
PathWave Test Sync Executive 2023
Programming Example 1:

Multi-Channel Sync Playback using
M32xxA Arbitrary Waveform Generators

PROGRAMMING EXAMPLE

Table of Contents
KS2201A - Programming Example 1 - Multi-Channel Sync Playback using M320x Arbitrary
Waveform Generators 4

Introduction 4

System Setup 5

System Requirements 5

How to Install Python 3.x 64-bit 6

How to Install Chassis Driver, SFP and Firmware 9

How to Install PathWave Test Sync Executive, Keysight Instrument Driver and FPGA Firmware 10

How to Install KF9000B PathWave FPGA 10

Multi-Chassis System Setup using the M9032A/M9033A PXIe System Synchronization Module 10

Programming Example Overview 13

How to Run this Programming Example 13

Measurement Results 15

HVI Application Programming Interface (API): Detailed Explanations 20

System Definition 22

Define Platform Resources: Chassis, PXI triggers, Synchronization 22

Define HVI Engines 24

Define HVI Actions, Events, Triggers 25

Program HVI Sequences 26

Synchronized Multi-Sequence Block (a) 26

HVI Instruction: Front Panel Trigger ON/OFF (b) 28

Action Execute: AWG Trigger (c) 28

Export the Programmed HVI Sequences to Text Format 28

Compile, Load, Execute the HVI Instance 29

Compile HVI 29

Load HVI to Hardware 29

Execute HVI 29

Release Hardware 30

Further HVI API Explanations 30

Conclusions 30

Page 3

KS2201A - Programming Example 1 - Multi-Channel Sync
Playback using M320x Arbitrary Waveform Generators
In this programming example, PathWave Test Sync Executive is used to program multiple M3xxx
AWGs to synchronously first output a Front Panel (FP) trigger pulse and then a previously queued
waveform. All modules run fully synchronized and actions across modules can be controlled with the
timing resolution of the M3xxx AWGs which is 10ns.

Introduction
This document is organized as follows. First, a "System Setup" section explains all the mandatory
software and firmware components to be installed before the programming example can run.
Secondly, a "Programming Example Overview" section describes the application use case of this
programming example including expected measurement results. The next section contains detailed
explanations on how to use the HVI (Hard Virtual Instrument) API (Application Programming
Interface) to implement the real-time algorithms of this example. Finally, the conclusions are
outlined.

NOTE Please review in detail the System Requirements outlined in the next section and
install all the necessary software (SW) and firmware (FW) components before
executing this programming example code.

Find us at www.keysight.com Page 4

KS2201A - Programming Example 1 - Multi-Channel Sync Playback using M320x Arbitrary
Waveform Generators Introduction

System Setup
Please review the following system requirements and install the necessary pieces of software (SW),
firmware (FW), and driver following the instructions provided in this section. To download the
programming example code and necessary files please visit www.keysight.com/find/KS2201A-
programming-examples . To download the latest PathWave Test Sync Executive installer and
documentation, please visit www.keysight.com/find/KS2201A-downloads. The rest of the software
installers, FPGA firmware, drivers, and other components mentioned in this section can be found on
www.keysight.com

System Requirements
To run this series of programming examples, all the necessary pieces of SW need to be installed on
the external PC or internal chassis controller that is used to control the PXI chassis. FPGA FW of PXI
instruments can be instead programmed using the "Hardware Manager" window of SD1 Software
Front Panel (SFP) or the "Firmware Update" window of the "Utilities" menu of the SFP of M5xxx or
M9xxx instruments.

The list below refers to the whole KS2201A Prog. Examples series. Please check the next section of
this document for info about the exact instrument models necessary to run this programming
example. You will need to install SW and FW only for the instrument models that you are using to run
this example. You do not need to install KF9000B PathWave FPGA if you are not programming your
instrument FPGA with a custom design.

The versions of software, FPGA firmware, drivers, and other components that were used to test this
programming example are listed below. Newer versions of the SW driver or FPGA FW used to test this
example are also typically expected to work. For complete details about SW and FW compatibility
please visit www.keysight.com/find/ks2201a-firmware-version-requirements.

List of tested versions of software, Keysight instrument drivers, and FPGA firmware:

1. Software versions:

l Python 3.9.13 64-bit, including Python packages time, numpy, matplotlib

l Keysight KS2201A PathWave Test Sync Executive 2023 (v3.19.2)

l Keysight KF9000B PathWave FPGA 2022 Update 1.0 (v3.7.15.0)

2. Keysight instrument driver versions:

l Keysight IO Libraries Suite 2023 (v18.3.29324.3)

l Keysight PXIe Chassis Family Driver v1.7.913.1

l Keysight M9546A High-Performance Reference Clock Source Driver v1.1.282.1

l Keysight SD1 Drivers, Libraries, and SFP v3.4.8

Find us at www.keysight.com Page 5

KS2201A - Programming Example 1 - Multi-Channel Sync Playback using M320x Arbitrary
Waveform Generators System Setup

https://www.keysight.com/find/KS2201A-programming-examples
https://www.keysight.com/find/KS2201A-programming-examples
https://www.keysight.com/find/KS2201A-downloads
https://www.keysight.com/
http://www.keysight.com/find/ks2201a-firmware-version-requirements

l Keysight M5302A Drivers, Libraries, and SFP v1.3.51002

l Keysight M5300A Drivers, Libraries, and SFP v1.1.51002

l Keysight M5200A Drivers, Libraries, and SFP v1.1.51004

l Keysight M9032A / M9033A Drivers, Libraries, and SFP v1.1.225.0

3. Keysight instrument FPGA FW versions (to be installed using Keysight instrument SFP):

l Keysight Chassis M9019A firmware v2019EnhTrig

l Keysight Chassis M9046A firmware v2023A

l M3202A AWG v4.3.0

l M3201A AWG v4.4.0

l M3102A Digitizer v2.3.0

l M5302A Digital I/O v5.9.42

l M5300A RF AWG v1.1.414

l M5200A Digitizer v1.1.409

l M9032A System Synchronization Module v0.1.248

l M9033A System Synchronization Module v4.1.248

NOTE The above-mentioned list of instrument drivers and firmware requirements includes
all the Keysight PXIe instruments compatible with KS2201A. Please check the next
section of this document for info about the exact instrument models necessary to
run this programming example. Users can modify the example code to include
additional compatible instruments. To run this example you need to install only the
drivers of the instruments you use.

NOTE PathWave Test Sync Executive licenses must be installed before running the
programming example Python code. To request and install a license please consult
the PathWave Test Sync Executive User Manual available on www.keysight.com.

How to Install Python 3.x 64-bit
This programming example requires you to install Python 64-bit version equal to or greater than 3.7.x
for all users. The Python installer can be downloaded from the Python official webpage
https://www.python.org. Make sure you add Python 3.x to the PATH system Variable. This can be
done at the installation step by checking the right checkboxes as shown in the screenshot below.

Find us at www.keysight.com Page 6

KS2201A - Programming Example 1 - Multi-Channel Sync Playback using M320x Arbitrary
Waveform Generators System Setup

http://www.keysight.com/
https://www.python.org/

Once Python is installed, you can install KS2201A. When running the KS2201A installer, it will detect
which Python 3.x 64-bit is installed in your system and is compatible with the keysight_hvi package
delivered by the installer. The detected compatible version(s) will appear with a check in its checkbox.
In the screenshot example below the Python 3.7 API is checked and will be installed. If you wish to
install other instances of the keysight_hvi package, compatible with other Python 3.x 64-bit versions,
then please manually check other additional checkboxes at this step of the installation procedure.

Find us at www.keysight.com Page 7

KS2201A - Programming Example 1 - Multi-Channel Sync Playback using M320x Arbitrary
Waveform Generators System Setup

NOTE PathWave Test Sync Executive programming examples require the Python
packages time , numpy and matplotlib . These packages can be installed using the
Python package installer pip. For more information about pip and how to use it,
please visit https://pypi.org/project/pip/.

NOTE Users installing Python through a distribution that is different than the one available
from the Python official webpage https://www.python.org (e.g. Anaconda
distribution) need to make sure that their PATH environment Variable includes the
path to set up the HVI API Python library. This can be done by adding to the
programming example Python code a line that includes that path, for example:
sys.path.append(C:\Program Files\Keysight\PathWave Test Sync Executive
<year>\api\python) where year shall be replaced with the year of the release you
are using, for example <year> = 2022.

Find us at www.keysight.com Page 8

KS2201A - Programming Example 1 - Multi-Channel Sync Playback using M320x Arbitrary
Waveform Generators System Setup

https://pypi.org/project/pip/
https://www.python.org/

How to Install Chassis Driver, SFP and Firmware
To ensure the system compatibility described above, please install IO Libraries and chassis driver first,
both are available on www.keysight.com . This programming example was tested on chassis model
M9019A using the chassis driver and chassis firmware versions listed above. If you are using another
chassis model, we advise you to install the same firmware version and its compatible chassis driver.
When installing the Keysight Chassis Family Driver, PXIe Chassis SFP (Software Front Panel) software
is automatically installed. Chassis firmware version can be checked and updated using PXIe Chassis
SFP. Please see screenshots below referring to Keysight Chassis model M9019A as an example on
how to check the chassis firmware version from the info in the help window of the PXIe Chassis SFP.
Chassis firmware update can be performed using the "Firmware Update" window found in the
"Utilities" menu of the PXIe Chassis SFP. For more info please read
PXIeChassisFirmwareUpdateGuide.pdf available on www.keysight.com.

Find us at www.keysight.com Page 9

KS2201A - Programming Example 1 - Multi-Channel Sync Playback using M320x Arbitrary
Waveform Generators System Setup

http://www.keysight.com/
http://www.keysight.com/

How to Install PathWave Test Sync Executive, Keysight Instrument Driver and
FPGA Firmware
After installing your development environment (Python or C#), and installing the chassis, the next
step is to install PathWave Test Sync Executive and the drivers for the Keysight instruments that you
are using. After installing all the necessary software, the instrument FPGA firmware can be updated
from their Software Front Panel (SFP) installed together with the instrument drivers. For more details
on how to install SW and FPGA FW for Keysight instruments, please visit the instrument technical
support page on www.keysight.com.

How to Install KF9000B PathWave FPGA
Some programming examples include PathWave FPGA project files designed using KF9000B
PathWave FPGA. To install KF9000B and obtain a license please consult the product webpage on
www.keysight.com. PathWave FPGA also requires Xilinx Vivado software to run. For further
information please consult the PathWave FPGA User Manual on www.keysight.com.

Multi-Chassis System Setup using the M9032A/M9033A PXIe System
Synchronization Module
In a multi-chassis system connected with Keysight PXIe System Synchronization Modules, you must
include one SSM in each chassis that is part of the system. Each SSMmust be inserted in the timing
slot of your chassis. This is typically slot 10 in Keysight 18-slot chassis, but it can be a different slot
number in different chassis models. The SSMs are connected to each other with System Sync cables.

One SSM is automatically chosen as a leader and it is used to synchronize all the instruments in the
multi-chassis system. The SSM chosen as leader is the SSM that has no incoming connection to its
System Sync Upstream port. The leader SSM distributes a replica of the reference clock signal to the
SSMs located in the other chassis. It does this through point-to-point connections between System

Find us at www.keysight.com Page 10

KS2201A - Programming Example 1 - Multi-Channel Sync Playback using M320x Arbitrary
Waveform Generators System Setup

http://www.keysight.com/
http://www.keysight.com./
http://www.keysight.com./

Sync Downstream/Upstream ports. In the example multi-chassis system shown in the following
diagram, the leader SSM is in Chassis 1.

A multi-chassis PXIe system may be configured to use many different reference options. For a list of
those options and descriptions of how to configure them, see the section Clocking in this document.
For one of those reference options, an SSM is chosen as a leader and uses its internal Oven
Controlled Crystal Oscillator (OCXO) clock to synchronize all the instruments included in the multi-
chassis system.

NOTE A Multi-chassis system based on the older M9031A modules required an external
reference clock generator to distribute the precise common 10 MHz reference clock
signal across different chassis. In the multi-chassis topology delivered by PathWave
Test Sync Executive, the SSM assumes the function of the reference clock signal
generator/distributor, by sharing a reference clock generated by an internal PLL.
This PLL can be fed by different sources (as explained later in this document)
including the OCXO inside the SSM, which generates a 10 MHz sine wave. An
external 10 or 100 MHz reference signal can still be connected to the SSM SClk /
Ref Input port, to sync it together with other clusters.

Find us at www.keysight.com Page 11

KS2201A - Programming Example 1 - Multi-Channel Sync Playback using M320x Arbitrary
Waveform Generators System Setup

The following diagram shows an example of a 6 chassis system connected with SSMs. In this system
an M9033A SSM in chassis 1 distributes the reference clock to four M9032A SSMs located in each of
the other chassis. The SSM in chassis 5 also forwards the clock to a sixth chassis.

For further information please refer to the KS2201A System Setup Guide available
on www.keysight.com/find/KS2201A-downloads.

Find us at www.keysight.com Page 12

KS2201A - Programming Example 1 - Multi-Channel Sync Playback using M320x Arbitrary
Waveform Generators System Setup

https://confluence.it.keysight.com/www.keysight.com/find/KS2201A-downloads

Programming Example Overview
This programming example illustrates how to deploy HVI to synchronously generate electronic
signals from multiple channels across an arbitrary number of different instruments. The example
targets MIMO (Multiple Input Multiple Output) use case scenarios including MIMO transceiver testing
for 5G (5th Generation) telecommunications and multi-qBit (quantum bit) experiments for quantum
engineering.

This programming example illustrates the following HVI functionalities:

1. How to create an HVI sequence using the HVI Python API.

2. Synchronized Multi-Sequence Block.

3. Module synchronization using Synchronized Multi-Sequence Blocks.

4. HVI Native Instructions.

5. Instrument action execution within HVI sequences.

How to Run this Programming Example
This programming example is set up to execute in simulation mode. To execute the Python code on
real HW instruments, change the option for simulated hardware to False:

Simulated HW Option
hardware_simulated = True

Afterward, it is necessary to specify the actual chassis number and slot number where the real PXI
instruments are located. Update the model numbers of the PXI instruments used, if they are different
than the instrument models used in this programming example. This example uses PXI instruments
from the Keysight M3xxx family. The first step to control such instruments is to create an object using
the open() method from the SD1 API. For a complete description of the SD1 API open() method and
its options please consult the SD1 3.x Software for M320xA / M330xA Arbitrary Waveform Generators
User's Guide.

Each PXI instrument is described in the code using a module description class that contains the
module model number, chassis number, slot number and options.

This programming example can be deployed on an arbitrary number of AWGs to be defined using
the module-descriptor class. All AWGs included in the Python code execute the synchronized real-
time operations defined by the HVI instance. Please update the properties in each module-
descriptor object before running the programming example:

Update module descriptors below with your instruments information
self.module_descriptors = [config.ModuleDescriptor('M3202A', 2, 10, config.options, ""),
config.ModuleDescriptor('M3202A', 2, 4, config.options, "")]

Find us at www.keysight.com Page 13

KS2201A - Programming Example 1 - Multi-Channel Sync Playback using
M320x Arbitrary Waveform Generators

Programming Example Over-
view

https://www.keysight.com/es/en/lib/software-detail/instrument-firmware-software/sd1-3x-software-3120392.html
https://www.keysight.com/es/en/lib/software-detail/instrument-firmware-software/sd1-3x-software-3120392.html

class ModuleDescriptor:
"Descriptor for module objects"
def __init__(self, model_number, chassis_number, slot_number, options, engine_name):
self.model_number = model_number
self.chassis_number = chassis_number
self.slot_number = slot_number
self.options = options
self.engine_name = engine_name

The chassis to be used in the programming example must be specified and listed by chassis number:

Update list of chassis numbers included in the programming example
self.chassis_list = [1, 2]

In the case of a multi-chassis setup, define each System Sync Module and its connections:

Multi-chassis setup
Define the System Sync Modules included in your system.
self.ssm_options = ''
self.ssm_simulation_options = 'Simulate=true,DriverSetup=Model=M9033A'
self.system_sync_modules_descriptors = [

SystemSyncModuleDescriptor('PXI0::CHASSIS1::SLOT10::INDEX0::INSTR', self.ssm_options),
SystemSyncModuleDescriptor('PXI0::CHASSIS2::SLOT10::INDEX0::INSTR', self.ssm_options)]

For each SSM define which SSM is connected to its downstream connectors.
Each connectivity item is a triple (ssm1_chassis, ssm1_downstream_connector_number, ssm2_
chassis)
self.ssm_connections = [

SystemSyncModuleConnection(ssm1_chassis=1, ssm1_downstream_connector_number=1, ssm2_
chassis=2)]

Please note that in every programming example, PXI trigger resources need to be reserved so that
the HVI instance can use them for their execution. PXI lines to be assigned as trigger resources to HVI
can be selected by updating the code snippet below:

Assign triggers to HVI object to be used for HVI-managed synchronization, data sharing, etc
NOTE: In a multi-chassis setup ALL the PXI lines listed below need to be shared among each M9031
board pair by means of SMB cable connections
self.pxi_sync_trigger_resources = [kthvi.TriggerResourceId.PXI_TRIGGER0,
kthvi.TriggerResourceId.PXI_TRIGGER1, kthvi.TriggerResourceId.PXI_TRIGGER2,
kthvi.TriggerResourceId.PXI_TRIGGER3]

PXI lines allocated to be used as HVI trigger resources cannot be used by the programming example
for other purposes. The vector pxi_sync_trigger_resources specified above must include at least the
necessary number of PXI lines for the programming example to execute. Please check the
programming example code for the actual number of PXI lines that needs to be reserved. The HVI
compiler also returns, for a given HVI sequence, the number of necessary PXI lines that must be
reserved.

Find us at www.keysight.com Page 14

KS2201A - Programming Example 1 - Multi-Channel Sync Playback using
M320x Arbitrary Waveform Generators

Programming Example Over-
view

Measurement Results
This programming example contains a simple HVI global sync sequence that executes a sync multi-
sequence block on an arbitrary number of AWG instruments. All local sequences are synchronously
executed by all instruments' HVI engines to first trigger a pulse from the front panel TRG port and
then output a waveform from all the AWG channels.

The programming example capabilities are illustrated through some example measurement results
obtained using the measurement setup depicted below where the Front Panel (FP) connector and
CH1 of two M3202A AWGs are connected to the four channels of a Keysight Oscilloscope.

Find us at www.keysight.com Page 15

KS2201A - Programming Example 1 - Multi-Channel Sync Playback using
M320x Arbitrary Waveform Generators

Programming Example Over-
view

A photograph of the measurement setup used for the measurement results reported in this
programming example is shown below:

Find us at www.keysight.com Page 16

KS2201A - Programming Example 1 - Multi-Channel Sync Playback using
M320x Arbitrary Waveform Generators

Programming Example Over-
view

The screenshot below depicts the expected execution on the console window of this programming
example's Python code.

Find us at www.keysight.com Page 17

KS2201A - Programming Example 1 - Multi-Channel Sync Playback using
M320x Arbitrary Waveform Generators

Programming Example Over-
view

By running the Python code, the example measurements depicted below were obtained. The scope
measurements below show measurement results obtained using two AWGM3202A with -HV1
option. In the scope measurement, we can observe the two synchronized FP trigger pulses (yellow
and green waveforms) output in a synchronized manner by two independent AWG instruments. The
FP trigger pulses are followed by two waveforms (red and blue waveforms) triggered by the "AWG
Trigger" action executed from the HVI sequence. The execution can be repeated for a number of
synchronized loops that can be configured by the user by setting the num_loops property of the
ApplicationConfig class.

Find us at www.keysight.com Page 18

KS2201A - Programming Example 1 - Multi-Channel Sync Playback using
M320x Arbitrary Waveform Generators

Programming Example Over-
view

NOTE AWG Trigger Delay

Please note, the HVI sequences represented in the HVI diagram contained in the
next section specify the "AWG Trigger" instruction 10 ns after the "FP Trigger OFF"
instruction. However, users must take into account that the AWG instrument
requires time to process the AWG trigger action and propagate the command
through its digital HW before the first waveform sample can appear at the AWG
output. This processing time can be called AWG Trigger Delay, and it explains why
in the previously presented scope measurements there is a delay of about 150-170
ns between the FP trigger falling edge and the first sample of the Gaussian
waveform generated by the AWG. For exact values of AWG Trigger Delay and other
AWG specs, please consult the documentation of Keysight M3xxx AWGs available
on www.keysight.com.

Find us at www.keysight.com Page 19

KS2201A - Programming Example 1 - Multi-Channel Sync Playback using
M320x Arbitrary Waveform Generators

Programming Example Over-
view

http://www.keysight.com/

HVI Application Programming Interface (API): Detailed Explanations
PathWave Test Sync Executive implements the next generation of HVI technology and delivers the
HVI Application Programming Interface (API). This section explains how to implement the use case of
this programming example using HVI API. The sequence of operations executed by each of the
instruments using HVI technology is explained in the diagram below. The diagram depicts the HVI
sequences executed within this programming example and the HVI statements used to program the
sequences. Every HVI statement is described in detail later in this section, referencing with a letter
the equivalent block in the HVI diagram and explaining in detail the corresponding HVI API code
block and the HVI functionalities that it implements.

Please note that the start delays of HVI statement inserted in the following HVI diagram are set to
very specific values. Unless differently specified, those values correspond to the minimum latencies
that can be used for those start delays. Please consult Chapter 7 of the PathWave Test Sync
Executive User Manual for detailed information about the timing constraint and latency of each HVI
statement execution.

Find us at www.keysight.com Page 20

KS2201A - Programming Example 1 - Multi-Channel Sync Play-
back using M320x Arbitrary Waveform Generators

HVI Application Programming Interface (API):
Detailed Explanations

NOTE The duration of each iteration of the Sync While loop used in this example is set to
an arbitrary value using the Duration property of the SyncWhile object. The default
duration of each sync statement is set to "T Min", which corresponds to the
minimum duration to comply with the start delays specified by the user for each
statement programmed into the local sequences contained in it.

To include HVI in an application, follow these three fundamental steps:

1. System definition: define all the necessary HVI resources, including platform resources, engines,
triggers, registers, actions, events, etc.

2. Program HVI sequences: define all the statements to be executed within each HVI sequence

3. Execute HVI: compile, load to HW and execute the HVI

The following sub-sections describe in detail how these three steps are implemented for this
example. For further explanations about any of the concepts, please refer to the PathWave Test Sync
Executive User Manual .

Find us at www.keysight.com Page 21

KS2201A - Programming Example 1 - Multi-Channel Sync Play-
back using M320x Arbitrary Waveform Generators

HVI Application Programming Interface (API):
Detailed Explanations

System Definition
The definition of HVI resources is the first step of an application using HVI. The API
class SystemDefintion enables you to define all necessary HVI resources. HVI resources include all
the platform resources, engines, triggers, registers, actions, events, etc. that the HVI sequences are
going to use and execute. Users need to declare them up front and add them to the corresponding
collections. All HVI Engines included in the programming need to be registered into
the EngineCollection class instance. HVI resources are described in detail in the PathWave Test Sync
Executive User Manual . The HVI resource definitions are summarized in the code snippets below.

Python

Create system definition object
my_system = kthvi.SystemDefinition("MySystem")

def define_hvi_resources(sys_def, module_dict, config):
"""
Configures all the necessary resources for the HVI application to execute: HW platform,

engines, actions, triggers, etc.
"""
Define HW platform: chassis, interconnections, PXI trigger resources, synchronization, HVI

clocks
define_hw_platform(sys_def, config)
Define all the HVI engines to be included in the HVI
define_hvi_engines(sys_def, module_dict)
Define list of actions to be executed
define_hvi_actions(sys_def, module_dict, config)
Defines the trigger resources
define_hvi_triggers(sys_def, module_dict, config)

Define Platform Resources: Chassis, PXI triggers, Synchronization

All HVI instances need to define the chassis and eventual chassis interconnections using
the SystemDefinition class. System Sync Modules can be defined using the add_sync_module
method of the interconnects interface. PXI trigger lines to be reserved by HVI for its execution can be
assigned using the sync_resources interface of the SystemDefinition class. The
SystemDefinition class also allows you to add additional clock frequencies that the HVI execution can
synchronize with. For further information, please consult the section "HVI Core API" of the PathWave
Test Sync Executive User Manual .

Find us at www.keysight.com Page 22

KS2201A - Programming Example 1 - Multi-Channel Sync Play-
back using M320x Arbitrary Waveform Generators

HVI Application Programming Interface (API):
Detailed Explanations

def define_hw_platform(sys_def, config):
"""
Define HW platform: chassis, interconnections, PXI trigger resources, synchronization, HVI

clocks
"""
Define chassis resources
For multi-chassis setup details see programming example documentation
for chassis_number in config.chassis_list:

if config.hardware_simulated:
This simulation options require to install the chassis driver:
sys_def.chassis.add_with_options(chassis_number, 'Simulate=True,DriverSetup=Model=M9019A')
As an alternative, the GenericPxieChassis allows to run simulations without installing the
chassis driver

sys_def.chassis.add(chassis_number,
'Simulate=True,DriverSetup=Model=GenericPxieChassis')

else:
sys_def.chassis.add(chassis_number)

Define System Sync Modules (SSMs)
if config.system_sync_modules_descriptors:

interconnects = sys_def.interconnects
ssm_list = []
for descriptor in config.system_sync_modules_descriptors:

if config.hardware_simulated:
ssm = interconnects.add_sync_module(descriptor.resource_id, config.ssm_

simulation_options)
else:

ssm = interconnects.add_sync_module(descriptor.resource_id, descriptor.options)
ssm_list.append(ssm)

Find us at www.keysight.com Page 23

KS2201A - Programming Example 1 - Multi-Channel Sync Play-
back using M320x Arbitrary Waveform Generators

HVI Application Programming Interface (API):
Detailed Explanations

Define connections between SSMs
if config.ssm_connections:

for connection in config.ssm_connections:
connector_number = connection.ssm1_downstream_connector_number
for ssm in ssm_list:

if ssm.chassis == connection.ssm1_chassis:
ssm1 = ssm

if ssm.chassis == connection.ssm2_chassis:
ssm2 = ssm

Implement each user-defined connection
try:

Set connection. SSMs have always one upstream port
ssm1.connectivity.systemsync_downstream[connector_number].set_connection

(ssm2.connectivity.systemsync_upstream[1])
except:

exit("Exception! Please check the valued defined for SyncModule resource ids,
chassis numbers and connections")

Assign the defined PXI trigger resources
sys_def.sync_resources = config.pxi_sync_trigger_resources
Assign clock frequencies that are outside the set of the clock frequencies of each HVI

engine
Use the code line below if you want the application to be in sync with the 10 MHz clock
sys_def.non_hvi_core_clocks = [10e6]

Define HVI Engines

All HVI Engines to be included in the HVI instance need to be registered into the EngineCollection
class instance. Each HVI Engine object added to the engine collection contains collections of its own
that allow you to access the actions, events and triggers that each specific engine will control and use
within the HVI.

Python

"""
Define names of HVI engines, actions, triggers, registers
"""
Define names of HVI engines, actions, triggers, registers
self.leader_engine_name = ""
self.engine_name = "AwgEngine"
self.awg_trigger_action_name = "AwgTrigger"
self.fp_trigger_name = "FpTrigger"
self.loop_register_name = "Loops"
self.num_loops = 3

def define_hvi_engines(sys_def, module_dict):
Define all the HVI engines to be included in the HVI
For each instrument to be used in the HVI application add its HVI Engine to the HVI Engine

Collection
for engine_name in module_dict.keys():

Find us at www.keysight.com Page 24

KS2201A - Programming Example 1 - Multi-Channel Sync Play-
back using M320x Arbitrary Waveform Generators

HVI Application Programming Interface (API):
Detailed Explanations

sys_def.engines.add(module_dict[engine_name].instrument.hvi.engines.main_engine, engine_
name)

Define HVI Actions, Events, Triggers

In this programming example, each AWG needs to trigger both an FP pulse and a waveform very
precisely. To do this, the AWG trigger actions are issued from within the HVI execution. In the HVI use
model, actions need to be added to the action collection of each HVI engine before they can be
executed. FP trigger needs to be added to the HVI Trigger Collection and configured. This is done in
this programming example as explained in the code snippets below.

Python

def define_hvi_actions(sys_def, module_dict, config):
"""
Defines AWG trigger actions for each module, to be executed by the "action execute"

instruction in the HVI sequence
Create a list of AWG trigger actions for each AWG module. The list depends on the number of

channels
"""
For each AWG, define the list of HVI Actions to be executed and add such list to its own

HVI Action Collection
for engine_name in module_dict.keys():

for ch_index in range(1, module_dict[engine_name].num_channels + 1):
Actions need to be added to the engine's action list so that they can be executed
action_name = config.awg_trigger_action_name + str(ch_index) # arbitrary user-

defined name
instrument_action = "awg{}_trigger".format(ch_index) # name decided by instrument

API
action_id = getattr(module_dict[engine_name].instrument.hvi.actions, instrument_

action)
sys_def.engines[engine_name].actions.add(action_id, action_name)

def define_hvi_triggers(sys_def, module_dict, config):
"""
Defines and configure the FP trigger output of each AWG
"""
Add to the HVI Trigger Collection of each HVI Engine the FP Trigger object of that same

instrument
for engine_name in module_dict.keys():

fp_trigger_id = module_dict[engine_name].instrument.hvi.triggers.front_panel_1
fp_trigger = sys_def.engines[engine_name].triggers.add(fp_trigger_id, config.fp_trigger_

name)
Configure FP trigger in each hvi.engines[index]
fp_trigger.config.direction = kthvi.Direction.OUTPUT
fp_trigger.config.polarity = kthvi.Polarity.ACTIVE_HIGH
fp_trigger.config.sync_mode = kthvi.SyncMode.IMMEDIATE
fp_trigger.config.hw_routing_delay = 0
fp_trigger.config.trigger_mode = kthvi.TriggerMode.LEVEL
#NOTE: FP trigger pulse length is defined by the HVI Statements that control FP Trigger

ON/OFF

Find us at www.keysight.com Page 25

KS2201A - Programming Example 1 - Multi-Channel Sync Play-
back using M320x Arbitrary Waveform Generators

HVI Application Programming Interface (API):
Detailed Explanations

Program HVI Sequences
HVI sequences can be programmed using the Sequencer class. HVI starts the execution through a
global sequence (defined by the SyncSequence class) that takes care of synchronizing and
encapsulating the local sequences corresponding to each HVI engine included in the application. In
this programming example, the HVI global sync sequence contains only one sync statement, a
synchronized multi-sequence block defined by the API class SyncMultiSequenceBlock.

Python

Create sequencer object
sequencer = kthvi.Sequencer("MySequencer", my_system)

def program_mimo_trigger_sequence(sequencer, module_dict, config):
"""
Programs the MIMO Trigger HVI sync sequence
"""
Add a Sync Multi-Sequence Block (SMSB)
sync_block = sequencer.sync_sequence.add_sync_multi_sequence_block("TriggerAWGs", 30)
Program the SMSB to trigger AWGs
program_trigger_awgs(sync_block, module_dict, config)

Synchronized Multi-Sequence Block (a)

This block synchronizes all the HVI engines that are part of the sync sequence and allows to program
each HVI Engine to do specific operations by exposing a local sequence for each engine. By calling
the API method add_multi_sequence_block() a synchronized multi-sequence block is added to the
Sync (global) Sequence. The duration of the Sync Multi-Sequence Block (SMSB) can be set using the
Duration property and the Time class. In this example the SMSB duration is set to minimum, which
means that the SMSB will last according to the start delays specified by the user for each statement
programed into the local sequences contained in it. Please note that the duration cannot be set to a
deterministic quantity if the SMSB contains any flow control statement, i.e. If, While, Wait or
WaitTime statements. Please consult Chapter 7 of the KS2201A User Manual for further information.

Python

Add a Sync Multi-Sequence Block (SMSB)
sync_block = sync_while.sync_sequence.add_sync_multi_sequence_block("TriggerAWGs", 250)
Set SMSB duration
sync_block.duration = kthvi.time.Minimum()

Within the Synchronized Multi-Sequence Block (SMSB), users can define which statement each local
engine is going to execute in parallel with the other engines. Local HVI sequences start and end
synchronously their execution within the sync multi-sequence block. Users can define the exact
amount of time each local HVI statement starts to execute with respect to the previous one. HVI

Find us at www.keysight.com Page 26

KS2201A - Programming Example 1 - Multi-Channel Sync Play-
back using M320x Arbitrary Waveform Generators

HVI Application Programming Interface (API):
Detailed Explanations

automatically calculates the execution time of each local sequence and adjusts the execution of all
local sequences within the multi-sequence block so that they can deterministically end altogether
within the synchronized multi-sequence block. See the general case example in the figure below for
additional details.

Please note that the Sync Multi-Sequence Block has an execution duration time labeled as "T Min" in
the figure above. The "T Min" default value for any sync statement corresponds to the minimum time
necessary to complete the operations included inside. KS2201A Update 1.0 release provides the
Duration property in Sync Statement objects that allows users to set an arbitrary duration value
larger than "T Min". The timing at the end of each local sequence is automatically adjusted by HVI
according to the duration specified by the user for the SMSB. In the case of duration "T min", HVI will
automatically add no time to the local sequence with the longest duration and adjust the other
sequences accordingly, as in the example depicted in the figure above. The resolution for HVI-defined
time adjustment at the end of a sync multi-sequence block corresponds to the 10 ns FPGA clock
period for an application including instruments that are all within the Keysight M3xxx family. For
further explanations about the timing of HVI sequence execution please refer to the KS2201A
PathWave Test Sync Executive User Manual available on www.keysight.com

Find us at www.keysight.com Page 27

KS2201A - Programming Example 1 - Multi-Channel Sync Play-
back using M320x Arbitrary Waveform Generators

HVI Application Programming Interface (API):
Detailed Explanations

http://www.keysight.com/

HVI Instruction: Front Panel Trigger ON/OFF (b)

This block executes a native HVI instruction. Native HVI instructions are common to every Keysight
product. The API method add_instruction() allows you to add the wanted instruction within the HVI
sequence. Instruction parameters are set using the API method set_parameter(). All HVI Native
instructions and parameters are defined in the hvi.InstructionSet interface.

Python

Write FP Trigger ON
fp_trigger = sequence.engine.triggers[config.fp_trigger_name]
trigger_write = sequence.instruction_set.trigger_write
instr_trigger_ON = sequence.add_instruction("FP Trigger ON", 10, trigger_write.id)
instr_trigger_ON.set_parameter(trigger_write.trigger.id, fp_trigger)
instr_trigger_ON.set_parameter(trigger_write.sync_mode.id, trigger_write.sync_mode.IMMEDIATE)
instr_trigger_ON.set_parameter(trigger_write.value.id, trigger_write.value.ON)

Action Execute: AWG Trigger (c)

Actions to be used within an HVI sequence need to be added to the instrument HVI engine using the
API "add" method of the ActionCollection class. Once the wanted actions are added within the list of
the instruments' HVI engine actions, an instruction to execute them can be added to the instrument's
HVI sequence using the HVI API class InstructionsActionExecute. One or multiple actions can be
executed at the same time within the same "Action Execute" instruction.

Python

Execute AWG trigger from the HVI sequence of each module
"Action Execute" instruction executes the AWG trigger from HVI
action_list = sequence.engine.actions
instruction1 = sequence.add_instruction("AWG trigger", 10, sequence.instruction_set.action_
execute.id)
instruction1.set_parameter(sequence.instruction_set.action_execute.action.id, action_list)

Export the Programmed HVI Sequences to Text Format

KS2201A provides a feature to export the programmed HVI sequences to text format, which can be
used both as a development and debug tool. The sequences can be exported using the to_string()
method of the SyncSequence class, as illustrated in the code snippet below. Once exported to text
format, the HVI sequences can be written to a text file or displayed on the console output. An
example text file containing the HVI sequences exported from this programming example is provided
together with this example's files.

Generate HVI sequence description text
output = sequencer.sync_sequence.to_string(kthvi.OutputFormat.DEBUG)
print("Programmed HVI sequences exported to file")

Find us at www.keysight.com Page 28

KS2201A - Programming Example 1 - Multi-Channel Sync Play-
back using M320x Arbitrary Waveform Generators

HVI Application Programming Interface (API):
Detailed Explanations

Compile, Load, Execute the HVI Instance
Once the HVI sequences are programmed by defining all the necessary HVI statements, you can
compile, load and execute the HVI. Compile, load and run functionalities can be accessed from
the Hvi class.

Compile HVI

The compilation operation is performed by calling the compile() API method. This operation processes
all the info related to the HVI application, including the necessary HVI resources and the HVI
statements included in the HVI sequences. The compilation generates a binary compiled output that
can be loaded to the hardware instruments for their HVI engine to execute it. As an output, the
compile() API method provides an object that can tell the user how many PXI sync resources are
necessary to be reserved to execute the HVI application.

Python

Compile HVI sequences
hvi = sequencer.compile()
print(hvi.compile_status.to_string())
print("HVI Compiled")
print("This HVI programming example needs to reserve {} PXI trigger resources to execute".format
(len(hvi.compile_status.sync_resources)))

Load HVI to Hardware

The API method load_to_hw() loads to each HVI engine the binary output obtained from the HVI
compilation so that the HVI engine programmed into their digital HW (FPGA or ASIC) can execute it.

Python

Load HVI to HW: load sequences, configure actions/triggers/events, lock resources, etc.
hvi.load_to_hw()

Execute HVI

HVI execution is controlled by the run() API method. HVI can be run in a blocking or non-blocking
mode. In this programming example, the blocking mode is used. In this mode the SW execution is
blocked at the HVI execution code line for a fixed amount of time specified by the timeout input
parameter. The SW execution can be blocked until the HVI sequences finish their execution if timeout
= hvi.no_timeout is used as an input parameter.

Python

Execute HVI in blocking mode: SW waits until HVI sequences ends their execution
Eventually enter a timeout for the HVI execution to be stopped: timeout = timedelta
(seconds=0), hvi.run(timeout)

Find us at www.keysight.com Page 29

KS2201A - Programming Example 1 - Multi-Channel Sync Play-
back using M320x Arbitrary Waveform Generators

HVI Application Programming Interface (API):
Detailed Explanations

hvi.run(hvi.no_timeout)
print("HVI Running...")

Release Hardware

API method release_hw() shall be called once the HVI execution is finished to release all the HW
resources that were reserved during the HVI execution, including the PXI trigger resources that had
been locked by HVI for its execution.

Python

Unlock and release HW resources
hvi.release_hw()
print("Releasing HW...")

Further HVI API Explanations
Detailed explanations of each class and functionality of the HVI API can be found in the PathWave
Test Sync Executive User Manual or in the Python help file that is provided with the HVI installer,
available at: C:\Program Files\Keysight\PathWave Test Sync Executive
<year>\api\python\Help\index.html, where <year> shall be replaced with the year of the release you
are using, for example <year> = 2023.

Conclusions
This programming example explained how to use Pathwave Test Sync Executive and HVI (Hard
Virtual Instrument) technology to synchronize multiple Arbitrary Waveform Generators (AWGs) to
concurrently issue first a marker pulse from the Front Panel (FP) trigger port and then play a
previously loaded waveform from all their AWG channels. The programming example use case
illustrated here can be tested on any AWG of the Keysight M3xxx PXI family. HVI technology was
deployed using the HVI API (Application Programming Interface). Example measurement results
demonstrated synchronized FP trigger marker output and waveform output from multiple AWGs.

Find us at www.keysight.com Page 30

KS2201A - Programming Example 1 - Multi-Channel Sync Playback using M320x Arbitrary
Waveform Generators Conclusions

This information is subject to change

without notice.

© Keysight Technologies 2020-2023

Edition 2023_U0_00, June, 2023

Printed in USA

KS2201-90001

www.keysight.com

http://www.keysight.com/

	KS2201A - Programming Example 1 - Multi-Channel Sync Playback using M320x Arb...
	Introduction
	System Setup
	System Requirements
	How to Install Python 3.x 64-bit
	How to Install Chassis Driver, SFP and Firmware
	How to Install PathWave Test Sync Executive, Keysight Instrument Driver and F...
	How to Install KF9000B PathWave FPGA
	Multi-Chassis System Setup using the M9032A/M9033A PXIe System Synchronizatio...

	Programming Example Overview
	How to Run this Programming Example
	Measurement Results

	HVI Application Programming Interface (API): Detailed Explanations
	System Definition
	Define Platform Resources: Chassis, PXI triggers, Synchronization
	Define HVI Engines
	Define HVI Actions, Events, Triggers

	Program HVI Sequences
	Synchronized Multi-Sequence Block (a)
	HVI Instruction: Front Panel Trigger ON/OFF (b)
	Action Execute: AWG Trigger (c)
	Export the Programmed HVI Sequences to Text Format

	Compile, Load, Execute the HVI Instance
	Compile HVI
	Load HVI to Hardware
	Execute HVI
	Release Hardware

	Further HVI API Explanations

	Conclusions

