to lock to a 60 Hz sync pulse.) If the video information is not present on the external VGA monitor, the most probable cause is the A21 CPU board. Refer to "Removing and Replacing the A21 CPU Board Assembly" on page 7-26.
3. If the external VGA monitor displays the correct information, verify that the front panel interface ribbon cable is properly plugged into the motherboard connector. Refer to "Removing and Replacing the Front Panel Assembly" on page 7-7.
4. If the front panel interface ribbon cable is properly connected, suspect that one or more of the following is defective:

- inverter board (mounted on the display assembly)
- A1 front panel interface board
- A3 display assembly

Front Panel Troubleshooting

The front panel assembly consists of the A1 front panel interface board, the keypad, the A2 USB board, and the A3 display assembly. The following tests verify the operation of the front panel assembly when the analyzer is in the measurement mode. If the instrument fails to power up correctly, or it is difficult to verify due to a faulty display, refer to "Power Up Troubleshooting" on page 4-9.
Refer to the following sections to verify the operation of the noted assemblies.

- "Front Panel Keypad and RPG Test" on this page
- "A3 Display Test" on page 4-20
- "Checking the A2 USB Board" on page 4-21
- "A1 Front Panel Interface Board" on page 4-22

If all assemblies are working correctly, continue troubleshooting with "Rear Panel Troubleshooting" on page 4-24.

Front Panel Keypad and RPG Test

Test the front panel keypad by running the front panel test. To run the front panel test, perform the following:

Press UTILITY System, then Service , then Diagnostics, then
Front Panel Test .
A Front Panel Key Test Utility dialog box will be displayed, as shown in Figure 4-4.

Figure 4-4 Front Panel Key Test Utility Dialog Box

Checking the Front Panel Keys

To check the front panel keys, push each key and compare the name in the Key Label box to the name physically labeled on the key cap. These names are also in Table 4-2 below. Verify that the Key Label and the Codes match.

- If all the key names are correct, then the front panel keypad is working. If some of the keys are not working, suspect a faulty keypad. To replace the keypad, refer to "Removing the A1 Front Panel Interface Board and Keypad Assembly" on page 7-9.
- If none of the keys are working correctly, suspect a faulty touchscreen controller board or the A1 front panel interface board. To replace the touchscreen controller board, refer to "Removing the Touchscreen Controller Board" on page 7-10. To replace the A1 front panel interface board, refer to "Removing the A1 Front Panel Interface Board and Keypad Assembly" on page 7-9.
- To close the Key Label window and return to the instrument display, press Preset three times.

Table 4-2 Front Panel Keyboard Key Names

INSTRUMENT Keys	Keypad Code	STIMULUS Keys	Keypad Code	ENTR ${ }^{\text {a }}$ Keys	Keypad Code	ENTRY ${ }^{\text {a }}$ Keys (cont.)	Keypad Code
Prev	239	Freq	223	OK	154	1	198
Next	240	Power	157	Cancel	186	2	199
Trace	160	Sweep	163	Bk Sp	233	3	192
Channel	164	Trigger	171	T/p	242	k/m	232
Display	238	Navigation ${ }^{2}$ Keys	Keypad Code	7	182	0	206
Setup	241	Knob (CW)	101	8	183	. (decimal point)	207
$\begin{aligned} & \text { RESPONSE } \\ & \text { Keys } \end{aligned}$	Keypad Code	Know (CCW)	102	9	176	+/-	201
Meas	179	Click (Rotary Knob press)	159	G/n	177	Enter Off	193
Format	180	\uparrow	151	4	190	UTILITY Keys	Keypad Code
Scale	181	\leftarrow	150	5	191	Save/Recall	203
Math	197	\rightarrow	152	6	184	Macro	213
Avg BW	172	\downarrow	158	M/u	185	Undo	243
Cal	173					System	231
Marker	187					Help	170
Search	195					Preset	205

a. There are no Entry or Navigation labels on the display. Entry and Navigation titles are for functional reference only.

Checking the RPG (Front Panel Knob)

NOTE

Figure 4-5
This section assumes you have completed the introduction and opened the Front Panel Key Test Utility window. Refer to "Front Panel Keypad and RPG Test" on page 4-17.

To check the RPG knob:

1. Rotate the knob clockwise (cw) and check for a fluid movement of numbers on the analyzer display and verify that Knob Rotate CW is displayed. Refer to Figure 4-5.

RPG Knob Clockwise Verification

2. Rotate the knob counter clockwise (ccw) and check for a fluid movement of numbers on the analyzer display and verify that Knob Rotate CCW is displayed.
3. Press the knob and verify that Knob Click is displayed.
4. If the movement of numbers is not smooth or no numbers appear at all, suspect a faulty RPG board or the A1 front panel interface board. To replace the RPG board, refer to "Removing the RPG Assembly" on page 7-9. To replace the A1 front panel interface board, refer to "Removing the A1 Front Panel Interface Board and Keypad Assembly" on page 7-9.
5. When done to close the Key Label window and return to the instrument display, press Preset three times.

A3 Display Test

The display should be bright with all annotations and text readable. The display test allows you to check for non-functioning pixels and other problems.

If the display is dark, refer to "Removing the A3 Display Assembly and the Touchscreen" on page 7-11 and to "Removing the Touchscreen Controller Board" on page 7-10.

What Is a Damaged Pixel?

A pixel is a picture element that combines to create the image on the display. A pixel is about the size of a small pin point.

A damaged pixel is a pixel that has a constant blue, green, red, black, or other color appearance that will not change.

How to Run the Display Test

To run the display test, perform the following:

Display Test.

A multi-color screen is displayed. Be prepared to look for the symptoms described in "How to Identify a Faulty Display." Follow the instructions on the screen.

How to Identify a Faulty Display

A display is considered faulty if:

- More than 6 pixels and or any two faulty pixels within 15 mm of each other (used-under warranty) of the total pixels have a constant blue, green, red, or black appearance that will not change.
- Three or more consecutive pixels and or any two faulty pixels within 15 mm of each other, have a constant blue, green, red, purple, black and or other colors, appearance that will not change.
- Also, for the Gray gradient screen, verify their are no black vertical/horizontal lines

If the A3 display assembly is determined to be faulty, replace it. Refer to "Removing the A3 Display Assembly and the Touchscreen" on page 7-11.

Checking the A2 USB Board

To verify proper operation of the USB board:

1. Connect a known good USB device, such as a USB mouse, to a front panel USB port.
2. Wait 15 seconds for the analyzer to verify the device connection, and then check the operation of the USB device.
3. If the device performs correctly, the USB board is functioning properly. Else, skip to step 5.
4. Repeat steps 1 thru 3 for all front and rear USB ports.
5. If the device does not perform correctly, the USB may need to be reset. Use Windows Device Manager to look for any cautions or warnings and repair those first. Refer to Windows Help.

NOTE

The Windows Device Manager can be used to enable/disable the USB drivers and may repair your USB hub(s). Refer to Windows Help.
6. If the device still does not perform correctly, the USB board is faulty. Refer to "Removing the A2 USB Board" on page 7-9.

A1 Front Panel Interface Board

This assembly performs the following functions:

- All signals from the front panel interface board are routed through the motherboard/midplane board to the CPU.
- It routes USB signals between the front-panel USB connector and the A17 CPU board.
- The speaker produces the audio output from signals supplied by the A17 CPU board.
- It routes key pad commands from the keypad to the A17 CPU board.
- It routes display signals from the A17 CPU board to the A3 display assembly.

Checking the Speaker

If no audio is heard:
Verify that the volume is set correctly and the proper sound driver is loaded; do the following:

1. Press File > Minimize Application, then press the Speaker icon (4s) on the Windows Toolbar.
2. The windows slider opens. Verify the volume is not muted, then slide volume up or down.

Else, skip to step 4.
3. Optional, if audible tone is heard, reset volume slider to zero or mute.
4. If the audio is still not heard, suspect a faulty speaker. Refer to "Removing the A1 Front Panel Interface Board and Keypad Assembly" on page 7-9 and to "Removing the Speaker Assembly" on page 7-11.

Checking the Operation of the Key Pad Commands

To verify the key pad functionality, refer to "Front Panel Keypad and RPG Test" on page 4-17.

Checking the Display

To verify the display functionality, refer to "A3 Display Test" on page 4-20.

Rear Panel Troubleshooting

Each rear panel connector is associated with a hardware group in the analyzer. You can use the data at these rear panel connectors to help troubleshoot these hardware groups in addition to testing the connectors.

The connectors discussed in this section are:

- USB×4
- Monitor (VGA)
- GPIB (0) CONTROLLER
- GPIB (1) TALKER/LISTENER
- LAN

Checking the USB Ports

To verify proper operation of any rear panel USB port:

- Connect a known good USB device, such as a USB mouse.
- Wait 15 seconds for the analyzer to verify the device connection, and then check the operation of the USB device.
- If the device performs correctly, the USB port is functioning properly.
- If the device does not perform correctly, remove the non-working USB device, wait 15 seconds, and then reconnect the device to the rear panel USB port.
- If the USB device still does not work and has been verified to work elsewhere, then the A21 CPU board is faulty. Refer to "Removing and Replacing the A21 CPU Board Assembly" on page 7-26.

Checking the CONTROLLER Port

The network analyzer uses a National Instruments 488.2 GPIB controller and associated driver software. This software includes a test utility that scans the GPIB bus and returns the status of all the connected peripherals.

To run the test utility software and check the GPIB status:

1. Connect a known good peripheral to the analyzer using a known good GPIB cable.
2. Press UTILITY System, then Configure , then SICL/GPIB... . A SICL/GPIB/SCPI dialog box is displayed.
3. In the GPIB block, click System Controller to establish the analyzer as a controller. Wait for the analyzer to configure, and then click OK.
4. If the Window Desktop is not displayed, press UTILITY System, then Configure, then Control Panel... to view the Windows Taskbar menu at the bottom of the display.
5. On the Windows Taskbar menu, click Start then point to Programs, National Instruments NI-488.2, and then click Explore GPIB to open the Measurement \& Automation window.
6. On the left side of the Measurement \& Automation window under folders:
a. Click the plus sign to expand the Measurement \& Automation folder.
b. Click the plus sign to expand the Devices and Interfaces folder.
c. Right click GPIBO (AT-GPIB/TNT) to open a submenu.
7. On the submenu, click Scan for Instruments to run the test.
8. The state of all the peripherals found on the bus is returned.
9. If problems are detected, check the connections of all GPIB cables, and check all the GPIB addresses of the instruments on the bus.

NOTE

Address Information

- Each device must have its own unique address.
- The network analyzer's default GPIB address in the controller mode is 21.
- The address set on each device must match the one recognized by the analyzer (and displayed).
Refer to the manual of the peripheral to read or change its address.

Troubleshooting Systems with Controllers

Passing the preceding test indicates that the analyzer's peripheral functions are operating normally. Therefore, if the analyzer has not been operating properly with an external controller, check the following:

- The GPIB interface hardware is incorrectly installed or not operational. (Refer to the embedded help in your analyzer.)
- The programming syntax is incorrect. (Refer to the embedded help in your analyzer.)

LAN Troubleshooting

Problems with the Local Area Network (LAN) can be difficult to solve. Software and protocol problems can make it difficult to determine whether the analyzer's hardware is working properly, or if there is a problem with the LAN or cabling.

The purpose of this section is to determine if the analyzer's hardware is functioning properly. While the turn-on self-test verifies some LAN hardware functionality, it is limited to internal testing only. Incorrect IP addresses will prevent proper operation. Improper subnet masks may allow only one-way communication, while improper gateway addresses may exclude outside LAN access.

Ping Command

The analyzer has the built-in capability of performing a "ping" operation. Ping will request the analyzer to send a few bytes of information to a specific LAN device. That device will then signal the analyzer that it has received the information. The analyzer computes the approximate round trip time of the communication cycle and displays it. For a full test of two-way communications, a ping test should be performed in two directions.

- First: you should ping from the analyzer to the local area network.
- Second: you should ping from the local area network to the analyzer.

In the second case, any other network device capable of sending a ping command could be used, assuming it is connected to the same network. This could be a computer or even another analyzer.

How to Ping from the Analyzer to the Local Area Network (LAN)
Follow the steps below to verify proper LAN operation (assuming you have a functioning LAN). If no network LAN is available, see "Testing Between Two Analyzers" on page 4-28.

1. Make sure the IP address on the analyzer is set properly and that it is unique. If unsure how to check the IP address, refer to the embedded help in the analyzer.
2. Make sure the subnet mask is 0.0 .0 . 0 . If not, note the current setting (to allow setting it back later) and then set it to 0.0.0.0.
3. Find and note the IP address of another working LAN device on the same network. Make sure this device is turned on, connected, and is functioning properly.
4. To ping the network device:
a. If the Windows Desktop is not displayed, press UTILITY System, then Configure , then Control Panel... to view the Windows Taskbar menu at the bottom of the display.
b. On the Windows Taskbar menu, click Start, point to Programs, Accessories, and then click Command Prompt.
c. The command prompt window is displayed.
d. At the prompt, type ping $x x x . x x x . x x x . x_{x x}{ }^{1}$ and press ENTRY Enter on the front panel. Refer to Step 5 for the results of a successful ping.
5. The analyzer attempts four cycles of communications with the indicated LAN device.

- It displays the time it took to complete each cycle.
- Each cycle times-out after one second if no communication is established and the message, Request timed out, is displayed.
- It is common for the first of the four cycles to time-out even though subsequent cycles pass.
- See below for an example output of a successful ping.

C:>ping 141.121.69.162

Pinging 141.121.69.162 with 32 bytes of data:
Reply from 141.121.69.162: bytes=32 time<10ms
TTL=127
Reply from 141.121.69.162: bytes=32 time<10ms
TTL=127
Reply from 141.121.69.162: bytes=32 time<10ms
TTL=127 Reply from 141.121.69.162: bytes=32
time<10ms TTL=127
Ping statistics for 141.121.69.162:
Packets: Sent $=4$, Received $=4$, lost $=0<0 \%$ loss>.
Approximate round trip times in milli-seconds:
Minimum $=0 \mathrm{~ms}$, Maximum $=0 \mathrm{~ms}$, Average $=0 \mathrm{~ms}$
6. The above message verifies that one way communication from the analyzer to the network has been established
7. If the subnet mask was changed in step 2 , set it back at this time.

How to Ping from the Local Area Network (LAN) to the Analyzer
Reverse communication should also be verified. Determining this, though, is dependent upon your network setup and software. Generally, you need to issue a ping command using the IP address of the analyzer to be tested. For example, using Windows $95,98,2000$, XP or 7 and while at a DOS prompt, type in ping xxx.xxx.xxx. xxx^{2}. Then press ENTRY Enter on the front

[^1]panel. If full communication can be established, then the computer display shows the cycle time for each of four cycle attempts (similar to that in step 5). Other software may behave somewhat differently, but basically the same.

If the analyzer can talk to the network, but the network can not talk to the analyzer, then the computer or device used from the network may have a subnet mask that excludes communication with the IP address chosen for the analyzer. Any subnet mask other than 0.0 .0 .0 will exclude operation from some addresses. Changing the subnet mask of a computer or other device should only be attempted by a qualified network administrator. Failure to communicate due to a subnet mask incompatibility does not indicate any failure of the analyzer.

If the analyzer fails to ping in either direction, and assuming the subnet masks are set properly, then the fault must be isolated to the analyzer or to the network. Contact a qualified network administrator.

Testing Between Two Analyzers

The ability of the analyzer's LAN to function can be easily tested by connecting two analyzers together using a "crossover cable" (a short length of cable with an RJ-45 connector on each end).

Some network hubs have the capability to make a crossover connection using two normal, or straight-through, cables. If this capability is not available and a crossover cable is not available, a crossover cable can be made by following the directions in "Constructing a Crossover Cable" on page 4-29.

Set the IP addresses on two analyzers. The addresses can be set to anything, but they must be different. Make sure the subnet mask and gateway addresses are set to 0.0.0.0 and that the LAN is active on both analyzers. Connect the two analyzers together using either a crossover cable or a crossover hub.

Now follow the steps in "How to Ping from the Analyzer to the Local Area Network (LAN)" on page 4-26 to have the first analyzer ping the second analyzer. When done, repeat the procedure having the second analyzer ping the first. If both procedures function properly, the LAN circuitry on both analyzers is verified.

If neither function properly:

- One or both IP addresses could be wrong.
- One or both LAN states could be set to off.
- The crossover cable could be miswired.
- One or both analyzers could be defective.

If possible, eliminate the possibility of a defective analyzer by substitution of a known working unit. Once the analyzer has been proven to be working properly, concentration can be placed on the network itself to determine the cause of the failure.

Constructing a Crossover Cable

A crossover cable can be made from a standard LAN cable by connecting pin 1 from each connector to pin 3 of the other connector, and pin 2 from each connector to pin 6 of the other connector.

1. Strip away a few inches of the outside jacket insulation from the middle of a standard LAN cable that has an RJ-45 connector on each end.

NOTE

Pins $1,2,3$, and 6 of the connectors must be located to determine which wires to cut in the following steps. Most, but not all, LAN cables use the color coding listed in Table 4-3. If your cable does not use this color scheme, you will have to determine the locations of the appropriate wires before proceeding with this procedure.

Table 4-3 LAN Pin Definitions and Wire Color Codes

| Pin Number | Color | Pin Number | Color |
| :--- | :--- | :--- | :--- | :--- |
| 1 (transmit +) | White/orange | 5 | White/blue |
| 2 (transmit-) | Orange | 6 (receive -) | Green |
| 3 (receive +) | White/green | 7 | White/brown |
| 4 | Blue | 8 | Brown |

2. Cut the wires going to pins $1,2,3$, and 6 . Strip away a small amount of insulation from each of the eight cut ends.
a. Connect the wire from pin 1 on one end of the cable to the wire from pin 3 on the other end of the cable.
b. Connect the wire from pin 3 on one end of the cable to the wire from pin 1 on the other end of the cable.
c. Connect the wire from pin 2 on one end of the cable to the wire from pin 6 on the other end of the cable.
d. Connect the wire from pin 6 on one end of the cable to the wire from pin 2 on the other end of the cable.
3. Insulate all exposed wires so that they cannot short together.
4. Label this as a crossover cable so that it cannot be confused with a standard cable.

Figure 4-6 Construction of a Crossover Cable

sd623c

Measurement System Troubleshooting

This section provides troubleshooting procedures for the measurement portion of the PNA. In this section, the analyzer is used as a tool to help isolate the suspected faulty functional group. Once the faulty functional group is determined, troubleshooting steps are provided to help you isolate the faulty assembly or part.

NOTE

Some procedures in this chapter reference your analyzer's DSP version. Click Help > About Network Analyzer and note the DSP version shown.

Before you begin-consider: Where do you see a problem?

If you are seeing a problem at Preset, perform the standard S-parameter test set troubleshooting procedure, starting with: "Verifying the A, B, C, D, and R Traces (Standard S-Parameter Mode)" on page 4-33.

You should also consider the problem indications that are observed and whether the observed condition is a soft failure or a hard failure.

Soft Failure

With a soft failure, the network analyzer's performance has degraded to an unacceptable level, yet it continues to operate and displays no error messages. For this type of failure, performance tests must be conducted to isolate the problem. Begin with viewing the error terms as described in "Error Terms" on page 8-2. This will help to isolate most problems. If additional tests are required, refer to "Performance Tests" on page 3-31.

Hard Failure

With a hard failure, the PNA does not perform well and displays one or more error messages. To diagnose and repair a hard failure:

- Check "Help About" to verify that the model number and options listed match the actual analyzer model and options.
- Check "EEPROM Headers" to verify that the data there is correct.
- Check error messages. Refer to "Error Messages" and follow the suggestions outlined there for each applicable error message.

Help About

Go to the Help About screen by pressing UTILITY System, then Help, then About NA... . Verify that the information displayed in this screen is correct for your analyzer. If any of the information is incorrect, contact Keysight Technologies. Refer to "Contacting Keysight" on page 2-7.

EEPROM Headers

The network analyzer application uses the firmware revision information stored in the pc board header EEPROM. If the information stored in any EEPROM is incorrect, the network analyzer may not operate properly.

The following link lists the pc boards in your network analyzer that contain EEPROM headers. The pc boards are listed by name and part number and the correct firmware revision code is given for each. Refer to:

Appendix A: "EEPROM Address Assignments and Location (N5227A\&B PNA and N5247A\&B PNA-X Instruments)," on page A-1.

To view this EEPROM header information on the network analyzer display: press UTILITY System, then Service , then Utilities, then
View EEPROM Headers . Refer to Figure 4-7.
If the information is incorrect for any of the PC boards, contact Keysight Technologies. Refer to "Contacting Keysight" on page 2-7.

Figure 4-7 EEPROM Header Info Dialog Window

Error Messages
SOURCE UNLEVELED: The source ALC circuit on the A23 test set motherboard is running open-loop. Check the cable connections for the A25 HMA26.5 and the A23 test set motherboard.

Verifying the A, B, C, D, and R Traces (Standard S-Parameter Mode)

The first step is to verify that the $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, and R traces are present and that they are approximately level:

- Connect an Open or Short standard from a mechanical calibration kit to each test port (use adapters if necessary).
- Press UTILITY System, then Service, then Utilities, then Receiver Display .
- For 2-port analyzer models, traces A, B, R1, and R2 are displayed in four separate data windows as shown in Figure 4-8. Identifying discrepancies of the traces in these windows can help you to isolate the faulty assembly.

Figure 4-8 Typical 4-Receiver Display for 2-Port Models

- For 4-port analyzer models, traces A, B, C, D, and R1, R2, R3, and R4 are displayed in eight separate data windows as shown in Figure 4-9. Identifying discrepancies of the traces in these windows can help you to isolate the faulty assembly.

Figure 4-9 Typical 5-Receiver Display for 4-Port Models

- If all traces are present and are similar to the traces in Figure 4-8 or Figure 4-9, then there are no major problems with the analyzer's measurement system. There may, however, be a minor failure in the analyzer.

To test further:

- Go to Chapter 3, "Tests and Adjustments." and perform all the tests in that section.
- If a problem still exists, contact Keysight. Refer to "Contacting Keysight" on page 2-7.
- If any of the traces are not present, are noisy or distorted, or are at an incorrect level, then there is a problem with the analyzer's measurement system. Proceed to "Where to Begin Troubleshooting."

Where to Begin Troubleshooting

For the purposes of troubleshooting, the analyzer block diagram is divided into the following functional groups:

- the source and LO group

Troubleshooting
Measurement System Troubleshooting

- A14 frequency reference ${ }^{1}$
- A4 and A17 (A17 optional on 2-port analyzers) 13.5 GHz source synthesizers ${ }^{1}$
- A5 and A10 (A10 optional on 2-port analyzers) sources
- A15 13.5 GHz LO synthesizer² (models with serial prefixes <6021 only)
- A15 direct digital synthesizer (DDS) assembly² (models with serial prefixes ≥ 6021 or with version 7 synthesizer assembly upgrades only)
- A25 HMA26.53
- A26 splitter ${ }^{3}$
- A70/A75 LFE board
- A23 test set motherboard
- the signal separation group
- A50, A51, A52, and A53 mechanical switches (optional)
- A54 combiner (optional)
- A29, A30, A31, and A32 receiver couplers
- A38, A39, A40, and A41 60-dB source step attenuators (optional)
- A42, A43, A44, and A45 60-dB bias tees (optional)
- A33, A34, A35, and A36 test port couplers
- A71, A72, A73, and A74 bias tee combiners
- A23 test set motherboard
- the receiver group
- A37 reference mixer switch
- A46, A47, A48, and A49 35-dB receiver step attenuators (optional)
- A27 and A28 mixer bricks
- A16 SPAM board
- A24 IF multiplexer board
- A23 test set motherboard

Use the list on the following pages to help you determine in which analyzer functional group to begin troubleshooting.

1. A4, A11, A10, A13, A21, A22 boards and components apply only to PNA models with serial number prefixes <6021.
2. If your PNA has a serial prefix ≥ 6021, then $A 15$ is a direct digital synthesizer (DDS) assembly. If your PNA has a serial prefix <6021, then A 11 is a 13.5 GHz synthesizer board.
3. Some PNAs have installed a legacy HMA26.5 (5087-7765) that is used with a discrete A26 splitter. Some PNAs have installed a new HMA26.5 (N5240-60101) with an integrated splitter. To identify which HMA26.5 is installed in your PNA, refer to "Verify the Model/Version of HMA26.5 Installed" on page 43.

This is by no means an exhaustive list of possible symptoms nor possible failures. It is recommended that you view the system block diagram, at the end of this chapter, as you review the entries in this list and perform any of the troubleshooting procedures listed.

Good judgment and established logical troubleshooting techniques must be used to complement the procedures contained in this section.

All Traces

- If all traces are missing in all bands, the problem is most likely in the source group. However, a missing or disabled DSP driver may exhibit the same or similar symptoms. To verify that this DSP driver is present and enabled:

1. Press UTILITY System, then Configure, then Control Panel... . In the Address box, click the down arrow and then click My Computer. In an open area of the My Computer window, click the right mouse button and then click Properties in the resulting pop-up menu.

Click the Hardware tab, click Device Manager, and then expand Network Adapters in the resulting list. The following entry should be listed: Keysight Technologies DSP Driver \#2 and should be enabled.
2. If the entry is not present or if the icon to the left of the name is a yellow box containing an exclamation mark (!), navigate the following directories and verify the presence of the following file: C: \WINNT\system32\drivers\spampnp.sys.
3. If you have verified that the DSP driver is present and enabled, but all traces are still missing in all bands, go to "Checking the Source Group" on page 4-37.

- If the traces exhibit power drops in some frequency bands, the problem is in the source group. Go to "Source Group Tests" on page 4-37 and perform the tests that correspond to the problems seen.
Single Trace (A, B, C, D, R1, R2, R3, or R4) Only
If the trace is missing in all bands or has notches or roll-off, go to "Checking the Signal Separation Group" on page 4-48.

A, B, R1, and R2 Traces Only

The problem is in the source 1 group, go to "Checking the Source Group" on page 4-37.

C, D, R3, and R4 Traces Only

The problem is in the source 2 group, go to "Checking the Source Group" on page 4-37.

Checking the Source Group

Source Group Tests

Before checking the source group assemblies, you must open the analyzer.

CAUTION

WARNING

CAUTION

CAUTION

IMPORTANT! In 2020, the PNA added direct digital synthesis (DDS) capability to all serial number prefix ≥ 6021 instruments. The effect of installing this DDS assembly is that the A4, A10, A11², A13 boards are integrated into a single $\mathrm{A} 11^{\text {a }}$ direct digital synthesizer assembly, and the individual A4, A10, A11 ${ }^{\text {a }}$, and A13 boards do not apply to serial number prefix instruments ≥ 6021.
a. If your PNA has a serial prefix ≥ 6021 or has been upgraded with a version 7 synthesizer assembly, then A 15 is a direct digital synthesizer (DDS) assembly. If your PNA has a serial prefix <6021, then A11 is a 13.5 GHz synthesizer board

Frequency Banded vs. Broadband Failure

There are two main types of failures that are related to the source group. Frequency banded failures are indicated by all receiver traces having partial dropouts across the frequency range. Broadband failures are indicated by all receiver traces being in the noise floor.

RF Signal Troubleshooting

Check the output power of the A, B, C, and D signals:

Equipment Used for This Check

Equipment Type	Model or Part Number	Alternate Model or Part Number
Power meter	E4418B/E4419B	E4418A/E4419A
Power sensor, 2.4 mm	E8487A	None
Adapter, $2.4 \mathrm{~mm}(\mathrm{f})$ to $2.4 \mathrm{~mm}(\mathrm{f})$	11900 B	$85056-60007$

Checking the A14 50 MHz Reference Outputs ${ }^{1}$

1. Refer to the block diagram at the end of this chapter and to "Top Cables, All Cables-All Options, S/N Prefixes <6021" on page 6-20. Locate flexible cables W75, W76, and W77, at the A14 frequency reference board.
2. Disconnect cables W75, W76, and W77, one at a time, from the A14 board.
3. Connect the spectrum analyzer to the open connector on the A14 board.
4. The spectrum analyzer should measure a signal at 50 MHz .
5. If any of the 50 MHz signals are not present, replace the A14 frequency reference board. Refer to "Removing and Replacing the A4-A17 Boards" on page 7-17.
6. If the 50 MHz signals are present, reconnect the cables, and then:

- for LO related problems, continue testing at "Checking the A15 13.5 GHz LO Synthesizer Output".
- for source related problems, continue testing at "Checking the A4 and A17 Source Synthesizer Outputs" on page 4-45.

Checking the A15 Direct Digital Synthesizer (DDS) Assembly Outputs²

The instrument must be sufficiently reassembled, so it can be safely powered up.

1. Power up the instrument.
2. Note any error messages in the bottom right hand corner of the PNA's display (e.g., "A power on self test error has occurred. Please contact. . ."). Refer to Figure 4-10 on page 40.
3. A log file is generated by PNA after every power up. To access this log file, on the PNA, navigate to $\mathrm{E}: / \mathrm{log} /$ PowerOnTest (Verify that hidden files is selected). A failure indication similar to "FAIL: Slug S/N not found", indicates the DDS assembly is faulty, for an example of this error in a log file, refer to Figure 4-11 on page 41.
4. If an DDS failure (e.g., "FAIL: Slug. . .") is observed:
a. Power down the instrument.
b. Verify that the A15 DDS assembly is seated properly.
5. A14 frequency reference board only applies to instruments with serial number prefixes <6021.
6. The A15 direct digital synthesizer assembly only applies to PNAs with serial number prefixes ≥ 6021 or that has been upgraded with a version 7 synthesizer assembly.
c. Verify that all cable connections to the A15 DDS assembly are connected properly.
d. Repeat steps 1 through 3.
e. If the instrument still has a similar "Slug" failure then the DDS is faulty and needs to be replaced.
7. If the A15 DDS assembly is faulty, contact Keysight Technologies for help. Refer to "Contacting Keysight" on page 2-7.

Figure 4-10 Example of Power On Self Test Error

Figure 4-11 Example of Instrument Power Up Log Data with A15 DDS Assembly Failure Data

Checking the A15 13.5 GHz LO Synthesizer Output ${ }^{1}$

1. Refer to the block diagram at the end of this chapter and to "Top Cables, All Cables-All Options, S/N Prefixes <6021" on page 6-20. Locate the flexible cable W51 at the A15 LO synthesizer board.
2. Disconnect W51 from J1207.
3. Connect the spectrum analyzer to J1207.
4. A15 13.5 GHz LO Synthesizer board only applies to instruments with serial number prefixes <6021.
5. Refer to the Note on page 4-31. Set the network analyzer for an 800 MHz CW frequency and observe the spectrum analyzer measurement. For analyzers with DSP version 4.0, an 807.61 MHz signal should be present. For analyzers with DSP version 5.0, an 807.44 MHz signal should be present.
6. If the observed problem was frequency banded rather than broadband related, set the analyzer frequency to the center of the problem band. The spectrum analyzer should measure a signal above the network analyzer setting. For analyzers with DSP version 4.0 , the signal is 7.61 MHz above the network analyzer setting. For analyzers with DSP version 5.0, the signal is 7.44 MHz above the network analyzer setting.
7. If the LO signal is not present but the 50 MHz reference signal from "Checking the A14 50 MHz Reference Outputs" is present, replace the A15 LO synthesizer board. Refer to "Removing and Replacing the A4-A17 Boards" on page 7-17.
8. If the signal is present, reconnect cable W41, and then continue with "Checking the A25 HMA26.5 Output".

Checking the A25 HMA26.5 Output

NOTE

IMPORTANT! Some PNAs have installed a legacy HMA26.5 (5087-7765) that is used with a discrete A22 splitter. Some PNAs have installed a new HMA26.5 (N5240-60101) with an integrated splitter. To identify which HMA26.5 is installed in your PNA, refer to Figure 4-12 on page 44.

1. Refer to the block diagram at the end of this chapter and to "4-Port Configuration, Serial Number Prefix <6021" on page 6-115 or in "4-Port Configuration, Serial Number Prefix <6021" on page 6-115. Locate the semirigid cable W52 (4-port models with a legacy HMA26.5) or W80 (2-port models with a legacy HMA26.5 and for all models with a new HMA26.5) at the A25 HMA26.5.
2. Disconnect W52 (4-port models with a legacy HMA26.5) or W80 (2-port models and all models with a new HMA26.5) from the A25 HMA 26.5.
3. Connect the spectrum analyzer to the open connector on the A25 HMA 26.5.
4. Refer to the DSP Note on page 4-31. Set the network analyzer for an 800 MHz CW frequency and observe the spectrum analyzer measurement. For analyzers with DSP version 4.0, an 807.61 MHz signal should be present. For analyzers with DSP version 5.0, an 807.44 MHz signal should be present.
5. If the observed problem was frequency banded rather than broadband related, set the analyzer frequency to the center of the problem band. The spectrum analyzer should measure a signal above the network analyzer
setting. For analyzers with DSP version 4.0, the signal is 7.61 MHz above the network analyzer setting. For analyzers with DSP version 5.0, the signal is 7.44 MHz above the network analyzer setting.
6. If the signal is not present but the signal is present from "Checking the A15 13.5 GHz LO Synthesizer Output" (S/N prefixes <6021) or "Checking the A15 Direct Digital Synthesizer (DDS) Assembly Outputs" (LO Output, prefixes ≥ 6021), replace the A25 HMA 26.5. Refer to "Removing and Replacing the A25 HMA26.5" on page 7-35.
7. If the signal is present, reconnect cable W52 or W80 and then:

- for 2-port models with a legacy HMA26.5 and all models with a new HMA26.5, continue checking with "Checking the Receiver Group" on page 4-53.
- for 4-port models with a legacy HMA26.5, continue checking with "Checking the A26 Splitter Output".

Verify the Model/Version of HMA26.5 Installed
The installed components in your PNA model may be either using the legacy HMA26.5 part number 5087-7765 or if your PNA is using the newer HMA26.5 part number N5240-60101.
Legacy HMA26.5 Use the Following Components:

- A26 splitter 5067-4086
- W52 N5245-20013
- W53 N5245-20023
- W54 N5245-20022

The new N5240-60101 HMA26.5 has the splitter integrated into the assembly and uses an N5222-20126 cable. Refer to Figure 4-12 on page 44.
See also Chapter 6, "Replaceable Parts." and the "Bottom Assemblies and Cables" section for your configuration and serial number prefix.

Figure 4-12 Comparison of Legacy HMA26.5 (5087-7765) and New HMA26.5
(N5240-60101)

New HMA26.5 -- N5240-60101
Requires (x1) Cable.

Legacy HMA26.5 -- 5087-7765 Requires A26 Splitter and (x3) Cables.

Checking the A26 Splitter Output

NOTE

IMPORTANT! Some PNAs have installed a legacy HMA26.5 (5087-7765) that is used with a discrete A26 splitter. Some PNAs have installed a new HMA26.5 (N5240-60101) with an integrated splitter. To identify which HMA26.5 is installed in your PNA, refer to Figure 4-12 on page 44.

1. Refer to the block diagram at the end of this chapter and to "Bottom RF Cables, Standard 4-Port Configuration, Option 400, S/N Prefixes <6021" on page 6-118. Locate the semi-rigid cables W53 and W54, at the A26 splitter.
2. Disconnect W53 and W54, one at a time, from the A26 splitter.
3. Connect the spectrum analyzer to the open connector.
4. Refer to the Note on page 4-31. Set the network analyzer for an 800 MHz CW frequency and observe the spectrum analyzer measurement. For analyzers with DSP version 4.0, an 807.61 MHz signal should be present. For analyzers with DSP version 5.0, an 807.44 MHz signal should be present.
5. If the observed problem was frequency banded rather than broadband related, set the analyzer frequency to the center of the problem band. The spectrum analyzer should measure a signal above the network analyzer setting. For analyzers with DSP version 4.0 , the signal is 7.61 MHz above the network analyzer setting. For analyzers with DSP version 5.0, the signal is 7.44 MHz above the network analyzer setting.
6. If the signal is not present but the signal from "Checking the A25 HMA26.5 Output," is present, replace the A26 splitter. Refer to "Removing and Replacing the A26 Splitter" on page 7-38.
7. If the signal is present, reconnect cables W53 and W54, and then continue with "Checking the Receiver Group" on page 4-53.

Checking the A4 and A17 Source Synthesizer Outputs ${ }^{1}$

1. Refer to the block diagram at the end of this chapter and to "Top Cables, All Cables-All Options, S/N Prefixes <6021" on page 6-20. Locate either the cable W1 at the A4 source 1 synthesizer board or W2 at the A17 source 2 synthesizer board. (W2 and A17 are only available in 4-port models and 2-port models with Option 224.)
2. Disconnect W1 or W2 from J1207.
3. Connect the spectrum analyzer to J1207.
4. Set the network analyzer for an 800 MHz CW frequency and observe the spectrum analyzer measurement. An 800 MHz signal should be present.
5. Refer to the Note on page 4 -31. If the observed problem was frequency banded rather than broadband related, set the analyzer frequency to the center of the problem band. The spectrum analyzer should measure a signal above the network analyzer setting. For analyzers with DSP version 4.0, the signal is 7.61 MHz above the network analyzer setting. For analyzers with DSP version 5.0 , the signal is 7.44 MHz above the network analyzer setting.
6. If the signal is not present but the 50 MHz reference signal from "Checking the A14 50 MHz Reference Outputs" is present, replace the faulty synthesizer board. Refer to "Removing and Replacing the A4-A17 Boards" on page 7-17.
7. If the signal is present, reconnect cables W 1 and W 2 , and then continue with "Checking the A5 and A10 Source Outputs".

Checking the A5 and A10 Source Outputs

1. Refer to the block diagram at the end of this chapter and to "Top Cables, All Cables-All Options, S/N Prefixes <6021" on page 6-20. Locate the cables W3 and W4 at the A5 source 1 board or cables W7 and W8 at the A10 source 2 board. (W7, W8, and A10 are only available in 4 -port models and 2-port models with Option 224.)

[^2]2. Disconnect cables W3 and W4 or cables W7 and W8, dependent on which source board is to be checked, at the A7, A8, A12, or A13 40 GHz Doubler board.
3. Connect the spectrum analyzer to the open connector at the end of the cable that connects to the source board to be checked.
4. Set the network analyzer for an 800 MHz CW frequency and observe the spectrum analyzer measurement. An 800 MHz signal should be present.
5. Refer to the Note on page 4-31. If the observed problem was frequency banded rather than broadband related, set the analyzer frequency to the center of the problem band. The spectrum analyzer should measure a signal above the network analyzer setting. For analyzers with DSP version 4.0, the signal is 7.61 MHz above the network analyzer setting. For analyzers with DSP version 5.0, the signal is 7.44 MHz above the network analyzer setting.
6. If the signal is not present but the signals from "Checking the A4 and A17 Source Synthesizer Outputs" are present, replace the appropriate source board. Refer to "Removing and Replacing the A4-A17 Boards" on page 7-17.
7. If the signal is present, reconnect all cables, and then continue with "Checking the A7, A8, A12, and A13 40 GHz Doubler Outputs".

Checking the A7, A8, A12, and A13 40 GHz Doubler Outputs

1. Refer to the block diagram at the end of this chapter and to "Top Cables, All Cables-All Options, S/N Prefixes <6021" on page 6-20. Locate cable W11 on the A7 doubler board, cable W17 on the A8 doubler board, cable W13 on the A12 doubler board, and cable W15 on the A13 doubler board. (A12 and A13 are only available in 4-port models and 2-port models with Option 224.)
2. Disconnect cable W11 or W17 or W13 or W15, dependent on which doubler board is to be checked.
3. Connect the spectrum analyzer to the open connector on the doubler board to be checked.
4. Set the network analyzer for an 800 MHz CW frequency and observe the spectrum analyzer measurement. An 800 MHz signal should be present.
5. Refer to the Note on page 4 - 31 . If the observed problem was frequency banded rather than broadband related, set the analyzer frequency to the center of the problem band. The spectrum analyzer should measure a signal above the network analyzer setting. For analyzers with DSP version 4.0, the signal is 7.61 MHz above the network analyzer setting. For analyzers with DSP version 5.0, the signal is 7.44 MHz above the network analyzer setting.
6. If the signal is not present but the signals from "Checking the A4 and A17 Source Synthesizer Outputs" are present, replace the appropriate doubler board. Refer to "Removing and Replacing the A4-A17 Boards" on page 7-17.
7. If the signal is present, reconnect all cables, and then continue with "Checking the Signal Separation Group" on page 4-48.

Checking the A56, A57, A58, and A59 70 GHz Doubler Outputs

1. Refer to the block diagram at the end of this chapter and "4-Port Configuration, Option 419, S/N Prefixes <6021" on page 6-149. Locate the following cables. (Boards A61 and A62 are available only in 4-port models and 2-port models with Option 224.)

- W27 on the A60 doubler board,
- W28 on the A61 doubler board
- W29 on the A62 doubler board
- W30 on the A63 doubler board

2. Disconnect cable W27 or W28 or W29 or W30, depending on which doubler board is to be checked.
3. Connect the spectrum analyzer to the open connector on the doubler board to be checked.
4. Set the PNA for an 800 MHz CW output frequency and observe the spectrum analyzer display. An 800 MHz signal should be present.
5. Refer to the Note on page 4 -31. If the PNA problem you are troubleshooting is frequency banded rather than broadband related, set the PNA output frequency to the center of the problem band. The spectrum analyzer should display a signal above the PNA setting. For analyzers with DSP version 4.0, the signal is 7.61 MHz above the network analyzer setting. For analyzers with DSP version 5.0, the signal is 7.44 MHz above the network analyzer setting.
6. If the signal is not present but the signals described in "Checking the A4 and A17 Source Synthesizer Outputs" on page 4-45 are present, replace the appropriate doubler board. Refer to "Removing and Replacing the A60-A63 70 GHz Doublers" on page 7-56.
7. If the signal is present, reconnect all cables, and then continue with "Checking the Signal through the Signal Separation Path" on page 4-50.

Checking the A70/A75 Low Frequency Extension (LFE) Board and the Bias Combiners

The 2-port and 4-port Low Frequency Extension (LFE) options add additional hardware to extend the start frequency of the VNA down to 900 Hz .

Figure 4-13 LFE Block Diagram - Single Port Configuration Shown. Other Ports are Similar.

Checking the Signal Separation Group

Before checking the signal separation group assemblies, you must open the analyzer.

CAUTION

Use an antistatic work surface and wrist strap to reduce the chance of electrostatic discharge for all of the procedures in this chapter.

1. Turn off the analyzer power.
2. Unplug the power to the analyzer and disconnect all front and rear panel connections except installed jumpers.
3. Remove the outer cover from the analyzer. Refer to "Removing the Covers" on page 7-6.

WARNING

Procedures described in this document are performed with power supplied to the product while protective covers are removed. Energy available at many points may, if contacted, result in personal injury.
4. With the covers off, plug in the analyzer and turn on the power.

Do not operate the analyzer with the outer cover removed for more than 30 minutes, as this could cause the analyzer to overheat which could result in costly damage.

Checking the Output Power of the A, B, C, and D Signals

Using a power meter, you can measure the outputs of the A, B, C, and D signals from the front panel. The measurement results will help you isolate a faulty assembly. The output of the R receiver cannot be measured because it would necessitate breaking the phase lock loop, causing all of the signals to be lost.

Equipment Used for This Check

Equipment Type	Model or Part Number	Alternate Model or Part Number
Power meter	E4418B/E4419B	E4418A/E4419A
Power sensor, 2.4 mm	E8487A	None
Adapter, $2.4 \mathrm{~mm}(\mathrm{f})$ to $2.4 \mathrm{~mm}(\mathrm{f})$	11900 B	$85056-60007$

Equipment Setup

1. Before starting these checks, zero and calibrate the power meter. (See the power meter user's guide for instructions on setting the calibration factor.)
2. If the Receiver Display (Figure 4-8 or Figure 4-9) is not on the analyzer screen, perform the following: Press UTILITY System, then Service , then Utilities, then Receiver Display .
3. Set the sweep speed for a 10 second sweep: Press STIMULUS Sweep, then Sweep Time . Set the time to 10.000 seconds in the Sweep Time box.

Checking Port 1, 2, 3, or 4 Power Outputs (A, B, C, or D Signals)

The object of this check is to verify the power of the output signal across the entire frequency range. Perform this test if there is an observed problem only with one receiver trace. The ten second sweep is slow enough to allow you to observe the output power on the power meter as the sweep occurs.

1. Connect the power sensor to the suspect port.
2. Set the trace to measure S_{11}, S_{22}, S_{33}, or S_{44}, dependent on the suspect port.
3. Observe the power reading on the power meter as the sweep occurs on the analyzer.
4. The measured output power on the power meter should be at least the preset power level $\pm 1 \mathrm{~dB}$ over the entire frequency range.

- If the measured power is correct, go to "Checking the Receiver Group" on page 4-53.
- If the measured power is not correct, go to "Checking the Signal through the Signal Separation Path" on page 4-50.

Checking the Signal through the Signal Separation Path

For all of the following checks, refer to the block diagrams at the end of this chapter and to any of the following that are appropriate:

- "2-Port Configurations, Serial Number Prefix <6021" on page 6-30
- "4-Port Configuration, Serial Number Prefix <6021" on page 6-115
- "2-Port Configurations, Serial Number Prefix ≥ 6021 " on page 6-72
- "4-Port Configurations, Serial Number Prefix ≥ 6021 " on page 6-175

Trace loss in the signal separation group is due to one or more of the following assemblies being defective:

- A50, A51, A52, or A53 mechanical switch and A54 combiner (A54 is only available in 4-port models with Option 423 and 2-port models with Option 224.)
- A29, A30, A31, or A32 receiver coupler
- A38, A39, A40, or A41 source step attenuator
- A42, A43, A44, or A45 bias tee
- A33, A34, A35, and A36 test port coupler
- A71, A72, A73, and A74 bias tee combiners

Equipment Used for These Tests

Equipment Type	Model or Part Number	Alternate Model or Part Number
Spectrum analyzer	8565 E	$856 \times \mathrm{E}^{\mathrm{a}}$

a. Must be capable of measuring a signal at 1 GHz .

To determine which assembly is defective, check the signal at each available measurement point in the signal path from the output of the source board to the output port.

Set the network analyzer for an $S_{11}, S_{22,} S_{33,}$ or S_{44}, measurement for Port 1, 2, 3, or 4 respectively, with a CW frequency of 800 MHz .

Perform the following checks in the order presented.

Checking the A29, A30, A31, and A32 Receiver Couplers

1. Locate the appropriate semirigid cable at the output of the receiver coupler to be checked:

- Options 200 and 400
- Port 1; W19 of A29
- Port 2; W31 of A32
- Port 3; W23 of A30
- Port 4; W27 of A31
- Options 219, 224, 419, and 423
- Port 1; W81 of A29
- Port 2; W93 of A32
- Port 3; W85 of A30
- Port 4; W89 of A31

2. Using a $5 / 16$-inch torque wrench, disconnect the semirigid cable at the receiver coupler.
3. Connect the spectrum analyzer to the open receiver coupler connector. Set the spectrum analyzer to measure a signal at 800 MHz .
4. If the 800 MHz signal is not present and the analyzer has mechanical switches, continue testing at "Checking the A50, A51, A52, and A53 Mechanical Switches" on page 4-52.
5. If the 800 MHz signal is not present and the analyzer does not have mechanical switches, replace the receiver coupler. Refer to "Removing and Replacing the A29-A32 Receiver Couplers and Receiver Coupler Mounting Brackets" on page 7-43.
6. If the 800 MHz signal is present and the analyzer has source attenuators and bias tees, reconnect the cable to the receiver coupler and continue testing at "Checking the A38, A39, A40, and A41 60-dB Source Step Attenuators" on page 4-51
7. If the 800 MHz signal is present and the analyzer does not have source attenuators and bias tees, replace the test port coupler. Refer to "Removing and Replacing the A33-A36 Test Port Couplers" on page 7-45.

Checking the A38, A39, A40, and A41 60-dB Source Step Attenuators

1. Locate the appropriate semirigid cable at the output of the source step attenuator to be checked:

- Options 219, 224, 419, and 423
- Port 1; W82 of A38
- Port 2; W94 of A41
- Port 3; W86 of A39
- Port 4; W90 of A40

2. Using a 5/16-inch torque wrench, disconnect the semirigid cable at the step attenuator.
3. Connect the spectrum analyzer to the open step attenuator connector. Set the spectrum analyzer to measure a signal at 800 MHz .
4. If the 800 MHz signal is not present, replace the source step attenuator. Refer to "Removing and Replacing the A38-A41 Source Attenuators and the A46-A49 Receiver Attenuators" on page 7-49.
5. If the 800 MHz signal is present, replace the associated bias tee. Refer to "Removing and Replacing the A38-A41 Source Attenuators and the A46-A49 Receiver Attenuators" on page 7-49.

Checking the A50, A51, A52, and A53 Mechanical Switches

1. Locate the appropriate semirigid cable at the output of the mechanical switch to be checked:

- Options 224 and 423
- Port 1; W106 of A50
- Port 2; W120 of A53
- Port 3; W112 of A51
- Port 4; W116 of A52

2. Using a $5 / 16$-inch torque wrench, disconnect the semirigid cable at the bypass switch.
3. Connect the spectrum analyzer to the open bypass switch connector. Set the spectrum analyzer to measure a signal at 800 MHz .
4. If the 800 MHz signal is present, replace the associated receiver coupler. Refer to "Removing and Replacing the A29 -A32 Receiver Couplers and Receiver Coupler Mounting Brackets" on page 7-43.

Checking the A70-A74 Bias Combiners

Refer to "Checking the A70/A75 Low Frequency Extension (LFE) Board and the Bias Combiners" on page 4-47.

Checking the Receiver Group

Equipment Used for These Tests

Equipment Type	Model or Part Number	Alternate Model or Part Number
Spectrum analyzer	$8565 E$	$856 x E^{a}$

a. Refer to the DSP Note on page 4-31. Must be capable of measuring a signal at 7.61 MHz (analyzers with DSP version 4.0), or 7.44 MHz (analyzers with DSP version 5.0), and 1 GHz .

For all of the following checks, refer to the block diagrams at the end of this chapter and to any of the following that are appropriate:

- "2-Port Configurations, Serial Number Prefix <6021" on page 6-30
- "4-Port Configuration, Serial Number Prefix <6021" on page 6-115
- "2-Port Configurations, Serial Number Prefix $\geq 6021 "$ on page 6-72
-"4-Port Configurations, Serial Number Prefix ≥ 6021 " on page 6-175

Getting Ready to Test

Before checking the assemblies, you must open the analyzer.

WARNING

CAUTION

Use an antistatic work surface and wrist strap to reduce the chance of electrostatic discharge for all of the procedures in this chapter.

1. Turn off the analyzer power.
2. Unplug the power to the analyzer and disconnect all front and rear panel connections except installed jumpers.
3. Remove the outer and inner covers from the analyzer. Refer to "Removing the Covers" on page 7-6.

Procedures described in this document are performed with power supplied to the product while protective covers are removed. Energy available at many points may, if contacted, result in personal injury.
4. With the covers off, plug in the analyzer and turn on the power.

Do not operate the analyzer with the outer cover removed for more than 30 minutes, as this could cause the analyzer to overheat which could result in costly damage.

Checking the A27 and A28 Mixer Brick Receiver Outputs
Set the network analyzer for an S_{11} measurement with a CW frequency of 1 GHz.

1. Locate the following flexible cables at the receiver IF outputs of the mixer brick(s).

- 2-port models
- Receiver A; W61 of A27
- Receiver R1; W62 of A27
- Receiver R2; W63 of A27
- Receiver B; W64 of A27
- 4-port models
- Receiver A; W61 of A27
- Receiver R1; W62 of A27
- Receiver R2; W63 of A27
- Receiver B; W64 of A27
- Receiver C; W68 of A28
- Receiver R3; W67 of A28
- Receiver R4; W66 of A28
- Receiver D; W65 of A28

2. Disconnect the flexible cable at the suspect receiver.
3. Connect the spectrum analyzer to the suspect receiver connector.
4. Refer to the Note on page $4-31$. The measured signal on the spectrum analyzer should be at 7.61 MHz (analyzers with DSP version 4.0), or 7.44 MHz (analyzers with DSP version 5.0), and 1 GHz .
5. If the measured signal is present, continue testing at "Checking the A24 IF Multiplexer Board" on page 4-55.
6. If the measured signal is missing on the R1 receiver, continue testing at "Checking the A37 Reference Mixer Switch" on page 4-54.

If the measured signal is missing on any receiver (other than the R1 receiver noted above) and the analyzer does not have receiver attenuators, replace the A27 or A28 mixer brick, whichever is appropriate. Refer to "Removing and Replacing the A27 and A28 Mixer Bricks" on page 7-40.

If the measured signal is missing on the $\mathrm{A}, \mathrm{B}, \mathrm{C}$, or D receivers and the analyzer has receiver attenuators, continue testing at "Checking the A46, A47, A48, and A49 35-dB Receiver Step Attenuators" on page 4-55.

Checking the A37 Reference Mixer Switch

1. Remove the front panel REF 1 jumper and connect a spectrum analyzer to the front-panel REF 1 SOURCE OUT connector.
2. If the measured signal is present, replace the A27 mixer brick. Refer to "Removing and Replacing the A27 and A28 Mixer Bricks" on page 7-40.
3. If the measured signal is not present, replace the A 37 reference mixer switch. Refer to "Removing and Replacing the A37 Reference Mixer Switch" on page 7-47.

Checking the A46, A47, A48, and A49 35-dB Receiver Step Attenuators

1. Locate the appropriate semirigid cable at the output of the receiver step attenuator to be checked:

- Options 219, 224, 419, and 423
- Port 1; W98 of A46
- Port 2; W104 of A49
- Port 3; W100 of A47
- Port 4; W102 of A48

2. Disconnect the appropriate semirigid cable from the output of the step attenuator.
3. Connect the spectrum analyzer to the open step attenuator connector. Set the spectrum analyzer to measure a signal at 800 MHz .
4. If the 800 MHz signal is not present, replace the receiver step attenuator. Refer to "Removing and Replacing the A38-A41 Source Attenuators and the A46-A49 Receiver Attenuators" on page 7-49.
5. If the 800 MHz signal is present, replace the associated mixer brick, A 27 or A28. Refer to "Removing and Replacing the A27 and A28 Mixer Bricks" on page 7-40.

Checking the A24 IF Multiplexer Board

1. Locate each of the flexible RF cables at the output receivers of the IF multiplexer board:

- 2-port models
- Receiver A; W69
- Receiver R1; W72
- Receiver R2; W73
- Receiver B; W70
- 4-port models
- Receiver A; W69
- Receiver B; W70
- Receiver C; W72
- Receiver D; W73
- Receiver R; W71

2. Disconnect the appropriate flexible RF cable from the output receiver to be tested on the A24 IF multiplexer board.
3. Connect the spectrum analyzer to the open connector.
4. Refer to the Note on page 4-31. The measured signal on the spectrum analyzer should be at 7.61 MHz (analyzers with DSP version 4.0), or 7.44 MHz (analyzers with DSP version 5.0), and 1 GHz .
5. If the measured signal is present, replace the A16 SPAM board. Refer to "Removing and Replacing the A4-A17 Boards" on page 7-17.
6. If the measured signal is not present, replace the A24 IF multiplexer board. Refer to "Removing and Replacing the A24 IF Multiplexer Board" on page 7-33.

Instrument Simplified Block Diagrams - LFE ${ }^{1}$

2-Port N5290A System Block Diagram (201 and 205)

Figure 4-14 System Block Diagram Legend
Legend

Figure 4-15 2-Port N5290A System Simplified Block Diagram (201 and 205)

1. Your model PNA may not have available all of the LFE Options listed.

2-Port N5290A System Block Diagram (202 and 205)

Figure 4-16 2-Port N5290A System Simplified Block Diagram (202 and 205)

4-Port N5290A System Block Diagram (401)

Figure 4-17 4-Port N5290A System Simplified Block Diagram (401)

Figure 4-18 4-Port N5290A System Simplified Block Diagram (402)

Figure 4-19 4-Port N5290A System Simplified Block Diagram (403)

Troubleshooting
Instrument Block Diagrams - 2-Port (Sheet 1), Non-LFE and Non-DDS (Version 6 Synthesizers)

Instrument Block Diagrams - 2-Port (Sheet 1), Non-LFE and Non-DDS (Version 6 Synthesizers)

Microwave PNA, N5227B - 2-Port (Version 6 Synthesizers), Non-LFE and Non-DDS

Troubleshooting
Instrument Block Diagrams - 2-Port (Sheet 2), LFE and Non-DDS (Version 6 Synthesizers)
Instrument Block Diagrams - 2-Port (Sheet 2), LFE and Non-DDS (Version 6 Synthesizers)

Microwave PNA, N5227B - 2-Port (LFE \& Version 6 Synthesizers), LFE and Non-DDS

Troubleshooting
Instrument Block Diagrams - 2-Port (Sheet 3), Non-LFE and DDS (Version 7 Synthesizer Assemblies)
Instrument Block Diagrams - 2-Port (Sheet 3), Non-LFE and DDS (Version 7 Synthesizer Assemblies)

Microwave PNA, N5227B - 2-Port (Version 7 Synthesizer Assembly), Non-LFE and DDS

Troubleshooting
Instrument Block Diagrams - 2-Port (Sheet 4), LFE and DDS (Version 7 Synthesizer Assemblies)
Instrument Block Diagrams - 2-Port (Sheet 4), LFE and DDS (Version 7 Synthesizer Assemblies)

Microwave PNA, N5227B - 2-Port (LFE \& Version 7 Synthesizer Assembly), LFE and DDS

Troubleshooting
Instrument Block Diagrams - 4-Port (Sheet 5), Non-LFE and Non-DDS (Version 6 Synthesizers)

Instrument Block Diagrams - 4-Port (Sheet 5), Non-LFE and Non-DDS (Version 6 Synthesizers)

Microwave PNA, N5227B - 4-Port (Version 6 Synthesizers), Non-LFE and Non-DDS

Troubleshooting
Instrument Block Diagrams - 4-Port (Sheet 6), LFE and Non-DDS (Version 6 Synthesizers)
Instrument Block Diagrams - 4-Port (Sheet 6), LFE and Non-DDS (Version 6 Synthesizers)

Microwave PNA, N5227B - 4-Port (LFE \& Version 6 Synthesizers), LFE and Non-DDS

Troubleshooting
Instrument Block Diagrams - 4-Port (Sheet 7), Non-LFE and DDS (Version 7 Synthesizer Assemblies)
Instrument Block Diagrams - 4-Port (Sheet 7), Non-LFE and DDS (Version 7 Synthesizer Assemblies)

Microwave PNA, N5227B - 4-Port (Version 7 Synthesizer Assembly), Non-LFE and DDS

Troubleshooting
Instrument Block Diagrams - 4-Port (Sheet 8), LFE and DDS (Version 7 Synthesizer Assemblies)
Instrument Block Diagrams - 4-Port (Sheet 8), LFE and DDS (Version 7 Synthesizer Assemblies)

Microwave PNA, N5227B - 4-Port (LFE \& Version 7 Synthesizer Assembly), LFE and DDS

Troubleshooting
Instrument Block Diagrams - 4-Port (Sheet 8), LFE and DDS (Version 7 Synthesizer Assemblies)

Service Guide

5 Theory of Operation

Information in This Chapter

This chapter provides a general description of the operating theory of the N5227B 2-port and 4-port PNA microwave network analyzers.

- Theory of operation is explained to the assembly level only.
- Component-level circuit theory is not provided.
- Simplified block diagrams are included for each functional group. More detailed block diagrams are located at the end of Chapter 4, "Troubleshooting."

NOTE

Although simplified block diagrams are included within the description of each functional group, it is recommended that the more detailed block diagrams, located at the end of Chapter 4, be available for reference, as you read the information in this chapter.

Some paragraphs of this chapter reference your analyzer's DSP version. Click Help > About Network Analyzer and note the DSP version shown.

Chapter Five at-a-Glance

Section Title	Summary of Content	Start Page
Network Analyzer System Operation	A summary of the theory of operation for the analyzer. A summary of the operation of the major functional groups of the analyzer.	page 5-3
Synthesized Source Group Operation	Operation of the assemblies associated with the source group.	page 5-10
Signal Separation Group Operation	Operation of the assemblies associated with signal separation, including the operation of source attenuators and bias tees.	page 5-43
Receiver Group Operation	Operation of the assemblies associated with the receiver group including the operation of receiver attenuators.	page 5-49
Digital Processing and Digital Control Group Operation	Operation of the assemblies associated with digital processing and digital control.	page 5-54
Power Supply Group Operation	Operation of the power supply assembly group.	page 5-59

Network Analyzer System Operation

The PNA network analyzer generates two (2-port models) or four (4-port models) phase-locked incident signals and an LO signal from the internal synthesized source. By means of signal separation, the incident signals are divided into reference signals and test signals.

The reference signals are applied to the receiver group, while the test signals are applied to the device under test (DUT) and then to the receiver group. The LO signal is applied directly to the receiver group where it is mixed with the test and reference signals to produce IF signals for each of the eight receivers (A-D, R1-R4) for 4-port models or four receivers (A, B, R1, R2) for 2-port models. These IF signals are downconverted and then sampled and digitally processed.

Figure 5-1 is a simplified block diagram of the 4-port network analyzer system and Figure 5-2 is a simplified block diagram of the 2-port network analyzer system.

Figure 5-1 4-Port System Simplified Block Diagram

Figure 5-2 2-Port System Simplified Block Diagram

Figure 5-3 System Block Diagram Legend - LFE Block Diagrams Legend

Figure 5-4 4 -Port N5290A System Simplified Block Diagram (401) - with LFE

Figure 5-5
2-Port N5290A System Simplified Block Diagram (201 and 205) - with LFE

Functional Groups of the Network Analyzer

The operation of the network analyzer can be separated into major functional groups. Each group consists of assemblies that perform a distinct function in the instrument. Some of the assemblies are related to more than one group, and all of the groups, to some extent, are interrelated and affect each other's performance. The major functional groups are:

- Synthesized Source Group
- Signal Separation Group
- Receiver Group
- Digital Processor and Digital Control Group
- Power Supply Group

Synthesized Source Group

Refer to the NOTE notice on page 5-1.
Version 6 Synthesizers and below:
The built-in synthesized source generates a swept, stepped, or continuous wave (CW) signal in the frequency ranges as listed in the "N5227B- $(900 \mathrm{~Hz})$ 10 MHz to 67 GHz -with synthesizer revision 6 or earlier", ${ }^{1}$ available online at: https://www.keysight.com/upload/cmc_upload/All/N5227B_Synth6.pdf.

The source group provides five signals: an LO signal and four incident signals. The LO signal and the four incident signals are offset in frequency by the receiver IF. For analyzers with DSP version 4.0, the receiver IF is 7.606 MHz (at tuned frequencies below 53 MHz the IF and the offset is 2.535 MHz). For analyzers with DSP version 5.0 , the receiver IF is 7.438 MHz (at tuned frequencies below 53 MHz the IF and the offset is 0.826 MHz).

Version 7 Synthesizers:

The built-in direct digital synthesized (DDS) source assembly generates a swept, stepped, or continuous wave (CW) signal in the frequency ranges as listed in the "N5227B- (900 Hz) 10 MHz to 67 GHz Data Sheet and Technical Specifications", ${ }^{2}$ available online at: https://www.keysight.com/us/en/assets/9018-04327/technical-specificatio ns/9018-04327.pdf (N5227-90005).
https://www.keysight.com/us/en/assets/9018-04369/technical-specificatio ns/9018-04369.pdf (N5227-90006).

The source group provides five signals: an LO signal and four incident signals. The LO signal and the four incident signals are offset in frequency by the receiver IF. For analyzers with DDS assemblies, the receiver IF is 7.438 MHz (at tuned frequencies below 53 MHz the IF and the offset is 0.826 MHz).

LO Behavior without LFE (Low Frequency Extension):

The LO signal is sent directly to the mixers in the receiver group. The incident signals are routed to the front panel test ports and then to the device under test (DUT).

1. Version 6 synthesizers: For PNA frequency ranges and maximum output power levels, refer to the section "Test Port Output" in the online Keysight document,
"N5227B- $(900 \mathrm{~Hz}) 10 \mathrm{MHz}$ to 67 GHz -with synthesizer revision 6 or earlier." See the hyperlink above.
2. Version 7 synthesizers: For PNA frequency ranges and maximum output power levels, refer to the section "Test Port Output" in the online Keysight document, "N5227B- $(900 \mathrm{~Hz}) 10 \mathrm{MHz}$ to 67 GHz Data Sheet and Technical Specifications." See the hyperlink above.

A portion of each incident signal is coupled off (in the signal separation group) and sent to the mixers in the receiver group as reference signals. These reference signals are compared (mixed) with the LO signal in the receiver group.

For Version 6 and below synthesizers, analyzers with DSP version 4.0, the comparison (mix) produces the 7.606 MHz (or 2.535 MHz at frequencies below 53 MHz) IF signal. For analyzers with DSP version 5.0, the comparison (mix) produces the 7.438 MHz (or 0.826 MHz at frequencies below 53 MHz) IF signal.

For Version 7 synthesizers, the comparison (mix) produces the 7.438 MHz (or 0.826 MHz at frequencies below 53 MHz) IF signal.

LO Behavior with LFE (Low Frequency Extension):

On the direct digital synthesizer (DDS) assembly (Version 7 synthesizers) or on the synthesizer board (version 6 synthesizers and below), there is a LFE output that is limited by the L-C filter and by the 250 MHz low pass filter.

Below 20 MHz , the LFE is signal is directly converted. Exceptions are shown in Figure 5-15 on page 5-42. See also, "A70 4-Port and A75 2-Port Low Frequency Extension (LFE) Board" on page 5-29.

The incident signal output power is leveled by an internal automatic leveling control (ALC) circuit.

For version 6 synthesizers, the maximum output power level of the network analyzer at the test ports is shown in the "N5227B- $(900 \mathrm{~Hz}) 10 \mathrm{MHz}$ to 67 GHz -with synthesizer revision 6 or earlier", available online at: https://www.keysight.com/upload/cmc_upload/All/N5227B_Synth6.pdf

For version 7 synthesizers, the maximum output power level of version 7 synthesizer network analyzers at the test ports can be found in the Data Sheet and Technical Specifications documents, available online at:
https://www.keysight.com/us/en/assets/9018-04327/technical-specificatio ns/9018-04327.pdf (N5227-90005).
https://www.keysight.com/us/en/assets/9018-04369/technical-specificatio ns/9018-04369.pdf (N5227-90006).

Refer to "Synthesized Source Group Operation" on page 5-10.

Signal Separation Group

Each of the incident signals from the source group is separated into a reference path and a test path. The reference signal is transmitted to the receiver group. The test signal is transmitted through-and reflected from-the DUT and is then transmitted to the receiver group.

The signal separation group includes:

- RF path switching to allow forward and reverse measurements
- external connections for the DUT (configurable test set)
- optional step attenuators in the source and receiver paths
- optional bias tees

Refer to "Signal Separation Group Operation" on page 5-43.

Receiver Group

Refer to the NOTE notice on page 5-1.The receiver converts the test and reference signals to 7.438 MHz intermediate frequency (IF) signals for signal processing, retaining both magnitude and phase characteristics. For analyzers with DSP version 4.0, the IF signals are 7.606 MHz . For analyzers with DSP version 5.0 , the IF signals are 7.438 MHz . The IF signals are converted to digital information by the digital processing group.
Refer to "Receiver Group Operation" on page 5-49.

Digital Processor and Digital Control Group

The digital processor and digital control group are divided into a front panel group and a data acquisition and processing group. The front panel group provides communication to the network analyzer. The data acquisition and processing group provides the output to the display, in addition to signal processing and analyzer control.
Refer to "Digital Processing and Digital Control Group Operation" on page 5-54.

Power Supply Group

The power supply functional group provides power for the other assemblies in the instrument.

Refer to "Power Supply Group Operation" on page 5-59.

Synthesized Source Group Operation

Version 6 Synthesizers:

The source group produces a stable output signal by phase locking a synthesized voltage-controlled oscillator (VCO).

For the full frequency range of the version 6 synthesizers, refer to the "Data Sheet for N5227B with synthesizer 6 or earlier" document, ${ }^{1}$ available online at: https://www.keysight.com/upload/cmc_upload/All/N5227B_Synth6.pdf

The outputs at the front panel test ports are swept, stepped or CW signals. Maximum leveled output powers are also listed in the online Keysight document "Data Sheet for N5227B with synthesizer revision 6 or earlier." For a simple block diagram of the source group, refer to Figure 5-6 on page 5-12.

Version 7 Synthesizers

The source group produces an output signal by multiplying up using a synthesized oven-controlled crystal-oscillator (OCXO) and using this signal as the direct digital synthesizer (DDS) assembly's reference.
For the full frequency range of the version 7 synthesizers, refer to the "N5227B- $(900 \mathrm{~Hz}) 10 \mathrm{MHz}$ to 67 GHz - Data Sheet and Technical Specifications documents", ${ }^{2}$ available online at:
https://www.keysight.com/us/en/assets/9018-04327/technical-specificatio ns/9018-04327.pdf (N5227-90005) and https://www.keysight.com/us/en/assets/9018-04369/technical-specificatio ns/9018-04369.pdf (N5227-90006).

The outputs at the front panel test ports are swept, stepped or CW signals. Maximum leveled output powers are also listed in the "Data Sheet and Technical Specifications documents." For a simple block diagram of the source group, refer to Figure 5-6 on page 5-12.

In this section the following are described:

- Basic Operation
- A4, A15, and A17 13.5 GHz Synthesizer Boards (S/N Prefixes <6021 Only)
- A5 and A10 26.5 GHz Source Boards
- A7, A8, A12, and A13 50 GHz Doubler Boards
- A25 Multiplier/Amplifier 26.5 Board (HMA26.5)

1. Version 6 synthesizers: For frequency ranges and maximum output power levels, refer to the section "Test Port Output" in the Data Sheet for N5227B with synthesizer version 6 or earlier documents (see hyperlinks above).
2. Version 7 synthesizers: For PNA frequency ranges and maximum output power levels, refer to the section "Test Port Output" in the online Keysight document, "N5227B- $(900 \mathrm{~Hz}) 10 \mathrm{MHz}$ to 67 GHz Data Sheet and Technical Specifications." See the hyperlink above.

- A14 Frequency Reference Board (S/N prefixes <6021 Only) (including rear-panel interconnects)
- A23 Test Set Motherboard (including rear-panel interconnects)
- A70 4-Port and A75 2-Port Low Frequency Extension (LFE) Board (including rear-panel interconnects)

Basic Operation

This section contains the following:

- "Version 6 and Below Synthesizers Basic Operation"
- "Version 7 Direct Digital Synthesizer (DDS) Assembly - Basic Operation" on page 5-18

Version 6 and Below Synthesizers Basic Operation

Table 5-1 on page 5-14 lists the L.O. harmonic number, the synthesizer frequencies (A4, A15, and A17), the main source frequency (A5 and A10), and the doubler frequencies (A7, A8, A12, and A13) within the analyzer for each band. This table is referred to throughout this chapter and also appears on the overall block diagram at the end of Chapter 4, "Troubleshooting."

The A14 frequency reference board produces a constant phase locked reference signal of 50 MHz that is sent to the $\mathrm{A} 4, \mathrm{~A} 15$, and A 1713.5 GHz synthesizer boards.

The A15 13.5 GHz synthesizer board produces an LO signal that is sent through the A25 LO multiplier/amplifier 26.5 board to the A27 and A28 mixer bricks (via the A26 splitter). ${ }^{1}$ The frequency is synthesized such that the mixing product of this LO signal with the test signal output is a constant 7.438 MHz IF; except for frequencies below 53 MHz when the IF is 0.826 MHz . This IF signal is sent to the A16 SPAM board for digital processing.

The A4 13.5 GHz synthesizer board produces an incident signal that is sent through the A5 26.5 GHz source board and then through the A7 and A8 doubler boards to the front panel outputs. Likewise, the A17 13.5 GHz synthesizer board produces an incident signal that is sent through the A10 26.5 GHz source board and then through the A12 and A13 doubler boards to the front panel outputs. Portions of these signals are coupled off and sent to the A27 and A28 mixer bricks (A-D and R1-R4) where they are mixed with the LO signal from the A26 splitter ${ }^{1}$ to produce the 7.438 MHz (or 0.826 MHz) IF signal.

The A4, A15, and A17 13.5 GHz synthesizer boards each contain their own phase lock circuitry. The A15 board produces an independently phase locked LO signal while the A4 and A17 boards produce independently phase locked test signals. This makes it possible for the LO signal to be tuned to a different frequency than the test signal. With frequency offset mode disabled, the LO

[^3]Theory of Operation
Synthesized Source Group Operation
signal is 7.438 MHz higher than the test signal. Since the A4, A15, and A17 13.5 GHz synthesizer boards each receive their 50 MHz input reference signal from the exact same source, frequency drift error is eliminated.

Figure 5-6 Source Group, Part 1 - Version 6 and Below Synthesizers

N5227_001_503

Figure 5-7 Source Group, Part 2 - Version 6 and Version 7 Synthesizers

N5227_001_504

IMPORTANT!

- For Version 6 synthesizers, the signals into the A12 and A13 50 GHz Doublers are generated on the A10 Frequency Reference board. See figure above.
- For Version 7 synthesizers, the signals into the A12 and A13 50 GHz Doublers are generated on the A15 direct digital synthesizer (DDS) assembly. Not shown in figure above. See also, Figure 5-8 on page 5-19.

CAUTION
The following band table is for version 6 synthesizers and below. For version 7 synthesizers band values, refer to the table on Table 5-2 on page 5-20.

Table 5-1 Version 6 and Below Synthesizers - Subsweep Frequencies

Band	Mixer Brick L.O. Harmoni c Number (N)	1 A15 Synthesizer Frequency (GHz)	2 A25 HMA26.5 Frequency (GHz)	3 A4/A17 Synthesizer Frequency (GHz)	4 A5/A10 Source Frequenc y (GHz)	5 A7/A8/A1 2/A13 50 GHz Doubler Frequenc y (GHz)	6 A60/A61 A62/A63 70 GHz Doubler Frequenc y (GHz)
0	-	-	-	-	-	-	-
1	-	-	-	-	-	-	-
2	1	$\begin{aligned} & 0.01254 \text { to } \\ & 0.01654 \end{aligned}$	$\begin{aligned} & 0.01254 \text { to } \\ & 0.01654 \end{aligned}$	$\begin{aligned} & 0.010 \text { to } \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.010 \text { to } \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.010 \text { to } \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.010 \text { to } \\ & 0.014 \end{aligned}$
3	1	$\begin{aligned} & 0.01654 \text { to } \\ & 0.02154 \end{aligned}$	$\begin{aligned} & 0.01654 \text { to } \\ & 0.02154 \end{aligned}$	$\begin{aligned} & 0.014 \text { to } \\ & 0.019 \end{aligned}$	$\begin{aligned} & 0.014 \text { to } \\ & 0.019 \end{aligned}$	$\begin{aligned} & 0.014 \text { to } \\ & 0.019 \end{aligned}$	$\begin{aligned} & 0.014 \text { to } \\ & 0.019 \end{aligned}$
4	1	$\begin{aligned} & 0.02154 \text { to } \\ & 0.02954 \end{aligned}$	$\begin{aligned} & 0.02154 \text { to } \\ & 0.02954 \end{aligned}$	$\begin{aligned} & 0.019 \text { to } \\ & 0.027 \end{aligned}$	$\begin{aligned} & 0.019 \text { to } \\ & 0.027 \end{aligned}$	$\begin{aligned} & 0.019 \text { to } \\ & 0.027 \end{aligned}$	$\begin{aligned} & 0.019 \text { to } \\ & 0.027 \end{aligned}$
5	1	$\begin{aligned} & 0.02954 \text { to } \\ & 0.04054 \end{aligned}$	$\begin{aligned} & 0.02954 \text { to } \\ & 0.04054 \end{aligned}$	$\begin{aligned} & 0.027 \text { to } \\ & 0.038 \end{aligned}$	$\begin{aligned} & 0.027 \text { to } \\ & 0.038 \end{aligned}$	$\begin{aligned} & 0.027 \text { to } \\ & 0.038 \end{aligned}$	$\begin{aligned} & 0.027 \text { to } \\ & 0.038 \end{aligned}$
6	1	$\begin{aligned} & 0.04054 \text { to } \\ & 0.05554 \end{aligned}$	$\begin{aligned} & 0.04054 \text { to } \\ & 0.05554 \end{aligned}$	$\begin{aligned} & 0.038 \text { to } \\ & 0.053 \end{aligned}$	$\begin{aligned} & 0.038 \text { to } \\ & 0.053 \end{aligned}$	$\begin{aligned} & 0.038 \text { to } \\ & 0.053 \end{aligned}$	$\begin{aligned} & 0.038 \text { to } \\ & 0.053 \end{aligned}$
7	1	$\begin{aligned} & \hline 0.06061 \text { to } \\ & 0.08261 \end{aligned}$	$\begin{aligned} & \hline 0.06061 \text { to } \\ & 0.08261 \end{aligned}$	$\begin{aligned} & 0.053 \text { to } \\ & 0.075 \end{aligned}$	$\begin{aligned} & \hline 0.053 \text { to } \\ & 0.075 \end{aligned}$	$\begin{aligned} & 0.053 \text { to } \\ & 0.075 \end{aligned}$	$\begin{aligned} & 0.053 \text { to } \\ & 0.075 \end{aligned}$
8	1	$\begin{aligned} & \hline 0.08261 \text { to } \\ & 0.11261 \end{aligned}$	$\begin{aligned} & \hline 0.08261 \text { to } \\ & 0.11261 \end{aligned}$	$\begin{aligned} & 0.075 \text { to } \\ & 0.105 \end{aligned}$	$\begin{aligned} & 0.075 \text { to } \\ & 0.105 \end{aligned}$	$\begin{aligned} & \hline 0.075 \text { to } \\ & 0.105 \end{aligned}$	$\begin{aligned} & 0.075 \text { to } \\ & 0.105 \end{aligned}$
9	1	$\begin{aligned} & 0.11261 \text { to } \\ & 0.15361 \end{aligned}$	$\begin{aligned} & 0.11261 \text { to } \\ & 0.15361 \end{aligned}$	$\begin{aligned} & 0.105 \text { to } \\ & 0.146 \end{aligned}$	$\begin{aligned} & \hline 0.105 \text { to } \\ & 0.146 \end{aligned}$	$\begin{aligned} & \hline 0.105 \text { to } \\ & 0.146 \end{aligned}$	$\begin{aligned} & 0.105 \text { to } \\ & 0.146 \end{aligned}$
10	1	$\begin{aligned} & \hline 0.15361 \text { to } \\ & 0.21261 \end{aligned}$	$\begin{aligned} & 0.15361 \text { to } \\ & 0.21261 \end{aligned}$	$\begin{aligned} & 0.146 \text { to } \\ & 0.205 \end{aligned}$	$\begin{aligned} & 0.146 \text { to } \\ & 0.205 \end{aligned}$	$\begin{aligned} & 0.146 \text { to } \\ & 0.205 \end{aligned}$	$\begin{aligned} & 0.146 \text { to } \\ & 0.205 \end{aligned}$
11	1	$\begin{aligned} & 0.21261 \text { to } \\ & 0.25761 \end{aligned}$	$\begin{aligned} & 0.21261 \text { to } \\ & 0.25761 \end{aligned}$	$\begin{aligned} & 0.205 \text { to } \\ & 0.250 \end{aligned}$	$\begin{aligned} & 0.205 \text { to } \\ & 0.250 \end{aligned}$	$\begin{aligned} & 0.205 \text { to } \\ & 0.250 \end{aligned}$	$\begin{aligned} & 0.205 \text { to } \\ & 0.250 \end{aligned}$
12	1	$0.25761 \text { to }$	$\begin{aligned} & 0.25761 \text { to } \\ & 0.40361 \end{aligned}$	$\begin{aligned} & 0.250 \text { to } \\ & 0.396 \end{aligned}$	$0.250 \text { to }$	$\begin{aligned} & 0.250 \text { to } \\ & 0.396 \end{aligned}$	$\begin{aligned} & 0.250 \text { to } \\ & 0.396 \end{aligned}$
13	1	$\begin{aligned} & 0.40361 \text { to } \\ & 0.50761 \end{aligned}$	$\begin{aligned} & 0.40361 \text { to } \\ & 0.50761 \end{aligned}$	$\begin{aligned} & 0.396 \text { to } \\ & 0.500 \end{aligned}$	$\begin{aligned} & 0.396 \text { to } \\ & 0.500 \end{aligned}$	$\begin{aligned} & 0.396 \text { to } \\ & 0.500 \end{aligned}$	$\begin{aligned} & 0.396 \text { to } \\ & 0.500 \end{aligned}$

Table 5-1 Version 6 and Below Synthesizers - Subsweep Frequencies

Band	Mixer Brick L.O. Harmoni c Number (N)	(1) A15 Synthesizer Frequency (GHz)	2 A25 HMA26.5 Frequency (GHz)	3 A4/A17 Synthesizer Frequency (GHz)	4 A5/A10 Source Frequenc y (GHz)	5 A7/A8/A1 2/A13 50 GHz Doubler Frequenc y (GHz)	6 A60/A61 A62/A63 70 GHz Doubler Frequenc y (GHz)
14	1	0.50761 to 0.63561	0.50761 to 0.63561	$\begin{aligned} & 0.500 \text { to } \\ & 0.628 \end{aligned}$	$\begin{aligned} & 0.500 \text { to } \\ & 0.628 \end{aligned}$	$\begin{aligned} & 0.500 \text { to } \\ & 0.628 \end{aligned}$	$\begin{aligned} & 0.500 \text { to } \\ & 0.628 \end{aligned}$
15	1	$\begin{aligned} & 0.63561 \text { to } \\ & 1.00761 \end{aligned}$	$\begin{aligned} & 0.63561 \text { to } \\ & 1.00761 \end{aligned}$	$\begin{aligned} & 0.628 \text { to } \\ & 1.000 \end{aligned}$	$\begin{aligned} & 0.628 \text { to } \\ & 1.000 \end{aligned}$	$\begin{aligned} & 0.628 \text { to } \\ & 1.000 \end{aligned}$	$\begin{aligned} & 0.628 \text { to } \\ & 1.000 \end{aligned}$
16	1	$\begin{aligned} & 1.00761 \text { to } \\ & 1.50761 \end{aligned}$	$\begin{aligned} & 1.00761 \text { to } \\ & 1.50761 \end{aligned}$	$\begin{aligned} & 1.000 \text { to } \\ & 1.500 \end{aligned}$	$\begin{aligned} & 1.000 \text { to } \\ & 1.500 \end{aligned}$	$\begin{aligned} & 1.000 \text { to } \\ & 1.500 \end{aligned}$	$\begin{aligned} & 1.000 \text { to } \\ & 1.500 \end{aligned}$
17	1	$\begin{aligned} & 1.50761 \text { to } \\ & 2.00761 \end{aligned}$	$\begin{aligned} & 1.50761 \text { to } \\ & 2.00761 \end{aligned}$	$\begin{aligned} & 1.500 \text { to } \\ & 2.000 \end{aligned}$	$\begin{aligned} & 1.500 \text { to } \\ & 2.000 \end{aligned}$	$\begin{aligned} & 1.500 \text { to } \\ & 2.000 \end{aligned}$	$\begin{aligned} & 1.500 \text { to } \\ & 2.000 \end{aligned}$
18	1	$\begin{aligned} & 2.00761 \text { to } \\ & 3.00761 \end{aligned}$	$\begin{aligned} & 2.00761 \text { to } \\ & 3.00761 \end{aligned}$	$\begin{aligned} & 2.000 \text { to } \\ & 3.000 \end{aligned}$	$\begin{aligned} & 2.000 \text { to } \\ & 3.000 \end{aligned}$	$\begin{aligned} & 2.000 \text { to } \\ & 3.000 \end{aligned}$	$\begin{aligned} & 2.000 \text { to } \\ & 3.000 \end{aligned}$
19	1	$\begin{aligned} & 3.00761 \text { to } \\ & 3.0761 \end{aligned}$	$\begin{aligned} & \hline 3.00761 \text { to } \\ & 3.20761 \end{aligned}$	$\begin{aligned} & 3.000 \text { to } \\ & 3.200 \end{aligned}$	$\begin{aligned} & 3.000 \text { to } \\ & 3.200 \end{aligned}$	$\begin{aligned} & 3.000 \text { to } \\ & 3.200 \end{aligned}$	$\begin{aligned} & \hline 3.000 \text { to } \\ & 3.200 \end{aligned}$
20	1	$\begin{aligned} & 3.20761 \text { to } \\ & 4.00761 \end{aligned}$	$\begin{aligned} & 3.20761 \text { to } \\ & 4.00761 \end{aligned}$	$\begin{aligned} & 3.200 \text { to } \\ & 4.000 \end{aligned}$	$\begin{aligned} & 3.200 \text { to } \\ & 4.000 \end{aligned}$	$\begin{aligned} & 3.200 \text { to } \\ & 4.000 \end{aligned}$	$\begin{aligned} & 3.200 \text { to } \\ & 4.000 \end{aligned}$
21	1	$\begin{aligned} & 4.00761 \text { to } \\ & 5.33961 \end{aligned}$	$\begin{aligned} & 4.00761 \text { to } \\ & 5.33961 \end{aligned}$	$\begin{aligned} & 4.000 \text { to } \\ & 5.332 \end{aligned}$	$\begin{aligned} & 4.000 \text { to } \\ & 5.332 \end{aligned}$	$\begin{aligned} & 4.000 \text { to } \\ & 5.332 \end{aligned}$	$\begin{aligned} & 4.000 \text { to } \\ & 5.332 \end{aligned}$
22	1	$\begin{aligned} & 5.33961 \text { to } \\ & 6.75961 \end{aligned}$	$\begin{aligned} & 5.33961 \text { to } \\ & 6.75961 \end{aligned}$	$\begin{aligned} & 5.332 \text { to } \\ & 6.752 \end{aligned}$	$\begin{aligned} & 5.332 \text { to } \\ & 6.752 \end{aligned}$	$\begin{aligned} & 5.332 \text { to } \\ & 6.752 \end{aligned}$	$\begin{aligned} & 5.332 \text { to } \\ & 6.752 \end{aligned}$
23	1	$\begin{aligned} & 6.75961 \text { to } \\ & 8.00761 \end{aligned}$	$\begin{aligned} & 6.75961 \text { to } \\ & 8.00761 \end{aligned}$	$\begin{aligned} & 6.752 \text { to } \\ & 8.000 \end{aligned}$	$\begin{aligned} & 6.752 \text { to } \\ & 8.000 \end{aligned}$	$\begin{aligned} & 6.752 \text { to } \\ & 8.000 \end{aligned}$	$\begin{aligned} & 6.752 \text { to } \\ & 8.000 \end{aligned}$
24	1	$\begin{aligned} & \hline 8.00761 \text { to } \\ & 8.50761 \end{aligned}$	$\begin{aligned} & \hline 8.00761 \text { to } \\ & 8.50761 \end{aligned}$	$\begin{aligned} & 8.000 \text { to } \\ & 8.500 \end{aligned}$	$\begin{aligned} & 8.000 \text { to } \\ & 8.500 \end{aligned}$	$\begin{aligned} & 8.000 \text { to } \\ & 8.500 \end{aligned}$	$\begin{aligned} & 8.000 \text { to } \\ & 8.500 \end{aligned}$
25	1	$\begin{aligned} & 8.50761 \text { to } \\ & 10.67161 \end{aligned}$	$\begin{aligned} & \hline 8.50761 \text { to } \\ & 10.67161 \end{aligned}$	$\begin{aligned} & 8.500 \text { to } \\ & 10.664 \end{aligned}$	$\begin{aligned} & 8.500 \text { to } \\ & 10.664 \end{aligned}$	$\begin{aligned} & 8.500 \text { to } \\ & 10.664 \end{aligned}$	$\begin{aligned} & \hline 8.500 \text { to } \\ & 10.664 \end{aligned}$
26	1	$\begin{aligned} & 10.67161 \text { to } \\ & 12.00761 \end{aligned}$	$\begin{aligned} & 10.67161 \text { to } \\ & 12.00761 \end{aligned}$	$\begin{aligned} & 10.664 \text { to } \\ & 12.000 \end{aligned}$	$\begin{aligned} & 10.664 \text { to } \\ & 12.000 \end{aligned}$	$\begin{aligned} & 10.664 \text { to } \\ & 12.000 \end{aligned}$	$\begin{aligned} & 10.664 \text { to } \\ & 12.000 \end{aligned}$
27	1	$\begin{aligned} & 12.00761 \text { to } \\ & 12.80761 \end{aligned}$	$\begin{aligned} & 12.00761 \text { to } \\ & 12.80761 \end{aligned}$	$\begin{aligned} & 12.000 \text { to } \\ & 12.800 \end{aligned}$	$\begin{aligned} & 12.000 \text { to } \\ & 12.800 \end{aligned}$	$\begin{aligned} & 12.000 \text { to } \\ & 12.800 \end{aligned}$	$\begin{aligned} & 12.000 \text { to } \\ & 12.800 \end{aligned}$
28	1	$\begin{aligned} & \hline 12.80761 \text { to } \\ & 13.51761 \end{aligned}$	$\begin{aligned} & \hline 12.80761 \text { to } \\ & 13.51761 \end{aligned}$	$\begin{aligned} & 12.800 \text { to } \\ & 13.510 \end{aligned}$	$\begin{aligned} & 12.800 \text { to } \\ & 13.510 \end{aligned}$	$\begin{aligned} & 12.800 \text { to } \\ & 13.510 \end{aligned}$	$\begin{aligned} & 12.800 \text { to } \\ & 13.510 \end{aligned}$

Table 5-1 Version 6 and Below Synthesizers - Subsweep Frequencies

Band	Mixer Brick L.O. Harmoni c Number (N)	(1) A15 Synthesizer Frequency (GHz)	2 A25 HMA26.5 Frequency (GHz)	3 A4/A17 Synthesizer Frequency (GHz)	4 A5/A10 Source Frequenc y (GHz)	5 A7/A8/A1 2/A13 50 GHz Doubler Frequenc y (GHz)	
29	1	$\begin{aligned} & 6.75880 \text { to } \\ & 7.70380 \end{aligned}$	$\begin{aligned} & 13.51761 \text { to } \\ & 15.40761 \end{aligned}$	$\begin{aligned} & 6.755 \text { to } \\ & 7.700 \end{aligned}$	$\begin{aligned} & 13.510 \text { to } \\ & 15.400 \end{aligned}$	$\begin{aligned} & 13.510 \text { to } \\ & 15.400 \end{aligned}$	$\begin{aligned} & 13.510 \text { to } \\ & 15.400 \end{aligned}$
30	1	$\begin{aligned} & 7.70380 \text { to } \\ & 8.00380 \end{aligned}$	$\begin{aligned} & 15.40761 \text { to } \\ & 16.00761 \end{aligned}$	$\begin{aligned} & 7.700 \text { to } \\ & 8.000 \end{aligned}$	$\begin{aligned} & 15.400 \text { to } \\ & 16.000 \end{aligned}$	$\begin{aligned} & 15.400 \text { to } \\ & 16.000 \end{aligned}$	$\begin{aligned} & 15.400 \text { to } \\ & 16.000 \end{aligned}$
31	1	$\begin{aligned} & 8.00380 \text { to } \\ & 9.5038 \end{aligned}$	$\begin{aligned} & 16.00761 \text { to } \\ & 19.00761 \end{aligned}$	$\begin{aligned} & 8.000 \text { to } \\ & 9.500 \end{aligned}$	$\begin{aligned} & 16.000 \text { to } \\ & 19.000 \end{aligned}$	$\begin{aligned} & 16.000 \text { to } \\ & 19.000 \end{aligned}$	$\begin{aligned} & 16.000 \text { to } \\ & 19.000 \end{aligned}$
32	1	$\begin{aligned} & 9.50380 \text { to } \\ & 10.00380 \end{aligned}$	$\begin{aligned} & \hline 19.00761 \text { to } \\ & 20.00761 \end{aligned}$	$\begin{aligned} & 9.500 \text { to } \\ & 10.000 \end{aligned}$	$\begin{aligned} & 9.500 \text { to } \\ & 10.000 \end{aligned}$	$\begin{aligned} & 19.000 \text { to } \\ & 20.000 \end{aligned}$	$\begin{aligned} & 19.000 \text { to } \\ & 20.000 \end{aligned}$
33	1	$\begin{aligned} & 10.00380 \text { to } \\ & 10.66781 \end{aligned}$	$\begin{aligned} & 20.00761 \text { to } \\ & 21.33561 \end{aligned}$	$\begin{aligned} & 10.000 \text { to } \\ & 10.664 \end{aligned}$	$\begin{aligned} & 10.000 \text { to } \\ & 10.664 \end{aligned}$	$\begin{aligned} & 20.000 \text { to } \\ & 21.328 \end{aligned}$	$\begin{aligned} & 20.000 \text { to } \\ & 21.328 \end{aligned}$
34	1	$\begin{aligned} & 10.66781 \text { to } \\ & 12.00381 \end{aligned}$	$\begin{aligned} & 21.33561 \text { to } \\ & 24.00761 \end{aligned}$	$\begin{aligned} & 10.664 \text { to } \\ & 12.000 \end{aligned}$	$\begin{aligned} & 10.664 \text { to } \\ & 12.000 \end{aligned}$	$\begin{aligned} & 21.328 \text { to } \\ & 24.000 \end{aligned}$	$\begin{aligned} & 21.328 \text { to } \\ & 24.000 \end{aligned}$
35	1	$\begin{aligned} & 12.00381 \text { to } \\ & 13.25381 \end{aligned}$	$\begin{aligned} & 24.00761 \text { to } \\ & 26.50761 \end{aligned}$	$\begin{aligned} & 12.000 \text { to } \\ & 13.250 \end{aligned}$	$\begin{aligned} & 12.000 \text { to } \\ & 13.250 \end{aligned}$	$\begin{aligned} & 24.000 \text { to } \\ & 26.500 \end{aligned}$	$\begin{aligned} & 24.000 \text { to } \\ & 26.500 \end{aligned}$
36	3	$\begin{aligned} & 8.83587 \text { to } \\ & 9.00520 \end{aligned}$	$\begin{aligned} & \hline 8.83587 \text { to } \\ & 9.00520 \end{aligned}$	$\begin{aligned} & \hline 13.250 \text { to } \\ & 13.504 \end{aligned}$	$\begin{aligned} & 13.250 \text { to } \\ & 13.504 \end{aligned}$	$\begin{aligned} & 26.500 \text { to } \\ & 27.008 \end{aligned}$	$\begin{aligned} & \hline 26.500 \text { to } \\ & 27.008 \end{aligned}$
37	3	$\begin{aligned} & 9.00520 \text { to } \\ & 10.66920 \end{aligned}$	$\begin{aligned} & 9.00520 \text { to } \\ & 10.66920 \end{aligned}$	$\begin{aligned} & 6.752 \text { to } \\ & 8.000 \end{aligned}$	$\begin{aligned} & 13.504 \text { to } \\ & 16.000 \end{aligned}$	$\begin{aligned} & 27.008 \text { to } \\ & 32.000 \end{aligned}$	$\begin{aligned} & 27.008 \text { to } \\ & 32.000 \end{aligned}$
38	3	$\begin{aligned} & 10.66920 \text { to } \\ & 13.3359 \end{aligned}$	$\begin{aligned} & 10.66920 \text { to } \\ & 13.3359 \end{aligned}$	$\begin{aligned} & 8.000 \text { to } \\ & 10.000 \end{aligned}$	$\begin{aligned} & 16.000 \text { to } \\ & 20.000 \end{aligned}$	$\begin{aligned} & 32.000 \text { to } \\ & 40.000 \end{aligned}$	$\begin{aligned} & 32.000 \text { to } \\ & 40.000 \end{aligned}$
39	3	$\begin{aligned} & 13.3359 \text { to } \\ & 13.5025 \end{aligned}$	$\begin{aligned} & 13.3359 \text { to } \\ & 13.50254 \end{aligned}$	$\begin{aligned} & 10.000 \text { to } \\ & 10.125 \end{aligned}$	$\begin{aligned} & 10.250 \text { to } \\ & 10.125 \end{aligned}$	$\begin{aligned} & 20.000 \text { to } \\ & 20.250 \end{aligned}$	$\begin{aligned} & 40.000 \text { to } \\ & 40.500 \end{aligned}$
40	3	$\begin{aligned} & 6.7513 \text { to } \\ & 7.1106 \end{aligned}$	$\begin{aligned} & 13.50254 \text { to } \\ & 14.22120 \end{aligned}$	$\begin{aligned} & 10.125 \text { to } \\ & 10.664 \end{aligned}$	$\begin{aligned} & 10.125 \text { to } \\ & 10.664 \end{aligned}$	$\begin{aligned} & 20.250 \text { to } \\ & 21.328 \end{aligned}$	$\begin{aligned} & 40.500 \text { to } \\ & 42.656 \end{aligned}$
41	3	$\begin{aligned} & 7.1106 \text { to } \\ & 7.7013 \end{aligned}$	$\begin{aligned} & 14.22120 \text { to } \\ & 15.4025 \end{aligned}$	$\begin{aligned} & 10.664 \text { to } \\ & 11.550 \end{aligned}$	$\begin{aligned} & 10.664 \text { to } \\ & 11.550 \end{aligned}$	$\begin{aligned} & 21.328 \text { to } \\ & 23.100 \end{aligned}$	$\begin{aligned} & 42.656 \text { to } \\ & 46.200 \end{aligned}$
42	3	$\begin{aligned} & 7.7013 \text { to } \\ & 8.0013 \end{aligned}$	$\begin{aligned} & 15.4025 \text { to } \\ & 16.0025 \end{aligned}$	$\begin{aligned} & 11.550 \text { to } \\ & 12.000 \end{aligned}$	$\begin{aligned} & 11.550 \text { to } \\ & 12.000 \end{aligned}$	$\begin{aligned} & 23.100 \text { to } \\ & 24.000 \end{aligned}$	$\begin{aligned} & 46.200 \text { to } \\ & 48.000 \end{aligned}$
43	3	$\begin{aligned} & 8.0013 \text { to } \\ & 8.3346 \end{aligned}$	$\begin{aligned} & 16.0025 \text { to } \\ & 16.6692 \end{aligned}$	$\begin{aligned} & 12.000 \text { to } \\ & 12.500 \end{aligned}$	$\begin{aligned} & 12.000 \text { to } \\ & 12.500 \end{aligned}$	$\begin{aligned} & 24.000 \text { to } \\ & 25.000 \end{aligned}$	$\begin{aligned} & 48.000 \text { to } \\ & 50.000 \end{aligned}$

Table 5-1 Version 6 and Below Synthesizers - Subsweep Frequencies

Band	Mixer Brick L.O. Harmoni c Number (N)	(1) A15 Synthesizer Frequency (GHz)	2 A25 HMA26.5 Frequency (GHz)	3 A4/A17 Synthesizer Frequency (GHz)	4 A5/A10 Source Frequenc y (GHz)	5 A7/A8/A1 2/A13 50 GHz Doubler Frequenc y (GHz)	6 A60/A61 A62/A63 70 GHz Doubler Frequenc y (GHz)
44	3	$\begin{aligned} & 8.3346 \text { to } \\ & 9.0039 \end{aligned}$	$\begin{aligned} & 16.6692 \text { to } \\ & 18.0079 \end{aligned}$	$\begin{aligned} & 12.500 \text { to } \\ & 13.504 \end{aligned}$	$\begin{aligned} & 12.500 \text { to } \\ & 13.504 \end{aligned}$	$\begin{aligned} & 25.000 \text { to } \\ & 27.008 \end{aligned}$	$\begin{aligned} & 50.000 \text { to } \\ & 54.016 \end{aligned}$
45	3	$\begin{aligned} & \hline 9.0039 \text { to } \\ & 10.0013 \end{aligned}$	$\begin{aligned} & 18.0079 \text { to } \\ & 20.0025 \end{aligned}$	$\begin{aligned} & 6.752 \text { to } \\ & 7.500 \end{aligned}$	$\begin{aligned} & 13.504 \text { to } \\ & 15.000 \end{aligned}$	$\begin{aligned} & 27.008 \text { to } \\ & 30.000 \end{aligned}$	$\begin{aligned} & 54.016 \text { to } \\ & 60.000 \end{aligned}$
46	3	$\begin{aligned} & 10.0013 \text { to } \\ & 10.6679 \end{aligned}$	$\begin{aligned} & 20.0025 \text { to } \\ & 21.3359 \end{aligned}$	$\begin{aligned} & 7.500 \text { to } \\ & 8.000 \end{aligned}$	$\begin{aligned} & 15.000 \text { to } \\ & 16.000 \end{aligned}$	$\begin{aligned} & 30.000 \text { to } \\ & 32.000 \end{aligned}$	$\begin{aligned} & 60.000 \text { to } \\ & 64.000 \end{aligned}$
47	3	$\begin{aligned} & \text { 10.6679 to } \\ & 11.1679 \end{aligned}$	$\begin{aligned} & \hline 21.3359 \text { to } \\ & 22.3359 \end{aligned}$	$\begin{aligned} & 8.000 \text { to } \\ & 8.375 \end{aligned}$	$\begin{aligned} & 16.000 \text { to } \\ & 16.750 \end{aligned}$	$\begin{aligned} & 32.000 \text { to } \\ & 33.500 \end{aligned}$	$\begin{aligned} & 64.000 \text { to } \\ & 67.000 \end{aligned}$
48	3	$\begin{aligned} & \text { } \begin{array}{l} 11.1679 \text { to } \\ 11.6679 \end{array} \end{aligned}$	$\begin{aligned} & 22.3359 \text { to } \\ & 23.3359 \end{aligned}$	$\begin{aligned} & 8.375 \text { to } \\ & 8.750 \end{aligned}$	$\begin{aligned} & 16.750 \text { to } \\ & 17.500 \end{aligned}$	$\begin{aligned} & 33.500 \text { to } \\ & 35.000 \end{aligned}$	$\begin{aligned} & 67.000 \text { to } \\ & 70.000 \end{aligned}$

Version 7 Direct Digital Synthesizer (DDS) Assembly - Basic Operation

Table 5-2 on page 5-20 lists the L.O. harmonic number, the direct digital synthesizer (DDS) frequencies (A15), the main source frequency (A5 and A10), and the doubler frequencies (A7, A8, A12, and A13) within the analyzer for each band. This table is referred to throughout this chapter and also appears on the overall block diagram at the end of Chapter 4, "Troubleshooting."

The A15 DDS assembly provides stable reference frequencies to the rest of the instrument. A high stability 100 MHz signal is generated on the DDS and used to generate a 10 MHz reference signal. A high stability 100 MHz oven-controlled crystal oscillator (OCXO) on the DDS, normally provides the frequency standard. However, if a 10 MHz external reference signal is detected at the 10 MHz EXT REF IN port on the rear panel, it is used as the frequency reference instead.

Refer to the Note on page 4-31. The A15 13.5 GHz DDS assembly produces an LO signal that is sent through the A25 LO multiplier/amplifier 26.5 board to the A27 and A28 mixer bricks (via the A25 HMA26.5 internal splitter). ${ }^{1}$ The frequency is synthesized such that the test signal output is a constant signal. For analyzers with DSP version 5.0 or DDS assemblies, the IF is 7.438 MHz (at frequencies below 53 MHz the IF signal is 0.826 MHz). This signal is signal is sent to the A16 SPAM board for digital processing.

The A15 13.5 GHz DDS assembly produces an incident signal that is sent through the A5 26.5 GHz source board and then through the A7 and A8 doubler boards to the front panel outputs. Likewise, the A15 13.5 GHz DDS assembly produces a separate incident signal that is sent through the A10 26.5 GHz source board and then through the A12 and A13 doubler boards to the front panel outputs. Portions of these signals are coupled off and sent to the A27 and A28 mixer bricks (A-D and R1-R4) where they are mixed with the LO signal from the A25 HMA26.5 internal splitter¹ to produce the IF signal. For analyzers with DSP version 5.0 or DDS assemblies, the IF signal is 7.438 MHz (or 0.826 MHz).

The A15 13.5 GHz DDS assembly contains its own phase lock circuitry. The A15 assembly produces either internal reference that is free running for the LO Signal and test signals. Or if an external reference is available a phase locked LO signal and it produces phase locked test signals based on the external reference. Regardless of whether the internal or external reference is used each DDS has its own set of digital registers that enable the output to be set to a different frequency. This makes it possible for the LO signal to be tuned to a different frequency than the test signal. With frequency offset mode disabled, the LO signal is a frequency value higher than the test signal. Since the A15 13.5 GHz DDS assembly receives 10 MHz input reference signal from the exact same source, frequency drift error is eliminated.

1. A26 splitter only applies to PNAs with serial number prefix <6021.

Figure 5-8
Source Group, Version 7, Part 1 (Example of Option 401 (top image) and Option 417 LFE (bottom image))

CAUTION \quad The following band table is for version 7 synthesizers. For version 6 synthesizers and below band values, refer to the table on Table 5-1 on page 5-14.

Table 5-2 Version 7 Synthesizer Bands - Subsweep Frequencies

Band	Mixer Brick L.O. Harmonic Number (N)	(1) A15 Direct Digital Synthesizer (DDS) - (GHz)	2 A25 HMA26.5 Frequency (GHz)	3 A5/A10 Source Frequency (GHz)	4 A7/A8/A12/A 1350 GHz Doubler Frequency (GHz)	5 A60/A61/ A62/A63 70 GHz Doubler Frequency (GHz)
0	-	-	-	-	-	-
1	-	-	-	-	-	-
2	1	0.010 to 0.053	$\begin{aligned} & 0.012479 \text { to } \\ & 0.055479 \end{aligned}$	0.010 to 0.053	0.010 to 0.053	0.010 to 0.053
3	1	0.053 to 0.175	$\begin{aligned} & \hline 0.055479 \text { to } \\ & 0.177479 \end{aligned}$	0.053 to 0.175	0.053 to 0.175	0.053 to 0.175
4	1	0.175 to 0.250	$\begin{aligned} & 0.177479 \text { to } \\ & 0.252479 \end{aligned}$	0.175 to 0.250	0.175 to 0.250	0.175 to 0.250
5	1	0.250 to 0.500	$\begin{aligned} & 0.252479 \text { to } \\ & 0.502479 \end{aligned}$	0.250 to 0.500	0.250 to 0.500	0.250 to 0.500
6	1	0.500 to 3.200	$\begin{aligned} & \text { 0.520479to } \\ & 3.202479 \end{aligned}$	0.500 to 3.200	0.500 to 3.200	0.500 to 3.200
7	1	3.200 to 6.000	$\begin{aligned} & 3.207438 \text { to } \\ & 6.007438 \end{aligned}$	3.200 to 6.000	3.200 to 6.000	3.200 to 6.000
8	1	6.000 to 7.600	$\begin{aligned} & \hline 6.007438 \text { to } \\ & 7.607438 \end{aligned}$	6.000 to 7.600	6.000 to 7.600	6.000 to 7.600
9	1	7.600 to 9.520	$\begin{aligned} & 7.607438 \text { to } \\ & 9.527438 \end{aligned}$	7.600 to 9.520	7.600 to 9.520	7.600 to 9.520
10	1	$\begin{aligned} & 9.520 \text { to } \\ & 12.000 \end{aligned}$	$\begin{aligned} & 9.527438 \text { to } \\ & 12.00738 \end{aligned}$	$\begin{aligned} & 9.520 \text { to } \\ & 12.000 \end{aligned}$	$\begin{aligned} & 9.520 \text { to } \\ & 12.000 \end{aligned}$	$\begin{aligned} & 9.520 \text { to } \\ & 12.000 \end{aligned}$
11	1	$\begin{aligned} & 12.000 \text { to } \\ & 13.510 \end{aligned}$	$\begin{aligned} & 12.007438 \text { to } \\ & 13.517438 \end{aligned}$	$\begin{aligned} & 12.000 \text { to } \\ & 13.510 \end{aligned}$	$\begin{aligned} & 12.000 \text { to } \\ & 13.510 \end{aligned}$	$\begin{aligned} & 12.000 \text { to } \\ & 13.510 \end{aligned}$
12	1	6.000 to 7.600	$\begin{aligned} & \hline 6.758719 \text { to } \\ & 7.603719 \end{aligned}$	$\begin{aligned} & 13.510 \text { to } \\ & 15.200 \end{aligned}$	$\begin{aligned} & 13.510 \text { to } \\ & 15.200 \end{aligned}$	$\begin{aligned} & \hline 13.510 \text { to } \\ & 15.200 \end{aligned}$
13	1	7.600 to 9.520	$\begin{aligned} & 7.603719 \text { to } \\ & 8.003719 \end{aligned}$	$\begin{aligned} & 15.200 \text { to } \\ & 16.000 \end{aligned}$	$\begin{aligned} & 15.200 \text { to } \\ & 16.000 \end{aligned}$	$\begin{aligned} & 15.200 \text { to } \\ & 16.000 \end{aligned}$

Table 5-2 Version 7 Synthesizer Bands - Subsweep Frequencies

Band	Mixer Brick L.O. Harmonic Number (N)	(1) A15 Direct Digital Synthesizer (DDS) - (GHz)	2 A25 HMA26. 5 Frequency (GHz)	3 A5/A10 Source Frequency (GHz)	4 A7/A8/A12/A 1350 GHz Doubler Frequency (GHz)	5 A60/A61/ A62/A63 70 GHz Doubler Frequency (GHz)
14	1	7.600 to 9.520	$\begin{aligned} & 8.003719 \text { to } \\ & 9.523719 \end{aligned}$	$\begin{aligned} & 16.000 \text { to } \\ & 19.040 \end{aligned}$	$\begin{aligned} & 16.000 \text { to } \\ & 19.040 \end{aligned}$	$\begin{aligned} & 16.000 \text { to } \\ & 19.040 \end{aligned}$
15	1	$\begin{aligned} & 9.520 \text { to } \\ & 12.000 \end{aligned}$	$\begin{aligned} & 9.523719 \text { to } \\ & 10.003719 \end{aligned}$	$\begin{aligned} & 9.520 \text { to } \\ & 10.000 \end{aligned}$	$\begin{aligned} & 19.040 \text { to } \\ & 20.000 \end{aligned}$	$\begin{aligned} & 19.040 \text { to } \\ & 20.000 \end{aligned}$
16	1	$\begin{aligned} & 9.520 \text { to } \\ & 12.000 \end{aligned}$	$\begin{aligned} & 10.003719 \text { to } \\ & 10.653719 \end{aligned}$	$\begin{aligned} & \hline 10.000 \text { to } \\ & 10.650 \end{aligned}$	$\begin{aligned} & 20.000 \text { to } \\ & 21.300 \end{aligned}$	$\begin{aligned} & 20.000 \text { to } \\ & 21.300 \end{aligned}$
17	1	$\begin{aligned} & \hline 9.520 \text { to } \\ & 12.000 \end{aligned}$	$\begin{aligned} & 10.653719 \text { to } \\ & 12.003719 \end{aligned}$	$\begin{aligned} & \hline 10.650 \text { to } \\ & 12.000 \end{aligned}$	$\begin{aligned} & \hline 21.300 \text { to } \\ & 24.000 \end{aligned}$	$\begin{aligned} & 21.300 \text { to } \\ & 24.000 \end{aligned}$
18	1	$\begin{aligned} & 12.000 \text { to } \\ & 13.510 \end{aligned}$	$\begin{aligned} & 12.003719 \text { to } \\ & 13.253719 \end{aligned}$	$\begin{aligned} & 12.000 \text { to } \\ & 13.250 \end{aligned}$	$\begin{aligned} & 24.000 \text { to } \\ & 26.500 \end{aligned}$	$\begin{aligned} & 24.000 \text { to } \\ & 26.500 \end{aligned}$
19	1	$\begin{aligned} & 12.000 \text { to } \\ & 13.510 \end{aligned}$	$\begin{aligned} & 8.835813 \text { to } \\ & 9.009146 \end{aligned}$	$\begin{aligned} & 13.250 \text { to } \\ & 13.510 \end{aligned}$	$\begin{aligned} & 26.500 \text { to } \\ & 27.020 \end{aligned}$	$\begin{aligned} & 26.500 \text { to } \\ & 27.020 \end{aligned}$
20	1	6.000 to 7.600	$\begin{aligned} & 9.009146 \text { to } \\ & 9.502479 \end{aligned}$	$\begin{aligned} & 13.510 \text { to } \\ & 14.250 \end{aligned}$	$\begin{aligned} & 27.020 \text { to } \\ & 28.500 \end{aligned}$	$\begin{aligned} & 27.020 \text { to } \\ & 28.500 \end{aligned}$
21	1	6.000 to 7.600	$\begin{aligned} & 9.502479 \text { to } \\ & 10.135813 \end{aligned}$	$\begin{aligned} & 14.250 \text { to } \\ & 15.200 \end{aligned}$	$\begin{aligned} & 28.500 \text { to } \\ & 30.400 \end{aligned}$	$\begin{aligned} & 28.500 \text { to } \\ & 30.400 \end{aligned}$
22	1	7.600 to 9.520	$\begin{aligned} & 10.135813 \text { to } \\ & 10.669146 \end{aligned}$	$\begin{aligned} & 15.200 \text { to } \\ & 16.000 \end{aligned}$	$\begin{aligned} & 30.400 \text { to } \\ & 32.000 \end{aligned}$	$\begin{aligned} & 30.400 \text { to } \\ & 32.000 \end{aligned}$
23	1	7.600 to 9.520	$\begin{aligned} & \hline 10.669146 \text { to } \\ & 12.035813 \end{aligned}$	$\begin{aligned} & \hline 16.000 \text { to } \\ & 18.050 \end{aligned}$	$\begin{aligned} & 32.000 \text { to } \\ & 36.100 \end{aligned}$	$\begin{aligned} & 32.000 \text { to } \\ & 36.100 \end{aligned}$
24	1	7.600 to 9.520	$\begin{aligned} & 12.035813 \text { to } \\ & 12.695813 \end{aligned}$	$\begin{aligned} & 18.050 \text { to } \\ & 19.040 \end{aligned}$	$\begin{aligned} & 36.100 \text { to } \\ & 38.080 \end{aligned}$	$\begin{aligned} & 36.100 \text { to } \\ & 38.080 \end{aligned}$
25	1	$\begin{aligned} & \hline 9.520 \text { to } \\ & 12.000 \end{aligned}$	$\begin{aligned} & \hline \text { 12.695813to } \\ & 13.335813 \end{aligned}$	$\begin{aligned} & \hline 19.040 \text { to } \\ & 20.000 \end{aligned}$	$\begin{aligned} & 38.080 \text { to } \\ & 40.000 \end{aligned}$	$\begin{aligned} & 38.080 \text { to } \\ & 40.000 \end{aligned}$
26	1	$\begin{aligned} & 9.520 \text { to } \\ & 12.000 \end{aligned}$	$\begin{aligned} & 13.335813 \text { to } \\ & 13.512479 \end{aligned}$	$\begin{aligned} & 10.000 \text { to } \\ & 10.133 \end{aligned}$	$\begin{aligned} & 20.000 \text { to } \\ & 20.265 \end{aligned}$	$\begin{aligned} & 40.000 \text { to } \\ & 40.530 \end{aligned}$
27	1	$\begin{aligned} & 9.520 \text { to } \\ & 12.000 \end{aligned}$	$\begin{aligned} & \hline 6.756240 \text { to } \\ & 7.637906 \end{aligned}$	$\begin{aligned} & 10.133 \text { to } \\ & 11.455 \end{aligned}$	$\begin{aligned} & 20.265 \text { to } \\ & 22910 \end{aligned}$	$\begin{aligned} & 40.530 \text { to } \\ & 45.820 \end{aligned}$
28	1	$\begin{aligned} & \hline 9.520 \text { to } \\ & 12.000 \end{aligned}$	$\begin{aligned} & \hline 7.637906 \text { to } \\ & 8.001240 \end{aligned}$	$\begin{aligned} & \hline 11.455 \text { to } \\ & 12.000 \end{aligned}$	$\begin{aligned} & 22.910 \text { to } \\ & 24.000 \end{aligned}$	$\begin{aligned} & 45.820 \text { to } \\ & 48.000 \end{aligned}$
29	1	$\begin{aligned} & 12.000 \text { to } \\ & 13.510 \end{aligned}$	$\begin{aligned} & 8.001240 \text { to } \\ & 8.334573 \end{aligned}$	$\begin{aligned} & 12.000 \text { to } \\ & 12.500 \end{aligned}$	$\begin{aligned} & 24.000 \text { to } \\ & 25.000 \end{aligned}$	$\begin{aligned} & 48.000 \text { to } \\ & 50.000 \end{aligned}$

Table 5-2 Version 7 Synthesizer Bands - Subsweep Frequencies

Band	Mixer Brick L.O. Harmonic Number (N)	1	2	3	4	5
		A15 Direct Digital Synthesizer (DDS) - (GHz)	A25 HMA26.5 Frequency (GHz)	A5/A10 Source Frequency (GHz)	A7/A8/A12/A 1350 GHz Doubler Frequency (GHz)	A60/A61/ A62/A63 70 GHz Doubler Frequency (GHz)
30	1	$\begin{aligned} & 12.000 \text { to } \\ & 13.510 \end{aligned}$	$\begin{aligned} & 8.334573 \text { to } \\ & 8.834573 \end{aligned}$	$\begin{aligned} & 12.500 \text { to } \\ & 13.250 \end{aligned}$	$\begin{aligned} & 25.000 \text { to } \\ & 26.500 \end{aligned}$	$\begin{aligned} & 50.000 \text { to } \\ & 53.000 \end{aligned}$
31	1	$\begin{aligned} & \hline 12.000 \text { to } \\ & 13.510 \end{aligned}$	$\begin{aligned} & \hline 8.834573 \text { to } \\ & 9.007906 \end{aligned}$	$\begin{aligned} & 13.250 \text { to } \\ & 13.510 \end{aligned}$	$\begin{aligned} & 26.500 \text { to } \\ & 27.020 \end{aligned}$	$\begin{aligned} & \hline 53.000 \text { to } \\ & 54.040 \end{aligned}$
32	1	6.000 to 7.600	$\begin{aligned} & 9.007906 \text { to } \\ & 9.551240 \end{aligned}$	$\begin{aligned} & 13.510 \text { to } \\ & 14.325 \end{aligned}$	$\begin{aligned} & 27.020 \text { to } \\ & 28.650 \end{aligned}$	$\begin{aligned} & 54.040 \text { to } \\ & 57.300 \end{aligned}$
33	1	6.000 to 7.600	$\begin{aligned} & 9.551240 \text { to } \\ & 10.017906 \end{aligned}$	$\begin{aligned} & 14.325 \text { to } \\ & 15.025 \end{aligned}$	$\begin{aligned} & 28.650 \text { to } \\ & 30.050 \end{aligned}$	$\begin{aligned} & 57.300 \text { to } \\ & 60.100 \end{aligned}$
34	3	6.000 to 7.600	$\begin{aligned} & 10.017906 \text { to } \\ & 10.134573 \end{aligned}$	$\begin{aligned} & 15.025 \text { to } \\ & 15.200 \end{aligned}$	$\begin{aligned} & 30.050 \text { to } \\ & 30.400 \end{aligned}$	$\begin{aligned} & 60.100 \text { to } \\ & 60.800 \end{aligned}$
35	3	7.600 to 9.520	$\begin{aligned} & 10.134573 \text { to } \\ & 10.667906 \end{aligned}$	$\begin{aligned} & 15.200 \text { to } \\ & 16.000 \end{aligned}$	$\begin{aligned} & 30.400 \text { to } \\ & 32.000 \end{aligned}$	$\begin{aligned} & 60.800 \text { to } \\ & 64.000 \end{aligned}$
36	3	7.600 to 9.520	$\begin{aligned} & 10.667906 \text { to } \\ & 11.134573 \end{aligned}$	$\begin{aligned} & 16.000 \text { to } \\ & 16.700 \end{aligned}$	$\begin{aligned} & 32.000 \text { to } \\ & 33.400 \end{aligned}$	$\begin{aligned} & 64.000 \text { to } \\ & 66.800 \end{aligned}$
37	3	7.600 to 9.520	$\begin{aligned} & 11.134573 \text { to } \\ & 11.667906 \end{aligned}$	$\begin{aligned} & 16.700 \text { to } \\ & 17.500 \end{aligned}$	$\begin{aligned} & 33.400 \text { to } \\ & 35.000 \end{aligned}$	$\begin{aligned} & 66.800 \text { to } \\ & 70.000 \end{aligned}$

A4, A15, and A17 13.5 GHz Synthesizer Boards (S/N Prefixes <6021 Only)

The A17 13.5 GHz synthesizer board is included only on 4-port models.
The A4, A15, and A17 13.5 GHz synthesizer boards use the 50 MHz reference signal from the A14 frequency reference board to tune a VCO circuit that sweeps from 2 GHz to 4 GHz .

Refer to Table 5-1 and Figure 5-6 for band numbers and frequencies discussed here.

In bands 2-10, the output of the swept VCO is passed directly or through a divide-by-2, 4, or 8 circuit to produce the output frequencies as listed in Table 5-1.

In band 6, the output of the swept VCO is passed through a divide-by-4 circuit and then sent to a Direct Digital Synthesizer to produce the output frequencies for bands 2-4 as listed in Table 5-1.

Theory of Operation
Synthesized Source Group Operation

In bands 11-35, the swept VCO signal is passed through a doubler circuit where the signal for some bands are sent directly to the output of the synthesizer board while other bands are passed through another doubler circuit then to the output of the synthesizer board to produce the output frequencies listed in Table 5-1.

The output of the A15 13.5 GHz synthesizer board (the LO synthesizer) is 7.438 MHz higher than the output of the A 4 and A 17 13.5 GHz synthesizer boards (the source synthesizers). This is because the output of the A15 13.5 GHz synthesizer board is routed through the A25 LO multiplier/amplifier 26.5 board to the A27 and A28 mixer bricks where they are mixed with the test signals to produce a 7.438 MHz IF signal for each of eight receivers (A-D and R1-R4). Refer to "A27 and A28 Mixer Bricks" on page 5-49 for a more complete description.

A15 Version 7 Digital to Digital Synthesizer (DDS) Assembly (S/N Prefixes ≥ 6021 Only)

For instruments with s / n prefixes ≥ 6021, there are three A15 Digital Synthesizer (DDS) assemblies: N5240-60222 contains two DDS chips (standard 2-port and an optional N5240-60102 containing a four DDS chip assembly is required for 4 -port models and for adding a 3rd source (Option XSB, requires Option 422 or Option 423).
The A15 Direct Digital Synthesizer (DDS) assembly uses an internally generated 10 MHz reference signal that is derived from the 100 MHz OCXO circuit (if present, this signal may be locked to an external reference).

The 100 MHz OCXO signal is coupled off to a divide-by-10 section and the resulting 10 MHz synchronized clock-signal is output from the DDS carrier board to the input of the A16 SPAM board (SPAM CLK) and to the rear panel (REF OUT).

The DDS assembly's carrier board's also produces a 19.2 GHz signal that is split and sent to each of the DDS Slugs to drive the LO, SRC1, SRC2, and SRC3 (SRC3 requires, Option XSB).

In bands 2 to 7 , the DDS Slug's output is used to produce the output frequencies of 10 MHz to 6 GHz that is transmitted to the DDS assembly multiplier section as listed in Table 5-2 on page 5-20.

In bands 8-37, the DDS Slug's signal is passed through a doubler circuit where bands $8-10,12-17$, and $20-28$, and $32-37$ are sent directly to the output of the DDS assembly while bands11,17-18, and 29-31 are passed through another doubler circuit then to the output of the DDS assembly to produce the output frequencies listed in Table 5-2 on page 5-20.
Refer to the DSP Note on page 5-1. The output of the A15 13.5 GHz DDS assembly (the LO synthesizer section) is a frequency value higher than the output of the source 1 and source 213.5 GHz synthesizer portions of the DDS assembly. This is because the output of the A15 13.5 GHz synthesizer assembly is routed through the A25 LO multiplier/amplifier 26.5 board to the

A27 and A28 mixer bricks where they are mixed with the test signals to produce a 7.606 MHz IF signal for each of eight receivers (A-D and R1-R4). Refer to "A27 and A28 Mixer Bricks" on page 5-49 for a more complete description.

Rear-Panel Interconnects

REF INPUT (s/n prefixes ≥ 6021 only)	A BNC connector that allows an external frequency reference signal to be used to phase lock the analyzer for increased frequency accuracy. The analyzer automatically enables the external frequency reference feature when a signal is connected to this input. When the signal is removed, the analyzer
REF OUTPUT (switches back to its internal frequency reference. only) prefixes ≥ 6021	A BNC connector that allows a reference signal, produced by the A15 DD synthesizer board, to be output for use in phase locking external test equipment.

A5 and A10 26.5 GHz Source Boards

In bands 2-9, the A5 and A10 26.5 GHz source boards input signals from the A4 or A17 13.5 GHz synthesizer board are passed through to both outputs (main and secondary) unchanged.

For bands 10-15, 19-23, and 29-31, the input signals are passed directly to the secondary output or amplified and filtered, then sent to the main output.

For bands 16-18, 24-28, and 32-35, the input signals are doubled, filtered, and amplified. The signals for these bands are then either passed directly to the secondary output or passed through more amplification and filtering and sent to the main output.

A7, A8, A12, and A13 50 GHz Doubler Boards

The A12 and A13 50 GHz doubler boards are included only on 4-port models.
Refer to Table 5-1 and Figure 5-6 for band numbers and frequencies discussed here.

For bands 2-15, the lowband input ports of the A7, A8, A12, and A13 50 GHz doubler boards receive their signals from the A5 and A10 source module OUT 1 and OUT 2 outputs. These signals are passed through to the doubler board output unchanged.
For bands 16-18, the highband input ports of the A7 and A12 50 GHz doubler boards receive their signals from the A5 and A10 source module P4 outputs. These signals are amplified by the A7 and A12 doubler boards and output via the highband output ports to the highband input ports on the A8 and A13 doubler boards.

For bands 16-18, the input signals of all four doubler boards are amplified and filtered, then sent to the doubler board output.

For bands 19-35, the input signals of all four doubler boards are doubled, amplified and filtered, then sent to the doubler board output.

Doubler board output signals for bands 2-35 create the full synthesized source output frequency range of 10 MHz to 40 GHz .

The A7 50 GHz doubler board provides an EXT TSET DRIVE RF1 OUT signal to the rear panel. This signal is output at a frequency range of $3.2-19 \mathrm{GHz}$ for use with an external test set. This output is terminated with a 50 -ohm load on the A8, A12, and A13 doubler boards.

The companion signal, EXT TEST SET DRIVE LO, is output from the A27 mixer brick. Refer to "A27 and A28 Mixer Bricks" on page 5-49.

A56, A57, A58, and A59 70 GHz Doubler Boards
The 70 GHz doubler boards create the full output frequency range of 10 MHz to 70 GHz by combining two input signals from the 40 GHz doubler boards.

The first input signals are from the 40 GHz doubler P2 output (bands 39-48), where the signals are filtered, doubled, amplified, and sent to the combiner. The second input signals are from the 40 GHz doubler P6 output (bands 2 38), where the signals are passed through the 70 GHz doubler and sent to the combiner. The forward combiner then combines both signals to create a full range of 10 MHz to 70 GHz output.

A25 Multiplier/Amplifier 26.5 Board (HMA26.5)

In bands 2-15 and 23-26, the synthesized LO input is filtered, amplified, and passed through to the A26 splitter ${ }^{1}$ (4-port only). In bands 16-22 and 27-35, the input is amplified, doubled, and filtered, then sent to the output.
Together, these signal paths create the full output frequency range of 10 MHz to 26.5 GHz that is sent to the A26 splitter (<6021 S/N prefixes, 4-port) or internal splitter (≥ 6021, 4-port only) where the signal is divided and sent to the A27 and A28 (4-port only) mixer bricks as the LO signal.

Rear-Panel Interconnects

< MHz REF INPUT (s / n prefixes <6021 only)	A BNC connector that allows an external frequency reference signal to be used to phase lock the analyzer for increased frequency accuracy. The analyzer automatically enables the external frequency reference feature when a signal is connected to this input. When the signal is removed, the analyzer automatically switches back to its internal frequency reference.
10 MHz REF OUTPUT (s/n prefixes	A BNC connector that allows a 10 MHz reference signal, produced by the A14 frequency reference board, to be output for use in phase locking external test equipment.

1. A26 splitter only applies to PNAs with serial number prefix <6021.

A14 Frequency Reference Board (S/N prefixes <6021 Only)

This assembly provides stable reference frequencies to the rest of the instrument. A high stability 10 MHz oven-controlled crystal oscillator (OCXO) normally provides the frequency standard. However, if a 10 MHz external reference signal is detected at the 10 MHz EXT REF IN port on the rear panel, it is used as the frequency reference instead.

The 10 MHz reference signal is used to phase lock a 100 MHz VCO. The output of this VCO is then divided by ten to produce the 10 MHz EXT REF OUT rear panel signal and also a 10 MHz reference signal for the A16 signal processing ADC module (SPAM) board. The VCO output is also divided by two to produce 50 MHz reference signals for the A4, A15, and A17 13.5 GHz synthesizer boards.

Rear-Panel Interconnects

10 MHz REF INPUT (s/n prefixes	A BNC connector that allows an external frequency reference signal to be used to phase lock the analyzer for increased frequency accuracy.
	The analyzer automatically enables the external frequency reference feature when a signal is connected to this input. When the signal is removed, the analyzer automatically switches back to its internal frequency reference.
10 MHz REF OUTPUT (s/n prefixes	A BNC connector that allows a 10 MHz reference signal, produced by the A14 frequency reference board, to be output for use in phase locking external test equipment.

A23 Test Set Motherboard

The A23 test set motherboard serves these functions:

- to act as an interface between the A21 CPU board and the auxiliary rear panel interconnects.
- to provide ALC signals to the A25 HMA26.5.
- to route control signals to the signal separation group. Refer to "Signal Separation Group Operation" on page 5-43 for more information.

Rear Panel Interconnects

The A23 test set motherboard includes the following rear panel interconnects.

TEST SET I/O	A DB-25 female connector that is used to control external test sets. The external test set bus consists of 13 multiplexed address and data lines, three control lines, and an open-collector interrupt line. Pin assignments are listed in Table 5-3 on page 5-27.
	Up to 16 test sets may be "daisy-chained" on the bus at one time.
	The Test Set I/O is not compatible with 8753 network analyzer test sets.

HANDLER I/O	A rectangular 36-pin, female connector providing four independent parallel input/output ports, nine control signal lines, one ground, and a power supply line. This connector has Type 2 output pin assignments as listed in Table 5-4 on page 5-28.
All signals are TTL-compatible. Data innut/output ports consist of two 8-bit output ports (Port A and Port B) and two 4-bit bidirectional ports (Port C and Port D). Connector settings can be changed using SCPI and COM commands. The settings are not accessible from the front panel.	
PWR I/O	A DB-9 female connector. Pin assignments are listed in Table 5-5 on page 5-28.
Table 5-3	TEST SET I/O Connector Pin Assignments

DB-25 Female Connector

Pin Numbers	Name	Function
1	SELO	TTL out, test set select bit 0 , tied to 0 V
2	Sweep Holdoff In	TTL in, low level holds off sweep
3-6	AD12-AD8	TTL I/0, address and latched data
7	GND	0 V , ground reference
8	LAS	TTL out, active low address strobe ($1 \mu \mathrm{~s} \mathrm{~min}$)
9-11	AD4-AD2	TTL I/0, address and latched data
12	GND	0 V , ground reference
13	Interrupt In	TTL in, low level ($10 \mu \mathrm{~s}$ min) aborts sweep
14	+22 V	+22 Vdc, 100 mA max.
15-16	SEL1-2	TTL out, test set select bits 1-2, tied to 0 V
17	AD11	TTL I/0, address and latched data
18	SEL3	TTL out, test set select bit 3, tied to 0 V
19-21	AD7-5	TTL I/0, address and latched data
22-23	ADO-1	TTL I/0, address and latched data
24	LDS	TTL out, active low data strobe (1 $\mu \mathrm{s} \mathrm{min}$)
25	RLW	TTL out, high = read, low = write

Table 5-4 HANDLER I/O Connector Pin Assignments

Rectangular 36-Pin Female Connector

Pin Numbers	Name	Function
1	GND	0 V , ground reference
2	INPUT1	TTL in, negative pulse ($1 \mu \mathrm{~s} \mathrm{~min}$) latches OUTPUT1-2
3-4	OUTPUT1-2	TTL out, latched
5-12	Port A0-7 Out	TTL out, latched
13-20	Port B0-7 Out	TTL out, latched
21-24	Port C I/O	TTL I/0, latched
25-28	Port D I/O	TTL I/0, latched
29	Port C Status	TTL out, low = input mode, high = output mode
30	Port D Status	TTL out, low = input mode, high = output mode
31	Output Strobe Write Strobe	TTL out, active low data write strobe ($1 \mu \mathrm{~s}$ min)
32	No connect	Not used
33	Pass Fail	TTL out, latched, indicates pass fail (programmable polarity)
34	+5V	+5 Vdc, 100 mA max.
35	Sweep End	TTL out, active low ($10 \mu \mathrm{~s}$ min) indicates sweep done
36	Pass/Fail Write Strobe	TTL out, active low pass/fail write strobe ($1 \mu \mathrm{~s} \mathrm{~min}$)

Table 5-5 PWR I/O Connector Pin Assignments

DB-9 Female Connector

Pin	Name	Description
1	+15 V	$+15 \mathrm{~V} @ 400 \mathrm{~mA}$
2	-15 V	$-15 \mathrm{~V} @ 400 \mathrm{~mA}$

DB-9 Female Connector

Pin	Name	Description
3	AnalogOut1	Analog Output Voltage Programmable $\pm 10 \mathrm{~V} @ 100 \mathrm{~mA}$ out Nominally 0 ohms 2.44 mV typical resolution 1 MHz BW
4	AnalogOut2	Analog Output Voltage Programmable ± 10 V @ 100 mA out Nominally 0 ohms 2.44 mV typical resolution 1 MHz BW
5	ACOM	System ground
6	GndSense	Ground sense for Analog In and Analog Out Connected with 51.1 ohms to ACOM
7	Analogln1	Analog input: ± 10 V @ 1.22 mV typical resolution Rin > 1 M-ohm BW $\geq 1 \mathrm{MHz}$ ADC conversion time < 1 us typical
8	Analogln2	Analog input: $\pm 10 \mathrm{~V} @ 1.22 \mathrm{mV}$ typical resolution Rin > 1 M -ohm $B W \geq 1 \mathrm{MHz}$ ADC conversion time < 1 us typical
9	Power Button	Open collector input Active low replicates power button key press.

A70 4-Port and A75 2-Port Low Frequency Extension (LFE) Board

Provides a 900 Hz to 100 MHz LFE signal for measurements. Refer to www.keysight.com/find/pna.

The Low Frequency Extension (LFE) option in the PNA consists of an LFE board A70 4-port or A75 2-port) and a new 4-Port bias combiners (A70-A74). See also "A42-A45 50-dB Source Step Attenuators and A71-74 Bias Tee Combiners (Optional)" on page 5-48.

This board is designed to extend the frequency bandwidth at the low end, down to 900 Hz . And, the high end of the LFE board is 100 MHz . Between 10 MHz and 100 MHz either LFE or non-LFE mode can be used.

The inputs and outputs connectors of the LFE board:

PNA 2 ports:

Inputs:

- LFE output of the Synthesizer \#1 board J102 connected to LFE board J20.
- LFE output of the LO board J102 connected to LFE board J18.
- The main connector of the Motherboard bus to LFE board connector J1.

Outputs:

- LF output J2, 900 Hz - 100 MHz , Port 1, to be connected to the bias combiner Port 1.
- LF output J3, Port 2, to be connected to the bias combiner Port 2.
- 4 IF outputs J11, J12, J13, J14, to be connected to the LFE inputs of the A24 IF MUX board: A, B, R1, R2.

PNA 4 ports:

The inputs are:

- LFE output of the LO board J102 connected to LFE board J18.
- LFE output of the Synthesizer \#1 board J102 connected to LFE board J20.
- LFE output of the Synthesizer \#2 board J102 connected to LFE board J21.
- The main connector of the Motherboard bus to LFE board connector J1.

The outputs are:

- LF output J2, 900 Hz - 100 MHz , Port 1, to be connected to the bias combiner Port 1.
- LF output J3, Port 2, to be connected to the bias combiner Port 2.
- LF output J4, Port 3, to be connected to the bias combiner Port 3.
- LF output J5, Port 4, to be connected to the bias combiner Port 4.
- 5 IF outputs $\mathrm{J} 7, \mathrm{~J} 11, \mathrm{~J} 12, \mathrm{~J} 13, \mathrm{~J} 14$, to be connected to the A24 IF MUX board: $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and R .

Figure 5-9 Block Diagram with Synthesizer Board and LFE Board

Figure 5-10
2-Port with LFE

PNA 2 ports

Figure 5-11 4-Port with LFE

Figure 5-12
2-Port LFE with IF MUX Board

Figure 5-13 4-Port LFE with IF MUX Board

Low Frequency Extension (LFE) - (Bands Table 1 of 2) -(Option 205/220/405/420
Only) ${ }^{1}$ - (S/N Prefix <6021 Only)
See also "Low Frequency Extension (LFE) - (Bands Table (Continued) - 2 of 2) -(Option 205/220/405/420 Only) - (S/N Prefix <6021 Only)" on page 5-36.

Table 5-6 LFE Bands (1 of 2) - (S/N Prefix <6021 Only)
$\left.\begin{array}{lllllll}\hline \text { Band } & \begin{array}{l}\text { Instrument } \\ \text { Frequency }\end{array} & \begin{array}{l}\text { A11 } \\ \text { Source } \\ \text { Synthesizer } \\ \text { (GHz)- (VCO) }\end{array} & & \begin{array}{l}\text { Div / } 4 \\ \text { (U1006) }\end{array} & \begin{array}{l}\text { Div / N } \\ \text { (DDS) }\end{array} & \text { Div / Total }\end{array} \begin{array}{l}\text { A4 / A13 } \\ \text { SRC } \\ \text { Synthesizer } \\ \text { (LFE 0UT) }\end{array}\right]$

1. Some of the LFE options are not available on all models.

Table 5-6 LFE Bands (1 of 2) - (S/N Prefix <6021 Only)
$\left.\begin{array}{lllllll}\hline \text { Band } & \begin{array}{l}\text { Instrument } \\ \text { Frequency }\end{array} & \begin{array}{l}\text { A11 } \\ \text { Source } \\ \text { Synthesizer } \\ \text { (GHz)- (VC0) }\end{array} & & \begin{array}{l}\text { Div / } 4 \\ \text { (U1006) }\end{array} & \begin{array}{l}\text { Div / N } \\ \text { (DDS) }\end{array} & \text { Div / Total }\end{array} \begin{array}{l}\text { A4 / A13 } \\ \text { SRC } \\ \text { Synthesizer } \\ \text { (LFE 0UT) }\end{array}\right]$
\qquad

> Low Frequency Extension (LFE) - (Bands Table (Continued) - 2 of 2) -(Option 205/220/405/420 Only) ${ }^{1}-($ S/N Prefix <6021 Only)
> See also "Low Frequency Extension (LFE) - (Bands Table 1 of 2) -(Option $205 / 220 / 405 / 420$ Only) - (S/N Prefix <6021 Only)" on page 5-34.

Table 5-7 LFE Bands (2 of 2) - (S/N Prefix <6021 Only)

Band	A11 LO Synthesizer (VCO)	IF Mode	DIV / N	Synth RF Path	Synth RF Output
0	-	-	-	-	-
1	$\begin{aligned} & 2.000 \text { to } \\ & 4.000 \end{aligned}$	IF2	4	DDS_CLK	LFE
	$\begin{aligned} & \hline 2.000 \text { to } \\ & 4.000 \end{aligned}$		4	DDS_CLK	LFE
	$\begin{aligned} & 2.000 \text { to } \\ & 4.000 \end{aligned}$		4	DDS_CLK	LFE
	$\begin{aligned} & 2.000 \text { to } \\ & 4.000 \end{aligned}$		4	DDS_CLK	LFE
	$\begin{aligned} & 2.000 \text { to } \\ & 4.000 \end{aligned}$		4	DDS_CLK	LFE
	$\begin{aligned} & \hline 2.000 \text { to } \\ & 4.000 \end{aligned}$		4	DDS_CLK	LFE
	$\begin{aligned} & 2.000 \text { to } \\ & 4.000 \end{aligned}$		4	DDS_CLK	LFE
	$\begin{aligned} & 2.000 \text { to } \\ & 4.000 \end{aligned}$		4	DDS_CLK	LFE
	$\begin{aligned} & 2.000 \text { to } \\ & 4.000 \end{aligned}$		4	DDS_CLK	LFE
	$\begin{aligned} & 2.000 \text { to } \\ & 4.000 \end{aligned}$		4	DDS_CLK	LFE
	$\begin{aligned} & \hline 2.000 \text { to } \\ & 4.000 \end{aligned}$		4	DDS_CLK	LFE
	$\begin{aligned} & \hline 2.000 \text { to } \\ & 4.000 \end{aligned}$		4	DDS_CLK	LFE

1. Some of the LFE options are not available on all models.

Table 5-7 LFE Bands (2 of 2) - (S/N Prefix <6021 Only)

Band	A11 LO Synthesizer (VCO)	IF Mode	DIV / N	Synth RF Path	Synth RF Output
2	$\begin{aligned} & 1.0000 \text { to } \\ & 1.95313 \end{aligned}$	Thru	4	DDS_CLK	LFE
	$\begin{aligned} & 1.95313 \text { to } \\ & 3.90000 \end{aligned}$		4	DDS_CLK	LFE
	$\begin{aligned} & \hline 3.90000 \text { to } \\ & 7.81000 \end{aligned}$		4	DDS_CLK	LFE
	$\begin{aligned} & \hline 7.81000 \text { to } \\ & 9.9000 \end{aligned}$		4	DDS_CLK	LFE
3	$\begin{aligned} & 9.9000 \text { to } \\ & 10.01000 \end{aligned}$	IF2	4	DDS_CLK	LFE
4	$\begin{aligned} & \hline 10.01000 \text { to } \\ & 19.99000 \end{aligned}$	Thru	4	DDS_CLK	LFE
5	$\begin{aligned} & 1.99000 \text { to } \\ & 31.25000 \end{aligned}$	IF1	4	DDS_CLK	LFE
	$\begin{aligned} & 31.5000 \text { to } \\ & 53.0000 \end{aligned}$		4	DDS_CLK	LFE
6	$\begin{aligned} & 53.0000 \text { to } \\ & 62.50000 \end{aligned}$	IF2	4	DDS_CLK	LFE
	$\begin{aligned} & 62.50000 \text { to } \\ & 1000.0000 \end{aligned}$		4	DDS_CLK	LFE

Low Frequency Extension (LFE) - (Bands Table 1 of 2) -(Option 205/220/405/420 Only) ${ }^{1}$ - (S/N Prefix ≥ 6021 Only)

See also "Low Frequency Extension (LFE) - (Bands Table (Continued) - 2 of 2) -(Option 205/220/405/420 Only) - (S/N Prefix ≥ 6021 Only))" on page 5-39.

a. A15 Direct Digital Synthesizer (DDS) assembly column only applies to version 7 synthesizers in instruments with a s / n prefix ≥ 6021 or that have been updated to version 7 synthesizers.

1. Some of the LFE options are not available on all models.

Low Frequency Extension (LFE) - (Bands Table (Continued) - 2 of 2) -(Option 205/220/405/420 Only) ${ }^{1}$ - (S/N Prefix ≥ 6021 Only))
See also "Low Frequency Extension (LFE) - (Bands Table 1 of 2) -(Option 205/220/405/420 Only) - (S/N Prefix ≥ 6021 Only)" on page 5-38.
Table 5-9 LFE Bands (2 of 2) - (S/N Prefix ≥ 6021 Only)

Band	A15 DDS LO Synthesizer (OCXO) ${ }^{\text {a }}$	IF Mode	DIV / N	Synth RF Path	Synth RF Output
0	-	-	-	-	-
1	$\begin{aligned} & 2.000 \text { to } \\ & 4.000 \end{aligned}$	IF2	4	DDS_CLK	LFE
	$\begin{aligned} & \hline 2.000 \text { to } \\ & 4.000 \end{aligned}$		4	DDS_CLK	LFE
	$\begin{aligned} & 2.000 \text { to } \\ & 4.000 \end{aligned}$		4	DDS_CLK	LFE
	$\begin{aligned} & \hline 2.000 \text { to } \\ & 4.000 \end{aligned}$		4	DDS_CLK	LFE
	$\begin{aligned} & 2.000 \text { to } \\ & 4.000 \end{aligned}$		4	DDS_CLK	LFE
	$\begin{aligned} & 2.000 \text { to } \\ & 4.000 \end{aligned}$		4	DDS_CLK	LFE
	$\begin{aligned} & 2.000 \text { to } \\ & 4.000 \end{aligned}$		4	DDS_CLK	LFE
	$\begin{aligned} & \hline 2.000 \text { to } \\ & 4.000 \end{aligned}$		4	DDS_CLK	LFE
	$\begin{aligned} & 2.000 \text { to } \\ & 4.000 \end{aligned}$		4	DDS_CLK	LFE
	$\begin{aligned} & 2.000 \text { to } \\ & 4.000 \end{aligned}$		4	DDS_CLK	LFE
	$\begin{aligned} & \hline 2.000 \text { to } \\ & 4.000 \end{aligned}$		4	DDS_CLK	LFE
	$\begin{aligned} & \hline 2.000 \text { to } \\ & 4.000 \end{aligned}$		4	DDS_CLK	LFE

1. Some of the LFE options are not available on all models.

Table 5-9 LFE Bands (2 of 2) - (S/N Prefix ≥ 6021 Only)

Band	A15 DDS L0 Synthesizer (OCXO) ${ }^{\text {a }}$	IF Mode	DIV / N	Synth RF Path	Synth RF Output
2	$\begin{aligned} & 1.0000 \text { to } \\ & 1.95313 \end{aligned}$	Thru	4	DDS_CLK	LFE
	$\begin{aligned} & 1.95313 \text { to } \\ & 3.90000 \end{aligned}$		4	DDS_CLK	LFE
	$\begin{aligned} & 3.90000 \text { to } \\ & 7.81000 \end{aligned}$		4	DDS_CLK	LFE
	$\begin{aligned} & 7.81000 \text { to } \\ & 9.9000 \end{aligned}$		4	DDS_CLK	LFE
3	$\begin{aligned} & 9.9000 \text { to } \\ & 10.01000 \end{aligned}$	IF2	4	DDS_CLK	LFE
4	$\begin{aligned} & 10.01000 \text { to } \\ & 19.99000 \end{aligned}$	Thru	4	DDS_CLK	LFE
5	$\begin{aligned} & 1.99000 \text { to } \\ & 31.25000 \end{aligned}$	IF1	4	DDS_CLK	LFE
	$\begin{aligned} & 31.5000 \text { to } \\ & 53.0000 \end{aligned}$		4	DDS_CLK	LFE
6	$\begin{aligned} & 53.0000 \text { to } \\ & 62.50000 \end{aligned}$	IF2	4	DDS_CLK	LFE
	$\begin{aligned} & \hline 62.50000 \text { to } \\ & 1000.0000 \end{aligned}$		4	DDS_CLK	LFE

Understanding LFE vs. Legacy PNA Environment

To understand several parts of the LFE board behavior, we must consider the non-LFE behavior of the PNA (i.e., what is already in place on different boards that did not change).

On the synthesizer board, there is a LFE output coming almost directly from the direct digital synthesis (DDS). There is a 250 MHz Low Pass Filter. The low frequency extension uses this output to 100 MHz .
A C-R High Pass Filter limits the lowest frequency.
With LFE mode, we use dedicated mixers, which are the LFE board. These mixers downconvert the RF signals in LFE mode and create dedicated IF signals. These IF signals are then sent to the IF Mux board.

On the IF MUX board, the configuration between the Main IF signals and LFE IF signals are very different.

First, the connectors are different. For the main IF signals, on a 4-Port PNA, there are 8 IF input connectors. The switches to select the R1.4 signals are on the IF MUX board. For the LFE IF signals, there are only 5 IF input connectors. So, the switches to select the R signal are on the LFE board.

Second, the amplifier/attenuator/switch chains are different for the Main and LFE IF signals.

The A14 motherboard bus supplies, among other things, the power supplies to the LFE board. Many boards are already connected to these power supplies in the PNA. So, different power supplies are close or very close to their limit in terms of available current/power. This fact has an influence on which power line can used to generate the voltages needed.

The A70 LFE board (4-port) and A75 (2-port) works with the A70-A74 bias combiners. The design of this combiner has an impact on the design of the board. Performances desired at the PNA test port are impacted significantly by the bias combiner.

LFE frequency band
The LFE extension is changing the way we measure with the PNA at the low end.

Version 6 synthesizers and below: Below 100MHz, the LFE option is enabled in the firmware. Depending on the frequency we measure, the LFE board receiver will be in 'mixer mode' or in 'direct conversion mode'. See also, "Version 7 synthesizers" on page 5-41.

Version 7 synthesizers: Below 100MHz, the LFE option is enabled in the firmware. With the direct digital synthesizer (DDS) assembly, a new LFE band break is introduced at 4 MHz . This 4 MHz band break, corresponds to a switch that directs the DDS output either through a balun (above 4 MHz) or bypasses the balun (below 4 MHz). See also, "Version 6 synthesizers and below" on page 5-41.

The Figure 5-14 on page 5-42 shows an example of current frequency bands in a PNA. In an N5227B PNA, the IF frequency will change around 53 MHz . Figure 5-14 on page 5-42 shows the new structure of the frequency bands with the LFE option. The two receiver modes, mixer and direct conversion, are used in different frequency bands.

Figure 5-14
Frequency Bands Without LFE - Version 6 and Below Synthesizers (<6021)

Fmin		
10 MHz		frequency
IF \#1	Receiver in "mixer"	
IF\#2		

Figure 5-15 Frequency Bands with LFE - Version 6 and Below Synthesizers (<6021)

Signal Separation Group Operation

The signal separation group divides the source incident signals into a reference path and a test path. Refer to Figure 5-16 on page 5-46 and Figure 5-17 on page 5-47.

- The reference signals are transmitted to the receiver group as the R1, R2, R3, and R4 inputs for 4-port models or the R1 and R2 inputs for 2-port models.
- The test signals are transmitted through-and reflected from-the device under test (DUT) and then transmitted to the receiver group as the A, B, C, and D inputs for 4 -port models or the A and B inputs for 2-port models.
- Control lines to this group are routed from the A23 test set motherboard.

In this section, the following assemblies are described:

- A29-A32 Receiver Couplers
- A33-A36 Test Port Couplers
- Front Panel Jumpers-Configurable Test Set
- A38-A41 50-dB Source Step Attenuators and A471-A45 Bias Tees (Optional)
- A42-A45 50-dB Source Step Attenuators and A71-74 Bias Tee Combiners (Optional)

Configurable Test Set

The configurable test set is included in the standard analyzer and allows you to measure devices with higher power and higher dynamic range limits than an analyzer without the configurable test set. On 4-port models, twelve signal paths, routed through front panel SMA jumpers, comprise the configurable test set. On 2-port models, there are six signal paths routed through front panels jumpers in the configurable test set.

As shown in Figure 5-16 on page 5-46 and Figure 5-17 on page 5-47, these jumpers are installed between the components listed below. Ports 3 and 4 apply only to 4-port models.

- the A29 port 1 receiver coupler and the A27 mixer brick receiver R1
- the A30 port 3 receiver coupler and the A28 mixer brick receiver R3
- the A31 port 4 receiver coupler and the A28 mixer brick receiver R4
- the A32 port 2 receiver coupler and the A27 mixer brick receiver R2
- the A29 port 1 receiver coupler and the A33 test port 1 coupler
- the A30 port 3 receiver coupler and the A34 test port 3 coupler
- the A31 port 4 receiver coupler and the A35 test port 4 coupler

Theory of Operation
Signal Separation Group Operation

- the A32 port 2 receiver coupler and the A36 test port 2 coupler
- the A33 test port 1 coupler and the A27 mixer brick receiver A
- the A34 test port 3 coupler and the A28 mixer brick receiver C
- the A35 test port 4 coupler and the A28 mixer brick receiver D
- the A36 test port 2 coupler and the A27 mixer brick receiver B

Normal Measurement Configuration

The Option 419 analyzer is equipped with a configurable test set and source attenuators. With this configuration and inclusion of an external amplifier and accessories, you can calibrate the analyzer and test devices at power levels up to +30 dBm . You can make measurements in the forward, reverse, or both directions and still achieve these high power levels.

High Dynamic Range Measurement Configuration

With a few jumper changes, you can configure the measurement configuration for higher dynamic range measurements. By swapping the front panel jumpers for one port, signal flow through the corresponding coupler is reversed, increasing the test signal sensitivity by 15 dB .
In the forward direction, for example, the signal flow through the test port 2 coupler (A36) is reversed by arranging the front panel jumpers such that RCVR B IN connects to CPLR THRU and CPLR ARM connects to SOURCE OUT.

While increasing forward (S21) dynamic range, the reverse (S12) dynamic range is degraded by the same amount.

A29-A32 Receiver Couplers

The source incident signals from the A5 and A10 26.5 GHz sources are sent to the A29-A32 receiver couplers where a portion of each signal is coupled off to provide the R1, R2, R3, and R4 receiver reference signals for 4-port models or R1 and R2 reference signals for 2-port models.

These reference signals are routed through front-panel jumpers to the A27 and A28 mixer bricks. Refer to "A27 and A28 Mixer Bricks" on page 5-49 for additional information.

The test signals each go through the through-line arm of a receiver coupler, then through a front panel jumper to the A33-A36 test port couplers.

A33-A36 Test Port Couplers

The test signals go into the through-line arm of the couplers, and from there to the test ports and the DUT.

The coupled arm of the couplers carries the signal reflected from or transmitted through the DUT, to the receiver for measurement (through front panel jumpers), as inputs A, B, C, and D for 4-port models or inputs A and B for

Theory of Operation
Signal Separation Group Operation

2-port models. The coupling coefficient of the directional couplers is nominally 15 dB for all frequencies above 500 MHz . The coupling coefficient increases for frequencies below 500 MHz .

Theory of Operation

Signal Separation Group Operation

Figure 5-16 4-Port Signal Separation Group

Theory of Operation

Signal Separation Group Operation

Figure 5-17 2-Port Signal Separation Group

A38-A41 50-dB Source Step Attenuators and A471-A45 Bias Tees (Optional)

On 4-port models with Option 419, a step attenuator and a bias tee are placed in the signal path of each test port between the A29-A32 receiver couplers and the A33-A36 test port couplers.

On 2-port models with Option 219, a step attenuator and a bias tee are placed in the signal path of each test port between the A29-A32 receiver couplers and the A33 and A36 test port couplers.

The 50-dB step attenuators provide coarse power control for the test signals. They are electro-mechanical step attenuators that provide 0 to 50 dB of attenuation in $10-\mathrm{dB}$ steps. They adjust the power level to the DUT without changing the level of the incident power in the reference path. These attenuators are controlled by the A21 CPU board.

The bias tees are to provide DC biasing for the DUT.

A42-A45 50-dB Source Step Attenuators and A71-74 Bias Tee Combiners (Optional)

On 4-port models with Option 405, 420, or 425 , a step attenuator and a bias tee are placed in the signal path of each test port between the A33-A36 reference (receiver) couplers and the A37-A40 test port couplers.

On 2-port models with Option 205 and 220, a step attenuator and a bias tee are placed in the signal path of each test port between the A33 and A36 reference (receiver) couplers and the A37 and A40 test port couplers.

The 50-dB step attenuators provide coarse power control for the test signals. They are electro-mechanical step attenuators that provide 0 to 50 dB of attenuation in $10-\mathrm{dB}$ steps. They adjust the power level to the DUT without changing the level of the incident power in the reference path. These attenuators are controlled by the A21 CPU board.

The bias tee combiners are to provide DC biasing for the DUT via the N5292A PNA Millimeter Test Set and millimeter heads. Refer to www.keysight.com/find/pna.

See also, "A70 4-Port and A75 2-Port Low Frequency Extension (LFE) Board" on page 5-29.

Receiver Group Operation

The receiver group measures and processes the input signals into digital information for processing and eventual display. Figure 5-18 on page 5-52 and Figure 5-19 on page 5-53 are simplified block diagrams of the receiver functional group for 2-port and 4-port analyzers respectively.

In this section the following assemblies are described:

- A46-A49 50-dB Receiver Step Attenuators (Optional)
- A37 Reference Mixer Switch
- A27 and A28 Mixer Bricks
- A24 IF Multiplexer Board
- A16 SPAM Board (Analog Description)

A46-A49 50-dB Receiver Step Attenuators (Optional)

A step attenuator is placed in the signal path of each of the A, B, C, and D receiver inputs for 4 -port models and A and B receiver inputs for 2-port models.

These 50-dB step attenuators provide power control for the input signals to the mixer bricks. They are electro-mechanical step attenuators that provide 0 to 50 dB of attenuation in 10-dB steps. These attenuators are controlled by the A21 CPU board.

A37 Reference Mixer Switch

The A37 reference mixer switch is placed in the R1 reference signal path allowing this reference signal to be switched in and out of the signal path when an external mixer is being used in test configuration.

An external mixer is placed in measurement configuration between REFERENCE 1 SOURCE OUT and RCVR R1 IN where there would normally be a front panel jumper. The A37 reference mixer switch can then be used to switch this external mixer in and out of the measurement configuration without having to manually connect/disconnect the external mixer and remove/replace the front panel jumper.

A27 and A28 Mixer Bricks

Each of these assemblies contain four identical amplifiers, mixers, and filters for a total of eight of each. For 2-port models, only the A27 mixer brick is present; the A28 mixer brick is omitted since only four receivers are needed.

For frequencies at or above 53 MHz , the test signals (receivers A, B, C, and D for 4-port models and A and B for 2-port models) and the reference signals (receivers R1, R2, R3, and R4 for 4-port models and R1 and R2 for 2-port
models) are mixed with a synthesized LO signal that is 7.438 MHz higher than the source incident signal to produce a 7.438 MHz IF signal. This synthesized LO comes from the A25 HMA26.5 (via the A26 splitter ${ }^{1}$ for 4-port models).

At frequencies below 53 MHz , the IF is set to 0.826 MHz .
The analog IF signal is sent to the A24 IF multiplexer board where it is amplified and then sent to the A16 SPAM board.

The A27 mixer brick sends the EXT TSET DRIVE LO OUT signal to a rear-panel connector for use with an external test set. This same output connector on the A28 mixer brick is terminated.

A24 IF Multiplexer Board

This assembly provides pulse modulation capability and routes the IF signal out through the rear panel connectors for external use and routes external signals in through rear panel connectors to be included in the signal processing.

In this assembly, on 4-port models, a single reference signal is selected from R1, R2, R3, and R4 to be sent on to the A16 SPAM. On 2-port models the R1 and R2 reference signals are sent to the A16 SPAM.

The analog IF signals (A, B, C, D, and R for 4-port models and A, B, R1, and R2 for 2-port models) are sent to the A16 SPAM board where they are converted to digital information.

Rear Panel Interconnects

The A24 IF multiplexer board includes the following rear panel interconnects.

PULSE I/O	A DB-15 female connector. Pin assignments are listed in Table 5-10 on page 5-50.

Table 5-10
PULSE I/O Connector Pin Assignments

DB-15 Female Connector

Pin	Name	Description
1	IFGateAin	IF pulse gate input A (TTL)
2	IFGateBin	IF pulse gate input B (TTL)
3	IFGateCin	IF pulse gate input C (TTL)
4	IFGateDin	IF pulse gate input D (TTL)

1. A26 splitter only applies to PNAs with serial number prefix <6021.

Table 5-10 PULSE I/O Connector Pin Assignments

DB-15 Female Connector

Pin	Name	Description
5	IFGateRin	IF pulse gate input R (TTL)
6	DCOM	Digital ground
7	PulseSyncIn	Pulse generator synchronization trigger input (TTL)
8	RFPulseModln	RF source pulse modulation drive input (TTL)
9	DCOM	Digital ground
10	Pulse10ut	Programmable pulse train output \#1 (TTL)
11	Pulse2Out	Programmable pulse train output \#2 (TTL)
12	Pulse30ut	Programmable pulse train output \#3 (TTL)
13	Pulse4Out	Programmable pulse train output \#4 (TTL)
14	NC	No connect
15	DCOM	Digital ground

A16 SPAM Board (Analog Description)

The A16 SPAM board contains digital and analog circuitry. For digital descriptions, refer to "A16 SPAM Board (Digital Description)" on page 5-57.

In this assembly, the IF signals (A, B, C, D, and R for 4-port models and A, B, R1, and R2 for 2-port models) from the A24 IF multiplexer board go through a gain stage where small signals are amplified to ensure that they can be detected by the analog-to-digital converter (ADC).

All input signals are sampled simultaneously by the ADCs, where they are converted to digital form. The ADC conversions are triggered by timing signals from the digital signal processor (DSP) in response to commands from the central processing unit (CPU). The digitized data is processed into magnitude and phase data by the DSP and sent to the CPU random access memory (RAM) by way of the peripheral component interconnect (PCI) bus.

The processed and formatted data is finally routed to the display, and to the general-purpose interface bus (GPIB) for remote operation. Refer to "Digital Processing and Digital Control Group Operation" on page 5-54 for more information on signal processing.

Figure 5-18

Figure 5-19 2-Port Receiver Group

Digital Processing and Digital Control Group Operation

The digital processor and control group provides digital control for the entire analyzer. It provides:

- front panel operation,
- output to the display,
- math processing functions, and
- communications between the analyzer and an external controller or peripherals.

A block diagram of the digital control functional group is shown in Figure 5-20 on page 5-55.

The digital control functional group consists of two subgroups:

- Front Panel Subgroup
- A1 Front Panel Interface Board
- A2 USB Board
- A3 Display Assembly
- Keypad Assembly
- A18 System Motherboard
- Data Acquisition and Processing Subgroup
- A16 SPAM Board (Digital Description)
- A21 CPU Board
- A55 Solid State Drive (SSD)

Figure 5-20 Digital Processing and Digital Control Group

Front Panel Subgroup

The front panel subgroup contains the following assemblies:

- A1 Front Panel Interface Board
- A2 USB Board
- A3 Display Assembly
- Keypad Assembly

A1 Front Panel Interface Board

The A1 front panel interface board detects and decodes user inputs from the keypad assembly and front panel knob, and transmits them to the A21 CPU board by way of the A18 system motherboard. It also decodes video data from the video processor on the A21 CPU board and supplies this to the A3 display assembly. Power from the power bus on the A18 system motherboard is buffered and routed to the keypad assembly and the A3 display assembly. All data and power signals are routed through a single cable connector to the A18 system motherboard.

The A1 front panel interface board also includes a speaker that emits the audio signals received from the A21 CPU board.

A2 USB Board

This board provides four universal serial bus (USB) jacks that are industry standard 4-pin connectors allowing multiple USB devices to be connected to the analyzer's front panel.

A3 Display Assembly

The A3 display assembly contains a 10-inch LCD with associated drive circuitry and backlight inverter. Two cables between the A3 display assembly and the A1 front panel interface board provide all necessary power and data for normal operation. The two cables are:
7. A cable to the inverter that supplies buffered power.
8. A cable to the display circuitry that supplies decoded data from the video processor on the A21 CPU board and the necessary drive circuit power. The video data received from the A21 CPU board includes the following:

- digital TTL horizontal sync	. digital TTL red video	- blanking
- digital TTL vertical sync	. digital TTL green video	. data clock

Keypad Assembly

The keypad assembly provides user interface to the analyzer. The front panel rotary pulse generator (RPG) knob is not electrically connected to the keypad, but rather provides user inputs directly to the front panel processor.

Data Acquisition and Processing Subgroup

The data acquisition and processing subgroup contain the following assemblies. See Figure 5-20 on page 5-55.

- A16 SPAM Board (Digital Description)
- A21 CPU Board (including rear-panel interconnects)
- A55 Solid State Drive (SSD)

A16 SPAM Board (Digital Description)

The A16 SPAM board contains digital and analog circuitry. For analog descriptions, refer to "A16 SPAM Board (Analog Description)" on page 5-51.
The digital signal processor (DSP) receives digitized data from the digital circuitry of the A16 SPAM board. It computes discrete Fourier transforms to extract the complex phase and magnitude data from the analog IF signal. The resulting raw data is written into the main random access memory (RAM). The data taking sequence is triggered either externally from the rear panel or by firmware on the A21 CPU board.

A21 CPU Board

The A21 CPU board contains the circuitry to control the operation of the analyzer. Some of the components include the central processing unit (CPU), memory (EEPROM, ROM, RAM), bus lines to other board assemblies, and connections to the rear panel. Some of the main components are described next:

- CPU
- Main RAM
- Rear Panel Interconnects

CPU

The central processing unit (CPU) is a microprocessor that maintains digital control over the entire instrument through the instrument bus. The CPU receives external control information from the keypad, any USB device, LAN or GPIB, and performs processing and formatting operations on the raw data in the main RAM. It controls the DSP, the video processor, and the interconnect port interfaces. In addition, when the analyzer is in the system controller mode, the CPU controls peripheral devices through the peripheral port interfaces.

Front panel settings are stored in SRAM, with a battery providing at least five years of backup storage when external power is off.

Main RAM

The main random access memory (RAM) is shared memory for the CPU and the DSP. It stores the raw data received from the DSP while additional calculations are performed on it by the CPU. The CPU reads the resulting formatted data from the main RAM, converts it to a user-definable display format, and writes this to the video processor for display.

Rear Panel Interconnects

The rear panel includes the following interfaces:

USB x4	Four universal serial bus (USB) jacks (industry standard 4-pin connectors).
GPIB (0) Controller	A 24-pin, female, type D-24 connector that meets IEEE-488 standards.
GPIB (1) Talker/Listener	A 24-pin, female, type D-24 connector that meets IEEE-488 standards.
LAN	A standard 8-pin, 10/100BaseT, Ethernet connection. It auto selects between the two data rates.
A 15-pin, female, D-sub connector that provides a video output of the analyzer display that can be viewed on an external VGA monitor.	

A55 Solid State Drive (SSD)

The SSD is a Serial Advanced Technology Attachment (SATA) data storage device which is connected directly to, and physically mounted within the enclosure of, the A21 CPU board. The full operating system and firmware for the network analyzer is stored on the A55 SSD.

Power Supply Group Operation

The A20 power supply assembly is a switching power supply operating at 103 kHz switching frequency. The input power ranges for the power supply are 90 to 132 Vac or 195 to 250 Vac. The power supply automatically senses the input voltage and switches between these two ranges.

WARNING

Supply voltages which oscillate between the two normal input ranges of the autoranging line voltage input will damage the power supply. In rare cases, this damage has become a user safety concern. If unstable power levels are expected, the analyzer input power must be buffered by a line conditioner.

The dc output voltages of the A20 power supply assembly are:

- +15 V analog
- +9 V analog
- +3.3 V analog
- +5.2 V analog
-+15 V standby (always on)
- +32 V analog
- -15 V analog
- -5.2 V analog
- -7V analog
- +5.1 V standby
$-\quad+12 \mathrm{~V}$ digital
- +3.35 V digital
- +5.1 V digital

The +15 V standby supply remains on continuously whenever the power supply is plugged in. This supply is used to provide power to front panel LEDs and CPU components when the analyzer is turned off.

Theory of Operation
Power Supply Group Operation

Keysight Microwave Network Analyzers

2-Port and 4-Port PNA Series

Service Guide

6 Replaceable Parts

Information in This Chapter

This chapter:

- identifies the replaceable parts for the Keysight PNA series microwave network analyzer.
- includes several tables and illustrations to assist you in identifying the correct part for your analyzer.
- contains ordering information for new assemblies and rebuilt-exchange assemblies.

Chapter Six at-a-Glance

Section Title	Summary of Content	Start Page
Ordering Information	How to order a replaceable part from Keysight Technologies.	page 6-2
Assembly Replacement Sequence	The correct sequence for replacing a defective assembly.	page 6-3
Rebuilt-Exchange Assemblies	The definition of a rebuilt-exchange assembly. The procedure for replacing and returning a defective assembly to Keysight Technologies.	page 6-4
Replaceable Parts Listings	Tables that list the assemblies by reference designator with their associated part number and description. Illustrations that indicate the location of each of the replaceable parts in your analyzer: - Assemblies (front-panel, top, bottom, and rear-panel) - Cables (top and bottom) - Hardware (top, bottom, internal, and external.) - Miscellaneous replaceable parts	page 6-6

Ordering Information

To order a part listed in the replaceable parts lists:

- include the part number
- indicate the quantity required
- Contact Keysight Technologies for instructions on where to send the order. Refer to "Contacting Keysight" on page 2-7.
To order a part that is not listed in the replaceable parts lists:
- include the instrument model number and complete instrument serial number
- include the description and function of the part
- indicate the quantity required
- Contact Keysight Technologies for instructions on where to send the order. Refer to "Contacting Keysight" on page 2-7.

Assembly Replacement Sequence

The following steps describe how to replace an assembly in the network analyzer.

Step 1. Identify the faulty group. Begin with Chapter 4, "Troubleshooting." Follow up with the appropriate troubleshooting chapter that identifies the faulty assembly.

Step 2. Order a replacement assembly. Refer to this chapter.
Step 3. Replace the faulty assembly and determine what adjustments are necessary. Refer to Chapter 7, "Repair and Replacement Procedures."

Step 4. Perform the necessary adjustments. Refer to Chapter 3, "Tests and Adjustments."

Step 5. Perform the necessary performance tests. Refer to Chapter 3, "Tests and Adjustments."

Step 6. Keysight personnel: see Figure 1-1 on page 1-6 to review where the calibration stickers should be placed on the PNA.

Rebuilt-Exchange Assemblies

Under the rebuilt-exchange assembly program:

- Certain factory-repaired and tested assemblies are available on a trade-in basis.
- Exchange assemblies are offered for lower cost than a new assembly, but meet all factory specifications required of a new assembly.
- The defective assembly must be returned for credit under the terms of the rebuilt-exchange assembly program.
- Spare assembly stock desired should be ordered using the new assembly part number.

Figure 6-1 Module Exchange Procedure

The module exchange program described here is a fast, efficient, economical method of keeping your instrument in service.

Replaceable Parts Listings

This section contains the replacement part numbers and their descriptions for your Keysight microwave PNA. You can find the locations of replaceable parts in this section:

- listed by reference designator in Table 6-1, or
- listed by the type of part in Table 6-2.

Table 6-1 Part Number Listing by Reference Designator

Reference Designator	Description	Location
A1	Front panel interface board	"Front Panel N5227B Assembly,
A2	USB board	Back Side, All Options" on page 6-14.
A3	Display assembly	

Table 6-1 Part Number Listing by Reference Designator (Continued)

Reference Designator	Description	Location
A4	13.5 GHz source 1 synthesizer board (Applies to PNA models with serial numbers <6021 only)	"Top Assemblies and Cables, All Options:" on page 6-10.
A5	26.5 GHz source board 1	
A6	Not used	
A7	40 GHz doubler 1 board	
A8	40 GHz doubler 2 board	
A9	Not used	
A10	26.5 GHz source board 2	
A11	Not used	
A12	40 GHz doubler 3 board	
A13	40 GHz doubler 4 board	
A14	Frequency reference board	
A15	13.5 GHz (LO) synthesizer board (Applies to PNA models with serial numbers <6021 only)	
A15 (DDS)	Direct digital synthesizer (DDS) assembly (Applies to PNA models with serial numbers ≥ 6021 only or with version 7 synthesizer assembly upgrades only)	
A16	Signal processing ADC module (SPAM) board	
A17	13.5 GHz source 2 synthesizer board (Applies to PNA models with serial numbers <6021 only)	
A18	System motherboard	
A19	Midplane board	
A20	Power supply	
A21	CPU board	
A22	GPIB board	
A23	Testset motherboard	Your option set determines which
A24	IF multiplexer board	assemblies are in your PNA. Refer to "Bottom Assemblies and Cables by
A25 ${ }^{\text {a }}$	LO Multiplier/amplifier 26.5 (HMA26.5)	Option Set:" in Table 6-2 on page 6-10.
A26 ${ }^{\text {a }}$	Splitter	
A27	Mixer Brick 1	
A28	Mixer Brick 2	

Table 6-1 Part Number Listing by Reference Designator (Continued)

Reference Designator	Description	Location
A29	Port 1 receiver coupler	Your option set determines which assemblies are in your PNA. Refer to "Bottom Assemblies and Cables by Option Set:" in Table 6-2 on page 6-10.
A30	Port 3 receiver coupler	
A31	Port 4 receiver coupler	
A32	Port 2 receiver coupler	
A33	Port 1 test port coupler	
A34	Port 3 test port coupler	
A35	Port 4 test port coupler	
A36	Port 2 test port coupler	
A37	reference switch	
A38	Port 1 source step attenuator	
A39	Port 4 source step attenuator	
A40	Port 2 source step attenuator	
A41	Port 4 source step attenuator	
A42	Port 1 bias tee	
A43	Port 3 bias tee	
A44	Port 4 bias tee	
A45	Port 2 bias tee	
A46	Port 1 receiver step attenuator	
A47	Port 3 receiver step attenuator	
A48	Port 4 receiver step attenuator	
A49	Port 2 receiver step attenuator	
A55	solid state drive	"Top Assemblies and Cables, All Options:" on page 6-10.

Table 6-1 Part Number Listing by Reference Designator (Continued)

Reference Designator	Description	Location
A56	70 GHz doubler 1	Your option set determines which assemblies are in your PNA. Refer to "Bottom Assemblies and Cables by Option Set:" in Table 6-2 on page 6-10.
A57	70 GHz doubler 3	
A58	70 GHz doubler 4	
A59	70 GHz doubler 2	
A64	Test port $16-\mathrm{dB}$ attenuator	
A65	Test port 3 6-dB attenuator	
A66	Test port 4 6-dB attenuator	
A67	Test port 26 -dB attenuator	
A68	REF 1 RCVR R1 IN 3-dB attenuator	
A69	REF 4 RCVR R4 IN 3-dB attenuator	
A70	LFE board - 4-Port	
A75	LFE board - 2-Port	
A71	Port 1 bias combiner	
A72	Port 3 bias combiner	
A73	Port 4 bias combiner	
A74	Port 2 bias combiner	

a. The A26 splitter (5067-4086) and N5247-20111, N5245-20022, N5245-20023, and N5247-20110 cables are only used with a legacy HMA26.5 p/n: 5087-7765. The N5240-20125 and N5247-20185 cables are used only with the new N5240-60101 HMA-26.5. Discard any cables that are not used. If you are unclear which HMA26.5 assembly your PNA has installed, refer to Chapter 7 Repairs and Figure 7-16 on page 7-37 and for details on A26 splitter and cabling, refer to your option-model in Chapter 6 "2-Port Configurations, Serial Number Prefix <6021" on page 6-30 and "4-Port Configuration, Serial Number Prefix <6021" on page 6-115.

Table 6-2 Part Number Listing by Type of Part

Assemblies and Cables

- "Front Panel Assembly, Front Side, All Options" on page 6-11
- "Front Panel N5227B Assembly, Back Side, All Options" on page 6-14
- Top Assemblies and Cables, All Options:
- "Top Assemblies and Cables, All Options, Serial Number Prefixes <6021" on page 6-17
- "Top Assemblies and Cables, All Options, Serial Number ≥ 6021 " on page 6-23
- Bottom Assemblies and Cables by Option Set:
- "2-Port Configurations, Serial Number Prefix <6021" on page 6-30
- "2-Port Configurations, Serial Number Prefix ≥ 6021 " on page 6-72
- "4-Port Configuration, Serial Number Prefix <6021" on page 6-115
- "4-Port Configurations, Serial Number Prefix ≥ 6021 " on page 6-175
- "Rear-panel Assembly, All Options" on page 6-232

Hardware

- "Fan Assemblies, All Options" on page 6-235
- "Top Hardware and Miscellaneous Parts, All Options" on page 6-237
- "Bottom Hardware and Miscellaneous Parts" on page 6-239
- "Internal Hardware and Miscellaneous Parts, All Options" on page 6-242
- "External Hardware and Miscellaneous Parts, All Options" on page 6-244

Miscellaneous

- Service Tools on page 6-245
- Documentation on page 6-246
- GPIB Cables/GPIB Adapter on page 6-246
- Fuses on page 6-246
- Battery on page 6-246
- Protective Guards for Front Panel Jumpers on page 6-246
- USB Accessories on page 6-247
- ESD Supplies on page 6-247
- Rack Mount Kits and Handle Kits on page 6-247

Front Panel Assembly, Front Side, All Options

NOTE

The N5240-60071 front panel assembly contain the items shown in the following table.

Reference Designator	Part Number	Qty	Description
(1)	N5240-20089	1	Front frame, machined, 1-piece, 2-port (frame only, not the assembly) (Requires: Lower front panel overlay. See below.)
	8160-0660	1.2 m	RFI gasket material, 1.2 meters in length (Must be ordered separately from front frame.)
(1)	N5240-20089	1	Front frame, machined, 1-piece, 2-port (frame only, not the assembly) (Requires: Lower front panel overlay. See below.)
(2)	0515-2044	12	Machine screw, M4.0 12 flat head (To attach front frame to chassis.)
(3)	5041-7908	2	Trim strip, filler (For analyzers with handles.)
(4)	N5240-80040	1	Keypad overlay
(5)	N5227-80023	1	Lower front panel overlay, 2-port (Option 200)
	N5227-80028	1	Lower front panel overlay, 2-port (Option 201 and Option 219)
	N5227-80030		Lower front panel overlay, 2-port (Option 205 and Option 220)
	N5227-80025		Lower front panel overlay, 2-port (Option 210)
	N5227-80024		Lower front panel overlay, 4-port (Option 400)
	N5227-80005		Lower front panel overlay, 4-port (Option 201 and Option 219)
	N5227-80026		Lower front panel overlay, 4-port (Option 410)
	N5227-80027		Lower front panel overlay, 4-port (Option 401 and Option 419)
	N5242-80031		Lower front panel overlay, 4-port (Option 405 and 420)
(6)	W1312-40180	1	Front (RPG) knob
(7)	N5227-80016	1	Nameplate
	N5227-80029		Nameplate, LFE
(8)	N5240-00010	1	Lower Dress Panel, 2-Port (ALL PNA models). Goes on, before lower front panel overlay (5). Attach with 0515-1946 subpanel screws.
	N5240-00009		Lower Dress Panel, 4-Port (ALL PNA models). Goes on, before lower front panel overlay (5). Attach with 0515-1946 subpanel screws.
(9)	N5240-40002	1	Trim, bottom, goes on the outside, underneath the Front Frame frame (1). (All PNA models)
(10)	0515-1946	$12^{\text {a }}$	Machine screw, M3 $\times 6$ mm flat head (To attach lower dress panel overlay frame to chassis.)

Reference Designator	Part Number	Qty	Description
Not Shown	N5242-00048	2	Guard, jumper cables, side-2-Port \& 4-Port
Not Shown	N5242-00049	1	Guard, jumper cables, center-4-Port
Not shown	$5023-3074$	2	Front handle

a. Some options require 14 of the $0515-1946$ screws to secure dress panel overlay subpanel.

Figure 6-2 Front Panel Assembly, Front Side, All Options

Front Panel N5227B Assembly, Back Side, All Options

Reference Designator	Part Number	Qty	Description
A1	N5240-63081	1	Front panel interface board
A2	N5240-63082	1	USB board
not shown	N5240-60090	1	Ribbon cable, 60-wire, A14 system motherboard J9 to A1 front panel interface board J1
(1)	N5240-40004	1	Keypad assembly
(2)	0515-0430	34	Machine screw, M3.0 6 mm pan head (6 to attach LCD Mounting plate to LCD brackets, 3 to attach LCD cable to mounting plate, 7 to attach keypad assembly onto front frame, 5 to attach USB board to front panel interface board, 2 to attach power switch board to slot in front frame and 11 to attach LCD assembly to front frame.)
(3)	0535-1157	1	Nut-Hex M9 x 2 mm (to attach RPG board)
(4)	2190-0016	1	Washer, RPG secure (to attach RPG board)
(5)	N5240-63083	1	RPG board
(6)	2090-1140	1	Touch display LCD, 12.1 inch
(7)	$\begin{aligned} & \text { N5242-00045 } \\ & \text { (LCD) } \end{aligned}$	1	LCD Mounting plate
(8)	W1312-40016	1	Foam mount, speaker (to attach speaker assembly)
(9)	N5240-60072	1	Speaker assembly (Do NOT touch top of speaker's clear diaphragm! Attach cable to interface board J11.)
(10)	2090-1088	1	Touch screen controller board
(11)	0515-1934	6	Machine screw, M2.5 6 pan head (4 to attach controller board to LCD mounting plate and 2 attach LED driver board to LCD mounting plate.)
(12)	0950-5452 (LED)	1	LED Driver board (Backlight converter board)
(13)	0380-5485	2	Standoff-Hex nuts Male-Female M3 $\times 4.5 \mathrm{~mm}$ (To attach to keypad PCA)
(14)	1400-1334	2	Cable clamp (with adhesive backing)
(15)	N5240-63084	1	Power switch board (PCA for Power button keypad)
(16)	N5242-40014	1	Power button keypad
A3			Display assembly
(17)	N9912-20043	2	Tape (To secure cable E5071-61653 to 2090-1140 LCD's connector and to secure cable E5071-61653 to J8 on the interface board)

Reference Designator	Part Number	Qty	Description
(18)	0515-2151	4	Machine screw, M2.0 $\times 4$ mm pan head (4-2 for each bracket- to attach LCD side bracket(s) to 2090-1140 LCD)
(11)	N5242-00046 (LCD)	1	LCD display side bracket (In Figure 6-5 on page 6-16, only one bracket is shown.)
(21)	$8121-2173$	1	LCD Cable assembly 30 AWG 300V 12-pin plug to 8-pin plug
(41)	E5071-61653	1	LCD display cable
(22)	N5240-60073	1	Touch screen controller board cable
(13)	N5242-60075	1	Cable, A3 LED Driver board (Backlight converter board) to interface board
(44)	N5242-60074	1	Power switch cable
(15)	E5071-61660	1	Wire assembly, RPG (to attach RPG board (N5240-63083) to Interface board (J10)

Figure 6-3
Front Panel Assembly, Back Side, All Options

Figure 6-4
A3 Display Assembly with Interface Board/USB Assemblies

Figure 6-5
A3 Display Assembly with LCD Display 2090-1140 (LED) and Side Brackets

Top Assemblies and Cables, All Options, Serial Number Prefixes <6021

This section contains the following:

- "Top Assemblies, All Options, S/N Prefixes <6021" on page 6-17
- "Top Cables, All Cables-All Options, S/N Prefixes <6021" on page 6-20

See also, "Top Assemblies and Cables, All Options, Serial Number ≥ 6021 " on page 6-23.

Top Assemblies, All Options, S/N Prefixes <6021

Refere nce	Part Number	Qty	Description
A4	$\begin{array}{r} \text { N5240-60074 } \\ \text { Was N5242-60150 } \\ \hline \end{array}$	1	13.5 GHz (source 1) synthesizer board
A5	5087-7780	1	26.5 GHz source (1) board
A6	Not used.		
A7	5087-7346	1	40 GHz doubler assembly port 1
A8	5087-7346	1	40 GHz doubler assembly port 2
A9	Not used.		
A10	5087-7780	1	26.5 GHz source (2) board (On 2-port models, this assembly is included only with Option 224.)
A11	Not used.		
A12	5087-7346	1	40 GHz doubler assembly port 3 (On 2-port models, assembly A12 is included only with Option 224.)
A13	5087-7346	1	40 GHz doubler assembly port 4 (On 2-port models, assembly A13 is included only with Option 224.)
A14	$\begin{array}{r} \text { N5240-60069 } \\ \text { Was N5240-60061 } \\ \hline \end{array}$	1	Frequency reference board
A15	$\begin{array}{r} \hline \text { N5240-60074 } \\ \text { Was N5242-60150 } \\ \hline \end{array}$	1	13.5 GHz (LO) synthesizer board
A16	$\begin{array}{r} \text { N5240-60077 } \\ \text { Was N5240-60056 } \end{array}$	1	Signal Processing ADC Module (SPAM) board
A17	$\begin{gathered} \text { N5240-60074 } \\ \text { Was N5242-60150 } \end{gathered}$	1	13.5 GHz (source 2) synthesizer board (On 2-port models, this assembly is included only with Option 224.)
A18	N5247-60002	1	System motherboard
A19	W1312-60095	1	Midplane board
A20	0950-4934	1	Power supply
A21	Version 8 W1312-60522	1	CPU board assembly ${ }^{\text {a }}$
	Version 7 W1312-60213 Was:W1312-60211 Was:W1312-60210		
A22	N5240-60059	1	GPIB board

Refere nce	Part Number		Qty	Description
A55 b, c	Version 8	N5242-60136	1	Solid state drive (SSD) for Windows 10 Operating System - to be used with the Version 8 , System CPU ${ }^{\text {d }}$
	Version 7	N5242-60135		Solid state drive (SSD) for Windows 10 Operating System- to be used with the Version 7, System CPU ${ }^{\text {d }}$
	Version 7	N8985A ${ }^{\text {e }}$		Solid state drive (SSD) upgrade for Windows 10 Operating System- to be used with the Version 7, System CPU ${ }^{\text {d }}$
	Version 7	N5242-60134		Solid state drive (SSD) for Windows 7 Operating System- to be used with the Version 7, System CPU ${ }^{\text {d }}$
(1)		1420-0356	1	Battery, lithium manganese dioxide, 3V, 0.22A-hr. ${ }^{\text {f }}$

a. For the latest information on CPUs and associated drives, visit: https://www.key-sight.com/us/en/assets/9922-01369/miscellaneous/PNA-Hard-Drives-and-CPUs.pdf.
b. The A55 solid state disk drive for the 2.2 GHz CPU board plugs into the A21 CPU board assembly from the rear panel. Refer to "Removing and Replacing the A55 Solid State Drive (SSD)" on page 7-54 for an illustration.
c. To learn more about all PNA/PNA-L/PNA-X Series Windows Upgrades, refer to https://www.key-sight.com/us/en/lib/resources/miscellaneous/pna-windows-upgrades.html.
d. You can learn your System CPU version using the PNA software. On the PNA front panel, press Help > About Network Analyzer. In the window displayed, find "System CPU Version."
e. For more information on the N8985A SSD, refer to the Windows 10 Operating System Upgrade Kit Installation Note, available online at https://www.keysight.com/us/en/assets/9018-04733/installa-tion-guides/9018-04733.pdf (N8985-90001).
f. The lithium battery is located inside the A21 CPU board assembly. Refer to "Removing and Replacing the Lithium Battery" on page $7-75$ for an illustration.

Figure 6-6

Replaceable Parts
Replaceable Parts Listings

Top Cables, All Cables-All Options, S/N Prefixes <6021 ${ }^{1}$

Ref. Desig.	Type ${ }^{\text {a }}$	Part Number	Qty	Description
W1	SR	N5245-20114	1	A4 13.5 GHz source 1 synthesizer board J1207 to A5 26.5 GHz source 1 board P1
W2	SR	N5245-20100	1	A10 source 2 P1 to A17 13.5 GHz source 2 synthesizer J1207 (4-port)
W3	SR	N5245-20034	1	A5 source 1 P5 to A7 port 140 GHz doubler P1
W4	SR	N5247-20125	1	A5 source 1 P3 to A8 port 240 GHz doubler P1
W5	SR	N5245-20032	1	A5 source 1 P4 to A7 port 140 GHz doubler P4
W6	SR	N5245-20033	1	A7 port 140 GHz doubler P3 to A8 port 240 GHz doubler P4
W7	SR	N5245-20034	1	A10 source 2 P5 to A12 port 340 GHz doubler P1 (4-port)
W8	SR	N5247-20125	1	A10 source 2 P3 to A13 port 440 GHz doubler P1 (4-port)
W9	SR	N5245-20032	1	A10 source 2 P4 to A12 port 340 GHz doubler P4 (4-port)
W10	SR	N5245-20033	1	A12 port 340 GHz doubler P3 to A13 port 440 GHz doubler P4
W11	SR	N5247-20114	1	A7 port 140 GHz doubler P6 to W12
W13	SR	N5247-20086	1	A7 port 140 GHz doubler P2 to W14
W15	SR	N5247-20114	1	A12 port 340 GHz doubler P6 to W16
W17	SR	N5247-20086	1	A12 port 3 doubler P2 to W18
W19	SR	N5247-20114	1	A13 port 440 GHz doubler P6 to W20
W21	SR	N5247-20086	1	A13 port 440 GHz doubler P2 to W22
W23	SR	N5247-20114	1	A8 port 240 GHz doubler P6 to W24
W25	SR	N5247-20086	1	A8 port 240 GHz doubler P2 to W26
W61	SR	N5240-20125 ${ }^{\text {b }}$ Was:N524-20110	1	A15 13.5 GHz LO synthesizer board J1207 to A25 HMA26.5
W65	SR	N5247-20113	1	A7 port 140 GHz doubler P5 to W66
W67	SR	N5247-20096	1	A12 port 340 GHz doubler P5 to W68
W79	F	N5242-60012	1	A24 IF multiplexer board P3 to A16 SPAM board J1
W80	F	N5242-60013	1	A24 IF multiplexer board P203 to A16 SPAM board J2 (4-port)
W81	F	N5242-60014	1	A24 IF multiplexer board P403 to A16 SPAM board J4
W82	F	N5242-60015	1	A24 IF multiplexer board P603 to A16 SPAM board J5 (4-port)
W83	F	N5242-60016	1	A24 IF multiplexer board P803 to A16 SPAM board J6

[^4]Ref. Desig. Type ${ }^{\text {a }}$ Part Number Qty Description

W84	F	N5242-60027	1	A14 frequency reference board J4 to A16 SPAM board J3
W85	F	N5242-60028	1	A14 freq ref bd J5 to btm of A15 13.5 GHz LO synth bd J5
W86	F	N5242-60029	1	A14 freq ref bd J6 to btm of A4 13.5 GHz source 1 synth bd J5
W87	F	N5242-60030	1	A14 freq ref bd J7 to btm of A17 13.5 GHz source 2 synth bd J5(4-port)
W88	F	8120-5063	2	A14 frequency reference board J3 to rear-panel 10 MHz REF OUT
W89				A14 frequency reference board J2 to rear-panel 10 MHz REF IN
W91	F	N5247-60006	1	A60 port 170 GHz doubler J2 to A7 40 GHz doubler J401
W92	F	N5247-60007	1	A60 port 170 GHz doubler J4 to A7 40 GHz doubler J500
W93	F	N5247-60010	1	A61 port 370 GHz doubler J2 to A12 40 GHz doubler J401
W94	F	N5247-60011	1	A61 port 370 GHz doubler J4 to A12 40 GHz doubler J500
W95	F	N5247-60012	1	A62 port 470 GHz doubler J2 to A13 40 GHz doubler J401
W96	F	N5247-60013	1	A62 port 470 GHz doubler J4 to A13 40 GHz doubler J500
W97	F	N5247-60008	1	A63 port 270 GHz doubler J2 to A8 40 GHz doubler J401
W98	F	N5247-60009	1	A63 port 270 GHz doubler J4 to 4840 GHz doubler J500
W149	F	N5247-60023	1	A24 IF multiplexer board P603 to A16 SPAM board J2 - (SPAM 5, 2-port)
W150	F	N5247-60024	1	A24 IF multiplexer board P203 to A16 SPAM board J5 - (SPAM 5, 2-port)
W191	F	N5245-60027	1	A70/A75 Cable, assy RF CA, LFE SRC1 J20 - Synth SRC1 J102
W192	F	N5242-60079	1	A70 Cable, assy RF CA, LFE SRC2 J21-Synth SRC2 J102
W193	F	N5242-60080	1	A70/A75 Cable, assy RF CA, LFE LO J18 - Synth L0 J102
(1)	-	$1250-4261$ Was: 1810-0118	4	Termination, 50-ohm load

a. $S R=$ semirigid coaxial cable; $F=$ flexible coaxial cable
b. The A26 splitter (5067-4086) and N5247-20111, N5245-20022, N5245-20023, and N5247-20110 cables are only used with a legacy HMA26.5 p/n: 5087-7765. The N5240-20125 and N5247-20185 cables are used only with the new N5240-60101 HMA-26.5. Discard any cables that are not used. If you are unclear which HMA26.5 assembly your PNA has installed, refer to Chapter 7 Repairs and Figure 7-16 on page 7-37 and for details on A26 splitter and cabling, refer to your option-model in Chapter 6 " 2 -Port Configurations, Serial Number Prefix <6021" on page 6-30 and "4-Port Configuration, Serial Number Prefix <6021" on page 6-115.

Figure 6-7 Top Cables, All Cables-All Options, S/N Prefixes <6021

N5227_026_607

Top Assemblies and Cables, All Options, Serial Number ≥ 6021

This section contains the following:

- "Top Assemblies, All Options, S/N Prefixes ≥ 6021 " on page 6-23
-"Top Cables, All Cables-All Options, S/N Prefixes ≥ 6021 " on page 6-26
See also, "Top Assemblies and Cables, All Options, Serial Number Prefixes <6021" on page 6-17.

Top Assemblies, All Options, S/N Prefixes ≥ 6021

Refere nce	Part Number	Qty	Description
A4	Not used.		
A5	5087-7780	1	26.5 GHz source (1) board
A6	Not used.		
A7	5087-7346	1	40 GHz doubler assembly port 1
A8	5087-7346	1	40 GHz doubler assembly port 2
A9	Not used.		
A10	5087-7780	1	26.5 GHz source (2) board (On 2-port models, this assembly is included only with Option 224.)
A11	Not used.		
A12	5087-7346	1	40 GHz doubler assembly port 3 (On 2-port models, assembly A12 is included only with Option 224.)
A13	5087-7346	1	40 GHz doubler assembly port 4 (On 2-port models, assembly A13 is included only with Option 224.)
A14	not used		
A15	$\begin{aligned} & \text { N5240-60223 } \\ & \text { N5240-69223 } \\ & \text { N5240-60222 } \\ & \text { N5240-69222 } \end{aligned}$	1	Assy, DD 3x Synthesizer (for Options 22x, 40x, 41x, 42x) Assy, DD 2x Synthesizer (for Options 20x, 21x, 22x)
A16	$\begin{array}{r} \text { N5240-60077 } \\ \text { Was N5240-60056 } \\ \hline \end{array}$	1	Signal Processing ADC Module (SPAM) board
A17	not used		
A18	N5247-60002	1	System motherboard
A19	W1312-60095	1	Midplane board
A20	0950-4934	1	Power supply
A21	Version 8 W1312-60522	1	CPU board assembly, 2.2 GHz ${ }^{\text {a }}$
	Version 7 W1312-60213 Was:W1312-60211 Was:W1312-60210		
A22	N5240-60059	1	GPIB board

Refere nce	Part Number		Qty	Description
A55 b, c	Version 8	N5242-60136	1	Solid state drive (SSD) for Windows 10 Operating System - to be used with the Version 8, System CPU ${ }^{\text {d }}$
	Version 8	N5242-60135		Solid state drive (SSD) for Windows 10 Operating System- to be used with the Version 7, System CPU ${ }^{\text {d }}$
	Version 7	N8985A ${ }^{\text {e }}$		Solid state drive (SSD) upgrade for Windows 10 Operating System- to be used with the Version 7, System CPU ${ }^{\text {d }}$
	Version 8	N5242-60134		Solid state drive (SSD) for Windows 7 Operating System- to be used with the Version 7, System CPU ${ }^{\text {d }}$
(1)		1420-0356	1	Battery, lithium manganese dioxide, 3V, 0.22A-hr. ${ }^{\ddagger}$

a. For the latest information on CPUs and associated drives, visit: https://www.key-sight.com/us/en/assets/9922-01369/miscellaneous/PNA-Hard-Drives-and-CPUs.pdf.
b. The A55 solid state disk drive for the 2.2 GHz CPU board plugs into the A21 CPU board assembly from the rear panel. Refer to "Removing and Replacing the A55 Solid State Drive (SSD)" on page 7-54 for an illustration.
c. To learn more about all PNA/PNA-L/PNA-X Series Windows Upgrades, refer to https://www.key-sight.com/us/en/lib/resources/miscellaneous/pna-windows-upgrades.html.
d. You can learn your System CPU version using the PNA software. On the PNA front panel, press Help > About Network Analyzer. In the window displayed, find "System CPU Version."
e. For more information on the N8985A SSD, refer to the Windows 10 Operating System Upgrade Kit Installation Note, available online at https://www.keysight.com/us/en/assets/9018-04733/installa-tion-guides/9018-04733.pdf (N8985-90001).
f. The lithium battery is located inside the A21 CPU board assembly. Refer to "Removing and Replacing the Lithium Battery" on page $7-75$ for an illustration.

Figure 6-8
Top Assemblies, All Options, S/N Prefixes 26021

(Some parts removed for clarity.)
n5227_026_603_S7_4pt

Replaceable Parts
Replaceable Parts Listings

Top Cables, All Cables-All Options, S/N Prefixes $\geq 6021^{1}$

Ref. Desig.	Type ${ }^{\text {a }}$	Part Number	Qty	Description
W1	SR	N5240-20124	1	A15 (source 1) DD synthesizer board SRC (J4) to A5 26.5 GHz (source 1) board SRC 1 RF IN
W2	SR	N5240-20126	1	A15 (source 2) 13.5 GHz DD synthesizer board SRC (J6) to A10 26.5 GHz source (2) board SRC 2 RF IN (4-port)
W3	SR	N5245-20034	1	A5 source 1 P5 to A7 port 140 GHz doubler P1
W4	SR	N5247-20125	1	A5 source 1 P3 to A8 port 240 GHz doubler P1
W5	SR	N5245-20032	1	A5 source 1 P4 to A7 port 140 GHz doubler P4
W6	SR	N5245-20033	1	A7 port 140 GHz doubler P3 to A8 port 240 GHz doubler P4
W7	SR	N5245-20034	1	A10 source 2 P5 to A12 port 340 GHz doubler P1 (4-port)
W8	SR	N5247-20125	1	A10 source 2 P 3 to A13 port 440 GHz doubler P1 (4-port)
W9	SR	N5245-20032	1	A10 source 2 P4 to A12 port 340 GHz doubler P4 (4-port)
W10	SR	N5245-20033	1	A12 port 340 GHz doubler P3 to A13 port 440 GHz doubler P4
W11	SR	N5247-20114	1	A7 port 140 GHz doubler P6 to W12
W13	SR	N5247-20086	1	A7 port 140 GHz doubler P2 to W14
W15	SR	N5247-20114	1	A12 port 340 GHz doubler P6 to W16
W17	SR	N5247-20086	1	A12 port 3 doubler P2 to W18
W19	SR	N5247-20114	1	A13 port 440 GHz doubler P6 to W20
W21	SR	N5247-20086	1	A13 port 440 GHz doubler P2 to W22
W23	SR	N5247-20114	1	A8 port 240 GHz doubler P6 to W24
W25	SR	N5247-20086	1	A8 port 240 GHz doubler P2 to W26
W61	SR	N5240-20125 ${ }^{\text {b }}$ Was:N524-20110	1	A15 13.5 GHz LO DD synthesizer board J5 to A25 HMA26.5 RF IN
W65	SR	N5247-20113	1	A7 port 140 GHz doubler P5 to W66
W67	SR	N5247-20096	1	A12 port 340 GHz doubler P5 to W68
W79	F	N5242-60012	1	A24 IF multiplexer board P3 to A16 SPAM board J1
W80	F	N5242-60013	1	A24 IF multiplexer board P203 to A16 SPAM board J2 (4-port)
W81	F	N5242-60014	1	A24 IF multiplexer board P403 to A16 SPAM board J4
W82	F	N5242-60015	1	A24 IF multiplexer board P603 to A16 SPAM board J5 (4-port)

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Ref. Desig. Type ${ }^{\text {a }}$ Part Number Qty Description

W83	F	N5242-60016	1	A24 IF multiplexer board P803 to A16 SPAM board J6
W88	F	8120-5063	2	A15 DD synthesizer assembly J 3 to rear-panel REF OUT
W89				Rear-panel REF IN to A15 DD synthesizer assembly J2
W91	F	N5247-60006	1	A60 port 170 GHz doubler J2 to A7 40 GHz doubler J401
W92	F	N5247-60007	1	A60 port 170 GHz doubler J 4 to A 740 GHz doubler J500
W93	F	N5247-60010	1	A61 port 370 GHz doubler J2 to A12 40 GHz doubler J401
W94	F	N5247-60011	1	A61 port 370 GHz doubler J4 to A12 40 GHz doubler J500
W95	F	N5247-60012	1	A62 port 470 GHz doubler J2 to A13 40 GHz doubler J401
W96	F	N5247-60013	1	A62 port 470 GHz doubler J4 to A13 40 GHz doubler J500
W97	F	N5247-60008	1	A63 port 270 GHz doubler J2 to A8 40 GHz doubler J401
W98	F	N5247-60009	1	A63 port 270 GHz doubler J 4 to A 840 GHz doubler J500
W99	F	N5242-60014	1	A24 IF multiplexer board P403 to A16 SPAM board J4 (SPAM 5, 2-Port)
W100	F	N5242-60023	1	A24 IF multiplexer board P603 to A16 SPAM board J5 (SPAM 5, 2-port))
W149	F	N5247-60023	1	A24 IF multiplexer board P603 to A16 SPAM board J2 - (SPAM 5, 2-port)
W150	F	N5247-60024	1	A24 IF multiplexer board P203 to A16 SPAM board J5 - (SPAM 5, 2-port)
W200	F	N5240-60115	1	A15 SRC DD Synth J16 to SPAM J3
W208	F	N5240-60112	1	A70/A75 LFE board to A15 DD Synth Source 1 J12 to A70 LFE J20
W209	F	N5240-60114	1	A70 LFE board to A15 DD Synth Source 2 J 14 to A70 LFE J21
W210	F	N5240-60113	1	A70/A75 LFE board to A15 DD Synth L0 J13 to A70 LFE J18
(1)	-	$\begin{aligned} & \hline \text { 1250-4261 } \\ & \text { Was: 1810-0118 } \end{aligned}$	4	Termination, 50-ohm load

a. $S R=$ semirigid coaxial cable; $F=$ flexible coaxial cable
b. The A26 splitter (5067-4086) and N5247-20111, N5245-20022, N5245-20023, and N5247-20110 cables are only used with a legacy HMA26.5 p/n: 5087-7765. The N5240-20125 and N5247-20185 cables are used only with the new N5240-60101 HMA-26.5. Discard any cables that are not used. If you are unclear which HMA26.5 assembly your PNA has installed, refer to Chapter 7 Repairs and for details on A26 splitter and cabling, refer to your option-model in Chapter 6 "2-Port Configurations, Serial Number Prefix <6021" on page 6-30 and "4-Port Configuration, Serial Number Prefix <6021" on page 6-115.

Figure 6-9 Top Cables, All Cables, All Options, S/N Prefixes ≥ 6021

Replaceable Parts
Replaceable Parts Listings

2-Port Configurations, Serial Number Prefix <6021

This section contains the following:

- "2-Port Configuration, Option 200, Serial Number Prefixes <6021" on page 6-30
- "2-Port Configuration, Option 201, Serial Number Prefixes <6021" on page 6-38
- "2-Port Configuration, Option 205, S/N Prefixes <6021" on page 6-45
- "2-Port Configuration, Option 210, S/N Prefixes <6021" on page 6-52
- "2-Port Configuration, Option 219, Serial Number Prefixes <6021" on page 6-58
- "2-Port Configuration, Option 220, Serial Number Prefixes <6021" on page 6-65
- See also, "2-Port Configurations, Serial Number Prefix ≥ 6021 " on page 6-72.

2-Port Configuration, Option 200, Serial Number Prefixes <6021
Bottom Assemblies, Standard 2-Port Configuration, Option 200, S/N Prefixes <6021

Reference Designator	Part Number ${ }^{\text {a }}$	Qty	Description
A23	N5245-60157 Was N524-60001	1	Test set motherboard
A24	$\begin{aligned} & \text { N5240-60062b } \\ & \text { Was N5240-60045 } \end{aligned}$	1	IF multiplexer board ${ }^{\text {c }}$
A25	$\begin{aligned} & \text { N5240-60101d } \\ & \text { Was:5087-7765 } \end{aligned}$	1	LO Multiplier/amplifier 26.5 (HMA26.5)
A27	5087-7337	1	Mixer brick (1)
$\begin{aligned} & \text { A29 } \\ & \text { A32 } \end{aligned}$	5087-7744	2	Test port 1 receiver coupler Test port 2 receiver coupler
$\begin{aligned} & \hline \text { A33 } \\ & \text { A36 } \end{aligned}$	5087-7778	2	Test port 1 coupler Test port 2 coupler
$\begin{aligned} & \hline \text { A60 } \\ & \text { A63 } \end{aligned}$	5087-7336	2	Port 170 GHz doubler Port 270 GHz doubler
A68	08490-60037	1	3-dB attenuator (A27 mixer brick (R1)
(1)	N5240-60058	2	Front-panel LED board

a. Part numbers in italic typeface are for rebuilt exchange assemblies. Refer to "Rebuilt-Exchange Assemblies" on page 6-4.
b. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.
c. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.
d. The A26 splitter (5067-4086) and N5247-20111, N5245-20022, N5245-20023, and N5247-20110 cables are only used with a legacy HMA26.5 p/n: 5087-7765. The N5240-20125 and N5247-20185 cables are used only with the new N5240-60101 HMA-26.5. Discard any cables that are not used. If you are unclear which HMA26.5 assembly your PNA has installed, refer to Chapter 7 Repairs and Figure 7-16 on page 7-37 and for details on A26 splitter and cabling, refer to your option-model in Chapter 6 "2-Port Configurations, Serial Number Prefix <6021" on page 6-30 and "4-Port Configuration, Serial Number Prefix <6021" on page 6-115.

Figure 6-10 Bottom Assemblies, Standard 2-Port Configuration, Option 200, S/N Prefixes <6021

Replaceable Parts
Replaceable Parts Listings

Bottom RF Cables, Standard 2-Port Configuration, Option 200, S/N Prefixes <6021 ${ }^{1}$

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Qty	Description
W12	SR	N5227-20041	1	A60 port 170 GHz doubler to W11
W14	SR	N5247-20072	1	A60 port 170 GHz doubler to W13
W24	SR	N5247-20061	1	A63 port 270 GHz doubler to W23
W26	SR	N5247-20051	1	A63 port 270 GHz doubler to W25
W27	SR	N5227-20044	1	A60 port 170 GHz doubler to A29 port 1 receiver coupler
W30	SR	N5227-20045	1	A63 port 270 GHz doubler to A32 port 2 receiver coupler
W61	SR	Refer to "Top	les	(ll Cables-All Options, S/N Prefixes <6021" on page 6-20.
W66	SR	N5247-20109	1	W65 to rear-panel EXT TSET DRIVE RF OUT (J6)
W69	SR	N5247-20112	1	A27 mix brick to rear-panel EXT TSET DRIVE LO OUT (J5)
W70 ${ }^{\text {b }}$	SR	N5247-20100	1	A25 HMA26.5 to A27 mixer brick
W71	F	N5242-60017	1	A27 mixer brick (A) to A24 IF multiplexer (P1)
W147	F	N5242-60025		A27 mixer brick (R1) to A24 IF multiplexer (P601)
W148	F	N5242-60026		A27 mixer brick (R2) to A24 IF multiplexer (P801)
W149 \& W150	F	Refer to "Top C	ables,	Cables-All Options, S/N Prefixes <6021" on page 6-20.
W74	F	N5242-60018		A27 mixer brick (B) to A24 IF multiplexer (P201)
$\begin{aligned} & \text { W79-83, } \\ & \text { W91-92, } \\ & \text { W97- } 98 \end{aligned}$	F	Refer to "Top C	ables,	All Cables-All Options, S/N Prefixes <6021" on page 6-20.
W127	SR	N5227-20003	1	A29 port 1 receiver coupler to A27 mixer brick (R1)
W130	SR	N5227-20006	1	A32 port 2 receiver coupler to A27 mixer brick (R2)
W131	SR	N5227-20004	1	A29 port 1 receiver coupler to A33 port 1 coupler
W134	SR	N5227-20005	1	A32 port 2 receiver coupler to A36 port 2 coupler
W135	SR	N5227-20007	1	A33 port 1 coupler to A27 mixer brick (A)
W138	SR	N5227-20008	1	A36 port 2 coupler to $A 27$ mixer brick (B)
W147	F	N5242-60025	1	A27 mixer brick (R1) to A24 IF multiplexer (P601)
W148	F	N5242-60026	1	A27 mixer brick (R2) to A24 IF multiplexer (P801)

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.
Reference Type ${ }^{\text {a }}$ Part Number Qty Description
Designator
W149 \& F Refer to "Top Cables, All Cables-All Options, S/N Prefixes <6021" on page 6-20. W150
a. $S R=$ semirigid coaxial cable; $F=$ flexible coaxial cable
b. On legacy instruments using the 5087-7765 HMA26.5, the N5245-20100 cable is used only on 2-port instruments. On instruments with a new HMA26.5 the N5245-20100 cable is used in all instruments. If you are unclear which HMA26.5 assembly your PNA has installed, refer to "Verify the Model/Version of HMA26.5 Installed" on page 7-36 and to Figure 7-16 on page 7-37.

Replaceable Parts
Replaceable Parts Listings

Figure 6-11 Bottom RF Cables, Standard 2-Port Configuration, Option 200, S/N Prefixes <6021

Bottom Ribbon Cables and Wire Harnesses, 2-Port, Option 200, S/N Prefixes <6021 ${ }^{1}$

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Description
(1)	10R	N5242-60005	Rear-panel PWR I/O to A23 test set motherboard J301
(2)	3W	N5247-60016	A23 test set motherboard J221 to ports 1 LED board J1
(3)	30R	N5247-60018	A60 port 170 GHz doubler J1 to A23 test set motherboard J4
(4)	3W	N5247-60016	A23 test set motherboard J222 to ports 2 LED board J1
(5)	30R	N5247-60018	A63 port 270 GHz doubler J1 to A23 test set motherboard J6
(6)	24R	N5247-60022	A23 test set motherboard J209 to A25 HMA26.5 J1
(7)	100R	N5242-60004	A18 system motherboard J1 to A23 test set motherboard J1 to A24 IF multiplexer board J1
(8)	25R	E4410-60160	A18 system motherboard J13 to A23 test set motherboard J545
(9)	36R	8121-0834	Rear-panel HANDLER I/O to A23 test set motherboard J400
(10)	20R	N5247-60014	A23 test set motherboard J551 to A27 mixer brick (1) J52

a. $n \mathrm{R}=\mathrm{n}$ wires in a ribbon (flat) cable; $\mathrm{nW}=\mathrm{n}$ wires in a wire harness

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Figure 6-12 Bottom Ribbon Cables and Wire Harnesses, Standard 2-Port Configuration, Option 200, S/N Prefixes <6021

(Some parts removed for clarity.)
N5227_001_607

2-Port Configuration, Option 201, Serial Number Prefixes <6021

Bottom Assemblies, Option 201, S/N Prefixes <6021

Reference Designator	Part Number ${ }^{\text {a }}$	Qty	Description
A23	$\begin{aligned} & \text { N5245-60157 } \\ & \text { Was N524-60001 } \end{aligned}$	1	Test set motherboard
A24	$\begin{aligned} & \text { N5240-60062 } \\ & \text { Was N5240-60045 } \end{aligned}$	1	IF multiplexer board ${ }^{\text {c }}$
A25	$\begin{aligned} & \text { N5240-60101d } \\ & \text { Was:5087-7765 } \end{aligned}$	1	LO Multiplier/amplifier 26.5 (HMA26.5)
A27	5087-7337	1	Mixer brick (1)
$\begin{aligned} & \text { A29 } \\ & \text { A32 } \end{aligned}$	5087-7744	2	Test port 1 receiver coupler Test port 2 receiver coupler
$\begin{aligned} & \text { A33 } \\ & \text { A36 } \end{aligned}$	5087-7778	2	Test port 1 coupler Test port 2 coupler
A37	5087-7759	1	Reference mixer switch
$\begin{aligned} & \text { A60 } \\ & \text { A63 } \end{aligned}$	5087-7336	2	Port 170 GHz doubler Port 270 GHz doubler
(1)	N5240-60058	2	Front-panel LED board

a. Part numbers in italic typeface are for rebuilt exchange assemblies. Refer to "Rebuilt-Exchange Assemblies" on page 6-4.
b. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.
C. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.
d. The A26 splitter (5067-4086) and N5247-20111, N5245-20022, N5245-20023, and N5247-20110 cables are only used with a legacy HMA26.5 p/n: 5087-7765. The N5240-20125 and N5247-20185 cables are used only with the new N5240-60101 HMA-26.5. Discard any cables that are not used. If you are unclear which HMA26.5 assembly your PNA has installed, refer to Chapter 7 Repairs and Figure 7-16 on page 7-37 and for details on A26 splitter and cabling, refer to your option-model in Chapter 6 " 2 -Port Configurations, Serial Number Prefix <6021" on page 6-30 and "4-Port Configuration, Serial Number Prefix <6021" on page 6-115.

Figure 6-13 Bottom Assemblies, Option 201, S/N Prefixes <6021

Replaceable Parts
Replaceable Parts Listings

Bottom RF Cables, Option 201, S/N Prefixes <6021 ${ }^{1}$

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Qty	Description
W12	SR	N5247-20059	1	A60 port 170 GHz doubler to W11
W14	SR	N5247-20072	1	A60 port 170 GHz doubler to W13
W24	SR	N5247-20061	1	A63 port 270 GHz doubler to W23
W26	SR	N5247-20051	1	A63 port 270 GHz doubler to W25
W27	SR	N5247-20074	1	A60 port 170 GHz doubler to A29 port 1 receiver coupler
W30	SR	N5247-20052	1	A63 port 270 GHz doubler to A32 port 2 receiver coupler
W31	SR	N5247-20037	1	A29 port 1 receiver coupler to front-panel port 1 SOURCE OUT
W32	SR	N5247-20049	1	Port 1 CPLR THRU to A33 port 1 coupler
W33	SR	N5247-20056	1	A29 port 1 receiver coupler to A37 reference mixer switch
W34	SR	N5247-20039	1	A33 port 1 coupler to front-panel port 1 CPLR ARM
W43	SR	N5247-20036	1	A32 port 2 receiver coupler to front-panel port 2 SOURCE OUT
W44	SR	N5247-20050	1	Port 2 CPLR THRU to A36 port 2 coupler
W45	SR	N5247-20057	1	A32 port 2 receiver coupler to front-panel REF 2 SOURCE OUT
W46	SR	N5247-20041	1	A36 port 2 coupler to front-panel port 2 CPLR ARM
W47	SR	N5247-20053	1	Port 1 RCVR A IN to A27 mixer brick (A)
W50	SR	N5247-20054	1	Front-panel port 2 RCVR B IN to A27 mixer brick (B)
W51	SR	N5247-20011	1	Front-panel REF 1 SOURCE OUT to A37 ref mixer switch
W52	SR	N5247-20012	1	REF 1 RCVR R1 IN to A37 reference mixer switch
W53	SR	N5247-20048	1	A37 reference mixer switch to A27 mixer brick (R1)
W56	SR	N5247-20055	1	REF 2 RCVR R2 IN to A27 mixer brick (R2)
W60	SR	N5247-20107	6	Front-panel jumper
W61	SR	Refer to "Top		All Cables-All Options, S/N Prefixes <6021" on page 6-20.
W66	SR	N5247-20109	1	W65 to rear-panel EXT TSET DRIVE RF OUT (J6)
W69	SR	N5247-20112	1	A27 mix brick to rear-panel EXT TSET DRIVE LO OUT (J5)
W70 ${ }^{\text {b }}$	SR	N5247-20100	1	A25 HMA26.5 to A27 mixer brick
W71	F	N5242-60017	1	A27 mixer brick (A) to A24 IF multiplexer (P1)
W74	F	N5242-60018	1	A27 mixer brick (B) to A24 IF multiplexer (P201)

[^5]| Reference
 Designator | Type $^{\text {a }}$ | Part Number | Qty | Description |
| :--- | :--- | :--- | :--- | :--- |
| W79-83, F Refer to "Top Cables, All Cables-All Options, S/N Prefixes <6021" on page 6-20.
 W91- 92,
 W97- 98
 W147 F N5242-60025 1
 A27 mixer brick (R1) to A24 IF multiplexer (P601)
 W148 F N5242-60026 1 A27 mixer brick (R2) to A24 IF multiplexer (P801) | | | | |
| W149 \& F Refer to "Top Cables, All Cables-All Options, S/N Prefixes <6021" on page 6-20.
 W150 | | | | |

a. $S R=$ semirigid coaxial cable; $F=$ flexible coaxial cable
b. On legacy instruments using the 5087-7765 HMA26.5, the N5245-20100 cable is used only on 2-port instruments. On instruments with a new HMA26.5 the N5245-20100 cable is used in all instruments. If you are unclear which HMA26.5 assembly your PNA has installed, refer to "Verify the Model/Version of HMA26.5 Installed" on page 7-36 and to Figure 7-16 on page 7-37.

Replaceable Parts
Replaceable Parts Listings

Figure 6-14 Bottom RF Cables, Option 201, S/N Prefixes <6021

Bottom Ribbon Cables and Wire Harnesses, Option 201, S/N Prefixes <6021 ${ }^{1}$

Reference Designator	Type $^{\text {a }}$	Part Number	Description
(1)	10R	N5242-60005	Rear-panel PWR I/O to A23 test set motherboard J301
(2)	$3 W$	N5247-60016	A23 test set motherboard J221 to ports 1 LED board J1
(3)	$2 W$	$8121-0966$	A23 test set motherboard J554 to A37 reference mixer switch
(4)	$30 R$	N5247-60018	A60 port 1 70 GHz doubler J1 to A23 test set motherboard J4
(5)	$3 W$	N5247-60016	A23 test set motherboard J222 to ports 2 LED board J1
(6)	$30 R$	N5247-60018	A63 port 2 70 GHz doubler J1 to A23 test set motherboard J6
(7)	$24 R$	N5247-60022	A23 test set motherboard J209 to A25 HMA26.5 J1
(8)	100R	N5242-60004	A18 system motherboard J1 to A23 test set motherboard J1 to
(9)	$25 R$	E4410-60160	A18 system motherboard J13 to A23 test set motherboard J545
(10)	36R	$8121-0834$	Rear-panel HANDLER I/0 to A23 test set motherboard J400
(11)	20R	N5247-60014	A23 test set motherboard J551 to A27 mixer brick (1) J52

a. $n R=n$ wires in a ribbon (flat) cable; $n W=n$ wires in a wire harness

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Figure 6-15 Bottom Ribbon Cables and Wire Harnesses, Option 201, S/N Prefixes <6021

(Some parts removed for clarity.)

2-Port Configuration, Option 205, S/N Prefixes <6021

Bottom Assemblies, Option 205, S/N Prefixes <6021

Reference Designator	Part Number ${ }^{\text {a }}$	Qty	Description
A23	N5245-60157 Was N5247-60001	1	Test set motherboard
A24	$\begin{aligned} & \text { N5240-60062b } \\ & \text { Was N5240-60045 } \end{aligned}$	1	IF multiplexer board ${ }^{\text {c }}$
A25	$\begin{aligned} & \text { N5240-60101d } \\ & \text { Was:5087-7765 } \end{aligned}$	1	LO Multiplier/amplifier 26.5 (HMA26.5)
A27	5087-7337	1	Mixer brick (1)
$\begin{aligned} & \hline \text { A29 } \\ & \text { A32 } \end{aligned}$	5087-7744	2	Test port 1 receiver coupler Test port 2 receiver coupler
$\begin{aligned} & \hline \text { A33 } \\ & \text { A36 } \end{aligned}$	5087-7778	2	Test port 1 coupler Test port 2 coupler
A37	5087-7759	1	Reference mixer switch
$\begin{aligned} & \text { A60 } \\ & \text { A63 } \end{aligned}$	5087-7336	2	Port 170 GHz doubler Port 270 GHz doubler
A75	N5291-60005	1	LFE PC board - 2-port
A71	5087-7403	2	Port 1 bias combiner
A74			Port 2 bias combiner
(1)	N5240-60058	2	Front-panel LED board

a. Part numbers in italic typeface are for rebuilt exchange assemblies. Refer to "Rebuilt-Exchange Assemblies" on page 6-4.
b. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.
c. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.
d. The A26 splitter (5067-4086) and N5247-20111, N5245-20022, N5245-20023, and N5247-20110 cables are only used with a legacy HMA26.5 p/n: 5087-7765. The N5240-20125 and N5247-20185 cables are used only with the new N5240-60101 HMA-26.5. Discard any cables that are not used. If you are unclear which HMA26.5 assembly your PNA has installed, refer to Chapter 7 Repairs and Figure 7-16 on page 7-37 and for details on A26 splitter and cabling, refer to your option-model in Chapter 6 " 2 -Port Configurations, Serial Number Prefix <6021" on page 6-30 and "4-Port Configuration, Serial Number Prefix <6021" on page 6-115.

Figure 6-16 Bottom Assemblies, Option 205, S/N Prefixes <6021

Replaceable Parts
Replaceable Parts Listings

Bottom RF Cables, Option 205, S/N Prefixes <6021 ${ }^{1}$

Reference Designator	Type ${ }^{\text {a }}$	Part Number		Description
W12	SR	N5247-20059	1	A60 port 170 GHz doubler to W11
W14	SR	N5247-20072	1	A60 port 170 GHz doubler to W13
W24	SR	N5247-20061	1	A63 port 270 GHz doubler to W23
W26	SR	N5247-20051	1	A63 port 270 GHz doubler to W25
W27	SR	N5247-20074	1	A60 port 170 GHz doubler to A29 port 1 receiver coupler
W30	SR	N5247-20052	1	A63 port 270 GHz doubler to A32 port 2 receiver coupler
W31	SR	N5247-20037	1	A29 port 1 receiver coupler to front-panel port 1 SOURCE OUT
W33	SR	N5247-20056	1	A29 port 1 receiver coupler to A37 reference mixer switch
W34	SR	N5247-20039		A33 port 1 coupler to front-panel port 1 CPLR ARM
W43	SR	N5247-20036	1	A32 port 2 receiver coupler to front-panel port 2 SOURCE OUT
W45	SR	N5247-20057	1	A32 port 2 receiver coupler to front-panel REF 2 SOURCE OUT
W46	SR	N5247-20047	1	A36 port 2 coupler to front-panel port 2 CPLR ARM
W47	SR	N5247-20053	1	Port 1 RCVR A IN to A27 mixer brick (A)
W50	SR	N5247-20054	1	Front-panel port 2 RCVR B IN to A27 mixer brick (B)
W51	SR	N5247-20011	1	Front-panel REF 1 SOURCE OUT to A37 ref mixer switch
W52	SR	N5247-20012	1	REF 1 RCVR R1 IN to A37 reference mixer switch
W53	SR	N5247-20048		A37 reference mixer switch to A27 mixer brick (R1)
W56	SR	N5247-20055		REF 2 RCVR R2 IN to A27 mixer brick (R2)
W60	SR	N5247-20107		Front-panel jumper
W61	SR	Refer to "Top C	ables,	All Cables-All Options, S/N Prefixes <6021" on page 6-20.
W66	SR	N5247-20109		W65 to rear-panel EXT TSET DRIVE RF OUT (J6)
W69	SR	N5247-20112		A27 mix brick to rear-panel EXT TSET DRIVE LO OUT (J5)
W70 ${ }^{\text {b }}$	SR	N5247-20100	1	A25 HMA26.5 to A27 mixer brick
W71	F	N5242-60017		A27 mixer brick (A) to A24 IF multiplexer (P1)
W74	F	N5242-60018		A27 mixer brick (B) to A24 IF multiplexer (P201)
$\begin{aligned} & \text { W79-83, } \\ & \text { W91-92, } \\ & \text { W97-98 } \end{aligned}$	F	Refer to "Top Cables, All Cables-All Options, S/N Prefixes <6021" on page 6-20.		

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Reference Designator	Type $^{\text {a }}$	Part Number	Qty	Description
W147	F	N5242-60025	1	A27 mixer brick (R1) to A24 IF multiplexer (P601)
W148	F	N5242-60026	1	A27 mixer brick (R2) to A24 IF multiplexer (P801)
 W150	F	Refer to "Top Cables, All Cables-All Options, S/N Prefixes <6021" on page 6-20.		
W181	SR	N5247-20167	1	Cable, assembly, RF FP, port 1 CPLR THRU to A71 bias combiner, port 1
W187	SR	N5247-20163	1	Cable, assembly, RF FP, port 2 CPLR THRU to A74 bias combiner, port 2
 W193	F	Refer to "Top Cables, All Cables-All Options, S/N Prefixes <6021" on page 6-20.		
W194	F	N5240-60097	2	Cable, assembly, coaxial LFE (Port 1 bias combiner "RF-IN" to "Port1" A70 LFE board)
W197				Cable, assembly, coaxial LFE (Port 2 bias combiner "RF-IN" to "Port2" A70 LFE board)
W198	SR	N5247-20166	1	Cable, assembly, RF FP, A71 port 1bias combiner to A33 test port Coupler, port 1 (2-port only)
W199	SR	N5247-20168	1	Cable, assembly, RF FP, A74 bias combiner to A36 test port coupler, port 2 (2-port only)
W211	F	$8120-5014$	1	RF cable, A70 LFE J14 to A24 IF Multiplexer P4
W212	F	$8120-5017$	1	RF cable, A70 LFE J13 to A24 IF Multiplexer P204
W213	F	$8120-5014$	1	RF cable, A70 LFE J7 to A24 IF Multiplexer P404
W215	F	$8120-5021$	1	RF cable, A70 LFE J12 to A24 IF Multiplexer P804

a. $S R=$ semirigid coaxial cable; $F=$ flexible coaxial cable
b. On legacy instruments using the 5087-7765 HMA26.5, the N5245-20100 cable is used only on 2-port instruments. On instruments with a new HMA26.5 the N5245-20100 cable is used in all instruments. If you are unclear which HMA26.5 assembly your PNA has installed, refer to "Verify the Model/Version of HMA26.5 Installed" on page 7-36 and to Figure 7-16 on page 7-37.

Figure 6-17 Bottom RF Cables, Option 205, S/N Prefixes <6021

Bottom Ribbon Cables and Wire Harnesses, Option 205, S/N Prefixes $<6021{ }^{1}$

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Description
(1)	10R	N5242-60005	Rear-panel PWR I/O to A23 test set motherboard J301
(2)	3W	N5247-60016	A23 test set motherboard J221 to ports 1 LED board J1
(3)	2W	8121-0966	A23 test set motherboard J554 to A37 reference mixer switch
(4)	30R	N5247-60018	A60 port 170 GHz doubler J1 to A23 test set motherboard J4
(5)	3W	N5247-60016	A23 test set motherboard J222 to ports 2 LED board J1
(6)	30R	N5247-60018	A63 port 270 GHz doubler J1 to A23 test set motherboard J6
(7)	24R	N5247-60022	A23 test set motherboard J209 to A25 HMA26.5 J1
(8)	100R	N5240-60089	Cable, ribbon assembly - MB/IFMUX/LFE/SMB (A14 system mother board J1 to A19 test set motherboard to A70 LFE board to A20 IF Multiplier board J1)
(9)	25R	E4410-60160	A18 system motherboard J13 to A23 test set motherboard J545
(10)	36R	8121-0834	Rear-panel HANDLER I/O to A23 test set motherboard J400
(11)	20R	N5247-60014	A23 test set motherboard J551 to A27 mixer brick (1) J52
(12)	2W	$\begin{aligned} & \text { N5240-60091 } \\ & \text { P/O Bias } \\ & \text { Combiner } \end{aligned}$	A23 test set motherboard J541 to A71 port 1 bias tee combiner
(13)			A23 test set motherboard J544 to A74 port 2 bias tee combiner

a. $n \mathrm{R}=\mathrm{n}$ wires in a ribbon (flat) cable; $\mathrm{nW}=\mathrm{n}$ wires in a wire harness

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Figure 6-18 Bottom Ribbon Cables and Wire Harnesses, Option 205, S/N Prefixes <6021

2-Port Configuration, Option 210, S/N Prefixes <6021

Bottom Assemblies, Option 210, S/N Prefixes <6021

Reference Designator	Part Number ${ }^{\text {a }}$	Qty	Description
A23	N5245-60157 Was N5247-60001	1	Test set motherboard
A24	$\begin{aligned} & \text { N5240-60062b } \\ & \text { Was N5240-60045 } \end{aligned}$	1	IF multiplexer board ${ }^{\text {c }}$
A25	$\begin{aligned} & \text { N5240-60101d } \\ & \text { Was:5087-7765 } \end{aligned}$	1	LO Multiplier/amplifier 26.5 (HMA26.5)
A27	5087-7337	1	Mixer brick (1)
$\begin{aligned} & \hline \text { A29 } \\ & \text { A32 } \end{aligned}$	5087-7744	2	Test port 1 receiver coupler Test port 2 receiver coupler
$\begin{aligned} & \text { A33 } \\ & \text { A36 } \end{aligned}$	5087-7778	2	Test port 1 coupler Test port 2 coupler
A37	5087-7759	1	Reference mixer switch
$\begin{aligned} & \text { A60 } \\ & \text { A63 } \end{aligned}$	5087-7336	2	Port 170 GHz doubler Port 270 GHz doubler
$\begin{aligned} & \text { A64 } \\ & \text { A67 } \end{aligned}$	08490-60038	2	Test port 16 -dB attenuator Test port 2 6-dB attenuator
A68	08490-60037	1	3-dB attenuator (A27 mixer brick (R1)
(1)	N5240-60058	2	Front-panel LED board

a. Part numbers in italic typeface are for rebuilt exchange assemblies. Refer to "Rebuilt-Exchange Assemblies" on page 6-4.
b. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.
C. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.
d. The A26 splitter (5067-4086) and N5247-20111, N5245-20022, N5245-20023, and N5247-20110 cables are only used with a legacy HMA26.5 p/n: 5087-7765. The N5240-20125 and N5247-20185 cables are used only with the new N5240-60101 HMA-26.5. Discard any cables that are not used. If you are unclear which HMA26.5 assembly your PNA has installed, refer to Chapter 7 Repairs and Figure 7-16 on page 7-37 and for details on A26 splitter and cabling, refer to your option-model in Chapter 6 "2-Port Configurations, Serial Number Prefix <6021" on page 6-30 and "4-Port Configuration, Serial Number Prefix <6021" on page 6-115.

Replaceable Parts
Replaceable Parts Listings

Figure 6-19 Bottom Assemblies, Option 210, S/N Prefixes <6021

(Some parts removed for clarity.)

Bottom RF Cables, Option 210, S/N Prefixes <6021 ${ }^{1}$

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Qty	Description
W12	SR	N5227-20041	1	A60 port 170 GHz doubler to W11
W14	SR	N5247-20072	1	A60 port 170 GHz doubler to W13
W24	SR	N5247-20061	1	A63 port 270 GHz doubler to W23
W26	SR	N5247-20051	1	A63 port 270 GHz doubler to W25
W27	SR	N5227-20044	1	A60 port 170 GHz doubler to A 29 port 1 receiver coupler
W30	SR	N5227-20045	1	A63 port 270 GHz doubler to A32 port 2 receiver coupler
W61	SR	Refer to "Top	ble	ll Cables-All Options, S/N Prefixes <6021" on page 6-20.
W66	SR	N5247-20109	1	W65 to rear-panel EXT TSET DRIVE RF OUT (J6)
W69	SR	N5247-20112	1	A27 mix brick to rear-panel EXT TSET DRIVE LO OUT (J5)
W70 ${ }^{\text {b }}$	SR	N5247-20100	1	A25 HMA26.5 to A27 mixer brick
W71	F	N5242-60017	1	A27 mixer brick (A) to A24 IF multiplexer (P1)
W74	F	N5242-60018	1	A27 mixer brick (B) to A24 IF multiplexer (P201)
$\begin{aligned} & \text { W79-83, } \\ & \text { W91- 92, } \\ & \text { W97- } 98 \end{aligned}$	F	Refer to "Top C	able	All Cables-All Options, S/N Prefixes <6021" on page 6-20.
W127	SR	N5227-20026	1	A29 port 1 receiver coupler to A27 mixer brick (R1)
W130	SR	N5227-20025	1	A32 port 2 receiver coupler to A27 mixer brick (R2)
W135	SR	N5227-20007	1	A33 port 1 coupler to A27 mixer brick (A)
W138	SR	N5227-20008	1	A36 port 2 coupler to A27 mixer brick (B)
W139	SR	N5227-20024	1	A29 port 1 receiver coupler to A33 port 1 coupler
W145	SR	N5227-20023	1	A32 port 2 receiver coupler to A36 port 2 coupler
W147	F	N5242-60025	1	A27 mixer brick (R1) to A24 IF multiplexer (P601)
W148	F	N5242-60026	1	A27 mixer brick (R2) to A24 IF multiplexer (P801)
W149 \& W150	F	Refer to "Top Cables, All Cables-All Options, S/N Prefixes <6021" on page 6-20.		

a. $S R=$ semirigid coaxial cable; $F=$ flexible coaxial cable
b. On legacy instruments using the 5087-7765 HMA26.5, the N5245-20100 cable is used only on 2-port instruments. On instruments with a new HMA26.5 the N5245-20100 cable is used in all instruments. If you are unclear which HMA26.5 assembly your PNA has installed, refer to "Verify the Model/Version of HMA26.5 Installed" on page 7-36 and to Figure 7-16 on page 7-37.

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Replaceable Parts
Replaceable Parts Listings

Figure 6-20 Bottom RF Cables, Option 210, S/N Prefixes <6021

N5227_001_612

Bottom Ribbon Cables and Wire Harnesses, Option 210, S/N Prefixes <6021 ${ }^{1}$

Reference Designator	Type $^{\text {a }}$	Part Number	Description
(1)	10R	N5242-60005	Rear-panel PWR I/0 to A23 test set motherboard J301
(2)	$3 W$	N5247-60016	A23 test set motherboard J221 to ports 1 LED board J1
(3)	$30 R$	N5247-60018	A60 port 1 70 GHz doubler J1 to A23 test set motherboard J4
(4)	$3 W$	N5247-60016	A23 test set motherboard J222 to ports 2 LED board J1
(5)	$30 R$	N5247-60018	A63 port 2 70 GHz doubler J1 to A23 test set motherboard J6
(6)	$24 R$	N5247-60022	A23 test set motherboard J209 to A25 HMA26.5 J1
(7)	100R	N5242-60004	A18 system motherboard J1 to A23 test set motherboard J1 to
A24 IF multiplexer board J1			
(9)	25R	E4410-60160	A18 system motherboard J13 to A23 test set motherboard J545
(10)	36R	8121-0834	Rear-panel HANDLER I/0 to A23 test set motherboard J400

a. $n \mathrm{R}=\mathrm{n}$ wires in a ribbon (flat) cable; $\mathrm{nW}=\mathrm{n}$ wires in a wire harness

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Figure 6-21 Bottom Ribbon Cables and Wire Harnesses, Option 210, S/N Prefixes <6021

(Some parts removed for clarity.)
N5227_001_613

2-Port Configuration, Option 219, Serial Number Prefixes <6021
 Bottom Assemblies, Option 219, S/N Prefixes <6021

Reference Designator	Part Number ${ }^{\text {a }}$	Qty	Description
A23	$\begin{aligned} & \text { N5245-60157 } \\ & \text { Was N5247-60001 } \end{aligned}$	1	Test set motherboard
A24	$\begin{aligned} & \text { N5240-60062b } \\ & \text { Was N5240-60045 } \end{aligned}$	1	IF multiplexer board ${ }^{\text {c }}$
A25	$\begin{aligned} & \text { N5240-60101d } \\ & \text { Was:5087-7765 } \end{aligned}$	1	LO Multiplier/amplifier 26.5 (HMA26.5)
A27	5087-7337	1	Mixer brick (1)
$\begin{aligned} & \text { A29 } \\ & \text { A32 } \end{aligned}$	5087-7744	2	Test port 1 receiver coupler Test port 2 receiver coupler
$\begin{aligned} & \text { A33 } \\ & \text { A36 } \end{aligned}$	5087-7778	2	Test port 1 coupler Test port 2 coupler
A37	5087-7759	1	Reference mixer switch
$\begin{aligned} & \hline \text { A38 } \\ & \text { A41 } \end{aligned}$	$\begin{aligned} & \text { 84905-60004 } \\ & \text { Was: } 84905-60002 \end{aligned}$	2	Test port 1 source attenuator Test port 2 source attenuator
$\begin{aligned} & \text { A42 } \\ & \text { A45 } \end{aligned}$	5087-7732	2	Test port 1 bias tee Test port 2 bias tee
$\begin{aligned} & \text { A46 } \\ & \text { A49 } \end{aligned}$	84905-60004 Was: 84905-60002	2	Port 1 receiver attenuator Port 2 receiver attenuator
$\begin{aligned} & \text { A60 } \\ & \text { A63 } \end{aligned}$	5087-7336	2	Port 170 GHz doubler Port 270 GHz doubler
(1)	N5240-60058	2	Front-panel LED board

a. Part numbers in italic typeface are for rebuilt exchange assemblies. Refer to "Rebuilt-Exchange Assemblies" on page 6-4.
b. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.
C. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.
d. The A26 splitter (5067-4086) and N5247-20111, N5245-20022, N5245-20023, and N5247-20110 cables are only used with a legacy HMA26.5 p/n: 5087-7765. The N5240-20125 and N5247-20185 cables are used only with the new N5240-60101 HMA-26.5. Discard any cables that are not used. If you are unclear which HMA26.5 assembly your PNA has installed, refer to Chapter 7 Repairs and Figure 7-16 on page 7-37 and for details on A26 splitter and cabling, refer to your option-model in Chapter 6 " 2 -Port Configurations, Serial Number Prefix <6021" on page 6-30 and "4-Port Configuration, Serial Number Prefix <6021" on page 6-115.

Figure 6-22 Bottom Assemblies, Option 219, S/N Prefixes <6021

Replaceable Parts
Replaceable Parts Listings

Bottom RF Cables, Option 219, S/N Prefixes <6021 ${ }^{1}$

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Qty	Description
W12	SR	N5247-20059	1	A60 port 170 GHz doubler to W11
W14	SR	N5247-20072	1	A60 port 170 GHz doubler to W13
W24	SR	N5247-20061	1	A63 port 270 GHz doubler to W23
W26	SR	N5247-20051	1	A63 port 270 GHz doubler to W25
W27	SR	N5247-20044	1	A60 port 170 GHz doubler to A29 port 1 receiver coupler
W30	SR	N5247-20043	1	A63 port 270 GHz doubler to A32 port 2 receiver coupler
W33	SR	N5247-20079	1	A29 port 1 receiver coupler to A37 reference mixer switch
W34	SR	N5247-20039	1	A33 port 1 coupler to front-panel REF 1 CPLR ARM
W45	SR	N5247-20058	1	A32 port 2 receiver coupler to front-panel REF 2 SOURCE OUT
W46	SR	N5247-20041	1	A36 port 2 coupler to front-panel port 2 CPLR ARM
W51	SR	N5247-20011	1	Front-panel REF 1 SOURCE OUT to A37 ref mixer switch
W52	SR	N5247-20012	1	REF 1 RCVR R1 IN to A37 reference mixer switch
W53	SR	N5247-20048	1	A37 reference mixer switch to A27 mixer brick (R1)
W56	SR	N5247-20045	1	A27 mixer brick (R2) to front-panel REF 2 RCVR R2 IN
W60	SR	N5247-20107	6	Front-panel jumper
W61	SR	Refer to "Top	able	All Cables-All Options, S/N Prefixes <6021" on page 6-20.
W66	SR	N5247-20109	1	W65 to rear-panel EXT TSET DRIVE RF OUT (J6)
W69	SR	N5247-20112	1	A27 mix brick to rear-panel EXT TSET DRIVE LO OUT (J5)
W70 ${ }^{\text {b }}$	SR	N5247-20100	1	A25 HMA26.5 to A27 mixer brick
W71	F	N5242-60017	1	A27 mixer brick (A) to A24 IF multiplexer (P1)
W74	F	N5242-60018	1	A27 mixer brick (B) to A24 IF multiplexer (P201)
$\begin{aligned} & \text { W79-83, } \\ & \text { W91- 92, } \\ & \text { W97- } 98 \end{aligned}$	F	Refer to "Top Cables, All Cables-All Options, S/N Prefixes <6021" on page 6-20.		
W101	SR	N5247-20083	1	A29 port 1 receiver coupler to A38 port 1 source attenuator
W102	SR	N5247-20014	1	A38 port 1 source attenuator to front-panel port 1 SOURCE OUT
W103	SR	N5247-20081	1	Front-panel port 1 CPLR THRU to A42 port 1 bias tee
W104	SR	N5247-20040	1	A33 port 1 coupler to A42 port 1 bias tee

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Reference Designator	Type $^{\text {a }}$	Part Number	Qty	Description
W113	SR	N5247-20083	1	A32 port 2 receiver coupler to A41 port 2 source attenuator
W114	SR	N5247-20034	1	A41 port 2 source attenuator to front-panel port 2 SOURCE OUT
W115	SR	N5247-20027	1	Front-panel port 2 CPLR THRU to A45 port 2 bias tee
W116	SR	N5247-20042	1	A36 port 2 coupler to A45 port 2 bias tee
W117	SR	N5247-20013	1	Front-panel port 1 RCVR A IN to A46 port 1 receiver attenuator
W118	SR	N5247-20047	1	A46 port 1 receiver attenuator to A27 mixer brick (A)
W123	SR	N5247-20020	1	Port 2 RCVR B IN to A49 port 2 receiver attenuator
W124	SR	N5247-20046	1	A49 port 2 receiver attenuator to A27 mixer brick (B)
W147	F	N5242-60025	1	A27 mixer brick (R1) to A24 IF multiplexer (P601)
W148	F	N5242-60026	1	A27 mixer brick (R2) to A24 IF multiplexer (P801)
W149 \&	F	Refer to "Top Cables, All Cables-All Options, S/N Prefixes <6021" on page 6-20.		
W150				

a. $\mathrm{SR}=$ semirigid coaxial cable; $\mathrm{F}=$ flexible coaxial cable
b. On legacy instruments using the 5087-7765 HMA26.5, the N5245-20100 cable is used only on 2-port instruments. On instruments with a new HMA26.5 the N5245-20100 cable is used in all instruments. If you are unclear which HMA26.5 assembly your PNA has installed, refer to "Verify the Model/Version of HMA26.5 Installed" on page 7-36 and to Figure 7-16 on page 7-37.

Figure 6-23 Bottom RF Cables, Option 219, S/N Prefixes <6021

Bottom Ribbon Cables and Wire Harnesses, Option 219, S/N Prefixes <6021 ${ }^{1}$

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Description
(1)	10R	N5242-60005	Rear-panel PWR I/O to A23 test set motherboard J301
(2)	10R	N5247-60020	A23 test set motherboard J205 to A46 port 1 receiver attenuator
(3)	16R	N5245-60006	A23 test set motherboard J549 to A38 port 1 source attenuator
(4)	$3 W$	N5247-60016	A23 test set motherboard J221 to port 1 LED board J1
(5)	2W	8121-0966	A23 test set motherboard J554 to A37 reference mixer switch
(6)	30R	N5247-60018	A60 port 170 GHz doubler J1 to A23 test set motherboard J 4
(7)	2W	N5247-60021	A23 test set motherboard J541 to A42 port 1 bias tee
(8)	$3 W$	N5247-60016	A23 test set motherboard J222 to port 2 LED board J1
(9)	2W	N5247-60021	A23 test set motherboard J542 to A45 port 2 bias tee
(10)	16R	N5245-60006	A23 test set motherboard J546 to A41 port 2 source attenuator
(11)	10R	N5247-60020	A23 test set motherboard J208 to A49 port 2 receiver attenuator
(12)	30R	N5247-60018	A63 port 270 GHz doubler J1 to A23 test set motherboard J6
(13)	24R	N5247-60022	A23 test set motherboard J209 to A25 HMA26.5 J1
(14)	100R	N5242-60004	A18 system motherboard J1 to A23 test set motherboard J1 to A24 IF multiplexer board J1
(15)	25R	E4410-60160	A18 system motherboard J13 to A23 test set motherboard J545
(16)	36R	8121-0834	Rear-panel HANDLER I/O to A23 test set motherboard J400
(17)	20R	N5247-60014	A23 test set motherboard J551 to A27 mixer brick (1) J52

a. $n \mathrm{n}=\mathrm{n}$ wires in a ribbon (flat) cable; $\mathrm{nW}=\mathrm{n}$ wires in a wire harness

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Figure 6-24 Bottom Ribbon Cables and Wire Harnesses, Option 219, S/N Prefixes <6021

2-Port Configuration, Option 220, Serial Number Prefixes <6021
 Bottom Assemblies, Option 220, S/N Prefixes <6021

Reference Designator	Part Number ${ }^{\text {a }}$	Qty	Description
A23	N5245-60157 Was N5247-60001	1	Test set motherboard
A24	$\begin{aligned} & \text { N5240-60062b } \\ & \text { Was N5240-60045 } \end{aligned}$	1	IF multiplexer board ${ }^{\text {c }}$
A25	$\begin{aligned} & \text { N5240-60101d } \\ & \text { Was:5087-7765 } \end{aligned}$	1	LO Multiplier/amplifier 26.5 (HMA26.5)
A27	5087-7337	1	Mixer brick (1)
$\begin{aligned} & \text { A29 } \\ & \text { A32 } \end{aligned}$	5087-7744	2	Test port 1 receiver coupler Test port 2 receiver coupler
$\begin{aligned} & \text { A33 } \\ & \text { A36 } \end{aligned}$	5087-7778	2	Test port 1 coupler Test port 2 coupler
A37	5087-7759	1	Reference mixer switch
$\begin{aligned} & \hline \text { A38 } \\ & \text { A41 } \end{aligned}$	84905-60004 Was: 84005-60002	2	Test port 1 source attenuator Test port 2 source attenuator
$\begin{aligned} & \hline \text { A46 } \\ & \text { A49 } \end{aligned}$	84905-60004 Was: 84905-60002	2	Port 1 receiver attenuator Port 2 receiver attenuator
$\begin{aligned} & \text { A60 } \\ & \text { A63 } \end{aligned}$	5087-7336	2	Port 170 GHz doubler Port 270 GHz doubler
A75	N5291-60005	1	LFE PC board - 2-port
A71	5087-7403	2	Port 1 bias combiner
A74			Port 2 bias combiner
(1)	N5240-60058	2	Front-panel LED board

a. Part numbers in italic typeface are for rebuilt exchange assemblies. Refer to "Rebuilt-Exchange Assemblies" on page 6-4.
b. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.
C. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.
d. The A26 splitter (5067-4086) and N5247-20111, N5245-20022, N5245-20023, and N5247-20110 cables are only used with a legacy HMA26.5 p/n: 5087-7765. The N5240-20125 and N5247-20185 cables are used only with the new N5240-60101 HMA-26.5. Discard any cables that are not used. If you are unclear which HMA26.5 assembly your PNA has installed, refer to Chapter 7 Repairs and Figure 7-16 on page 7-37 and for details on A26 splitter and cabling, refer to your option-model in Chapter 6 " 2 -Port Configurations, Serial Number Prefix <6021" on page 6-30 and "4-Port Configuration, Serial Number Prefix <6021" on page 6-115.

Figure 6-25 Bottom Assemblies, Option 220, S/N Prefixes <6021

Replaceable Parts
Replaceable Parts Listings

Bottom RF Cables, Option 220, S/N Prefixes <6021 ${ }^{1}$

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Qty	Description
W12	SR	N5247-20059	1	A60 port 170 GHz doubler to W11
W14	SR	N5247-20072	1	A60 port 170 GHz doubler to W13
W24	SR	N5247-20061	1	A63 port 270 GHz doubler to W23
W26	SR	N5247-20051	1	A63 port 270 GHz doubler to W25
W27	SR	N5247-20044	1	A60 port 170 GHz doubler to A29 port 1 receiver coupler
W30	SR	N5247-20043	1	A63 port 270 GHz doubler to A32 port 2 receiver coupler
W33	SR	N5247-20079	1	A29 port 1 receiver coupler to A37 reference mixer switch
W34	SR	N5247-20039	1	A33 port 1 coupler to front-panel REF 1 CPLR ARM
W45	SR	N5247-20058	1	A32 port 2 receiver coupler to front-panel REF 2 SOURCE OUT
W46	SR	N5247-20041	1	A36 port 2 coupler to front-panel port 2 CPLR ARM
W51	SR	N5247-20011	1	Front-panel REF 1 SOURCE OUT to A37 ref mixer switch
W52	SR	N5247-20012	1	REF 1 RCVR R1 IN to A37 reference mixer switch
W53	SR	N5247-20048	1	A37 reference mixer switch to A27 mixer brick (R1)
W56	SR	N5247-20045	1	A27 mixer brick (R2) to front-panel REF 2 RCVR R2 IN
W60	SR	N5247-20107	6	Front-panel jumper
W61	SR	Refer to "Top C	ables	All Cables-All Options, S/N Prefixes <6021" on page 6-20.
W66	SR	N5247-20109	1	W65 to rear-panel EXT TSET DRIVE RF OUT (J6)
W69	SR	N5247-20112	1	A27 mix brick to rear-panel EXT TSET DRIVE LO OUT (J5)
W70 ${ }^{\text {b }}$	SR	N5247-20100	1	A25 HMA26.5 to A27 mixer brick
W71	F	N5242-60017	1	A27 mixer brick (A) to A24 IF multiplexer (P1)
W74	F	N5242-60018		A27 mixer brick (B) to A24 IF multiplexer (P201)
$\begin{aligned} & \text { W79-83, } \\ & \text { W91- 92, } \\ & \text { W97- } 98 \end{aligned}$	F	Refer to "Top Cables, All Cables-All Options, S/N Prefixes <6021" on page 6-20.		
W101	SR	N5247-20083	1	A29 port 1 receiver coupler to A38 port 1 source attenuator
W102	SR	N5247-20014	1	A38 port 1 source attenuator to front-panel port 1 SOURCE OUT
W113	SR	N5247-20083	1	A32 port 2 receiver coupler to A41 port 2 source attenuator
W114	SR	N5247-20034	1	A41 port 2 source attenuator to front-panel port 2 SOURCE OUT

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Qty	Description
W117	SR	N5247-20013	1	Front-panel port 1 RCVR A IN to A46 port 1 receiver attenuator
W118	SR	N5247-20047	1	A46 port 1 receiver attenuator to A 27 mixer brick (A)
W123	SR	N5247-20020	1	Port 2 RCVR B IN to A49 port 2 receiver attenuator
W124	SR	N5247-20046	1	A49 port 2 receiver attenuator to A27 mixer brick (B)
W147	F	N5242-60025	1	A27 mixer brick (R1) to A24 IF multiplexer (P601)
W148	F	N5242-60026	1	A27 mixer brick (R2) to A24 IF multiplexer (P801)
 W150	F	Refer to "Top C	ables,	All Cables-All Options, S/N Prefixes <6021" on page 6-20.
W181	SR	N5247-20167	1	Cable, assembly, RF, Front panel CPLR THRU to A71 port 1 bias-T combiner
W187	SR	N5247-20163	1	Cable, assembly, RF, Front panel CPLR THRU to A74 port 2 bias-T combiner
W191W193	F	Refer to "Top C		All Cables-All Options, S/N Prefixes <6021" on page 6-20.
W194	F	N5240-60097	2	Cable, assembly, coaxial LFE (Port 1 bias combiner "RF-IN" to "Port1" A70 LFE board)
W197				Cable, assembly, coaxial LFE (Port 2 bias combiner "RF-IN" to "Port2" A70 LFE board)
W198	SR	N5247-20166	1	Cable, assembly, RF, Front panel coupler to A71 bias-T port 1
W199	SR	N5247-20168	1	Cable, assembly, RF, Front panel coupler to A74 bias-T port 2
W211	F	8120-5014	1	RF cable, A70 LFE J14 to A24 IF Multiplexer P4
W212	F	8120-5017	1	RF cable, A70 LFE J13 to A24 IF Multiplexer P204
W213	F	8120-5014	1	RF cable, A70 LFE J7 to A24 IF Multiplexer P404
W215	F	8120-5021	1	RF cable, A70 LFE J12 to A24 IF Multiplexer P804

a. $\mathrm{SR}=$ semirigid coaxial cable; $\mathrm{F}=$ flexible coaxial cable
b. On legacy instruments using the 5087-7765 HMA26.5, the N5245-20100 cable is used only on 2-port instruments. On instruments with a new HMA26.5 the N5245-20100 cable is used in all instruments. If you are unclear which HMA26.5 assembly your PNA has installed, refer to "Verify the Model/Version of HMA26.5 Installed" on page 7-36 and to Figure 7-16 on page 7-37.

Figure 6-26 Bottom RF Cables, Option 220, S/N Prefixes <6021

Bottom Ribbon Cables and Wire Harnesses, Option 220, S/N Prefixes <6021 ${ }^{1}$

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Description
(1)	10R	N5242-60005	Rear-panel PWR I/O to A23 test set motherboard J301
(2)	10R	N5247-60020	A23 test set motherboard J205 to A46 port 1 receiver attenuator
(3)	16R	N5245-60006	A23 test set motherboard J549 to A38 port 1 source attenuator
(4)	3W	N5247-60016	A23 test set motherboard J221 to port 1 LED board J1
(5)	2 W	8121-0966	A23 test set motherboard J554 to A37 reference mixer switch
(6)	30R	N5247-60018	A60 port 170 GHz doubler J1 to A23 test set motherboard J4
(7)	2W	$\begin{aligned} & \text { N5240-60091 } \\ & \text { P/O Bias } \\ & \text { Combiner } \end{aligned}$	A23 test set motherboard J541 to A71 port 1 bias tee combiner
(8)	$3 W$	N5247-60016	A23 test set motherboard J222 to port 2 LED board J1
(9)	2 W	$\begin{aligned} & \hline \text { N5240-60091 } \\ & \text { P/O Bias } \\ & \text { Combiner } \end{aligned}$	A23 test set motherboard J544 to A74 port 2 bias tee combiner
(10)	16R	N5245-60006	A23 test set motherboard J546 to A41 port 2 source attenuator
(11)	10R	N5247-60020	A23 test set motherboard J208 to A49 port 2 receiver attenuator
(12)	30R	N5247-60018	A63 port 270 GHz doubler J1 to A23 test set motherboard J6
(13)	24R	N5247-60022	A23 test set motherboard J209 to A25 HMA26.5 J1
(14)	100R	N5240-60089	Cable, ribbon assembly - MB/IFMUX/LFE/SMB (A14 system mother board J1 to A19 test set motherboard to A70 LFE board to A20 IF Multiplier board J1)
(15)	25R	E4410-60160	A18 system motherboard J13 to A23 test set motherboard J545
(16)	36R	8121-0834	Rear-panel HANDLER I/O to A23 test set motherboard J400
(17)	20R	N5247-60014	A23 test set motherboard J551 to A27 mixer brick (1) J52

a. $\mathrm{nR}=\mathrm{n}$ wires in a ribbon (flat) cable; $\mathrm{nW}=\mathrm{n}$ wires in a wire harness

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Figure 6-27 Bottom Ribbon Cables and Wire Harnesses, Option 220, S/N Prefixes <6021

2-Port Configurations, Serial Number Prefix ≥ 6021

This section contains the following:

- "2-Port Configuration, Option 200, Serial Number Prefixes ≥ 6021 " on page 6-72
- "2-Port Configuration, Option 201, Serial Number Prefixes ≥ 6021 " on page 6-80
- "2-Port Configuration, Option 205, S/N Prefixes ≥ 6021 " on page 6-87
- "2-Port Configuration, Option 210, S/N Prefixes ≥ 6021 " on page 6-94
- "2-Port Configuration, Option 219, Serial Number Prefixes ≥ 6021 " on page 6-100
- "2-Port Configuration, Option 220, Serial Number Prefixes ≥ 6021 " on page 6-107
- See also, "2-Port Configurations, Serial Number Prefix <6021" on page 6-30.

2-Port Configuration, Option 200, Serial Number Prefixes ≥ 6021
Bottom Assemblies, Standard 2-Port Configuration, Option 200, S/N Prefixes ≥ 6021

Reference Designator	Part Number ${ }^{\text {a }}$	Qty	Description
A23	N5245-60157 Was N524-60001	1	Test set motherboard
A24	$\begin{aligned} & \text { N5240-60062b } \\ & \text { Was N5240-60045 } \end{aligned}$	1	IF multiplexer board ${ }^{\text {c }}$
A25	$\begin{aligned} & \text { N5240-60101d } \\ & \text { Was:5087-7765 } \end{aligned}$	1	LO Multiplier/amplifier 26.5 (HMA26.5)
A27	5087-7337	1	Mixer brick (1)
$\begin{aligned} & \text { A29 } \\ & \text { A32 } \end{aligned}$	5087-7744	2	Test port 1 receiver coupler Test port 2 receiver coupler
$\begin{aligned} & \hline \text { A33 } \\ & \text { A36 } \end{aligned}$	5087-7778	2	Test port 1 coupler Test port 2 coupler
$\begin{aligned} & \hline \text { A60 } \\ & \text { A63 } \end{aligned}$	5087-7336	2	Port 170 GHz doubler Port 270 GHz doubler
A68	08490-60037	1	3-dB attenuator (A27 mixer brick (R1)
(1)	N5240-60058	2	Front-panel LED board

a. Part numbers in italic typeface are for rebuilt exchange assemblies. Refer to "Rebuilt-Exchange Assemblies" on page 6-4.
b. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.
c. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.
d. The A26 splitter (5067-4086) and N5247-20111, N5245-20022, N5245-20023, and N5247-20110 cables are only used with a legacy HMA26.5 p/n: 5087-7765. The N5240-20125 and N5247-20185 cables are used only with the new N5240-60101 HMA-26.5. Discard any cables that are not used. If you are unclear which HMA26.5 assembly your PNA has installed, refer to Chapter 7 Repairs and Figure 7-16 on page 7-37 and for details on A26 splitter and cabling, refer to your option-model in Chapter 6 " 2 -Port Configurations, Serial Number Prefix <6021" on page 6-30 and "4-Port Configuration, Serial Number Prefix <6021" on page 6-115.

Figure 6-28 Bottom Assemblies, Standard 2-Port Configuration, Option 200, S/N Prefixes ≥ 6021

Replaceable Parts
Replaceable Parts Listings

Bottom RF Cables, Standard 2-Port Configuration, Option 200, S/N Prefixes $\geq 6021^{1}$

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Qty	Description
W12	SR	N5227-20041	1	A60 port 170 GHz doubler to W11
W14	SR	N5247-20072	1	A60 port 170 GHz doubler to W13
W24	SR	N5247-20061	1	A63 port 270 GHz doubler to W23
W26	SR	N5247-20051	1	A63 port 270 GHz doubler to W25
W27	SR	N5227-20044	1	A60 port 170 GHz doubler to A29 port 1 receiver coupler
W30	SR	N5227-20045	1	A63 port 270 GHz doubler to A32 port 2 receiver coupler
W61	SR	Refer to "Top	les	Cables-All Options, S/N Prefixes ≥ 6021 " on page 6-26.
W70 ${ }^{\text {b }}$	SR	N5247-20100	1	A25 HMA26.5 to A27 mixer brick
W66	SR	N5247-20109	1	W65 to rear-panel EXT TSET DRIVE RF OUT (J6)
W69	SR	N5247-20112	1	A27 mix brick to rear-panel EXT TSET DRIVE LO OUT (J5)
W71	F	N5242-60017	1	A27 mixer brick (A) to A24 IF multiplexer (P1)
W74	F	N5242-60018	1	A27 mixer brick (B) to A24 IF multiplexer (P201)
$\begin{aligned} & \text { W79-83, } \\ & \text { W91- 92, } \\ & \text { W97- } 98 \end{aligned}$	F	Refer to "Top Ca	bles,	All Cables-All Options, S/N Prefixes ≥ 6021 " on page 6-26.
W127	SR	N5227-20003	1	A29 port 1 receiver coupler to A27 mixer brick (R1)
W130	SR	N5227-20006	1	A32 port 2 receiver coupler to A27 mixer brick (R2)
W131	SR	N5227-20004	1	A29 port 1 receiver coupler to A33 port 1 coupler
W134	SR	N5227-20005	1	A32 port 2 receiver coupler to A36 port 2 coupler
W135	SR	N5227-20007	1	A33 port 1 coupler to A27 mixer brick (A)
W138	SR	N5227-20008	1	A36 port 2 coupler to A 27 mixer brick (B)
W147	F	N5242-60025	1	A27 mixer brick (R1) to A24 IF multiplexer (P601)
W148	F	N5242-60026	1	A27 mixer brick (R2) to A24 IF multiplexer (P801)
 W150	F	Refer to "Top Cables, All Cables-All Options, S/N Prefixes ≥ 6021 " on page 6-26.		

a. $S R=$ semirigid coaxial cable; $F=$ flexible coaxial cable

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.
b. On legacy instruments using the 5087-7765 HMA26.5, the N5245-20100 cable is used only on 2-port instruments. On instruments with a new HMA26.5 the N5245-20100 cable is used in all instruments. If you are unclear which HMA26.5 assembly your PNA has installed, refer to "Verify the Model/Version of HMA26.5 Installed" on page 7-36 and to Figure 7-16 on page 7-37.

Replaceable Parts
Replaceable Parts Listings

Figure 6-29 Bottom RF Cables, Standard 2-Port Configuration, Option 200, S/N Prefixes ≥ 6021

(Some parts removed for clarity.)

Bottom Ribbon Cables and Wire Harnesses, 2-Port, Option 200, S/N Prefixes $\geq 6021^{1}$

Reference Designator	Type $^{\text {a }}$	Part Number	Description
(1)	10R	N5242-60005	Rear-panel PWR I/O to A23 test set motherboard J301
(2)	$3 W$	N5247-60016	A23 test set motherboard J221 to ports 1 LED board J1
(3)	30R	N5247-60018	A60 port 1 70 GHz doubler J1 to A23 test set motherboard J4
(4)	$3 W$	N5247-60016	A23 test set motherboard J222 to ports 2 LED board J1
(5)	$30 R$	N5247-60018	A63 port 2 70 GHz doubler J1 to A23 test set motherboard J6
(6)	24R	N5247-60022	A23 test set motherboard J209 to A25 HMA26.5 J1
(7)	100R	N5242-60004	A18 system motherboard J1 to A23 test set motherboard J1 to
(8)	25R	E4410-60160 multiplexer board J1	A18 system motherboard J13 to A23 test set motherboard J545
(9)	36R	8121-0834	Rear-panel HANDLER I/0 to A23 test set motherboard J400
(10	20R	N5247-60014	A23 test set motherboard J551 to A27 mixer brick (1) J52

a. $n \mathrm{R}=\mathrm{n}$ wires in a ribbon (flat) cable; $\mathrm{nW}=\mathrm{n}$ wires in a wire harness

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Figure 6-30 Bottom Ribbon Cables and Wire Harnesses, Standard 2-Port Configuration, Option 200, S/N Prefixes ≥ 6021

(Some parts removed for clarity.)
N5227_001_607

2-Port Configuration, Option 201, Serial Number Prefixes ≥ 6021

Bottom Assemblies, Option 201, S/N Prefixes 26021

Reference Designator	Part Number ${ }^{\text {a }}$	Qty	Description
A23	N5245-60157 Was N5247-60001	1	Test set motherboard
A24	$\begin{aligned} & \hline \text { N5240-60062b } \\ & \text { Was N5240-60045 } \end{aligned}$	1	IF multiplexer board ${ }^{\text {c }}$
A25	$\begin{aligned} & \text { N5240-60101d } \\ & \text { Was:5087-7765 } \end{aligned}$	1	LO Multiplier/amplifier 26.5 (HMA26.5)
A27	5087-7337	1	Mixer brick (1)
$\begin{aligned} & \text { A29 } \\ & \text { A32 } \end{aligned}$	5087-7744	2	Test port 1 receiver coupler Test port 2 receiver coupler
$\begin{aligned} & \hline \text { A33 } \\ & \text { A36 } \end{aligned}$	5087-7778	2	Test port 1 coupler Test port 2 coupler
A37	5087-7759	1	Reference mixer switch
$\begin{aligned} & \hline \text { A60 } \\ & \text { A63 } \end{aligned}$	5087-7336	2	Port 170 GHz doubler Port 270 GHz doubler
(1)	N5240-60058	2	Front-panel LED board

a. Part numbers in italic typeface are for rebuilt exchange assemblies. Refer to "Rebuilt-Exchange Assemblies" on page 6-4.
b. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.
C. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.
d. The A26 splitter (5067-4086) and N5247-20111, N5245-20022, N5245-20023, and N5247-20110 cables are only used with a legacy HMA26.5 p/n: 5087-7765. The N5240-20125 and N5247-20185 cables are used only with the new N5240-60101 HMA-26.5. Discard any cables that are not used. If you are unclear which HMA26.5 assembly your PNA has installed, refer to Chapter 7 Repairs and Figure 7-16 on page 7-37 and for details on A26 splitter and cabling, refer to your option-model in Chapter 6 " 2 -Port Configurations, Serial Number Prefix <6021" on page 6-30 and "4-Port Configuration, Serial Number Prefix <6021" on page 6-115.

Figure 6-31 Bottom Assemblies, Option 201, S/N Prefixes ≥ 6021

Replaceable Parts
Replaceable Parts Listings

Bottom RF Cables, Option 201, S/N Prefixes $\geq 6021^{1}$

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Qty	Description
W12	SR	N5247-20059	1	A60 port 170 GHz doubler to W11
W14	SR	N5247-20072	1	A60 port 170 GHz doubler to W13
W24	SR	N5247-20061	1	A63 port 270 GHz doubler to W23
W26	SR	N5247-20051	1	A63 port 270 GHz doubler to W25
W27	SR	N5247-20074	1	A60 port 170 GHz doubler to A29 port 1 receiver coupler
W30	SR	N5247-20052	1	A63 port 270 GHz doubler to A32 port 2 receiver coupler
W31	SR	N5247-20037	1	A29 port 1 receiver coupler to front-panel port 1 SOURCE OUT
W32	SR	N5247-20049	1	Port 1 CPLR THRU to A33 port 1 coupler
W33	SR	N5247-20056	1	A29 port 1 receiver coupler to A37 reference mixer switch
W34	SR	N5247-20039	1	A33 port 1 coupler to front-panel port 1 CPLR ARM
W43	SR	N5247-20036	1	A32 port 2 receiver coupler to front-panel port 2 SOURCE OUT
W44	SR	N5247-20050	1	Port 2 CPLR THRU to A36 port 2 coupler
W45	SR	N5247-20057	1	A32 port 2 receiver coupler to front-panel REF 2 SOURCE OUT
W46	SR	N5247-20041	1	A36 port 2 coupler to front-panel port 2 CPLR ARM
W47	SR	N5247-20053	1	Port 1 RCVR A IN to A27 mixer brick (A)
W50	SR	N5247-20054	1	Front-panel port 2 RCVR B IN to A27 mixer brick (B)
W51	SR	N5247-20011	1	Front-panel REF 1 SOURCE OUT to A37 ref mixer switch
W52	SR	N5247-20012	1	REF 1 RCVR R1 IN to A37 reference mixer switch
W53	SR	N5247-20048	1	A37 reference mixer switch to A27 mixer brick (R1)
W56	SR	N5247-20055	1	REF 2 RCVR R2 IN to A27 mixer brick (R2)
W60	SR	N5247-20107	6	Front-panel jumper
W61	SR	Refer to "Top	bbles,	All Cables-All Options, S/N Prefixes ≥ 6021 " on page 6-26.
W66	SR	N5247-20109	1	W65 to rear-panel EXT TSET DRIVE RF OUT (J6)
W69	SR	N5247-20112	1	A27 mix brick to rear-panel EXT TSET DRIVE LO OUT (J5)
W70 ${ }^{\text {b }}$	SR	N5247-20100	1	A25 HMA26.5 to A27 mixer brick
W71	F	N5242-60017	1	A27 mixer brick (A) to A24 IF multiplexer (P1)
W74	F	N5242-60018	1	A27 mixer brick (B) to A24 IF multiplexer (P201)

[^6] page 6-239.

Reference Designator	Type $^{\text {a }}$	Part Number	Qty	Description
W79-83, W91- 92,	F	Refer to "Top Cables, All Cables-All Options, S/N Prefixes $\geq 6021 "$ on page 6-26.		
W97-98				
W147	F	N5242-60025	1	A27 mixer brick (R1) to A24 IF multiplexer (P601)
W148	F	N5242-60026	1	A27 mixer brick (R2) to A24 IF multiplexer (P801)
W149 \& F Refer to "Top Cables, All Cables-All Options, S/N Prefixes $\mathbf{2 6 0 2 1 " ~ o n ~ p a g e ~ 6 - 2 6 . ~}$ W150				

a. $S R=$ semirigid coaxial cable; $F=$ flexible coaxial cable
b. On legacy instruments using the 5087-7765 HMA26.5, the N5245-20100 cable is used only on 2-port instruments. On instruments with a new HMA26.5 the N5245-20100 cable is used in all instruments. If you are unclear which HMA26.5 assembly your PNA has installed, refer to "Verify the Model/Version of HMA26.5 Installed" on page 7-36 and to Figure 7-16 on page 7-37.

Replaceable Parts
Replaceable Parts Listings

Figure 6-32 Bottom RF Cables, Option 201, S/N Prefixes ≥ 6021

Bottom Ribbon Cables and Wire Harnesses, Option 201, S/N Prefixes $\geq 6021^{1}$

Reference Designator	Type	Part Number	Description
(1)	10R	N5242-60005	Rear-panel PWR I/O to A23 test set motherboard J301
(2)	$3 W$	N5247-60016	A23 test set motherboard J221 to ports 1 LED board J1
(3)	$2 W$	$8121-0966$	A23 test set motherboard J554 to A37 reference mixer switch
(4)	$30 R$	N5247-60018	A60 port 1 70 GHz doubler J1 to A23 test set motherboard J4
(5)	$3 W$	N5247-60016	A23 test set motherboard J222 to ports 2 LED board J1
(6)	$30 R$	N5247-60018	A63 port 2 70 GHz doubler J1 to A23 test set motherboard J6
(7)	$24 R$	N5247-60022	A23 test set motherboard J209 to A25 HMA26.5 J1
(8)	100R	N5242-60004	A18 system motherboard J1 to A23 test set motherboard J1 to
A24 IF multiplexer board J1			
(9)	$25 R$	E4410-60160	A18 system motherboard J13 to A23 test set motherboard J545
(10)	36R	$8121-0834$	Rear-panel HANDLER I/0 to A23 test set motherboard J400
(11)	20R	N5247-60014	A23 test set motherboard J551 to A27 mixer brick (1) J52

a. $n \mathrm{n}=\mathrm{n}$ wires in a ribbon (flat) cable; $\mathrm{nW}=\mathrm{n}$ wires in a wire harness

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Figure 6-33

(Some parts removed for clarity.)
N5227_001_610

2-Port Configuration, Option 205, S/N Prefixes ≥ 6021

Bottom Assemblies, Option 205, S/N Prefixes ≥ 6021

Reference Designator	Part Number ${ }^{\text {a }}$	Qty	Description
A23	N5245-60157 Was N5247-60001	1	Test set motherboard
A24	$\begin{aligned} & \text { N5240-60062 } \\ & \text { Was N5240-60045 } \end{aligned}$	1	IF multiplexer board ${ }^{\text {c }}$
A25	${ }^{\text {N5240-60101d }}$	1	LO Multiplier/amplifier 26.5 (HMA26.5)
A27	5087-7337	1	Mixer brick (1)
$\begin{aligned} & \text { A29 } \\ & \text { A32 } \end{aligned}$	5087-7744	2	Test port 1 receiver coupler Test port 2 receiver coupler
$\begin{aligned} & \text { A33 } \\ & \text { A36 } \end{aligned}$	5087-7778	2	Test port 1 coupler Test port 2 coupler
A37	5087-7759	1	Reference mixer switch
$\begin{aligned} & \text { A60 } \\ & \text { A63 } \end{aligned}$	5087-7336	2	Port 170 GHz doubler Port 270 GHz doubler
A75	N5291-60005	1	LFE PC board - 2-port
A71	5087-7403	2	Port 1 bias combiner
A74			Port 2 bias combiner
(1)	N5240-60058	2	Front-panel LED board

a. Part numbers in italic typeface are for rebuilt exchange assemblies. Refer to "Rebuilt-Exchange Assemblies" on page 6-4.
b. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.
c. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.
d. The A26 splitter (5067-4086) and N5247-20111, N5245-20022, N5245-20023, and N5247-20110 cables are only used with a legacy HMA26.5 p/n: 5087-7765. The N5240-20125 and N5247-20185 cables are used only with the new N5240-60101 HMA-26.5. Discard any cables that are not used. If you are unclear which HMA26.5 assembly your PNA has installed, refer to Chapter 7 Repairs and Figure 7-16 on page 7-37 and for details on A26 splitter and cabling, refer to your option-model in Chapter 6 "2-Port Configurations, Serial Number Prefix <6021" on page 6-30 and "4-Port Configuration, Serial Number Prefix <6021" on page 6-115.

Figure 6-34 Bottom Assemblies, Option 205, S/N Prefixes ≥ 6021

Replaceable Parts
Replaceable Parts Listings

Bottom RF Cables, Option 205, S/N Prefixes $\geq 6021^{1}$

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Qty	Description
W12	SR	N5247-20059	1	A60 port 170 GHz doubler to W11
W14	SR	N5247-20072	1	A60 port 170 GHz doubler to W13
W24	SR	N5247-20061	1	A63 port 270 GHz doubler to W23
W26	SR	N5247-20051	1	A63 port 270 GHz doubler to W25
W27	SR	N5247-20074	1	A60 port 170 GHz doubler to A29 port 1 receiver coupler
W30	SR	N5247-20052	1	A63 port 270 GHz doubler to A32 port 2 receiver coupler
W31	SR	N5247-20037	1	A29 port 1 receiver coupler to front-panel port 1 SOURCE OUT
W33	SR	N5247-20056	1	A29 port 1 receiver coupler to A37 reference mixer switch
W34	SR	N5247-20039	1	A33 port 1 coupler to front-panel port 1 CPLR ARM
W43	SR	N5247-20036	1	A32 port 2 receiver coupler to front-panel port 2 SOURCE OUT
W45	SR	N5247-20057	1	A32 port 2 receiver coupler to front-panel REF 2 SOURCE OUT
W46	SR	N5247-20041	1	A36 port 2 coupler to front-panel port 2 CPLR ARM
W47	SR	N5247-20053	1	Port 1 RCVR A IN to A27 mixer brick (A)
W50	SR	N5247-20054	1	Front-panel port 2 RCVR B IN to A27 mixer brick (B)
W51	SR	N5247-20011	1	Front-panel REF 1 SOURCE OUT to A37 ref mixer switch
W52	SR	N5247-20012	1	REF 1 RCVR R1 IN to A37 reference mixer switch
W53	SR	N5247-20048	1	A37 reference mixer switch to A27 mixer brick (R1)
W56	SR	N5247-20055	1	REF 2 RCVR R2 IN to A27 mixer brick (R2)
W60	SR	N5247-20107	6	Front-panel jumper
W61	SR	Refer to "Top	bles,	All Cables-All Options, S/N Prefixes ≥ 6021 " on page 6-26.
W66	SR	N5247-20109	1	W65 to rear-panel EXT TSET DRIVE RF OUT (J6)
W69	SR	N5247-20112	1	A27 mix brick to rear-panel EXT TSET DRIVE LO OUT (J5)
W70 ${ }^{\text {b }}$	SR	N5247-20100	1	A25 HMA26.5 to A27 mixer brick
W71	F	N5242-60017	1	A27 mixer brick (A) to A24 IF multiplexer (P1)
W74	F	N5242-60018	1	A27 mixer brick (B) to A24 IF multiplexer (P201)
W147	F	N5242-60025	1	A27 mixer brick (R1) to A24 IF multiplexer (P601)
W148	F	N5242-60026	1	A27 mixer brick (R2) to A24 IF multiplexer (P801)

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Qty	Description
 W150	F	Refer to "Top Cables, All Cables-All Options, S/N Prefixes <6021" on page 6-20.		
W79-83, W91-92, W97-98	F	Refer to "Top Cables, All Cables-All Options, S/N Prefixes ≤ 6021 " on page 6-26.		
W181	SR	N5247-20167		Cable, assembly, RF, Front panel CPLR THRU to A71 port 1 bias-T combiner
W187	SR	N5247-20163		Cable, assembly, RF, Front panel CPLR THRU to A74 port 2 bias-T combiner
$\begin{aligned} & \text { W208 \& } \\ & \text { W210 } \end{aligned}$	F	Refer to "Top Cables, All Cables-All Options, S/N Prefixes ≥ 6021 " on page 6-26.		
W194	F	N5240-60097	2	Cable, assembly, coaxial LFE (Port 1 bias combiner "RF-IN" to "Port1" A70 LFE board)
W197				Cable, assembly, coaxial LFE (Port 2 bias combiner "RF-IN" to "Port2" A70 LFE board)
W198	SR	N5247-20166	1	Cable, assembly, RF, Front panel coupler to A71 Bias-T port 1
W199	SR	N5247-20168	1	Cable, assembly, RF, Front panel coupler to A74 bias-T port 2
W211	F	8120-5014	1	RF cable, A70 LFE J14 to A24 IF Multiplexer P4
W212	F	8120-5017	1	RF cable, A70 LFE J13 to A24 IF Multiplexer P204
W213	F	8120-5014		RF cable, A70 LFE J7 to A24 IF Multiplexer P404
W215	F	8120-5021		RF cable, A70 LFE J12 to A24 IF Multiplexer P804

a. $S R=$ semirigid coaxial cable; $F=$ flexible coaxial cable
b. On legacy instruments using the 5087-7765 HMA26.5, the N5245-20100 cable is used only on 2-port instruments. On instruments with a new HMA26.5 the N5245-20100 cable is used in all instruments. If you are unclear which HMA26.5 assembly your PNA has installed, refer to "Verify the Model/Version of HMA26.5 Installed" on page 7-36 and to Figure 7-16 on page 7-37.

Figure 6-35 Bottom RF Cables, Option 205, S/N Prefixes ≥ 6021

Bottom Ribbon Cables and Wire Harnesses, Option 205, S/N Prefixes $\geq 6021^{1}$

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Description
(1)	10R	N5242-60005	Rear-panel PWR I/O to A23 test set motherboard J301
(2)	3W	N5247-60016	A23 test set motherboard J221 to ports 1 LED board J1
(3)	2W	8121-0966	A23 test set motherboard J554 to A37 reference mixer switch
(4)	30R	N5247-60018	A60 port 170 GHz doubler J1 to A23 test set motherboard J4
(5)	3W	N5247-60016	A23 test set motherboard J222 to ports 2 LED board J1
(6)	30R	N5247-60018	A63 port 270 GHz doubler J1 to A23 test set motherboard J6
(7)	24R	N5247-60022	A23 test set motherboard J209 to A25 HMA26.5 J1
(8)	100R	N5240-60089	Cable, ribbon assembly - MB/IFMUX/LFE/SMB (A14 system mother board J 1 to A19 test set motherboard to A70 LFE board to A20 IF Multiplier board J1)
(9)	25R	E4410-60160	A18 system motherboard J13 to A23 test set motherboard J545
(10)	36R	8121-0834	Rear-panel HANDLER I/O to A23 test set motherboard J400
(11)	20R	N5247-60014	A23 test set motherboard J551 to A27 mixer brick (1) J52
(11)	2W	N5240-60091 P/O Bias Combiner	A23 test set motherboard J541 to A71 port 1 bias tee combiner
(13)			A23 test set motherboard J544 to A74 port 2 bias tee combiner

a. $n \mathrm{R}=\mathrm{n}$ wires in a ribbon (flat) cable; $\mathrm{nW}=\mathrm{n}$ wires in a wire harness

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Figure 6-36 Bottom Ribbon Cables and Wire Harnesses, Option 205, S/N Prefixes ≥ 6021

2-Port Configuration, Option 210, S/N Prefixes ≥ 6021

Bottom Assemblies, Option 210, S/N Prefixes ≥ 6021

Reference Designator	Part Number ${ }^{\text {a }}$	Qty	Description
A23	N5245-60157 Was N5247-60001	1	Test set motherboard
A24	$\begin{aligned} & \text { N5240-60062b } \\ & \text { Was N5240-60045 } \end{aligned}$	1	IF multiplexer board ${ }^{\text {c }}$
A25	$\begin{aligned} & \text { N5240-60101d } \\ & \text { Was:5087-7765 } \end{aligned}$	1	LO Multiplier/amplifier 26.5 (HMA26.5)
A27	5087-7337	1	Mixer brick (1)
$\begin{aligned} & \hline \text { A29 } \\ & \text { A32 } \end{aligned}$	5087-7744	2	Test port 1 receiver coupler Test port 2 receiver coupler
$\begin{aligned} & \text { A33 } \\ & \text { A36 } \end{aligned}$	5087-7778	2	Test port 1 coupler Test port 2 coupler
A37	5087-7759	1	Reference mixer switch
$\begin{aligned} & \text { A60 } \\ & \text { A63 } \end{aligned}$	5087-7336	2	Port 170 GHz doubler Port 270 GHz doubler
$\begin{aligned} & \text { A64 } \\ & \text { A67 } \end{aligned}$	08490-60038	2	Test port 16 -dB attenuator Test port 2 6-dB attenuator
A68	08490-60037	1	3-dB attenuator (A27 mixer brick (R1)
(1)	N5240-60058	2	Front-panel LED board

a. Part numbers in italic typeface are for rebuilt exchange assemblies. Refer to "Rebuilt-Exchange Assemblies" on page 6-4.
b. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.
C. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.
d. The A26 splitter (5067-4086) and N5247-20111, N5245-20022, N5245-20023, and N5247-20110 cables are only used with a legacy HMA26.5 p/n: 5087-7765. The N5240-20125 and N5247-20185 cables are used only with the new N5240-60101 HMA-26.5. Discard any cables that are not used. If you are unclear which HMA26.5 assembly your PNA has installed, refer to Chapter 7 Repairs and Figure 7-16 on page 7-37 and for details on A26 splitter and cabling, refer to your option-model in Chapter 6 "2-Port Configurations, Serial Number Prefix <6021" on page 6-30 and "4-Port Configuration, Serial Number Prefix <6021" on page 6-115.

Replaceable Parts
Replaceable Parts Listings

Figure 6-37 Bottom Assemblies, Option 210, S/N Prefixes ≥ 6021

(Some parts removed for clarity.)

Bottom RF Cables, Option 210, S/N Prefixes $\geq 6021^{1}$

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Qty	Description
W12	SR	N5227-20041	1	A60 port 170 GHz doubler to W11
W14	SR	N5247-20072	1	A60 port 170 GHz doubler to W13
W24	SR	N5247-20061	1	A63 port 270 GHz doubler to W23
W26	SR	N5247-20051	1	A63 port 270 GHz doubler to W25
W27	SR	N5227-20044	1	A60 port 170 GHz doubler to A29 port 1 receiver coupler
W30	SR	N5227-20045	1	A63 port 270 GHz doubler to A32 port 2 receiver coupler
W61	SR	Refer to "Top C	,	(ll Cables-All Options, S/N Prefixes ≥ 6021 " on page 6-26.
W66	SR	N5247-20109	1	W65 to rear-panel EXT TSET DRIVE RF OUT (J6)
W69	SR	N5247-20112	1	A27 mix brick to rear-panel EXT TSET DRIVE LO OUT (J5)
W70 ${ }^{\text {b }}$	SR	N5247-20100	1	A25 HMA26.5 to A27 mixer brick
W71	F	N5242-60017	1	A27 mixer brick (A) to A24 IF multiplexer (P1)
W74	F	N5242-60018	1	A27 mixer brick (B) to A24 IF multiplexer (P201)
$\begin{aligned} & \text { W79-83, } \\ & \text { W91- 92, } \\ & \text { W97- 98 } \end{aligned}$	F	Refer to "Top C	able	All Cables-All Options, S/N Prefixes ≥ 6021 " on page 6-26.
W127	SR	N5227-20026	1	A29 port 1 receiver coupler to A27 mixer brick (R1)
W130	SR	N5227-20025	1	A32 port 2 receiver coupler to A27 mixer brick (R2)
W135	SR	N5227-20007	1	A33 port 1 coupler to A27 mixer brick (A)
W138	SR	N5227-20008	1	A36 port 2 coupler to A27 mixer brick (B)
W139	SR	N5227-20024	1	A29 port 1 receiver coupler to A33 port 1 coupler
W145	SR	N5227-20023	1	A32 port 2 receiver coupler to A36 port 2 coupler
W147	F	N5242-60025	1	A27 mixer brick (R1) to A24 IF multiplexer (P601)
W148	F	N5242-60026	1	A27 mixer brick (R2) to A24 IF multiplexer (P801)
W149 \& W150	F	Refer to "Top Cables, All Cables-All Options, S/N Prefixes ≥ 6021 " on page 6-26.		

a. $S R=$ semirigid coaxial cable; $F=$ flexible coaxial cable
b. On legacy instruments using the 5087-7765 HMA26.5, the N5245-20100 cable is used only on 2-port instruments. On instruments with a new HMA26.5 the N5245-20100 cable is used in all instruments. If you are unclear which HMA26.5 assembly your PNA has installed, refer to "Verify the Model/Version of HMA26.5 Installed" on page 7-36 and to Figure 7-16 on page 7-37.

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Replaceable Parts
Replaceable Parts Listings

Figure 6-38 Bottom RF Cables, Option 210, S/N Prefixes ≥ 6021

N5227_001_612

Bottom Ribbon Cables and Wire Harnesses, Option 210, S/N Prefixes $\geq 6021^{1}$

Reference Designator	Type $^{\text {a }}$	Part Number	Description
(1)	10R	N5242-60005	Rear-panel PWR I/O to A23 test set motherboard J301
(2)	$3 W$	N5247-60016	A23 test set motherboard J221 to ports 1 LED board J1
(3)	$30 R$	N5247-60018	A60 port 1 70 GHz doubler J1 to A23 test set motherboard J4
(4)	$3 W$	N5247-60016	A23 test set motherboard J222 to ports 2 LED board J1
(5)	$30 R$	N5247-60018	A63 port 2 70 GHz doubler J1 to A23 test set motherboard J6
(6)	$24 R$	N5247-60022	A23 test set motherboard J209 to A25 HMA26.5 J1
(7)	100R	N5242-60004	A18 system motherboard J1 to A23 test set motherboard J1 to
A24 IF multiplexer board J1			
(8)	25R	E4410-60160	A18 system motherboard J13 to A23 test set motherboard J545
(9)	36R	$8121-0834$	Rear-panel HANDLER I/0 to A23 test set motherboard J400
(10)	20R	N5247-60014	A23 test set motherboard J551 to A27 mixer brick (1) J52

a. $n R=n$ wires in a ribbon (flat) cable; $n W=n$ wires in a wire harness

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Figure 6-39

(Some parts removed for clarity.)
N5227_001_613

2-Port Configuration, Option 219, Serial Number Prefixes ≥ 6021
 Bottom Assemblies, Option 219, S/N Prefixes ≥ 6021

Reference Designator	Part Number ${ }^{\text {a }}$	Qty	Description
A23	N5245-60157 Was N5247-60001	1	Test set motherboard
A24	$N 5240-60062^{b}$ Was N5240-60045	1	IF multiplexer board ${ }^{\text {c }}$
A25	$\begin{aligned} & \hline \text { N5240-60101d } \\ & \text { Was:5087-7765 } \end{aligned}$	1	LO Multiplier/amplifier 26.5 (HMA26.5)
A27	5087-7337	1	Mixer brick (1)
$\begin{aligned} & \hline \text { A29 } \\ & \text { A32 } \end{aligned}$	5087-7744	2	Test port 1 receiver coupler Test port 2 receiver coupler
$\begin{aligned} & \hline \text { A33 } \\ & \text { A36 } \end{aligned}$	5087-7778	2	Test port 1 coupler Test port 2 coupler
A37	5087-7759	1	Reference mixer switch
$\begin{aligned} & \hline \text { A38 } \\ & \text { A41 } \end{aligned}$	84905-60004 Was: 84005-60002	2	Test port 1 source attenuator Test port 2 source attenuator
$\begin{aligned} & \hline \text { A42 } \\ & \text { A45 } \end{aligned}$	5087-7732	2	Test port 1 bias tee Test port 2 bias tee
$\begin{aligned} & \text { A46 } \\ & \text { A49 } \end{aligned}$	84905-60004 Was: 84005-60002	2	Port 1 receiver attenuator Port 2 receiver attenuator
$\begin{aligned} & \hline \text { A60 } \\ & \text { A63 } \end{aligned}$	5087-7336	2	Port 170 GHz doubler Port 270 GHz doubler
(1)	N5240-60058	2	Front-panel LED board

a. Part numbers in italic typeface are for rebuilt exchange assemblies. Refer to "Rebuilt-Exchange Assemblies" on page 6-4.
b. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.
C. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.
d. The A26 splitter (5067-4086) and N5247-20111, N5245-20022, N5245-20023, and N5247-20110 cables are only used with a legacy HMA26.5 p/n: 5087-7765. The N5240-20125 and N5247-20185 cables are used only with the new N5240-60101 HMA-26.5. Discard any cables that are not used. If you are unclear which HMA26.5 assembly your PNA has installed, refer to Chapter 7 Repairs and Figure 7-16 on page 7-37 and for details on A26 splitter and cabling, refer to your option-model in Chapter 6 "2-Port Configurations, Serial Number Prefix <6021" on page 6-30 and "4-Port Configuration, Serial Number Prefix <6021" on page 6-115.

Figure 6-40 Bottom Assemblies, Option 219, S/N Prefixes ≥ 6021

Replaceable Parts
Replaceable Parts Listings

Bottom RF Cables, Option 219, S/N Prefixes $\geq 6021^{1}$

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Qty	Description
W12	SR	N5247-20059	1	A60 port 170 GHz doubler to W11
W14	SR	N5247-20072	1	A60 port 170 GHz doubler to W13
W24	SR	N5247-20061	1	A63 port 270 GHz doubler to W23
W26	SR	N5247-20051	1	A63 port 270 GHz doubler to W25
W27	SR	N5247-20044	1	A60 port 170 GHz doubler to A29 port 1 receiver coupler
W30	SR	N5247-20043	1	A63 port 270 GHz doubler to A32 port 2 receiver coupler
W33	SR	N5247-20079	1	A29 port 1 receiver coupler to A37 reference mixer switch
W34	SR	N5247-20039	1	A33 port 1 coupler to front-panel REF 1 CPLR ARM
W45	SR	N5247-20058	1	A32 port 2 receiver coupler to front-panel REF 2 SOURCE OUT
W46	SR	N5247-20041	1	A36 port 2 coupler to front-panel port 2 CPLR ARM
W51	SR	N5247-20011	1	Front-panel REF 1 SOURCE OUT to A37 ref mixer switch
W52	SR	N5247-20012	1	REF 1 RCVR R1 IN to A37 reference mixer switch
W53	SR	N5247-20048	1	A37 reference mixer switch to A27 mixer brick (R1)
W56	SR	N5247-20045	1	A27 mixer brick (R2) to front-panel REF 2 RCVR R2 IN
W60	SR	N5247-20107	6	Front-panel jumper
W61	SR	Refer to "Top	able	All Cables-All Options, S/N Prefixes ≥ 6021 " on page 6-26.
W66	SR	N5247-20109	1	W65 to rear-panel EXT TSET DRIVE RF OUT (J6)
W69	SR	N5247-20112	1	A27 mix brick to rear-panel EXT TSET DRIVE LO OUT (J5)
W70 ${ }^{\text {b }}$	SR	N5247-20100	1	A25 HMA26.5 to A27 mixer brick
W71	F	N5242-60017	1	A27 mixer brick (A) to A24 IF multiplexer (P1)
W74	F	N5242-60018	1	A27 mixer brick (B) to A24 IF multiplexer (P201)
$\begin{aligned} & \text { W79-83, } \\ & \text { W91- 92, } \\ & \text { W97- } 98 \end{aligned}$	F	Refer to "Top Cables, All Cables-All Options, S/N Prefixes ≥ 6021 " on page 6-26.		
W101	SR	N5247-20083	1	A29 port 1 receiver coupler to A38 port 1 source attenuator
W102	SR	N5247-20014	1	A38 port 1 source attenuator to front-panel port 1 SOURCE OUT
W103	SR	N5247-20081	1	Front-panel port 1 CPLR THRU to A42 port 1 bias tee
W104	SR	N5247-20040	1	A33 port 1 coupler to A42 port 1 bias tee

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Qty	Description
W113	SR	N5247-20083	1	A32 port 2 receiver coupler to A41 port 2 source attenuator
W114	SR	N5247-20034	1	A41 port 2 source attenuator to front-panel port 2 SOURCE OUT
W115	SR	N5247-20027	1	Front-panel port 2 CPLR THRU to A45 port 2 bias tee
W116	SR	N5247-20042	1	A36 port 2 coupler to A45 port 2 bias tee
W117	SR	N5247-20013	1	Front-panel port 1 RCVR A IN to A46 port 1 receiver attenuator
W118	SR	N5247-20047	1	A46 port 1 receiver attenuator to A27 mixer brick (A)
W123	SR	N5247-20020	1	Port 2 RCVR B IN to A49 port 2 receiver attenuator
W124	SR	N5247-20046	1	A49 port 2 receiver attenuator to A27 mixer brick (B)
W147	F	N5242-60025	1	A27 mixer brick (R1) to A24 IF multiplexer (P601)
W148	F	N5242-60026	1	A27 mixer brick (R2) to A24 IF multiplexer (P801)
 W150	F	Refer to "4-Port Configuration, Option 420, S/N Prefixes ≥ 6021 " on page 6-218.		

a. $S R=$ semirigid coaxial cable; $F=$ flexible coaxial cable
b. On legacy instruments using the 5087-7765 HMA26.5, the N5245-20100 cable is used only on 2-port instruments. On instruments with a new HMA26.5 the N5245-20100 cable is used in all instruments. If you are unclear which HMA26.5 assembly your PNA has installed, refer to "Verify the Model/Version of HMA26.5 Installed" on page 7-36 and to Figure 7-16 on page 7-37.

Figure 6-41 Bottom RF Cables, Option 219, S/N Prefixes ≥ 6021

Bottom Ribbon Cables and Wire Harnesses, Option 219, S/N Prefixes $\geq 6021{ }^{1}$

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Description
(1)	10R	N5242-60005	Rear-panel PWR I/O to A23 test set motherboard J301
(2)	10R	N5247-60020	A23 test set motherboard J205 to A46 port 1 receiver attenuator
(3)	16R	N5245-60006	A23 test set motherboard J549 to A38 port 1 source attenuator
(4)	$3 W$	N5247-60016	A23 test set motherboard J221 to port 1 LED board J1
(5)	2W	8121-0966	A23 test set motherboard J554 to A37 reference mixer switch
(6)	30R	N5247-60018	A60 port 170 GHz doubler J 1 to A23 test set motherboard J4
(7)	2W	N5247-60021	A23 test set motherboard J541 to A42 port 1 bias tee
(8)	$3 W$	N5247-60016	A23 test set motherboard J222 to port 2 LED board J1
(9)	2W	N5247-60021	A23 test set motherboard J542 to A45 port 2 bias tee
(10)	16R	N5245-60006	A23 test set motherboard J546 to A41 port 2 source attenuator
(11)	10R	N5247-60020	A23 test set motherboard J208 to A49 port 2 receiver attenuator
(12)	30R	N5247-60018	A63 port 270 GHz doubler J1 to A23 test set motherboard J6
(13)	24R	N5247-60022	A23 test set motherboard J209 to A25 HMA26.5 J1
(14)	100R	N5242-60004	A18 system motherboard J1 to A23 test set motherboard J1 to A24 IF multiplexer board J1
(15)	25R	E4410-60160	A18 system motherboard J13 to A23 test set motherboard J545
(16)	36R	8121-0834	Rear-panel HANDLER I/O to A23 test set motherboard J400
(17)	20R	N5247-60014	A23 test set motherboard J551 to A27 mixer brick (1) J52

a. $n \mathrm{n}=\mathrm{n}$ wires in a ribbon (flat) cable; $\mathrm{nW}=\mathrm{n}$ wires in a wire harness

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Figure 6-42
Bottom Ribbon Cables and Wire Harnesses, Option 219, S/N Prefixes ≥ 6021

2-Port Configuration, Option 220, Serial Number Prefixes ≥ 6021
 Bottom Assemblies, Option 220, S/N Prefixes ≥ 6021

Reference Designator	Part Number ${ }^{\text {a }}$	Qty	Description
A23	N5245-60157 Was N5247-60001	1	Test set motherboard
A24	$\begin{aligned} & \text { N5240-60062 } \\ & \text { Was N5240-60045 } \end{aligned}$	1	IF multiplexer board ${ }^{\text {c }}$
A25	$\begin{aligned} & \text { N5240-60101d } \\ & \text { Was:5087-7765 } \end{aligned}$	1	LO Multiplier/amplifier 26.5 (HMA26.5)
A27	5087-7337	1	Mixer brick (1)
$\begin{aligned} & \text { A29 } \\ & \text { A32 } \end{aligned}$	5087-7744	2	Test port 1 receiver coupler Test port 2 receiver coupler
$\begin{aligned} & \text { A33 } \\ & \text { A36 } \end{aligned}$	5087-7778	2	Test port 1 coupler Test port 2 coupler
A37	5087-7759	1	Reference mixer switch
$\begin{aligned} & \hline \text { A38 } \\ & \text { A41 } \end{aligned}$	84905-60004 Was: 84005-60002	2	Test port 1 source attenuator Test port 2 source attenuator
$\begin{aligned} & \text { A46 } \\ & \text { A49 } \end{aligned}$	84905-60004 Was: 84905-60002	2	Port 1 receiver attenuator Port 2 receiver attenuator
$\begin{aligned} & \text { A60 } \\ & \text { A63 } \end{aligned}$	5087-7336	2	Port 170 GHz doubler Port 270 GHz doubler
A75	N5291-60005	1	LFE PC board - 2-port
A71	5087-7403	2	Port 1 bias combiner
A74			Port 2 bias combiner
(1)	N5240-60058	2	Front-panel LED board

a. Part numbers in italic typeface are for rebuilt exchange assemblies. Refer to "Rebuilt-Exchange Assemblies" on page 6-4.
b. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.
C. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.
d. The A26 splitter (5067-4086) and N5247-20111, N5245-20022, N5245-20023, and N5247-20110 cables are only used with a legacy HMA26.5 p/n: 5087-7765. The N5240-20125 and N5247-20185 cables are used only with the new N5240-60101 HMA-26.5. Discard any cables that are not used. If you are unclear which HMA26.5 assembly your PNA has installed, refer to Chapter 7 Repairs and Figure 7-16 on page 7-37 and for details on A26 splitter and cabling, refer to your option-model in Chapter 6 " 2 -Port Configurations, Serial Number Prefix <6021" on page 6-30 and "4-Port Configuration, Serial Number Prefix <6021" on page 6-115.

Figure 6-43 Bottom Assemblies, Option 220, S‘/N Prefixes ≥ 6021

Replaceable Parts
Replaceable Parts Listings

Bottom RF Cables, Option 220, S/N Prefixes $\geq 6021^{1}$

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Qty	Description
W12	SR	N5247-20059	1	A60 port 170 GHz doubler to W11
W14	SR	N5247-20072	1	A60 port 170 GHz doubler to W13
W24	SR	N5247-20061	1	A63 port 270 GHz doubler to W23
W26	SR	N5247-20051	1	A63 port 270 GHz doubler to W25
W27	SR	N5247-20044	1	A60 port 170 GHz doubler to A29 port 1 receiver coupler
W30	SR	N5247-20043	1	A63 port 270 GHz doubler to A32 port 2 receiver coupler
W33	SR	N5247-20079	1	A29 port 1 receiver coupler to A37 reference mixer switch
W34	SR	N5247-20039	1	A33 port 1 coupler to front-panel REF 1 CPLR ARM
W45	SR	N5247-20058	1	A32 port 2 receiver coupler to front-panel REF 2 SOURCE OUT
W46	SR	N5247-20041	1	A36 port 2 coupler to front-panel port 2 CPLR ARM
W51	SR	N5247-20011	1	Front-panel REF 1 SOURCE OUT to A37 ref mixer switch
W52	SR	N5247-20012	1	REF 1 RCVR R1 IN to A37 reference mixer switch
W53	SR	N5247-20048	1	A37 reference mixer switch to A27 mixer brick (R1)
W56	SR	N5247-20045	1	A27 mixer brick (R2) to front-panel REF 2 RCVR R2 IN
W60	SR	N5247-20107	6	Front-panel jumper
W61	SR	Refer to "Top C	able	All Cables-All Options, S/N Prefixes ≥ 6021 " on page 6-26.
W66	SR	N5247-20109	1	W65 to rear-panel EXT TSET DRIVE RF OUT (J6)
W69	SR	N5247-20112	1	A27 mix brick to rear-panel EXT TSET DRIVE LO OUT (J5)
W70 ${ }^{\text {b }}$	SR	N5247-20100	1	A25 HMA26.5 to A27 mixer brick
W71	F	N5242-60017	1	A27 mixer brick (A) to A24 IF multiplexer (P1)
W74	F	N5242-60018	1	A27 mixer brick (B) to A24 IF multiplexer (P201)
$\begin{aligned} & \text { W79-83, } \\ & \text { W91- 92, } \\ & \text { W97- } 98 \end{aligned}$	F	Refer to "Top Cables, All Cables-All Options, S/N Prefixes ≥ 6021 " on page 6-26.		
W101	SR	N5247-20083	1	A29 port 1 receiver coupler to A38 port 1 source attenuator
W102	SR	N5247-20014	1	A38 port 1 source attenuator to front-panel port 1 SOURCE OUT
W113	SR	N5247-20083	1	A32 port 2 receiver coupler to A41 port 2 source attenuator
W114	SR	N5247-20034	1	A41 port 2 source attenuator to front-panel port 2 SOURCE OUT

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Reference Designator	Type $^{\text {a }}$	Part Number	Qty	Description
W117	SR	N5247-20013	1	Front-panel port 1 RCVR A IN to A46 port 1 receiver attenuator
W118	SR	N5247-20047	1	A46 port 1 receiver attenuator to A27 mixer brick (A)
W123	SR	N5247-20020	1	Port 2 RCVR B IN to A49 port 2 receiver attenuator
W124	SR	N5247-20046	1	A49 port 2 receiver attenuator to A27 mixer brick (B)
W147	F	N5242-60025	1	A27 mixer brick (R1) to A24 IF multiplexer (P601)
W148	F	N5242-60026	1	A27 mixer brick (R2) to A24 IF multiplexer (P801)
W149 \&	F	Refer to "Top Cables, All Cables-All Options, S/N Prefixes $26021 "$ on page 6-26.		
W150		SR	N5247-20167	1
W181	Cable, assembly, RF, Front panel CPLR THRU to A71 port 1 bias-T			
combiner				

a. $S R=$ semirigid coaxial cable; $F=$ flexible coaxial cable
b. On legacy instruments using the 5087-7765 HMA26.5, the N5245-20100 cable is used only on 2-port instruments. On instruments with a new HMA26.5 the N5245-20100 cable is used in all instruments. If you are unclear which HMA26.5 assembly your PNA has installed, refer to "Verify the Model/Version of HMA26.5 Installed" on page 7-36 and to Figure 7-16 on page 7-37.

Figure 6-44 Bottom RF Cables, Option 220, S/N Prefixes ≥ 6021

Bottom Ribbon Cables and Wire Harnesses, Option 220, S/N Prefixes $\geq 6021^{1}$

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Description
(1)	10R	N5242-60005	Rear-panel PWR I/O to A23 test set motherboard J301
(2)	10R	N5247-60020	A23 test set motherboard J205 to A46 port 1 receiver attenuator
(3)	16R	N5245-60006	A23 test set motherboard J549 to A38 port 1 source attenuator
(4)	$3 W$	N5247-60016	A23 test set motherboard J221 to port 1 LED board J1
(5)	2W	8121-0966	A23 test set motherboard J554 to A37 reference mixer switch
(6)	30R	N5247-60018	A60 port 170 GHz doubler J1 to A23 test set motherboard J 4
(7)	2W	$\begin{aligned} & \text { N5240-60091 } \\ & \text { P/O Bias } \\ & \text { Combiner } \end{aligned}$	A23 test set motherboard J541 to A71 port 1 bias tee combiner
(8)	3W	N5247-60016	A23 test set motherboard J222 to port 2 LED board J1
(9)	2W	$\begin{aligned} & \text { N5240-60091 } \\ & \text { P/O Bias } \\ & \text { Combiner } \end{aligned}$	A23 test set motherboard J544 to A74 port 2 bias tee combiner
(10)	16R	N5245-60006	A23 test set motherboard J546 to A41 port 2 source attenuator
(11)	10R	N5247-60020	A23 test set motherboard J208 to A49 port 2 receiver attenuator
(12)	30R	N5247-60018	A63 port 270 GHz doubler J1 to A23 test set motherboard J6
(13)	24R	N5247-60022	A23 test set motherboard J209 to A25 HMA26.5 J1
(14)	100R	N5240-60089	Cable, ribbon assembly - MB/IFMUX/LFE/SMB (A14 system mother board J 1 to A19 test set motherboard to A70 LFE board to A20 IF Multiplier board J1)
(15)	25R	E4410-60160	A18 system motherboard J13 to A23 test set motherboard J545
(16)	36R	8121-0834	Rear-panel HANDLER I/O to A23 test set motherboard J400
(17)	20R	N5247-60014	A23 test set motherboard J551 to A27 mixer brick (1) J52

a. $\mathrm{nR}=\mathrm{n}$ wires in a ribbon (flat) cable; $\mathrm{nW}=\mathrm{n}$ wires in a wire harness

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Figure 6-45 Bottom Ribbon Cables and Wire Harnesses, Option 220, S/N Prefixes 26021

Replaceable Parts
Replaceable Parts Listings

4-Port Configuration, Serial Number Prefix <6021

This section contains the following:

- "4-Port Configuration, Option 400, Serial Number Prefixes <6021" on page 6-115
- "4-Port Configuration, Option 401, Serial Number Prefixes <6021" on page 6-123
- "4-Port Configuration, Option 405, S/N Prefixes <6021" on page 6-131
- "4-Port Configuration, Option 410, S/N Prefixes <6021" on page 6-141
-"4-Port Configuration, Option 419, S/N Prefixes <6021" on page 6-149
-"4-Port Configuration, Option 420, S/N Prefixes <6021" on page 6-162 See also, "4-Port Configurations, Serial Number Prefix ≥ 6021 " on page 6-175.

4-Port Configuration, Option 400, Serial Number Prefixes <6021

Bottom Assemblies, Standard 4-Port Configuration, Option 400, S/N Prefixes <6021

Reference Designator	Part Number ${ }^{\text {a }}$	Qty	Description
A23	$\begin{aligned} & \text { N5245-60157 } \\ & \text { Was N5247-60001 } \end{aligned}$	1	Test set motherboard
A24	N5240-60062 ${ }^{\text {b }}$ Was N5240-60045	1	IF multiplexer board ${ }^{\text {c }}$
A25	N5240-60101 ${ }^{\text {d }}$ Was:5087-7765	1	LO Multiplier/amplifier 26.5 (HMA26.5)
A26	5067-4086	1	Splitter
$\begin{aligned} & \text { A27 } \\ & \text { A28 } \end{aligned}$	5087-7337	2	Mixer brick (1) Mixer brick (2)
A29 A30 A31 A32	5087-7744	4	Test port 1 receiver coupler Test port 3 receiver coupler Test port 4 receiver coupler Test port 2 receiver coupler
A33 A34 A35 A36	5087-7778	4	Test port 1 coupler Test port 3 coupler Test port 4 coupler Test port 2 coupler
A60 A61 A62 A63	5087-7336	4	Port 170 GHz doubler Port 370 GHz doubler Port 470 GHz doubler Port 270 GHz doubler

Reference Designator	Part Number $^{\text {a }}$	Qty	Description
A68	$08490-60037$	2	$3-\mathrm{dB}$ attenuator (A27 mixer brick (R1)
			$3-\mathrm{dB}$ attenuator (A28 mixer brick (R4)
A69	N5240-60058	2	Front-panel LED board

a. Part numbers in italic typeface are for rebuilt exchange assemblies. Refer to "Rebuilt-Exchange Assemblies" on page 6-4.
b. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.
c. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.
d. The A26 splitter (5067-4086) and N5247-20111, N5245-20022, N5245-20023, and N5247-20110 cables are only used with a legacy HMA26.5 p/n: 5087-7765. The N5240-20125 and N5247-20185 cables are used only with the new N5240-60101 HMA-26.5. Discard any cables that are not used. If you are unclear which HMA26.5 assembly your PNA has installed, refer to Chapter 7 Repairs and Figure 7-16 on page 7-37 and for details on A26 splitter and cabling, refer to your option-model in Chapter 6 "2-Port Configurations, Serial Number Prefix <6021" on page 6-30 and "4-Port Configuration, Serial Number Prefix <6021" on page 6-115.

Figure 6-46 Bottom Assemblies, Standard 4-Port Configuration, Option 400, S/N Prefixes <6021

(Some parts removed for clarity.)

Bottom RF Cables, Standard 4-Port Configuration, Option 400, S/N Prefixes $<6021^{1}$

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Qty	Description
W12	SR	N5227-20047	1	A60 port 170 GHz doubler to W11
W14	SR	N5247-20072	1	A60 port 170 GHz doubler to W13
W16	SR	N5227-20042	1	A61 port 370 GHZ doubler to W15
W18	SR	N5247-20084	1	A61 port 370 GHZ doubler to W17
W20	SR	N5227-20043	1	A62 port 470 GHZ doubler to W19
W22	SR	N5247-20068	1	A62 port 470 GHZ doubler to W21
W24	SR	N5247-20061	1	A63 port 270 GHz doubler to W23
W26	SR	N5247-20051	1	A63 port 270 GHz doubler to W25
W27	SR	N5227-20044	1	A60 port 170 GHz doubler to A29 port 1 receiver coupler
W28	SR	N5227-20045	1	A61 port 370 GHz doubler to A30 port 3 receiver coupler
W29	SR	N5227-20044	1	A62 port 470 GHz doubler to A31 port 4 receiver coupler
W30	SR	N5227-20045	1	A63 port 270 GHz doubler to A32 port 2 receiver coupler
W58	--	N5247-20138	1	2.4 mm cap for A28 mixer brick
W61	SR	Refer to "Top Ca	bles,	All Cables-All Options, S/N Prefixes <6021" on page 6-20.
W62 ${ }^{\text {b }}$	SR	N5247-20111	1	A25 HMA26.5 to A26 splitter
W63 ${ }^{\text {b }}$	SR	N5245-20023	1	RF cable, A26 splitter to A27 mixer brick
W64 ${ }^{\text {b }}$	SR	N5245-20022	1	A26 splitter to A28 mixer brick
W66	SR	N5247-20109	1	W65 to rear-panel EXT TSET DRIVE RF OUT (J6)
W68	SR	N5247-20088	1	Rear-panel port RF2 OUT (J12) to W67
W69	SR	N5247-20112	1	A27 mixer brick to EXT TSET DRIVE LO OUT (J5)
W70 ${ }^{\text {c }}$	SR	N5247-20100	1	A25 HMA26.5 to A27 mixer brick
W71	F	N5242-60017	1	A27 mixer brick (A) to A24 IF multiplexer (P1)
W72	F	N5242-60021	1	A27 mixer brick (R1) to A24 IF multiplexer (P471)
W73	F	N5242-60022	1	A27 mixer brick (R2) to A24 IF multiplexer (P412)
W74	F	N5242-60018	1	A27 mixer brick (B) to A24 IF multiplexer (P201)
W75	F	N5242-60024	1	A28 mixer brick (D) to A24 IF multiplexer (P801)

[^7]| Reference
 Designator | Type $^{\text {a }}$ | Part Number | Qty | Description |
| :--- | :--- | :--- | :--- | :--- |
| W76 | F | N5242-60019 | 1 | A28 mixer brick (R4) to A24 IF multiplexer (P414) |
| W77 | F | N5242-60020 | 1 | A28 mixer brick (R3) to A24 IF multiplexer (P413) |
| W78 | F | N5242-60023 | 1 | A28 mixer brick (C) to A24 IF multiplexer (P601) |
| W79-83, | F | Refer to "Top Cables, All Cables-All Options, S/N Prefixes <6021" on page 6-20. | | |
| W91-98 | | | | |
| W127 | SR | N5227-20002 | 1 | A29 port 1 receiver coupler to A68 3 dB pad on A27 mixer brick (R1) |
| W128 | SR | N5227-20009 | 1 | A30 port 3 receiver coupler to A28 mixer brick (R3) |
| W129 | SR | N5227-20010 | 1 | A31 port 4 receiver coupler to A69 3 dB pad on A28 mixer brick (R4) |
| W130 | SR | N5227-20001 | 1 | A32 port 2 receiver coupler to A27 mixer brick (R2) |
| W131 | SR | N5227-20015 | 1 | A29 port 1 receiver coupler to A33 port 1 coupler |
| W132 | SR | N5227-20016 | 1 | A30 port 3 receiver coupler to A34 port 3 coupler |
| W133 | SR | N5227-20017 | 1 | A31 port 4 receiver coupler to A35 port 4 coupler |
| W134 | SR | N5227-20018 | 1 | A32 port 2 receiver coupler to A36 port 2 coupler |
| W135 | SR | N5227-20011 | 1 | A33 port 1 coupler to A27 mixer brick (A) |
| W136 | SR | N5227-20014 | 1 | A34 port 3 coupler to A28 mixer brick (C) |
| W137 | SR | N5227-20013 | 1 | A35 port 4 coupler to A28 mixer brick (D) |
| W138 | SR | N5227-20012 | 1 | A36 port 2 coupler to A27 mixer brick (B) |

a. $\mathrm{SR}=$ semirigid coaxial cable; $F=$ flexible coaxial cable
b. The A26 splitter (5067-4086) and N5247-20111, N5245-20022, N5245-20023, and N5247-20110 cables are only used with a legacy HMA26.5 p/n: 5087-7765. The N5240-20125 and N5247-20185 cables are used only with the new N5240-60101 HMA-26.5. Discard any cables that are not used. If you are unclear which HMA26.5 assembly your PNA has installed, refer to Chapter 7 Repairs and Figure 7-16 on page 7-37 and for details on A26 splitter and cabling, refer to your option-model in Chapter 6 " 2 -Port Configurations, Serial Number Prefix <6021" on page 6-30 and "4-Port Configuration, Serial Number Prefix <6021" on page 6-115.
c. On legacy instruments using the 5087-7765 HMA26.5, the N5245-20100 cable is used only on 2-port instruments. On instruments with a new HMA26.5 the N5245-20100 cable is used in all instruments. If you are unclear which HMA26.5 assembly your PNA has installed, refer to "Verify the Model/Version of HMA26.5 Installed" on page 7-36 and to Figure 7-16 on page 7-37.

Figure 6-47 Bottom RF Cables, Standard 4-Port Configuration, Option 400, S/N Prefixes <6021

Bottom Ribbon Cables and Wire Harnesses, Standard 4-Port Configuration, Option 400, S/N Prefixes <6021 ${ }^{1}$

Reference Designator	Type $^{\text {a }}$	Part Number	Description
(1)	10R	N5242-60005	Rear-panel PWR I/O to A23 test set motherboard J301
(2)	$3 W$	N5247-60016	A23 test set motherboard J221 to ports 1/3 LED board J1
(3)	$30 R$	N5247-60018	A61 port 3 70 GHz doubler J1 to A23 test set motherboard J5
(4)	30 R	N5247-60018	A60 port 1 70 GHz doubler J1 to A23 test set motherboard J4
(5)	$3 W$	N5247-60016	A23 test set motherboard J222 to ports 2/4 LED board J1
(6)	$30 R$	N5247-60018	A63 port 2 70 GHz doubler J1 to A23 test set motherboard J6
(7)	24 R	N5247-60022	A23 test set motherboard J209 to A25 HMA26.5 J1
(8)	$30 R$	N5247-60018	A62 port 4 70 GHz doubler J1 to A23 test set motherboard J3
(9)	100R	N5242-60004	A18 system motherboard J1 to A23 test set motherboard J1 to
(10)	25R	E4410-60160	A18 system motherboard J13 to A23 test set motherboard J545
(11)	$36 R$	$8121-0834$	Rear-panel HANDLER I/0 to A23 test set motherboard J400
(12)	20R	N5247-60014	A23 test set motherboard J551 to A27 mixer brick (1) J52
(13)	20R	N5247-60015	A23 test set motherboard J552 to A28 mixer brick (2) J52

a. $n \mathrm{R}=\mathrm{n}$ wires in a ribbon (flat) cable; $\mathrm{nW}=n$ wires in a wire harness

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Figure 6-48 Bottom Ribbon Cables and Wire Harnesses, Standard 4-Port Configuration, Option 400, S/N Prefixes <6021

(Some parts removed for clarity.)

4-Port Configuration, Option 401, Serial Number Prefixes <6021
Bottom Assemblies, Option 401, S/N Prefixes <6021

Reference Designator	Part Number ${ }^{\text {a }}$	Qty	Description
A23	N5245-60157 Was N5247-60001	1	Test set motherboard
A24	$\begin{aligned} & \text { N5240-60062b } \\ & \text { Was N5240-60045 } \end{aligned}$	1	IF multiplexer board ${ }^{\text {c }}$
A25	$\begin{aligned} & \text { N5240-60101d } \\ & \text { Was:5087-7765 } \end{aligned}$	1	LO Multiplier/amplifier 26.5 (HMA26.5)
A26	5067-4086	1	Splitters
$\begin{aligned} & \text { A27 } \\ & \text { A28 } \end{aligned}$	5087-7337	2	Mixer brick (1) Mixer brick (2)
$\begin{aligned} & \text { A29 } \\ & \text { A30 } \\ & \text { A31 } \\ & \text { A32 } \end{aligned}$	5087-7744	4	Test port 1 receiver coupler Test port 3 receiver coupler Test port 4 receiver coupler Test port 2 receiver coupler
$\begin{aligned} & \text { A33 } \\ & \text { A34 } \\ & \text { A35 } \\ & \text { A36 } \end{aligned}$	5087-7778	4	Test port 1 coupler Test port 3 coupler Test port 4 coupler Test port 2 coupler
A37	5087-7759	1	Reference mixer switch
$\begin{aligned} & \text { A60 } \\ & \text { A61 } \\ & \text { A62 } \\ & \text { A63 } \end{aligned}$	5087-7336	4	Port 170 GHz doubler Port 370 GHz doubler Port 470 GHz doubler Port 270 GHz doubler
A69	08490-60037	1	3-dB attenuator (A28 mixer brick (R4)
(1)	N5240-60058	2	Front-panel LED board

a. Part numbers in italic typeface are for rebuilt exchange assemblies. Refer to "Rebuilt-Exchange Assemblies" on page 6-4.
b. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.
C. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.
d. The A26 splitter (5067-4086) and N5247-20111, N5245-20022, N5245-20023, and N5247-20110 cables are only used with a legacy HMA26.5 p/n: 5087-7765. The N5240-20125 and N5247-20185 cables are used only with the new N5240-60101 HMA-26.5. Discard any cables that are not used. If you are unclear which HMA26.5 assembly your PNA has installed, refer to Chapter 7 Repairs and Figure 7-16 on page 7-37 and for details on A26 splitter and cabling , refer to your option-model in Chapter 6 " 2 -Port Configurations, Serial Number Prefix <6021" on page 6-30 and "4-Port Configuration, Serial Number Prefix <6021" on page 6-115.

Figure 6-49 Bottom Assemblies, Option 401, S/N Prefixes <6021

(Some parts removed for clarity.)

Bottom RF Cables, Option 401, S/N Prefixes <6021 ${ }^{1}$

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Qty	Description
W12	SR	N5247-20059	1	A60 port 170 GHz doubler to W11
W14	SR	N5247-20072	1	A60 port 170 GHz doubler to W13
W16	SR	N5247-20060	1	A61 port 370 GHZ doubler to W15
W18	SR	N5247-20084	1	A61 port 370 GHZ doubler to W17
W20	SR	N5247-20015	1	A62 port 470 GHZ doubler to W19
W22	SR	N5247-20068	1	A62 port 470 GHZ doubler to W21
W24	SR	N5247-20061	1	A63 port 270 GHz doubler to W23
W26	SR	N5247-20051	1	A63 port 270 GHz doubler to W25
W27	SR	N5247-20074	1	A60 port 170 GHz doubler to A29 port 1 receiver coupler
W28	SR	N5247-20052	1	A61 port 370 GHz doubler to A30 port 3 receiver coupler
W29	SR	N5247-20074	1	A62 port 470 GHz doubler to A31 port 4 receiver coupler
W30	SR	N5247-20052	1	A63 port 270 GHz doubler to A32 port 2 receiver coupler
W31	SR	N5247-20037	1	A29 port 1 receiver coupler to front-panel port 1 SOURCE OUT
W32	SR	N5247-20016	1	Port 1 CPLR THRU to A33 port 1 coupler
W33	SR	N5247-20078	1	A29 port 1 receiver coupler to A37 reference mixer switch
W34	SR	N5247-20082	1	A33 port 1 coupler to front-panel port 1 CPLR ARM
W35	SR	N5247-20023	1	A30 port 3 receiver coupler to front-panel port 3 SOURCE OUT
W36	SR	N5247-20006	1	Port 3 CPLR THRU to A34 port 3 coupler
W37	SR	N5247-20077	1	A30 port 3 receiver coupler to front-panel REF 3 SOURCE OUT
W38	SR	N5247-20007	1	A34 port 3 coupler to front-panel port 3 CPLR ARM
W39	SR	N5247-20035	1	A31 port 4 receiver coupler to front-panel port 4 SOURCE OUT
W40	SR	N5247-20017	1	Port 4 CPLR THRU to A35 port 4 coupler
W41	SR	N5247-20075	1	A31 port 4 receiver coupler to front-panel REF 4 SOURCE OUT
W42	SR	N5247-20026	1	A35 port 4 coupler to front-panel port 4 CPLR ARM
W43	SR	N5247-20036	1	A32 port 2 receiver coupler to front-panel port 2 SOURCE OUT
W44	SR	N5247-20018	1	Port 2 CPLR THRU to A36 port 2 coupler
W45	SR	N5247-20076	1	A32 port 2 receiver coupler to front-panel REF 2 SOURCE OUT

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Replaceable Parts
Replaceable Parts Listings

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Qty	Description
W46	SR	N5247-20019	1	A36 port 2 coupler to front-panel port 2 CPLR ARM
W47	SR	N5247-20053	1	Port 1 RCVR A IN to A27 mixer brick (A)
W48	SR	N5247-20063	1	Port 3 RCVR C IN to A28 mixer brick (C)
W49	SR	N5247-20073	1	Port 4 RCVR D IN to A28 mixer brick (D)
W50	SR	N5247-20054	1	Port 2 RCVR B IN to A27 mixer brick (B)
W51	SR	N5247-20011	1	A37 reference mixer switch to front-panel REF 1 SOURCE OUT
W52	SR	N5247-20012	1	REF 1 RCVR R1 IN to A37 reference mixer switch
W53	SR	N5247-20048	1	A37 reference mixer switch to A27 mixer brick (R1)
W54	SR	N5247-20062	1	REF 3 RCVR R3 IN to A28 mixer brick (R3)
W55	SR	N5247-20067	1	REF 4 RCVR R4 IN to A69 3 dB pad on A28 mixer brick (R4)
W56	SR	N5247-20055	1	REF 2 RCVR R2 IN to A27 mixer brick (R2)
W58	--	N5247-20138	1	2.4 mm cap for A28 mixer brick
W60	SR	N5247-20107	12	Front-panel jumper
W61	SR	Refer to "Top		Cables-All Options, S/N Prefixes <6021" on page 6-20.
W62 ${ }^{\text {b }}$	SR	N5247-20111	1	A25 HMA26.5 to A26 splitter
W63 ${ }^{\text {b }}$	SR	N5245-20023	1	RF cable, A26 splitter to A27 mixer brick
W64 ${ }^{\text {b }}$	SR	N5245-20022	1	A26 splitter to A28 mixer brick
W66	SR	N5247-20109	1	W65 to rear-panel EXT TSET DRIVE RF OUT (J6)
W68	SR	N5247-20088	1	Rear-panel port RF2 OUT (J12) to W67
W69	SR	N5247-20112	1	A27 mixer brick to rear-panel EXT TSET DRIVE LO OUT (J5)
W70 ${ }^{\text {c }}$	SR	N5247-20100	1	A25 HMA26.5 to A27 mixer brick
W71	F	N5242-60017	1	A27 mixer brick (A) to A24 IF multiplexer (P1)
W72	F	N5242-60021	1	A27 mixer brick (R1) to A24 IF multiplexer (P411)
W73	F	N5242-60022	1	A27 mixer brick (R2) to A24 IF multiplexer (P412)
W74	F	N5242-60018	1	A27 mixer brick (B) to A24 IF multiplexer (P201)
W75	F	N5242-60024	1	A28 mixer brick (D) to A24 IF multiplexer (P801)
W76	F	N5242-60019	1	A28 mixer brick (R4) to A24 IF multiplexer (P414)
W77	F	N5242-60020	1	A28 mixer brick (R3) to A24 IF multiplexer (P413)
W78	F	N5242-60023	1	A28 mixer brick (C) to A24 IF multiplexer (P601)

Abstract

Reference Designator W79-83, F Refer to "Top Cables, All Cables-All Options, S/N Prefixes <6021" on page 6-20. W91-98

a. $S R=$ semirigid coaxial cable; $F=$ flexible coaxial cable
b. The A26 splitter (5067-4086) and N5247-20111, N5245-20022, N5245-20023, and N5247-20110 cables are only used with a legacy HMA26.5 p/n: 5087-7765. The N5240-20125 and N5247-20185 cables are used only with the new N5240-60101 HMA-26.5. Discard any cables that are not used. If you are unclear which HMA26.5 assembly your PNA has installed, refer to Chapter 7 Repairs and Figure 7-16 on page 7-37 and for details on A26 splitter and cabling, refer to your option-model in Chapter 6 " 2 -Port Configurations, Serial Number Prefix <6021" on page 6-30 and "4-Port Configuration, Serial Number Prefix <6021" on page 6-115.
c. On legacy instruments using the 5087-7765 HMA26.5, the N5245-20100 cable is used only on 2-port instruments. On instruments with a new HMA26.5 the N5245-20100 cable is used in all instruments. If you are unclear which HMA26.5 assembly your PNA has installed, refer to "Verify the Model/Version of HMA26.5 Installed" on page 7-36 and to Figure 7-16 on page 7-37.

Figure 6-50 Bottom RF Cables, Option 401, S/N Prefixes <6021

(Some parts removed for clarity.)

Bottom Ribbon Cables and Wire Harnesses, Option 401, S/N Prefixes <6021 ${ }^{1}$

Reference Designator	Type $^{\text {a }}$	Part Number	Description
(1)	10R	N5242-60005	Rear-panel PWR I/O to A23 test set motherboard J301
(2)	$3 W$	N5247-60016	A23 test set motherboard J221 to ports 1/3 LED board J1
(3)	2 W	$8121-0966$	A23 test set motherboard J554 to A37 reference mixer switch
(4)	30 R	N5247-60018	A61 port 3 70 GHz doubler J1 to A23 test set motherboard J5
(5)	30 R	N5247-60018	A60 port 1 70 GHz doubler J1 to A23 test set motherboard J4
(6)	$3 W$	N5247-60016	A23 test set motherboard J222 to ports 2/4 LED board J1
(7)	30 R	N5247-60018	A63 port 2 70 GHz doubler J1 to A23 test set motherboard J6
(8)	24 R	N5247-60022	A23 test set motherboard J209 to A25 HMA26.5 J1
(9)	30 R	N5247-60018	A62 port 4 70 GHz doubler J1 to A23 test set motherboard J3
(11)	100R	N5242-60004	A18 system motherboard J1 to A23 test set motherboard J1 to
(11)	$25 R$	E4410-60160	A18 system motherboard J13 to A23 test set motherboard J545
(12)	$36 R$	$8121-0834$	Rear-panel HANDLER I/0 to A23 test set motherboard J400
(13)	20R	N5247-60014	A23 test set motherboard J551 to A27 mixer brick (1) J52
(14)	20R	N5247-60015	A23 test set motherboard J552 to A28 mixer brick (2) J52

a. $\mathrm{nR}=\mathrm{n}$ wires in a ribbon (flat) cable; $\mathrm{nW}=\mathrm{n}$ wires in a wire harness

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Figure 6-51 Bottom Ribbon Cables and Wire Harnesses, Option 401, S/N Prefixes <6021

(Some parts removed for clarity.)
N5227 001622

4-Port Configuration, Option 405, S/N Prefixes <6021
Bottom Assemblies, Option 405, S/N Prefixes <6021

Reference Designator	Part Number ${ }^{\text {a }}$	Qty	Description
A23	$\begin{aligned} & \text { N5245-60157 } \\ & \text { Was N524-60001 } \end{aligned}$	1	Test set motherboard
A24	$\begin{aligned} & \text { N5240-60062b } \\ & \text { Was N5240-60045 } \end{aligned}$	1	IF multiplexer board ${ }^{\text {c }}$
A25	$\begin{aligned} & \text { N5240-60101¹ } \\ & \text { Was:5087-7765 } \end{aligned}$	1	LO Multiplier/amplifier 26.5 (HMA26.5)
A26	5067-4086	1	Splitter
$\begin{aligned} & \text { A27 } \\ & \text { A28 } \end{aligned}$	5087-7337	2	Mixer brick (1) Mixer brick (2)
$\begin{aligned} & \hline \text { A29 } \\ & \text { A30 } \\ & \text { A31 } \\ & \text { A32 } \end{aligned}$	5087-7744	4	Test port 1 receiver coupler Test port 3 receiver coupler Test port 4 receiver coupler Test port 2 receiver coupler
$\begin{aligned} & \text { A33 } \\ & \text { A34 } \\ & \text { A35 } \\ & \text { A36 } \end{aligned}$	5087-7778	4	Test port 1 coupler Test port 3 coupler Test port 4 coupler Test port 2 coupler
A37	5087-7759	1	Reference mixer switch
$\begin{aligned} & \text { A60 } \\ & \text { A61 } \\ & \text { A62 } \\ & \text { A63 } \end{aligned}$	5087-7336	4	Port 170 GHz doubler Port 370 GHz doubler Port 470 GHz doubler Port 270 GHz doubler
A69	08490-60037	1	3-dB attenuator (A28 mixer brick (R4)
A70	N5291-60001	1	LFE board
A71	5087-7403	4	Bias combiner port 1 (includes wire harness)
A72			Bias combiner port 3 (includes wire harness)
A73			Bias combiner port 4 (includes wire harness)
A74			Bias combiner port 2 (includes wire harness)
(1)	N5240-60058	2	Front-panel LED board

a. Part numbers in italic typeface are for rebuilt exchange assemblies. Refer to "Rebuilt-Exchange Assemblies" on page 6-4.
b. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.
C. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.
d. The A26 splitter (5067-4086) and N5247-20111, N5245-20022, N5245-20023, and N5247-20110 cables are only used with a legacy HMA26.5 p/n: 5087-7765. The N5240-20125 and N5247-20185 cables are used only with the new N5240-60101 HMA-26.5. Discard any cables that are not used. If you are unclear which HMA26.5 assembly your PNA has installed, refer to Chapter 7 Repairs and Figure 7-16 on page 7-37 and for details on A26 splitter and cabling, refer to your option-model in Chapter 6 " 2 -Port Configurations, Serial Number Prefix <6021" on page 6-30 and "4-Port Configuration, Serial Number Prefix <6021" on page 6-115.

Figure 6-52 Bottom Assemblies, Option 405, S/N Prefixes <6021

(Some parts removed for clarity.)
N5227_026_632

Bottom RF Cables, Option 405, S/N Prefixes <6021 ${ }^{1}$

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Qty	Description
W12	SR	N5247-20059	1	A60 port 170 GHz doubler to W11
W14	SR	N5247-20072	1	A60 port 170 GHz doubler to W13
W16	SR	N5247-20060	1	A61 port 370 GHZ doubler to W15
W18	SR	N5247-20084	1	A61 port 370 GHZ doubler to W17
W20	SR	N5247-20015	1	A62 port 470 GHZ doubler to W19
W22	SR	N5247-20068	1	A62 port 470 GHZ doubler to W21
W24	SR	N5247-20061	1	A63 port 270 GHz doubler to W23
W26	SR	N5247-20051	1	A63 port 270 GHz doubler to W25
W27	SR	N5247-20074	1	A60 port 170 GHz doubler to A29 port 1 receiver coupler
W28	SR	N5247-20052	1	A61 port 370 GHz doubler to A30 port 3 receiver coupler
W29	SR	N5247-20074	1	A62 port 470 GHz doubler to A31 port 4 receiver coupler
W30	SR	N5247-20052	1	A63 port 270 GHz doubler to A32 port 2 receiver coupler
W31	SR	N5247-20037	1	A29 port 1 receiver coupler to front-panel port 1 SOURCE OUT
W33	SR	N5247-20078	1	A29 port 1 receiver coupler to A37 reference mixer switch
W34	SR	N5247-20082	1	A33 port 1 coupler to front-panel port 1 CPLR ARM
W35	SR	N5247-20023	1	A30 port 3 receiver coupler to front-panel port 3 SOURCE OUT
W37	SR	N5247-20077	1	A30 port 3 receiver coupler to front-panel REF 3 SOURCE OUT
W38	SR	N5247-20007	1	A34 port 3 coupler to front-panel port 3 CPLR ARM
W39	SR	N5247-20035	1	A31 port 4 receiver coupler to front-panel port 4 SOURCE OUT
W41	SR	N5247-20075	1	A31 port 4 receiver coupler to front-panel REF 4 SOURCE OUT
W42	SR	N5247-20026	1	A35 port 4 coupler to front-panel port 4 CPLR ARM
W43	SR	N5247-20036	1	A32 port 2 receiver coupler to front-panel port 2 SOURCE OUT
W45	SR	N5247-20076	1	A32 port 2 receiver coupler to front-panel REF 2 SOURCE OUT
W46	SR	N5247-20019	1	A36 port 2 coupler to front-panel port 2 CPLR ARM
W47	SR	N5247-20053	1	Port 1 RCVR A IN to A27 mixer brick (A)
W48	SR	N5247-20063	1	Port 3 RCVR C IN to A28 mixer brick (C)
W49	SR	N5247-20073	1	Port 4 RCVR D IN to A28 mixer brick (D)

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Replaceable Parts
Replaceable Parts Listings

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Qty	Description
W50	SR	N5247-20054	1	Port 2 RCVR B IN to A27 mixer brick (B)
W51	SR	N5247-20011	1	A37 reference mixer switch to front-panel REF 1 SOURCE OUT
W52	SR	N5247-20012	1	REF 1 RCVR R1 IN to A37 reference mixer switch
W53	SR	N5247-20048	1	A37 reference mixer switch to A27 mixer brick (R1)
W54	SR	N5247-20062	1	REF 3 RCVR R3 IN to A28 mixer brick (R3)
W55	SR	N5247-20067	1	REF 4 RCVR R4 IN to A69 3 dB pad on A28 mixer brick (R4)
W56	SR	N5247-20055	1	REF 2 RCVR R2 IN to A27 mixer brick (R2)
W58	--	N5247-20138	1	2.4 mm cap for A28 mixer brick
W60	SR	N5247-20107	12	Front-panel jumper
W61	SR	Refer to "Top C		Cables-All Options, S/N Prefixes <6021" on page 6-20.
W62 ${ }^{\text {b }}$	SR	N5247-20111	1	A25 HMA26.5 to A26 splitter
W63 ${ }^{\text {b }}$	SR	N5245-20023	1	RF cable, A26 splitter to A27 mixer brick
W64 ${ }^{\text {b }}$	SR	N5245-20022	1	A26 splitter to A28 mixer brick
W66	SR	N5247-20109	1	W65 to rear-panel EXT TSET DRIVE RF OUT (J6)
W68	SR	N5247-20088	1	Rear-panel port RF2 OUT (J12) to W67
W69	SR	N5247-20112	1	A27 mixer brick to rear-panel EXT TSET DRIVE LO OUT (J5)
W70 ${ }^{\text {c }}$	SR	N5247-20100	1	A25 HMA26.5 to A27 mixer brick
W71	F	N5242-60017	1	A27 mixer brick (A) to A24 IF multiplexer (P1)
W72	F	N5242-60021	1	A27 mixer brick (R1) to A24 IF multiplexer (P411)
W73	F	N5242-60022	1	A27 mixer brick (R2) to A24 IF multiplexer (P412)
W74	F	N5242-60018	1	A27 mixer brick (B) to A24 IF multiplexer (P201)
W75	F	N5242-60024	1	A28 mixer brick (D) to A24 IF multiplexer (P801)
W76	F	N5242-60019	1	A28 mixer brick (R4) to A24 IF multiplexer (P414)
W77	F	N5242-60020	1	A28 mixer brick (R3) to A24 IF multiplexer (P413)
W78	F	N5242-60023	1	A28 mixer brick (C) to A24 IF multiplexer (P601)
$\begin{aligned} & \text { W79-83, } \\ & \text { W91-98 } \end{aligned}$	F	Refer to "Top Cables, All Cables-All Options, S/N Prefixes <6021" on page 6-20.		
W181	SR	N5247-20167	1	Cable, assy-RF, CPLR THRU - Bias T combiner, Port 1
W182	SR	N5247-20162	1	Cable, assy-RF, Bias T combiner- FP, Port 1 coupler
W183	SR	N5247-20170	1	Cable, assy-RF, CPLR THRU - Bias T combiner, Port 3

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Qty	Description
W184	SR	N5247-20164	1	Cable, assy-RF, Bias T combiner- FP, Port 3 coupler
W185	SR	N5247-20165	1	Cable, assy-RF, Bias T combiner- FP, Port 4 coupler
W186	SR	N5247-20171	1	Cable, assy-RF, CPLR THRU - Bias T combiner, Port 4
W187	SR	N5247-20163	1	Cable assy-RF, Bias T combiner- FP, Port 2 coupler
W188	SR	N5247-20169	1	Cable, assy-RF, CPLR THRU - Bias T combiner, Port 2
W191- W193	F	Refer to "Top Cables, All Cables-All Options, S/N Prefixes <6021" on page 6-20.		
W194	SR	N5240-60097	4	Cable, assembly, coaxial LFE (Port 1 bias combiner "RF-IN" to "Port1" A70 LFE board)
W195	SR			Cable, assembly, coaxial LFE (Port 3 bias combiner "RF-IN" to "Port3" A70 LFE board)
W196	SR			Cable, assembly, coaxial LFE (Port 4 bias combiner "RF-IN" to "Port4" A70 LFE board)
W197	SR			Cable, assembly, coaxial LFE (Port 2 bias combiner "RF-IN" to "Port2" A70 LFE board)
W211	F	8120-5014	1	RF cable, A70 LFE J14 to A24 IF Multiplexer P4
W212	F	8120-5017	1	RF cable, A70 LFE J13 to A24 IF Multiplexer P204
W213	F	8120-5014	1	RF cable, A70 LFE J7 to A24 IF Multiplexer P404
W214	F	8120-5017	1	RF cable, A70 LFE J7 to A24 IF Multiplexer P404
W215	F	8120-5017	1	RF cable, A70 LFE J11 to A24 IF Multiplexer P804

a. $S R=$ semirigid coaxial cable; $F=$ flexible coaxial cable
b. The A26 splitter (5067-4086) and N5247-20111, N5245-20022, N5245-20023, and N5247-20110 cables are only used with a legacy HMA26.5 p/n: 5087-7765. The N5240-20125 and N5247-20185 cables are used only with the new N5240-60101 HMA-26.5. Discard any cables that are not used. If you are unclear which HMA26.5 assembly your PNA has installed, refer to Chapter 7 Repairs and Figure 7-16 on page 7-37 and for details on A26 splitter and cabling, refer to your option-model in Chapter 6 "2-Port Configurations, Serial Number Prefix <6021" on page 6-30 and "4-Port Configuration, Serial Number Prefix <6021" on page 6-115.
c. On legacy instruments using the 5087-7765 HMA26.5, the N5245-20100 cable is used only on 2-port instruments. On instruments with a new HMA26.5 the N5245-20100 cable is used in all instruments. If you are unclear which HMA26.5 assembly your PNA has installed, refer to "Verify the Model/Version of HMA26.5 Installed" on page 7-36 and to Figure 7-16 on page 7-37.

Replaceable Parts
Replaceable Parts Listings

Figure 6-53 Bottom RF Cables, Option 405, S/N Prefixes <6021

Bottom Ribbon Cables and Wire Harnesses, Option 405, S/N Prefixes <6021 ${ }^{1}$

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Description
(1)	10R	N5242-60005	Rear-panel PWR I/O to A23 test set motherboard J301
(2)	3W	N5247-60016	A23 test set motherboard J221 to ports 1/3 LED board J1
(3)	2W	8121-0966	A23 test set motherboard J554 to A37 reference mixer switch
(4)	30R	N5247-60018	A61 port 370 GHz doubler J1 to A23 test set motherboard J5
(5)	30R	N5247-60018	A60 port 170 GHz doubler J1 to A23 test set motherboard J4
(6)	$3 W$	N5247-60016	A23 test set motherboard J222 to ports 2/4 LED board J1
(7)	30R	N5247-60018	A63 port 270 GHz doubler J1 to A23 test set motherboard J6
(8)	24R	N5247-60022	A23 test set motherboard J209 to A25 HMA26.5 J1
(9)	30R	N5247-60018	A62 port 470 GHz doubler J1 to A23 test set motherboard J3
(10)	100R	N5240-60089	Cable, ribbon assembly - MB/IFMUX/LFE/SMB (A14 system mother board J 1 to A19 test set motherboard to A70 LFE board to A20 IF Multiplier board J1)
(11)	25R	E4410-60160	A18 system motherboard J13 to A23 test set motherboard J545
(12)	36R	8121-0834	Rear-panel HANDLER I/O to A23 test set motherboard J400
(13)	20R	N5247-60014	A23 test set motherboard J551 to A27 mixer brick (1) J52
(14)	20R	N5247-60015	A23 test set motherboard J552 to A28 mixer brick (2) J52
(15)	2W	$\begin{aligned} & \text { N5240-60091 } \\ & \text { P/0 Bias } \\ & \text { combiners } \end{aligned}$	A19 test set motherboard J541 to A71 port 1 bias tee
(17)			A19 test set motherboard J542 to A72 port 3 bias tee
(16)			A19 test set motherboard J543 to A73 port 4 bias tee
(18)			A19 test set motherboard J544 to A74 port 2 bias tee

a. $\mathrm{nR}=\mathrm{n}$ wires in a ribbon (flat) cable; $\mathrm{nW}=\mathrm{n}$ wires in a wire harness

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Figure 6-54 Bottom Ribbon Cables and Wire Harnesses, Option 405, S/N Prefixes <6021

(Some parts removed for clarity.)

4-Port Configuration, Option 410, S/N Prefixes <6021

Bottom Assemblies, Option 410, S/N Prefixes <6021

Reference Designator	Part Number ${ }^{\text {a }}$	Qty	Description
A23	N5245-60157 Was N5247-60001	1	Test set motherboard
A24	$\begin{aligned} & \text { N5240-60062b } \\ & \text { Was N5240-60045 } \end{aligned}$	1	IF multiplexer board ${ }^{\text {c }}$
A25	$\begin{aligned} & \text { N5240-60101d } \\ & \text { Was:5087-7765 } \end{aligned}$	1	LO Multiplier/amplifier 26.5 (HMA26.5)
A26	5067-4086	1	Splitter
$\begin{aligned} & \text { A27 } \\ & \text { A28 } \end{aligned}$	5087-7337	2	Mixer brick (1) Mixer brick (2)
$\begin{aligned} & \text { A29 } \\ & \text { A30 } \\ & \text { A31 } \\ & \text { A32 } \end{aligned}$	5087-7744	4	Test port 1 receiver coupler Test port 3 receiver coupler Test port 4 receiver coupler Test port 2 receiver coupler
$\begin{aligned} & \text { A33 } \\ & \text { A34 } \\ & \text { A35 } \\ & \text { A36 } \end{aligned}$	5087-7778	4	Test port 1 coupler Test port 3 coupler Test port 4 coupler Test port 2 coupler
A37	5087-7759	1	Reference mixer switch
$\begin{aligned} & \text { A60 } \\ & \text { A61 } \\ & \text { A62 } \\ & \text { A63 } \end{aligned}$	5087-7336	4	Port 170 GHz doubler Port 370 GHz doubler Port 470 GHz doubler Port 270 GHz doubler
$\begin{aligned} & \text { A64 } \\ & \text { A65 } \\ & \text { A66 } \\ & \text { A67 } \end{aligned}$	08490-60038	4	Test port $16-\mathrm{dB}$ attenuator Test port 3 6-dB attenuator Test port 46 -dB attenuator Test port 26 -dB attenuator
A68	08490-60037	2	3-dB attenuator (A27 mixer brick (R1) - Indicated, but not shown
A69			3-dB attenuator (A28 mixer brick (R4)
(1)	N5240-60058	2	Front-panel LED board

a. Part numbers in italic typeface are for rebuilt exchange assemblies. Refer to "Rebuilt-Exchange Assemblies" on page 6-4.
b. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.
c. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.
d. The A26 splitter (5067-4086) and N5247-20111, N5245-20022, N5245-20023, and N5247-20110 cables are only used with a legacy HMA26.5 p/n: 5087-7765. The N5240-20125 and N5247-20185 cables are used only with the new N5240-60101 HMA-26.5. Discard any cables that are not used. If you are unclear which HMA26.5 assembly your PNA has installed, refer to Chapter 7 Repairs and Figure 7-16 on page 7-37 and for details on A26 splitter and cabling, refer to your option-model in Chapter 6 "2-Port Configurations, Serial Number Prefix <6021" on page 6-30 and "4-Port Configuration, Serial Number Prefix <6021" on page 6-115.

Figure 6-55 Bottom Assemblies, Option 410, S/N Prefixes <6021

Bottom RF Cables, Option 410, S/N Prefixes <6021 ${ }^{1}$

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Qty	Description
W12	SR	N5227-20041	1	A60 port 170 GHz doubler to W11
W14	SR	N5247-20072	1	A60 port 170 GHz doubler to W13
W16	SR	N5227-20042	1	A61 port 370 GHZ doubler to W15
W18	SR	N5247-20084	1	A61 port 370 GHZ doubler to W17
W20	SR	N5227-20043	1	A62 port 470 GHZ doubler to W19
W22	SR	N5247-20068	1	A62 port 470 GHZ doubler to W21
W24	SR	N5247-20061	1	A63 port 270 GHz doubler to W23
W26	SR	N5247-20051	1	A63 port 270 GHz doubler to W25
W27	SR	N5227-20044	1	A60 port 170 GHz doubler to A29 port 1 receiver coupler
W28	SR	N5227-20045	1	A61 port 370 GHz doubler to A30 port 3 receiver coupler
W29	SR	N5227-20044	1	A62 port 470 GHz doubler to A31 port 4 receiver coupler
W30	SR	N5227-20045	1	A63 port 270 GHz doubler to A32 port 2 receiver coupler
W58	--	N5247-20138	1	2.4 mm cap for A28 mixer brick
W61	SR	Refer to "Top C		All Cables-All Options, S/N Prefixes <6021" on page 6-20.
W62 ${ }^{\text {b }}$	SR	N5247-20111	1	A25 HMA26.5 to A26 splitter
W63 ${ }^{\text {b }}$	SR	N5245-20023	1	RF cable, A26 splitter to A27 mixer brick
W64 ${ }^{\text {b }}$	SR	N5245-20022	1	A26 splitter to A28 mixer brick
W66	SR	N5247-20109	1	W65 to rear-panel EXT TSET DRIVE RF OUT (U6)
W68	SR	N5247-20088	1	Rear-panel port RF2 OUT (J12) to W67
W69	SR	N5247-20112	1	A27 mixer brick to EXT TSET DRIVE LO OUT (J5)
W70 ${ }^{\text {c }}$	SR	N5247-20100	1	A25 HMA26.5 to A27 mixer brick
W71	F	N5242-60017	1	A27 mixer brick (A) to A24 IF multiplexer (P1)
W72	F	N5242-60021	1	A27 mixer brick (R1) to A24 IF multiplexer (P411)
W73	F	N5242-60022	1	A27 mixer brick (R2) to A24 IF multiplexer (P412)
W74	F	N5242-60018	1	A27 mixer brick (B) to A24 IF multiplexer (P201)
W75	F	N5242-60024	1	A28 mixer brick (D) to A24 IF multiplexer (P801)
W76	F	N5242-60019	1	A28 mixer brick (R4) to A24 IF multiplexer (P414)

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Reference Designator	Type $^{\text {a }}$	Part Number	Qty	Description
W77	F	N5242-60020	1	A28 mixer brick (R3) to A24 IF multiplexer (P413)
W78	F	N5242-60023	1	A28 mixer brick (C) to A24 IF multiplexer (P601)
W79-83, W91- 98	F	Refer to "Top Cables, All Cables-All Options, S/N Prefixes <6021" on page 6-20.		
W127	SR	N5227-20002	1	A29 port 1 receiver coupler to A68 3 dB pad on A27 mixer brick (R1)
W128	SR	N5227-20009	1	A30 port 3 receiver coupler to A28 mixer brick (R3)
W129	SR	N5227-20010	1	A31 port 4 receiver coupler to A69 3 dB pad on A28 mixer brick (R4)
W130	SR	N5227-20001	1	A32 port 2 receiver coupler to A27 mixer brick (R2)
W135	SR	N5227-20011	1	A33 port 1 coupler to A27 mixer brick (A)
W136	SR	N5227-20014	1	A34 port 3 coupler to A28 mixer brick (C)
W137	SR	N5227-20013	1	A35 port 4 coupler to A28 mixer brick (D)
W138	SR	N5227-20012	1	A36 port 2 coupler to A27 mixer brick (B)
W139	SR	N5227-20019	1	A29 port 1 receiver coupler to A64 test port 1 6-dB attenuator
W140	SR	N5227-20020	1	A30 port 3 receiver coupler to A65 test port 3 6-dB attenuator
W141	SR	N5227-20021	1	A31 port 4 receiver coupler to A66 test port 4 6-dB attenuator
W142	SR	N5227-20022	1	A32 port 2 receiver coupler to A67 test port 2 6-dB attenuator

a. $S R=$ semirigid coaxial cable; $F=$ flexible coaxial cable
b. The A26 splitter (5067-4086) and N5247-20111, N5245-20022, N5245-20023, and N5247-20110 cables are only used with a legacy HMA26.5 p/n: 5087-7765. The N5240-20125 and N5247-20185 cables are used only with the new N5240-60101 HMA-26.5. Discard any cables that are not used. If you are unclear which HMA26.5 assembly your PNA has installed, refer to Chapter 7 Repairs and Figure 7-16 on page 7-37 and for details on A26 splitter and cabling, refer to your option-model in Chapter 6 "2-Port Configurations, Serial Number Prefix <6021" on page 6-30 and "4-Port Configuration, Serial Number Prefix <6021" on page 6-115.
c. On legacy instruments using the 5087-7765 HMA26.5, the N5245-20100 cable is used only on 2-port instruments. On instruments with a new HMA26.5 the N5245-20100 cable is used in all instruments. If you are unclear which HMA26.5 assembly your PNA has installed, refer to "Verify the Model/Version of HMA26.5 Installed" on page 7-36 and to Figure 7-16 on page 7-37.

Replaceable Parts
Replaceable Parts Listings

Figure 6-56 Bottom RF Cables, Option 410, S/N Prefixes <6021

(Some parts removed for clarity.)

Bottom Ribbon Cables and Wire Harnesses, Option 410, S/N Prefixes <6021 ${ }^{1}$

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Description
(1)	10R	N5242-60005	Rear-panel PWR I/O to A23 test set motherboard J301
(2)	3W	N5247-60016	A23 test set motherboard J221 to ports 1/3 LED board J1
(3)	30R	N5247-60018	A61 port 370 GHz doubler J1 to A23 test set motherboard J5
(4)	30R	N5247-60018	A60 port 170 GHz doubler J1 to A23 test set motherboard J4
(5)	$3 W$	N5247-60016	A23 test set motherboard J222 to ports 2/4 LED board J1
(6)	30R	N5247-60018	A63 port 270 GHz doubler J1 to A23 test set motherboard J6
(7)	24R	N5247-60022	A23 test set motherboard J209 to A25 HMA26.5 J1
(8)	30R	N5247-60018	A62 port 470 GHz doubler J1 to A23 test set motherboard J3
(9)	100R	N5242-60004	A18 system motherboard J1 to A23 test set motherboard J1 to A24 IF multiplexer board J1
(10)	25R	E4410-60160	A18 system motherboard J13 to A23 test set motherboard J545
(11)	36R	8121-0834	Rear-panel HANDLER I/O to A23 test set motherboard J400
(11)	20R	N5247-60014	A23 test set motherboard J551 to A27 mixer brick (1) J52
(13)	20R	N5247-60015	A23 test set motherboard J552 to A28 mixer brick (2) J52

a. $n \mathrm{R}=\mathrm{n}$ wires in a ribbon (flat) cable; $\mathrm{nW}=\mathrm{n}$ wires in a wire harness

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Figure 6-57 Bottom Ribbon Cables and Wire Harnesses, Option 410, S/N Prefixes <6021

4-Port Configuration, Option 419, S/N Prefixes <6021

Bottom Assemblies, Option 419, S/N Prefixes <6021

Reference Designator	Part Number ${ }^{\text {a }}$	Qty	Description
A23	$\begin{aligned} & \text { N5245-60157 } \\ & \text { Was N5247-60001 } \end{aligned}$	1	Test set motherboard
A24	$\begin{aligned} & \text { N5240-60062b } \\ & \text { Was N5240-60045 } \end{aligned}$	1	IF multiplexer board ${ }^{\text {c }}$
A25	$\begin{aligned} & \text { N5240-60101d } \\ & \text { Was:5087-7765 } \end{aligned}$	1	LO Multiplier/amplifier 26.5 (HMA26.5)
A26	5067-4086	1	Splitter
$\begin{aligned} & \hline \text { A27 } \\ & \text { A28 } \end{aligned}$	5087-7337	2	Mixer brick
$\begin{aligned} & \text { A29 } \\ & \text { A30 } \\ & \text { A31 } \\ & \text { A32 } \end{aligned}$	5087-7744	4	Test port 1 receiver coupler Test port 3 receiver coupler Test port 4 receiver coupler Test port 2 receiver coupler
$\begin{aligned} & \text { A33 } \\ & \text { A34 } \\ & \text { A35 } \\ & \text { A36 } \end{aligned}$	5087-7778	4	Test port 1 coupler Test port 3 coupler Test port 4 coupler Test port 2 coupler
A37	5087-7759	1	Reference mixer switch
$\begin{aligned} & \text { A38 } \\ & \text { A39 } \\ & \text { A40 } \\ & \text { A41 } \end{aligned}$	$\begin{aligned} & \text { 84905-60004 } \\ & \text { Was: } 84905-60002 \end{aligned}$	4	Test port 1 source attenuator Test port 3 source attenuator Test port 4 source attenuator Test port 2 source attenuator
$\begin{aligned} & \text { A42 } \\ & \text { A43 } \\ & \text { A44 } \\ & \text { A45 } \end{aligned}$	5087-7732	4	Test port 1 bias tee Test port 3 bias tee Test port 4 bias tee Test port 2 bias tee
$\begin{aligned} & \text { A46 } \\ & \text { A47 } \\ & \text { A48 } \\ & \text { A49 } \end{aligned}$	$\begin{aligned} & \text { 84905-60004 } \\ & \text { Was: 84905-60002 } \end{aligned}$	4	Port 1 receiver attenuator Port 3 receiver attenuator Port 4 receiver attenuator Port 2 receiver attenuator
$\begin{aligned} & \hline \text { A60 } \\ & \text { A61 } \\ & \text { A62 } \\ & \text { A63 } \end{aligned}$	5087-7336	4	Port 170 GHz doubler Port 370 GHz doubler Port 470 GHz doubler Port 270 GHz doubler
A69	08490-60037	1	3-dB attenuator (A28 mixer brick (R4)
(1)	N5240-60058	2	Front-panel LED board

a. Part numbers in italic typeface are for rebuilt exchange assemblies. Refer to "Rebuilt-Exchange Assemblies" on page 6-4.
b. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.
c. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.
d. The A26 splitter (5067-4086) and N5247-20111, N5245-20022, N5245-20023, and N5247-20110 cables are only used with a legacy HMA26.5 p/n: 5087-7765. The N5240-20125 and N5247-20185 cables are used only with the new N5240-60101 HMA-26.5. Discard any cables that are not used. If you are unclear which HMA26.5 assembly your PNA has installed, refer to Chapter 7 Repairs and Figure 7-16 on page 7-37 and for details on A26 splitter and cabling, refer to your option-model in Chapter 6 " 2 -Port Configurations, Serial Number Prefix <6021" on page 6-30 and "4-Port Configuration, Serial Number Prefix <6021" on page 6-115.

Figure 6-58 Bottom Assemblies, Option 419, S/N Prefixes <6021

Bottom RF Cables, Option 419 (Ports 1 and 2), S/N Prefixes <6021 ${ }^{1}$

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Qty	Description
W12	SR	N5247-20059	1	A60 port 170 GHz doubler to W11
W14	SR	N5247-20072	1	A60 port 170 GHz doubler to W13
W24	SR	N5247-20061	1	A63 port 270 GHz doubler to W23
W26	SR	N5247-20051	1	A63 port 270 GHz doubler to W25
W27	SR	N5247-20044	1	A60 port 170 GHz doubler to A29 port 1 receiver coupler
W30	SR	N5247-20043	1	A63 port 270 GHz doubler to A32 port 2 receiver coupler
W34	SR	N5247-20082	1	A33 port 1 coupler to front-panel port 1 CPLR ARM
W45	SR	N5247-20058	1	A32 port 2 receiver coupler to front-panel REF 2 SOURCE OUT
W46	SR	N5247-20019	1	A36 port 2 coupler to front-panel port 2 CPLR ARM
W51	SR	N5247-20011	1	A37 reference mixer switch to front-panel REF 1 SOURCE OUT
W52	SR	N5247-20012	1	REF 1 RCVR R1 IN to A37 reference mixer switch
W53	SR	N5247-20048	1	A37 reference mixer switch to A27 mixer brick (R1)
W60	SR	N5247-20107	12	Front-panel jumper
W61	SR	Refer to "Top C	es,	Cables-All Options, S/N Prefixes <6021" on page 6-20.
W62 ${ }^{\text {b }}$	SR	N5247-20111	1	A25 HMA26.5 to A26 splitter
W63 ${ }^{\text {b }}$	SR	N5245-20023	1	RF cable, A26 splitter to A27 mixer brick
W66	SR	N5247-20109	1	W65 to rear-panel EXT TSET DRIVE RF OUT (J6)
W69	SR	N5247-20112	1	A27 mixer brick to rear-panel EXT TSET DRIVE LO OUT (J5)
W70 ${ }^{\text {c }}$	SR	N5247-20100	1	A25 HMA26.5 to A27 mixer brick
W71	F	N5242-60017	1	A27 mixer brick (A) to A24 IF multiplexer (P1)
W72	F	N5242-60021	1	A27 mixer brick (R1) to A24 IF multiplexer (P411)
W73	F	N5242-60022	1	A27 mixer brick (R2) to A24 IF multiplexer (P412)
W74	F	N5242-60018	1	A27 mixer brick (B) to A24 IF multiplexer (P201)
$\begin{aligned} & \text { W79, 81, 83, } \\ & \text { W91-92, } \\ & \text { W97- } 98 \end{aligned}$	F	Refer to "Top Cables, All Cables-All Options, S/N Prefixes <6021" on page 6-20.		
W101	SR	N5247-20083	1	A29 port 1 receiver coupler to A38 port 1 source attenuator

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Reference Designator	Type $^{\text {a }}$	Part Number	Qty	Description
W102	SR	N5247-20014	1	A38 port 1 source attenuator to front-panel port 1 SOURCE OUT
W103	SR	N5247-20081	1	Front-panel port 1 CPLR THRU to A42 port 1 bias tee
W104	SR	N5247-20022	1	A33 port 1 coupler to A42 port 1 bias tee
W113	SR	N5247-20083	1	A32 port 2 receiver coupler to A41 port 2 source attenuator
W114	SR	N5247-20034	1	A41 port 2 source attenuator to front-panel port 2 SOURCE OUT
W115	SR	N5247-20027	1	Port 2 CPLR THRU to A45 port 2 bias tee
W116	SR	N5247-20080	1	A45 port 2 bias tee to A36 port 2 coupler
W117	SR	N5247-20013	1	Front-panel port 1 RCVR A IN to A46 port 1 receiver attenuator
W118	SR	N5247-20047	1	A46 port 1 receiver attenuator to A27 mixer brick (A)
W123	SR	N5247-20020	1	Port 2 RCVR B IN to A49 port 2 receiver attenuator
W124	SR	N5247-20046	1	A49 port 2 receiver attenuator to A27 mixer brick (B)
W144	SR	N5247-20071	1	A29 port 1 receiver coupler to A37 reference mixer switch
W145	SR	N5247-20066	1	REF 2 RCVR R2 IN to A27 mixer brick (R2)

a. $S R=$ semirigid coaxial cable; $F=$ flexible coaxial cable
b. The A26 splitter (5067-4086) and N5247-20111, N5245-20022, N5245-20023, and N5247-20110 cables are only used with a legacy HMA26.5 p/n: 5087-7765. The N5240-20125 and N5247-20185 cables are used only with the new N5240-60101 HMA-26.5. Discard any cables that are not used. If you are unclear which HMA26.5 assembly your PNA has installed, refer to Chapter 7 Repairs and Figure 7-16 on page 7-37 and for details on A26 splitter and cabling, refer to your option-model in Chapter 6 " 2 -Port Configurations, Serial Number Prefix <6021" on page 6-30 and "4-Port Configuration, Serial Number Prefix <6021" on page 6-115.
c. On legacy instruments using the 5087-7765 HMA26.5, the N5245-20100 cable is used only on 2-port instruments. On instruments with a new HMA26.5 the N5245-20100 cable is used in all instruments. If you are unclear which HMA26.5 assembly your PNA has installed, refer to "Verify the Model/Version of HMA26.5 Installed" on page 7-36 and to Figure 7-16 on page 7-37.

Figure 6-59 Bottom RF Cables, Option 419 (Ports 1 and 2), S/N Prefixes <6021

Bottom RF Cables, Option 419 (Ports 3 and 4), S/N Prefixes <6021 ${ }^{1}$

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Qty	Description
W16	SR	N5247-20060	1	A61 port 370 GHZ doubler to W15
W18	SR	N5247-20084	1	A61 port 370 GHZ doubler to W17
W20	SR	N5247-20015	1	A62 port 470 GHZ doubler to W19
W22	SR	N5247-20068	1	A62 port 470 GHZ doubler to W21
W28	SR	N5247-20043	1	A61 port 370 GHz doubler to A30 port 3 receiver coupler
W29	SR	N5247-20044	1	A62 port 470 GHz doubler to A31 port 4 receiver coupler
W37	SR	N5247-20070	1	A30 port 3 receiver coupler to front-panel REF 3 SOURCE OUT
W38	SR	N5247-20007	1	A34 port 3 coupler to front-panel port 3 CPLR ARM
W41	SR	N5247-20069	1	A31 port 4 receiver coupler to front-panel REF 4 SOURCE OUT
W42	SR	N5247-20026	1	A35 port 4 coupler to front-panel port 4 CPLR ARM
W54	SR	N5247-20062	1	REF 3 RCVR R3 IN to A28 mixer brick (R3)
W55	SR	N5247-20067	1	REF 4 RCVR R4 IN to A69 A69 3 dB pad on A28 mixer brick (R4)
W58	--	N5247-20138	1	2.4 mm cap for A28 mixer brick
W64 ${ }^{\text {b }}$	SR	N5245-20022	1	A26 splitter to A28 mixer brick
W68	SR	N5247-20088	1	Rear-panel port RF2 OUT (J12) to W67
W75	F	N5242-60024	1	A28 mixer brick (D) to A24 IF multiplexer (P801)
W76	F	N5242-60019	1	A28 m mixer brick (R4) to A24 IF multiplexer (P414)
W77	F	N5242-60020	1	A28 mixer brick (R3) to A24 IF multiplexer (P413)
W78	F	N5242-60023	1	A28 mixer brick (C) to A24 IF multiplexer (P601)
$\begin{aligned} & \text { W80, 82, } \\ & \text { W93-96 } \end{aligned}$	F	Refer to "Top Cables, All Cables-All Options, S/N Prefixes <6021" on page 6-20.		
W105	SR	N5247-20083	1	A30 port 3 receiver coupler to A39 port 3 source attenuator
W106	SR	N5247-20009	1	A39 port 3 source attenuator to front-panel port 3 SOURCE OUT
W107	SR	N5247-20010	1	Port 3 CPLR THRU to A43 port 3 bias tee
W108	SR	N5247-20028	1	A43 port 3 bias tee to A34 port 3 coupler
W109	SR	N5247-20083	1	A31 port 4 receiver coupler to A40 port 4 source attenuator
W110	SR	N5247-20025	1	A40 port 4 source attenuator to front-panel port 4 SOURCE OUT

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Reference Designator	Type $^{\text {a }}$	Part Number	Qty	Description
W111	SR	N5247-20021	1	Port 4 CPLR THRU to A44 port 4 bias tee
W112	SR	N5247-20029	1	A44 port 4 bias tee to A35 port 4 coupler
W119	SR	N5247-20008	1	Port 3 RCVR C IN to A47 port 3 receiver attenuator
W120	SR	N5247-20064	1	A47 port 3 receiver attenuator to A28 mixer brick (C)
W121	SR	N5247-20024	1	Port 4 RCVR D IN to A48 port 4 receiver attenuator
W122	SR	N5247-20065	1	A48 port 4 receiver attenuator to A28 mixer brick (D)

a. $\mathrm{SR}=$ semirigid coaxial cable; $\mathrm{F}=$ flexible coaxial cable
b. The A26 splitter (5067-4086) and N5247-20111, N5245-20022, N5245-20023, and N5247-20110 cables are only used with a legacy HMA26.5 p/n: 5087-7765. The N5240-20125 and N5247-20185 cables are used only with the new N5240-60101 HMA-26.5. Discard any cables that are not used. If you are unclear which HMA26.5 assembly your PNA has installed, refer to Chapter 7 Repairs and Figure 7-16 on page 7-37 and for details on A26 splitter and cabling, refer to your option-model in Chapter 6 " 2 -Port Configurations, Serial Number Prefix <6021" on page 6-30 and "4-Port Configuration, Serial Number Prefix <6021" on page 6-115.

Replaceable Parts
Replaceable Parts Listings

Figure 6-60 Bottom RF Cables, Option 419 (Ports 3 and 4), S/N Prefixes <6021

Bottom Ribbon Cables and Wire Harnesses, Option 419, S/N Prefixes <6021 ${ }^{1}$

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Description
(1)	10R	N5242-60005	Rear-panel PWR I/O to A23 test set motherboard J301
(2)	10R	N5247-60020	A23 test set motherboard J205 to A46 port 1 receiver attenuator
(3)	16R	N5245-60006	A23 test set motherboard J549 to A38 port 1 source attenuator
(4)	3W	N5247-60016	A23 test set motherboard J221 to ports 1/3 LED board J1
(5)	2 W	8121-0966	A23 test set motherboard J554 to A37 reference mixer switch
(6)	30R	N5247-60018	A61 port 370 GHz doubler J1 to A23 test set motherboard J5
(7)	30R	N5247-60018	A60 port 170 GHz doubler J1 to A23 test set motherboard J4
(8)	16R	N5245-60006	A23 test set motherboard J547 to A39 port 3 source attenuator
(9)	10R	N5247-60020	A23 test set motherboard J206 to A47 port 3 receiver attenuator
(10)	2 W	N5247-60021	A23 test set motherboard J541 to A42 port 1 bias tee
(11)	2W	N5247-60021	A23 test set motherboard J543 to A43 port 3 bias tee
(12)	2W	N5247-60021	A23 test set motherboard J544 to A44 port 4 bias tee
(13)	3W	N5247-60016	A23 test set motherboard J222 to ports 2/4 LED board J1
(14)	2W	N5247-60021	A23 test set motherboard J542 to A45 port 2 bias tee
(15)	16R	N5245-60006	A23 test set motherboard J548 to A40 port 4 source attenuator
(17)	16R	N5245-60006	A23 test set motherboard J546 to A41 port 2 source attenuator
(16)	10R	N5247-60020	A23 test set motherboard J207 to A48 port 4 receiver attenuator
(18)	10R	N5247-60020	A23 test set motherboard J208 to A49 port 2 receiver attenuator
(19)	30R	N5247-60018	A63 port 270 GHz doubler J1 to A23 test set motherboard J6
(10)	24R	N5247-60022	A23 test set motherboard J209 to A25 HMA26.5 J1
(11)	30R	N5247-60018	A62 port 470 GHz doubler J1 to A23 test set motherboard J3
(12)	100R	N5242-60004	A18 system motherboard J1 to A23 test set motherboard J1 to A24 IF multiplexer board J1
(13)	25R	E4410-60160	A18 system motherboard J13 to A23 test set motherboard J545

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Reference Designator	Type $^{\text {a }}$	Part Number	Description
(44)	$36 R$	$8121-0834$	Rear-panel HANDLER I/0 to A23 test set motherboard J400
(15)	20R	N5247-60014	A23 test set motherboard J551 to A27 mixer brick (1) J52
(26)	20R	N5247-60015	A23 test set motherboard J552 to A28 mixer brick (2) J52

a. $n \mathrm{R}=\mathrm{n}$ wires in a ribbon (flat) cable; $\mathrm{nW}=\mathrm{n}$ wires in a wire harness

Figure 6-61 Bottom Ribbon Cables and Wire Harnesses, Option 419, S/N Prefixes <6021

4-Port Configuration, Option 420, S/N Prefixes <6021
Bottom Assemblies, Option 420, S/N Prefixes <6021

Reference Designator	Part Number ${ }^{\text {a }}$	Qty	Description
A23	N5245-60157 Was N5247-60001	1	Test set motherboard
A24	$\begin{aligned} & \hline \text { N5240-60062 } \\ & \text { Was N5240-60045 } \end{aligned}$	1	IF multiplexer board ${ }^{\text {c }}$
A25	${ }_{\text {Was:5087-7765 }}^{\text {N5240-60101d }}$	1	LO Multiplier/amplifier 26.5 (HMA26.5)
A26	5067-4086	1	Splitter
$\begin{aligned} & \text { A27 } \\ & \text { A28 } \end{aligned}$	5087-7337	2	Mixer brick
$\begin{aligned} & \text { A29 } \\ & \text { A30 } \\ & \text { A31 } \\ & \text { A32 } \end{aligned}$	5087-7744	4	Test port 1 receiver coupler Test port 3 receiver coupler Test port 4 receiver coupler Test port 2 receiver coupler
$\begin{aligned} & \text { A33 } \\ & \text { A34 } \\ & \text { A35 } \\ & \text { A36 } \end{aligned}$	5087-7778	4	Test port 1 coupler Test port 3 coupler Test port 4 coupler Test port 2 coupler
A37	5087-7759	1	Reference mixer switch
$\begin{aligned} & \text { A38 } \\ & \text { A39 } \\ & \text { A40 } \\ & \text { A41 } \end{aligned}$	$\begin{aligned} & 84905-60004 \\ & \text { Was: } 84905-60002 \end{aligned}$	4	Test port 1 source attenuator Test port 3 source attenuator Test port 4 source attenuator Test port 2 source attenuator
$\begin{aligned} & \text { A46 } \\ & \text { A47 } \\ & \text { A48 } \\ & \text { A49 } \end{aligned}$	$\begin{aligned} & \text { 84905-60004 } \\ & \text { Was: 84905-60002 } \end{aligned}$	4	Port 1 receiver attenuator Port 3 receiver attenuator Port 4 receiver attenuator Port 2 receiver attenuator
$\begin{aligned} & \text { A60 } \\ & \text { A61 } \\ & \text { A62 } \\ & \text { A63 } \end{aligned}$	5087-7336	4	Port 170 GHz doubler Port 370 GHz doubler Port 470 GHz doubler Port 270 GHz doubler
A69	08490-60037	1	3-dB attenuator (A28 mixer brick (R4)
A70	N5291-60001	1	LFE board

Reference Designator	Part Number ${ }^{\text {a }}$	Qty	Description
A71	5087-7403	4	Bias combiner port 1 (includes wire harness)
A72			Bias combiner port 3 (includes wire harness)
A73			Bias combiner port 4 (includes wire harness)
A74			Bias combiner port 2 (includes wire harness)
(1)	N5240-60058	2	Front-panel LED board

a. Part numbers in italic typeface are for rebuilt exchange assemblies. Refer to "Rebuilt-Exchange Assemblies" on page 6-4.
b. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.
C. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.
d. The A26 splitter (5067-4086) and N5247-20111, N5245-20022, N5245-20023, and N5247-20110 cables are only used with a legacy HMA26.5 p/n: 5087-7765. The N5240-20125 and N5247-20185 cables are used only with the new N5240-60101 HMA-26.5. Discard any cables that are not used. If you are unclear which HMA26.5 assembly your PNA has installed, refer to Chapter 7 Repairs and Figure 7-16 on page 7-37 and for details on A26 splitter and cabling, refer to your option-model in Chapter 6 " 2 -Port Configurations, Serial Number Prefix <6021" on page 6-30 and "4-Port Configuration, Serial Number Prefix <6021" on page 6-115.

Figure 6-62 Bottom Assemblies, Option 420, S/N Prefixes <6021

Bottom RF Cables, Option 420 (Ports 1 and 2), S/N Prefixes <6021 ${ }^{1}$

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Qty	Description
W12	SR	N5247-20059	1	A60 port 170 GHz doubler to W11
W14	SR	N5247-20072	1	A60 port 170 GHz doubler to W13
W24	SR	N5247-20061	1	A63 port 270 GHz doubler to W23
W26	SR	N5247-20051	1	A63 port 270 GHz doubler to W25
W27	SR	N5247-20044	1	A60 port 170 GHz doubler to A29 port 1 receiver coupler
W30	SR	N5247-20043	1	A63 port 270 GHz doubler to A32 port 2 receiver coupler
W34	SR	N5247-20082	1	A33 port 1 coupler to front-panel port 1 CPLR ARM
W45	SR	N5247-20058	1	A32 port 2 receiver coupler to front-panel REF 2 SOURCE OUT
W46	SR	N5247-20019	1	A36 port 2 coupler to front-panel port 2 CPLR ARM
W51	SR	N5247-20011	1	A37 reference mixer switch to front-panel REF 1 SOURCE OUT
W52	SR	N5247-20012	1	REF 1 RCVR R1 IN to A37 reference mixer switch
W53	SR	N5247-20048	1	A37 reference mixer switch to A27 mixer brick (R1)
W60	SR	N5247-20107	12	Front-panel jumper
W61	SR	Refer to "Top		Cables-All Options, S/N Prefixes <6021" on page 6-20.
W62 ${ }^{\text {b }}$	SR	N5247-20111	1	A25 HMA26.5 to A26 splitter
W63 ${ }^{\text {b }}$	SR	N5245-20023	1	RF cable, A26 splitter to A27 mixer brick
W66	SR	N5247-20109	1	W65 to rear-panel EXT TSET DRIVE RF OUT (J6)
W69	SR	N5247-20112	1	A27 mixer brick to rear-panel EXT TSET DRIVE LO OUT (J5)
W70 ${ }^{\text {c }}$	SR	N5247-20100	1	A25 HMA26.5 to A27 mixer brick
W71	F	N5242-60017	1	A27 mixer brick (A) to A24 IF multiplexer (P1)
W72	F	N5242-60021	1	A27 mixer brick (R1) to A24 IF multiplexer (P411)
W73	F	N5242-60022		A27 mixer brick (R2) to A24 IF multiplexer (P412)
W74	F	N5242-60018	1	A27 mixer brick (B) to A24 IF multiplexer (P201)
$\begin{aligned} & \text { W79, 81, 83, } \\ & \text { W91-92, } \\ & \text { W97- } 98 \end{aligned}$	F	Refer to "Top Cables, All Cables-All Options, S/N Prefixes <6021" on page 6-20.		
W101	SR	N5247-20083	1	A29 port 1 receiver coupler to A38 port 1 source attenuator

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Qty	Description
W102	SR	N5247-20014	1	A38 port 1 source attenuator to front-panel port 1 SOURCE OUT
W104	SR	N5247-20022	1	A33 port 1 coupler to A42 port 1 bias tee
W113	SR	N5247-20083	1	A32 port 2 receiver coupler to A41 port 2 source attenuator
W114	SR	N5247-20034	1	A41 port 2 source attenuator to front-panel port 2 SOURCE OUT
W116	SR	N5247-20080	1	A45 port 2 bias tee to A36 port 2 coupler
W117	SR	N5247-20013	1	Front-panel port 1 RCVR A IN to A46 port 1 receiver attenuator
W118	SR	N5247-20047	1	A46 port 1 receiver attenuator to A27 mixer brick (A)
W123	SR	N5247-20020	1	Port 2 RCVR B IN to A49 port 2 receiver attenuator
W124	SR	N5247-20046	1	A49 port 2 receiver attenuator to A27 mixer brick (B)
W144	SR	N5247-20071	1	A29 port 1 receiver coupler to A37 reference mixer switch
W145	SR	N5247-20066	1	REF 2 RCVR R2 IN to A27 mixer brick (R2)
W181	SR	N5247-20167	1	Cable, assy-RF, CPLR THRU - Bias T combiner, Port 1
W182	SR	N5247-20162	1	Cable, assy-RF, Bias T combiner- FP, coupler Port 1
W187	SR	N5247-20163	1	Cable assy-RF, Bias T combiner- FP, coupler Port 2
W188	SR	N5247-20169	1	Cable, assy-RF, CPLR THRU - Bias T combiner, Port 2
W191 W193	F	Refer to "Top Ca	bles,	All Cables-All Options, S/N Prefixes <6021" on page 6-20.
W194	F	N5240-60097	2	Cable, assembly, coaxial LFE (Port 1 bias combiner "RF-IN" to "Port1" A70 LFE board)
W197				Cable, assembly, coaxial LFE (Port 2 bias combiner "RF-IN" to "Port2" A70 LFE board)
W211	F	8120-5014	1	RF cable, A70 LFE J14 to A24 IF Multiplexer P4
W212	F	8120-5017	1	RF cable, A70 LFE J13 to A24 IF Multiplexer P204
W213	F	8120-5014	1	RF cable, A70 LFE J7 to A24 IF Multiplexer P404
W214	F	8120-5017	1	RF cable, A70 LFE J7 to A24 IF Multiplexer P404
W215	F	8120-5017	1	RF cable, A70 LFE J11 to A24 IF Multiplexer P804
a. $S R=$ semirigid coaxial cable; $F=$ flexible coaxial cable b. The A26 splitter (5067-4086) and N5247-20111, N5245-20022, N5245-20023, and N5247-20110 cables are only used with a legacy HMA26.5 p/n: 5087-7765. The N5240-20125 and N5247-20185 cables are used only with the new N5240-60101 HMA-26.5. Discard any cables that are not used. If you are unclear which HMA26.5 assembly your PNA has installed, refer to Chapter 7 Repairs and Figure 7-16 on page 7-37 and for details on A26 splitter and cabling , refer to your option-model in Chapter 6 " 2 -Port Configurations, Serial Number Prefix <6021" on page 6-30 and "4-Port Configuration, Serial Number Prefix <6021" on page 6-115.				

c. On legacy instruments using the 5087-7765 HMA26.5, the N5245-20100 cable is used only on 2-port instruments. On instruments with a new HMA26.5 the N5245-20100 cable is used in all instruments. If you are unclear which HMA26.5 assembly your PNA has installed, refer to "Verify the Model/Version of HMA26.5 Installed" on page 7-36 and to Figure 7-16 on page 7-37.

Replaceable Parts
Replaceable Parts Listings

Figure 6-63 Bottom RF Cables, Option 420 (Ports 1 and 2), S/N Prefixes <6021

Bottom RF Cables, Option 420 (Ports 3 and 4), S/N Prefixes <6021 ${ }^{1}$

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Qty	Description
W16	SR	N5247-20060	1	A61 port 370 GHZ doubler to W15
W18	SR	N5247-20084	1	A61 port 370 GHZ doubler to W17
W20	SR	N5247-20015	1	A62 port 470 GHZ doubler to W19
W22	SR	N5247-20068	1	A62 port 470 GHZ doubler to W21
W28	SR	N5247-20043	1	A61 port 370 GHz doubler to A30 port 3 receiver coupler
W29	SR	N5247-20044	1	A62 port 470 GHz doubler to A31 port 4 receiver coupler
W37	SR	N5247-20070	1	A30 port 3 receiver coupler to front-panel REF 3 SOURCE OUT
W41	SR	N5247-20069	1	A31 port 4 receiver coupler to front-panel REF 4 SOURCE OUT
W42	SR	N5247-20026	1	A35 port 4 coupler to front-panel port 4 CPLR ARM
W54	SR	N5247-20062	1	REF 3 RCVR R3 IN to A28 mixer brick (R3)
W55	SR	N5247-20067	1	REF 4 RCVR R4 IN to A69 A69 3 dB pad on A28 mixer brick (R4)
W58	--	N5247-20138	1	2.4 mm cap for A28 mixer brick
W64 ${ }^{\text {b }}$	SR	N5245-20022	1	A26 splitter to A28 mixer brick
W68	SR	N5247-20088	1	Rear-panel port RF2 OUT (J12) to W67
W75	F	N5242-60024	1	A28 mixer brick (D) to A24 IF multiplexer (P801)
W76	F	N5242-60019	1	A28 m mixer brick (R4) to A24 IF multiplexer (P414)
W77	F	N5242-60020	1	A28 mixer brick (R3) to A24 IF multiplexer (P413)
W78	F	N5242-60023	1	A28 mixer brick (C) to A24 IF multiplexer (P601)
$\begin{aligned} & \text { W80, 82, } \\ & \text { W93-96 } \end{aligned}$	F	Refer to "Top Cables, All Cables-All Options, S/N Prefixes <6021" on page 6-20.		
W105	SR	N5247-20083	1	A30 port 3 receiver coupler to A39 port 3 source attenuator
W106	SR	N5247-20009	1	A39 port 3 source attenuator to front-panel port 3 SOURCE OUT
W109	SR	N5247-20083	1	A31 port 4 receiver coupler to A40 port 4 source attenuator
W110	SR	N5247-20025	1	A40 port 4 source attenuator to front-panel port 4 SOURCE OUT
W119	SR	N5247-20008	1	Port 3 RCVR C IN to A47 port 3 receiver attenuator
W120	SR	N5247-20064	1	A47 port 3 receiver attenuator to A28 mixer brick (C)
W121	SR	N5247-20024	1	Port 4 RCVR D IN to A48 port 4 receiver attenuator

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Replaceable Parts
Replaceable Parts Listings

| Reference
 Designator | Type $^{\text {a }}$ | Part Number | Qty | Description |
| :--- | :--- | :--- | :--- | :--- | :--- |
| W122 | SR | N5247-20065 | 1 | A48 port 4 receiver attenuator to A28 mixer brick (D) |
| W183 | SR | N5247-20170 | 1 | Cable, assy-RF, CPLR THRU - A72 Bias T combiner, Port 3 |
| W184 | SR | N5247-20164 | 1 | Cable, assy-RF, A72 Bias T combiner- FP, coupler Port 3 |
| W185 | SR | N5247-20165 | 1 | Cable, assy-RF, CPLR THRU - A73 Bias T combiner, Port 4 |
| W186 | SR | N5247-20171 | 1 | Cable, assy-RF, A73 Bias T combiner- FP, coupler Port 4 |
| W195 | F | N5240-60097 | 2 | Cable, assembly, coaxial LFE (Port 3 bias combiner "RF-IN" to
 "Port3" A70 LFE board) |
| W196 | | | | Cable, assembly, coaxial LFE (Port 4 bias combiner "RF-IN" to
 "Port4" A70 LFE board) |

a. $S R=$ semirigid coaxial cable; $F=$ flexible coaxial cable
b. The A26 splitter (5067-4086) and N5247-20111, N5245-20022, N5245-20023, and N5247-20110 cables are only used with a legacy HMA26.5 p/n: 5087-7765. The N5240-20125 and N5247-20185 cables are used only with the new N5240-60101 HMA-26.5. Discard any cables that are not used. If you are unclear which HMA26.5 assembly your PNA has installed, refer to Chapter 7 Repairs and Figure 7-16 on page 7-37 and for details on A26 splitter and cabling, refer to your option-model in Chapter 6 " 2 -Port Configurations, Serial Number Prefix <6021" on page 6-30 and "4-Port Configuration, Serial Number Prefix <6021" on page 6-115.

Figure 6-64 Bottom RF Cables, Option 420 (Ports 3 and 4), S/N Prefixes <6021

Bottom Ribbon Cables and Wire Harnesses, Option 420, S/N Prefixes <6021 ${ }^{1}$

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Description
(1)	10R	N5242-60005	Rear-panel PWR I/O to A23 test set motherboard J301
(2)	10R	N5247-60020	A23 test set motherboard J205 to A46 port 1 receiver attenuator
(3)	16R	N5245-60006	A23 test set motherboard J549 to A38 port 1 source attenuator
(4)	$3 W$	N5247-60016	A23 test set motherboard J221 to ports 1/3 LED board J1
(5)	2W	8121-0966	A23 test set motherboard J554 to A37 reference mixer switch
(6)	30 R	N5247-60018	A61 port 370 GHz doubler J1 to A23 test set motherboard J5
(7)	30 R	N5247-60018	A60 port 170 GHz doubler J 1 to A23 test set motherboard J4
(8)	16R	N5245-60006	A23 test set motherboard J547 to A39 port 3 source attenuator
(9)	10R	N5247-60020	A23 test set motherboard J206 to A47 port 3 receiver attenuator
(10)	2W	N5240-60091	A19 test set motherboard J541 to A71 port 1 bias tee combiner
(11)		combiners	A19 test set motherboard J543 to A72 port 3 bias tee combiner
(12)			A19 test set motherboard J544 to A73 port 4 bias tee combiner
(13)	3W	N5247-60016	A23 test set motherboard J222 to ports 2/4 LED board J1
(14)	2W	$\begin{aligned} & \text { N5240-60091 } \\ & \text { P/O Bias } \\ & \text { combiners } \end{aligned}$	A19 test set motherboard J542 to A74 port 2 bias tee combiner
(15)	16R	N5245-60006	A23 test set motherboard J548 to A40 port 4 source attenuator
(17)	16R	N5245-60006	A23 test set motherboard J546 to A41 port 2 source attenuator
(16)	10R	N5247-60020	A23 test set motherboard J207 to A48 port 4 receiver attenuator
(18)	10R	N5247-60020	A23 test set motherboard J208 to A49 port 2 receiver attenuator
(19)	30R	N5247-60018	A63 port 270 GHz doubler J1 to A23 test set motherboard J6
(20)	24R	N5247-60022	A23 test set motherboard J209 to A25 HMA26.5 J1
(11)	30R	N5247-60018	A62 port 470 GHz doubler J1 to A23 test set motherboard J3

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Description
(22)	100R	N5240-60089	Cable, ribbon assembly - MB/IFMUX/LFE/SMB (A14 system mother board J 1 to A19 test set motherboard to A70 LFE board to A20 IF Multiplier board J1)
(3)	25R	E4410-60160	A18 system motherboard J13 to A23 test set motherboard J545
(4)	36R	8121-0834	Rear-panel HANDLER I/O to A23 test set motherboard J400
(25)	20R	N5247-60014	A23 test set motherboard J551 to A27 mixer brick (1) J52
(26)	20R	N5247-60015	A23 test set motherboard J552 to A28 mixer brick (2) J52

a. $n \mathrm{R}=\mathrm{n}$ wires in a ribbon (flat) cable; $\mathrm{nW}=\mathrm{n}$ wires in a wire harness

Figure 6-65 Bottom Ribbon Cables and Wire Harnesses, Option 420, S/N Prefixes <6021

4-Port Configurations, Serial Number Prefix ≥ 6021

This section contains the following:

- "4-Port Configuration, Option 400, Serial Number Prefixes ≥ 6021 " on page 6-175
- "4-Port Configuration, Option 401, Serial Number Prefixes ≥ 6021 " on page 6-183
- "4-Port Configuration, Option 405, S/N Prefixes $\geq 6021 "$ on page 6-191
-"4-Port Configuration, Option 410, S/N Prefixes ≥ 6021 " on page 6-199
-"4-Port Configuration, Option 419, S/N Prefixes ≥ 6021 " on page 6-206
-"4-Port Configuration, Option 420, S/N Prefixes ≥ 6021 " on page 6-218
- See also, "4-Port Configuration, Serial Number Prefix <6021" on page 6-115.

4-Port Configuration, Option 400, Serial Number Prefixes ≥ 6021
Bottom Assemblies, Standard 4-Port Configuration, Option 400, S/N Prefixes ≥ 6021

Reference Designator	Part Number ${ }^{\text {a }}$	Qty	Description
A23	$\begin{aligned} & \text { N5245-60157 } \\ & \text { Was N5247-60001 } \end{aligned}$	1	Test set motherboard
A24	$\begin{aligned} & \text { N5240-60062 } \\ & \text { Was N5240-60045 } \end{aligned}$	1	IF multiplexer board ${ }^{\text {c }}$
A25	$\begin{aligned} & \text { N5240-60101d } \\ & \text { Was:5087-7765 } \end{aligned}$	1	LO Multiplier/amplifier 26.5 (HMA26.5)
$\begin{aligned} & \text { A27 } \\ & \text { A28 } \end{aligned}$	5087-7337	2	Mixer brick (1) Mixer brick (2)
$\begin{aligned} & \text { A29 } \\ & \text { A30 } \\ & \text { A31 } \\ & \text { A32 } \end{aligned}$	5087-7744	4	Test port 1 receiver coupler Test port 3 receiver coupler Test port 4 receiver coupler Test port 2 receiver coupler
$\begin{aligned} & \text { A33 } \\ & \text { A34 } \\ & \text { A35 } \\ & \text { A36 } \end{aligned}$	5087-7778	4	Test port 1 coupler Test port 3 coupler Test port 4 coupler Test port 2 coupler
$\begin{aligned} & \text { A60 } \\ & \text { A61 } \\ & \text { A62 } \\ & \text { A63 } \end{aligned}$	5087-7336	4	Port 170 GHz doubler Port 370 GHz doubler Port 470 GHz doubler Port 270 GHz doubler

Reference Designator Part Numbera Qty	Description		
A68	$08490-60037$	2	$3-\mathrm{dB}$ attenuator (A27 mixer brick (R1) - Indicated, but not shown
			$3-\mathrm{dB}$ attenuator (A28 mixer brick (R4)
A69		2	3-dB attenuator (A27 mixer brick (R1)
A68	$08490-60037$	2	Front-panel LED board
(1)	N5240-60058	2	

a. Part numbers in italic typeface are for rebuilt exchange assemblies. Refer to "Rebuilt-Exchange Assemblies" on page 6-4.
b. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.
c. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.
d. The A26 splitter (5067-4086) and N5247-20111, N5245-20022, N5245-20023, and N5247-20110 cables are only used with a legacy HMA26.5 p/n: 5087-7765. The N5240-20125 and N5247-20185 cables are used only wifSth the new N5240-60101 HMA-26.5. Discard any cables that are not used. If you are unclear which HMA26.5 assembly your PNA has installed, refer to Chapter 7 Repairs and Figure 7-16 on page 7-37 and for details on A26 splitter and cabling, refer to your option-model in Chapter 6 " 2 -Port Configurations, Serial Number Prefix <6021" on page 6-30 and "4-Port Configuration, Serial Number Prefix <6021" on page 6-115.

Figure 6-66 Bottom Assemblies, Standard 4-Port Configuration, Option 400, S/N Prefixes ≥ 6021

(Some parts removed for clarity.)

Bottom RF Cables, Standard 4-Port Configuration, Option 400, S/N Prefixes $\geq 6021^{1}$

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Qty	Description
W12	SR	N5227-20041	1	A60 port 170 GHz doubler to W11
W14	SR	N5247-20072	1	A60 port 170 GHz doubler to W13
W16	SR	N5227-20042	1	A61 port 370 GHZ doubler to W15
W18	SR	N5247-20084	1	A61 port 370 GHZ doubler to W17
W20	SR	N5227-20043	1	A62 port 470 GHZ doubler to W19
W22	SR	N5247-20068	1	A62 port 470 GHZ doubler to W21
W24	SR	N5247-20061	1	A63 port 270 GHz doubler to W23
W26	SR	N5247-20051	1	A63 port 270 GHz doubler to W25
W27	SR	N5227-20044	1	A60 port 170 GHz doubler to A29 port 1 receiver coupler
W28	SR	N5227-20045	1	A61 port 370 GHz doubler to A30 port 3 receiver coupler
W29	SR	N5227-20044	1	A62 port 470 GHz doubler to A31 port 4 receiver coupler
W30	SR	N5227-20045	1	A63 port 270 GHz doubler to A32 port 2 receiver coupler
W58	--	N5247-20138	1	2.4 mm cap for A28 mixer brick
W61	SR	Refer to "Top C		All Cables-All Options, S/N Prefixes ≥ 6021 " on page 6-26.
W66	SR	N5247-20109	1	W65 to rear-panel EXT TSET DRIVE RF OUT (J6)
W68	SR	N5247-20088	1	Rear-panel port RF2 OUT (J12) to W67
W69	SR	N5247-20112	1	A27 mixer brick to EXT TSET DRIVE LO OUT (J5)
W70 ${ }^{\text {b }}$	SR	N5247-20100	1	A25 HMA26.5 to A27 mixer brick
W71	F	N5242-60017	1	A27 mixer brick (A) to A24 IF multiplexer (P1)
W72	F	N5242-60021	1	A27 mixer brick (R1) to A24 IF multiplexer (P411)
W73	F	N5242-60022	1	A27 mixer brick (R2) to A24 IF multiplexer (P412)
W74	F	N5242-60018	1	A27 mixer brick (B) to A24 IF multiplexer (P201)
W75	F	N5242-60024	1	A28 mixer brick (D) to A24 IF multiplexer (P801)
W76	F	N5242-60019	1	A28 mixer brick (R4) to A24 IF multiplexer (P414)
W77	F	N5242-60020	1	A28 mixer brick (R3) to A24 IF multiplexer (P413)
W78	F	N5242-60023	1	A28 mixer brick (C) to A24 IF multiplexer (P601)

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Qty	Description
W79-83, W91-98	F	Refer to "Top Cables, All Cables-All Options, S/N Prefixes ≥ 6021 " on page 6-26.		
W127	SR	N5227-20002	1	A29 port 1 receiver coupler to A 683 dB pad on A27 mixer brick (R1)
W128	SR	N5227-20009	1	A30 port 3 receiver coupler to A28 mixer brick (R3)
W129	SR	N5227-20010	1	A31 port 4 receiver coupler to A693 dB pad on A28 mixer brick (R4)
W130	SR	N5227-20001	1	A32 port 2 receiver coupler to A27 mixer brick (R2)
W131	SR	N5227-20015	1	A29 port 1 receiver coupler to A33 port 1 coupler
W132	SR	N5227-20016	1	A30 port 3 receiver coupler to A34 port 3 coupler
W133	SR	N5227-20017	1	A31 port 4 receiver coupler to A35 port 4 coupler
W134	SR	N5227-20018	1	A32 port 2 receiver coupler to A36 port 2 coupler
W135	SR	N5227-20011	1	A33 port 1 coupler to A27 mixer brick (A)
W136	SR	N5227-20014	1	A34 port 3 coupler to A28 mixer brick (C)
W137	SR	N5227-20013	1	A35 port 4 coupler to A28 mixer brick (D)
W138	SR	N5227-20012	1	A36 port 2 coupler to A27 mixer brick (B)

a. $S R=$ semirigid coaxial cable; $F=$ flexible coaxial cable
b. On legacy instruments using the 5087-7765 HMA26.5, the N5245-20100 cable is used only on 2-port instruments. On instruments with a new HMA26.5 the N5245-20100 cable is used in all instruments. If you are unclear which HMA26.5 assembly your PNA has installed, refer to "Verify the Model/Version of HMA26.5 Installed" on page 7-36 and to Figure 7-16 on page 7-37.

Figure 6-67 Bottom RF Cables, Standard 4-Port Configuration, Option 400, S/N Prefixes ≥ 6021

Bottom Ribbon Cables and Wire Harnesses, Standard 4-Port Configuration, Option 400, S/N Prefixes $\geq 6021^{1}$

Reference Designator	Type $^{\text {a }}$	Part Number	Description
(1)	10R	N5242-60005	Rear-panel PWR I/O to A23 test set motherboard J301
(2)	$3 W$	N5247-60016	A23 test set motherboard J221 to ports 1/3 LED board J1
(3)	$30 R$	N5247-60018	A61 port 3 70 GHz doubler J1 to A23 test set motherboard J5
(4)	30 R	N5247-60018	A60 port 1 70 GHz doubler J1 to A23 test set motherboard J4
(5)	$3 W$	N5247-60016	A23 test set motherboard J222 to ports 2/4 LED board J1
(6)	$30 R$	N5247-60018	A63 port 2 70 GHz doubler J1 to A23 test set motherboard J6
(7)	24 R	N5247-60022	A23 test set motherboard J209 to A25 HMA26.5 J1
(8)	$30 R$	N5247-60018	A62 port 4 70 GHz doubler J1 to A23 test set motherboard J3
(9)	100R	N5242-60004	A18 system motherboard J1 to A23 test set motherboard J1 to
(10)	25R	E4410-60160	A18 system motherboard J13 to A23 test set motherboard J545
(11)	$36 R$	$8121-0834$	Rear-panel HANDLER I/0 to A23 test set motherboard J400
(12)	20R	N5247-60014	A23 test set motherboard J551 to A27 mixer brick (1) J52
(13)	20R	N5247-60015	A23 test set motherboard J552 to A28 mixer brick (2) J52

a. $n \mathrm{R}=\mathrm{n}$ wires in a ribbon (flat) cable; $\mathrm{nW}=n$ wires in a wire harness

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Figure 6-68 Bottom Ribbon Cables and Wire Harnesses, Standard 4-Port Configuration, Option 400, S/N Prefixes ≥ 6021

(Some parts removed for clarity.)

4-Port Configuration, Option 401, Serial Number Prefixes ≥ 6021
Bottom Assemblies, Option 401, S/N Prefixes ≥ 6021

Reference Designator	Part Number ${ }^{\text {a }}$	Qty	Description
A23	N5245-60157 Was N524-60001	1	Test set motherboard
A24	$\begin{aligned} & \text { N5240-60062 } \\ & \text { Was N5240-60045 } \end{aligned}$	1	IF multiplexer board ${ }^{\text {c }}$
A25	$\begin{aligned} & \text { N5240-60101 } \\ & \text { Was: 5087-7765 } \end{aligned}$	1	LO Multiplier/amplifier 26.5 (HMA26.5)
$\begin{aligned} & \text { A27 } \\ & \text { A28 } \end{aligned}$	5087-7337	2	Mixer brick (1) Mixer brick (2)
$\begin{aligned} & \text { A29 } \\ & \text { A30 } \\ & \text { A31 } \\ & \text { A32 } \end{aligned}$	5087-7744	4	Test port 1 receiver coupler Test port 3 receiver coupler Test port 4 receiver coupler Test port 2 receiver coupler
$\begin{aligned} & \text { A33 } \\ & \text { A34 } \\ & \text { A35 } \\ & \text { A36 } \end{aligned}$	5087-7778	4	Test port 1 coupler Test port 3 coupler Test port 4 coupler Test port 2 coupler
A37	5087-7759	1	Reference mixer switch
$\begin{aligned} & \text { A60 } \\ & \text { A61 } \\ & \text { A62 } \\ & \text { A63 } \end{aligned}$	5087-7336	4	Port 170 GHz doubler Port 370 GHz doubler Port 470 GHz doubler Port 270 GHz doubler
A68	08490-60037	2	3-dB attenuator (A27 mixer brick (R1) - Indicated, but not shown
A69			3-dB attenuator (A28 mixer brick (R4)
(1)	N5240-60058	2	Front-panel LED board

a. Part numbers in italic typeface are for rebuilt exchange assemblies. Refer to "Rebuilt-Exchange Assemblies" on page 6-4.
b. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.
C. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.

Figure 6-69 Bottom Assemblies, Option 401, S/N Prefixes ≥ 6021

(Some parts removed for clarity.)

Bottom RF Cables, Option 401, S/N Prefixes $\geq 6021^{1}$

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Qty	Description
W12	SR	N5247-20059	1	A60 port 170 GHz doubler to W11
W14	SR	N5247-20072	1	A60 port 170 GHz doubler to W13
W16	SR	N5247-20060	1	A61 port 370 GHZ doubler to W15
W18	SR	N5247-20084	1	A61 port 370 GHZ doubler to W17
W20	SR	N5247-20015	1	A62 port 470 GHZ doubler to W19
W22	SR	N5247-20068	1	A62 port 470 GHZ doubler to W21
W24	SR	N5247-20061	1	A63 port 270 GHz doubler to W23
W26	SR	N5247-20051	1	A63 port 270 GHz doubler to W25
W27	SR	N5247-20074	1	A60 port 170 GHz doubler to A29 port 1 receiver coupler
W28	SR	N5247-20052	1	A61 port 370 GHz doubler to A30 port 3 receiver coupler
W29	SR	N5247-20074	1	A62 port 470 GHz doubler to A31 port 4 receiver coupler
W30	SR	N5247-20052	1	A63 port 270 GHz doubler to A32 port 2 receiver coupler
W31	SR	N5247-20037	1	A29 port 1 receiver coupler to front-panel port 1 SOURCE OUT
W32	SR	N5247-20016	1	Port 1 CPLR THRU to A33 port 1 coupler
W33	SR	N5247-20078	1	A29 port 1 receiver coupler to A37 reference mixer switch
W34	SR	N5247-20082	1	A33 port 1 coupler to front-panel port 1 CPLR ARM
W35	SR	N5247-20023	1	A30 port 3 receiver coupler to front-panel port 3 SOURCE OUT
W36	SR	N5247-20006	1	Port 3 CPLR THRU to A34 port 3 coupler
W37	SR	N5247-20077	1	A30 port 3 receiver coupler to front-panel REF 3 SOURCE OUT
W38	SR	N5247-20007	1	A34 port 3 coupler to front-panel port 3 CPLR ARM
W39	SR	N5247-20035	1	A31 port 4 receiver coupler to front-panel port 4 SOURCE OUT
W40	SR	N5247-20017	1	Port 4 CPLR THRU to A35 port 4 coupler
W41	SR	N5247-20075	1	A31 port 4 receiver coupler to front-panel REF 4 SOURCE OUT
W42	SR	N5247-20026	1	A35 port 4 coupler to front-panel port 4 CPLR ARM
W43	SR	N5247-20036	1	A32 port 2 receiver coupler to front-panel port 2 SOURCE OUT
W44	SR	N5247-20018	1	Port 2 CPLR THRU to A36 port 2 coupler
W45	SR	N5247-20076	1	A32 port 2 receiver coupler to front-panel REF 2 SOURCE OUT

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Replaceable Parts
Replaceable Parts Listings

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Qty	Description
W46	SR	N5247-20019	1	A36 port 2 coupler to front-panel port 2 CPLR ARM
W47	SR	N5247-20053	1	Port 1 RCVR A IN to A27 mixer brick (A)
W48	SR	N5247-20063	1	Port 3 RCVR C IN to A28 mixer brick (C)
W49	SR	N5247-20073	1	Port 4 RCVR D IN to A28 mixer brick (D)
W50	SR	N5247-20054	1	Port 2 RCVR B IN to A27 mixer brick (B)
W51	SR	N5247-20011	1	A37 reference mixer switch to front-panel REF 1 SOURCE OUT
W52	SR	N5247-20012	1	REF 1 RCVR R1 IN to A37 reference mixer switch
W53	SR	N5247-20048	1	A37 reference mixer switch to A27 mixer brick (R1)
W54	SR	N5247-20062	1	REF 3 RCVR R3 IN to A28 mixer brick (R3)
W55	SR	N5247-20067	1	REF 4 RCVR R4 IN to A69 3 dB pad on A28 mixer brick (R4)
W56	SR	N5247-20055	1	REF 2 RCVR R2 IN to A27 mixer brick (R2)
W58	--	N5247-20138	1	2.4 mm cap for A28 mixer brick
W60	SR	N5247-20107	12	Front-panel jumper
W61	SR	Refer to "Top	bles,	(ll Cables-All Options, S/N Prefixes ≥ 6021 " on page 6-26.
W66	SR	N5247-20109		W65 to rear-panel EXT TSET DRIVE RF OUT (J6)
W68	SR	N5247-20088	1	Rear-panel port RF2 OUT (J12) to W67
W69	SR	N5247-20112	1	A27 mixer brick to rear-panel EXT TSET DRIVE LO OUT (J5)
W70 ${ }^{\text {b }}$	SR	N5247-20100	1	A25 HMA26.5 to A27 mixer brick
W71	F	N5242-60017	1	A27 mixer brick (A) to A24 IF multiplexer (P1)
W72	F	N5242-60021	1	A27 mixer brick (R1) to A24 IF multiplexer (P411)
W73	F	N5242-60022	1	A27 mixer brick (R2) to A24 IF multiplexer (P412)
W74	F	N5242-60018	1	A27 mixer brick (B) to A24 IF multiplexer (P201)
W75	F	N5242-60024	1	A28 mixer brick (D) to A24 IF multiplexer (P801)
W76	F	N5242-60019	1	A28 mixer brick (R4) to A24 IF multiplexer (P414)
W77	F	N5242-60020	1	A28 mixer brick (R3) to A24 IF multiplexer (P413)
W78	F	N5242-60023	1	A28 mixer brick (C) to A24 IF multiplexer (P601)
$\begin{aligned} & \text { W79-83, } \\ & \text { W91-98 } \end{aligned}$	F	Refer to "Top Cables, All Cables-All Options, S/N Prefixes ≥ 6021 " on page 6-26.		

a. $S R=$ semirigid coaxial cable; $F=$ flexible coaxial cable
b. On legacy instruments using the 5087-7765 HMA26.5, the N5245-20100 cable is used only on 2-port instruments. On instruments with a new HMA26.5 the N5245-20100 cable is used in all instruments. If you are unclear which HMA26.5 assembly your PNA has installed, refer to "Verify the Model/Version of HMA26.5 Installed" on page 7-36 and to Figure 7-16 on page 7-37.

Replaceable Parts
Replaceable Parts Listings

Figure 6-70 Bottom RF Cables, Option 401, S/N Prefixes ≥ 6021

(Some parts removed for clarity.)

Bottom Ribbon Cables and Wire Harnesses, Option 401, S/N Prefixes $\geq 6021^{1}$

Reference Designator	Type $^{\text {a }}$	Part Number	Description
(1)	10R	N5242-60005	Rear-panel PWR I/O to A23 test set motherboard J301
(2)	$3 W$	N5247-60016	A23 test set motherboard J221 to ports 1/3 LED board J1
(3)	$2 W$	$8121-0966$	A23 test set motherboard J554 to A37 reference mixer switch
(4)	30 R	N5247-60018	A61 port 3 70 GHz doubler J1 to A23 test set motherboard J5
(5)	30 R	N5247-60018	A60 port 1 70 GHz doubler J1 to A23 test set motherboard J4
(6)	$3 W$	N5247-60016	A23 test set motherboard J222 to ports 2/4 LED board J1
(7)	30 R	N5247-60018	A63 port 2 70 GHz doubler J1 to A23 test set motherboard J6S
(8)	24 R	N5247-60022	A23 test set motherboard J209 to A25 HMA26.5 J1
(9)	30 R	N5247-60018	A62 port 4 70 GHz doubler J1 to A23 test set motherboard J3
(10)	100R	N5242-60004	A18 system motherboard J1 to A23 test set motherboard J1 to
(11)	$25 R$	E4410-60160	A18 system motherboard J13 to A23 test set motherboard J545
(12)	$36 R$	$8121-0834$	Rear-panel HANDLER I/0 to A23 test set motherboard J400
(13)	20R	N5247-60014	A23 test set motherboard J551 to A27 mixer brick (1) J52
(14)	20R	N5247-60015	A23 test set motherboard J552 to A28 mixer brick (2) J52

a. $\mathrm{nR}=\mathrm{n}$ wires in a ribbon (flat) cable; $\mathrm{nW}=\mathrm{n}$ wires in a wire harness

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Figure 6-71 Bottom Ribbon Cables and Wire Harnesses, Option 401, S/N Prefixes ≥ 6021

4-Port Configuration, Option 405, S/N Prefixes ≥ 6021
Bottom Assemblies, Option 405, S/N Prefixes ≥ 6021

Reference Designator	Part Number ${ }^{\text {a }}$	Qty	Description
A23	N5245-60157 Was N524-60001	1	Test set motherboard
A24	$\begin{aligned} & \text { N5240-60062 } \\ & \text { Was N5240-60045 } \end{aligned}$	1	IF multiplexer board ${ }^{\text {c }}$
A25	$\begin{aligned} & \text { N5240-60101 } \\ & \text { Was: 5087-7765 } \end{aligned}$	1	LO Multiplier/amplifier 26.5 (HMA26.5)
$\begin{aligned} & \text { A27 } \\ & \text { A28 } \end{aligned}$	5087-7337	2	Mixer brick (1) Mixer brick (2)
$\begin{aligned} & \text { A29 } \\ & \text { A30 } \\ & \text { A31 } \\ & \text { A32 } \end{aligned}$	5087-7744	4	Test port 1 receiver coupler Test port 3 receiver coupler Test port 4 receiver coupler Test port 2 receiver coupler
$\begin{aligned} & \text { A33 } \\ & \text { A34 } \\ & \text { A35 } \\ & \text { A36 } \end{aligned}$	5087-7778	4	Test port 1 coupler Test port 3 coupler Test port 4 coupler Test port 2 coupler
A37	5087-7759	1	Reference mixer switch
$\begin{aligned} & \text { A60 } \\ & \text { A61 } \\ & \text { A62 } \\ & \text { A63 } \end{aligned}$	5087-7336	4	Port 170 GHz doubler Port 370 GHz doubler Port 470 GHz doubler Port 270 GHz doubler
A69	08490-60037	1	3-dB attenuator (A28 mixer brick (R4)
A70	N5291-60001	1	LFE board
A71	5087-7403	4	Bias combiner port 1 (includes wire harness)
A72			Bias combiner port 3 (includes wire harness)
A73			Bias combiner port 4 (includes wire harness)
A74			Bias combiner port 2 (includes wire harness)
(1)	N5240-60058	2	Front-panel LED board

a. Part numbers in italic typeface are for rebuilt exchange assemblies. Refer to "Rebuilt-Exchange Assemblies" on page 6-4.
b. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.
C. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.

Figure 6-72 Bottom Assemblies, Option 405, S/N Prefixes ≥ 6021

Bottom RF Cables, Option 405, S/N Prefixes $\geq 6021^{1}$

Reference Designator	Type $^{\text {a }}$	Part Number	Qty	Description
W12	SR	N5247-20059	1	A60 port 170 GHz doubler to W11
W14	SR	N5247-20072	1	A60 port 170 GHz doubler to W13
W16	SR	N5247-20060	1	A61 port 370 GHZ doubler to W15
W18	SR	N5247-20084	1	A61 port 370 GHZ doubler to W17
W20	SR	N5247-20015	1	A62 port 470 GHZ doubler to W19
W22	SR	N5247-20068	1	A62 port 470 GHZ doubler to W21
W24	SR	N5247-20061	1	A63 port 270 GHz doubler to W23
W26	SR	N5247-20051	1	A63 port 270 GHz doubler to W25
W27	SR	N5247-20074	1	A60 port 170 GHz doubler to A29 port 1 receiver coupler
W28	SR	N5247-20052	1	A61 port 370 GHz doubler to A30 port 3 receiver coupler
W29	SR	N5247-20074	1	A62 port 470 GHz doubler to A31 port 4 receiver coupler
W30	SR	N5247-20052	1	A63 port 270 GHz doubler to A32 port 2 receiver coupler
W31	SR	N5247-20037	1	A29 port 1 receiver coupler to front-panel port 1 SOURCE OUT
W33	SR	N5247-20078	1	A29 port 1 receiver coupler to A37 reference mixer switch
W34	SR	N5247-20082	1	A33 port 1 coupler to front-panel port 1 CPLR ARM
W35	SR	N5247-20023	1	A30 port 3 receiver coupler to front-panel port 3 SOURCE OUT
W37	SR	N5247-20077	1	A30 port 3 receiver coupler to front-panel REF 3 SOURCE OUT
W38	SR	N5247-20007	1	A34 port 3 coupler to front-panel port 3 CPLR ARM
W39	SR	N5247-20035	1	A31 port 4 receiver coupler to front-panel port 4 SOURCE OUT
W41	SR	N5247-20075	1	A31 port 4 receiver coupler to front-panel REF 4 SOURCE OUT
W42	SR	N5247-20026	1	A35 port 4 coupler to front-panel port 4 CPLR ARM
W43	SR	N5247-20036	1	A32 port 2 receiver coupler to front-panel port 2 SOURCE OUT
W45	SR	N5247-20076	1	A32 port 2 receiver coupler to front-panel REF 2 SOURCE OUT
W46	SR	N5247-20019	1	A36 port 2 coupler to front-panel port 2 CPLR ARM
W47	SR	N5247-20053	1	Port 1 RCVR A IN to A27 mixer brick (A)
W48	SR	N5247-20063	1	Port 3 RCVR C IN to A28 mixer brick (C)
W49	SR	N5247-20073	1	Port 4 RCVR D IN to A28 mixer brick (D)

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Qty	Description
W50	SR	N5247-20054	1	Port 2 RCVR B IN to A27 mixer brick (B)
W51	SR	N5247-20011	1	A37 reference mixer switch to front-panel REF 1 SOURCE OUT
W52	SR	N5247-20012	1	REF 1 RCVR R1 IN to A37 reference mixer switch
W53	SR	N5247-20048	1	A37 reference mixer switch to A27 mixer brick (R1)
W54	SR	N5247-20062	1	REF 3 RCVR R3 IN to A28 mixer brick (R3)
W55	SR	N5247-20067	1	REF 4 RCVR R4 IN to A69 3 dB pad on A28 mixer brick (R4)
W56	SR	N5247-20055	1	REF 2 RCVR R2 IN to A27 mixer brick (R2)
W58	--	N5247-20138	1	2.4 mm cap for A28 mixer brick
W60	SR	N5247-20107	12	Front-panel jumper
W61	SR	Refer to "Top C	bles,	All Cables-All Options, S/N Prefixes ≥ 6021 " on page 6-26.
W66	SR	N5247-20109	1	W65 to rear-panel EXT TSET DRIVE RF OUT (J6)
W68	SR	N5247-20088	1	Rear-panel port RF2 OUT (J12) to W67
W69	SR	N5247-20112	1	A27 mixer brick to rear-panel EXT TSET DRIVE LO OUT (J5)
W70 ${ }^{\text {b }}$	SR	N5247-20100	1	A25 HMA26.5 to A27 mixer brick
W71	F	N5242-60017	1	A27 mixer brick (A) to A24 IF multiplexer (P1)
W72	F	N5242-60021	1	A27 mixer brick (R1) to A24 IF multiplexer (P411)
W73	F	N5242-60022	1	A27 mixer brick (R2) to A24 IF multiplexer (P412)
W74	F	N5242-60018	1	A27 mixer brick (B) to A24 IF multiplexer (P201)
W75	F	N5242-60024	1	A28 mixer brick (D) to A24 IF multiplexer (P801)
W76	F	N5242-60019	1	A28 mixer brick (R4) to A24 IF multiplexer (P414)
W77	F	N5242-60020	1	A28 mixer brick (R3) to A24 IF multiplexer (P413)
W78	F	N5242-60023	1	A28 mixer brick (C) to A24 IF multiplexer (P601)
$\begin{aligned} & \text { W79-83, } \\ & \text { W91-98 } \end{aligned}$	F	Refer to "Top Cables, All Cables-All Options, S/N Prefixes ≥ 6021 " on page 6-26.		
W181	SR	N5247-20167	1	Cable, assy-RF, CPLR THRU - Bias T combiner, Port 1
W182	SR	N5247-20162	1	Cable, assy-RF, Bias T combiner- FP, Port 1 coupler
W183	SR	N5247-20170	1	Cable, assy-RF, CPLR THRU - Bias T combiner, Port 3
W184	SR	N5247-20164	1	Cable, assy-RF, Bias T combiner- FP, Port 3 coupler
W185	SR	N5247-20165	1	Cable, assy-RF, Bias T combiner- FP, Port 4 coupler
W186	SR	N5247-20171	1	Cable, assy-RF, CPLR THRU - Bias T combiner, Port 4

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Qty	Description
W187	SR	N5247-20163	1	Cable assy-RF, Bias T combiner- FP, Port 2 coupler
W188	SR	N5247-20169	1	Cable, assy-RF, CPLR THRU - Bias T combiner, Port 2
W208-W210	F	Refer to "Top Cables, All Cables-All Options, S/N Prefixes ≥ 6021 " on page 6-26.		
W194	SR	N5240-60097	4	Cable, assembly, coaxial LFE (Port 1 bias combiner "RF-IN" to "Port1" A70 LFE board)
W195	SR			Cable, assembly, coaxial LFE (Port 3 bias combiner "RF-IN" to "Port3" A70 LFE board)
W196	SR			Cable, assembly, coaxial LFE (Port 4 bias combiner "RF-IN" to "Port4" A70 LFE board)
W197	SR			Cable, assembly, coaxial LFE (Port 2 bias combiner "RF-IN" to "Port2" A70 LFE board)
W211	F	8120-5014	1	RF cable, A70 LFE J14 to A24 IF Multiplexer P4
W212	F	8120-5017	1	RF cable, A70 LFE J13 to A24 IF Multiplexer P204
W213	F	8120-5014	1	RF cable, A70 LFE J7 to A24 IF Multiplexer P404
W214	F	8120-5017	1	RF cable, A70 LFE J7 to A24 IF Multiplexer P404
W215	F	8120-5017	1	RF cable, A70 LFE J11 to A24 IF Multiplexer P804

a. $S R=$ semirigid coaxial cable; $F=$ flexible coaxial cable
b. On legacy instruments using the 5087-7765 HMA26.5, the N5245-20100 cable is used only on 2-port instruments. On instruments with a new HMA26.5 the N5245-20100 cable is used in all instruments. If you are unclear which HMA26.5 assembly your PNA has installed, refer to "Verify the Model/Version of HMA26.5 Installed" on page 7-36 and to Figure 7-16 on page 7-37.

Figure 6-73 Bottom RF Cables, Option 405, S/N Prefixes ≥ 6021

Bottom Ribbon Cables and Wire Harnesses, Option 405, S/N Prefixes $\geq 6021^{1}$

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Description
(1)	10R	N5242-60005	Rear-panel PWR I/O to A23 test set motherboard J301
(2)	3W	N5247-60016	A23 test set motherboard J221 to ports 1/3 LED board J1
(3)	2W	8121-0966	A23 test set motherboard J554 to A37 reference mixer switch
(4)	30R	N5247-60018	A61 port 370 GHz doubler J1 to A23 test set motherboard J5
(5)	30R	N5247-60018	A60 port 170 GHz doubler J1 to A23 test set motherboard J4
(6)	$3 W$	N5247-60016	A23 test set motherboard J222 to ports 2/4 LED board J1
(7)	30R	N5247-60018	A63 port 270 GHz doubler J1 to A23 test set motherboard J6
(8)	24R	N5247-60022	A23 test set motherboard J209 to A25 HMA26.5 J1
(9)	30R	N5247-60018	A62 port 470 GHz doubler J1 to A23 test set motherboard J3
(10)	100R	N5240-60089	Cable, ribbon assembly - MB/IFMUX/LFE/SMB (A14 system mother board J 1 to A19 test set motherboard to A70 LFE board to A20 IF Multiplier board J1)
(11)	25R	E4410-60160	A18 system motherboard J13 to A23 test set motherboard J545
(12)	36R	8121-0834	Rear-panel HANDLER I/O to A23 test set motherboard J400
(13)	20R	N5247-60014	A23 test set motherboard J551 to A27 mixer brick (1) J52
(14)	20R	N5247-60015	A23 test set motherboard J552 to A28 mixer brick (2) J52
(15)	2W	$\begin{aligned} & \text { N5240-60091 } \\ & \text { P/0 Bias } \\ & \text { combiners } \end{aligned}$	A19 test set motherboard J541 to A71 port 1 bias tee
(17)			A19 test set motherboard J542 to A72 port 3 bias tee
(16)			A19 test set motherboard J543 to A73 port 4 bias tee
(18)			A19 test set motherboard J544 to A74 port 2 bias tee

a. $\mathrm{nR}=\mathrm{n}$ wires in a ribbon (flat) cable; $\mathrm{nW}=\mathrm{n}$ wires in a wire harness

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Figure 6-74 Bottom Ribbon Cables and Wire Harnesses, Option 405, S/N Prefixes ≥ 6021

(Some parts removed for clarity.)
N5227_026_634 4-pt_S7

4-Port Configuration, Option 410, S/N Prefixes ≥ 6021

Bottom Assemblies, Option 410, S/N Prefixes ≥ 6021

Reference Designator	Part Number ${ }^{\text {a }}$	Qty	Description
A23	N5245-60157 Was N524-60001	1	Test set motherboard
A24	$\begin{aligned} & \text { N5240-60062b } \\ & \text { Was N5240-60045 } \end{aligned}$	1	IF multiplexer board ${ }^{\text {c }}$
A25	$\begin{aligned} & \text { N5240-60101 } \\ & \text { Was: 5087-7765 } \end{aligned}$	1	LO Multiplier/amplifier 26.5 (HMA26.5)
$\begin{aligned} & \text { A27 } \\ & \text { A28 } \end{aligned}$	5087-7337	2	Mixer brick (1) Mixer brick (2)
$\begin{aligned} & \text { A29 } \\ & \text { A30 } \\ & \text { A31 } \\ & \text { A32 } \end{aligned}$	5087-7744	4	Test port 1 receiver coupler Test port 3 receiver coupler Test port 4 receiver coupler Test port 2 receiver coupler
$\begin{aligned} & \text { A33 } \\ & \text { A34 } \\ & \text { A35 } \\ & \text { A36 } \end{aligned}$	5087-7778	4	Test port 1 coupler Test port 3 coupler Test port 4 coupler Test port 2 coupler
A37	5087-7759	1	Reference mixer switch
$\begin{aligned} & \text { A60 } \\ & \text { A61 } \\ & \text { A62 } \\ & \text { A63 } \end{aligned}$	5087-7336	4	Port 170 GHz doubler Port 370 GHz doubler Port 470 GHz doubler Port 270 GHz doubler
$\begin{aligned} & \text { A64 } \\ & \text { A65 } \\ & \text { A66 } \\ & \text { A67 } \end{aligned}$	08490-60038	4	Test port 16 -dB attenuator Test port 3 6-dB attenuator Test port 46 -dB attenuator Test port 26 -dB attenuator
A68	08490-60037	2	3-dB attenuator (A27 mixer brick (R1)
A69			3-dB attenuator (A28 mixer brick (R4)
(1)	N5240-60058	2	Front-panel LED board

a. Part numbers in italic typeface are for rebuilt exchange assemblies. Refer to "Rebuilt-Exchange Assemblies" on page 6-4.
b. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.
C. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.

Figure 6-75 Bottom Assemblies, Option 410, S/N Prefixes ≥ 6021

Replaceable Parts
Replaceable Parts Listings

Bottom RF Cables, Option 410, S/N Prefixes $\geq 6021^{1}$

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Qty	Description
W12	SR	N5227-20041	1	A60 port 170 GHz doubler to W11
W14	SR	N5247-20072	1	A60 port 170 GHz doubler to W13
W16	SR	N5227-20042	1	A61 port 370 GHZ doubler to W15
W18	SR	N5247-20084	1	A61 port 370 GHZ doubler to W17
W20	SR	N5227-20043	1	A62 port 470 GHZ doubler to W19
W22	SR	N5247-20068	1	A62 port 470 GHZ doubler to W21
W24	SR	N5247-20061	1	A63 port 270 GHz doubler to W23
W26	SR	N5247-20051	1	A63 port 270 GHz doubler to W25
W27	SR	N5227-20044	1	A60 port 170 GHz doubler to A29 port 1 receiver coupler
W28	SR	N5227-20045	1	A61 port 370 GHz doubler to A30 port 3 receiver coupler
W29	SR	N5227-20044	1	A62 port 470 GHz doubler to A31 port 4 receiver coupler
W30	SR	N5227-20045	1	A63 port 270 GHz doubler to A32 port 2 receiver coupler
W58	--	N5247-20138	1	2.4 mm cap for A28 mixer brick
W61	SR	Refer to "Top C	bles,	All Cables-All Options, S/N Prefixes ≥ 6021 " on page 6-26.
W66	SR	N5247-20109	1	W65 to rear-panel EXT TSET DRIVE RF OUT (J6)
W68	SR	N5247-20088	1	Rear-panel port RF2 OUT (J12) to W67
W69	SR	N5247-20112	1	A27 mixer brick to EXT TSET DRIVE LO OUT (J5)
W70 ${ }^{\text {b }}$	SR	N5247-20100	1	A25 HMA26.5 to A27 mixer brick
W71	F	N5242-60017	1	A27 mixer brick (A) to A24 IF multiplexer (P1)
W72	F	N5242-60021	1	A27 mixer brick (R1) to A24 IF multiplexer (P411)
W73	F	N5242-60022	1	A27 mixer brick (R2) to A24 IF multiplexer (P412)
W74	F	N5242-60018	1	A27 mixer brick (B) to A24 IF multiplexer (P201)
W75	F	N5242-60024	1	A28 mixer brick (D) to A24 IF multiplexer (P801)
W76	F	N5242-60019	1	A28 mixer brick (R4) to A24 IF multiplexer (P414)
W77	F	N5242-60020	1	A28 mixer brick (R3) to A24 IF multiplexer (P413)
W78	F	N5242-60023	1	A28 mixer brick (C) to A24 IF multiplexer (P601)

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Reference Designator	Type $^{\text {a }}$	Part Number	Qty	Description
W79 - 83, W91-98	F	Refer to "Top Cables, All Cables-All Options, S/N Prefixes ≥ 6021 " on page 6-26.		
W127	SR	N5227-20002	1	A29 port 1 receiver coupler to A68 3 dB pad on A27 mixer brick (R1)
W128	SR	N5227-20009	1	A30 port 3 receiver coupler to A28 mixer brick (R3)
W129	SR	N5227-20010	1	A31 port 4 receiver coupler to A69 3 dB pad on A28 mixer brick (R4)
W130	SR	N5227-20001	1	A32 port 2 receiver coupler to A27 mixer brick (R2)
W135	SR	N5227-20011	1	A33 port 1 coupler to A27 mixer brick (A)
W136	SR	N5227-20014	1	A34 port 3 coupler to A28 mixer brick (C)
W137	SR	N5227-20013	1	A35 port 4 coupler to A28 mixer brick (D)
W138	SR	N5227-20012	1	A36 port 2 coupler to A27 mixer brick (B)
W139	SR	N5227-20019	1	A29 port 1 receiver coupler to A64 test port 1 6-dB attenuator
W140	SR	N5227-20020	1	A30 port 3 receiver coupler to A65 test port 3 6-dB attenuator
W141	SR	N5227-20021	1	A31 port 4 receiver coupler to A66 test port 4 6-dB attenuator
W142	SR	N5227-20022	1	A32 port 2 receiver coupler to A67 test port 26-dB attenuator

a. $S R=$ semirigid coaxial cable; $F=$ flexible coaxial cable
b. On legacy instruments using the 5087-7765 HMA26.5, the N5245-20100 cable is used only on 2-port instruments. On instruments with a new HMA26.5 the N5245-20100 cable is used in all instruments. If you are unclear which HMA26.5 assembly your PNA has installed, refer to "Verify the Model/Version of HMA26.5 Installed" on page 7-36 and to Figure 7-16 on page 7-37.

Replaceable Parts
Replaceable Parts Listings

Figure 6-76 Bottom RF Cables, Option 410, S/N Prefixes ≥ 6021

(Some parts removed for clarity.)
N5227_001_624 4-pt_S7

Bottom Ribbon Cables and Wire Harnesses, Option 410, S/N Prefixes $\geq 6021^{1}$

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Description
(1)	10R	N5242-60005	Rear-panel PWR I/O to A23 test set motherboard J301
(2)	3W	N5247-60016	A23 test set motherboard J221 to ports 1/3 LED board J1
(3)	30R	N5247-60018	A61 port 370 GHz doubler J1 to A23 test set motherboard J5
(4)	30R	N5247-60018	A60 port 170 GHz doubler J1 to A23 test set motherboard J4
(5)	$3 W$	N5247-60016	A23 test set motherboard J222 to ports 2/4 LED board J1
(6)	30R	N5247-60018	A63 port 270 GHz doubler J1 to A23 test set motherboard J6
(7)	24R	N5247-60022	A23 test set motherboard J209 to A25 HMA26.5 J1
(8)	30R	N5247-60018	A62 port 470 GHz doubler J1 to A23 test set motherboard J3
(9)	100R	N5242-60004	A18 system motherboard J1 to A23 test set motherboard J1 to A24 IF multiplexer board J1
(10)	25R	E4410-60160	A18 system motherboard J13 to A23 test set motherboard J545
(11)	36R	8121-0834	Rear-panel HANDLER I/O to A23 test set motherboard J400
(11)	20R	N5247-60014	A23 test set motherboard J551 to A27 mixer brick (1) J52
(13)	20R	N5247-60015	A23 test set motherboard J552 to A28 mixer brick (2) J52

a. $n \mathrm{R}=\mathrm{n}$ wires in a ribbon (flat) cable; $\mathrm{nW}=\mathrm{n}$ wires in a wire harness

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Figure 6-77 Bottom Ribbon Cables and Wire Harnesses, Option 410, S/N Prefixes ≥ 6021

4-Port Configuration, Option 419, S/N Prefixes ≥ 6021

Bottom Assemblies, Option 419, S/N Prefixes ≥ 6021

Reference Designator	Part Number ${ }^{\text {a }}$	Qty	Description
A23	N5245-60157 Was N5247-60001	1	Test set motherboard
A24	$\begin{aligned} & \text { N5240-60062b } \\ & \text { Was N5240-60045 } \end{aligned}$	1	IF multiplexer board ${ }^{\text {c }}$
A25	$\begin{aligned} & \text { N5240-60101 } \\ & \text { Was: 5087-765 } \end{aligned}$	1	LO Multiplier/amplifier 26.5 (HMA26.5)
$\begin{aligned} & \text { A27 } \\ & \text { A28 } \end{aligned}$	5087-7337	2	Mixer brick
$\begin{aligned} & \text { A29 } \\ & \text { A30 } \\ & \text { A31 } \\ & \text { A32 } \end{aligned}$	5087-7744	4	Test port 1 receiver coupler Test port 3 receiver coupler Test port 4 receiver coupler Test port 2 receiver coupler
$\begin{aligned} & \text { A33 } \\ & \text { A34 } \\ & \text { A35 } \\ & \text { A36 } \end{aligned}$	5087-7778	4	Test port 1 coupler Test port 3 coupler Test port 4 coupler Test port 2 coupler
A37	5087-7759	1	Reference mixer switch
$\begin{aligned} & \text { A38 } \\ & \text { A39 } \\ & \text { A40 } \\ & \text { A41 } \end{aligned}$	$\begin{aligned} & \text { 84905-60004 } \\ & \text { Was: 84905-60002 } \end{aligned}$	4	Test port 1 source attenuator Test port 3 source attenuator Test port 4 source attenuator Test port 2 source attenuator
$\begin{aligned} & \text { A42 } \\ & \text { A43 } \\ & \text { A44 } \\ & \text { A45 } \end{aligned}$	5087-7732	4	Test port 1 bias tee Test port 3 bias tee Test port 4 bias tee Test port 2 bias tee
$\begin{aligned} & \text { A46 } \\ & \text { A47 } \\ & \text { A48 } \\ & \text { A49 } \end{aligned}$	$\begin{aligned} & \text { 84905-60004 } \\ & \text { Was: 84905-60002 } \end{aligned}$	4	Port 1 receiver attenuator Port 3 receiver attenuator Port 4 receiver attenuator Port 2 receiver attenuator
$\begin{aligned} & \text { A60 } \\ & \text { A61 } \\ & \text { A62 } \\ & \text { A63 } \end{aligned}$	5087-7336	4	Port 170 GHz doubler Port 370 GHz doubler Port 470 GHz doubler Port 270 GHz doubler
A69	08490-60037	1	3-dB attenuator (A28 mixer brick (R4)
(1)	N5240-60058	2	Front-panel LED board

a. Part numbers in italic typeface are for rebuilt exchange assemblies. Refer to "Rebuilt-Exchange Assemblies" on page 6-4.
b. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.
C. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.

Figure 6-78 Bottom Assemblies, Option 419, S/N Prefixes ≥ 6021

Bottom RF Cables, Option 419 (Ports 1 and 2), S/N Prefixes $\geq 6021^{1}$

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Qty	Description
W12	SR	N5247-20059	1	A60 port 170 GHz doubler to W11
W14	SR	N5247-20072	1	A60 port 170 GHz doubler to W13
W24	SR	N5247-20061	1	A63 port 270 GHz doubler to W23
W26	SR	N5247-20051	1	A63 port 270 GHz doubler to W25
W27	SR	N5247-20044	1	A60 port 170 GHz doubler to A29 port 1 receiver coupler
W30	SR	N5247-20043	1	A63 port 270 GHz doubler to A32 port 2 receiver coupler
W34	SR	N5247-20082	1	A33 port 1 coupler to front-panel port 1 CPLR ARM
W45	SR	N5247-20058	1	A32 port 2 receiver coupler to front-panel REF 2 SOURCE OUT
W46	SR	N5247-20019	1	A36 port 2 coupler to front-panel port 2 CPLR ARM
W51	SR	N5247-20011	1	A37 reference mixer switch to front-panel REF 1 SOURCE OUT
W52	SR	N5247-20012	1	REF 1 RCVR R1 IN to A37 reference mixer switch
W53	SR	N5247-20048	1	A37 reference mixer switch to A27 mixer brick (R1)
W60	SR	N5247-20107	12	Front-panel jumper
W61	SR	Refer to "Top	les,	Cables-All Options, S/N Prefixes ≥ 6021 " on page 6-26.
W66	SR	N5247-20109	1	W65 to rear-panel EXT TSET DRIVE RF OUT (J6)
W69	SR	N5247-20112	1	A27 mixer brick to rear-panel EXT TSET DRIVE LO OUT (J5)
W70 ${ }^{\text {b }}$	SR	N5247-20100	1	A25 HMA26.5 to A27 mixer brick
W71	F	N5242-60017	1	A27 mixer brick (A) to A24 IF multiplexer (P1)
W72	F	N5242-60021	1	A27 mixer brick (R1) to A24 IF multiplexer (P411)
W73	F	N5242-60022	1	A27 mixer brick (R2) to A24 IF multiplexer (P412)
W74	F	N5242-60018	1	A27 mixer brick (B) to A24 IF multiplexer (P201)
$\begin{aligned} & \text { W79, 81, 83, } \\ & \text { W91-92, } \\ & \text { W97- 98 } \end{aligned}$	F	Refer to "Top Cables, All Cables-All Options, S/N Prefixes ≥ 6021 " on page 6-26.		
W101	SR	N5247-20083	1	A29 port 1 receiver coupler to A38 port 1 source attenuator
W102	SR	N5247-20014	1	A38 port 1 source attenuator to front-panel port 1 SOURCE OUT
W103	SR	N5247-20081	1	Front-panel port 1 CPLR THRU to A42 port 1 bias tee
W104	SR	N5247-20022	1	A33 port 1 coupler to A42 port 1 bias tee

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Reference Designator	Type $^{\text {a }}$	Part Number	Qty	Description
W113	SR	N5247-20083	1	A32 port 2 receiver coupler to A41 port 2 source attenuator
W114	SR	N5247-20034	1	A41 port 2 source attenuator to front-panel port 2 SOURCE OUT
W115	SR	N5247-20027	1	Port 2 CPLR THRU to A45 port 2 bias tee
W116	SR	N5247-20080	1	A45 port 2 bias tee to A36 port 2 coupler
W117	SR	N5247-20013	1	Front-panel port 1 RCVR A IN to A46 port 1 receiver attenuator
W118	SR	N5247-20047	1	A46 port 1 receiver attenuator to A27 mixer brick (A)
W123	SR	N5247-20020	1	Port 2 RCVR B IN to A49 port 2 receiver attenuator
W124	SR	N5247-20046	1	A49 port 2 receiver attenuator to A27 mixer brick (B)
W144	SR	N5247-20071	1	A29 port 1 receiver coupler to A37 reference mixer switch
W145	SR	N5247-20066	1	REF 2 RCVR R2 IN to A27 mixer brick (R2)

a. $S R=$ semirigid coaxial cable; $F=$ flexible coaxial cable
b. On legacy instruments using the 5087-7765 HMA26.5, the N5245-20100 cable is used only on 2-port instruments. On instruments with a new HMA26.5 the N5245-20100 cable is used in all instruments. If you are unclear which HMA26.5 assembly your PNA has installed, refer to "Verify the Model/Version of HMA26.5 Installed" on page 7-36 and to Figure 7-16 on page 7-37.

Replaceable Parts
Replaceable Parts Listings

Figure 6-79 Bottom RF Cables, Option 419 (Ports 1 and 2), S/N Prefixes ≥ 6021

Bottom RF Cables, Option 419 (Ports 3 and 4), S/N Prefixes $\geq 6021^{1}$

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Qty	Description
W16	SR	N5247-20060	1	A61 port 370 GHZ doubler to W15
W18	SR	N5247-20084	1	A61 port 370 GHZ doubler to W17
W20	SR	N5247-20015	1	A62 port 470 GHZ doubler to W19
W22	SR	N5247-20068	1	A62 port 470 GHZ doubler to W21
W28	SR	N5247-20043	1	A61 port 370 GHz doubler to A30 port 3 receiver coupler
W29	SR	N5247-20044	1	A62 port 470 GHz doubler to A31 port 4 receiver coupler
W37	SR	N5247-20070	1	A30 p ort 3 receiver coupler to front-panel REF 3 SOURCE OUT
W38	SR	N5247-20007	1	A34 port 3 coupler to front-panel port 3 CPLR ARM
W41	SR	N5247-20069	1	A31 port 4 receiver coupler to front-panel REF 4 SOURCE OUT
W42	SR	N5247-20026	1	A35 port 4 coupler to front-panel port 4 CPLR ARM
W54	SR	N5247-20062	1	REF 3 RCVR R3 IN to A28 mixer brick (R3)
W55	SR	N5247-20067	1	REF 4 RCVR R4 IN to A69 A69 3 dB pad on A28 mixer brick (R4)
W58	--	N5247-20138	1	2.4 mm cap for A28 mixer brick
W68	SR	N5247-20088	1	Rear-panel port RF2 OUT (J12) to W67
W75	F	N5242-60024	1	A28 mixer brick (D) to A24 IF multiplexer (P801)
W76	F	N5242-60019	1	A28 m mixer brick (R4) to A24 IF multiplexer (P414)
W77	F	N5242-60020	1	A28 mixer brick (R3) to A24 IF multiplexer (P413)
W78	F	N5242-60023	1	A28 mixer brick (C) to A24 IF multiplexer (P601)
$\begin{aligned} & \text { W80, 82, } \\ & \text { W93-96 } \end{aligned}$	F	Refer to "Top Cables, All Cables-All Options, S/N Prefixes ≥ 6021 " on page 6-26.		
W105	SR	N5247-20083	1	A30 port 3 receiver coupler to A39 port 3 source attenuator
W106	SR	N5247-20009	1	A39 port 3 source attenuator to front-panel port 3 SOURCE OUT
W107	SR	N5247-20010	1	Port 3 CPLR THRU to A43 port 3 bias tee
W108	SR	N5247-20028	1	A43 port 3 bias tee to A34 port 3 coupler
W109	SR	N5247-20083	1	A31 port 4 receiver coupler to A40 port 4 source attenuator
W110	SR	N5247-20025	1	A40 port 4 source attenuator to front-panel port 4 SOURCE OUT
W111	SR	N5247-20021	1	Port 4 CPLR THRU to A44 port 4 bias tee

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Reference Designator	Type $^{\text {a }}$	Part Number	Qty	Description
W112	SR	N5247-20029	1	A44 port 4 bias tee to A35 port 4 coupler
W119	SR	N5247-20008	1	Port 3 RCVR C IN to A47 port 3 receiver attenuator
W120	SR	N5247-20064	1	A47 port 3 receiver attenuator to A28 mixer brick (C)
W121	SR	N5247-20024	1	Port 4 RCVR D IN to A48 port 4 receiver attenuator
W122	SR	N5247-20065	1	A48 port 4 receiver attenuator to A28 mixer brick (D)

a. $S R=$ semirigid coaxial cable; $F=$ flexible coaxial cable

Figure 6-80 Bottom RF Cables, Option 419 (Ports 3 and 4), S/N Prefixes ≥ 6021

Bottom Ribbon Cables and Wire Harnesses, Option 419, S/N Prefixes $\geq 6021^{1}$

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Description
(1)	10R	N5242-60005	Rear-panel PWR I/O to A23 test set motherboard J301
(2)	10R	N5247-60020	A23 test set motherboard J205 to A46 port 1 receiver attenuator
(3)	16R	N5245-60006	A23 test set motherboard J549 to A38 port 1 source attenuator
(4)	3W	N5247-60016	A23 test set motherboard J221 to ports 1/3 LED board J1
(5)	2W	8121-0966	A23 test set motherboard J554 to A37 reference mixer switch
(6)	30R	N5247-60018	A61 port 370 GHz doubler J1 to A23 test set motherboard J5
(7)	30R	N5247-60018	A60 port 170 GHz doubler J1 to A23 test set motherboard J4
(8)	16R	N5245-60006	A23 test set motherboard J547 to A39 port 3 source attenuator
(9)	10R	N5247-60020	A23 test set motherboard J206 to A47 port 3 receiver attenuator
(10)	2W	N5247-60021	A23 test set motherboard J541 to A42 port 1 bias tee
(11)	2W	N5247-60021	A23 test set motherboard J543 to A43 port 3 bias tee
(12)	2W	N5247-60021	A23 test set motherboard J544 to A44 port 4 bias tee
(13)	3W	N5247-60016	A23 test set motherboard J222 to ports 2/4 LED board J1
(14)	2W	N5247-60021	A23 test set motherboard J542 to A45 port 2 bias tee
(15)	16R	N5245-60006	A23 test set motherboard J548 to A40 port 4 source attenuator
(17)	16R	N5245-60006	A23 test set motherboard J546 to A41 port 2 source attenuator
(16)	10R	N5247-60020	A23 test set motherboard J207 to A48 port 4 receiver attenuator
(18)	10R	N5247-60020	A23 test set motherboard J208 to A49 port 2 receiver attenuator
(19)	30R	N5247-60018	A63 port 270 GHz doubler J1 to A23 test set motherboard J6
(21)	24R	N5247-60022	A23 test set motherboard J209 to A25 HMA26.5 J1
(11)	30R	N5247-60018	A62 port 470 GHz doubler J1 to A23 test set motherboard J3
(12)	100R	N5242-60004	A18 system motherboard J1 to A23 test set motherboard J1 to A24 IF multiplexer board J1
(13)	25R	E4410-60160	A18 system motherboard J13 to A23 test set motherboard J545

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Reference Designator	Type $^{\text {a }}$	Part Number	Description
(44)	$36 R$	$8121-0834$	Rear-panel HANDLER I/0 to A23 test set motherboard J400
(15)	20R	N5247-60014	A23 test set motherboard J551 to A27 mixer brick (1) J52
(26)	20R	N5247-60015	A23 test set motherboard J552 to A28 mixer brick (2) J52

a. $n \mathrm{R}=\mathrm{n}$ wires in a ribbon (flat) cable; $\mathrm{nW}=\mathrm{n}$ wires in a wire harness

Figure 6-81 Bottom Ribbon Cables and Wire Harnesses, Option 419, S/N Prefixes ≥ 6021

4-Port Configuration, Option 420, S/N Prefixes ≥ 6021
Bottom Assemblies, Option 420, S/N Prefixes ≥ 6021

Reference Designator	Part Number ${ }^{\text {a }}$	Qty	Description
A23	N5245-60157 Was N5247-60001	1	Test set motherboard
A24	$\begin{aligned} & \text { N5240-60062b } \\ & \text { Was N5240-60045 } \end{aligned}$	1	IF multiplexer board ${ }^{\text {c }}$
A25	$\begin{aligned} & \text { N5240-60101 } \\ & \text { Was: 5087-7765 } \end{aligned}$	1	LO Multiplier/amplifier 26.5 (HMA26.5)
$\begin{aligned} & \text { A27 } \\ & \text { A28 } \end{aligned}$	5087-7337	2	Mixer brick
$\begin{aligned} & \text { A29 } \\ & \text { A30 } \\ & \text { A31 } \\ & \text { A32 } \end{aligned}$	5087-7744	4	Test port 1 receiver coupler Test port 3 receiver coupler Test port 4 receiver coupler Test port 2 receiver coupler
$\begin{aligned} & \text { A33 } \\ & \text { A34 } \\ & \text { A35 } \\ & \text { A36 } \end{aligned}$	5087-7778	4	Test port 1 coupler Test port 3 coupler Test port 4 coupler Test port 2 coupler
A37	5087-7759	1	Reference mixer switch
$\begin{aligned} & \text { A38 } \\ & \text { A39 } \\ & \text { A40 } \\ & \text { A41 } \end{aligned}$	84905-60004 Was: 84905-60002	4	Test port 1 source attenuator Test port 3 source attenuator Test port 4 source attenuator Test port 2 source attenuator
$\begin{aligned} & \text { A46 } \\ & \text { A47 } \\ & \text { A48 } \\ & \text { A49 } \end{aligned}$	$\begin{aligned} & \text { 84905-60004 } \\ & \text { Was: 84900-60002 } \end{aligned}$	4	Port 1 receiver attenuator Port 3 receiver attenuator Port 4 receiver attenuator Port 2 receiver attenuator
$\begin{aligned} & \text { A60 } \\ & \text { A61 } \\ & \text { A62 } \\ & \text { A63 } \end{aligned}$	5087-7336	4	Port 170 GHz doubler Port 370 GHz doubler Port 470 GHz doubler Port 270 GHz doubler
A69	08490-60037	1	3-dB attenuator (A28 mixer brick (R4)
A70	N5291-60001	1	LFE board
A71	5087-7403	4	Bias combiner port 1 (includes wire harness)
A72			Bias combiner port 3 (includes wire harness)
A73			Bias combiner port 4 (includes wire harness)
A74			Bias combiner port 2 (includes wire harness)

a. Part numbers in italic typeface are for rebuilt exchange assemblies. Refer to "Rebuilt-Exchange Assemblies" on page 6-4.
b. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.
C. All new units built after August 2009, no longer use the N5242-60031 cable that was attached to connector P1001 and Source 2. As a result of this change, the IF multiplexer boards have had their P1001 connectors removed. If your instrument contains a N5242-60031 cable, remove it from your instrument.

Figure 6-82 Bottom Assemblies, Option 420, S/N Prefixes 26021

Bottom RF Cables, Option 420 (Ports 1 and 2), S/N Prefixes $\geq 6021^{1}$

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Qty	Description
W12	SR	N5247-20059	1	A60 port 170 GHz doubler to W11
W14	SR	N5247-20072	1	A60 port 170 GHz doubler to W13
W24	SR	N5247-20061	1	A63 port 270 GHz doubler to W23
W26	SR	N5247-20051	1	A63 port 270 GHz doubler to W25
W27	SR	N5247-20044	1	A60 port 170 GHz doubler to A29 port 1 receiver coupler
W30	SR	N5247-20043	1	A63 port 270 GHz doubler to A32 port 2 receiver coupler
W34	SR	N5247-20082	1	A33 port 1 coupler to front-panel port 1 CPLR ARM
W45	SR	N5247-20058	1	A32 port 2 receiver coupler to front-panel REF 2 SOURCE OUT
W46	SR	N5247-20019	1	A36 port 2 coupler to front-panel port 2 CPLR ARM
W51	SR	N5247-20011	1	A37 reference mixer switch to front-panel REF 1 SOURCE OUT
W52	SR	N5247-20012	1	REF 1 RCVR R1 IN to A37 reference mixer switch
W53	SR	N5247-20048	1	A37 reference mixer switch to A27 mixer brick (R1)
W60	SR	N5247-20107	12	Front-panel jumper
W61	SR	Refer to "Top C	bles,	Cables-All Options, S/N Prefixes ≥ 6021 " on page 6-26.
W66	SR	N5247-20109	1	W65 to rear-panel EXT TSET DRIVE RF OUT (J6)
W69	SR	N5247-20112	1	A27 mixer brick to rear-panel EXT TSET DRIVE LO OUT (J5)
W70 ${ }^{\text {b }}$	SR	N5247-20100	1	A25 HMA26.5 to A27 mixer brick
W71	F	N5242-60017	1	A27 mixer brick (A) to A24 IF multiplexer (P1)
W72	F	N5242-60021	1	A27 mixer brick (R1) to A24 IF multiplexer (P411)
W73	F	N5242-60022	1	A27 mixer brick (R2) to A24 IF multiplexer (P412)
W74	F	N5242-60018	1	A27 mixer brick (B) to A24 IF multiplexer (P201)
$\begin{aligned} & \text { W79, 81, 83, } \\ & \text { W91-92, } \\ & \text { W97- } 98 \end{aligned}$	F	Refer to "Top Cables, All Cables-All Options, S/N Prefixes ≥ 6021 " on page 6-26.		
W101	SR	N5247-20083	1	A29 port 1 receiver coupler to A38 port 1 source attenuator
W102	SR	N5247-20014	1	A38 port 1 source attenuator to front-panel port 1 SOURCE OUT
W104	SR	N5247-20022	1	A33 port 1 coupler to A42 port 1 bias tee
W113	SR	N5247-20083	1	A32 port 2 receiver coupler to A41 port 2 source attenuator

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Qty	Description
W114	SR	N5247-20034	1	A41 port 2 source attenuator to front-panel port 2 SOURCE OUT
W116	SR	N5247-20080	1	A45 port 2 bias tee to A36 port 2 coupler
W117	SR	N5247-20013	1	Front-panel port 1 RCVR A IN to A46 port 1 receiver attenuator
W118	SR	N5247-20047	1	A46 port 1 receiver attenuator to A27 mixer brick (A)
W123	SR	N5247-20020	1	Port 2 RCVR B IN to A49 port 2 receiver attenuator
W124	SR	N5247-20046	1	A49 port 2 receiver attenuator to A27 mixer brick (B)
W144	SR	N5247-20071	1	A29 port 1 receiver coupler to A37 reference mixer switch
W145	SR	N5247-20066	1	REF 2 RCVR R2 IN to A27 mixer brick (R2)
W181	SR	N5247-20167	1	Cable, assy-RF, CPLR THRU - Bias T combiner, Port 1
W182	SR	N5247-20162	1	Cable, assy-RF, Bias T combiner- FP, coupler Port 1
W187	SR	N5247-20163	1	Cable assy-RF, Bias T combiner- FP, coupler Port 2
W188	SR	N5247-20169	1	Cable, assy-RF, CPLR THRU - Bias T combiner, Port 2
$\begin{aligned} & \hline \text { W208 \& } \\ & \text { W210 } \end{aligned}$	F	Refer to "Top Ca	bles,	All Cables-All Options, S/N Prefixes ≥ 6021 " on page 6-26.
W194	F	N5240-60097	2	Cable, assembly, coaxial LFE (Port 1 bias combiner "RF-IN" to "Port1" A70 LFE board)
W197				Cable, assembly, coaxial LFE (Port 2 bias combiner "RF-IN" to "Port2" A70 LFE board)
W211	F	8120-5014	1	RF cable, A70 LFE J14 to A24 IF Multiplexer P4
W212	F	8120-5017	1	RF cable, A70 LFE J13 to A24 IF Multiplexer P204
W213	F	8120-5014	1	RF cable, A70 LFE J7 to A24 IF Multiplexer P404
W214	F	8120-5017	1	RF cable, A70 LFE J7 to A24 IF Multiplexer P404
W215	F	8120-5017	1	RF cable, A70 LFE J11 to A24 IF Multiplexer P804
a. $S R=$ semirigid coaxial cable; $F=$ flexible coaxial cable b. On legacy instruments using the 5087-7765 HMA26.5, the N5245-20100 cable is used only on 2 -port instruments. On instruments with a new HMA26.5 the N5245-20100 cable is used in all instruments. If you are unclear which HMA26.5 assembly your PNA has installed, refer to "Verify the Model/Version of HMA26.5 Installed" on page 7-36 and to Figure 7-16 on page 7-37.				

Replaceable Parts
Replaceable Parts Listings

Figure 6-83 Bottom RF Cables, Option 420 (Ports 1 and 2), S/N Prefixes ≥ 6021

Bottom RF Cables, Option 420 (Ports 3 and 4), S/N Prefixes $\geq 6021^{1}$

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Qty	Description
W16	SR	N5247-20060	1	A61 port 370 GHZ doubler to W15
W18	SR	N5247-20084	1	A61 port 370 GHZ doubler to W17
W20	SR	N5247-20015	1	A62 port 470 GHZ doubler to W19
W22	SR	N5247-20068	1	A62 port 470 GHZ doubler to W21
W28	SR	N5247-20043	1	A61 port 370 GHz doubler to A30 port 3 receiver coupler
W29	SR	N5247-20044	1	A62 port 470 GHz doubler to A31 port 4 receiver coupler
W37	SR	N5247-20070	1	A30 port 3 receiver coupler to front-panel REF 3 SOURCE OUT
W41	SR	N5247-20069	1	A31 port 4 receiver coupler to front-panel REF 4 SOURCE OUT
W42	SR	N5247-20026	1	A35 port 4 coupler to front-panel port 4 CPLR ARM
W54	SR	N5247-20062	1	REF 3 RCVR R3 IN to A28 mixer brick (R3)
W55	SR	N5247-20067	1	REF 4 RCVR R4 IN to A69 A69 3 dB pad on A28 mixer brick (R4)
W58	--	N5247-20138	1	2.4 mm cap for A28 mixer brick
W68	SR	N5247-20088	1	Rear-panel port RF2 OUT (J12) to W67
W75	F	N5242-60024	1	A28 mixer brick (D) to A24 IF multiplexer (P801)
W76	F	N5242-60019	1	A28 m mixer brick (R4) to A24 IF multiplexer (P414)
W77	F	N5242-60020	1	A28 mixer brick (R3) to A24 IF multiplexer (P413)
W78	F	N5242-60023	1	A28 mixer brick (C) to A24 IF multiplexer (P601)
$\begin{aligned} & \text { W80, 82, } \\ & \text { W93-96 } \end{aligned}$	F	Refer to "Top Cables, All Cables-All Options, S/N Prefixes ≥ 6021 " on page 6-26.		
W105	SR	N5247-20083	1	A30 port 3 receiver coupler to A39 port 3 source attenuator
W106	SR	N5247-20009	1	A39 port 3 source attenuator to front-panel port 3 SOURCE OUT
W109	SR	N5247-20083	1	A31 port 4 receiver coupler to A40 port 4 source attenuator
W110	SR	N5247-20025	1	A40 port 4 source attenuator to front-panel port 4 SOURCE OUT
W119	SR	N5247-20008	1	Port 3 RCVR C IN to A47 port 3 receiver attenuator
W120	SR	N5247-20064	1	A47 port 3 receiver attenuator to A28 mixer brick (C)
W121	SR	N5247-20024	1	Port 4 RCVR D IN to A48 port 4 receiver attenuator
W122	SR	N5247-20065	1	A48 port 4 receiver attenuator to A28 mixer brick (D)

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Qty	Description
W183	SR	N5247-20170	1	Cable, assy-RF FP, CPLR THRU to A72 Bias combiner, port 3
W184	SR	N5247-20164	1	Cable, assy-RF FP, A72 Bias combiner to A34 test port coupler port 3
W185	SR	N5247-20165	1	Cable, assy-RF FP, CPLR THRU to A73 Bias combiner, port 4
W186	SR	N5247-20171	1	Cable, assy-RF FP, A73 Bias combiner to A35 test port coupler, port 4
W195	F	N5240-60097	2	Cable, assembly, coaxial LFE (Port 3 bias combiner "RF-IN" to "Port3" A70 LFE board)
W196				Cable, assembly, coaxial LFE (Port 4 bias combiner "RF-IN" to "Port4" A70 LFE board)
W209	F	Refer to "Top C	bles,	All Cables-All Options, S/N Prefixes ≥ 6021 " on page 6-26.

Figure 6-84 Bottom RF Cables, Option 420 (Ports 3 and 4), S/N Prefixes ≥ 6021

Bottom Ribbon Cables and Wire Harnesses, Option 420, S/N Prefixes $\geq 6021{ }^{1}$

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Description
(1)	10R	N5242-60005	Rear-panel PWR I/O to A23 test set motherboard J301
(2)	10R	N5247-60020	A23 test set motherboard J205 to A46 port 1 receiver attenuator
(3)	16R	N5245-60006	A23 test set motherboard J549 to A38 port 1 source attenuator
(4)	$3 W$	N5247-60016	A23 test set motherboard J221 to ports 1/3 LED board J1
(5)	2W	8121-0966	A23 test set motherboard J554 to A37 reference mixer switch
(6)	30 R	N5247-60018	A61 port 370 GHz doubler J1 to A23 test set motherboard J5
(7)	30 R	N5247-60018	A60 port 170 GHz doubler J 1 to A23 test set motherboard J4
(8)	16R	N5245-60006	A23 test set motherboard J547 to A39 port 3 source attenuator
(9)	10R	N5247-60020	A23 test set motherboard J206 to A47 port 3 receiver attenuator
(10)	2W	N5240-60091	A19 test set motherboard J541 to A71 port 1 bias tee combiner
(11)		combiners	A19 test set motherboard J543 to A72 port 3 bias tee combiner
(12)			A19 test set motherboard J544 to A73 port 4 bias tee combiner
(13)	3W	N5247-60016	A23 test set motherboard J222 to ports 2/4 LED board J1
(14)	2W	$\begin{aligned} & \text { N5240-60091 } \\ & \text { P/O Bias } \\ & \text { combiners } \end{aligned}$	A19 test set motherboard J542 to A74 port 2 bias tee combiner
(15)	16R	N5245-60006	A23 test set motherboard J548 to A40 port 4 source attenuator
(17)	16R	N5245-60006	A23 test set motherboard J546 to A41 port 2 source attenuator
(16)	10R	N5247-60020	A23 test set motherboard J207 to A48 port 4 receiver attenuator
(18)	10R	N5247-60020	A23 test set motherboard J208 to A49 port 2 receiver attenuator
(19)	30R	N5247-60018	A63 port 270 GHz doubler J1 to A23 test set motherboard J6
(20)	24R	N5247-60022	A23 test set motherboard J209 to A25 HMA26.5 J1
(11)	30R	N5247-60018	A62 port 470 GHz doubler J1 to A23 test set motherboard J3

1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Description
(12)	100R	N5240-60089	Cable, ribbon assembly - MB/IFMUX/LFE/SMB (A14 system mother board J1 to A19 test set motherboard to A70 LFE board to A20 IF Multiplier board J1)
(13)	25R	E4410-60160	A18 system motherboard J13 to A23 test set motherboard J545
(4)	36R	8121-0834	Rear-panel HANDLER I/O to A23 test set motherboard J400
(25)	20R	N5247-60014	A23 test set motherboard J551 to A27 mixer brick (1) J52
(26)	20R	N5247-60015	A23 test set motherboard J552 to A28 mixer brick (2) J52

a. $n \mathrm{R}=\mathrm{n}$ wires in a ribbon (flat) cable; $\mathrm{nW}=\mathrm{n}$ wires in a wire harness

Replaceable Parts
Replaceable Parts Listings

Figure 6-85 Bottom Ribbon Cables and Wire Harnesses, Option 420, S/N Prefixes ≥ 6021

Replaceable Parts
Replaceable Parts Listings

Rear-panel Assembly, All Options

Item Number	Part Number	Qty	Description
(1)	N5240-00012	1	Power supply bracket, rear-panel
(2)	0515-0372	--	Machine screw, M3.0 x 8, pan head (To attach: cpu assy to ejector arms and left and right side inner brackets; rear-panel to chassis; power supply bracket to the power supply and rear-panel; handler I/O cable to rear-panel; test set deck to rear-panel.)
(3)	N5242-60088	1	Solid state drive module
(4)	Rear foot and screw (Refer to "External Hardware and Miscellaneous Parts, All Options" on page 6-244.)		
(5)	6960-0149	1	Hole plug
(6)	$\begin{aligned} & \text { 2190-0958 } \\ & \text { Was 2190-0034 } \end{aligned}$	--	Lock washer
(7)	0380-0644	--	Jack screw
(8)	N5247-00010	1	Rear-panel
(9)	3050-2330	--	Lock washer (For A24 IF MUX board connectors.)
(10)	2950-0414	--	Hex nut (For A24 IF MUX board connectors.)
(11)	2190-0584	--	Lock washer
(12)	0380-4670	--	Jack screw, 0.442 inch length
	1251-7812	--	Jack screw, 0.442 inch length
(13)	N5242-60005	1	PWR I/O cable assembly
(14)	$1253-8234^{\text {a }}$	1	Connector-D-subminiature filter adapter
(15)	9170-2235 ${ }^{\text {a }}$	1	Ferrite for PWR I/O ribbon cable assembly
(16)	1250-4261 Was: 1810-0118	2/3	Termination, 50 ohm load (2-port, qty 2; 4-port, qty 3)
(17)	8121-0834	1	HANDLER I/O cable assembly
(18)	9170-2236 ${ }^{\text {a }}$	1	Ferrite for HANDLER I/O ribbon cable assembly
(19)	2190-0068	--	Lock washer (for rear-panel BNC connectors)
(20)	2950-0054	--	Hex nut (for rear-panel BNC connectors)
(11)	Bottom foot (Refer to "External Hardware and Miscellaneous Parts, All Options" on page 6-244.)		

Item Number	Part Number	Qty	Description
(22)	$2190-0102$	--	Lock washer (for item (24))
(13)	$2950-0035$	--	Hex nut (for item (24)
(44)	$8120-5063$	2	BNC cable
(15)	$6960-0523$	5	Hole plug
(26)	$6960-0076$	1	Hole plug

a. This part number is no longer required on s / n 's $5541,5542,5544,5545,5547,5549$ and newer. But, is included for your reference.

Figure 6-86 Rear-panel Assembly, All Options

N5227_001_630

Fan Assemblies, All Options

Reference Designator	Part Number	Qty	Description
B1	$3160-4199$	5	Fan
(1)	$3160-0281$ Was 3160-4198	5	Fan guard
(2)	$0361-1272$	20	Fan rivet
(3)	N5245-00006	1	Fan bracket (for 2 fans)
(4)	E4440-00021	2	Fan EMI shield (for 2 fans)
(5)	N5245-00003	1	Fan bracket (for 3 fans)
(6)	0515-0372	--	Machine screw, M3.0 x 8, pan head (To attach: fan assemblies to chassis)
(7)	Chassis (Refer to "Internal Hardware and Miscellaneous Parts, All Options" on page 6-242.)		

Replaceable Parts
Replaceable Parts Listings

Figure 6-87 Fan Assemblies, Side View, All Options

Top Hardware and Miscellaneous Parts, All Options

Reference Designator	Part Number	Qty	Description
(1)	W1312-00062	1	Power supply bracket
(2)	$0515-0375$	6	Machine screw, M3.0 x 16, pan head (To attach midplane board to midplane bracket.)
(3)	$0515-1946$	10	Machine screw, M3.0 x 6, flat head (3 to attach power supply bracket to power supply; 7 to attach inner cover to chassis.)
(4)	$0515-0372$	27	Machine screw, M3.0 $\times 8$, pan head (4 to attach power supply bracket to inner panels; 23 to attach inner cover to chassis.)
(5)	$0400-0353$	18	Grommets for A19 midplane board (qty=6), and A18 system motherboard (qty=12) (not shown)
(6)	$0515-0380$	20	Machine screw, M4.0 $\times 10$, pan head (To attach all doubler boards, the spam board, all synth boards, and all source boards to chassis inner panels.)
Not shown	N5247-20136	2	Source (1) and source (2) bracket
Not shown	$0515-2078$	4	Machine screw, M3.0 $\times 20$, flat head (To attach source brackets to source (1) and source (2).
Not shown	$0515-0666$	2	Machine screw, M3.0 $\times 18$, pan head (To attach source brackets to source (1) and source (2).

Figure 6-88 Top Hardware and Miscellaneous Parts, Top View, All Options

Bottom Hardware and Miscellaneous Parts

Ref Desig	Part Number	Qty	Description
(1)	0515-1227	--	Machine screw, M3.0 $\times 6$, flat head (To attach: coupler plate assy to side of test set deck; A42-A45 bias tees to their brackets.)
(2)	1400-0249	--	Tie wrap
(3)	N5247-00011	2	Bracket (For test ports 2 \& 3 receiver couplers.)
(4)	N5247-00012	2	Bracket (For test ports 1 \& 4 receiver couplers.)
(5)	0515-0658	8/16	Machine screw, M2.0 x 6, pan head (To attach test port receiver couplers to brackets.)
(6)	N5247-00005	4	Bracket for source/receiver attenuator pairs
(7)	0515-0430	--	Machine screw, M3.0 66 pan head (To attach: bridge brackets to test set deck; attenuator brackets to test set deck; switch brackets to test set deck; HMA26.5 bracket to test set deck.)
(8)	N5247-20134	2	Brace, 4-port (To connect attenuator/receiver couplers with 70 GHz doublers.)
(9)	N5247-20131	1	Brace, 2-port (To connect attenuator/receiver couplers with 70 GHz doublers.)
(10)	0515-0380	--	Machine screw, M4.0 x 10, pan head (To attach brace to 70 GHz doubler mounts.)
(1)	N5247-20005	2	70 GHz doubler mount
(11)	0515-2007	--	Machine screw M3.0 14 (To attach splitter to top of mixer brick mounting block)
(12)	0515-0664	--	Machine screw M3.0 $\times 10$ pan head (To attach: mixer brick assy to test set deck; 70 GHz doubler assy to test set deck; coupler plate assy to test set deck front.)
(13)	N5235-00018	1	Bracket, ribbon cable clamp
(14)	N5247-20135	1	Mounting block (For A27 \& A28 mixer bricks.)
(15)	N5247-00002	1	Test set deck
(16)	N5247-00006	1	Bracket, rear, bottom side - for semi rigid cables connecting to top assemblies
(17)	N5245-00024	1	Bracket (For A37 reference mixer switch.)
(18)	N5247-20133	1	Brace, 4-port (To connect port 3 \& port 4 attenuator/receiver coupler assemblies.)
(1)	0515-0375	--	Machine screw, M3.0 x 16, pan head (To attach 70 GHz doublers to doubler mounts.)
(20)	N5247-20132	2	Side brace (To attach attenuator/receiver coupler assemblies to test set.)
(11)	N5247-20129	2	Bracket (For both bias tee pairs.)
Not shown	N5247-20149		Bracket (For LFE bias combiners - ports 1, 2, 3, \& 4) - Implied by (21), but not shown in figure

Ref Desig	Part Number	Qty	Description
(22)	N5247-00008	1	Test set front plate (2-port models with front-panel jumpers.)
	N5227-00001		Test set front plate (2-port models without front-panel jumpers.)
	N5247-00009	1	Test set front plate (All 4-port models.)
(3)	N5247-00003	1	Bracket, front, bottom side - for semi rigid cables connecting to top assemblies
(44)	0515-0374	--	Machine screw M3.0 $\times 10$ pan head (To attach: cross bracket to test set deck; bracket to test set deck; cable bracket mounts to test set deck; side braces to chassis \& to attenuator/receiver couplers.)
(25)	0515-1521	--	Machine screw, M3.0 x 5, flat head (To attach front-panel LED boards.)
(26)	2190-0016	2	Lock washer (For bulkhead connector) (2-ports models only)
(77)	$\begin{aligned} & 1250-4747 \\ & \text { Was: 5065-4673 } \end{aligned}$	12/24	Bulkhead connector, 1.85 mm , f-f, 50-ohm (qty 12 for 2-port, qty 24 for 4-port)
(18)	1250-3310	12/24	Lock washer (for bulkhead connectors) (qty 12 for 2-port, aty 24 for 4-port)
(29)	1250-3516	12/24	Hex nut (for bulkhead connectors) (qty 12 for 2-port, qty 24 for 4-port)
Not shown	0515-1038	--	Machine screw M3.0 x 20 pan head (To attach mixer bricks to mounting block.)
	0403-0285	4	Bumpers, adhesive (Installed on test port couplers in 2-port models only.)
	1400-1334	--	Cable clamp (with adhesive backing)
	0403-0179	4	Gap pad (Between each receiver coupler and test set deck)
	E4403-20033	4	Gap pad (Between receiver couplers $1 \& 3$ and $2 \& 4$.
	0460-2725	2	Vibe mount, 4-port (Between port 1 \& port 2 couplers \& test set front sub panel.)
Not shown	0515-0669	--	Machine screw, M4.0 x 0.7, pan head (To attach A24 IF MUX to test set deck.)
	N5242-00019	1	Stabilizer bracket (Between A23 test set motherboard and A24 IF mux board.)
	N5247-00017	1	Cross bracket on test set deck

Figure 6-89 Bottom Hardware and Miscellaneous Parts

Internal Hardware and Miscellaneous Parts, All Options

Reference Designator	Part Number	Qty	Description
(1)	N5247-00016	1	Left side inner bracket
(2)	W1312-00048	1	Midplane bracket
(3)	N5247-00015	1	Right side inner bracket
(4)	N5247-00001	1	Chassis
(5)	0515-0372	--	Machine screw, M3.0 x 8, pan head (To attach: midplane bracket to left and right side inner brackets; front bracket to left and right side inner brackets; chassis to left and right side inner brackets, midplane bracket, and front bracket; motherboard to chassis, bracket (long) center.)
(6)	N5247-00013	1	Front bracket
(7)	N5242-40002	24	PC board guides
(8)	N5240-20136	Bracket Center, long	
Not shown	$5023-3074$	2	Front handle

Replaceable Parts
Replaceable Parts Listings

Figure 6-90 Internal Hardware and Miscellaneous Parts, All Options

External Hardware and Miscellaneous Parts, All Options

Reference Designator	Part Number	Qty	Description
(1)	N5245-00035	1	Outer cover
(2)	$5041-7903$	4	Rear foot
(3)	$0515-1619$	--	Machine screw M4.0 x 25, pan head (To attach rear foot.)
(4)	N5247-60030	2	Strap handle assembly (Includes item (5)
(5)	$0515-0710$	--	Machine screw M5.0 x 18, flat head (To attach strap handle.)
(6)	$5021-2840$	4	Key lock (for bottom foot)
p	$5041-7906$	4	Bottom foot
	N9020-40007	4	Hole plug (When analyzer is rack mounted.)
(8)	$0515-0372$	--	Machine screw, M3.0 x 8, pan head (To attach inner cover.)
(9)	N5247-00004	1	Inner cover (retaining shield)
(10)	$0515-1227$	--	Machine screw, M3.0 x6, flat head (To attach: inner cover; front-panel.)
Not shown	$5023-3074$	2	Front handle
	$5041-9174$	2	Side strips for front handle
$0515-2044$	--	Machine screw, M4.0 x 12 flat head (To attach front handle to chassis.)	
	N9040-40007	1	Front impact cover
N9040-40008	1	Rear impact cover	

Figure 6-91 External Hardware and Miscellaneous Parts, All Options

Miscellaneous Part Numbers

Table 6-3 Part Numbers for Miscellaneous Parts and Accessories

Description	Model or Part Number
	Service Tools
$1 / 4$ inch and $5 / 16$ inch open-end wrench, thin profile	$8710-0510$
$5 / 16$ inch (8 mm$)$, open-end wrench	$8710-2174$
$1 / 2$ inch to $9 / 16$ inch (8 mm), open-end wrench	$8710-1770$
20 mm open-end torque wrench; $0.9 \mathrm{~N}-\mathrm{m}$ (8 in-lb)	$8710-1764$
9 mm open-end torque wrench; $2.38 \mathrm{~N}-\mathrm{m}(21$ in-lb)	Not sold by Keysight
Spanner wrench	$08513-20014$

Table 6-3 Part Numbers for Miscellaneous Parts and Accessories (Continued)

Description	Model or Part Number
Documentation	
Installation and Quick Start Guide (for all PNA series analyzers) (Cannot be ordered. Part number is for reference only. Must be printed from the Keysight Web site.)	E8356-90001
Service Guide. (Not available in printed form. Part number is for reference only. Must be printed from the Keysight Web site.)	N5227-90001
GPIB Cables/GPIB Adapter	
GPIB cable, 0.5 meter (1.6 feet)	10833D
GPIB cable, 1 meter (3.3 feet)	10833A
GPIB cable, 2 meter (6.6 feet)	10833B
GPIB cable, 4 meter (13.2 feet)	10833C
GPIB cable to GPIB cable adapter	10834A
Fuses	
rear-panel Bias Input Fuse; Ports 1, 2, 3, and 4 (0.5 A, 125 V)	$2110-0824$ Was 2110-0046
Protective Covers for Connectors	
Cap, protective, 0.812-ID	1401-0214
Cap, protective, 0.625-ID	1401-0225
Cap, protective, 1/4-36 threads	5188-5406
Battery	
Battery, lithium manganese dioxide, 3V, 0.22A-hr. (located on A21 CPU board assembly)	1420-0356
Protective Guards for Front Panel Jumpers	
Protective guard for side jumpers	N5242-00048
Protective guard for center jumpers (4-port models only.)	N5242-00049

Table 6-3 Part Numbers for Miscellaneous Parts and Accessories (Continued)

Description	Model or Part Number
Analyzer Accessories	
Pulse I/O Adapter (For connecting between the analyzer's rear-panel PULSE I/O connector and the coaxial inputs and outputs of external pulse generators and external pulse modulators.)	N1966A
USB Accessories	
Mouse, optical	$\begin{aligned} & \text { 0960-3248 } \\ & \text { Was 1150-7799 } \end{aligned}$
Keyboard (U.S. style)	$0960-3245$ Was 1150-7896
USB to GPIB adapter	82357B
ESD Supplies	
Adjustable antistatic wrist strap	9300-1367
Antistatic wrist strap grounding cord (5 foot length)	9300-0980
Static control table mat and earth ground wire	9300-0797
ESD heel strap	9300-1308
Rack Mount Kits and Handle Kits	
Rack mount kit for analyzers without handles (Option 1CM)	$\begin{aligned} & \text { N5231AU-1CM or } \\ & \text { N5232AU-1CM or } \\ & \text { N5239AU-1CM } \end{aligned}$
Option 1CM includes the following separately orderable items:	
Rack mount kit (rack mount flanges and hardware)	1CM042A Was 5063-1543
Rack mount rail set	E3663AC
Rack mount kit for analyzers with handles (Option 1CP)	$\begin{aligned} & \text { N5231AU-1CP or } \\ & \text { N5232AU-1CP or } \\ & \text { N5239AU-1CP } \end{aligned}$
Option 1CP includes the following separately orderable items:	
Rack mount kit (rack mount flanges and hardware)	5063-1555
Rack mount rail set	E3663AC
Front handle kit (two classic ${ }^{\text {a }}$ handles and hardware)	5063-1542

a. For rack mount use, you must replace factory installed ruggedized handles (thick aluminum, no trim) with classic handles (thin aluminum with plastic trim), included with Option 1CP.

Service Guide

7 Repair and Replacement Procedures

CAUTION

Before replacing the A23 board, if possible:
Run EEBackup.exe using the directory for your Windows operating system:
Windows 7 OS:
C:/Program Files (x86)/Agilent/Network Analyzer/Service/EEBackup.exe. Click on Save EEPROM Backup, and then click on Backup TSMB Memory.
Windows 10 OS (32-bit):
C:/Program Files (x86)/Keysight/Network Analyzer/Service/EEBackup.exe. Click on Save EEPROM Backup, and then click on Backup TSMB Memory.
The firmware revision numbers for Win10 (32-bit) are A.13.30.xx through A.13.95.xx.

Windows 10 OS (64-bit):
C:/Program Files/Keysight/Network Analyzer/Service/EEBackup.exe. Click on Save EEPROM Backup, and then click on Backup TSMB Memory.
The firmware revision numbers for Win10 (64-bit) are A.14.00.xx and up.
Refer to "EEPROM Backup" on page 7-86.
If it is not possible to back up the EEPROMs and the TSMB Memory, the data files might not be the most current. In this case, the backup data will contain the original factory information. If you have problems, "Contacting Keysight" on page 2-7.

Information in This Chapter

This chapter contains procedures for removing and replacing the major assemblies of your Keysight Technologies PNA series microwave network analyzer.

Chapter Seven at-a-Glance

Section Title	Summary of Content	Start Page
Personal Safety Warnings	Warnings and cautions pertaining to personal safety.	page 7-3
Electrostatic Discharge (ESD) Protection	Information pertaining to ESD protection.	page 7-3
Table of Removal and Replacement Procedures	A table of removal and replacement procedures and the corresponding page number where they are located.	page 7-4
Removal and Replacement Procedures	The actual procedures for removing and replacing the major assemblies in your analyzer. The procedures occur in assembly reference designator numerical order.	See Table 7-1 on page 7-4 for specific procedures.
Post-Repair Procedures - Resetting the Mechanical Counter - EEPROM Backup	A table for the proper tests, verifications, and adjustments to perform on your analyzer after repair.	page 7-77
	How to reset the mechanical switch and attenuator counters.	page 7-85
	How to store correction constants after making adjustments to your analyzer.	page 7-86

CAUTION

The PNA contains extremely sensitive components that can be ruined if mishandled. Follow instructions carefully when making cable connections, especially wire harness connections.
The person performing the work accepts responsibility for the full cost of the repair or replacement of damaged components.

Personal Safety Warnings

WARNING
These servicing instructions are for use by qualified personnel only. To avoid electrical shock, do not perform any servicing unless you are qualified to do so.

WARNING
The opening of covers or removal of parts is likely to expose dangerous voltages. Disconnect the analyzer from all voltage sources while it is being opened.

WARNING
Procedures described in this document may be performed with power supplied to the product while protective covers are removed. Energy available at many points may, if contacted, result in personal injury.

WARNING
The power cord is connected to internal capacitors that may remain live for 10 seconds after disconnecting the plug from its power supply assembly. Wait at least 10 seconds, after disconnecting the plug, before removing the covers.

WARNING

The detachable power cord is the instrument disconnecting device. It disconnects the mains circuits from the mains supply before other parts of the instrument. The front panel switch is only a standby switch and is not a LINE switch (disconnecting device).

Danger of explosion if battery is incorrectly replaced. Replace only with the same or equivalent type recommended. Discard used batteries according to manufacturer's instructions.

Electrostatic Discharge (ESD) Protection

CAUTION

Many of the assemblies in this instrument are very susceptible to damage from electrostatic discharge (ESD). Perform the following procedures only at a static-safe workstation and wear a grounded wrist strap.
Many of the assemblies in this instrument are very susceptible to damage from electrostatic discharge (ESD). Perform the following procedures only at a static-safe workstation and wear a grounded wrist strap.
To reduce the chance of electrostatic discharge, follow all of the recommendations outlined in "Electrostatic Discharge Protection" on page 1-7, for all of the procedures in this chapter.

Removal and Replacement Procedures

Table 7-1

List of Procedures

Reference Designator	Assembly Description	Location
N/A	Covers, outer and inner	page 7-6
N/A	Fan bracket and fans	page 7-73
N/A	Front panel assembly	page 7-7
N/A	Front panel LED boards	page 7-71
A1	Front panel interface board	page 7-9
A2	USB board	
A3	Display assembly	
A4, A17, A15	13.5 GHz synthesizer boards (s/n prefixes <6021 only)	
A15	Direct digital synthesizer (DDS) assembly (s/n prefixes 26021 only)	page 7-17
A5, A10	26.5 GHz source boards	
A7, A8 A12, A13	Doubler boards	
A14	Frequency reference board	
A16	Signal processing ADC module (SPAM) board	
A18	System motherboard	page 7-19
A19	Midplane board	page 7-22
A20	Power supply	page 7-24
A21	CPU board	page 7-26
A22	GPIB board	page 7-28
A23	Test set motherboard	page 7-30
A24	IF multiplexer board	page 7-33
A25	Multiplier/amplifier 26.5 (HMA26.5)	page 7-35
A26a	Splitter	page 7-38
A27, A28	Mixer bricks	page 7-40
A29	Port 1 receiver coupler	page 7-43
A30	Port 3 receiver coupler	
A31	Port 4 receiver coupler	
A32	Port 2 receiver coupler	page 7-47
A33	Port test port coupler A34 A35	Port 3 test port coupler
A36	Port 2 test port port coupler	
A37	Reference mixer switch	

Table 7-1 List of Procedures (Continued)

Reference Designator	Assembly Description	Location
A38	Port 1 source step attenuator (Optional)	page 7-49
A39	Port 3 source step attenuator (Optional)	
A40	Port 4 source step attenuator (Optional)	
A41	Port 2 source step attenuator (Optional)	
A42	Port 1 bias tee (Optional)	page 7-52
A43	Port 3 bias tee (Optional)	
A44	Port 4 bias tee (Optional)	
A45	Port 2 bias tee (Optional)	
A46	Port 1 receiver step attenuator (Optional)	page 7-49
A47	Port 3 receiver step attenuator (Optional)	
A48	Port 4 receiver step attenuator (Optional)	
A49	Port 2 receiver step attenuator (Optional)	
A55	Solid state drive	page 7-54
A60	70 GHz doubler 1	page 7-56
A61	70 GHz doubler 3	
A62	70 GHz doubler 4	
A63	70 GHz doubler 2	
A70	LFE PC assembly	page 7-58
A75		
A71	Port 1 LFE Bias-T combiner - port 1	page 7-65
A72	Port 1 LFE Bias-T combiner - port 3	
A73	Port 1 LFE Bias-T combiner - port 4	
A74	Port 1 LFE Bias-T combiner - port 2	

a. The A26 splitter (5067-4086) and N5247-20111, N5245-20022, N5245-20023, and N5247-20110 cables are only used with a legacy HMA26.5 p/n: 5087-7765. The N5240-20125 and N5247-20185 cables are used only with the new N5240-60101 HMA-26.5. If you are unclear which HMA26.5 assembly your PNA has installed, refer to Chapter 7 and Figure 7-16 on page 37 and for details on A26 splitter and cabling, refer to your option-model in Chapter 6 "2-Port Configurations, Serial Number Prefix <6021" on page 6-30 and "4-Port Configuration, Serial Number Prefix <6021" on page 6-115.

Removing the Covers

Tools Required

- T-10 TORX driver (torque to 9 in-lb or 1.02 N.m)
- T-20 TORX driver (torque to 21 in-lb or 2.38 N.m)

Refer to Figure 6-91, "External Hardware and Miscellaneous Parts, All Options" for these procedures.
Removing the Outer Cover

NOTE

This procedure is best performed with the analyzer resting on its front handles in the vertical position. Do not place the analyzer on its front panel without the handles. This will damage the front panel assemblies.

1. Disconnect the power cord.
2. Remove the strap handles (item (4)) by loosening the screws (item (5), with a T-20 TORX driver, on both ends until the handle is free of the analyzer.
3. Remove the foot locks (item (6) from the four bottom feet (item (7) and then remove the four bottom feet from the outer cover.
4. Remove the four rear panel feet (item (2)) by removing the center screws (item (3)) with a T-20 TORX driver.
5. Slide the outer cover toward the rear of the analyzer and remove it.

Removing the Inner Cover

1. With a T-10 TORX driver, remove the pan head screws (item (8).
2. With a T-10 TORX driver, remove the flat head screws (item (10).
3. Lift off the cover (item (9)).

Replacement Procedure

1. On the top side of the PNA, carefully position the gray flex cables so they can't be pinched between the covers and the rails.
2. On the bottom side of the PNA, carefully fold or push down the ribbon cables and wires so they can't be pinched between the hardware and the outer cover. Ribbon cables and wires must never be positioned on top of hardware.
3. Reverse the order of the removal procedures above.

Removing and Replacing the Front Panel Assembly

Tools Required

- T-10 TORX driver (set to 9 in-lb)
- T-20 TORX driver (set to 21 in-lb)
- 5/16 inch open-end torque wrench (set to $10 \mathrm{in}-\mathrm{lb}$)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-1 on page 7-8 for this procedure.

1. Disconnect the power cord.
2. Remove the outer cover. Refer to "Removing the Covers" on page 7-6.
3. With a $5 / 16$ inch torque wrench, remove all the semi-rigid jumpers (item (1) from the front panel.
4. With a T-10 TORX driver, remove the 12 screws (item (2)) from the sides of the frame.
5. Remove the lower panel overlay.
6. With a T-10 TORX, remove the 2 screws (2-Port) or 4 screws (4-Port).

Before removing the front panel from the analyzer, lift and support the front of the analyzer frame.
7. Slide the front panel over the test port connectors.
8. Disconnect the ribbon cable (item (3)) from the A1 front panel interface board.

Replacement Procedure

NOTE

When reconnecting the front-panel jumpers, torque the connectors to 10 in-lb.

1. Reverse the order of the removal procedure.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-77.

Figure 7-1 Front Panel Assembly Removal

N5247_001_711

Removing and Replacing the A1-A3 and Other Front Panel Subassemblies

Tools Required

- T-6 TORX driver (set to 3 in-lb)
- T-8 TORX driver (set to 8 in-lb)
- T-10 TORX driver (set to 9 in-lb)
- T-20 TORX driver (set to 21 in-lb)
- 5/16 inch open-end torque wrench (set to 9 in-lb)
- 5/16 inch open-end torque wrench (set to 10 in -lb)
- 11 mm socket wrench (set to 9 in-lb)
- ESD grounding wrist strap

Refer to Figure 7-2 on page 7-12, Figure 7-3 on page 7-13, Figure 7-4 on page $7-13$, Figure $7-5$ on page $7-14$, Figure $7-6$ on page $7-14$, and Figure 7-7 on page 7-15 for the following procedures.

Pre-removal Procedure

1. Disconnect the power cord.
2. Remove the front panel assembly. Refer to "Removing and Replacing the Front Panel Assembly" on page 7-7.

Removing the RPG Assembly

1. Remove the round knob (RPG) from the front panel by gently pulling the knob forward.
2. Disconnect the RPG to Interface board cable (item [24]).
3. With the 11 mm socket wrench, remove the RPG board's washer and hex nut.
4. Remove RPG assembly from the interface board.

Removing the A2 USB Board

1. Remove the five retaining screws (item (2)) from the USB board and unplug it from the A1 front panel interface board.
Removing the A1 Front Panel Interface Board and Keypad Assembly
2. Remove the A2 USB board as outlined above.
3. Remove the RPG assembly as outlined above.
4. Disconnect the following cables from the A1 front panel interface board: tape (item [14]) from connector and the LCD display to interface board cable (item [18]), LED driver board (backlight converter board) to interface
board (item [11]), touch screen controller board to interface board cable (item [13]), power switch board to interface board cable (item [12]), and the speaker assembly cable.
5. Remove the seven screws (item (9)) from the keypad/board and the two standoff-hex nuts (item (1)) from the keypad/board assembly and remove it from the front panel assembly.
6. The keypad assembly can now be removed from the A1 front panel interface board by gently pulling each of the rubber tabs through the PC board.

Removing the LED Driver Inverter Board

1. Disconnect the LED driver inverter board to interface board cable connection (item [11]) and the LCD display cable (item [19]) from the LED driver inverter board.
2. Remove two screws (item (10)) and remove the LED driver inverter board.

Removing the Touchscreen Controller Board

1. Disconnect the touchscreen controller board cable (item [13]) from the touchscreen controller board and front panel interface board.
2. Raise the retaining clamps on the LCD display flat flex cable's two connectors (item [15]).
3. Disconnect the flat flex cable from the touchscreen (item [15]).
4. With the T-8 TORX, remove the 4 screws (item (4)) on the touchscreen controller board.
5. Remove the touchscreen controller board from the mounting plate.

Removing the Power Switch Board and Power Button Keypad

1. Disconnect the following cables from the A1 front panel interface board: tape (item [14]) from connector and the LCD display to interface board cable (item [18]), LED driver board (backlight converter board) to interface board (item [11]), touch screen controller board to interface board cable (item [13]), power switch board to interface board cable (item [12]), and the speaker assembly cable.
2. With the T-10 TORX, remove the eleven outer screws on the LCD mounting plate (item (5) and remove the A3 display assembly from the front panel assembly.
3. Disconnect the power switch cable (item [13]) from the power switch board.
4. Remove two screws (item (3) and remove the power switch board.
5. The power button keypad can now be removed from the power switch board by gently pulling each of the rubber tabs through the PC board.

Removing the Speaker Assembly

1. Disconnect the speaker cable from the interface board.
2. Remove the speaker assembly and speaker foam.

CAUTION

When handling the speaker avoid touching the top of the speaker. Hold only the sides of the speaker when re-attaching the new foam.

Avoid covering the Mounting Plate screw.
Removing the A3 Display Assembly and the Touchscreen

1. Disconnect the following cables from the A1 front panel interface board: tape (item [14]) from connector and the LCD display to interface board cable (item [18]), LED driver board (backlight converter board) to interface board (item [11]), touch screen controller board to interface board cable (item [13]), power switch board to interface board cable (item [12]), and the speaker assembly cable.
2. Remove eleven outer screws (item (5) from the A3 display assembly's mounting plate and remove the A3 display assembly from the front panel assembly.
3. Raise the retaining clamps on the LCD display flat flex cable's two connectors (item [15]).
4. Disconnect the flat flex cable from the touchscreen (item [15]).
5. The LED driver board cable (item 22) can be removed from the connection on the LCD Display.
6. The LCD display cable (item [18]) can be removed by removing the three screws (item [17]) that attach it to the LCD display mounting bracket.
7. Remove the 3 screws on the slotted hole side of the mounting plate (item [20]).
8. Remove the 3 screws on the round hole side of the mounting plate (item [20]).
9. With a T-6 TORX (set to 3 -in-lb), remove the 2 screws (item [23]) on the side bracket that has the LCD cable (item [18]) attached to the LCD display.

During re-assembly of the side brackets to the LCD display, it is very important to avoid over-tightening.
10. With a T-6 TORX (set to $3-\mathrm{in}-\mathrm{lb}$), remove the 2 screws (item [23]) on the 2nd side bracket (item [21]).

During re-assembly of the side brackets to the LCD display, it is very important to avoid over-tightening.
11. The touch screen can now be removed from the front panel assembly. Note the orientation of the touch screen in the front panel assembly for installation of the new touch screen.

Figure 7-2
Front Panel Sub-assemblies Removal

Figure 7-3
A3 Display Assembly with LCD Display - Cables

Figure 7-4
Remove LCD Cable, LCD to LED Inverter Board Cable, \& Side Brackets

Figure 7-5 Remove LCD Mounting Plate to LCD Display \& LCD Display Cable

Figure 7-6 Removing the Flat Flex Cable from the LCD to the Controller Board

Figure 7-7 Power Keypad to Power Button Boards

Figure 7-8
Remove Speaker Assembly and Mounting Foam

Replacement Procedure

1. Reverse the order of the removal procedure.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-77.

Removing and Replacing the A4-A17 Boards

NOTE

If you have a PNA with a serial number prefix <6021 and have not had a 2S7 or 4S7 version 7 synthesizer assembly upgrade, then you have A4, A14, A15, and A17 boards.

If you have a PNA with a serial number prefix ≥ 6021 or have had a $2 S 7$ or $4 S 7$ version 7 synthesizer assembly upgrade, then you have an A15 direct digital synthesizer (DDS) assembly instead of the A4, A14, A15, and A17 boards.

Refer to "Top Assemblies and Cables, All Options, Serial Number Prefixes <6021" on page 6-17 and "Top Assemblies and Cables, All Options, Serial Number ≥ 6021 " on page 6-23.

Tools Required

- T-10 TORX driver (torque to 9 in-lb or $1.02 \mathrm{~N} . \mathrm{m}$)
- T-20 TORX driver (torque to 21 in-lb or 2.38 N.m)
- 5/16 inch open-end torque wrench (torque to 10 in-lb or 1.13 N.m)
- 9 mm socket or open-end wrench (torque to 21 in-lb or $2.38 \mathrm{~N} . \mathrm{m}$)
- ESD grounding wrist strap

Removal Procedure

If you have a serial number prefix <6021, refer to Figure 6-6, "Top Assemblies, All Options, S/N Prefixes <6021". If you have a serial number prefix ≥ 6021, refer to Figure 6-9, "Top Cables, All Cables, All Options, S/N Prefixes ≥ 6021," for this procedure.

Regardless of your serial number prefix, if you have had your instrument upgraded to a version 7 synthesizer assembly, refer to Figure , "Top Assemblies and Cables, All Options, Serial Number ≥ 6021,".

1. Disconnect the power cord.
2. Remove the outer and inner covers. Refer to "Removing the Covers" on page 7-6.
3. Instructions for A5 and A10 source boards (Refer to Figure 6-7 on page 6-22 for cable locations):
a. A10 source board only: on the bottom side of the analyzer, disconnect cable W7 from the A12 board and cable W8 from the A13 board.
b. A5 source board only: on the top side of the analyzer, disconnect the cables from the A4, A7, and A8 boards.
c. On the top side of the analyzer, remove screws at each end of the source board to be removed.
d. Lift the two extractors, one at each end of the board, and lift the board out of the chassis.
4. Instructions for A4, A7, A8, A12, A13, A14, A15, A16, and A17 boards:
a. Remove all cables connected to the top of the board to be removed. Note the location of each cable for reinstallation.
b. Lift the two extractors, one at each end of the board, and lift the board.
c. Before removing the board, check the bottom of the board for any attached cables.

Replacement Procedure

1. Reverse the order of the removal procedure.

Remember to connect any necessary cables to the bottom of the board before reinstalling it. If replacing a doubler board, make sure the new board has loads connected to the same ports as were used on the old board. This may require moving a load from the old board to the new board or removing the load from the new board.
When replacing the A5 or A10 source board, remove the semirigid cables attached to the bottom of the old board and attach them to the bottom of the new board. Be sure to orient these cables the same as they were on the old board.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-77.

NOTE

The A4, A15, and A17 synthesizer boards will not perform correctly and will cause the PNA to display errors until the Synthesizer Bandwidth Adjustment and the EE Default Adjustment are completed, as per Table 7-2 on page 7-77.

If you have a new A15 version 7 synthesizer assembly installed, the A15 assembly will not perform correctly and will cause the PNA to display errors until the EE Default Adjustment synthesizer adjustments are completed, as per Table 7-2 on page 7-77.

Removing and Replacing the A18 System Motherboard

Tools Required

- T-10 TORX driver (torque to 9 in-lb or 1.02 N.m)
- T-20 TORX driver (torque to 21 in-lb or 2.38 N.m)
- 5/16 inch open-end torque wrench (torque to 10 in-lb or $1.13 \mathrm{~N} . \mathrm{m}$)
- 5/8 inch nutsetter (torque to 21 in-lb or $2.38 \mathrm{~N} . \mathrm{m}$)
- ESD grounding wrist strap

CAUTION

NOTE

Any cables that are removed should be labeled for reinstallation later.

Removal Procedure

1. Disconnect the power cord.
2. Remove the outer and inner covers. Refer to "Removing the Covers" on page 7-6.
3. Remove the front panel assembly. Refer to "Removing and Replacing the Front Panel Assembly" on page 7-7.
4. Remove the A20 power supply. Refer to "Removing and Replacing the A20 Power Supply Assembly" on page 7-24.
5. Remove the A21 CPU. Refer to "Removing and Replacing the A21 CPU Board Assembly" on page 7-26.
6. Disconnect the rear panel cables.
7. Remove the threaded hardware from the rear panel.
8. Remove the rear panel.
9. Remove the A22 GPIB board. Refer to "Removing and Replacing the A22 GPIB Board" on page 7-28.
10.Remove the A19 midplane board. Refer to "Removing and Replacing the A19 Midplane Board" on page 7-22.
11.Remove the A4-A17 boards. Refer to "Removing and Replacing the A4-A17 Boards" on page 7-17.
10. Remove the right side and left side fan brackets. Disconnect the right fan wire and the left fan wire from the A18 System Motherboard, and then remove the fan brackets. Refer to "Removing and Replacing the Fans" on page 7-73.
13.Turn the analyzer over so that the bottom side is up and remove the A23 Test Set Motherboard and the A24 IF Mux. Disconnect the two ribbon cables from the A18 System Motherboard.
Refer to Figure 6-90 on page 6-243 for steps 14 and 15.
11. Remove four screws (item A) that secure the bottom of the midplane bracket to the chassis.
12. Remove seven screws (item B) that secure the left side inner bracket to the chassis.

Refer to Figure 7-9 for the remaining steps in this procedure.

1. Turn the analyzer back over so that the top side is up. Remove two screws (item (1)) from each side that secure the midplane bracket to the chassis inner panels. Lift the midplane bracket out of the analyzer.
2. Remove the three screws (item (2)) that secure the front bracket to the chassis left inner panel.
3. Remove six screws (item (3) that secure the A18 system motherboard to the chassis.
4. Slide the A18 system motherboard toward the rear of the analyzer to release it from the 15 keyhole standoffs (item (4)) on the chassis.
5. Lift the A18 system motherboard out of the analyzer.
6. Remove the twelve rubber grommets from the A18 system motherboard guide pins. Keep them for reinstallation on the replacement motherboard.

Replacement Procedure

1. Reverse the order of the removal procedure.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-77.

Figure 7-9 A18 System Motherboard Removal

Removing and Replacing the A19 Midplane Board

Tools Required

- T-10 TORX driver (torque to 9 in-lb or 1.02 N.m)
- T-20 TORX driver (torque to 21 in-lb or 2.38 N.m)
- 5/16 inch open-end torque wrench (torque to 10 in-lb or $1.13 \mathrm{~N} . \mathrm{m}$)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-10 for this procedure.

1. Disconnect the power cord.
2. Remove the outer and inner covers. Refer to "Removing the Covers" on page 7-6.
3. Remove the A20 power supply assembly. Refer to "Removing and Replacing the A20 Power Supply Assembly" on page 7-24.
4. Remove the A21 CPU board assembly. Refer to "Removing and Replacing the A21 CPU Board Assembly" on page 7-26.
5. Remove six screws (item (1)) from the A19 midplane board.
6. Lift the board ejectors (item (2)) to the upright position to disengage the A19 midplane board from the A18 system motherboard.
7. Note the positions of the six rubber grommets (item (3) on the bottom three A19 midplane board alignment pins. Remove these rubber grommets and retain them for reinstallation on the new A19 midplane board.
8. Lift the A19 midplane board out of the analyzer.

Replacement Procedure

1. Reverse the order of the removal procedure.

Be careful to align the guide pins on the A19 midplane board connectors with the slots on the A18 system motherboard connectors.

The board ejectors should be in the upright position when installing the A19 midplane board. Align these ejectors with the slots in the chassis inner panels as the board is lowered into position and then push them down flat.

Remember to install the six rubber grommets on the bottom three alignment pins.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-77.

Figure 7-10 A19 Midplane Board Removal

N5247_001_711

Removing and Replacing the A20 Power Supply Assembly

Tools Required

- T-10 TORX driver (torque to 9 in-lb or 1.02 N.m)
- T-20 TORX driver (torque to 21 in-lb or 2.38 N.m)
- ESD grounding wrist strap

Removal Procedure

NOTE

IMPORTANT! If the rear power supply rear cover must be replaced, a new KC label is required (part number N5240-80041). Refer to "Keysight Support, Services, and Assistance" on page 7.

Refer to Figure 7-11 for this procedure.

1. Disconnect the power cord.
2. Remove the outer and inner covers. Refer to "Removing the Covers" on page 7-6.
3. Remove the three flat head screws (item (1)) from the power supply bracket.
4. Remove the seven pan head screws (item (2)) from the power supply rear panel.
5. Slide the A20 power supply assembly out the rear of the analyzer.

Replacement Procedure

1. Reverse the order of the removal procedure.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-77.

Figure 7-11 A20 Power Supply Assembly Removal

Removing and Replacing the A21 CPU Board Assembly

Tools Required

- T-10 TORX driver (torque to 9 in-lb or 1.02 N.m)
- T-20 TORX driver (torque to 21 in-lb or 2.38 N.m)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-12 for this procedure.

1. Disconnect the power cord.
2. It is not necessary to remove the instrument cover(s) to remove the A21 CPU board assembly.
3. Remove six screws (item (1)) from the A21 CPU board assembly - four from the CPU assembly rear panel and two from the ejector handles.
4. Grasp the two ejector handles and rotate them outward toward the sides of the analyzer as shown in the illustration. This will disengage the A21 CPU board assembly from the A19 midplane board.
5. Slide the A21 CPU board assembly out the rear of the analyzer.
6. If the A21 CPU board assembly is being replaced, you must first remove the A55 solid state drive for reinstallation in the new A21 CPU board assembly. Refer to "Removing and Replacing the A55 Solid State Drive (SSD)" on page 7-54.

Replacement Procedure

1. Reverse the order of the removal procedure.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-77.

Figure 7-12 A21 CPU Board Assembly Removal

Removing and Replacing the A22 GPIB Board

Tools Required

- T-10 TORX driver (torque to 9 in-lb or 1.02 N.m)
- T-20 TORX driver (torque to 21 in-lb or 2.38 N.m)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-13 for this procedure.

1. Disconnect the power cord.
2. Remove the outer and inner covers. Refer to "Removing the Covers" on page 7-6.
3. Remove the A20 power supply assembly. Refer to "Removing and Replacing the A20 Power Supply Assembly" on page 7-24.
4. Remove the A21 CPU board assembly. Refer to "Removing and Replacing the A21 CPU Board Assembly" on page 7-26.
5. Remove the rear panel. Refer to "Removing and Replacing the Rear Panel" on page 7-69.
6. Slide the A22 GPIB board out the rear of the analyzer.

Replacement Procedure

1. Reverse the order of the removal procedure.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-77.

Figure 7-13 A22 GPIB Board Removal

N5247_001_709

Removing and Replacing the A23 Test Set Motherboard

CAUTION

Before replacing the A23 board, if possible:
Run EEBackup.exe using the directory for your Windows operating system:

Windows 7 OS:

C:/Program Files (x86)/Agilent/Network Analyzer/Service/EEBackup.exe. Click on Save EEPROM Backup, and then click on Backup TSMB Memory.
Windows 10 OS (32-bit):
C:/Program Files (x86)/Keysight/Network Analyzer/Service/EEBackup.exe. Click on Save EEPROM Backup, and then click on Backup TSMB Memory.
The firmware revision numbers for Win10 (32-bit) are A.13.30.xx through A.13.95.xx.

Windows 10 OS (64-bit):
C:/Program Files/Keysight/Network Analyzer/Service/EEBackup.exe. Click on Save EEPROM Backup, and then click on Backup TSMB Memory.
The firmware revision numbers for Win10 (64-bit) are A.14.00.xx and up.
Refer to "EEPROM Backup" on page 7-86.
If it is not possible to back up the EEPROMs and the TSMB Memory, the data files might not be the most current. In this case, the backup data will contain the original factory information. If you have problems, "Contacting Keysight" on page 2-7.

Tools Required

- T-10 TORX driver (torque to 9 in-lb or 1.02 N.m)
- T-20 TORX driver (torque to 21 in-lb or 2.38 N.m)
- 5/16 inch open-end torque wrench (torque to 10 in-lb or 1.13 N.m)
- 5/8 inch nutsetter (torque to 21 in-lb)
- ESD grounding wrist strap

Removal Procedure
Refer to Figure 6-89 on page 6-241 for this procedure.

1. Disconnect the power cord.
2. Remove the outer cover. Refer to "Removing the Covers" on page 7-6.
3. Position the analyzer bottom side up.
4. Disconnect ALL ribbon cables (item A) and ALL wire harnesses (item B) from the A23 test set motherboard.
5. Remove connector hardware from 11 rear panel BNC connectors.
6. Remove connector hardware from the rear panel TEST SET I/O connector.
7. Remove 10 screws (item C) from the A23 test set motherboard.
8. Slide the A23 test set motherboard toward the front of the instrument until the rear panel BNC connectors are free of the rear panel, then lift the motherboard and remove it from the analyzer.

Replacement Procedure

1. Reverse the order of the removal procedure.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-77.

Repair and Replacement Procedures
Removing and Replacing the A23 Test Set Motherboard

This page intentionally left blank.

Removing and Replacing the A24 IF Multiplexer Board

Tools Required

- T-10 TORX driver (torque to 9 in-lb or $1.02 \mathrm{~N} . \mathrm{m}$)
- T-20 TORX driver (torque to 21 in-lb or 2.38 N.m)
- 5/16 inch open-end torque wrench (torque to 10 in-lb or 1.13 N.m)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-14 for this procedure.

1. Disconnect the power cord.
2. Remove the outer cover. Refer to "Removing the Covers" on page 7-6.
3. Position the analyzer bottom side up.
4. Remove the A23 test set motherboard. Refer to "Removing and Replacing the A23 Test Set Motherboard" on page 7-30.
5. Disconnect the ribbon cable (item (1)) from the A24 IF multiplexer board.
6. Disconnect ALL gray flexible RF cables (item (2)) from the A24 IF multiplexer board.
7. Remove connector hardware (item (3)) from five rear panel RF connectors.
8. Remove connector hardware (item (4)) from the rear panel PULSE I/O connector.
9. Remove four screws (item (5) from the stabilizer bracket and remove the stabilizer bracket.
10. Remove four screws (item (6) from the A24 IF multiplexer board.
11. Slide the A24 IF multiplexer board toward the front of the instrument until the rear panel connectors are free of the rear panel, then lift the motherboard and remove it from the analyzer.

Replacement Procedure

1. Reverse the order of the removal procedure.

Attach the stabilizer bracket to the new A24 IF multiplexer board using the screws removed from the old one.

Torque rear panel RF connector nuts to 21 in-lbs and PULSE I/O connector screws to 6 in-lbs.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-77.

Figure 7-14 A24 IF Multiplexer Board Removal

Removing and Replacing the A25 HMA26.5

Tools Required

- T-10 TORX driver (torque to 9 in-lb or 1.02 N.m)
- T-20 TORX driver (torque to 21 in-lb or 2.38 N.m)
- 5/16 inch open-end torque wrench (torque to 10 in-lb or 1.13 N.m)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-15 for this procedure.

Be careful not to damage the center pins of the semirigid cables. Some flexing of the cables is necessary to remove the assembly. However, do not over-bend the semirigid cables.

1. Disconnect the power cord.
2. Remove the outer cover. Refer to "Removing the Covers" on page 7-6.
3. Position the analyzer bottom side up.
4. Disconnect the ribbon cable (item (1)) from the A25 HMA26.5 assembly.
5. Disconnect cable W61 from the A25 HMA26.5.
6. Remove cable W62 from between the A25 HMA26.5 and the A26 splitter. ${ }^{1}$
7. Remove four screws (item (2)) that hold the A25 HMA26.5 on the chassis side panel.

Replacement Procedure

1. Reverse the order of the removal procedure.

Torque all RF cable connectors to 10 in-lbs.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-77.

1. The A26 splitter (5067-4086) and N5247-20111, N5245-20022, N5245-20023, and N5247-20110 cables are only used with a legacy HMA26.5 p/n: 5087-7765. The N5240-20125 and N5247-20185 cables are used only with the new N5240-60101 HMA-26.5. If you are unclear which HMA26.5 assembly your PNA has installed, refer to Chapter 7 and Figure 7-16 on page 37 and for details on A26 splitter and cabling, refer to your option-model in Chapter 6 "2-Port Configurations, Serial Number Prefix <6021" on page 6-30 and "4-Port Configuration, Serial Number Prefix <6021" on page 6-115.

Figure 7-15 A25 HMA26.5 Removal

Verify the Model/Version of HMA26.5 Installed

This upgrade kit contains components for use with PNA models using the legacy HMA26.5 part number 5087-7765. If your PNA has the newer HMA26.5 part number N5240-60101 installed you may discard these parts:

- A26 splitter 5067-4086
- W62 N5247-20111

Repair and Replacement Procedures
Removing and Replacing the A25 HMA26.5

- W63 N5245-20023
- W64 N5245-20022

The new N5240-60101 HMA26.5 has the splitter integrated into the assembly. Refer to Figure 7-16 on page 7-37.

Figure 7-16 Comparison of Legacy HMA26.5 (5087-7765) and New HMA26.5 (N5240-60101)

New HMA26.5 -- N5240-60101
Requires (x1) Cable.

Legacy HMA26.5 -- 5087-7765
Requires A26 Splitter and (x3) Cables.

Removing and Replacing the A26 Splitter ${ }^{1}$

Tools Required

- T-10 TORX driver (torque to 9 in-lb or 1.02 N.m)
- T-20 TORX driver (torque to 21 in-lb or 2.38 N.m)
- 5/16 inch open-end torque wrench (torque to 10 in-lb or 1.13 N.m)
- ESD grounding wrist strap

Removal Procedure
Refer to Figure 7-16 and Figure 7-17 for this procedure.

CAUTION

Be careful not to damage the center pins of the semirigid cables. Some flexing of the cables is necessary to remove the assembly. However, do not over-bend the semirigid cables.

1. Disconnect the power cord.
2. Remove the outer cover. Refer to "Removing the Covers" on page 7-6.
3. Position the analyzer bottom side up.
4. Disconnect cable W62 at the A26 splitter connection.
5. Remove cable W63 from between the A26 splitter and the A27 mixer brick.
6. Remove cable W64 from between the A26 splitter and the A28 mixer brick.
7. Remove two screws (item (1)) from the A26 splitter and lift the splitter out of the analyzer.

Replacement Procedure

1. Reverse the order of the removal procedure.

Torque all RF cable connections to 10 in-lbs.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-77.

[^8]
Repair and Replacement Procedures

Removing and Replacing the A26 Splitter

Figure 7-17 A26 Splitter Removal ${ }^{1}$

1. The A26 splitter (5067-4086) and N5247-20111, N5245-20022, N5245-20023, and N5247-20110 cables are only used with a legacy HMA26.5 p/n: 5087-7765. The N5240-20125 and N5247-20185 cables are used only with the new N5240-60101 HMA-26.5. If you are unclear which HMA26.5 assembly your PNA has installed, refer to Chapter 7 and Figure 7-16 on page 37 and for details on A26 splitter and cabling, refer to your option-model in Chapter 6 "2-Port Configurations, Serial Number Prefix <6021" on page 6-30 and "4-Port Configuration, Serial Number Prefix <6021" on page 6-115.

Removing and Replacing the A27 and A28 Mixer Bricks

Tools Required

- T-8 TORX driver (set to 6 in-lb or 0.68N.m)
- T-10 TORX driver (set to 9 in-lb or $1.02 \mathrm{~N} . \mathrm{m}$)
- T-20 TORX driver (set to 21 in-lb or 2.38 N.m)
- 5/16 inch open-end torque wrench (set to 1.13 in-lb)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-18 for this procedure.

CAUTION

Be careful not to damage the center pins of the semirigid cables. Some flexing of the cables is necessary to remove the assembly. However, do not over-bend the semirigid cables.

1. Disconnect the power cord.
2. Remove the outer cover. Refer to "Removing the Covers" on page 7-6.
3. Position the analyzer bottom side up.
4. Remove the A26 splitter". Refer to "Removing and Replacing the A26 Splitter" on page 7-38.
5. The mixer bricks and the mounting blocks to which they are attached, must be removed as a complete assembly.
Disconnect all semirigid cables (item (1)) from the mixer bricks on the mounting blocks to be removed.
6. Disconnect the ribbon cables (item (2)) from each of the mixer bricks.
7. Remove ten screws (item (3)) from the mixer brick mounting block.
8. Move the disconnected semirigid cables out of the way and lift the mixer brick mounting block out of the analyzer just enough to allow the gray flexible RF cables (item (4) to be disconnected. It may be necessary to loosen the connector at the other end of some of the semirigid cables to allow them to be moved enough.
Note the locations of each of the gray flexible cables for reconnection later. Disconnect these cables and remove the mixer brick mounting block with the mixer brick(s) from the analyzer.
9. If replacing a mixer brick, remove 3 screws (not shown) that fasten each mixer brick to the mixer brick mounting block.
10. If replacing the A28 mixer brick, remove the 3 dB pads (item (5) and keep it for reinstallation on the replacement mixer brick.

Replacement Procedure

1. Reverse the order of the removal procedure.

If replacing the A28 mixer brick, remember to install the W58 2.4 mm cap, removed from the old mixer brick, onto the new mixer brick in the same location.

Torque all RF cable connections to 10 in-lbs.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-77.

Figure 7-18 A27 and A28 Mixer Bricks Removal ${ }^{1}$

1. The A26 splitter (5067-4086) and N5247-20111, N5245-20022, N5245-20023, and N5247-20110 cables are only used with a legacy HMA26.5 p/n: 5087-7765. The N5240-20125 and N5247-20185 cables are used only with the new N5240-60101 HMA-26.5. If you are unclear which HMA26.5 assembly your PNA has installed, refer to Chapter 7 and Figure 7-16 on page 37 and for details on A26 splitter and cabling, refer to your option-model in Chapter 6 "2-Port Configurations, Serial Number Prefix <6021" on page 6-30 and "4-Port Configuration, Serial Number Prefix <6021" on page 6-115.

Removing and Replacing the A29 -A32 Receiver Couplers and Receiver Coupler Mounting Brackets

Tools Required

- T-6 TORX driver (torque to 4 in-lb or 0.45 N.m)
- T-10 TORX driver (torque to 9 in-lb or 1.02 N.m)
- 5/16 inch open-end torque wrench (torque to 10 in-lb or $1.13 \mathrm{~N} . \mathrm{m}$)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-19 for this procedure.
Be careful not to damage the center pins of the semirigid cables. Some flexing of the cables is necessary to remove the assembly. However, do not over-bend the semirigid cables.

1. Disconnect the power cord.
2. Remove the outer cover. Refer to "Removing the Covers" on page 7-6.
3. Position the analyzer bottom side up.
4. Disconnect three semirigid cables (item (1)) from the reference coupler to be replaced.
5. Remove three screws (item (2)) from the mounting bracket of the reference coupler to be replaced.
6. Move the disconnected semirigid cables out of the way and lift the receiver coupler mounting bracket, with the receiver coupler attached, out of the analyzer. It may be necessary to loosen the connector at the other end of some of the semirigid cables to allow them to be moved enough.
7. Remove four screws that attach the receiver coupler to be replaced to the receiver coupler mounting bracket, and remove the receiver coupler from the bracket.

Replacement Procedure

1. Reverse the order of the removal procedure.

Orient the position of the receiver couplers and brackets as shown in Figure 7-20.

Torque all RF connectors to 10 in-lbs.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-77.

Repair and Replacement Procedures
Removing and Replacing the A29 -A32 Receiver Couplers and Receiver Coupler Mounting Brackets

Figure 7-19

Figure 7-20 Orientation of Receiver Couplers with Brackets

Removing and Replacing the A33-A36 Test Port Couplers

Tools Required

- T-10 TORX driver (torque to 9 in-lb or 1.02 N.m)
- T-20 TORX driver (torque to 21 in-lb or 2.38 N.m)
- 5/16 inch open-end torque wrench (torque to 10 in-lb or 1.13 N.m)
- 1 inch open-end torque wrench (torque to 72 in-lb or $8.15 \mathrm{~N} . \mathrm{m}$)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-21 for this procedure.

CAUTION

Be careful not to damage the center pins of the semirigid cables. Some flexing of the cables is necessary to remove the assembly. However, do not over-bend the semirigid cables.

1. Disconnect the power cord.
2. Remove the front panel assembly. Refer to "Removing and Replacing the Front Panel Assembly" on page 7-7.
3. Position the analyzer bottom side up.
4. On 4-port models, it is necessary to remove the couplers in pairs: ports $1 / 3$ and $2 / 4$.
5. Disconnect two semirigid cables (item (1)) from each coupler to be removed.
6. Remove the coupler nut (item (3)) from each coupler to be removed.
7. Move the disconnected semirigid cables out of the way and remove the coupler(s) from the analyzer. It may be necessary to loosen the connector at the other end of some of the semirigid cables to allow them to be moved enough.
Replacement Procedure
8. Reverse the order of the removal procedure.

Adhere a new gap pad (4-port) or coupler bumper (2-port) (item (4)) to the new coupler in the same location as on the old one. Replace the vibration mount (item (5) if necessary. Refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239 for replacement part numbers.
Torque all connectors to 10 in-lbs. Torque coupler nuts to 72 in-lbs.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-77.

Figure 7-21 A33 through A36 Test Port Couplers Removal

Removing and Replacing the A37 Reference Mixer Switch

Tools Required

- T-10 TORX driver (torque to 9 in-lb or 1.02 N.m)
- T-20 TORX driver (torque to 21 in-lb or 2.38 N.m)
- 5/16 inch open-end torque wrench (torque to 10 in-lb or $1.13 \mathrm{~N} . \mathrm{m}$)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-22 for this procedure.

Be careful not to damage the center pins of the semirigid cables. Some flexing of the cables is necessary to remove the assembly. However, do not over-bend the semirigid cables.

1. Disconnect the power cord.
2. Remove the outer cover. Refer to "Removing the Covers" on page 7-6.
3. Position the analyzer bottom side up.
4. Disconnect four semirigid cables (item (1)) from the A37 reference mixer switch.
5. Remove two screws (item (2)) that secure the A37 reference mixer switch to the side of the test set deck.
6. Move the disconnected semirigid cables out of the way and lift the A37 reference mixer switch and mounting bracket out of the analyzer. It may be necessary to loosen the connector at the other end of some of the semirigid cables to allow them to be moved enough.
7. Disconnect the wire harness cable (item (3)) from the A37 reference mixer switch.
8. Remove two screws (item (4)) that attach the A37 reference mixer switch to its mounting bracket.

Replacement Procedure

1. Reverse the order of the removal procedure.

When reinstalling the A37 reference mixer switch into the analyzer, loosely install the two mounting screws (item (2)). Connect the four semirigid cables (item (1)) and torque the connectors to 10 in-lbs, then tighten the two mounting screws (item (2)).
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-77.

Figure 7-22 A37 Reference Mixer Switch Removal

Removing and Replacing the A38-A41 Source Attenuators and the A46-A49 Receiver Attenuators

NOTE

CAUTION

IMPORTANT!

When an attenuator is replaced in a PNA, it is important to reset the Mechanical Counter setting. Refer to "Resetting the Mechanical Counter" on page 7-85.

Tools Required

- T-10 TORX driver (torque to 9 in-lb or 1.02 N.m)
- T-20 TORX driver (torque to 21 in-lb or 2.38 N.m)
- 5/16 inch open-end torque wrench (torque to 10 in-lb or 1.13 N.m)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-23 for this procedure.

Be careful not to damage the center pins of the semirigid cables. Some flexing of the cables is necessary, but do not over-bend the semirigid cables.

1. Disconnect the power cord.
2. Remove the outer cover. Refer to "Removing the Covers" on page 7-6.
3. Position the analyzer bottom side up.
4. Disconnect the ribbon cable (item (1)) from each attenuator to be removed.
5. The attenuators and the brackets to which they are attached, must be removed as a complete assembly.
Disconnect two semirigid cables (item (2)) from each attenuator to be removed. It may be necessary to remove additional cables to remove the attenuator bracket. If so, note the location and orientation of each for reinstallation later.
6. Remove four screws (item (3)) that secure each attenuator bracket to the test set deck.
7. Move the disconnected semirigid cables out of the way and lift the attenuator bracket out of the analyzer, with the attenuator attached. It may be necessary to loosen the connector at the other end of some of the semirigid cables to allow them to be moved enough.
8. Remove two screws from each attenuator to be removed from the mounting bracket.

Replacement Procedure

1. Reverse the order of the removal procedure.

Orient the position of the attenuators and brackets as shown in Figure 7-24.

Torque all cable connections to 10 in-lbs.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-77.

Figure 7-23
Source and Receiver Attenuators

Figure 7-24 Orientation of Source and Receiver Attenuators with Brackets

Removing and Replacing the A42-A45 Bias Tees

Tools Required

- T-10 TORX driver (torque to 9 in-lb or 1.02 N.m)
- T-20 TORX driver (torque to 21 in-lb or 2.38 N.m)
- 5/16 inch open-end torque wrench (torque to 10 in-lb or 1.13 N.m)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-25 for this procedure.
Be careful not to damage the center pins of the semirigid cables. Some flexing of the cables is necessary to remove the assembly. However, do not over-bend the semirigid cables.

1. Disconnect the power cord.
2. Remove the outer cover. Refer to "Removing the Covers" on page 7-6.
3. Position the analyzer bottom side up.
4. The bias tees and the blocks to which they are attached, must be removed as a complete assembly.
Disconnect four semirigid cables (item (1)) from the bias tee block to be removed.
5. Disconnect the wire harness cable (item (2)) from the bias tee.
6. Remove two test set deck screws (item (3) from the bias tee block to be removed.
7. Move the disconnected semirigid cables out of the way and remove the bias tee block from the analyzer. It may be necessary to loosen the connector at the other end of some of the semirigid cables to allow them to be moved enough.
8. Remove two screws from the bias tee in order to remove it from the bias tee block.

Replacement Procedure

1. Reverse the order of the removal procedure.

Orient the position of the bias tees and block as shown in Figure 7-26.
Torque all cable connections to 10 in-lbs.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-77.

Figure 7-25

Figure 7-26 Orientation of Bias Tees with Block

n5247_001_732

Removing and Replacing the A55 Solid State Drive (SSD)

Certain unique files exist on the solid state drive that are necessary for proper operation of your analyzer. These files must be copied to another location to allow them to be installed onto the new SSD after it has been installed.

If you are replacing the SSD, the following procedure must be performed first.

Copy Unique Files from the Solid State Drive

- If installing an SSD for Windows XP: if the user has loaded unique calibration kit information, navigate to C : \Program Files \backslash Keysight \Network Analyzer and copy USER_CALKITFILE to a USB flash memory drive. Also copy any personal user files that you wish to preserve.

Obsolete. Reference only.

- If installing an SSD for Windows 7: for more information on the N8984A SSD, refer to the Windows 7 Operating System Upgrade Kit Installation Note, available online at https://www.keysight.com/us/en/assets/9018-04311/installation-guides /9018-04311.pdf (N8984-90001).

Obsolete. Reference only.

- If installing an SSD for Windows 10: for more information on the N8985A SSD, refer to the Windows 10 Operating System Upgrade Kit Installation Note, available online at https://www.keysight.com/us/en/assets/9018-04733/installation-guides /9018-04733.pdf (N8985-90001).

Tools Required

- T-10 TORX driver (torque to 9 in-lb or 1.02 N.m; for solid state drive replacement)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-27 for this procedure.

1. Disconnect the analyzer power cord.
2. Position the analyzer for access to the rear panel.
3. Loosen the SSD thumb screw (item (1)).
4. Pull the SSD out from the CPU assembly, using the handle (item (2)).

Figure 7-27 Solid State Drive Assembly Removal

Reinstalling the SSD

- Reverse the order of the removal procedure.

Install Backup Files onto the New Solid State Drive

The files that were previously saved onto a USB flash memory drive must now be installed onto the new SSD. The network analyzer must be powered up and operating.

Removing and Replacing the A60-A63 70 GHz Doublers

Tools Required

- T-10 TORX driver (torque to 9 in-lb or 1.02 N.m)
- T-20 TORX driver (torque to 21 in-lb or 2.38 N.m)
- 5/16 inch open-end torque wrench (torque to 10 in-lb or 1.13 N.m)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-28 for this procedure.

Be careful not to damage the center pins of the semirigid cables. Some flexing of the cables is necessary to remove the assembly. However, do not over-bend the semirigid cables.

1. Disconnect the power cord.
2. Remove the outer cover. Refer to "Removing the Covers" on page 7-6.
3. Position the analyzer bottom side up.
4. Remove the brace (item (1)) connected to the 70 GHz doublers mounting bracket to be removed. For 4-port models, also remove the brace (item (2)) that partially covers the front cable bracket (for 4 semirigid cables).
5. The 70 GHz doublers and the mounting brackets to which they are attached, must be removed as a complete assembly.
Disconnect all semirigid cables (item (3) from each 70 GHz doubler on the mounting bracket to be removed.
6. Disconnect the ribbon cable (item (4)) from each doubler.
7. Remove six screws (item (6)) that attach the doubler mounting bracket to the test set deck.
8. Move the disconnected semirigid cables out of the way and lift the doubler mounting bracket, with the two doublers attached, out of the analyzer just enough to allow the gray flexible RF cables (item (5) to be disconnected. It may be necessary to loosen the connector at the other end of some of the semirigid cables to allow them to be moved enough.
Note the locations of each of the gray flexible cables for reconnection later. Disconnect these cables and remove the doubler mounting bracket, with the two doublers attached, from the analyzer.
9. Remove three screws that attach the doubler to be replaced to its mounting bracket, and remove the doubler from the bracket.

Replacement Procedure

1. Reverse the order of the removal procedure.

Torque all cable connections to 10 in-lbs.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-77.

Figure 7-28 A60 through A63 70 GHz Doublers Removal

N5227_001_723

Removing and Replacing the A70 or A75 Low Frequency Extension (LFE) Board

NOTE

- Four port PNAs use the A70 LFE board.
- Two port PNAs use the A75 LFE board.

The A70 LFE board RF flexible cable's connector labels on port 3 and port 4 connectors on the A70 LFE board are similar to the A75 LFE board's port 1 and port 2 connector labels.

Tools Required

- T-10 TORX driver (torque to 9 in-lb or 1.02 N.m)
- T-20 TORX driver (torque to 21 in-lb or 2.38 N.m)
- 5/16 inch open-end torque wrench (torque to 10 in -lb or $1.13 \mathrm{N.m}$)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-29 on page 7-59, Figure 7-34 on page 7-64, and Figure 7-30 on page 7-60 for this procedure.

1. Disconnect the power cord.
2. Remove the outer cover. Refer to "Removing the Covers" on page 7-6.
3. Position the analyzer bottom side up.
4. Remove the A19 test set motherboard. Refer to "Removing and Replacing the A23 Test Set Motherboard" on page 7-30.
5. Disconnect the 8121-2919 and N5245-60005 ribbon cables. Refer to Figure 7-29 on page 7-59.

Figure 7-29 Disconnect Ribbon Cables from Rear Panel Connectors (8121-2919, N5245-60005)

6. Disconnect ALL gray flexible RF cables (item (1) through (6)) from the A70 LFE board. Refer to

- For Version 6 Synthesizers, refer to Figure 7-30 on page 7-60.
- For Version 7 Synthesizers, refer to Figure 7-31 on page 7-61.

Figure 7-30
Version 6 Synthesizers: A70 LFE Board Remove Cables (8120-5014 (x2), 8120-5017 (x3), N5242-60078, N5242-60080). 4-Port is Shown. 2-Ports are Similar, but with Less Cables.

Figure 7-31 Version 7 Synthesizers: A70 LFE Board Remove Cables (8120-5014 (x2), 8120-5017 (x3), N5242-60078, N5242-60080). 4-Port is Shown. 2-Ports are Similar, but with Less Cables.

(2) Connect 8120-5021 from P804 to J12
(3) Connect 8120-5014 from P604 to J11

5 Connect N5240-60112 to Source 1 (8120-5029). Route as shown.

6 Connect N5240-60113 to LO
(8121-2864). Route as shown.

7. Remove port 1 bias combiner "RF IN" cable from the "Port1" connector on the LFE board. Refer to Figure 7-32 on page 7-62.

Figure 7-32 Remove A71 bias combiner cable (N5240-60097) from "Port1" connector on the A70 LFE board

8. A70 LFE boards only: Remove port 3 bias combiner "RF IN" cable from the "Port3" connector on the LFE board. Similar to Figure 7-32 on page 7-62.
9. Remove A74 port 2 bias combiner "RF IN" cable to "Port2" connector on the LFE board.

Figure 7-33 A74 port 2 bias combiner cable (N5240-60097) from "Port2" connector on the A70 LFE board

10. A70 LFE boards only: Remove port 4 bias combiner "RF IN" cable from the "Port4" connector on the LFE board. Similar to Figure 7-33 on page 7-63.
11. Disconnect the ribbon cable (item (1)) from the A70 LFE board. Refer to Figure 7-34 on page 7-64.

Figure 7-34
A70 LFE Board Removal (N5291-60001, 0515-0665 (x2)). (A75 LFE Board (N5291-60005) Removal is Similar.)

12. Remove the two screws from the LFE board (item (2)). Save for reuse. Refer to Figure 7-34 on page 7-64.
13. Lift the LFE board (N5291-60001) and remove it from the analyzer. Refer to Figure 7-34 on page 7-64.

Replacement Procedure

1. Reverse the order of the removal procedure.

Attach the new A70 LFE board to the standoffs using the screws removed from the old one.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-77.

Removing and Replacing the A71-A74 Bias Tee Combiners

Tools Required

- T-6 TORX driver - set to 6 in-lbs (0.68 N.m)
- T-10 TORX driver (torque to 9 in-lb or 1.02 N.m)
- T-20 TORX driver (torque to 21 in-lb or 2.38 N.m)
- 5/16-inch open-end torque wrench (torque to 10 in -lb or 1.13 N.m)
- 5/16-inch open-end wrench (to stabilize the bias tee combiner when torquing cables)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-35 on page 7-67, Figure 7-36 on page 7-67, Figure 7-37 on page 7-68, and Figure 7-38 on page 7-68 for this procedure.

CAUTION

Be careful not to damage the center pins of the semirigid cables. Some flexing of the cables is necessary to remove assemblies but do not over-bend them.

1. Disconnect the power cord.
2. Remove the outer cover. Refer to "Removing the Covers" on page 7-6.
3. Position the analyzer bottom side up.
4. Disconnect the two semirigid cables (item (1) and (4)) from the bias tee combiner to be removed. Refer to Figure 7-35 on page 7-67.
5. Remove two screws from the bias tee combiner and bracket-to-chassis assembly to be removed (Do item (1) only). Refer to Figure 7-36 on page 7-67.

Do not remove the bias combiner from the bracket yet (item (2) is done in step 7).
6. Make note of the orientation of the two cable wires and ground cable clamp for reinstallation later.

- Remove the DC bias cable (item (3) from the Bias Combiner. Refer to Figure 7-35 on page 7-67. See also Figure 7-36 on page 7-67.
- Remove the screw, cable ground clamp, and RF cable (item (2)) from the Bias Combiner. Refer to Figure 7-35 on page 7-67. See also Figure 7-37 on page 7-68.

7. Remove two screws that attach the bias tee combiner to the bracket (Now do item (2)). Refer to Figure 7-36 on page 7-67.
8. Repeat steps 4 through 7 for the other bias combiners.

Replacement Procedure

CAUTION

NOTE

Ensure that when the bias combiner semirigid cables are torqued that one $5 / 16$ in wrench is used to stabilize the connector on the combiner and the second wrench is used to torque the semirigid cable to 10 in-lbs.

IMPORTANT! Some figures show examples of more than one bias combiner or bias combiner cable being remove. It is only necessary to remove the defective bias combiner.

1. Reverse the order of the removal procedure.

- Torque the bias combiner screws (x2) to the chassis to 9 in-lbs.
- Mark the bias combiner connectors with a fine permanent marker. Refer to Figure 7-38 on page 7-68.
- Remember to place the cable ground clamp on the bias tee combiner's RF IN connector.
- Torque the cable ground clamp to bias combiner to 6 in-lbs.
- Torque the bias combiner with bracket assembly (to the chassis) screws (x2) to 9 in-lbs.

2. As shown in Figure 7-36 on page 7-67, position the bias tees on the attenuator brackets as indicated.
3. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-77.

Figure 7-35
A71-A74 Bias Tee Combiners and Cables Removal. (N5222B Option 420 Shown. All Other PNA LFE Options are Similar.

Figure 7-36 Remove Bias Combiner Bracket Assemblies from the Chassis
(N5245-00036/N5245-00037, 0515-0372, 5087-7403, 0515-1227). (All Assemblies are Shown, but Only Remove the Defective Assembly.)

PART SEQUENCE:

Figure 7-37 Remove Bias Combiner, Cables, and Clamps (5023-3299, 5087-7403, 0515-2141, and N5240-60097). (All Assemblies are Shown, but Only Remove the Defective Assembly.)

Figure 7-38
Mark Bias Combiner With a Permanent Marker

Removing and Replacing the Rear Panel

Tools Required

- T-10 TORX driver (torque to 9 in-lb or 1.02 N.m)
- T-20 TORX driver (torque to 21 in-lb or 2.38 N.m)
- 5/16 inch nutsetter (torque to 10 in-lb or 1.13 N.m)
- 5/16 inch nutsetter (torque to 21 in-lb or 2.38 N.m)
- $5 / 8$ inch nutsetter (torque to $21 \mathrm{in}-\mathrm{lb}$ or $2.38 \mathrm{~N} . \mathrm{m}$)
- 9/32 inch nutsetter (torque to 9 in-lb or 1.02 N.m)
- 3/16 inch nutsetter (torque to 6 in-lb or $0.68 \mathrm{~N} . \mathrm{m}$)
- 9/16 inch nutsetter (torque to 21 in-lb or 2.38 N.m)
- 9 mm nutsetter (torque to 21 in -lb or $2.38 \mathrm{~N} . \mathrm{m}$)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-39 for this procedure.

1. Disconnect the power cord.
2. Remove the outer and inner covers. Refer to "Removing the Covers" on page 7-6.
3. Remove the A20 power supply assembly. Refer to "Removing and Replacing the A20 Power Supply Assembly" on page 7-24.
4. Remove the A21 CPU board assembly. Refer to "Removing and Replacing the A21 CPU Board Assembly" on page 7-26.
5. Remove the 50 ohm load(s) (item (2)).
6. If installed, remove the cap (item (3).
7. Remove the connector hardware (item (4)) from each of the five multi-pin connectors. The hardware is not the same on each connector so note which hardware goes with which connector.
8. Remove the connector hardware (item (5) from each of the RF connectors. The hardware is not the same on each connector so note which hardware goes with which connector.
9. Remove the 13 screws (item (6) that attach the rear panel to the chassis.
10. Slide the rear panel over the cable connectors and off of the analyzer.

Replacement Procedure

1. Reverse the order of the removal procedure.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-77.

Figure 7-39 Rear Panel Removal

N5247_001_710

Removing and Replacing the Front Panel LED Boards

Tools Required

- T-10 TORX driver (torque to 9 in-lb or 1.02 N.m)
- T-20 TORX driver (torque to 21 in-lb or 2.38 N.m)
- 5/16 inch open-end torque wrench (torque to 10 in-lb or 1.13 N.m)
- 1 inch open-end torque wrench (torque to 72 in-lb or $8.15 \mathrm{~N} . \mathrm{m}$)
- ESD grounding wrist strap

Removal Procedure

CAUTION

Be careful not to damage the center pins of the semirigid cables. Some flexing of the cables is necessary to remove the assembly. However, do not over-bend the semirigid cables.

1. Disconnect the power cord.
2. Remove the test port couplers. Refer to "Removing and Replacing the A33-A36 Test Port Couplers" on page 7-45.
3. Remove two screws from the LED board to be removed and remove the LED board from the analyzer. For the location of the screws, see Figure 6-89 on page 6-241.

Replacement Procedure

1. Reverse the order of the removal procedure.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-77.

Repair and Replacement Procedures
Removing and Replacing the Front Panel LED Boards

This page intentionally left blank.

Removing and Replacing the Fans

Tools Required

- T-10 TORX driver (torque to 9 in-lb or 1.02 N.m)
- T-20 TORX driver (torque to 21 in-lb or 2.38 N.m)
- Pozidriv screw driver
- 5/16 inch open-end torque wrench (torque to 10 in-lb or 1.13 N.m)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-40 for this procedure.

1. Disconnect the power cord.
2. Remove the outer and inner covers. Refer to "Removing the Covers" on page 7-6.
3. Remove the front panel assembly. Refer to "Removing and Replacing the Front Panel Assembly" on page 7-7.
4. Remove the power supply bracket. It is not necessary to remove the entire power supply, just the power supply bracket. Refer to "Removing and Replacing the A20 Power Supply Assembly" on page 7-24.
5. Remove screws (item (1)) (five on the right side and seven on the left side) that attach the fan brackets to the chassis.
6. Remove three screws (item (2)) on both sides that attach the rear panel to the fan bracket.
7. Raise the fan bracket out of both sides in the analyzer just enough to access the fan cables. Disconnect the fan cables from the A18 system motherboard connectors (item (3).
8. Remove the fan brackets and fans from the analyzer.
9. To remove a fan or fan guard from the fan bracket:
a. Before removing a fan or fan guard, note the orientation of each fan and fan guard for reinstallation.
b. Pull up the center pin of each of the fan rivets as shown by (item (4)) in the illustration.
c. Pull out the rivet completely (as shown by (item (5) in the illustration) to release the fan and fan guard.

Replacement Procedure

1. Reverse the order of the removal procedure.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-77.

Figure 7-40 B1 Fan Removal

Removing and Replacing the Lithium Battery

Tools Required

- T-10 TORX driver (torque to 9 in-lb or 1.02 N.m)
- T-20 TORX driver (torque to 21 in-lb or 2.38 N.m)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-41 for this procedure.

1. Disconnect the power cord.
2. Remove the solid state drive (SSD) from the A21 CPU board. Refer to "Removing and Replacing the A55 Solid State Drive (SSD)" on page 7-54.
3. Remove 22 top cover attachment screws (item (1)).
4. Remove the top cover from the A21 CPU board assembly.
5. Remove the battery from the battery holder by lifting it at the open end of the holder and then sliding it from under the clip (item (2)).
6. DO NOT THROW AWAY THE BATTERY. COLLECT IT AS SMALL CHEMICAL WASTE. Refer to "Lithium Battery Disposal" on page 1-12 for additional information on battery disposal.

Replacement Procedure

1. Reverse the order of the removal procedure following all instructions included with the new battery.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-77.

Figure 7-41 Lithium Battery Removal

N5247_001_728

Post-Repair Procedures

After the replacement of an assembly, you must perform the service procedures in the order listed in Table 7-2.

Procedures referenced in this table are located in Chapter 3, "Tests and Adjustments," unless specified otherwise.

WARNING

CAUTION

CAUTION

NOTE

Table 7-2 Related Service Procedures

Table 7-2 Related Service Procedures (Continued)

Replaced Assembly	Adjustments and Other Procedures	Verification, Performance, and Other Tests and Procedures
A4 13.5 GHz source 1 synthesizer board (<6021 serial number prefixes)	EE Default Adjustment: Synth Src1 only Synthesizer Bandwidth Adjustment ${ }^{\text {a }}$ Source Adjustment IF Gain Adjustment Receiver Characterization Receiver Adjustment IF Response Adjustment (Available Only with Option S93093/4A/B and or S93900/1/2/4/5/7A/B Installed)	Frequency Accuracy Test Source Power Accuracy Test Source Maximum Power Output Test Source Power Linearity Test The Operator's Check
A5 26.5 GHz source board	Source Adjustment IF Gain Adjustment Receiver Characterization Receiver Adjustment IF Response Adjustment (Available Only with Option S93093/4A/B and or S93900/1/2/4/5/7A/B Installed)	Frequency Accuracy Test Source Power Accuracy Test Source Maximum Power Output Test Source Power Linearity Test The Operator's Check
A7 40 GHz doubler board	Source Adjustment IF Gain Adjustment Receiver Characterization Receiver Adjustment IF Response Adjustment (Available Only with Option S93093/4A/B and or S93900/1/2/4/5/7A/B Installed)	Frequency Accuracy Test Source Power Accuracy Test Source Maximum Power Output Test Source Power Linearity Test The Operator's Check
A8 40 GHz doubler board	Source Adjustment IF Gain Adjustment Receiver Characterization Receiver Adjustment IF Response Adjustment (Available Only with Option S93093/4A/B and or S93900/1/2/4/5/7A/B Installed)	Frequency Accuracy Test Source Power Accuracy Test Source Maximum Power Output Test Source Power Linearity Test The Operator's Check
A10 26.5 GHz source board	Source Adjustment IF Gain Adjustment Receiver Characterization Receiver Adjustment IF Response Adjustment (Available Only with Option S93093/4A/B and or S93900/1/2/4/5/7A/B Installed)	Frequency Accuracy Test Source Power Accuracy Test Source Maximum Power Output Test Source Power Linearity Test The Operator's Check

Table 7-2 Related Service Procedures (Continued)

Replaced Assembly	Adjustments and Other Procedures	Verification, Performance, and Other Tests and Procedures
A12 40 GHz doubler board	Source Adjustment IF Gain Adjustment Receiver Characterization Receiver Adjustment IF Response Adjustment (Available Only with Option S93093/4A/B and or S93900/1/2/4/5/7A/B Installed)	Frequency Accuracy Test Source Power Accuracy Test Source Maximum Power Output Test Source Power Linearity Test The Operator's Check
A13 40 GHz doubler board	Source Adjustment IF Gain Adjustment Receiver Characterization Receiver Adjustment IF Response Adjustment (Available Only with Option S93093/4A/B and or S93900/1/2/4/5/7A/B Installed)	Frequency Accuracy Test Source Power Accuracy Test Source Maximum Power Output Test Source Power Linearity Test The Operator's Check
A14 frequency reference board (<6021 serial number prefixes)	10 MHz Frequency Reference Adjustment EE Default Adjustment: Synth LO only Synthesizer Bandwidth Adjustment ${ }^{\text {a }}$ Source Adjustment IF Gain Adjustment Receiver Characterization Receiver Adjustment IF Response Adjustment (Available Only with Option S93093/4A/B and or S93900/1/2/4/5/7A/B Installed) Restore option data (Refer to "Repairing and Recovering Option Data" in Chapter 8.)	Frequency Accuracy Test Source Power Accuracy Test Source Maximum Power Output Test Source Power Linearity Test The Operator's Check
A15 13.5 GHz LO synthesizer board (<6021 serial number prefixes)	EE Default Adjustment: Synth LO only Synthesizer Bandwidth Adjustment ${ }^{a}$ Source Adjustment IF Gain Adjustment Receiver Characterization Receiver Adjustment IF Response Adjustment (Available Only with Option S93093/4A/B and or S93900/1/2/4/5/7A/B Installed)	Frequency Accuracy Test Source Power Accuracy Test Source Maximum Power Output Test Source Power Linearity Test The Operator's Check

Table 7-2 Related Service Procedures (Continued)

Replaced Assembly	Adjustments and Other Procedures	Verification, Performance, and Other Tests and Procedures
A15 direct digital synthesizer (DDS) assembly (≥ 6021 serial number prefixes and all units with version 7 synthesizer upgrades) Hidden Files and Folders to be shown, and navigate to the E: $\backslash \log$ folder. Select all items and sub-folders, right-click, and select Send To -> Compressed (Zipped) Folder. Email this zipped folder to csg.servicedesk@keysight.com with a note that it should be forwarded to PNA Customer Support.	EE Default Adjustment: Synth LO only Synthesizer Bandwidth Adjustment ${ }^{\text {a }}$ Source Adjustment IF Gain Adjustment Receiver Characterization Receiver Adjustment IF Response Adjustment (Available Only with Option S93093/4A/B and or S93900/1/2/4/5/7A/B Installed)	Frequency Accuracy Test Source Power Accuracy Test Source Maximum Power Output Test Source Power Linearity Test The Operator's Check
A16 SPAM board	IF Gain Adjustment Receiver Characterization	Noise Floor Test Trace Noise Test
A17 13.5 GHz source 2 synthesizer board (<6021 serial number prefixes)	EE Default Adjustment: Synth Src2 only Synthesizer Bandwidth Adjustment ${ }^{\text {a }}$ Source Adjustment IF Gain Adjustment Receiver Characterization Receiver Adjustment IF Response Adjustment (Available Only with Option S93093/4A/B and or S93900/1/2/4/5/7A/B Installed)	Frequency Accuracy Test Source Power Accuracy Test Source Maximum Power Output Test Source Power Linearity Test The Operator's Check
A18 system motherboard	No adjustment needed	Front Panel Keypad and RPG Test and A3 Display Test in Chapter 4 The Operator's Check
A19 midplane board	No adjustment needed	None needed
A20 power supply assembly	No adjustment needed	None needed
A21 CPU board	No adjustment needed	The Operator's Check
A22 GPIB board	No adjustment needed	None needed

Table 7-2 Related Service Procedures (Continued)

Replaced Assembly	Adjustments and Other Procedures	Verification, Performance, and Other Tests and Procedures
A23 test set motherboard	Reinstall the serial number. (Refer to "Installing or Changing a Serial Number" in Chapter 8.) Re-enable all hardware options. (Refer to "Software Entitlement Certificate" in Chapter 8.)	The Operator's Check
A24 IF multiplexer board	Source Adjustment IF Gain Adjustment Receiver Characterization Receiver Adjustment IF Response Adjustment (Available Only with Option S93093/4A/B and or S93900/1/2/4/5/7A/B Installed)	The Operator's Check
A25 HMA26.5	EE Default Adjustment: LO Drive only EE Default Adjustment: LO Drive Noise Figure only (Option 029 equipped PNA) Source Adjustment IF Gain Adjustment Receiver Characterization Receiver Adjustment IF Response Adjustment (Available Only with Option S93093/4A/B and or S93900/1/2/4/5/7A/B Installed)	Frequency Accuracy Test Source Power Accuracy Test Source Maximum Power Output Test Source Power Linearity Test The Operator's Check
A26 splitter (Applies to PNA models with serial number prefixes <6021 only) ${ }^{\text {b }}$	Source Adjustment IF Gain Adjustment Receiver Characterization Receiver Adjustment IF Response Adjustment (Available Only with Option S93093/4A/B and or S93900/1/2/4/5/7A/B Installed)	Frequency Accuracy Test Source Power Accuracy Test Source Maximum Power Output Test Source Power Linearity Test The Operator's Check
A27 and A28 mixer bricks	Source Adjustment IF Gain Adjustment Receiver Characterization Receiver Adjustment IF Response Adjustment (Available Only with Option S93093/4A/B and or S93900/1/2/4/5/7A/B Installed)	Receiver Compression Test Noise Floor Test Calibration Coefficients Test Dynamic Accuracy Test

Table 7-2 Related Service Procedures (Continued)

Replaced Assembly	Adjustments and Other Procedures	Verification, Performance, and Other Tests and Procedures
A29-A32 receiver couplers	Source Adjustment IF Gain Adjustment Receiver Characterization Receiver Adjustment IF Response Adjustment (Available Only with Option S93093/4A/B and or S93900/1/2/4/5/7A/B Installed)	Source Maximum Power Output Test Calibration Coefficients Test
A33-A36 test port couplers	Source Adjustment IF Gain Adjustment Receiver Characterization Receiver Adjustment IF Response Adjustment (Available Only with Option S93093/4A/B and or S93900/1/2/4/5/7A/B Installed)	Source Maximum Power Output Test Calibration Coefficients Test
A37 reference mixer switch	No adjustment needed	The Operator's Check
A38-A41 source step attenuators	Source Adjustment IF Gain Adjustment Receiver Characterization Receiver Adjustment IF Response Adjustment (Available Only with Option S93093/4A/B and or S93900/1/2/4/5/7A/B Installed)	Source Maximum Power Output Test Calibration Coefficients Test Resetting the Mechanical Counter
A42-A45 bias tees	Source Adjustment IF Gain Adjustment Receiver Characterization Receiver Adjustment IF Response Adjustment (Available Only with Option S93093/4A/B and or S93900/1/2/4/5/7A/B Installed)	Source Maximum Power Output Test Calibration Coefficients Test
A46-A49 receiver step attenuators	Receiver Characterization Receiver Adjustment IF Response Adjustment (Available Only with Option S93093/4A/B and or S93900/1/2/4/5/7A/B Installed)	Source Maximum Power Output Test Calibration Coefficients Test Resetting the Mechanical Counter

Table 7-2 Related Service Procedures (Continued)

Replaced Assembly	Adjustments and Other Procedures	Verification, Performance, and Other Tests and Procedures
A55 solid state drive	Restore previously saved receiver calibration data ${ }^{\text {C }}$ (or perform Source Adjustment Receiver Adjustment IF Response Adjustment (Available Only with Option S93093/4A/B and or S93900/1/2/4/5/7A/B Installed))	Read and write to the drive
A60-A63 70 GHz doublers	Source Adjustment IF Gain Adjustment Receiver Characterization Receiver Adjustment IF Response Adjustment (Available Only with Option S93093/4A/B and or S93900/1/2/4/5/7A/B Installed)	Frequency Accuracy Test Source Power Accuracy Test Source Maximum Power Output Test Source Power Linearity Test The Operator's Check
A70/A75 LFE board	Source Adjustment IF Gain Adjustment Receiver Characterization Receiver Adjustment IF Response Adjustment (Available Only with Option S93093/4A/B and or S93900/1/2/4/5/7A/B Installed) LFE Receiver Adjustment - (Available with Option 205, 220, 405, and 420)	
A71-A74 bias combiners	Source Adjustment IF Gain Adjustment Receiver Characterization Receiver Adjustment IF Response Adjustment (Available Only with Option S93093/4A/B and or S93900/1/2/4/5/7A/B Installed) LFE Receiver Adjustment - (Available with Option 205, 220, 405, and 420)	
B1 fan	No adjustment needed	Check for fan operation
Battery	No adjustment needed	None

a. Synthesizer Bandwidth Adjustment is only required, when the EE Default Adjustment is not sufficient.
b. The A26 splitter (5067-4086) and N5247-20111, N5245-20022, N5245-20023, and N5247-20110 cables are only used with a legacy HMA26.5 p/n: 5087-7765. The N5240-20125 and N5247-20185 cables are used only with the new N5240-60101 HMA-26.5. Discard any cables that are not used. If you are unclear which HMA26.5 assembly your PNA has installed, refer to Chapter 7 Repairs and Figure 7-16 on page 37 and for details on A26 splitter and cabling , refer to your option-model in Chapter 6 "2-Port Configurations, Serial Number Prefix <6021" on page 6-30 and "4-Port Configuration, Serial Number Prefix <6021" on page 6-115.
c. If a backup copy of receiver calibration data from the faulty disk drive is available, it can be copied to the new disk drive. If not, new data must be generated by performing the "Receiver Adjustment."

Resetting the Mechanical Counter

This process is to be performed anytime an attenuator or a bypass switch is replaced in an a PNA. Refer to Figure 7-42 on page 7-85.

Procedure Requirements

- The analyzer must be powered up and operating to perform this procedure.
- The Network Analyzer program must be running.
- A keyboard and mouse must be connected to the network analyzer.

1. Click Utility > System > Service > Diagnostics > Mechanical Counter
2. In the Mechanical Cycle Counter window that opens:
a. Click all of the items that apply.
b. When satisfied, click on Modify.
c. Click Exit.

Figure 7-42 Mechanical Cycle Counter window

EEPROM Backup

The analyzer uses arrays of correction constants to enable the analyzer to produce accurate，leveled source signals and receive clean test signals．These constants are stored in non－volatile EEPROM memory and in flash memory files．

The adjustments listed here generate new correction constants．The analyzer must have a backup of this new data in case any of the data becomes corrupted．

To store the backup data，perform these steps：
－Navigate to the EEPROM Backup Utility，located at：

```
- Windows 7 -- C:\Program Files (x86)\Keysight\Network
    Analyzer\Service\eebackup.exe
```

－Windows 10 －－C：\Program Files \backslash Keysight \Network Analyzer\Service\eebackup．exe
－Run the program．
－Click Backup EEPROM．
－Click Backup TSMB Mem．
－Click Backup Synth Mem．（Applies to Version 7 Synthesizers Only）
－Click Exit when the program has finished．
Figure $8 \quad$ EEPROM Backup Menu

何 EEPROM Backup		\square 回	x
Save	Restore	Label1	
Backup EEPROM	Restore EE From Backup		
Backup ISMB Mem	Restore TSMB from Backup		
Backup Synth Mem	Restore Synth from Backup	Exit	
This utility is designed primarily for factory use！			泡

8 General Purpose Maintenance Procedures

Information in This Chapter

Chapter Eight at-a-Glance

| Section Title | Summary of Content | Start Page |
| :--- | :--- | :--- | :--- |
| Error Terms | How to use error terms as a preventive maintenance and
 troubleshooting tool. | page 8-2 |
| Keysight License Manager | How to use the option enable utility to:

 - enable options that have been added to your
 - repair lost or damaged option data, | page 8-11 |
| Firmware Upgrades or change a serial number. | How to check your analyzer's current firmware revision
 and where to locate firmware upgrades. | page 8-14 |
| Operating System Recovery | Where to find the information on recovering from a
 damaged operating system. | page 8-15 |
| Correction Constants | How to store correction constants after making
 adjustments to your analyzer. | page 8-16 |

Conventions Used for Hardkeys, Softkeys, and Menu Items

The following conventions are used in this document:

Hardkey
「 T Tab ${ }^{-}$」
Softkey
Menu Item

This represents a "hardkey", a key that is physically located on the instrument.
This represents a "tab", whose label is determined by the instrument firmware.
This represents a "softkey", a key whose label is determined by the instrument firmware.

This represents an item in a drop-down or pop-up menu.

Error Terms

Using Error Terms as a Diagnostic Tool

By examining error terms, you can monitor system performance for preventive maintenance and troubleshooting purposes.

The the most common causes of error term anomalies are:

- calibration kit devices
- cables
- adapters and accessories
- the assemblies from the signal separation group of the analyzer

These items also affect the magnitude and shape of the error terms. For highest measurement accuracy, make sure of the following:

- Use proper connector care. Connectors must be clean, gaged, and within specification.
- Use proper connection technique during measurement and calibration. For information on connection technique and on cleaning and gaging connectors, refer to "Review the Principles of Connector Care" on page 3-5 or to the calibration kit's user's and service guide.

Preventive Maintenance

If you print or plot the error terms at set intervals (weekly, monthly and so forth), you can compare current error terms to these records. A stable system should generate repeatable error terms over long intervals, (for example, six months). Look for the following:

- A long-term trend often reflects drift, connector and cable wear, or gradual degradation, indicating the need for further investigation and preventive maintenance. Yet, the system may still conform to specifications. The cure is often as simple as cleaning and gaging connectors and cables.
- A sudden shift in error terms may indicate the need for troubleshooting.

Troubleshooting

You can use the error terms as a tool to isolate faulty assemblies in the signal separation group of your analyzer. You can compare the current values to preventive maintenance records or to the typical values listed in Table 8-1 on page 8-8.

To find assemblies related to error term failures, refer to error term descriptions in "Error Term Data" on page 8-8. Each description lists common assemblies related to each error term. Identify the assembly and refer to Chapter 4, "Troubleshooting."

NOTE

Always suspect calibration devices, cables, or improper connector maintenance as the primary cause of an error term anomaly.

Performing Measurement Calibration

A calibration must be performed to allow the analyzer to calculate the error terms before they can be used as a tool:

CAUTION

Perform the following procedure only at a static-safe workstation, and wear a grounded wrist strap.
This is important. If not properly protected against, electrostatic discharge can seriously damage your analyzer, resulting in costly repair.
To reduce the chance of electrostatic discharge, follow all of the recommendations outlined in "Electrostatic Discharge Protection" on page 1-7, when performing the following calibration.

1. Connect a type-N cable to Port 2.
2. Perform a full 2-port calibration, FULL SOLT 2-Port. Refer to embedded help in the analyzer if necessary.

Using Flowgraphs to Identify Error Terms

Flowgraphs are a graphical representation of signal flow through the measurement path. The flowgraphs in Figure 8-1, Figure 8-2, Figure 8-3, and Figure 8-4 illustrate the error terms associated with measurement calibration for 1-port, 2-port, 3-port, and 4-port configurations respectively.

Figure 8-1 \quad Flowgraph of One-Port Error Terms for Port 1

sc86a
where:

$$
\mathrm{E}=\text { Error term }
$$

Subscript:
D = Directivity

$$
\begin{aligned}
& S=\text { Source Match } \\
& R=\text { Reflection Tracking }
\end{aligned}
$$

The error terms are the same for a one port measurement on Port $2\left(\mathrm{~S}_{22}\right)$.
Figure 8-2 Flowgraph of Two-Port Error Terms

where:
$E=$ error term

1st Subscript:
D = Directivity
S = Source Match
R = Reflection Tracking
X = Crosstalk (Isolation)
L = Load Match
T = Transmission Tracking
2nd Subscript:
F = forward measurement (Ports 1 to Port 2)
$R=$ reverse measurement (Ports 2 to Port 1)

Figure 8-3 Flowgraph of Three-Port Error Terms

where:
$E=$ error term
DIR = Directivity
MAT = Forward Source Match and Reverse Load Match
TRK = Forward Reflection Tracking and Reverse Transmission Tracking
For the case of a full 3-port calibration, port 1 has
three Match error terms:
S11 source match
S12 load match
S13 load match
and three Tracking error terms:
S11 reflection tracking
S12 transmission tracking
S13 transmission tracking
There are six isolation terms not shown.

Figure 8-4 Flowgraph of Four-Port Error Terms

where:

E = error term
DIR = Directivity
MAT = Forward Source Match and Reverse Load Match
TRK = Forward Reflection Tracking and Reverse Transmission Tracking
For the case of a full 4-port calibration, port 1 has
four Match error terms:
S11 source match
S12 load match
S13 load match
S14 load match
and four Tracking error terms:
S11 reflection tracking
S12 transmission tracking
S13 transmission tracking
S12 transmission tracking
There are eight isolation (crosstalk) terms not shown.

Accessing Error Terms

Error terms can be accessed either manually or programmatically:
Manually

- "Front Panel Access to Error Terms" on page 8-7

Programmatically

- "GPIB Access to Error Terms" on page 8-7
- "COM/DCOM Access to Error Terms" on page 8-7

Manual Access to Error Terms
Front Panel Access to Error Terms

NOTE

Ensure that calibration correction is active by pressing RESPONSE Cal and verifying that the softkey label reads Correction ON/off. If not, press the Correction on/OFF key and it will toggle to read Correction ON/off .

To access the error terms from the front panel, perform the following steps:

1. Press RESPONSE Cal, then Manage Cals . Verify that Cal Set Viewer ON/off is ON. If not, press the softkey to toggle it ON. The Cal Set Viewer toolbar appears directly above the trace window.
2. In the Cal Set list, select the desired cal set.
3. Click the Standards or Error Terms button to view the raw measurement data from the standard or the corrected error term data.
4. In the Standard or Error Terms list, select the standard or error terms to view. Click the Enable check box to enable the selection.
5. Compare the displayed measurement trace to previously measured data or to the uncorrected performance specifications listed in Table 8-1 on page 8-8.
6. Print numerical data or print a plot of the measurement results.

Programmatic Access to Error Terms

GPIB Access to Error Terms

You can access error terms by way of GPIB with Standard Commands for Programmable Instruments (SCPI).

For more information on GPIB and SCPI, refer to the embedded help in the analyzer. Type in keyword "errors, systematic" in the index.

COM/DCOM Access to Error Terms

You can access error terms by way of Component Object Model (COM) or Distributed Component Object Model (DCOM) software architecture.

For more information on COM and DCOM, refer to the embedded help in the analyzer. Type in keyword "errors, systematic" in the index.

Error Term Data

The error term descriptions in this section include the following information:

- a table of the error terms
- description and significance of each error term
- measurements affected by each error term
- typical cause of failure for each error term

The same description applies to both the forward (F) and reverse (R) terms.

NOTE

Data are listed here as a convenience only. Detailed instrument specifications are listed in the embedded help in the network analyzer.

If Error Terms Seem Worse than Expected

To verify that the system still conforms to specifications, perform a system verification. Refer to Chapter 3, "Tests and Adjustments.".

Table 8-1 Error Term Data ${ }^{\text {a }}$						
	Frequency Range					
(All options, all ports)	10 MHz to 50 MHz	50 MHz to 3.2 GHz	$\begin{aligned} & 3.2 \mathrm{GHz} \\ & \text { to } \\ & 10 \mathrm{GHz} \end{aligned}$	10 GHz to 16 GHz	$\begin{aligned} & 16 \mathrm{GHz} \\ & \text { to } \\ & 24 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 24 \mathrm{GHz} \\ & \text { to } \\ & 26.5 \mathrm{GHz} \end{aligned}$
Directivity	16 dBm	24 dBm	23 dBm	16 dBm	16 dBm	16 dBm
Source Match	11 dBm	18 dBm	14 dBm	12 dBm	10 dBm	8 dBm
Load Match	11 dBm	17 dBm	13 dBm	10 dBm	9 dBm	8 dBm
	10 MHz to 50 MHz	50 MHz to 100 MHz	100 MHz to 500 MHz	500 MHz to 3.2 GHz	$\begin{aligned} & 3.2 \mathrm{GHz} \\ & \text { to } \\ & 20 \mathrm{GHz} \end{aligned}$	20 GHz to 26.5 GHz
Crosstalk ${ }^{\text {b }}$	-84 dBm	-90 dBm	$-110 \mathrm{dBm}$	$-120 \mathrm{dBm}$	-122 dBm	-117 dBm

a. The data in this table are uncorrected system performance. The values apply over an environmental temperature range of 25 ${ }^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, with less than $1^{\circ} \mathrm{C}$ deviation from the calibration temperature.
b. All crosstalk values are typical. Measurement conditions: normalized to a thru, measured with two shorts, 10 Hz IF bandwidth, averaging factor of 8, alternate mode, source power set to the lesser of the maximum power out or the maximum receiver power.

Directivity ($E_{D F}$ and $E_{D R}$)

$E_{D F}$ and $E_{D R}$ are the uncorrected forward and reverse directivity error terms of the system. The directivity error of the test port is determined by measuring the S_{11} and S_{22} reflection of the calibration kit load. The load has a much better return loss specification than does the uncorrected test port. Therefore, any power detected from this measurement is assumed to be from directivity error.

The measurements most affected by directivity errors are measurements of low reflection devices.

Typical Cause of Failure

The calibration kit load is the most common cause of directivity specification failure.

If the load has been gaged and its performance independently verified, suspect the analyzer test port coupler.

To troubleshoot, refer to "Checking the Signal Separation Group" on page 4-48.

Source Match ($E_{\text {SF }}$ and $E_{S R}$)

$E_{S F}$ and $E_{S R}$ are the forward and reverse uncorrected source match terms of the driven port. They are obtained by measuring the reflection $\left(S_{11}, S_{22}\right)$ of an open, and a short that are connected directly to the ports. Source match is a measure of the match of the coupler, as well as the match between all components from the source to the output port.

The measurements most affected by source match errors are reflection and transmission measurements of highly reflective DUTs.

Typical Cause of Failure

The calibration kit open or short is the most common cause of source match specification failure.

If the open or short performance has been independently verified, then suspect the analyzer switch splitter, step attenuator, or coupler.

To troubleshoot, refer to "Checking the Signal Separation Group" on page 4-48.

Load Match ($E_{\text {LF }}$ and $E_{L R}$)

Load match is a measure of the impedance match of the test port that terminates the output of a 2-port device. The match of test port cables is included in this response. Load match error terms are characterized by measuring the S_{11} and S_{22} responses of a "thru" configuration during the calibration procedure.

The measurements most affected by load match errors are all transmission measurements, and reflection measurements of a low insertion loss two-port device, such as an airline.

Typical Cause of Failure

The calibration kit load or a bad "thru" cable is the most common cause of load match specification failure.

If the load and cable performance are independently verified, then suspect the analyzer test port coupler, step attenuator, or the test receiver at the bad port.

To troubleshoot, refer to "Checking the Receiver Group" on page 4-53 or to "Checking the Signal Separation Group" on page 4-48.

Isolation (Crosstalk) ($E_{X F}$ and $E_{X R}$)

Isolation, or crosstalk, is the uncorrected forward and reverse isolation error terms that represent leakage between the test ports and the signal paths. The isolation error terms are characterized by measuring transmission ($\mathrm{S}_{21}, \mathrm{~S}_{12}$) with loads attached to both ports during the measurement calibration.isolation errors affect transmission measurements primarily where the measured signal level is very low.

The measurements most affected by isolation error terms are DUTs with large insertion loss. Since these terms are low in magnitude, they are usually noisy (not very repeatable).

Typical Cause of Failure

A loose cable connection or leakage between components in the test set are the most likely cause of isolation problems.

After verifying the cable and its connections, suspect the analyzer switch splitter, step attenuator, coupler, or receivers, and associated cabling.

To troubleshoot, refer to "Checking the Receiver Group" on page 4-53 or to "Checking the Signal Separation Group" on page 4-48.

Keysight License Manager

Accessing the Keysight License Manager

To start the Keysight License Manager:

- Press Start > Keysight License Manager > Keysight License Manager. A Keysight License Manager dialog box will appear.

Figure 8-5 Keysight License Manager Window

0 Keysight License Manager					- 回 $\mathrm{X}^{\text {x }}$	
File Edit View Tools Help						
	Host System					
	Host Name: K-N5224B-10066				Copy	
	Host ID: N5224B,US51010066				Copy	
	Interface Type: Windows					
	Licensed Products and Features					
	Product/Feat...	Version	Description	Type	Expiration	
	Product N522...	1.000	Add IF inputs	Removable	Permanent	
	N5224B-021	1.000	Add pulse modulato...	Removable	Permanent	
	N5224B-022	1.000	Add pulse modulato...	Removable	Permanent	
	N5224B-400	1.000	4 -port 10 MHz to 43....	Removable	Permanent	
	Product S930...					
	S93010A-1...	1.000	Time-domain measu...	Removable	Permanent	
	Product S930...					
	S93026A-1...	1.000	Advanced pulsed-R...	Removable	Permanent	
	Product S930...					
	S93080A-1...	1.000	Frequency-offset me...	Removable	Permanent	
	Product S930...					
	S93086A-1...	1.000	Gain compression a...	Removable	Permanent	
III	4				-	

Software Entitlement Certificate

If you have received an "Software Entitlement Certificate", follow the instructions on the certificate, under "HOW TO USE THIS CERTIFICATE:", to obtain license key file(s) for the option(s) listed on the certificate. See the important note below.

NOTE

When upgrading from one model number to another, a new software entitlement certificate will be issued. When the new certificate is redeemed for a license key file, the automated system will ask for the instrument's Host ID. Be sure to use the old Host ID that is associated with the old model number.

Enabling or Removing Options

There are two types of options:

- Hardware: Hardware options involve adding additional hardware to the analyzer. After the proper hardware has been installed in the analyzer, the appropriate license can be installed using the Keysight License Manager.

It is necessary to re-enable all installed hardware options, if the midplane board is replaced.

- Software: Software options add features or functionality to the analyzer without the need for additional hardware. These options are enabled by installing the appropriate licenses using the Keysight License Manager (KLM). Refer to https://www.keysight.com/us/en/assets/9018-04534/installation-guides /9018-04534.pdf (N5242-90024).

NOTE

Some applications require a license key file that is provided by Keysight. If you do not have the required license key file, contact Keysight for assistance. Refer to "Contacting Keysight" on page 2-7.

To enable or remove an option:

1. Start the Keysight License Manager. Refer to "Accessing the Keysight License Manager" on page 8-11.
2. In the Keysight License Manager window that opens, in the left hand column, press Local host > Local licenses. A list of available options, similar to the list below, will appear. Refer to Figure 8-5 on page 8-11.

219 - Src/Rcvr Atten \& Bias Tees 2-Port
419 - Src/Rcvr Atten \& Bias Tees 4-Port
224-2nd Src w/Combiner \& Switches
423 - Combiner \& Switches
S93015A/B - Dynamic uncertainty for S-parameters
S93025A/B - Basic pulsed-RF measurements
S93086A/B - Gain Compression Application
S93087A/B- IMD Measurements
3. Press and hold (or right click with a mouse) the option that you wish to either enable or remove, and then click Install or Delete, whichever is appropriate.

Repairing and Recovering Option Data

For information on repairing or recovering option data, refer to Keysight License Manager help on your instrument.

Installing or Changing a Serial Number

It is necessary to reinstall the instrument serial number if the test set midplane board is replaced.

To change an incorrect serial number, it is necessary for your instrument to be connected directly to the LAN and to a Keysight IP network. Refer to "Contacting Keysight" on page 2-7.

Firmware Upgrades

How to Check the Current Firmware Version

1. Press UTILITY System, then Help, then About NA... .

A dialog box showing the current installed Application Code Version is displayed.
2. To determine if a firmware update is available, proceed to "Downloading from the Internet."

Downloading from the Internet

If your network analyzer is connected to the Internet, there are two methods available for checking the availability of, and downloading, new firmware:

- Download directly from:
https://www.keysight.com/us/en/lib/software-detail/instrument-firmwar e-software/n52xxb-pna-series-network-analyzer-firmware.html. (Select your analyzer's model at this web site to view available upgrades.)
- Press UTILITY System, then Service , then AgileUpdate .

AgileUpdate compares the firmware revision currently installed in your network analyzer to the latest version available and assists you in downloading and installing the most recent version.

Operating System Recovery

Recovering from Hard Disk Drive Problems

If you suspect that you have a hard disk drive problem, go to the "Hard Drive Recovery" link on the Keysight PNA Series: Service \& Support Home Page on the Internet.

The URL for the Keysight PNA Series - Service \& Support Home Page is:
https://support.keysight.com/s/
The URL for the Hard Drive Recovery page is:
https://www.keysight.com/us/en/assets/9922-01369/miscellaneous/PNA-H ard-Drives-and-CPUs.pdf

Correction Constants

The analyzer stores many correction constants in non-volatile EEPROM memory. These constants enable the analyzer to produce accurate, leveled source signals and receive clean test signals.

Storing Correction Constants

After performing any adjustment listed on page 3-44 in this manual, store the correction constants to a backup file on the analyzer solid state drive by performing these steps:

- Navigate to the EEPROM Backup Utility, located at: C: \Program Files (x86)\Keysight\Network Analyzer\Service\eebackup.exe
- Run the program.
- Click Backup EEPROM.
- Click Backup TSMB Mem.
- Click Exit when the program has finished.

A: EEPROM Address Assignments and Location (N5227A\&B PNA and N5247A\&B PNA-X Instruments)

Table A-1 EEPROM Address Assignments and Location

EE\#	Hex Addr	Physical Location	Board Rev Letter	Cal Body Contents
0	E080	A16 SPAM	B	Unused
1	E100	A15 LO Synth rev 5 (N5242-60150/166)	A15 LO Synth rev 6 (N5240-60074/76)	F

EEPROM Address Assignments and Location (N5227A\&B PNA and N5247A\&B PNA-X Instruments)

Table A-1 (Continued)EEPROM Address Assignments and Location

This information is subject to change without notice.
© Keysight Technologies 2011-2023
Edition 1 July 2023
N5227-90026
www.keysight.com

[^0]: a. These performance tests are included in the analyzer's firmware for Option S93898A.
 b. These adjustments are included in the analyzer's firmware on all models and options.

[^1]: 1. The letters x represent the IP address of the other device on the network.
 2. The letters x represent the IP address of the analyzer.
[^2]: 1. A4 and A17 synthesizer boards only applies to PNAs with serial number prefixes <6021.
[^3]: 1. A26 splitter only applies to PNAs with serial number prefix <6021.
[^4]: 1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.
[^5]: 1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.
[^6]: 1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on
[^7]: 1. For bulkhead connectors, refer to "Bottom Hardware and Miscellaneous Parts" on page 6-239.
[^8]: 1. The A26 splitter (5067-4086) and N5247-20111, N5245-20022, N5245-20023, and N5247-20110 cables are only used with a legacy HMA26.5 p/n: 5087-7765. The N5240-20125 and N5247-20185 cables are used only with the new N5240-60101 HMA-26.5. If you are unclear which HMA26.5 assembly your PNA has installed, refer to Chapter 7 and Figure 7-16 on page 37 and for details on A26 splitter and cabling, refer to your option-model in Chapter 6 "2-Port Configurations, Serial Number Prefix <6021" on page 6-30 and "4-Port Configuration, Serial Number Prefix <6021" on page 6-115.
