RF Sweeps using M320x AWGs, \ PROGRAMMING EXAMPLE 7

M5300 RF AWGs, and M9046 Chassis P/\TH\‘N'I\“ 'E

In this programming example, PathWave Test Sync Executive is used to define a
real-time algorithm to be executed by the FPGA (Field Programmable Gate Array)
of Arbitrary Waveform Generators (AWGs). This enables the AWG channels to be
used to output pulsed signals that are swept in amplitude and frequency, to per-
form a pulsed characterization of a Device-Under-Test.

PATHWAVE

Test Sync Executive

KEYSIGHT

TECHNOLOGIES

Table of Contents

INTrOAUCTION Lo 4
SYS M S UD 4
SyStemM REQUITEMENTS .. 4
How to Install Python 3.x 64-Dit ... 6
How to Install Chassis Driver, SFP and Firmware ... 8

How to Install PathWave Test Sync Executive, Keysight Instrument Driver and FPGA Firmware .. 9
How to Install KFO000B PathWave FPGA ... 9
Multi-Chassis System Setup using the MO032A/M9033A PXle System Synchronization Module 9

Programming Example OVEIVIEW 12
How to Run this Programming Example ... 13
How to Configure the Reference Clock 14
How to Initialize your System .. 16
Measurement ReSULLS ... 17

HVI Application Programming Interface (API): Detailed Explanations ... 22
System DefinitioN ... 24

Define Platform Resources: Chassis, PXI triggers, Synchronization 24
Define Reference Clock Configuration ... 26
Define HV I ENGINES 27
Define HVIACHIONS ... 27
Program HVI SEQUENCES 28
Define HVI ReGISTerS .o 29
Synchronized WhIle (8) ... 29
Synchronized Multi-Sequence Block (b) ... 30
HVI Native Instruction: Action-Execute (C) ... 32
HVI Instrument-Specific Instruction (d) ... 32
HVI Native Instruction: Register Increment (€) ... 32
HVI Native Instruction: Register Assign (f) ... 33
Delay Statement (Q) ..o 33
Export the Programmed HVI Sequences to Text Format ... 34
Compile, Load, Execute the HVI Instance 35

Page 2

Compile HVI
Load HV 10 HardWare ..o 35

EXeCUte HV L 35
Release Hardware ... 36
Further HVI AP EXplanations .. 36
CONCLIUSIONS L. 36

Page 3

[ntroduction

KS22071A - Programming Example 7 - RF Sweeps using
M320x AWGs M5300 RF AWGs and M9046 Chassis

In this programming example, PathWave Test Sync Executive is used to define a real-time algorithm
to be executed by the FPGA (Field Programmable Gate Array) of Arbitrary Waveform Generators
(AWGs) from the Keysight M3xxx and the Mbxxx PXle families. This enables the AWG channels to be
used to output pulsed signals that are swept in amplitude and frequency, to perform a pulsed char-
acterization of a Device-Under-Test.

Introduction

This document is organized as follows. First, a "System Setup" section explains all the mandatory soft-
ware and firmware components to be installed before the programming example can run. Secondly, a
"Programming Example Overview" section describes the application use case of this programming
example including expected measurement results. The next section contains detailed explanations on
how to use the HVI (Hard Virtual Instrument) API (Application Programming Interface) to implement
the real-time algorithms of this example. Finally, the conclusions are outlined.

Please review in detail the System Requirements outlined in the next section and
install all the necessary software (SW) and firmware (FW) components before
executing this programming example code.

System Setup

Please review the following system requirements and install the necessary pieces of software (SW),
firmware (FW), and driver following the instructions provided in this section. To download the pro-
gramming example code and necessary files please visit www.keysight.com/find/KS2201A-pro-
gramming-examples . To download the latest PathWave Test Sync Executive installer and
documentation, please visit www.keysight.com/find/KS2201A-downloads. The rest of the software
installers, FPGA firmware, drivers, and other components mentioned in this section can be found on
www.keysight.com

System Requirements

To run this series of programming examples, all the necessary pieces of SW need to be installed on
the external PC or internal chassis controller that is used to control the PXI chassis. FPGA FW of PX]
instruments can be instead programmed using the "Hardware Manager" window of SD1 Software
Front Panel (SFP) or the "Firmware Update" window of the "Utilities" menu of the SFP of M5xxx or
M9xxx instruments.

Find us at www.keysight.com Page 4

http://www.keysight.com/find/KS2201A-programming-examples
http://www.keysight.com/find/KS2201A-programming-examples
http://www.keysight.com/find/KS2201A-downloads
http://www.keysight.com/

System Setup

The list below refers to the whole KS2201A Prog. Examples series. Please check the next section of
this document for info about the exact instrument models necessary to run this programming
example. You will need to install SW and FW only for the instruments models that you are using to
run this example. You do not need to install KFS000B PathWave FPGA if you are not programming
your instrument FPGA with a custom design.

The versions of software, FPGA firmware, drivers, and other components that were used to test this
programming example are listed below. Newer versions of the SW driver or FPGA FW used to test this
example are also typically expected to work. For complete details about SW and FW compatibility
please visit www.keysight.com/find/ks2201a-firmware-version-requirements.

List of tested SW and Keysight instrument drivers and FPGA FW versions:

1. Software versions:
e Python 3.9.12 64-bit, including Python packages time, numpy, matplotlib
o Keysight KS2201A PathWave Test Sync Executive 2022 v2.7.3
» Keysight KF9000B PathWave FPGA 2022

2. Keysight instrument driver versions:
e Keysight IO Libraries Suite 2022 Update 1 v18.2.28014.7
» Keysight PXle Chassis Family Driver v1.7.740.1
» Keysight SD1 Drivers, Libraries and SFP v3.3.12
» Keysight M5302A Drivers, Libraries and SFP v1.1.12704.0
e Keysight M5300A Drivers, Libraries and SFP v1.0.42301.0
o Keysight M5200A Drivers, Libraries and SFP v1.0.43003.0
* Keysight M9032A / MOO33A Drivers, Libraries and SFP v1.1.38

3. Keysightinstrument FPGA FW versions (to be installed using Keysight instrument SFP):
e Keysight Chassis M3019A firmware v2019EnhTrig
o M3202A AWG v4.2.45
* M3201A AWG v4.3.67
» M3102A Digitizer v2.2.46
» Mb5302A Digital I/0 v5.8.93.0
* Mb5300A RF AWG v1.1.168.0
» Mb5200A Digitizer v1.1.120.0
e M9032A System Synchronization Module v0.1.232
e M9033A System Synchronization Module v4.1.232

Find us at www.keysight.com Page 5

http://www.keysight.com/find/ks2201a-firmware-version-requirements

System Setup

The above-mentioned list of instrument drivers and firmware requirements includes
all the Keysight PXle instruments compatible with KS220TA. Please check the next
section of this document for info about the exact instrument models necessary to
run this programming example. Users can modify the example code to include
additional compatible instruments. To run this example you need to install only the
drivers of the instruments you use.

PathWave Test Sync Executive licenses must be installed before running the
programming example Python code. To request and install a license please consult
the PathWave Test Sync Executive User Manual available on www.keysight.com.

How to Install Python 3.x 64-bit

This programming example requires you to install Python 64-bit version equal to or greater than 3.7.x
for all users. The Python installer can be downloaded from the Python official webpage
https://www.python.org. Make sure you add Python 3.x to the PATH system Variable. This can be
done at the installation step by checking the right check-boxes as shown in the screenshot below.

(=3 Python 3.7.4 (64-bit) Setup ol = =5
Install Python 3.7.4 (64-bit)

Select Install Now to install Python with default settings, or choose
Customize to enable or disable features.

= Install Now
ChUsers\Administrator\AppData\Local\Programs'\Python'\Python37

Includes IDLE, pip and decumentation
Creates shortcuts and file associations

< Customize installation
Choose location and features

python
for Install launcher for all users (recommended)
windows [7] Add Python 3.7 to PATH

Once Python is installed, you can install KS2201A. When running the KS22071A installer, it will detect
which Python 3.x 64-bit is installed in your system and is compatible with the keysight_hvi package
delivered by the installer. The detected compatible version(s) will appear with a check in its checkbox.
In the screenshot example below the Python 3.7 APl is checked and will be installed. If you wish to
install other instances of the keysight_hvi package, compatible with other Python 3.x 64-bit versions,
then please manually check other additional checkboxes at this step of the installation procedure.

Find us at www.keysight.com Page 6

http://www.keysight.com/
http://www.python.org/

. Setup - X

Seect V1 APl .

The HVI API allows programmatic access to PathWave Test Sync Executive features,

An asterisk (") indicates that a compatible Python version was found and this installer will
install the AP| as a Python package. Selected Python components without an asterisk will
be copied for manual package installation. Please see the PathWave Test Sync Executive

System Setup

User Manual for

details on manual installation.

Click on a component to get a detailed
[Python 3.7 API * description
[J Python 3.8 API
[J Python 3.9 API
[] Python 3.10 AP
] .Net API
<Back | Next> . Cancel

nnnnnnnnnnnnnnnnnnn

PathWave Test Sync Executive programming examples require the Python
packages time, numpy and matplotlib . These packages can be installed using the
Python package installer pip. For more information about pip and how to use it,
please visit https://pypi.org/project/pip/.

Users installing Python through a distribution that is different than the one available
from the Python official webpage https://www.python.org (e.g. Anaconda
distribution) need to make sure that their PATH environment Variable includes the
path to set up the HVI API Python library. This can be done by adding to the
programming example Python code a line that includes that path, for example:
sys.path.append(C:\Program Files\Keysight\PathWave Test Sync Executive
<year>\api\python) where year shall be replaced with the year of the release you
are using, for example <year> = 2022.

Find us at www.keysight.com Page 7

http://pypi.org/project/pip/
http://www.python.org/

System Setup

How to Install Chassis Driver, SFP and Firmware

To ensure the system compatibility described above, please install 10 Libraries and chassis driver first,
both are available on www.keysight.com . This programming example was tested on chassis model
M9019A using the chassis driver and chassis firmware versions listed above. If you are using another
chassis model, we advise you to install the same firmware version and its compatible chassis driver.
When installing the Keysight Chassis Family Driver, PXle Chassis SFP (Software Front Panel) software
is automatically installed. Chassis firmware version can be checked and updated using PXle Chassis
SFP. Please see screenshots below referring to Keysight Chassis model M9019A as an example on
how to check the chassis firmware version from the info in the help window of the PXle Chassis SFP.
Chassis firmware update can be performed using the "Firmware Update" window found in the
"Utilities" menu of the PXle Chassis SFP. For more info please read
PXleChassisFirmwareUpdateGuide.pdf available on www.keysight.com.

About M9019A PXle Chassis SFP 1.7.82.1 Chassis 1]

M9019A PXle Chassis SFP 1.7.82.1 Chassis 1
Soft Front Panel
® Keysight Technologies 2018

Version: 1.7.82.1

Instrument Information:
Serial Number: TW56050024

Driver Revision: 1.7.82.1
Instrument Model: MS019A

AN KEYSIG
TECHNOLOGIES

L - Left Trigger
Bridge firmware
version number

- Right Trigger
Bridge firmware
version number

C.CC - Chassis Manager M.MM - Monitor Processor P - Power Supply 5.5.5.5 - Switch version number
firmware version firmware version number for switches used in
number number PCle Switch Fabric

Find us at www.keysight.com Page 8

http://www.keysight.com/
http://www.keysight.com/

System Setup

MI0T19A Firmware Version Components

Firmware Component 2017 2018 2019StdTrig 2019EnhTrig
Chassis Manager 2.02 2.02 2.02 2.02
Monitor Processor 3.1 3.11 412 412

Switch version number for switches | a1.2.a2.2 |al.2.a2.2 al.2.a2.2 al.2.a2.2
used in PCle Switch Fabric

Right Trigger Bridge 0 10000083 |0 10000083
Left Trigger Bridge 0 10010083 |0 10010083

How to Install PathWave Test Sync Executive, Keysight Instrument
Driver and FPGA Firmware

After installing your development environment (Python or C#), and installing the chassis, the next
step is to install PathWave Test Sync Executive and the drivers for the Keysight instruments that you
are using. After installing all the necessary software, the instrument FPGA firmware can be updated
from their Software Front Panel (SFP) installed together with the instrument drivers. For more details
on how to install SW and FPGA FW for Keysight instruments, please visit the instrument technical
support page on www.keysight.com.

How to Install KF9000B PathWave FPGA

Some programming examples include PathWave FPGA project files designed using KF9000B
PathWave FPGA. To install KFQ000B and obtain a license please consult the product webpage on
www.keysight.com. PathWave FPGA also requires Xilinx Vivado software to run. For further
information please consult the PathWave FPGA User Manual on www.keysight.com.

Multi-Chassis System Setup using the M9032A/M9033A PXle
System Synchronization Module

In a multi-chassis system connected with Keysight PXle System Synchronization Modules, you must
include one SSM in each chassis that is part of the system. Each SSM must be inserted in the timing
slot of your chassis. This is typically slot 10 in Keysight 18-slot chassis, but it can be a different slot
number in different chassis models. The SSMs are connected to each other with System Sync cables.

One SSM is automatically chosen as a leader and it is used to synchronize all the instruments in the
multi-chassis system. The SSM chosen as leader is the SSM that has no incoming connection to its
System Sync Upstream port. The leader SSM distributes a replica of the reference clock signal to the
SSMs located in the other chassis. It does this through point-to-point connections between System

Find us at www.keysight.com Page 9

http://www.keysight.com/
http://www.keysight.com./
http://www.keysight.com./

System Setup

Sync Downstream/Upstream ports. In the example multi-chassis system shown in the following
diagram, the leader SSM is in Chassis 1.

A multi-chassis PXle system may be configured to use many different reference options. For a list of
those options and descriptions of how to configure them, see the section Clocking in this document.
For one of those reference options, an SSM is chosen as a leader and uses its internal Oven
Controlled Crystal Oscillator (OCXO) clock to synchronize all the instruments included in the multi-
chassis system.

A Multi-chassis system based on the older M9031A modules required an external
reference clock generator to distribute the precise common 10 MHz reference clock
signal across different chassis. In the new multi-chassis topology delivered by
PathWave Test Sync Executive 2022, the SSM assumes the function of the
reference clock signal generator/distributor, by sharing a reference clock generated
by an internal PLL. This PLL can be fed by different sources (as explained later in
this document) including the OCXO inside the SSM, which generates a 10 MHz sine
wave. An external 10 or 100 MHz reference signal can still be connected to the SSM
SClk / Ref Input port, to sync it together with other clusters.

Find us at www.keysight.com Page 10

The following diagram shows an example of a 6 chassis system connected with SSMs. In this system
an M9033A SSM in chassis 1 distributes the reference clock to four M9032A SSMs located in each of
the other chassis. The SSM in chassis b also forwards the clock to a sixth chassis.

External Leader
pC SSM
System Sync cables
must all be
equal length
Segment 1 iSegment 2 |e® l= iSegment 3
(slots 1-6) i(slots 7-12) II= i (slots 13-18) . I M9033A System
: : I I Syncronization Module
Chassis 1 4 I=\ I I
It A\
s
T .
M9032A System
Chassis 2 I l Syncronization Module
e ° l
Chassis 3 l\ | M9023A PXI System
A} i module
e k O /
)
Chassis 4 !=! Instrument with
7 I System Link
. |
Chassis 5 E = PCle Cable
° == System Sync Cable
i == System Link Cable
Chassis 6 I

System Sync cable must
connect downstream to
upstream.

For further information please refer to the System Setup Guide available on www.keysight.com.

http://www.keysight.com./

Programming Example Overview

Programming Example Overview

This programming example illustrates how to deploy the Hard Virtual Instrument (HVI) to
synchronously generate Radio Frequency (RF) pulsed signals from multiple M320x Arbitrary
Waveform Generators (AWGs) and M5300 RF AWGs. Two nested Sync While loops are used to sweep
both the amplitude and frequency of the RF pulses. The pulsed RF sweeps can be used for
applications such as spectroscopy of quantum bits or characterization of 5G components.

Users can set the AWG and RF AWG settings, and RF sweep parameters using the Variables defined
within the ApplicationConfig class shown below.

"""AWG settings
"""self.awg_channel =
self.freq_start_value = 5e6 # [Hz]

self.freq_step = 20e6 # [Hz]

self.off_value = 0 # [V]

self.ampl_start_value = 0.5 # [V]

self.ampl_step = 0.25 # [V]

self.pulse_duration = 200 # [ns]

"""RF AWG settings

"""self.M5xxx_fpga_clock_period = 10/3 # [ns]

self.rf_awg_sample_rate = 4.8 # [GSa/s]

self.waveform_file = "Waveforms/DC_mOp5_ I 2048.csv"self.rf_awg carrier_freq = 25.0e6
self.rf_awg_pulse_duration = 200 # [ns]

self.rf_awg _channel = 1 # channel playing wfm

self.rf_awg_start_delay = 0

self.rf_awg _num_cycles = @ # use @ for infinite cycles

self.rf_awg_ampl _start_value = 30 # [%]

self.rf_awg_ampl step = 30 # [%]

self.rf_awg_amplitude = 100 # [%]

self.set_amplitude_latency = 100 # [ns]

Trigger settings

self.rf_awg_trigger_mode = ktm5300.TriggerMode.SW_HVI_PER_CYCLE_TRIG

"""RF sweep parameters

"""self.num_freqs = 2

self.num_amplitudes = 3

self.ampl_sweep_duration = 1000 # [nS]

n N

The HVI functionalities to implement the required application are:

1. Off-shelf inter-instrument synchronization capabilities

2. Scalability to an arbitrary number of instruments. In this specific case M32xx PXle AWGs and M5300 PXle RF
AWGs

System initialization procedure for M5300 RF AWGs

Mapping of physical quantities (amplitude, frequency, phase, etc.) into HVI registers
Chassis interconnections and synchronization using the System Sync Module (SSM)
Usage of M9046A Chassis with High Performance Reference Clock Source (HPRCS)

o o &~ W

Find us at www.keysight.com Page 12

Programming Example Overview

More details about the HVI statements used in the real-time algorithm can be found in the section
"HVI Application Programming Interface (API): Detailed Explanations".

How to Run this Programming Example

This programming example is set up to execute in simulation mode. To execute the Python code on
real HW instruments, change the option for simulated hardware to False:

Simulated HW Option
hardware_simulated = True

Afterwards, it is necessary to specify the actual chassis number and slot number where the real PXI
instruments are located. You must update the model numbers of the PXI instruments if they are
different from the instrument models used in this programming example. This example uses PXI
instruments from the Keysight M3xxx and Mbxxx family.

The first step to control these instruments is to create an object using the instrument API. For a
complete description of the instrument object creation options, please consult the SD1 3.x Software
for M320xA / M330xA Arbitrary Waveform Generators User's Guide. Each PXI instrument is described
in the code using a module description class that contains the module model number, chassis
number, slot number (or resource ID), and options.

This programming example can be deployed on an arbitrary number of instruments to be defined
using the module-descriptor class. All instruments included in the Python code execute the
synchronized real-time operations defined by the HVI instance. Please update the properties in
each module-descriptor object before running the programming example:

Define module descriptors below with your instruments information

self.module_descriptors = [
ModuleDescriptor('M3202A', 1, 4, self.sdl_options, self.awg_engine_name),
ModuleDescriptor('M3201A', 2, 2, self.sdl_options, self.awg_engine_name),
ModuleDescriptor('M5300', 2, 12, self.rf_awg_instrument_options, self.rf_awg_engine_name)]

class ModuleDescriptor:

"Descriptor for module objects”

def __init__ (self, model_number, chassis_number, slot_number, options, engine_name):
self.model _number = model number

self.chassis_number = chassis_number

self.slot _number = slot_number

self.options = options

self.engine_name = engine_name

The chassis to be used in the programming example must be specified and listed by chassis number:

Update list of chassis numbers included in the programming example
self.chassis_list = [1, 2]

In the case of a multi-chassis setup, define each System Sync Module and its connections:

Find us at www.keysight.com Page 13

http://www.keysight.com/es/en/lib/software-detail/instrument-firmware-software/sd1-3x-software-3120392.html
http://www.keysight.com/es/en/lib/software-detail/instrument-firmware-software/sd1-3x-software-3120392.html

Programming Example Overview

Multi-chassis setup
Define the System Sync Modules included in your system.
self.ssm_options = "'
self.ssm_simulation_options = 'Simulate=true,DriverSetup=Model=M9033A"
self.system_sync_modules_descriptors = [
SystemSyncModuleDescriptor('PXIQ: :CHASSIS1::SLOT10: :INDEX@: :INSTR', self.ssm_options),
SystemSyncModuleDescriptor('PXIQ: :CHASSIS2::SLOT10: :INDEX@: :INSTR', self.ssm_options)]
For each SSM define which SSM is connected to its downstream connectors.
Each connectivity item is a triple (ssml_chassis, ssml_downstream_connector_number, ssm2_
chassis)
self.ssm_connections = [
SystemSyncModuleConnection(ssml_chassis=1, ssml_downstream_connector_number=1, ssm2_
chassis=2)]

Please note that in every programming example, PXI trigger resources need to be reserved so that
the HVI instance can use them for their execution. PXI lines to be assigned as trigger resources to HVI
can be selected by updating the code snippet below:

Assign triggers to HVI object to be used for HVI-managed synchronization, data sharing, etc
NOTE: In a multi-chassis setup ALL the PXI lines listed below need to be shared among each M9031
board pair by means of SMB cable connections

self.pxi_sync_trigger_resources = [kthvi.TriggerResourceId.PXI_TRIGGER®,
kthvi.TriggerResourceId.PXI_TRIGGER1, kthvi.TriggerResourceId.PXI_TRIGGER2,
kthvi.TriggerResourceId.PXI_TRIGGER3]

PXI lines allocated to be used as HVI trigger resources cannot be used by the programming example
for other purposes. The vector pxi_sync_trigger_resources specified above must include at least the
necessary number of PXI lines for the programming example to execute. Please check the
programming example code for the actual number of PXI lines that needs to be reserved. The HVI
compiler also returns, for a given HVI sequence, the number of necessary PXI lines that must be
reserved.

How to Configure the Reference Clock

This programming example illustrates all the possible options to setup the reference clock in your
measurement system. For further information please refer to the System Setup Guide available on
www.keysight.com.

The RefClockConfig class in the example's code contains all the constants that can be used to
configure the reference clock:

class RefClockConfig:
e Class for configuring the Ref. Clock source and modes
e def __init__ (self):
Reference clock source
self.SOURCE_CHASSIS REF = @ # select this mode to use a M904x chassis internal reference
as a ref. clock source
self.SOURCE_SYSTEM_SYNC_MODULE = 1 # select this mode to use a System Sync Module (SSM)
as a ref. clock source

Find us at www.keysight.com Page 14

http://www.keysight.com./

Programming Example Overview

self.SOURCE_CHASSIS_HPRCS = 2 # select this mode to use the chassis High Performance
Reference Clock Source (HPRCS) as a ref. clock source

self.SINGLE_CHSSSIS NO_SOURCE = 3 # select this mode to use the Chassis BackPlane (BP)
in a 1-chassis system with no SSM or HPRCS

Internal/External clock modes

self .MODE_INTERNAL = @ # The ref. clock source is not locked to any external clock
source

self .MODE_EXTERNAL = 1 # The ref. clock source is locked to an external clock source

These constants can be used to define the reference clock configuration inside the ApplicationConfig
class defined at the beginning of the example's Python code:

wnn

Define reference clock configuration

For detailed info about all the possible configurations please read the System Setup Guide
on www.keysight.com.

Create Ref. Clock configuration object

self.ref_clock_config = RefClockConfig()

Choose the constant that reflects the ref. clock source that you are using
self.ref_clock_source = self.ref_clock_config.SOURCE_CHASSIS HPRCS

Specify the chassis number containing the ref clock source to be used
self.ref_source_chassis_number = 2

Choose the ref. clock mode that you are using

self.ref_clock_mode = self.ref_clock_config.MODE_INTERNAL

Specify the freq. of the signal coming form the external clock source (if connected)
self.external_ref_frequency = 100e6 # [Hz]

For M5300 RF AWGs, specify if you want to connect and use the Chassis 2.4 GHz Analog Reference
self.analog_ref_mode = self.ref_clock _config.MODE_EXTERNAL

wnn

To sum up, the reference clock configuration consists in defining two components:

1. The reference clock source
2. The reference clock mode

The reference clock signal is always a 50% duty-cycle clock signal with a frequency of 100 MHz,
generated by a Phase Locked Loop (PLL) inside the System Sync Module or inside the PXle chassis.
Here, with reference clock source, we refer to the source signal driving such PLL. The characteristics
of such source signal determine the purity of the generated 100 MHz clock and ultimately impact the
performance of your measurement results. Detailed explanations are provided in the System Setup
Guide available on www.keysight.com. Keysight PXle chassis systems supported by PathWave Test
Sync Executive 2021 allow the following possible reference clock sources:

1. M9032A or M9033A PXle System Sync Module (SSM): in this case the OCXO (Oven-Controlled Xtal
Oscillator) inside the SSM is used as a reference clock source
High Performance Reference Clock Source output featured in the Keysight M9046A PXle Chassis
Internal clock reference of a Keysight M9044A or MO046A PXle Chassis
100 MHz signal taken from the chassis backplane

To configure each of the possible sources and modes, please refer to the System Setup Guide for
anything concerning the HW connections to be made. On top of HW connections, the corresponding

Find us at www.keysight.com Page 15

http://www.keysight.com./

Programming Example Overview

source and mode configuration must be set in the Python code by setting the ref_clock_

source and ref_clock_mode Python Variables to the corresponding constants defined in the
RefClockConfig class. The chassis number where the reference clock source is located must be also
specified, together with the frequency of the external reference (if external mode is configured).

In the case of a single-chassis system with no SSM, HPRCS or internal chassis clock reference (for
example because the chassis model is different than M904x), the 100 MHz clock reference from the
chassis backplane is used. For such case, please select ref_clock_source = self.ref_clock_
config.SINGLE_CHASSIS_NO_SOURCE.

How to Initialize your System

If you use this example code with M5300 PXle RF AWGs, then you need to be aware of the dedicated
initialization procedure required by this type of instrument due to the specific calibration data it
requires. Further information about the M5300 calibration procedures can be found in the M5300 RF
AWG User's Manual . The detailed necessary system initialization steps for various use case scenarios
are described in the "System Initialization" section of the KS2201A PathWave Test Sync Executive

User Manual.

The SystemlnitializationConfig class in the example's code contains all the constants that can be
used to perform any of the required system initialization steps:

class SystemInitializationConfig:
Class for configuring the System Initialization. After putting the setup together the
system initialization steps are:
1. PRE_CALIBRATION
2. Wait for the instruments to warmup
3. RESET_CALIBRATION (necessary only to obtain channel skew below 5@ps)
4. MEAS_OPERATION
Once the setup is warmed up and running the measurement operation mode (MEAS_OPERATION) can
be used.
Consult the M5300 RF AWG User Manual for more details about its initialization process.
e def __init_ (self):
System Initialization Modes
self.PRE_CALIBRATION = @
self.RESET_CALIBRATION = 1
self.MEAS_OPERATION = 2

Find us at www.keysight.com Page 16

Measurement Results

The programming example capabilities are illustrated through some example measurement results
obtained using the measurement setup depicted below where the first channels (CH1) of two
M3202A AWGs are connected to two channels of a Keysight Oscilloscope.

Oscilloscope

CH1 CH2 CH3 CH4
O -0 O O
PXle Chassis M3013A
AWG || AWG
M3202A | | m3202A
CH1 | cew
O I—0
CH2 CH2
O O
CH3 CH3
O O
CH4 CH4
O @]

Programming Example Overview

A photograph of the measurement setup used for the measurement results reported in this
programming example is also shown below:

The two nested loops programmed using HVI are used in this programming example to implement
two nested RF sweeps. The outmost sweep changes the AWG channel frequency, whereas the inner
sweep changes the channel amplitude. The scope screenshot below shows an example measurement
taken with a sweep of three amplitude values (from 0.5 to 1 V) and two frequency values (from 5 to 25
MHz). The waveform displayed in and green are measured at the CH1 of two M3202A AWGs
controlled by HVI. More details on the HVI sequenced programmed to implement the RF sweeps are
described in the next section of this document.

Find us at www.keysight.com Page 18

1 8s0mv (N

Trig'd?

Cursor E E]

Manual
K1)

1.0000MHz

DC 500 (N

By executing a channel phase reset from HVI, we can ensure that all AWGs included in the
application are precisely synchronized and in-phase. In this example measurement the channel phase
is also set to start from O degrees, however any other arbitrary value can be set. The duration of each
RF pulse is set in the Python code to 200 ns. The duration of the amplitude sweep is set to 1 us, which
is the time elapsed between two subsequent RF pulses with the same frequency value.

If we change the cabled connection and connect an M5300 RF AWG to CH1 of the oscilloscope, the
measurement result shown below is obtained. M5300 RF AWGs do not allow to sweep the frequency
real-time, hence only an amplitude sweep is performed.

‘ y T 1 45.0my
T -
ng d?

Summary

Acquisition

1.00:1
1.00:1

0.0V
1.00:1 | DC 5000 1.00:1

An example of the console output obtained when executing this programming example is shown in
the screenshot below. At the end of the execution the final values of the HVI registers use to sweep
frequency and amplitude can be read. Please note that the values read by SW will be incremented by
an additional step amount with respect to the last values set in the RF sweeps. This is because of the
order of operation implemented to optimize the real-time algorithm. The HVI registers have integer
values, therefore to convert the values to double precision values representing quantities in Volts or
Hz, the voltsTolnt() and freqTolnt() SW methods of the SD1 APl are used.

TPUT TERMINAL

Frequency Sweep: Start 5.0 MHz, Step 20.0 MHz, 2 steps, Stop 25.0 MHz
Amplitude Sweep: Start Ampl. @.5 Vv, Step .25 v, 3 steps, Stop 1.0 V

The PathiWave Test Sync Executive APT installed on your system has an HVI core version 1.

HW Instruments:
- Model: M3201A in chassis: 1, slot: 13, HVI Engine Name: AwgEngine@, HVI core version: 1.
- Model: M3202A in chassis: 1, slot: 14, HVI Engine Mame: AwgEnginel, HVI core version: 1.
- Model: M3202A in chassis: 1, slot: 15, HVI Engine Mame: AwgEngine2, HVI core version: 1.
System Sync Modules:

system Sync Module in chassis: 1, slot: 10 with 1 Upstream Ports and 4 Downstream Ports

.2, HVI Engine FPGA IP version:
.2, HVI Engine FPGA IP version:
.2, HVI Engine FPGA IP version:

a
a
a

Initializing the defined system...
Programming the HVI sequences...
Programmed HVI sequences exported to file

Execute HVI

Compiling HVI...

HVI Compiled

This HVI needs to reserve 2 PXI trigger resources to execute

HVI Loaded to HW

HVI Running...

Final Register Values: Amplitude 1.25 V, Frequency 44.99999999999645 MHZ
Press enter to run HVI again, q to exit...

q
Releasing HuW...
PXI modules closed

HVI Application Programming Interface (API): Detailed
Explanations

HVI Application Programming Interface (API): Detailed
Explanations

PathWave Test Sync Executive implements the next generation of HVI technology and delivers the
HVI Application Programming Interface (API). This section explains how to implement the use case of
this programming example using HVI API. The sequence of operations executed by each of the
instruments using HVI technology is explained in the diagram below. The diagram depicts the HVI
sequences executed within this programming example and the HVI statements used to program the
sequences. Every HVI statement is described in detail later in this section, referencing with a letter
the equivalent block in the HVI diagram and explaining in detail the corresponding HVI API code
block and the HVI functionalities that it implements.

Please note that the start delays of HVI statement inserted in the following HVI diagram are set to
very specific values. Unless differently specified, those values correspond to the minimum latencies
that can be used for those start delays. Please consult Chapter 7 of the PathWave Test Sync
Executive User Manual for detailed information about the timing constraint and latency of each HVI
statement execution.

The duration of each iteration of the Sync While loop used in this example is set to
an arbitrary value using the Duration property of the SyncWhile object. The default
duration of each sync statement is set to "T Min", which corresponds to the
minimum duration to comply with the start delays specified by the user for each
statement programmed into the local sequences contained in it.

Find us at www.keysight.com Page 22

HVI

90 ns
a o Sync While | "Frequency Sweep" | while (freq counter < num freqgs)
800 ns
b Sync Multi-Sequence Block | "Change Frequency"
AWG 0 AWG 1, .. N RFAWGD, .. N

‘l' 10ns l 10ns l 3.33.ns

| C Reset Phase All Channels | | C Reset Phase All Channels I | c Set Channel Phase |
l 200 ns l 200 ns l 333.ns

| d Set Channel Frequency | | d Set Channel Frequency I | f Initialize Amplitude Value |
l 10ns l 10ns

| d Set Channel Phase | | d Set Channel Phase I
l 10 ne l 10ns

[T Min] |e Increment Frequency Value | | & Increment Frequency Value I

l 10ns l 10ns

| f Initialize Amplitude Value | | f Initialize Amplitude Value I
l 10ns

|f Initialize Amplitude Counter |
l 10z [HVI: auto] [HVI: auto]

H |e Increment Frequency Counter |
[Min] l (HVI:0 ns]

70ns
@ o Sync While | "Amplitude Sweep" | while (ampl counter < num amplitudes)
260 ns
b Sync Multi-Sequence Block | "Change Amplitude”
AWG 0 AWG1, .. N RFAWG 0, .. N
i 10ns l 10ns l 333 .ns
| d Set Channel Amplitude: ON | | d Set Channel Amplitude: ON | | d Set Channel Amplitude |
pulse_duration pulse_duration l set_amplitude_latency
[1us] [T Min] | d Set Channel Amplitude: OFF | | d Set Channel Amplitude: OFF | | c AWG Trigger |
i 10ns l 10ns l 333.ns
| & Increment Amplitude Value | | & Increment Amplitude Value | | & Increment Amplitude Value |
i 10 ns
| e Increment Amplitude Counter |
[HVI: auto) [HVI. auto]
1 Loop
50
g [50ns] Delay
[HVI:0 ng]
[HVI:0 ng]

¥

NOTE: Keysight M3xxx Instruments have an FPGA clock period equal to 10 ns
NOTE: Keysight M5xxx Instruments have an FPGA clock period equal to 3.33.. ns

To include HVIin an application, follow these three fundamental steps:

1. System definition: define all the necessary HVI resources, including platform resources, engines, triggers,
registers, actions, events, etc.

2. Program HVI sequences: define all the statements to be executed within each HVI sequence
3. Execute HVI: compile, load to HW and execute the HVI

HVI Application Programming Interface (API): Detailed
Explanations

The following sub-sections describe in detail how these three steps are implemented for this
example. For further explanations about any of the concepts, please refer to the PathWave Test Sync
Executive User Manual .

System Definition

The definition of HVI resources is the first step of an application using HVI. The AP

class SystemDefintion enables you to define all necessary HVI resources. HVI resources include all
the platform resources, engines, triggers, registers, actions, events, etc. that the HVI sequences are
going to use and execute. Users need to declare them up front and add them to the corresponding
collections. AllL HVI Engines included in the programming need to be registered into

the EngineCollection class instance. HVI resources are described in detail in the PathWave Test Sync
Executive User Manual . The HVI resource definitions are summarized in the code snippets below.

Python

Create system definition object
my_system = kthvi.SystemDefinition("MySystem")

def define_hvi_resources(sys_def, module_dict, config):
Configures all the necessary resources for the HVI application to execute: HW
platform, engines, actions, triggers, etc.
Define all the HVI engines to be included in the HVI
define_hvi_engines(sys_def, module_dict)
Define list of actions to be executed
define_hvi_actions(sys_def, module_dict, config)
Define HW platform: chassis, interconnections, PXI trigger resources, synchronization, HVI
clocks
define_hw_platform(sys_def, config)
Define ref. clock configuration
define_clocking(sys_def, config)

Define Platform Resources: Chassis, PXI triggers, Synchronization

All HVI instances need to define the chassis and eventual chassis interconnections using

the SystemDefinition class. System Sync Modules can be defined using the add_sync_module
method of the interconnects interface. PXI trigger lines to be reserved by HVI for its execution can be
assigned using the sync_resources interface of the SystemDefinition class. The

SystemDefinition class also allows you to add additional clock frequencies that the HVI execution can
synchronize with. For further information, please consult the section "HVI Core API" of the PathWave
Test Sync Executive User Manual .

Find us at www.keysight.com Page 24

HVI Application Programming Interface (API): Detailed
Explanations

def define_hw_platform(sys_def, config):
e Define HW platform: chassis, interconnections, PXI trigger resources,
synchronization, HVI clocks
e # Define chassis resources
For multi-chassis setup details see programming example documentation
for chassis_number in config.chassis_list:
if config.hardware_simulated:
This simulation options require to install the chassis driver:
sys_def.chassis.add_with_options(chassis_number, 'Simulate=True,DriverSetup=Model=M9019A")
As an alternative, the GenericPxieChassis allows to run simulations without installing the
chassis driver
sys_def.chassis.add_with_options(chassis_number,
'Simulate=True,DriverSetup=Model=GenericPxieChassis")
else:
sys_def.chassis.add(chassis_number)

Define System Sync Modules (SSMs)
if config.system_sync_modules_descriptors:
interconnects = sys_def.interconnects
ssm_list = []
for descriptor in config.system_sync_modules_descriptors:
if config.hardware_simulated:
ssm = interconnects.add_sync_module(descriptor.resource_id, config.ssm_
simulation_options)
else:
ssm = interconnects.add_sync_module(descriptor.resource_id, descriptor.options)
ssm_list.append(ssm)

Define connections between SSMs
if config.ssm_connections:
for connection in config.ssm_connections:
connector_number = connection.ssml_downstream_connector_number
for ssm in ssm_list:
if ssm.chassis == connection.ssml_chassis:
ssml = ssm
if ssm.chassis =
ssm2 = ssm
Implement each user-defined connection
try:
Set connection. SSMs have always one upstream port
ssml.connectivity.systemsync_downstream[connector_number].set_connection
(ssm2.connectivity.systemsync_upstream[0])
except:
exit("Exception! Please check the valued defined for SyncModule resource ids,
chassis numbers and connections™)

connection.ssm2_chassis:

Assign the defined PXI trigger resources

sys_def.sync_resources = config.pxi_sync_trigger_resources

Assign clock frequencies that are outside the set of the clock frequencies of each HVI
engine

Use the code line below if you want the application to be in sync with the 10 MHz clock

sys_def.non_hvi_core_clocks = [10e6]

Find us at www.keysight.com Page 25

HVI Application Programming Interface (API): Detailed
Explanations

Define Reference Clock Configuration

The reference clock source and mode defined in the ApplicationConfig class are used to configure the
system reference clock by using the clocking interface of the SystemDefinition object. The possible
clock sources and modes are described in the previous section titled "How to Configure the
Reference Clock". The Python code implementing all the configuration API calls in contained in

the define_clocking function reported below.

def define_clocking(sys_def, config):
e Define reference clock source, mode and settings.
For detailed info about all the possible configurations please read the System Setup Guide
on www.keysight.com.
e # Define the Reference Clock Source
See System Setup Guide for detailed HW connections necessary for each configuration
if config.ref_clock_source == config.ref_clock_config.SINGLE_CHSSSIS_NO_SOURCE:
Chassis BackPlane (BP) is the default clock source used in a 1-chassis system that has
no SSM, HPCR or internal reference
ref_chassis = sys_def.chassis[config.ref_source_chassis_number]
sys_def.clocking.reference_source = ref_chassis.clock_source
elif config.ref_clock_source == config.ref_clock_config.SOURCE_CHASSIS_ HPRCS:
Configures High Performance Reference Clock Source (HPRCS) as a source
It requires to connect the chassis RF Out to the SSM REF In port
ref_chassis = sys_def.chassis[config.ref_source_chassis_number]
hprc_source = ref_chassis.high_performance_clock_source
sys_def.clocking.reference_source = hprc_source
elif config.ref_clock_source == config.ref_clock_config.SOURCE_CHASSIS REF:
Configures Chassis RF Analog Reference as a source. Only for M904x Chassis models
ref_chassis = sys_def.chassis[config.ref_source_chassis_number]
sys_def.clocking.reference_source = ref_chassis.clock_source
elif config.ref_clock_source == config.ref_clock_config.SOURCE_SYSTEM_SYNC_MODULE:
Configures System Sync Module as a source
if sys_def.interconnects:
for index in range(sys_def.interconnects.count):
if sys_def.interconnects[index].chassis == config.ref_source_chassis_number:
ssm_source = sys_def.interconnects[index]
sys_def.clocking.reference_source = ssm_source.clock_source
else:
print ("WARNING: Ref. Clock Source set to System Sync Module but no Sync Modules have
been defined in your code! ")
print("System clocking set to the default configuration SINGLE_CHSSSIS_NO_SOURCE")
Define the Ref. Clock Mode
if config.ref_clock_mode == config.ref_clock_config.MODE_EXTERNAL:
Set up the Ext. Ref. source (if connected)
sys_def.clocking.reference_source.set_mode(kthvi.ClockingReferenceMode.EXTERNAL,
config.external_ref_frequency)
else:
Default internal mode
sys_def.clocking.reference_source.set_mode(kthvi.ClockingReferenceMode.INTERNAL)
Activate M904x Chassis Analog RF Outputs if the user connected them to M5xxx modules
if config.analog_ref_mode == config.ref_clock_config.MODE_EXTERNAL:
Activate 2.4 GHz FP output for the M904x Chassis used as a reference

Find us at www.keysight.com Page 26

HVI Application Programming Interface (API): Detailed
Explanations

clock_output_2_4GHz = ref_chassis.clock_outputs["FP2.4GHzOut"]
clock_output_2_4GHz.set_enabled(True)

Control M5xxx instruments to use an external 2.4 GHz reference
sys_def.clocking.enable_external_analog_clocks([2.4e9])

Define HVI Engines

All HVI Engines to be included in the HVI instance need to be registered into the EngineCollection
class instance. Each HVI Engine object added to the engine collection contains collections of its own
that allow you to access the actions, events and triggers that each specific engine will control and use
within the HVI.

Python

HVI engines
self.rf_awg_engine_name = "RfAwgEngine"self.engine_name = "AwgEngine"self.leader_engine_name =

def define_hvi_engines(sys_def, module_dict):
e Define all the HVI engines to be included in the HVI
e # For each instrument to be used in the HVI application add its HVI Engine to the HVI
Engine Collection
for engine_name in module_dict.keys():
sys_def.engines.add(module_dict[engine_name].hvi.engines.main_engine, engine_name)

Define HVI Actions

In this programming example the Channel Phase Reset action is defined and added to the HVI Action
Collection so that it can be executed from the HVI sequence using the ActionExecute HVI instruction.
By executing the channel phase reset from HVI, you can ensure that AWG channels on independent
instrument are in-phase.

Python

def define_hvi_actions(sys_def, module_dict, config):
e Define Channel Phase Reset Actions for M320x AWGs and AWG Trigger actions for M5300
RF AWGs
e for engine_name, module in zip(module_dict.keys(), module_dict.values()):
if compare_engine_type(engine_name, config.rf_awg_engine_name):
The phase of each M5300 RF AWG is reset by using the ABSOLUTE phase mode
AWG Trigger actions are necessary to trigger AWG pulses
for ch_index in range(1l, module_dict[engine_name].num_channels + 1):
Actions need to be added to the engine's action list so that they can be
executed
action_name = config.awg_trigger_action_name + str(ch_index) # arbitrary user-
defined name
instrument_action = "awg{}_trigger".format(ch_index) # name decided by
instrument API
action_id = getattr(module_dict[engine_name].hvi.actions, instrument_action)

Find us at www.keysight.com Page 27

HVI Application Programming Interface (API): Detailed
Explanations

Add AWG Trigger actions for each instrument channel
sys_def.engines[engine_name].actions.add(action_id, action_name)
else:
The phase of all M320x AWGs channels are reset synchronously from HVI
This way AWG channels on different instruments are ensured to be in-phase
For each engine, add each HVI Actions to be executed to its own HVI Action
Collection
for ch_index in range(1, module.num_channels + 1):
Actions need to be added to the engine's action list so that they can be
executed
Example: hvi.engines[i].actions.add(module_dict[i].hvi.actions.chl_reset_
phase, 'AWG1l_trigger')
action_name = config.awg_phase_reset_name+ str(ch_index) # arbitrary user-
defined name
instrument_action = "ch{}_reset_phase".format(ch_index) # name decided by
instrument API
action_id = getattr(module.instrument.hvi.actions, instrument_action)
sys_def.engines[engine_name].actions.add(action_id, action_name)

Program HVI Sequences

HVI sequences can be programmed using the Sequencer class. HVI starts the execution through a
global sequence (defined by the SyncSequence class) that takes care of synchronizing and
encapsulating the local sequences corresponding to each HVI engine included in the application. In
this programming example, the HVI global sync sequence contains two nested Sync While loops
implemented using the SyncWhile API class.

Python

Create sequencer object
sequencer = kthvi.Sequencer("MySequencer", my_system)

def program_rf_sweeps(sequencer, module_dict, config):

Programs the nested loops for RF sweeps

e # Define HVI registers

define_registers(sequencer, module_dict, config)

Define sync while condition

freq_counter = sequencer.sync_sequence.scopes[config.leader_engine _name].registers
[config.freq_counter]

sync_while_condition = kthvi.Condition.register_comparison(freq_counter,
kthvi.ComparisonOperator.LESS_THAN, config.num_freqgs)

Add a Sync While

sync_while = sequencer.sync_sequence.add_sync_while("Frequency Sweep", 90, sync_while_
condition)

Program Freq Sweep

program_freq_sweep(sync_while.sync_sequence, module_dict, config)

Find us at www.keysight.com Page 28

HVI Application Programming Interface (API): Detailed
Explanations

Define HVI Registers

HVI registers correspond to very fast access physical memory registers in the HVI Engine located in
the instrument HW (e.g. FPGA or ASIC). HVI Registers can be used as parameters for operations and
modified during the sequence execution (same as Variables in any programming language). The
number and size of registers is defined by each instrument. The registers that users want to use in the
HVI sequences need to be defined beforehand into the register collection within the scope of the
corresponding HVI Sequence. This can be done using the RegisterCollection class that is within the
Scope object corresponding to each sequence. HVI Registers belong to a specific HVI Engine
because they refer to HW registers of that specific instrument. Registers from one HVI Engine cannot
be used by other engines or outside of their scope. Note that currently, registers can only be added to
the HVI top SyncSequence scopes, which means that only global registers visible in all child
sequences can be added. HVI registers are defined in this programming example by the code snippet
below.

Python

def define_registers(sequencer, module_dict, config):
e Defines all registers for each HVI engine
for engine_name in module_dict.keys():
Define registers for engines in AWG-type instruments
if compare_engine_type(engine_name, config.awg_engine_name):
freg_value = sequencer.sync_sequence.scopes[engine_name].registers.add(config.freq_
value_name, kthvi.RegisterSize.LONG)
freq_value.initial_value = module_dict[engine_name].instrument.freqTolInt
(config.freq_start_value)
ampl_value = sequencer.sync_sequence.scopes[engine_name].registers.add(config.ampl_
value_name, kthvi.RegisterSize.SHORT)
ampl value.initial_value = module_dict[engine_name].instrument.voltsToInt
(config.ampl_start_value)
Define registers for engines in RF AWG-type instruments
elif compare_engine_type(engine_name, config.rf_awg_engine_name):
ampl_value = sequencer.sync_sequence.scopes[engine_name].registers.add(config.ampl_
value_name, kthvi.RegisterSize.SHORT)
ampl_value.initial_value = module_dict[engine_name].instrument.channels[@].convert_
amplitude_to_int(config.rf_awg _ampl_start_value)
Define additional registers in the leader engine
if engine_name==config.leader_engine_name:
freqg_counter = sequencer.sync_sequence.scopes[engine_name].registers.add
(config.freq_counter_name, kthvi.RegisterSize.LONG)
freqg_counter.initial_value = 0@
ampl_counter = sequencer.sync_sequence.scopes[engine_name].registers.add
(config.ampl_counter_name, kthvi.RegisterSize.SHORT)
ampl_counter.initial value = ©

Synchronized While (a)

This corresponds to statements (a) in the HVI diagram. Synchronized While (Sync While) statements
belong to the set of HVI Sync Statements and are defined by the API class SyncWhile. A Sync While

Find us at www.keysight.com Page 29

HVI Application Programming Interface (API): Detailed
Explanations

allows you to synchronously execute multiple local HVI sequences until a user-defined condition is
met, that is, the sync while condition. Please note that for local sequences to be defined within the
Sync While, it is necessary to use synchronized multi-sequence blocks. The duration of each iteration
of the Sync While loop can be set using the Duration property and the Time class. Please note that
the duration cannot be set to a deterministic quantity if the Sync While contains any flow control
statement, i.e. If, While, Wait or WaitTime statements. Please consult Chapter 7 of the KS2201A User
Manual for further information.

Python

Define sync while condition

freq_counter = sequencer.sync_sequence.scopes[config.leader_engine_name].registers[config.freq_
counter]

sync_while_condition = kthvi.Condition.register_comparison(freq_counter,
kthvi.ComparisonOperator.LESS_THAN, config.num_freqs)

Add a Sync While

sync_while = sequencer.sync_sequence.add_sync_while("Frequency Sweep", 90, sync_while_condition)
Program Freq Sweep

program_freq_sweep(sync_while.sync_sequence, module_dict, config)

Synchronized Multi-Sequence Block (b)

This block synchronizes all the HVI engines that are part of the sync sequence and allows you to
program each HVI Engine to do specific operations by exposing a local sequence for each engine. By
calling the API method add_multi_sequence_block() a synchronized multi-sequence block is added
to the Sync (global) Sequence. The duration of the Sync Multi-Sequence Block (SMSB) can be set
using the Duration property and the Time class. In this example, the SMSB duration is set to
minimum, which means that the SMSB will last according to the start delays specified by the user for
each statement programmed into the local sequences contained in it. Please note that the duration
cannot be set to a deterministic quantity if the SMSB contains any flow control statement, i.e. If,
While, Wait or WaitTime statements. Please consult Chapter 7 of the KS220TA User Manual for
further information.

Python

Add Sync Multi Sequence Block

sync_block = sync_sequence.add_sync_multi_sequence_block("Change Frequency", 510)
Set SMSB duration

sync_block.duration = kthvi.time.Minimum()

Programs the SMSB

program_change_freq(sync_block, module_dict, config)

Within the Synchronized Multi-Sequence Block (SMSB), users can define which statement each local
engine is going to execute in parallel with the other engines. Local HVI sequences synchronously
start and end their execution within the sync multi-sequence block. Users can define the exact time
when each local HVI statement starts to execute with respect to the previous one. HVI automatically
calculates the execution time of each local sequence and adjusts the execution of all local sequences
within the multi-sequence block so that they can deterministically end altogether within the

Find us at www.keysight.com Page 30

synchronized multi-sequence block. See the general case example in the figure below for additional
details.

10 ns
Y
Sync Multi-Sequence Block | "Alias"
Engine A Engine B Engine K
100 ns 10 ns 100 ns
\ 4
Instruction A Instruction C Instruction 1
300 ns 200 ns
. HVI:
[TMin] Instruction B 390 ns RnmmmRREs Instruction 2
I 10 ns
HVI:0 ns
Instruction 3
HVI:
| 90 ns
y Y A4 v

\ I
Automaticallly caclulated by HVI
NOTE: Keysight M3xxxA Instruments have an FPGA clock period equal to 10 ns

Please note that the Sync Multi-Sequence Block has an execution duration time labeled as "T Min" in
the figure above. The "T Min" is the default value for any sync statement, it corresponds to the
minimum time necessary to complete the operations included inside. KS2201A Update 1.0 release
provides the Duration property in Sync Statement objects that allows users to set an arbitrary
duration value larger than "T Min". The timing at the end of each local sequence is automatically
adjusted by HVI according to the duration specified by the user for the SMSB. In the case of duration
"T'min", HVI will automatically add no time to the local sequence with the longest duration and adjust
the other sequences accordingly, as in the example depicted in the figure above. The resolution for
HVI-defined time adjustment at the end of a sync multi-sequence block corresponds to the 10 ns
FPGA clock period for an application including instruments that are all within the Keysight M3xxx
family. For further explanations about the timing of HVI sequence execution, please refer to the
KS2201A PathWave Test Sync Executive User Manual available on www.keysight.com

http://www.keysight.com/

HVI Application Programming Interface (API): Detailed
Explanations

HVI Native Instruction: Action-Execute (c)

Actions to be used within an HVI sequence need to be added to the instrument HVI engine using the
APl "add" method of the ActionCollection class. Once the wanted actions are added within the list of
the instruments' HVI engine actions, an instruction to execute them can be added to the instrument's
HVI sequence using the HVI API class InstructionsActionExecute. One or multiple actions can be
executed at the same time within the same "Action Execute" instruction.

Python

Retrieve the engine sequence from the collection of HVI Local Sequences
HVI Local Sequence Collection is automatically created form the user-defined HVI Engine
Collection

Each HVI Local Sequence can be retrieved using the name alias of the corresponding HVI Engine
sequence = sync_block.sequences[engine_name]

Retrieve the module

module = module_dict[engine_name]

Execute Phase reset

instruction = sequence.add_instruction("Reset Phase All Channels", 10, sequence.instruction_
set.action_execute.id)

instruction.set_parameter(sequence.instruction_set.action_execute.action.id,
sequence.engine.actions)

HVI Instrument-Specific Instruction (d)

Statements (c) of the HVI diagram implement instrument-specific HVI instructions. Such statements
execute instructions that are specific of the instrument and can be used for example to set the
amplitude or frequency of an AWG channel. Native HVI instructions are common to every Keysight
product. The HVI APl method add_instruction() allows you to add the required instruction within the
HVI sequence. Instruction parameters are set using the APl method set_parameter(). AllHVI
product-specific instructions and parameters are defined in the hvi.InstructionSet interface of each
product. Instructions, actions, events and in general all the HVI definitions specific of M3xxx
instruments can be found in the M3xxx User Guide available on www.keysight.com.

Python

Set Channel Frequency

freq_value = sequence.scope.registers[config.freq_value]

instruction = sequence.add_instruction("Set Channel Frequency", 10, module.hvi.instruction_
set.set_frequency.id)

instruction.set_parameter(module.hvi.instruction_set.set_frequency.channel.id, config.awg_
channel)

instruction.set_parameter(module.hvi.instruction_set.set_frequency.value.id, freq_value)

HVI Native Instruction: Register Increment (e)

This corresponds to statements (d) in the HVI diagram. A register increment can be implemented
within an HVI sequence using an instance of the APl instruction class InstructionsAdd. The same
instruction can be used to add registers and constant values (operands) and put the result in another

Find us at www.keysight.com Page 32

http://www.keysight.com/

HVI Application Programming Interface (API): Detailed
Explanations

register (result). The register to be incremented needs to be added previously to the scope of the
corresponding HVI engine.

Python

Increment freq_value

freq_value = sequence.scope.registers[config.freq_value]

instruction = sequence.add_instruction("Increment Frequency Value", 10, sequence.instruction_
set.add.id)

instruction.set_parameter(sequence.instruction_set.add.destination.id, freq_value)
instruction.set_parameter(sequence.instruction_set.add.left_operand.id, freq_value)
instruction.set_parameter(sequence.instruction_set.add.right_operand.id,
module.instrument.freqToInt(config.freq_step))

HVI Native Instruction: Register Assign (f)

This corresponds to statements (e) in the HVI diagram. A register assign statement can be used to
initialize a register to an initial value using the instruction class InstructionsAssign from Python HVI
API. The same instruction can be used to assign a register value (source) to another register
(destination). Each register can also be initialized outside an HVI sequence using the API method
KtviRegister.set_initial_value.

Python

Initialize ampl_counter = 0

ampl_counter = sequence.scope.registers[config.ampl_counter]

instruction = sequence.add_instruction("Initialize Amplitude Counter", 10, sequence.instruction_
set.assign.id)

instruction.set_parameter(sequence.instruction_set.assign.destination.id, ampl_counter)
instruction.set_parameter(sequence.instruction_set.assign.source.id, 0)

Delay Statement (g)

This type of statement can be found in statements (f). Inserting an instance of DelayStatement class
causes an HVI sequence to wait for a fixed amount of time that is known at compilation time and it is
not expected to change during HVI execution. The amount of time is specified in nanoseconds. The
Delay Statment functions like the start delay parameter used in each method that programs a
statement into an HVI sequence. The main difference is that a start delay allows you to specify a delay
before a statement, whereas the delay statement allows you to specify it afterward, for example at the
end of a Sync Multi-Sequence Block, as it is used in this programming example. To specify a Variable
delay that can change during HVI execution, use the WaitTime statement instead.

Python

Delay statement
sequence.add_delay("Loop Delay", 50)

Find us at www.keysight.com Page 33

HVI Application Programming Interface (API): Detailed
Explanations

Export the Programmed HVI Sequences to Text Format

KS2201A provides a feature to export the programmed HVI sequences to text format, which can be
used both as a development and debug tool. The sequences can be exported using the to_string()
method of the SyncSequence class, as illustrated in the code snippet below. Once exported to text
format, the HVI sequences can be written to a text file or displayed on the console output. An
example text file containing the HVI sequences exported from this programming example is provided

together with this example's files.

Generate HVI sequence description text
output = sequencer.sync_sequence.to_string(kthvi.OutputFormat.DEBUG)

print("Programmed HVI sequences exported to file")

Find us at www.keysight.com Page 34

HVI Application Programming Interface (API): Detailed
Explanations

Compile, Load, Execute the HVI Instance

Once the HVI sequences are programmed by defining all the necessary HVI statements, you can
compile, load and execute the HVI. Compile, load and run functionalities can be accessed from
the Hvi class.

Compile HVI

The compilation operation is performed by calling the compile() API method. This operation processes
all the info related to the HVI application, including the necessary HVI resources and the HVI
statements included in the HVI sequences. The compilation generates a binary compiled output that
can be loaded to the hardware instruments for their HVI engine to execute it. As an output, the
compile() APl method provides an object that can tell the user how many PXI sync resources are
necessary to be reserved to execute the HVI application.

Python

Compile HVI sequences

hvi = sequencer.compile()

print(hvi.compile_status.to_string())

print("HVI Compiled")

print("This HVI programming example needs to reserve {} PXI trigger resources to execute".format
(len(hvi.compile_status.sync_resources)))

Load HVI to Hardware

The APl method load_to_hw() loads to each HVI engine the binary output obtained from the HVI
compilation so that the HVI engine programmed into their digital HW (FPGA or ASIC) can execute it.

Python

Load HVI to HW: load sequences, configure actions/triggers/events, lock resources, etc.
hvi.load_to_hw()

Execute HVI

HVI execution is controlled by the run() API method. HVI can be run in a blocking or non-blocking
mode. In this programming example, the blocking mode is used. In this mode, the SW execution is
blocked at the HVI execution code line for a fixed amount of time specified by the timeout input
parameter. The SW execution can be blocked until the HVI sequences finish their execution if timeout
= hvi.no_timeout is used as an input parameter.

Python

Execute HVI in blocking mode: SW waits until HVI sequences ends their execution

Eventually enter a timeout for the HVI execution to be stopped: timeout = timedelta
(seconds=0), hvi.run(timeout)

hvi.run(hvi.no_timeout)

print("HVI Running...")

Find us at www.keysight.com Page 35

Conclusions

Release Hardware

APl method release_hw() shall be called once the HVI execution is finished to release all the HW
resources that were reserved during the HVI execution, including the PXI trigger resources that had
been locked by HVI for its execution.

Python

Unlock and release HW resources
hvi.release_hw()
print("Releasing HW...")

Further HVI API Explanations

Detailed explanations of each class and functionality of the HVI API can be found in the PathWave
Test Sync Executive User Manual or in the Python help file that is provided with the HVI installer,
available at: C:\Program Files\Keysight\PathWave Test Sync Executive
<year>\api\python\Help\index.html, where <year> shall be replaced with the year of the release you
are using, for example <year> = 2022.

Conclusions

In this programming example, PathWave Test Sync Executive was used to define a real-time
algorithm to be executed by the FPGA (Field Programmable Gate Array) of Arbitrary Waveform
Generators (AWGs). HVI registers and instructions were used to update teal-time the amplitude and
frequency of AWG channels. This enabled real-time RF sweeps on the AWG channels, to perform a
pulsed characterization of a Device-Under-Test.

Find us at www.keysight.com Page 36

This information is subject to change
without notice.

© Keysight Technologies 2021-2022
Edition 2022_U0_00, June, 2022
Keysight Technologies, USA

KEYSIGHT LR L

TECHNOLOGIES

KS2201-90010

www.keysight.com

http://www.keysight.com/

	Introduction
	System Setup
	System Requirements
	How to Install Python 3.x 64-bit
	How to Install Chassis Driver, SFP and Firmware
	How to Install PathWave Test Sync Executive, Keysight Instrument Driver and F...
	How to Install KF9000B PathWave FPGA
	Multi-Chassis System Setup using the M9032A/M9033A PXIe System Synchronizatio...

	Programming Example Overview
	How to Run this Programming Example
	How to Configure the Reference Clock
	How to Initialize your System
	Measurement Results

	HVI Application Programming Interface (API): Detailed Explanations
	System Definition
	Define Platform Resources: Chassis, PXI triggers, Synchronization
	Define Reference Clock Configuration
	Define HVI Engines
	Define HVI Actions

	Program HVI Sequences
	Define HVI Registers
	Synchronized While (a)
	Synchronized Multi-Sequence Block (b)
	HVI Native Instruction: Action-Execute (c)
	HVI Instrument-Specific Instruction (d)
	HVI Native Instruction: Register Increment (e)
	HVI Native Instruction: Register Assign (f)
	Delay Statement (g)
	Export the Programmed HVI Sequences to Text Format

	Compile, Load, Execute the HVI Instance
	Compile HVI
	Load HVI to Hardware
	Execute HVI
	Release Hardware

	Further HVI API Explanations

	Conclusions

