
Synchronized Multi-Channel
Mixed-Signal Generation using M3xxx PXI Instruments

In this programming example, KS2201A PathWave Test Sync Executive is used to
program multiple M3xxx Arbitrary Waveform Generators (AWGs) to synchronously
generate mixed signals. Each instrument can be programmed to output either a
Front Panel (FP) marker pulse or a previously queued waveform. All signal channels
run fully synchronized and actions across instruments can be controlled with the
timing resolution of the M3xxxA AWGs which is of 10ns.

PROGRAMMING EXAMPLE 5



Table of Contents
Introduction 4

System Setup 5

System Requirements 5

How to Install Chassis Driver, SFP and Firmware 6

How to Install PathWave Test Sync Executive, Keysight Instrument Driver and FPGA Firmware 7

How to Install KF9000B PathWave FPGA 8

Multi-Chassis System Setup using the M9032A/M9033A PXIe System Synchronization Module 8

Programming Example Overview 10

How to Run this Programming Example 11

Measurement Results 13

HVI Application Programming Interface (API): Detailed Explanations 18

System Definition 20

Define Platform Resources: Chassis, PXI triggers, Synchronization 21

Define HVI Engines 23

Define HVI Actions, Events, Triggers 24

Program HVI Sequences 26

Define HVI Registers 27

Synchronized While (a) 27

Synchronized Multi-Sequence Block (b) 28

HVI Instruction: Front Panel Trigger ON/OFF (c) 30

Action Execute: AWG Trigger (d) 30

Register Increment (e) 31

Delay Statement (f) 31

Export the Programmed HVI Sequences to File 31

Compile, Load, Execute the HVI Instance 32

Compile HVI 32

Load HVI to Hardware 32

Execute HVI 32

Release Hardware 33

Further HVI API Explanations 33

Page 2



Conclusions 33

Page 3



KS2201A - Programming Example 5 - Synchronized Multi-
Channel Mixed-Signal Generation using M3xxx PXIe Instru-
ments
In this programming example, KS2201A PathWave Test Sync Executive is used to program multiple
M3xxx Arbitrary Waveform Generators (AWGs) to synchronously generate mixed signals. Each instru-
ment can be programmed to output either a  Front Panel (FP) marker pulse or a previously queued
waveform. All signal channels run fully synchronized and actions across instruments can be con-
trolled with the timing resolution of the M3xxx AWG which is 10ns.

Introduction

This document is organized as follows. First, a "System Setup" section explains all the mandatory
software and firmware components to be installed before the programming example can run.
Secondly, a "Programming Example Overview" section describes the application use case of this
programming example including expected measurement results. The next section contains detailed
explanations on how to use the HVI (Hard Virtual Instrument)  API (Application Programming
Interface) to implement the real-time algorithms of this example. Finally, the conclusions are
outlined.

NOTE Please review in detail the System Requirements outlined in the next section and
install all the necessary software (SW) and firmware (FW) components before
executing this programming example code.

Find us at www.keysight.com Page 4

Introduction



System Setup
Please review the following system requirements and install the necessary pieces of software (SW),
firmware (FW), and driver following the instructions provided in this section. To download the
programming example code and necessary files please visit www.keysight.com/find/KS2201A-
programming-examples . To download the latest PathWave Test Sync Executive installer and
documentation, please visit  www.keysight.com/find/KS2201A-downloads. The rest of the software
installers, FPGA firmware, drivers, and other components mentioned in this section can be found on
www.keysight.com

System Requirements
To run this series of programming examples, all the necessary pieces of SW need to be installed on
the external PC or internal chassis controller that is used to control the PXI chassis. FPGA FW of PXI
instruments can be instead programmed using the "Hardware Manager" window of SD1 Software
Front Panel (SFP) or the "Firmware Update" window of the "Utilities" menu of the SFP of M5xxx or
M9xxx instruments.

The list below refers to the whole KS2201A Prog. Examples series. Please check the next section of
this document for info about the exact instrument models necessary to run this programming
example. You will need to install SW and FW only for the instruments models that you are using to
run this example. You do not need to install KF9000B PathWave FPGA if you are not programming
your instrument FPGA with a custom design.

The versions of software, FPGA firmware, drivers, and other components that were used to test this
programming example are listed below. Newer versions of the SW driver or FPGA FW used to test this
example are also typically expected to work. For complete details about SW and FW compatibility
please visit www.keysight.com/find/ks2201a-firmware-version-requirements.

List of tested SW and Keysight instrument drivers and FPGA FW versions:

1. Software versions:

l Microsoft Visual Studio 2017

l .NET Framework v4.7.2

l Keysight KS2201A PathWave Test Sync Executive 2022 v2.7.3

l Keysight KF9000B PathWave FPGA 2022

2. Keysight instrument driver versions: 

l Keysight IO Libraries Suite 2022 Update 1 v18.2.28014.7

l Keysight PXIe Chassis Family Driver v1.7.740.1

l Keysight SD1 Drivers, Libraries and SFP v3.3.12

l Keysight M5302A Drivers, Libraries and SFP v1.1.12704.0

Find us at www.keysight.com Page 5

System Setup

http://www.keysight.com/find/KS2201A-programming-examples
http://www.keysight.com/find/KS2201A-programming-examples
http://www.keysight.com/find/KS2201A-downloads
http://www.keysight.com/
http://www.keysight.com/find/ks2201a-firmware-version-requirements


l Keysight M5300A Drivers, Libraries and SFP v1.0.42301.0

l Keysight M5200A Drivers, Libraries and SFP v1.0.43003.0

l Keysight M9032A / M9033A Drivers, Libraries and SFP v1.1.38

3. Keysight instrument FPGA FW versions (to be installed using Keysight instrument SFP):

l M9019A Chassis firmware v2019EnhTrig

l M3202A AWG v4.2.45

l M3201A AWG v4.3.67

l M3102A Digitizer v2.2.46

l M5302A Digital I/O v5.8.93.0

l M5300A RF AWG v1.1.168.0

l M5200A Digitizer v1.1.120.0

l M9032A System Synchronization Module v0.1.232

l M9033A System Synchronization Module v4.1.232

NOTE The above-mentioned list of firmware requirements includes all the Keysight PXIe
instruments compatible with KS2201A. Please check the next section of this
document for info about the exact instrument models necessary to run this
programming example. Users can modify the example code to include additional
compatible instruments. To run this example you need to install only the drivers of
the instruments you use.

NOTE PathWave Test Sync Executive licenses must be installed before running the
programming example Python code. To request and install a license please consult
the PathWave Test Sync Executive User Manual available on www.keysight.com.

How to Install Chassis Driver, SFP and Firmware
To ensure the system compatibility described above, please install IO Libraries and chassis driver first,
both are available on  www.keysight.com . This programming example was tested on chassis model
M9019A using the chassis driver and chassis firmware versions listed above. If you are using another
chassis model, we advise you to install the same firmware version and its compatible chassis driver.
When installing the Keysight Chassis Family Driver, PXIe Chassis SFP (Software Front Panel) software
is automatically installed. Chassis firmware version can be checked and updated using PXIe Chassis
SFP. Please see screenshots below referring to Keysight Chassis model M9019A as an example on
how to check the chassis firmware version from the info in the help window of the PXIe Chassis SFP.
Chassis firmware update can be performed using the "Firmware Update" window found in the
"Utilities" menu of the PXIe Chassis SFP. For more info please read
PXIeChassisFirmwareUpdateGuide.pdf available on  www.keysight.com.

Find us at www.keysight.com Page 6

System Setup

http://www.keysight.com/
http://www.keysight.com/
http://www.keysight.com/


How to Install PathWave Test Sync Executive, Keysight Instrument
Driver and FPGA Firmware
After installing your development environment (Python or C#), and installing the chassis, the next
step is to install PathWave Test Sync Executive and the drivers for the Keysight instruments that you
are using. After installing all the necessary software, the instrument FPGA firmware can be updated
from their Software Front Panel (SFP) installed together with the instrument drivers. For more details
on how to install SW and FPGA FW for Keysight instruments, please visit the instrument technical
support page on www.keysight.com.

Find us at www.keysight.com Page 7

System Setup

http://www.keysight.com/


How to Install KF9000B PathWave FPGA
Some programming examples include PathWave FPGA project files designed using KF9000B
PathWave FPGA. To install KF9000B and obtain a license please consult the product webpage on
www.keysight.com. PathWave FPGA also requires Xilinx Vivado software to run. For further
information please consult the PathWave FPGA User Manual on www.keysight.com.

Multi-Chassis System Setup using the M9032A/M9033A PXIe
System Synchronization Module
In a multi-chassis system connected with Keysight PXIe System Synchronization Modules, you must
include one SSM in each chassis that is part of the system. Each SSMmust be inserted in the timing
slot of your chassis. This is typically slot 10 in Keysight 18-slot chassis, but it can be a different slot
number in different chassis models. The SSMs are connected to each other with System Sync cables.

One SSM is automatically chosen as a leader and it is used to synchronize all the instruments in the
multi-chassis system. The SSM chosen as leader is the SSM that has no incoming connection to its
System Sync Upstream port. The leader SSM distributes a replica of the reference clock signal to the
SSMs located in the other chassis. It does this through point-to-point connections between System
Sync Downstream/Upstream ports. In the example multi-chassis system shown in the following
diagram, the leader SSM is in Chassis 1.

A multi-chassis PXIe system may be configured to use many different reference options. For a list of
those options and descriptions of how to configure them, see the section Clocking in this document.
For one of those reference options, an SSM is chosen as a leader and uses its internal Oven
Controlled Crystal Oscillator (OCXO) clock to synchronize all the instruments included in the multi-
chassis system.

NOTE A Multi-chassis system based on the older M9031A modules required an external
reference clock generator to distribute the precise common 10 MHz reference clock
signal across different chassis. In the new multi-chassis topology delivered by
PathWave Test Sync Executive 2022, the SSM assumes the function of the
reference clock signal generator/distributor, by sharing a reference clock generated
by an internal PLL. This PLL can be fed by different sources (as explained later in
this document) including the OCXO inside the SSM, which generates a 10 MHz sine
wave. An external 10 or 100 MHz reference signal can still be connected to the SSM
SClk / Ref Input port, to sync it together with other clusters.

Find us at www.keysight.com Page 8

System Setup

http://www.keysight.com./
http://www.keysight.com./


The following diagram shows an example of a 6 chassis system connected with SSMs. In this system
an M9033A SSM in chassis 1 distributes the reference clock to four M9032A SSMs located in each of
the other chassis.  The SSM in chassis 5 also forwards the clock to a sixth chassis. 

For further information please refer to the System Setup Guide available on www.keysight.com.

Find us at www.keysight.com Page 9

System Setup

http://www.keysight.com./


Programming Example Overview
In this example, Keysight PXI modular instruments are used to synchronously generate mixed signals
across multiple channels on different instruments. Front Panel (FP) marker pulses can be generated
in sync with arbitrary waveforms previously loaded to the AWG (Arbitrary Waveform Generator)
memory thanks to the off-shelf synchronization capability provided by the HVI Synchronized Multi-
Sequence Block. The mixed-signal generation can be iterated for a user-defined number of loops by
using an HVI Synchronized While Statement. The duration property in HVI Sync Statements can be
used to automatically set the duration of each synchronized loop.

The HVI real-time functionalities deployed to implement the use case of this application are:

1. How to create an HVI sequence using the HVI C# API.

2. Synchronized While Statement to implement synchronous measurement loops.

3. Synchronized Multi-Sequence Block to implement off-shelf synchronization capabilities

4. Duration property in HVI Sync Statements

5. Use of registers and scopes.

6. Multi-channel synchronized action execution.

7. HVI native instructions.

Find us at www.keysight.com Page 10

Programming Example Overview



How to Run this Programming Example
The first step to execute this programming example is to review the configuration settings in the
ApplicationConfig.cs file. This programming example is set up to execute in simulation mode. To
execute the C# code on real HW instruments, change the option for simulated hardware to false:

public static bool HardwareSimulated { get; set; } = true;

Afterward, it is necessary to specify the actual chassis number and slot number where the real PXI
instruments are located. The model number of the PXI instruments used must also be updated, if
different than the instrument model used in this programming example.

This example uses PXI instruments from the Keysight M3xxx family. The first step to control such
instruments is to create an object using the open() method from the SD1 API. For a complete
description of the SD1 API open() method and its options please consult the SD1 3.x Software for
M320xA / M330xA Arbitrary Waveform Generators User's Guide.

Each PXI instrument is described in the code using a module description class that contains the
module model number, chassis number, slot number and options.

This programming example can be deployed on an arbitrary number of instruments to be defined
using the module-descriptor class. All instruments included in the ModuleDescriptos property
execute the synchronized real-time operations defined by the HVI instance. The ApplicationRole
property of the ModuleDescriptor class can be used to assign to each instrument its role in the
application, i.e. if it shall generate arbitrary waveforms from its AWG channels (AwgEngineName role)
or marker pulses from its FP port (DioEngineName role). Please update the properties in
each module-descriptor object before running the programming example:

public static List<ModuleDescriptor> ModuleDescriptors { get; set; } = new
List<ModuleDescriptor>
{

new ModuleDescriptor{ ApplicationRole = DioEngineName, ModelNumber = "M3202A", ChassisNumber
= 2, SlotNumber = 4, Options = Options },

new ModuleDescriptor{ ApplicationRole = AwgEngineName, ModelNumber = "M3201A", ChassisNumber
= 2, SlotNumber = 10, Options = Options },

new ModuleDescriptor{ ApplicationRole = AwgEngineName, ModelNumber = "M3202A", ChassisNumber
= 2, SlotNumber = 15, Options = Options },
};

In the case of a multi-chassis setup, define each System Sync Module and its connections:

/// <summary>
/// Define list of chassis containing instruments to be used by HVI
/// </summary>
public int[] ChassisList { get; set; } = new int[] { 1, 2 };
/// Multi-chassis setup
/// Define the System Sync Modules included in your system.
/// </summary>
public static string SsmOptions { get; set; } = "DriverSetup=ForceModel=M9032A";

Find us at www.keysight.com Page 11

Programming Example Overview

http://www.keysight.com/es/en/lib/software-detail/instrument-firmware-software/sd1-3x-software-3120392.html
http://www.keysight.com/es/en/lib/software-detail/instrument-firmware-software/sd1-3x-software-3120392.html


public static string SsmSimulationOptions { get; set; } =
"Simulate=true,DriverSetup=Model=M9033A";
public List<SystemSyncModuleDescriptor> SystemSyncModulesDescriptors { get; set; } = new
List<SystemSyncModuleDescriptor>
{

new SystemSyncModuleDescriptor("PXI0::CHASSIS1::SLOT10::INDEX0::INSTR", SsmOptions),
new SystemSyncModuleDescriptor("PXI0::CHASSIS2::SLOT10::INDEX0::INSTR", SsmOptions),

};
/// </summary>
/// For each SSM define which SSM is connected to its downstream connectors.
/// /// Each connectivity item is a triple (ssm1_chassis, ssm1_downstream_connector_number,
ssm2_chassis)
/// </summary>
public List<SystemSyncModuleConnection> SsmConnections { get; set; } = new
List<SystemSyncModuleConnection>
{

new SystemSyncModuleConnection{Ssm1Chassis = 1, Ssm1DownstreamConnectorNumber = 0,
Ssm2Chassis = 2},
};

Please note that in every programming example, PXI trigger resources need to be reserved so that
the HVI instance can use them for their execution. PXI lines to be assigned as trigger resources to HVI
can be selected by updating the code snippet below:

public TriggerResourceId[] PxiSyncTriggerResources { get; set; } = new TriggerResourceId[]
{

TriggerResourceId.PxiTrigger3,
TriggerResourceId.PxiTrigger4,
TriggerResourceId.PxiTrigger5,
TriggerResourceId.PxiTrigger6,
TriggerResourceId.PxiTrigger7

};

PXI lines allocated to be used as HVI trigger resources cannot be used by the programming example
for other purposes. The vector pxi_sync_trigger_resources specified above must include at least the
necessary number of PXI lines for the programming example to execute. 

Find us at www.keysight.com Page 12

Programming Example Overview



Measurement Results
The measurement results described in this section were obtained using the measurement setup
depicted below where the Front Panel (FP) connector and CH1 of two M3202A AWGs are connected
to two channels of a Keysight Oscilloscope.

Find us at www.keysight.com Page 13

Programming Example Overview



A photograph of the setup used for the measurement results reported in this programming example is
shown below:

Find us at www.keysight.com Page 14

Programming Example Overview



The screenshot below depicts the expected execution on the console window of this programming
example's C# code.

Find us at www.keysight.com Page 15

Programming Example Overview



The measurement result below shows the mixed signals that are synchronously generated by the
different PXI instruments. The instrument programmed to function as a Digital I/O produces a marker
pulse with a pulse width of 100 ns (yellow waveform). The second instrument is programmed to
function as an arbitrary waveform generator and generates a gaussian waveform that was previously
loaded to the instrument memory (red waveform). The mixed-signal generation is synchronously
executed for a number of iterations that can be defined by the user. In the example measurements
reported below, five signal generation loops were executed. Each mixed signal generation starts 1 us
after the previous iteration because that is the value set to the duration property in the HVI SyncWhile
loop.

Find us at www.keysight.com Page 16

Programming Example Overview



NOTE AWG Trigger Delay

Please note, the HVI sequences represented in the HVI diagram contained in the
next section specify the "AWG Trigger" instruction to happen in sync with the "FP
Trigger ON" instruction. However, users must take into account that the AWG
instrument requires time to process the AWG trigger action and propagate the
command through its digital HW before the first waveform sample can appear at
the AWG output. This processing time can be called AWG Trigger Delay, and it
explains why in the previously presented scope measurements there is a delay of
about 150-170 ns between the FP trigger falling edge and the first sample of the
Gaussian waveform generated by the AWG. For exact values of AWG Trigger Delay
and other AWG specs, please consult the documentation of Keysight M3xxx AWGs

The mixed signals can be synchronously generated by different instruments thanks to the off-shelf
synchronization capabilities offered by HVI. All the details about the HVI implementation are
described in the next section, together with detailed explanations of each HVI API code block.

Find us at www.keysight.com Page 17

Programming Example Overview



HVI Application Programming Interface (API): Detailed
Explanations
PathWave Test Sync Executive implements the next generation of HVI technology and delivers the
HVI Application Programming Interface (API). This section explains how to implement the use case of
this programming example using HVI API. The sequence of operations executed by each of the
instruments using HVI technology is explained in the diagram below. The diagram depicts the HVI
sequences executed within this programming example and the HVI statements used to program the
sequences. Every HVI statement is described in detail later in this section, referencing with a letter
the equivalent block in the HVI diagram and explaining in detail the corresponding HVI API code
block and the HVI functionalities that it implements.

Please note that the start delays of HVI statement inserted in the following HVI diagram are set to
very specific values. Unless differently specified, those values correspond to the minimum latencies
that can be used for those start delays. Please consult Chapter 7 of the  PathWave Test Sync
Executive User Manual  for detailed information about the timing constraint and latency of each HVI
statement execution.

NOTE The duration of each iteration of the Sync While loop used in this example is set to
an arbitrary value using the Duration property of the SyncWhile object. The default
duration of each sync statement is set to "T Min", which corresponds to the
minimum duration to comply with the start delays specified by the user for each
statement programmed into the local sequences contained in it.

Find us at www.keysight.com Page 18

HVI Application Programming Interface (API): Detailed
Explanations



To include HVI in an application, follow these three fundamental steps:

1. System definition: define all the necessary HVI resources, including platform resources, engines, triggers,

registers, actions, events, etc. 

2. Program HVI sequences: define all the statements to be executed within each HVI sequence

3. Execute HVI: compile, load to HW and execute the HVI

The following sub-sections describe in detail how these three steps are implemented for this example.
For further explanations about any of the concepts, please refer to the  PathWave Test Sync Executive
User Manual .

Find us at www.keysight.com Page 19

HVI Application Programming Interface (API): Detailed
Explanations



System Definition
The definition of HVI resources is the first step of an application using HVI. The API
class SystemDefintion enables you to define all necessary HVI resources. HVI resources include all
the platform resources, engines, triggers, registers, actions, events, etc. that the HVI sequences are
going to use and execute. Users need to declare them upfront and add them to the corresponding
collections. All HVI Engines included in the program need to be registered into
the EngineCollection class instance. HVI resources are described in detail in the  PathWave Test Sync
Executive User Manual . The HVI resource definitions are summarized in the code snippets below.

C#

var mySystem =
DefineSystem("mySystem") // Define your system, HW platform, add HVI resources
.AddHwPlatform(appConfig) // Add chassis, interconnections, PXI trigger resources,

synchronization, HVI clocks
.AddHviEngines(moduleList) // Define all the HVI engines to be included in the HVI
.AddHviActions(moduleList, appConfig) // Define list of actions to be executed
.AddHviTriggers(moduleList, appConfig);// Defines the trigger resources

Find us at www.keysight.com Page 20

HVI Application Programming Interface (API): Detailed
Explanations



Define Platform Resources: Chassis, PXI triggers, Synchronization
All HVI instances need to define the chassis and eventual chassis interconnections using
the SystemDefinition class. In case of a multi-chassis setup, chassis interconnections using System
Sync Modules can be defined using the AddSyncModule method of the Interconnects interface. PXI
trigger lines to be reserved by HVI for its execution can be assigned using
the SyncResources interface of the SystemDefinition class. SystemDefinition class also allows you to
add additional clock frequencies that the HVI execution can synchronize with. For further information
please consult the section "HVI Core API" of the  PathWave Test Sync Executive User Manual .

C#

/// <summary>
/// Define HW platform: chassis, interconnections, PXI trigger resources, synchronization, HVI
clocks
/// </summary>
/// <param name="mySystem">SystemDefinition object defining the system where HVI runs.</param>
/// <param name="appConfig">User defined configuration.</param>
/// <returns></returns>
public static SystemDefinition AddHwPlatform(this SystemDefinition mySystem, ApplicationConfig
appConfig)
{

// Check input parameters
AssertNotNull(mySystem, nameof(mySystem));
AssertNotNull(appConfig, nameof(appConfig));
//Add chassis resources
// For multi-chassis setup details see programming example documentation
foreach (int chassisNumber in appConfig.ChassisList)
{

if (ApplicationConfig.HardwareSimulated)
{

mySystem.Chassis.AddWithOptions(chassisNumber,
"Simulate=True,DriverSetup=model=M9019A");

}
else
{

mySystem.Chassis.Add(chassisNumber);
}

}
// Define System Sync Modules (SSMs)
if (appConfig.SystemSyncModulesDescriptors != null)
{

var interconnects = mySystem.Interconnects;
List<Stm.ISyncModule> ssmList = new List<Stm.ISyncModule>();
foreach (var descriptor in appConfig.SystemSyncModulesDescriptors)
{

if (ApplicationConfig.HardwareSimulated == true)
ssmList.Add(interconnects.AddSyncModule(descriptor.ResourceId,

ApplicationConfig.SsmSimulationOptions));
else

Find us at www.keysight.com Page 21

HVI Application Programming Interface (API): Detailed
Explanations



ssmList.Add(interconnects.AddSyncModule(descriptor.ResourceId,
descriptor.Options));

}
// Define connections between SSMs
if (appConfig.SsmConnections != null)
{

foreach (var connection in appConfig.SsmConnections)
{

int connectorNumber = connection.Ssm1DownstreamConnectorNumber;
Stm.ISyncModule ssm1 = null;
Stm.ISyncModule ssm2 = null;
foreach (var ssm in ssmList)
{

if (ssm.Chassis == connection.Ssm1Chassis)
ssm1 = ssm;

if (ssm.Chassis == connection.Ssm2Chassis)
ssm2 = ssm;

}
// Implement each user-defined connection
try
{

// Set connection. SSMs have always one upstream port
ssm1.Connectivity.SystemSyncDown[connectorNumber].SetConnection

(ssm2.Connectivity.SystemSyncUp[0]);
}
catch
{

Console.WriteLine("Exception! Please check the valued defined for SyncModule
resource ids, chassis numbers and connections");

}
}

}
}
// Assign the defined PXI trigger resources
mySystem.SyncResources = appConfig.PxiSyncTriggerResources;
// Assign clock frequencies that are outside the set of the clock frequencies of each HVI

engine
// Use the code line below if you want the application to be in sync with the 10 MHz clock
mySystem.NonHviCoreClocks = new double[] { 10e6 };
return mySystem;

}

Find us at www.keysight.com Page 22

HVI Application Programming Interface (API): Detailed
Explanations



Define HVI Engines
All HVI Engines to be included in the HVI instance need to be registered into the  EngineCollection
class instance. Each HVI Engine object added to the engine collection contains collections of its own
that allow you to access the actions, events and triggers that each specific engine will control and use
within the HVI. 

C#

public static SystemDefinition AddHviEngines(this SystemDefinition mySystem, List<SD1AwgModule>
moduleList)
{

// Check input parameters
Program.AssertNotNull(mySystem, nameof(mySystem));
Program.AssertNotNull(moduleList, nameof(moduleList));
// For each instrument to be used in the HVI application add its HVI Engine to the HVI

Engine Collection
foreach (var module in moduleList)
{

mySystem.Engines.Add(module.Instrument.Hvi.Engines.MainEngine, module.HVIEngineName);
}
return mySystem;

}

Find us at www.keysight.com Page 23

HVI Application Programming Interface (API): Detailed
Explanations



Define HVI Actions, Events, Triggers
In this programming example, each instrument is programmed to output either a marker pulse or an
arbitrary waveform at very precise instants. To do this, the FP pulse trigger and AWG trigger actions
are issued from within the HVI execution. In the HVI use model, actions need to be added to the
action collection of each HVI engine before they can be executed. FP trigger needs to be added to the
HVI Trigger Collection and configured. This is done in this programming example as explained in the
code snippets below.

C#

public static SystemDefinition AddHviActions(this SystemDefinition mySystem, List<SD1AwgModule>
moduleList, ApplicationConfig appConfig)
{

// Check input parameters
Program.AssertNotNull(mySystem, nameof(mySystem));
Program.AssertNotNull(moduleList, nameof(moduleList));
Program.AssertNotNull(appConfig, nameof(appConfig));
// For each AWG, define the list of HVI Actions to be executed and add such list to its own

HVI Action Collection
foreach (var module in moduleList)
{

for (var chIndex = 1; chIndex <= module.NumChannels; chIndex++)
{

// Actions need to be added to the engine's action list so that they can be executed
string actionName = string.Format("{0}{1}", appConfig.AwgTriggerName, chIndex); //

arbitrary user-defined name
int actionId;
switch (chIndex)
{

case 2:
actionId = module.Instrument.Hvi.Actions.Awg2Trigger;
break;

case 3:
actionId = module.Instrument.Hvi.Actions.Awg3Trigger;
break;

case 4:
actionId = module.Instrument.Hvi.Actions.Awg4Trigger;
break;

default:
actionId = module.Instrument.Hvi.Actions.Awg1Trigger;
break;

}
mySystem.Engines[module.HVIEngineName].Actions.Add(actionId, actionName);

}
}
return mySystem;

}

public static SystemDefinition AddHviTriggers(this SystemDefinition mySystem, List<SD1AwgModule>
moduleList)

Find us at www.keysight.com Page 24

HVI Application Programming Interface (API): Detailed
Explanations



{
// Check input parameters
AssertNotNull(mySystem, nameof(mySystem));
AssertNotNull(moduleList, nameof(moduleList));
// Add to the HVI Trigger Collection of each HVI Engine the FP Trigger object of that same

instrument
foreach (var module in moduleList)
{

int fpTriggerId = module.Instrument.Hvi.Triggers.FrontPanel1;
ITriggerDefinition fpTrigger = mySystem.Engines[module.HVIEngineName].Triggers.Add

(fpTriggerId, ApplicationConfig.FpTriggerName);
// Configure FP trigger in each Hvi Engine
fpTrigger.Config.Direction = Direction.Output;
fpTrigger.Config.Polarity = Polarity.ActiveHigh;
fpTrigger.Config.SyncMode = SyncMode.Immediate;
fpTrigger.Config.HwRoutingDelay = 0;
// FP TriggerMode is set to Level, which does not defines a pulse length
// FP trigger pulse length is defined by the HVI Statements that control FP Trigger

ON/OFF
fpTrigger.Config.TriggerMode = TriggerMode.Level;

}
return mySystem;

}
}

}

Find us at www.keysight.com Page 25

HVI Application Programming Interface (API): Detailed
Explanations



Program HVI Sequences
HVI sequences can be programmed using the Sequencer class. HVI starts the execution through a
global sequence (defined by the SyncSequence class) that takes care of synchronizing and
encapsulating the local sequences corresponding to each HVI engine included in the application. In
this programming example, the HVI global sync sequence contains only one sync statement, a
synchronized multi-sequence block defined by the API class SyncMultiSequenceBlock.

C#

public static Sequencer ProgramMixedSignalSequence(this Sequencer sequencer, List<SD1AwgModule>
moduleList, ApplicationConfig appConfig)
{

// Check input parameters
Program.AssertNotNull(sequencer, nameof(sequencer));
Program.AssertNotNull(moduleList, nameof(moduleList));
Program.AssertNotNull(appConfig, nameof(appConfig));
// Add register
IRegister loops = sequencer.SyncSequence.Scopes.First().Registers.Add("Loops",

RegisterSize.Short);
// SyncWhile condition
IConditionTerm syncWhileCondition = Condition.RegisterComparison(loops,

ComparisonOperator.LessThan, appConfig.NumLoops);
// Add a Sync While
ISyncWhileStatement syncWhile = sequencer.SyncSequence.AddSyncWhile("Sync Mixed-Signal

Generation", 90, syncWhileCondition);
// Add a Sync Multi-Sequence Block (SMSB)
ISyncMultiSequenceBlockStatement syncBlock =

syncWhile.SyncSequence.AddSyncMultiSequenceBlock("Trigger Digital I/Os and AWGs", 170);
// Program the SMSB to trigger AWGs and FP pulses
ProgramMimoTrigger(syncBlock, moduleList, appConfig);
return sequencer;

}

Find us at www.keysight.com Page 26

HVI Application Programming Interface (API): Detailed
Explanations



Define HVI Registers
HVI registers correspond to very fast access physical memory registers in the HVI Engine located in
the instrument HW (e.g. FPGA or ASIC). HVI Registers can be used as parameters for operations and
modified during the sequence execution (same as Variables in any programming language). The
number and size of registers is defined by each instrument. The registers that users want to use in the
HVI sequences need to be defined beforehand into the register collection within the scope of the
corresponding HVI Sequence. This can be done using the RegisterCollection class that is within the
Scope object corresponding to each sequence. HVI Registers belong to a specific HVI Engine
because they refer to HW registers of that specific instrument. Registers from one HVI Engine cannot
be used by other engines or outside of their scope. Note that currently, registers can only be added to
the HVI top SyncSequence scopes, which means that only global registers visible in all child
sequences can be added. HVI registers are defined in this programming example by the code snippet
below.

C#

// Add register
IRegister loops = sequencer.SyncSequence.Scopes.First().Registers.Add("Loops",
RegisterSize.Short);

Synchronized While (a)
This corresponds to statement (a) in the HVI diagram. Synchronized While (Sync While) statements
belong to the set of HVI Sync Statements and are defined by the API class SyncWhile. A Sync While
allows you to synchronously execute multiple local HVI sequences until a user-defined condition is
met, that is, the sync while condition. Please note that for local sequences to be defined within the
Sync While, it is necessary to use synchronized multi-sequence blocks. The duration of each iteration
of the Sync While loop can be set using the Duration property and the Time class.  Please note that
the duration cannot be set to a deterministic quantity if the Sync While contains any flow control
statement, i.e. If, While, Wait or WaitTime statements. Please consult Chapter 7 of the KS2201A User
Manual for further information.

C#

// SyncWhile condition
IConditionTerm syncWhileCondition = Condition.RegisterComparison(loops,
ComparisonOperator.LessThan, appConfig.NumLoops);
// Add a Sync While
ISyncWhileStatement syncWhile = sequencer.SyncSequence.AddSyncWhile("Sync Mixed-Signal
Generation", 90, syncWhileCondition);
// Define Sync While Duration
syncWhile.Duration = new Time.Duration(1, Time.Unit.Microseconds);

Find us at www.keysight.com Page 27

HVI Application Programming Interface (API): Detailed
Explanations



Synchronized Multi-Sequence Block (b)
This block synchronizes all the HVI engines that are part of the sync sequence and enables the user to
program each HVI Engine to do specific operations by exposing a local sequence for each engine. By
calling the API method AddMultiSequenceBlock() a synchronized multi-sequence block is added to
the Sync (global) Sequence. The duration of the Sync Multi-Sequence Block (SMSB) can be set using
the Duration property and the Time class. In this example the SMSB duration is set to minimum,
which means that the SMSB will last according to the start delays specified by the user for each
statement programed into the local sequences contained in it. Please note that the duration cannot
be set to a deterministic quantity if the SMSB contains any flow control statement, i.e. If, While, Wait
or WaitTime statements. Please consult Chapter 7 of the KS2201A User Manual for further
information.

C#

// Add a Sync Multi-Sequence Block (SMSB)
ISyncMultiSequenceBlockStatement syncBlock = syncWhile.SyncSequence.AddSyncMultiSequenceBlock
("Trigger Digital I/Os and AWGs", 260);
// Define SMSB Duration
syncBlock.Duration = new Time.Minimum();

Within the Synchronized Multi-Sequence Block (SMSB), users can define which statement each local
engine is going to execute in parallel with the other engines. Local HVI sequences start and end
synchronously their execution within the sync multi-sequence block. Users can define the exact
amount of time each local HVI statement starts to execute with respect to the previous one. HVI
automatically calculates the execution time of each local sequence and adjusts the execution of all
local sequences within the multi-sequence block so that they can deterministically end altogether
within the synchronized multi-sequence block. See the general case example in the figure below for
additional details.

Find us at www.keysight.com Page 28

HVI Application Programming Interface (API): Detailed
Explanations



Please note that the Sync Multi-Sequence Block has an execution duration time labeled as "T Min" in
the figure above. The "T Min" default value for any sync statement corresponds to the minimum time
necessary to complete the operations included inside. KS2201A Update 1.0 release provides the
Duration property in Sync Statement objects that allows users to set an arbitrary duration value
larger than "T Min". The timing at the end of each local sequence is automatically adjusted by HVI
according to the duration specified by the user for the SMSB. In the case of duration "T min", HVI will
automatically add no time to the local sequence with the longest duration and adjust the other
sequences accordingly, as in the example depicted in the figure above. The resolution for HVI-defined
time adjustment at the end of a sync multi-sequence block corresponds to the 10 ns FPGA clock
period for an application including instruments that are all within the Keysight M3xxx family. For
further explanations about the timing of HVI sequence execution please refer to the KS2201A
PathWave Test Sync Executive User Manual available on www.keysight.com

Find us at www.keysight.com Page 29

HVI Application Programming Interface (API): Detailed
Explanations

http://www.keysight.com/


HVI Instruction: Front Panel Trigger ON/OFF (c)
This block executes a native HVI instruction. Native HVI instructions are common to every Keysight
product. The API method add_instruction() allows you to add the wanted instruction within the HVI
sequence. Instruction parameters are set using the API method S etParameter(). All HVI Native
instructions and parameters are defined in the hvi.InstructionSet interface.

C#

// Retrieve FP Trigger prefiously defined in the HVI Trigger Collection
ITrigger fpTrigger = sequence.Engine.Triggers[appConfig.FpTriggerName];
// Retrive TriggerWrite instruction from HVI Native InstructionSet
IInstructionTriggerWrite triggerWrite = sequence.InstructionSet.TriggerWrite;
// Write FP Trigger ON
IInstructionStatement instrTriggerOn = sequence.AddInstruction("FP Trigger ON", 10,
triggerWrite.Id);
instrTriggerOn.SetParameter(triggerWrite.Trigger.Id, fpTrigger);
instrTriggerOn.SetParameter(triggerWrite.SyncMode.Id, triggerWrite.SyncMode.IMMEDIATE);
instrTriggerOn.SetParameter(triggerWrite.Value.Id, triggerWrite.Value.ON);

Action Execute: AWG Trigger (d)
Actions to be used within an HVI sequence need to be added to the instrument HVI engine using the
API "Add" method of the ActionCollection class. Once the wanted actions are added within the list of
the instruments' HVI engine actions, an instruction to execute them can be added to the instrument's
HVI sequence using the HVI API class InstructionsActionExecute. One or multiple actions can be
executed at the same time within the same "Action Execute" instruction.

C#

// Execute AWG trigger from the HVI sequence of each module
// "Action Execute" instruction executes the AWG trigger from HVI
IInstructionStatement instr = sequence.AddInstruction("AWG trigger", 10,
sequence.InstructionSet.ActionExecute.Id);
instr.SetParameter(sequence.InstructionSet.ActionExecute.Action.Id,
sequence.Engine.Actions.ToArray());

Find us at www.keysight.com Page 30

HVI Application Programming Interface (API): Detailed
Explanations



Register Increment (e)
This type of instruction can be found in statements (e). A register increment can be implemented
within an HVI sequence using an instance of the API instruction class InstructionsAdd. The same
instruction can be used to add registers and constant values (operands) and put the result in another
register (result). The register to be incremented was previously defined in the scope of the
corresponding HVI engine.

C#

// Retrieve register object
var loops = sequence.Scope.Registers["Loops"];
// Increment loop counter
var instruction = sequence.AddInstruction("Loops++", 10, sequence.InstructionSet.Add.Id);
instruction.SetParameter(sequence.InstructionSet.Add.Destination.Id, loops);
instruction.SetParameter(sequence.InstructionSet.Add.LeftOperand.Id, loops);
instruction.SetParameter(sequence.InstructionSet.Add.RightOperand.Id, 1);

Delay Statement (f)
This type of statement can be found in statements (f). Inserting an instance of DelayStatement class
causes an HVI sequence to wait for a fixed amount of time that is known at compilation time and it is
not expected to change during HVI execution. The amount of time is specified in nanoseconds. The
Delay Statment functions like the start delay parameter used in each method that programs a
statement into an HVI sequence. The main difference is that a start delay allows specifying a delay
before a statement, whereas the delay statement allows to specify it afterward, for example at the
end of a Sync Multi-Sequence Block, as it is used in this programming example. To specify a Variable
delay that can change during HVI execution, one shall use the WaitTime statement instead.

C#

// Add a delay statement to allow the register increment to complete its execution
var instrDelay = sequence.AddDelay("Delay", 100);

Export the Programmed HVI Sequences to File
KS2201A provides a feature to export the programmed HVI sequences, which can be used both as a
development and debug tool. The sequences can be exported using the ToString()method of the
SyncSequence class, as illustrated in the code snippet below. An example text file containing the HVI
sequences exported from this programming example is provided together with this example's files.

// Generate HVI sequence description text
var output = sequencer.SyncSequence.ToString(OutputFormat.Debug);

Find us at www.keysight.com Page 31

HVI Application Programming Interface (API): Detailed
Explanations



Compile, Load, Execute the HVI Instance
Once the HVI sequences are programmed by defining all the necessary HVI statements, you can
compile, load and execute the HVI. Compile, load and run functionalities can be accessed from
the Hvi class.

Compile HVI
The compilation operation is performed by calling the compile() API method. This operation processes
all the info related to the HVI application, including the necessary HVI resources and the HVI
statements included in the HVI sequences. The compilation generates a binary compiled output that
can be loaded to the hardware instruments for their HVI engine to execute it. As an output, the
compile() API method provides an object that can tell the user how many PXI sync resources are
necessary to be reserved to execute the HVI application.

C#

// Compile HVI sequences
var hvi = sequencer.Compile();
Console.WriteLine("HVI Compiled");
Console.WriteLine("This HVI application needs to reserve {0} PXI trigger resources to execute",
hvi.CompileStatus.SyncResources.Count());

Load HVI to Hardware
The API method load_to_hw() loads to each HVI engine the binary output obtained from the HVI
compilation so that the HVI engine programmed into their digital HW (FPGA or ASIC) can execute it.

C#

// Load HVI to HW: load sequences, configure actions/triggers/events, lock resources, etc.
hvi.LoadToHw();

Execute HVI
HVI execution is controlled by the run() API method. HVI can be run in a blocking or non-blocking
mode. In this programming example, the blocking mode is used. In this mode the SW execution is
blocked at the HVI execution code line for a fixed amount of time specified by the timeout input
parameter. The SW execution can be blocked until the HVI sequences finish their execution if timeout
= hvi.no_timeout is used as an input parameter.

C#

// Execute HVI in blocking mode: SW waits until HVI sequences ends their execution
// Eventually enter a timeout for the HVI execution to be stopped: timeout = timedelta
(seconds=0), hvi.run(timeout)
hvi.Run(IHvi.NoTimeout);

Find us at www.keysight.com Page 32

HVI Application Programming Interface (API): Detailed
Explanations



Release Hardware
API method release_hw() shall be called once the HVI execution is finished to release all the HW
resources that were reserved during the HVI execution, including the PXI trigger resources that had
been locked by HVI for its execution.

C#

// Release HW resources once HVI execution is completed
hvi.ReleaseHw();

Further HVI API Explanations
Detailed explanations of each class and functionality of the HVI API can be found in the PathWave
Test Sync Executive User Manual or in the C# help file that is provided with the HVI installer.

Conclusions
This programming example explained how to use Pathwave Test Sync Executive and HVI (Hard
Virtual Instrument) technology to synchronously generate mixed signals from multiple PXI
instruments. Each instrument can be configured to generate a marker pulse  or a previously loaded
arbitrary waveform. The programming example use case illustrated here can be tested on any AWG of
the Keysight M3xxx PXI family. HVI technology was deployed using the HVI API (Application
Programming Interface). Example measurement results demonstrated synchronized multi-channel
mixed-signal generation with sub-ns precision.

Find us at www.keysight.com Page 33

Conclusions



This information is subject to change

without notice.

© Keysight Technologies 2021-2022

Edition 2022_U0_00, June, 2022

Keysight Technologies, USA

KS2201-90007

www.keysight.com

http://www.keysight.com/

	Introduction
	System Setup
	System Requirements
	How to Install Chassis Driver, SFP and Firmware
	How to Install PathWave Test Sync Executive, Keysight Instrument Driver and F...
	How to Install KF9000B PathWave FPGA
	Multi-Chassis System Setup using the M9032A/M9033A PXIe System Synchronizatio...

	Programming Example Overview
	How to Run this Programming Example
	Measurement Results

	HVI Application Programming Interface (API): Detailed Explanations
	System Definition
	Define Platform Resources: Chassis, PXI triggers, Synchronization
	Define HVI Engines
	Define HVI Actions, Events, Triggers

	Program HVI Sequences
	Define HVI Registers
	Synchronized While (a)
	Synchronized Multi-Sequence Block (b)
	HVI Instruction: Front Panel Trigger ON/OFF (c)
	Action Execute: AWG Trigger (d)
	Register Increment (e)
	Delay Statement (f)
	Export the Programmed HVI Sequences to File

	Compile, Load, Execute the HVI Instance
	Compile HVI
	Load HVI to Hardware
	Execute HVI
	Release Hardware

	Further HVI API Explanations

	Conclusions

