QUICK REFERENCE GUIDE TO TAPS

What taps do: Network Taps provide permanent access to 100% of all network traffic - which is required when monitoring and securing your network- without introducing costly bottlenecks or points of failure. Tool changes can be made without network downtime. Why Ixia: Widest range of taps, short lead times, exceptional MTBF, global distribution, best in class worldwide Support

How to use this table: COLUMN 1 provides: connector type- LC or MTP, fiber mode- Multimode ("MM") or Single mode ("SM"), and fiber spec-LR, SR, etc. COLUMN 2 provides: Network speed and fiber diameter. COLUMNS 3-7 provide Part numbers for each Split Ratio. All of this information is determined by the network link to be tapped, and must be provided by your customer.

Useful Links:

Product Information: https://ixia.keysight.com/products/network-taps-regenerators-and-aggregators
Taps vs Spans: https://ixia.keysight.com/resources/taps-vs-spans-total-visibility-anywhere
Quick Reference Guide: https://ixia.keysight.com/resources/flex-tap-quick-reference-guide

OPTICAL TAPS		Ordering Information / Insertion Loss					Accessories	
Family Connector Fiber	Speed/ Wavelength/Fiber Diameter	50/50 Split Part\#/Insertion Loss	60/40 Split Part\#/Insertion Loss	70/30 Split Part\#/Insertion Loss	80/20 Split Part\#/Inserti on Loss	90/10 Split Part\#/Insert ion Loss	Y Cable Kits	Rack Mounts
FlexTap LC SM LR	$\begin{array}{\|c} \hline \text { All speeds to } 400 \mathrm{G} \\ 1260-1340 \mathrm{~nm}, 1550 \mathrm{~nm} \\ 8.5 \mu \mathrm{~m} \\ \hline \end{array}$	$\begin{gathered} \text { TP-100-LR-85-50 } \\ 3.7 d B / 3.7 d B \end{gathered}$	$\begin{gathered} \text { TP-100-LR-85-60 } \\ 2.8 d B / 4.8 d B \end{gathered}$	$\begin{gathered} \text { TP-100-LR-85-70 } \\ 2.0 d B / 6.1 d B \end{gathered}$	$\left\|\begin{array}{c} \text { TP-100-LR-85-80 } \\ 1.3 d B / 8.0 d B \end{array}\right\|$	$\left\|\begin{array}{c} \text { TP-100-LR-85-90 } \\ 0.8 d B / 12.0 d B \end{array}\right\|$	705-0014-001	$\begin{array}{\|c\|} \hline \text { RK-FLEX-ID-24 } \\ \text { RK-FLEX-24 } \\ \text { RK-FLEX-8 } \\ \hline \end{array}$
PatchTap LC SM LR	$\begin{gathered} \text { All speeds to } 100 \mathrm{G} \\ 1260-1340 \mathrm{~nm}, 8.5 \mu \mathrm{~m} \\ \hline \end{gathered}$	$\begin{gathered} \text { TPPCH-100-LR-85-50 } \\ 3.8 d B / 3.8 d B \\ \hline \end{gathered}$	-	$\begin{gathered} \hline \text { TPPCH-100-LR-85-70 } \\ 2.3 d B / 6.1 d B \\ \hline \end{gathered}$	-	-	705-0014-001	Patch Panels
FlexTap LC VHD SM LR/LX	All speeds to 400 G $1260-1340 \mathrm{~nm}, 1550 \mathrm{~nm}$ $8.5 \mu \mathrm{~m}$	TPVHD-100-LR-85-50 $3.7 d B / 3.7 d B$	TPVHD-100-LR-85- $602.8 d B / 4.8 d B$	$\begin{gathered} \text { TPVHD-100-LR-85-70 } \\ 2.0 d B / 6.1 d B \end{gathered}$	-	-	$\left\|\begin{array}{c} 705-0014-001 \\ x 3 \end{array}\right\|$	$\begin{array}{\|c\|} \hline \text { RK-FLEX-ID-24 } \\ \text { RK-FLEX-24 } \\ \text { RK-FLEX-8 } \\ \hline \end{array}$
FlexTap LC Secure + SM LR	$\begin{gathered} \hline \text { All speeds to } 400 \mathrm{G} \\ 1260-1340 \mathrm{~nm}, 1550 \mathrm{~nm} \\ 8.5 \mu \mathrm{~m} \\ \hline \end{gathered}$	$\begin{gathered} \text { TPS-100-LR-85-50 } \\ 3.7 d B / 3.7 d B \end{gathered}$	-	-	-	-	705-0014-001	$\begin{array}{\|c\|} \hline \text { RK-FLEX-ID-24 } \\ \text { RK-FLEX-24 } \\ \text { RK-FLEX-8 } \\ \hline \end{array}$
FLEX TAP MTP PSM4 SM LR	All speeds to 400 G $1260-1340 \mathrm{~nm}, 1550 \mathrm{~nm}$ $8.5 \mu \mathrm{~m}$	-	-	$\begin{gathered} \text { TP-PSM4-85-70-MTP } \\ 2.6 d B / 6.4 d B \end{gathered}$	-	-	MTP-SM-Y- CBL (optional)	$\begin{array}{\|c\|} \hline \text { RK-FLEX-ID-24 } \\ \text { RK-FLEX-24 } \\ \text { RK-FLEX-8 } \\ \hline \end{array}$
FlexTap LC MM SX	$\begin{gathered} 1 \mathrm{G} \\ 50 \mu \mathrm{~m} \end{gathered}$	$\begin{gathered} \text { TP-1-SX-50-50 } \\ 4.5 d B / 4.5 d B \end{gathered}$	$\begin{gathered} \text { TP-1-SX-50-60 } \\ 3.1 d B / 5.1 d B \end{gathered}$	$\begin{gathered} \text { TP-1-SX-50-70 } \\ 2.4 d B / 6.3 d B \end{gathered}$	$\begin{gathered} \text { TP-1-SX-50-80 } \\ 1.8 d B / 8.1 d B \end{gathered}$	$\begin{gathered} \text { TP-1-SX-50-90 } \\ 1.3 d B / 11.5 d B \end{gathered}$	705-0012-001	$\begin{gathered} \hline \text { RK-FLEX-ID-24 } \\ \text { RK-FLEX-24 } \\ \text { RK-FLEX-8 } \\ \hline \end{gathered}$
FlexTap LC MM SR	$\begin{gathered} 50 / 25 \mathrm{G} / 10 \mathrm{G} / 1 \mathrm{G} \\ 810-890 \mathrm{~nm}, 50 \mu \mathrm{~m} \end{gathered}$	$\begin{gathered} \text { TPX-10-SR-50-50 } \\ 3.9 d B / 3.9 d B \end{gathered}$	$\begin{gathered} \text { TPX-10-SR-50-60 } \\ 2.9 \mathrm{~dB} / 4.9 \mathrm{~dB} \end{gathered}$	$\begin{gathered} \text { TPX-10-SR-50-70 } \\ 2.2 \mathrm{~dB} / 6.1 \mathrm{~dB} \end{gathered}$	TPX-10-SR-50-80 $1.6 \mathrm{~dB} / 7.9 \mathrm{~dB}$	-	705-0012-001	$\begin{array}{\|c\|} \hline \text { RK-FLEX-ID-24 } \\ \text { RK-FLEX-24 } \\ \text { RK-FLEX-8 } \\ \hline \end{array}$
PatchTap LC MM SR	$25 \mathrm{G} / 10 \mathrm{G} / 1 \mathrm{G}$ $810-890 \mathrm{~nm}, 50 \mu \mathrm{~m}$	$\begin{gathered} \text { TPPCH-10-SR-50-50 } \\ 3.9 \mathrm{~d} B / 3.9 \mathrm{~dB} \\ \hline \end{gathered}$	-	$\begin{gathered} \text { TPPCH-10-SR-50-70 } \\ 2.2 d B / 6.1 d B \\ \hline \end{gathered}$	-	-	705-0012-001	Patch Panels
$\begin{array}{\|ll} \text { FlexTap LC } \\ \text { VHD } & \text { MM } \\ \text { SR/SX } \end{array}$	$\begin{aligned} & 50 / 25 \mathrm{G} / 10 \mathrm{G} / 1 \mathrm{G} \\ & 810-890 \mathrm{~nm}, 50 \mu \mathrm{~m} \end{aligned}$	$\begin{gathered} \text { TPVHD-10-SR-50-50 } \\ 3.9 \mathrm{~d} B / 3.9 \mathrm{~d} B \end{gathered}$	$\left\lvert\, \begin{gathered} \text { TPVHD-10-SR-50-60 } \\ 2.9 d B / 4.9 d B \end{gathered}\right.$	$\begin{gathered} \text { TPVHD-10-SR-50-70 } \\ 2.2 d B / 6.1 d B \end{gathered}$	-	-	$\left\lvert\, \begin{gathered} 705-0012-001 \\ x 3 \end{gathered}\right.$	$\begin{array}{\|c\|} \hline \text { RK-FLEX-ID-24 } \\ \text { RK-FLEX-24 } \\ \text { RK-FLEX-8 } \\ \hline \end{array}$
FlexTap LC BIDI MM SR	$\begin{gathered} 100 \mathrm{G} / 40 \mathrm{G} \\ 832-918 \mathrm{~nm}, 50 \mu \mathrm{~m} \end{gathered}$	$\begin{gathered} \text { TPX-40-SR-50-50-BD } \\ 4.1 d B / 4.1 d B \end{gathered}$	-	-	-	-	N/A	$\begin{array}{\|c\|} \hline \text { RK-FLEX-ID-24 } \\ \text { RK-FLEX-24 } \\ \text { RK-FLEX-8 } \\ \hline \end{array}$
FlexTap LC MM MR4	$\begin{gathered} 40 \mathrm{G} / 25 \mathrm{G} / 10 \mathrm{G} \\ 1260-1360 \mathrm{~nm}, 50 \mu \mathrm{~m} \end{gathered}$	-	-	$\begin{gathered} \text { TP-40-SR-50-70-MR4 } \\ 3.7 d B / 6.7 d B \end{gathered}$	-	-	$\begin{gathered} 705-0012- \\ 0001 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { RK-FLEX-ID-24 } \\ \text { RK-FLEX-24 } \\ \text { RK-FLEX-8 } \\ \hline \end{array}$
FlexTap MTP MM SR4	100G/40G/4×25/4×10G $810-890 \mathrm{~nm}, 50 \mu \mathrm{~m}$	$\begin{gathered} \text { TPX-40-SR-50-50-MTP } \\ 4.4 d B / 4.4 d B \end{gathered}$	-	$\begin{array}{\|c} \text { TPX-40-SR-50-70-MTP } \\ 2.6 d B / 6.6 d B \end{array}$	-	-	includes MTP Y cable	$\begin{array}{\|c\|} \hline \text { RK-FLEX-ID-24 } \\ \text { RK-FLEX-24 } \\ \text { RK-FLEX-8 } \end{array}$
FlexTap MTP MM SR10	$\begin{gathered} 100 \mathrm{G} / 40 \mathrm{G} / 12 \times 10 \mathrm{G} \\ 50 \mu \mathrm{~m} \end{gathered}$	TPX-100-SR-50-50- MTP 4.4dB/4.4dB	-	$\left\lvert\, \begin{gathered} \text { TPX-100-SR-50-70-MTP } \\ 2.6 d B / 6.6 d B \end{gathered}\right.$	-	-	includes MTP Y cable	$\begin{array}{\|c\|} \hline \text { RK-FLEX-ID-24 } \\ \text { RK-FLEX-24 } \\ \text { RK-FLEX-8 } \\ \hline \end{array}$

What a bypass does: Bypass switches are in-line devices that provide fail-safe protection for in-line security and monitoring devices. When inline tools fail, bypass switches automatically redirect network traffic so that it flows around the failed tool, instead of through

QUICK REFERENCE GUIDE TO BYPASSES

it. Bypass switches typically have heartbeats to detect security tool failure, and power fail protection to continue to operate with no power.
Why Ixia: External bypass architecture, pre-configured heartbeats, redundant or serial active tool support, centralized management with IFC, world class GUI interface for rapid deployment of complex topologies, highest density (VHD), and the only bypass with two management ports (DUO).

Useful Terminology:
An External bypass switch is purpose-built hardware that keeps your network safe in the event of tool failure. Some security tools come with Internal bypass switches, but internal switches could require you to break your network link to disconnect the tool for service maintenance.

High availability ("HA") refers to a network architecture design that provides continued availability of network resources, even if individual components fail.
Failover modes: Active-Standby is defined as a primary active tool connected through the iBypass switch along with redundant inactive tools that are activated in event of primary tool failure. Active-Active is defined as duplicate primary active tools connected serially through the iBypass switch.

Useful Links:

Product Information: https://ixia.keysight.com/products/iBypass
Quick Reference Guide: https://ixia.keysight.com/resources/ibypass-quick-reference-guide
Video: https://ixia.keysight.com/products/ibypass-duo

Bypass Switches	Ordering Information		Specifications/Features					Accessories/Notes	
FAMILY	Part Num	ers	Speed	Networks per Device	Media Type	High Availability	Link Fault Detect	Accessories	Important Notes
iBypass 100G	IBP100G-CH-AC IBP100G-CH-DC (Up to 2 Modules per Chassis)	MIBP100G- SR4 MIBP100G- LR4	100G	1 or 2	Fiber	-	LFD	IBP100G-ACPS IBP100G-DCPS IBP100G-FANASSY	Each Module supports 1 network and 1 tool segment Fail Open/Fail Close
iBypass VHD	IBPVHD-CH-AC IBPVHD-CH-DC IBPVHD-CHONLY- AC	$\begin{aligned} & \text { IM-21-BYP } \\ & \text { LIC-IM-21- } \\ & \text { AR } \end{aligned}$	10/1G	12 Segments	SFP+/SFP	Active-Active ActiveStandby	$\begin{aligned} & \text { LFD / } \\ & \text { LFDC } \end{aligned}$	$\begin{gathered} \text { IM-21-BATT } \\ \text { IBPVHD-PWR- } \\ \text { AC IBPVHD- } \\ \text { PWR-DC } \end{gathered}$	Chassis includes one module that contains 4 bypass switches. Order SFP+KT or SFPKT Transceivers.
iBypass 40G	12BP-40G-SR-50-Q	-	40G	1 Segment	Fiber	-	LFD	-	Two 3M MM MTPMTP network cables included. Standard 40G MM MTP-MTP tool side cables not included.
iBypass DUO	IBPDUO-1X10-SR IBPDUO-2X10-SR IBPDUO-1X10-LR IBPDUO-2X10-LR	-	10G/1G	1 or 2	Fiber	Active-Active ActiveStandby	$\begin{aligned} & \text { LFD / } \\ & \text { LFDC } \end{aligned}$	DUO-PWRAC DUO10G-VHD-FAN-ASSY	Mounting Brackets and Rack mounts included with 1×10 Chassis
iBypass HD	$\begin{aligned} & \text { IBP-8000 } \\ & \text { IBP-8000-DC } \\ & \text { (Up to } 4 \text { Modules } \\ & \text { per Chassis) } \end{aligned}$	DBM-100 DBM-200 DBM-250 DBM-300	10/100/1G	Up to 8 Segments	Copper or Fiber	Active- Standby	LFD	-	Chassis requires minimum 1 DBM module. Each DBM module contains 2 bypass switches. Order two SFPKT Transceiver kits per
iBypass 3	13BP-CU3	-	$\begin{array}{\|c} 10 / 100 / 1 \mathrm{G} \\ \text { Copper } \end{array}$	1 Segment	Copper	-	$\begin{aligned} & \text { LFD / } \\ & \text { LFDC } \end{aligned}$	RK-8V2 rack mounts RK-8V2-BPL Blank Plates	Holds up to 8 taps in 1RU

915-7513-01 $7091 \operatorname{Rev} \mathrm{C}$

