
PathWave Test Sync Executive
Transitioning fromM3601A to KS2201A
This transition guide explains how to translate an existing project designed with
Keysight M3601A HVI (Hard Virtual Instrument) Design Environment into an
equivalent implementation based on the HVI Python API (Application
Programming Interface) provided by Keysight KS2201A PathWave Test Sync
Executive. An example project, showcasing all the possible M3601A
functionalities, is used to provide transition guidelines. Every HVI statement
contained in the example project is translated using the HVI API, hence providing
to the user the Python code snippets necessary to translate every block of an
M3601A flowchart into an equivalent implementation based on the HVI Python
API. By following the provided guidelines, users can translate their own M3601A
project and obtain an equivalent implementation compatible with Keysight
KS2201A PathWave Test Sync Executive

Find us at www.keysight.com Page 1

TRANSITION GUIDE

Table of Contents

Transitioning fromM3601A HVI Programming Environment to KS2201A PathWave Test Sync Executive 4

Introduction 4

Software and Firmware Versions 5

M3601A HVI (Hard Virtual Instrument) Design Environment Project Example 5

Guidelines to Transition from anM3601A HVI Project to a KS2201A PathWave Test Sync Executive
Implementation 7

KS2201A PathWave Test Sync Executive UseModel 8

System Definition 10

Define HVI Constants 10

Define Platform Resources: Chassis, PXI triggers 11

Define HVI engines 12

Define HVI actions, events, triggers 12

Program HVI Sequence 13

Define HVI Registers 14

Start (a) 15

SynchronizedWhile 15

SynchronizedMulti-Sequence Block (SMSB) (a) 16

Wait Statement (b) 17

IF-ELSEIF-ELSE Statement (c) 18

HVI Instrument-Specific Instruction: Change AWGAmplitude using an FPGA Register 19

HVI Instrument-Specific Instruction: Change AWGFrequency using an HVI Constant 20

Sync Register Sharing 20

HVI Instrument-Specific Instruction: QueueWaveform (i) 21

Action Execute: AWGTrigger (j) 23

Wait Time (l) 24

End of Sequence (n) 25

Compile, Load, Execute the HVI 25

Compile HVI 26

Load HVI to Hardware 27

Execute 27

Release Hardware 27

Further HVI API Explanations 28

Comparison of M3601A HVI GUI and KS2201A HVI API UseModels 28

Instrument Compatibility 30

Find us at www.keysight.com Page 2

Conclusions 31

Find us at www.keysight.com Page 3

Transitioning from M3601A HVI Programming Environment to KS2201A PathWave Test
Sync Executive
This transition guide explains how to translate an existing application designed with Keysight M3601A HVI
(Hard Virtual Instrument) Design Environment into an equivalent implementation based on the HVI Python API
(Application Programming Interface) provided by Keysight KS2201A PathWave Test Sync Executive. An
example project, showcasing all the possible M3601A functionalities, is used to provide transition guidelines.
Every HVI statement contained in the example project is translated using the HVI API, hence providing to the
user the Python code snippets necessary to translate every block of anM3601A flowchart into an equivalent
implementation based on the HVI Python API. By following the provided guidelines, users can translate their
ownM3601A project and obtain an equivalent implementation compatible with Keysight KS2201A PathWave
Test Sync Executive.

NOTE PathWave Test Sync Executive (KS2201A) is based on the next generation of HVI technology
and it is NOT compatible with the previous versionM3601A. If you are usingM3601A, youmust
migrate you applications based on theM3601A GUI to the completely new HVI API. To be able to
use KS2201A, youmust also update your instrument's firmware and software drivers to newer
versions with support for KS2201A. Please check the recommendedM3xxxA firmware and
software versions in theSD1 3.x Software Startup Guide available on www.keysight.com.

Introduction
KS2201A PathWave Test Sync Executive Development Software is a new API based environment for
developing and running programs with a new generation of Keysight’s Hard Virtual Instrument (HVI) technology.
KS2201A enables programmatic development and execution of synchronous real-time operations across
multiple instruments. This initial release is only programmable via API. Graphical programming capability is
planned, but specific availability timelines are yet to be defined. The new generation of HVI technology is only
programmable by KS2201A PathWave Test Sync Executive and is not backward compatible with the previous
generation of HVI technology.

The previous generation of HVI technology is only programmable by M3601A Hard Virtual Instrument (HVI)
Design Environment and is not forward compatible with the new generation of HVI technology or PathWave
Test Sync Executive.

This document is for existing users of M3601A. It is intended to help them transition to KS2201A and translate
their existingM3601A projects to KS2201A projects.

The original generation of HVI (Hard Virtual Instrument) technology is programmable by theM3601A HVI Design
Environment for development of HVI instances. TheM3601A is graphical design environment employing a
Graphical User Interface (GUI) to develop HVI instances using flowcharts. TheM3601A does not have a
programmatic interface - API - for program development. It requires users to load the HVI design files into their

Find us at www.keysight.com Page 4

http://www.keysight.com/main/redirector.jspx?action=refcName=EDITORIALckey=3120785lc=gercc=DEnfr=-33321.1193058.00
http://www.keysight.com/

code with no ability to integrate the whole application in a single code script. TheM3601A GUI has limited
capability to automatically deploy the sameHVI sequence or sub-sequence onmultiple HVI engines and
instruments.

KS2201A PathWave Test Sync Executive implements the new generation of HVI technology and delivers
the HVI Application Programming Interface (API). This was created to address strong user demand for a robust
API programming paradigm. Using the HVI API, users can deploy HVI applications directly in their code and
easily access any HVI resource by using code Variables. Design of HVI sequences over multiple modules can
be carried out using FOR loops or other types of code loops. In addition to the API development model, several
other features have been added, such as extendedmulti-chassis capabilities and expanded product support.

When transitioning fromM3601A to KS2201A, it is important to note that the same fundamental design steps
are involved, but how these steps are performed has changed. In both usemodels, youmust list and define HVI
resources (registers, trigger resources, etc.), define HVI execution sequences, compile the HVI, load them to
HW, and execute them.

Software and Firmware Versions
The versions of software (SW) and FPGA firmware (FW) that were used for theM3601A HVI GUI example
described in this documented are listed below.

1. Software versions used:

l Keysight SD1Drivers, Libraries and SFP (v2.01.50)

l Keysight M3601A Hard Virtual Instrument (HVI) Design Environment (v2.01.46)

2. M3xxxA with -HVx HW option and following FPGA firmware versions:

l M3202A AWGFPGA firmware (v3.73.00)

l M3201A AWGFPGA firmware (v3.69.00)

To translate theM3601A HVI GUI example presented in this document into an implementation based on
KS2201A HVI API, a different version of both Keysight SD1 SFP softwaremust be installed. Once done FPGA
FW of M3xxxA PXI instruments can be instead programmed using the "HardwareManager" window of SD1
Software Front Panel (SFP). Please review the "Instrument Compatibility" section of this document to get the
exact instrument SW and FPGA FW versions necessary tomove to implementations based on KS2201A HVI
API. KS2201A PathWave Test Sync Executive installer and documentation are available
at www.keysight.com/find/KS2201A-downloads.

M3601A HVI (Hard Virtual Instrument) Design Environment Project
Example

Find us at www.keysight.com Page 5

http://www.keysight.com/find/KS2201A-downloads

The figure below represents the project example that is the focus of this transition guide. The instruments used
in the example are twoM320xA AWG (Arbitrary Waveform Generators) of Keysight M3xxxA family of PXI
instruments. The example showcases the following functionalities:

l Off-shelf inter-instrument synchronization capabilities.

l Synchronized While Statement to run synchronized loops over multiple instruments.

l Wait Event statement.

l Wait Time statement.

l Example of Local Flow Control functionality: IF statement.

l Sync Register Sharing functionality to real-time share register information through different instruments.

l HVI native instruction examples: increment FPGA (Field Programmable Gate Array) registers, execute AWG
trigger actions.

l HVI product-specific instruction examples: change AWG frequency using an HVI constant, change AWG
amplitude using an FPGA register.

The rest of this transition guide explains how these functionalities can be equivalently implemented using
KS2201A PathWave Test Sync Executive. For further details on the functionalities please consult theM3601A
HVI Design Environment User Guide and the KS2201A PathWave Test Sync Executive User Manual, available
at www.keysight.com/find/KS2201A-downloads.

Find us at www.keysight.com Page 6

http://www.keysight.com/find/KS2201A-downloads

Guidelines to Transition from an M3601A HVI Project to a KS2201A
PathWave Test Sync Executive Implementation

Find us at www.keysight.com Page 7

This section explains how each of themeasurement actions of this application can be implemented using the
HVI Application Programming Interface (API) provided by PathWave Test Sync Executive. Every measurement
action is presented below with a letter referencing to the equivalent piece in theM3601A flow-chart, to facilitate
user transition between the two different usemodels.

KS2201A PathWave Test Sync Executive Use Model
Differently thanM3601A, KS2201A PathWave Test Sync Executive does not have aGUI in its 2020 release.
However, there are graphical representation conventions that are used to represent by means of an HVI diagram
the HVI sequences programmed using the HVI API. More details on these graphical conventions are explained
in the "HVI Diagrams" section of the KS2201A PathWave Test Sync Executive User
Manual available at www.keysight.com/find/KS2201A-downloads.

The HVI sequences that can be programmed using the KS2201A HVI API are based on the new concepts of
sync sequences and sync statements that were not defined inM3601A. M3601A blocks like the "Start" and
"ShareWfNum" Sync Junctions and the "Jump" Synchronized Conditionals are absent in the KS2201A use
model. Their functionality is replaced by two types of sync statements: Sync While and Sync Multi-Sequence
Block (SMSB). The correspondence is highlighted by means of letters in the HVI diagram below, to match the
M3601A blocks with the corresponding KS2201A statements that have the same functionalities. For further
details about sync sequences, sync statements and the KS2201A usemodel please consult the "HVI
Elements" section of the KS2201A PathWave Test Sync Executive User Manual.

Finally please note that the timing constrains have also changed betweenM3601A and KS2201A. KS2201A
timing constraints are explained in the section "HVI timemanagement and latency" of the of
the KS2201A PathWave Test Sync Executive User Manual. In the HVI diagram below the label "HVI auto" is
used whenever HVI automatically calculates the time necessary tomatch the execution of different local
sequences executed by different instruments in parallel within the same SMSB. Theminimum start delay
between consecutive statements is given by the instrument FPGA clock period, which corresponds to 10
ns Keysight M3xxxA instruments. For further details please consult the "HVI Timing" section of
the KS2201A PathWave Test Sync Executive User Manual.

Find us at www.keysight.com Page 8

http://www.keysight.com/find/KS2201A-downloads

When transitioning fromM3601A to the new KS2201A API usemodel, one of the differences is that the API
programming requires to follow some steps in a well-defined order. In particular, three fundamental steps shall
be followed:

1. System definition: defines all the necessary HVI resources, including platform resources, engines, triggers,
registers, actions, events, etc.

2. Program HVI sequences: defines all the statements to be executed within each HVI sequence

3. Execute HVI: compiles, loads to HW and executes HVI

Find us at www.keysight.com Page 9

The following sub-sections describe in details how theM3601A example presented earlier can be translated
following each step.

System Definition
The definition of HVI resources is the first step of a creating an HVI instance. HVI resources include all the
platform resources, engines, triggers, registers, actions, events, etc. that the HVI sequences are going to use
and execute. Users need to declare them upfront and add them to the corresponding collections. In M3601A the
HVI resources can be defined through different windows of the GUI, as illustrated in the rest of this section. In
KS2201A API, the SystemDefinition class must be used to define all the HVI resources before users canmove
on to program and execute the HVI sequences.

Define HVI Constants

In M3601A HVI GUI a "Configure Constants" window allows to define constant parameters to be used as
Variable within theM3601A flow-chart of each specific HVI engine. It is important to note that in the KS2201A
HVI API the HVI constants do not exist any more because their function is replaced by user-defined Python
code Variables that can for example be collected into an application parameters class as in the code snippet
below.

M3601A API

Python

class ApplicationParameters:
Configures the application parameters

def __init__(self):
self.FreqA = 50e6 # [Hz]
self.FreqB = 100e6 # [Hz]
self.NumLoops = 5

Find us at www.keysight.com Page 10

Define Platform Resources: Chassis, PXI triggers

In M3601A HVI GUI the "Chassis Settings" window allows to define both the chassis and PXI trigger resources
to be used by HVI. In KS2201A HVI API all HVI instances need to define the chassis and eventual chassis
interconnections using the SystemDefinition class. PXI trigger lines to be reserved by HVI for its execution can
be assigned using the sync_resources interface of the SystemDefinition class. SeeM3601A screenshot below
and KS2201A API code snippet below for comparison of the two implementations.

M3601A GUI

KS2201A API

Create system definition object
sys_def = kthvi.SystemDefinition("MyMultiChassisSystemDefinition")

Add chassis resources
sys_def.chassis.add_with_options(1, 'Simulate=True,DriverSetup=model=M9018B,NoDriver=True')
or sys_def.platform.chassis.add(chassis_number)
or sys_def.platform.chassis.add_auto_detect()

Find us at www.keysight.com Page 11

Assign triggers to HVI object to be used for synchronization, data sharing, etc
NOTE: In a multi-chassis setup ALL the PXI lines listed below need to be shared
among each M9031 board pair by means of SMB cable connections
pxi_sync_trigger_resources = [

kthvi.TriggerResourceId.PXI_TRIGGER0,
kthvi.TriggerResourceId.PXI_TRIGGER1,
kthvi.TriggerResourceId.PXI_TRIGGER2,
kthvi.TriggerResourceId.PXI_TRIGGER3]

Assign the defined PXI trigger resources
sys_def.sync_resources = pxi_sync_trigger_resources

Define HVI engines

The window "Add/RemoveModules to HVI" allows to add to the HVI instance the necessary modules and their
HVI engines.

 In KS2201A HVI API all HVI Engines included in the application need to be registered into
the EngineCollection class instance. The HVI resource definitions are summarized in the code snippets below.

M3601A GUI

KS2201A API

Create system definition object
sys_def = kthvi.SystemDefinition("MyMultiChassisSystemDefinition")

For each instrument to be used in the HVI application add its HVI Engine to the HVI
Engine Collection
engine_Names = []
for engine_index in range(len(module_list)):

engine_Names.append(f'AwgEngine{engine_index}')
sys_def.engines.add(module_list[engine_index].hvi.engines.main_engine, engine_Names

[engine_index])

Define HVI actions, events, triggers

Find us at www.keysight.com Page 12

The HVI API implementation of the example presented in this transition guide requires also to register AWG
trigger actions in the HVI actions collection and the Front Panel trigger into the HVI trigger collection, as shown
in the last two code snippets presented below. In M3601A no equivalent GUI exists. For triggers, some of the
settings can be set using the properties of statements that use triggers, e.g. theWait Statement (block b. in the
example that is the focus of this document).

M3601A GUI

- No equivalent GUI exists -

KS2201A API

Create system definition object
sys_def = kthvi.SystemDefinition("MyMultiChassisSystemDefinition")

For each AWG, define the list of HVI Actions to be executed and add such list to its own
HVI Action Collection
for engine_Name, module in zip(engine_Names, module_list):

for ch_index in range(1, module.num_channels + 1):
Actions need to be added to the engine's action list so that they can be executed
action_Name = "My AWG Trigger {}".format(ch_index) # arbitrary user-defined Name
instrument_action = "awg{}_trigger".format(ch_index) # Name decided by instrument

API
action_id = getattr(module.instrument.hvi.actions, instrument_action)
sys_def.engines[engine_Name].actions.add(action_id, action_Name)

Add to the HVI Trigger Collection of each HVI Engine the FP Trigger object of that same
instrument to be used as event for the Wait statement
for engine_Name, module in zip(engine_Names, module_list):

fp_trigger_id = module.instrument.hvi.triggers.front_panel_1
fp_trigger = sys_def.engines[engine_Name].triggers.add(fp_trigger_id, "My FP Trigger")
Configure FP trigger in each sys_def.engines[index]
fp_trigger.config.direction = kthvi.Direction.OUTPUT
fp_trigger.config.polarity = kthvi.Polarity.ACTIVE_HIGH
fp_trigger.config.sync_mode = kthvi.SyncMode.IMMEDIATE
fp_trigger.config.hw_routing_delay = 0
fp_trigger.config.trigger_mode = kthvi.TriggerMode.LEVEL
#NOTE: FP trigger pulse length is defined by the HVI Statements that control FP Trigger

ON/OFF

Program HVI Sequence
Once the HVI resources are defined, users can program the HVI sequence of measurement actions to be
executed by each HVI engine. In KS2201A PathWave Test Sync Executive HVI sequences can be
programmed using the Sequencer class. In KS2201A sequences are structured within a global sequence
(defined by the SyncSequence class) that takes care of synchronizing and encapsulating the local sequences
corresponding to each HVI engine included in the application. In M3601A there was no Sync Sequence
concept and every flow-chart was representing the local sequence to be executed by the HVI engine of a
specific instrument.

KS2201A API

Find us at www.keysight.com Page 13

Create sequencer object from previously define SystemDefinition object
sequencer = kthvi.Sequencer("mySequencer", sys_def)

M3601A GUI

- No equivalent GUI exists -

Define HVI Registers

HVI registers correspond to very fast access physical memory registers in the HVI Engine located in the
instrument HW (e.g. FPGA or ASIC). HVI Registers can be used as parameters for operations andmodified
during the sequence execution (same as Variables in any programming language). The number and size of
registers is defined by each instrument. The registers that users want to use in the HVI sequences need to be
defined beforehand into the register collection within the scope of the corresponding HVI Sequence.

In M3601A HVI GUI eachmodule allows opening a "Register Settings" window from where registers belonging
to the HVI engine of that samemodule can be defined, reNamed and initialized.

In KS2201A HVI API this can be done using theRegisterCollection class that is within the Scope object
corresponding to each sequence. HVI Registers belong to a specific HVI Engine because they refer to HW
registers of that specific instrument. Register from one HVI Engine cannot be used by other engines or outside
of their scope. Note that currently, registers can only be added to the HVI top SyncSequence scopes, which
means that only global registers visible in all child sequences can be added. HVI registers are defined in this
application by the code snippet below

M3601A GUI

KS2201A API

Find us at www.keysight.com Page 14

Define Primary AWG registers
WfNum = hvi.sync_sequence.scopes[awg_engine].registers.add("WfNum",
kthvi.RegisterSize.SHORT)
WfNum.initial_value = 0
CycleCnt = hvi.sync_sequence.scopes[awg_engine].registers.add("CycleCnt",
kthvi.RegisterSize.SHORT)
CycleCnt.initial_value = 0
RegA = hvi.sync_sequence.scopes[awg_engine].registers.add("RegA", kthvi.RegisterSize.SHORT)
RegA.initial_value = 0
RegB = hvi.sync_sequence.scopes[awg_engine].registers.add("RegB", kthvi.RegisterSize.SHORT)
RegB.initial_value = 0
LoopDelay = hvi.sync_sequence.scopes[awg_engine].registers.add("LoopDelay",
kthvi.RegisterSize.SHORT)
LoopDelay.initial_value = 0

Start (a)

In HVI API the first synchronized junction called “Start” is always implicit and no code needs to be written to add
it to the HVI sequences of the instruments involved in an HVI execution. All instruments start as synchronized
within the HVI execution. In M3601A the instrument corresponding to the first HVI sequence that is created is
the instrument that has the “master” role in the “Start” junction. This role was reNamed to "primary" in KS2201A.
The primary/master modules send the signal to the other modules to synchronously start a sequence of
measurement actions.

M3601A API

SynchronizedWhile

The loop implemented in theM3601A flow-chart by means of a combination of synchronized junctions (a. block)
and synchronized conditional (m. block) is implemented in the HVI API using a SynchronizedWhile (Sync
While) statement. Sync While statements belongs to the set of HVI Sync Statements and are defined by the
API class SyncWhile. A Sync While allows you to synchronously executemultiple local HVI sequences until a
user-defined condition is met, that is, the sync while condition. For local sequences to be defined within the

Find us at www.keysight.com Page 15

Sync While, it is necessary to use a SynchronizedMulti-Sequence Block (SMSB) that is explained in the details
in the next sub-section.

M3601A GUI

KS2201A API

Create sequencer object from previously define SystemDefinition object
sequencer = kthvi.Sequencer("mySequencer", sys_def)

Define sync while condition
sync_while_condition = kthvi.Condition.register_comparison(iteration_counter,
kthvi.ComparisonOperator.LESS_THAN, rf_pulse_params.num_loops)
Add Sync While Statement
sync_while = sequencer.sync_sequence.add_sync_while("Sequenced Acquisition Loop", 10, sync_
while_condition)

SynchronizedMulti-Sequence Block (SMSB) (a)

SMSB is a type of HVI statements that was not present in theM3601A usemodel. Synchronizedmulti-
sequence blocks are defined by the API class SyncMultiSequenceBlock. This type of sync statement
synchronizes all the HVI engines that are part of the sync sequence. It allows you to program each HVI Engine
to do specific operations by exposing a local sequence for each engine. By calling the API method add_multi_
sequence_block() a synchronizedmulti-sequence block is added to the Sync (global) Sequence.

Find us at www.keysight.com Page 16

M3601A does not contain synchronizedmulti-sequence blocks because it is centered instead on a usemodel
based on local sequences, each of them running locally on each HVI engine within each instrument. In M3601A
local sequences are synchronized between each other by using synchronized junctions and conditionals.
Instead, KS2201A provides a set of global sync statements, like the SMSB and the sync while, that
encapsulate and synchronize pieces of local sequences executed by each instrument's HVI engine.

M3601A GUI

- No equivalent statement exists -

KS2201A API

Add 1st Sync Multi-Sequence Block to the Sync While sequence
sync_block_1 = sync_while.sync_sequence.add_sync_multi_sequence_block("Wait for External
Trigger", 10)

Wait Statement (b)

The wait statement is a local flow control statement that can be implemented using the API
class WaitStatement. This sequence block sets an instrument to wait for a condition. The condition can be
defined by a trigger, an event, or any combination of them through the usage of logical operators. In this
application example, the wait is used to set the AWG to wait for a transition on the FP (Front Panel) trigger. The
wait statement is set to wait for a trigger falling edge using the .wait mode .WaitMode.TRANSITION combined
with a trigger configuration as ACTIVE_LOW. The sync mode .SyncMode.IMMEDIATE sets the wait event to
let the execution continue immediately, i.e. as soon as the trigger event is received.

The difference inM3601A HVI GUI is that the implementation of this type of wait statement requires the
combination of two flow-chart boxes whenever the user wants to wait for an event transition instead of an event
value (high/low or active/inactive).

M3601A GUI

KS2201A API

Find us at www.keysight.com Page 17

Define the condition for the wait statement
wait_condition = kthvi.Condition.trigger(hvi.engines[awg_engine_Name].triggers["FP
Trigger"])
Add a Wait For Event
primary_sequence = sync_block_1.sequences["AwgEngine0"]
wait_event = primary_sequence.add_wait("Wait for FP Trigger", 10, wait_condition)
wait_event.set_mode(kthvi.WaitMode.TRANSITION, kthvi.SyncMode.IMMEDIATE)

IF-ELSEIF-ELSE Statement (c)

IfStatement class allows you to add an IF-ELSEIF-ELSE loop within themain HVI sequence of any instrument
engine. The IF-ELSEIF-ELSE loop contains one (or more) IF branches and an ELSE branch. The statements
contained in each IF or ELSE branch are executed if the condition of each branch is met. The condition of each
branch can be defined using the API class ConditionalExpression. Branch sub-sequence can be programmed
using the same API methods and classes used to program themain HVI sequence, by means of the API
classes IfBranch and ElseBranch. The IF-ELSEIF-ELSE statement in KS2201A is enhanced with a new
additional functionality that allows tomatch the timing of each branch of the statement. For additional info on this
functionality, please consult the section "HVI Timing" in theKS2201A PathWave Test Sync Executive User
Manual available on www.keysight.com

M3601A GUI

KS2201A API

Configure IF condition
if_condition = kthvi.Condition.register_comparison(WfNum, kthvi.ComparisonOperator.EQUAL_
TO, 0)
Set flag that enables to match the execution time of all the IF branches
enable_ifbranches_time_matching = True

Find us at www.keysight.com Page 18

http://www.keysight.com/

Add If statement
primary_sequence = sync_block_1.sequences["AwgEngine0"]
if_statement = primary_sequence.add_if("My If Statement", 10, if_condition, enable_
ifbranches_time_matching)
Program IF branch
if_sequence = if_statement.if_branch.sequence
Add statements in if-sequence
instruction = if_sequence.add_instruction("ChAmplitude = RegA", start_delay,
module.hvi.instructions.set_amplitude.id)
instruction.set_parameter(...)
...
Else-branch
Program Else branch
else_sequence = else_branch.sequence
Add statements in Else-sequence
instruction = else_sequence.add_instruction("ChAmplitude = RegB", start_delay,
module.hvi.instructions.set_amplitude.id)
...

HVI Instrument-Specific Instruction: Change AWGAmplitude using an FPGA Register

Blocks d and F execute a product-specific HVI instruction. Product-specific HVI instruction can be added in
M3601A using the green instruction blocks. In KS2201A API method add_instruction() allows you to add the
wanted instruction within the HVI sequence. Instruction parameters are set using the API method set_
parameter(). All HVI product-specific instructions and parameters are defined in the hvi.instruction_set interface
of each product. Instructions, actions, events and in general all the HVI definitions specific of M3xxxA
instruments can be found in theM320xA PXI AWGs User Guideavailable on www.keysight.com.

M3601A GUI

KS2201A API

Find us at www.keysight.com Page 19

http://www.keysight.com/

Set CH1 amplitude to ON_value
instruction = if_sequence.add_instruction("ChAmplitude = RegA", 10,
module.hvi.instructions.set_amplitude.id) instruction.set_parameter
(module.hvi.instructions.set_amplitude.channel.id, channel_number)
instruction.set_parameter(module.hvi.instructions.set_amplitude.value.id, RegA)

HVI Instrument-Specific Instruction: Change AWG Frequency using an HVI Constant

Blocks e. and g. in theM3601A flow-chart execute product-specific HVI instructions. Both are AWG specific
instructions that can change the frequency value of the specified AWG channel to the value specified by the HVI
constants "FreqA" or "FreqB". HVI constants do not exist in the HVI API usemodel because the HVI API
Python code is completely integrated into the rest of the application code and Python code Variables can be
used to replace the HVI constants of M3601A.

M3601A GUI

KS2201A API

Set CH1 Frequency to FreqA
instruction = if_sequence.add_instruction("ChFrequency = FreqA", 10,
module.hvi.instructions.set_frequency.id)
instruction.set_parameter(module.hvi.instructions.set_frequency.channel.id, channel_number)
instruction.set_parameter(module.hvi.instructions.set_frequency.value.id, FreqA)

Sync Register Sharing

Register sharing (h) is a functionality that has an equivalent implementation in M3601A HVI GUI and KS2201A
HVI API. In M3601A register sharing can be enabled within any Syncronized Junction block. In the KS2201A
HVI API, it is defined and programmed using the RegisterSharing class. Register sharing allows to share the
content of N adjacent bits of a source register and write the information to a destination register in any of the
other HVI engines included in the HVI execution. In this application note this functionality is used to share the
content of the primary/master AWG registerWfNum and write into the slave AWG registerWfNumSlave to use
it to select real-time the waveform to be played by both AWGs at each experiment step.

Find us at www.keysight.com Page 20

M3601A GUI

KS2201A API

AWG registers
WfNum = sequencer.sync_sequence.scopes["AwgEngine0"].registers["WfNum"]
WfNumSlave = sequencer.sync_sequence.scopes["AwgEngine1"].registers["WfNumSlave"]

Add sync register sharing
bits_to_share = 3
sync_while_2.sync_sequence.add_sync_register_sharing("Share WfNum", 10, WfNum, WfNumSlave,
bits_to_share)

HVI Instrument-Specific Instruction: Queue Waveform (i)

The waveform ID shared from the primary AWG to the slave AWGusing the register sharing functionality can be
used to queue and play the corresponding waveform from both AWGs. All the necessary AWG parameters can
be defined in a separated class as the class AWG_parameters reported below. For information about the
definition and usage of M320xA AWGparameters please consult the M320xA PXI AWGs User Guide
available on www.keysight.com.

Both in M3601A and in KS2201A the operation of queuing waveform is performed by using an instrument-
specific instructions. HVI instrument specific instructions are provided in the KS2201A usemodel by the
instrument-specific HVI definitions, documented in the instrument user guide. For more info on the M320xA
AWG instrument-specific HVI definitions please consult the M320xA PXI AWGs User Guide.

M3601A GUI

Find us at www.keysight.com Page 21

http://www.keysight.com/

KS2201A API

class AWG_parameters:
""" Configures AWG for waveform generation"""
def __init__(self):

self.all_ch_mask = 0xF # binary mask defining which channels to use
AWG settings for all channels
self.sync_mode = keysightSD1.SD_SyncModes.SYNC_NONE
self.queue_mode = keysightSD1.SD_QueueMode.ONE_SHOT
self.awg_mode = keysightSD1.SD_Waveshapes.AOU_SINUSOIDAL
self.start_delay = 0 # x10 [ns]

self.awg_ch = 1
self.prescaler = 0
self.wfm_cycles = 2
self.amplitude = 1 # [V]
self.offset = 0 # [V]
Trigger settings
self.trigger_mode = keysightSD1.SD_TriggerModes.SWHVITRIG_CYCLE

AWG parameters
awg_params = AWG_parameters()
Queue waveform to AWG CH1
instruction0 = awg_sequence.add_instruction("Queue Wfm with WfNum at CH1", 10,
module.hvi.instruction_set.queue_waveform.id)
#Set every parameter of AWGqueueWaveform(awg_ch, waveformNumber, triggerMode, startDelay,
cycles, prescaler)
instruction0.set_parameter(module.hvi.instruction_set.queue_waveform.waveform_number.id,
WfmNum)
instruction0.set_parameter(module.hvi.instruction_set.queue_waveform.channel.id, awg_
paramsawg_ch)
instruction0.set_parameter(module.hvi.instruction_set.queue_waveform.trigger_mode.id, awg_
params.trigger_mode)

Find us at www.keysight.com Page 22

instruction0.set_parameter(module.hvi.instruction_set.queue_waveform.start_delay.id, awg_
params.start_delay)
instruction0.set_parameter(module.hvi.instruction_set.queue_waveform.cycles.id, awg_
params.wfm_cycles)
instruction0.set_parameter(module.hvi.instruction_set.queue_waveform.prescaler.id, awg_
params.prescaler)

Action Execute: AWG Trigger (j)

In M3601A HVI GUI AWG trigger actions can be executed by adding the corresponding instruction "AWG
trigger" from the AWG-specific instruction set.

In KS2201A HVI API the usemodel to execute instrument actions has changed with respect to M3601A HVI
GUI. Actions to be used within an HVI sequence need to be added to the instrument HVI engine using the API
"add()" method of the ActionCollection class. Once the wanted actions are added within the list of the
instruments' HVI engine actions, an instruction to execute them can be added to the instrument's HVI sequence
using the HVI API class InstructionsActionExecute. One or multiple actions can be executed at the same time
within the same "Action Execute" instruction.

M3601A GUI

KS2201A API

AWG local sequences can be accessed from within the Sync Multi-Sequence Block
primary_sequence = sync_block_1.sequences["AwgEngine0"]
List of previously defined actions
awg_trigger_list = primary_sequence.engine.actions
AWG trigger
inst_trigger = primary_sequence.add_instruction("AWG Trigger", 10, hvi.instruction_
set.action_execute.id)
inst_trigger.set_parameter(hvi.instruction_set.action_execute.action.id, awg_trigger_list)

HVI Native Instruction: Register Increment (k)

Find us at www.keysight.com Page 23

In M3601A HVI GUI registers can be incremented using the correspondent math instruction available within the
HVI instruction set.

In KS2201A HVI API a register increment can be implemented within an HVI sequence using an instance of the
API instruction class InstructionsAdd. The same instruction can be used to add registers and constant values
(operands) and put the result in another register (result). The register to be incremented needs to be added
previously to the scope of the corresponding HVI engine.

M3601A GUI

KS2201A API

Previously defined register
cycle_cnt = sequencer.sync_sequence.scopes["AwgEngine0"].registers["CycleCnt"]
#
AWG local sequences can be accessed from within the Sync Multi-Sequence Block
primary_sequence = sync_block_2.sequences["AwgEngine0"]
Increment iteration counter
instruction = primary_sequence.add_instruction("CycleCnt++", 10, primary_
sequence.instruction_set.add.id)
instruction.set_parameter(primary_sequence.instruction_set.add.destination.id, cycle_cnt)
instruction.set_parameter(primary_sequence.instruction_set.add.left_operand.id, cycle_cnt)
instruction.set_parameter(primary_sequence.instruction_set.add.right_operand.id, 1)

Wait Time (l)

Inserting an instance of WaitTime instruction class causes an HVI sequence to wait for an amount of time
specified by a register previously added to the sameHVI sequence. The register used needs to be initialized
before its usage. Time unit is expressed as integer multiple of the instrument clock cycle duration. For example,
in M3xxxA PXI modules a cycle lasts 10 ns.

M3601A GUI

Find us at www.keysight.com Page 24

KS2201A API

AWG registers
loop_delay = sequencer.sync_sequence.scopes["AwgEngine0"].registers.add("LoopDelay",
kthvi.RegisterSize.SHORT)

Wait Time
wait_time = awg_sequence.add_wait_time("LoopDelay", 10, loop_delay)

End of Sequence (n)

"End" synchronized junctions are used inM3601A to synchronously end all the HVI sequences included in the
M3601A flow-chart. There is no equivalent HVI statement in the HVI Python API provided by PathWave Test
Sync Executive. All sync statements start and end synchronously with no need for an equivalent "End"
statement.

M3601A GUI

Compile, Load, Execute the HVI
Once the HVI sequences are programmed by defining all the necessary HVI statements, users can compile,
load and execute the HVI. These steps are equivalent betweenM3601A and KS2201A. In KS2201A API
compile, load and run functionalities can be accessed from the Hvi class. In M3601A HVI GUI offers the

Find us at www.keysight.com Page 25

possibility to test the designed HVI sequences using the Build menu commands that allow to compile and
execute the HVI, see details in the screenshot below.

M3601A

M3601A usemodel requires users to generate an .HVI binary file from the designed graphical project. The
generated .HVI binary file can be compiled, loaded to HW and executed using a Python API very similar to
KS2201A HVI API methods that performs the same equivalent functionalities, more details in the following sub-
sections. On top of themethods described below, M3601A API also has a stop() method that can be used to kill
the HVI execution. There is no equivalent method in the KS2201A HVI API.

Compile HVI

The compilation operation is performed by calling the compile() API method in bothM3601A and KS2201A. This
operation processes all the info related to the HVI application, including the necessary HVI resources and the
HVI statements included in the HVI sequences. The compilation generates a binary compiled output that can be
loaded to the hardware instruments for their HVI engine to execute it. In KS2201A, as an output, the compile()
API method provides an object that can tell to the user how many PXI sync resources are necessary to be
reserved to execute the HVI application. This is an additional functionality with respect to M3601A and it can be
very useful during the HVI sequence design phase to assess the number of PXI trigger lines needed as a
function of the design.

M3601A API

Compile HVI
error = hvi.compile()
if error != 0:

print("HVI Compile Failed!")
print("Error - ", error, ": ", keysightSD1.SD_Error.getErrorMessage(error))
exit(-1)

KS2201A API

Compile HVI sequences
hvi = sequencer.compile()
print(hvi.compile_status.to_string())
print("HVI Compiled")
print("This HVI application needs to reserve {} PXI trigger resources to execute".format
(len(hvi.compile_status.sync_resources)))

Find us at www.keysight.com Page 26

Load HVI to Hardware

M3601A API method load() is replaced by the KS2201A API method load_to_hw().The API method load_
to_hw() loads to each HVI engine the binary output obtained from the HVI compilation so that the HVI engine
programmed into their digital HW (FPGA or ASIC) can execute it.

M3601A API

Load HVI
error = hvi.load()
if error != 0:

print("HVI Load Failed!")
print("Error - ", error, ": ", keysightSD1.SD_Error.getErrorMessage(error))
exit(-1)

KS2201A API

Load HVI to HW: load sequences, configure actions/triggers/events, lock resources, etc.
hvi.load_to_hw()

Execute

HVI execution is controlled by the start() API method inM3601A and by the run() API method in KS2201A.
In M3601A HVI always runs in a non-blockingmode. HVI can be run in a blocking or non-blockingmode. In this
application example the non-blockingmode is used. By using this executionmode, SW execution can interact
through registers read/write with the HVI sequence execution.

M3601A API

Run HVI sequence
error = hvi.start()
if error != 0:

print("HVI Run Failed!")
print("Error - ", error, ": ", keysightSD1.SD_Error.getErrorMessage(error))
exit(-1)

else:
print("HVI is Running!)

KS2201A API

Execute HVI in non-blocking mode
This mode allows SW execution to interact with HVI execution
hvi.run(hvi.no_wait)
print("HVI Running...")

Release Hardware

API method release_hw() shall be called once the HVI execution is finished to release all the HW resources
that were reserved during the HVI execution, including the PXI trigger resources that had been locked by HVI for
its execution.

M3601A API

Find us at www.keysight.com Page 27

Release PXI trigger resources and close HVI
error = hvi.releaseHW() #releases PXI trigger resources that were reserved by HVI for its
execution
if error != 0:

print("HVI ReleaseHW Failed!")
print("Error - ", error, ": ", keysightSD1.SD_Error.getErrorMessage(error))
exit(-1)

print("HVI releaseHW successful")

KS2201A API

Unlock and release HW resources
hvi.release_hw()
print("Releasing HW...")

Further HVI API Explanations
Detailed explanations of each class and functionality of the HVI API can be found in the section "HVI Core API"
of the KS2201A PathWave Test Sync Executive User Manual or in the Python help file that is provided with the
HVI installer, available at: C:\ProgramFiles\Keysight\HVI\api\python\doc\keysight_pathwave_hvi.htm.

Comparison of M3601A HVI GUI and KS2201A HVI API Use Models
The following table summarizes themain operations necessary in an HVI design as performed from the point of
view of theM3601A HVI GUI usemodel and the KS2201A HVI API usemodel. This table of equivalence can be
useful to the users transitioning from one usemodel to the next.

Find us at www.keysight.com Page 28

 Operations M3601A HVI GUI Use Model KS2201A HVI API Use Model
HVI Design
Flow

First, a .HVIprj project file must be
created usingM3601A GUI to design the
wanted HVI sequences in form of flow-
charts. A binary .HVI file is generated
from the .HVIprj file once the HVI
sequence design is final. The .HVI file
must be open from code to integrate the
HVI solution into the application code.

Application code needs to import the keysight_
pathwave_hvi library to be able to use the HVI
API. HVI sequences can be created
programmatically directly into application code
with no need to import external files.

HVI Sequence It is implemented by means of a
graphical flow-chart. Each HVI Engine in
each Instrument has a single or main HVI
Sequence associated where all
statements, local and synchronized are
added graphically.

Sequence class enables you to create a Local
HVI sequence programmatically that run "locally"
on a specific HVI engine in a specific instrument.
Local Sequences are access by means of the
SyncMultiSequenceBlock statement placed in a
SyncSequence (SyncSequence). The HVI top
sequence is a SyncSequence that contains
SyncStatements.

HVI
SyncSequence

The concept of HVI SyncSequences
was not available in theM3601A flow-
charts.

SyncSequence class enables you to add
synchronized operations (Sync Statements)
common to all HVI engines within the HVI
instance. The HVI top sequence is a
SyncSequence that contains
SyncStatements. Local instructions are added
and executed within Local Sequences that can
be accessed by adding a
SyncMultiSequenceBlock in a SyncSequence.

HVI
Resources:
Chassis,
Triggers,
M9031A
modules, etc.

Connected chassis are automatically
recognized. M9031A boards are
transparent to theM3601A software. PXI
trigger resources that can be allocated to
the HVI solution are chosen from the
“Chassis settings” window.

HVI resources can be configured using
SystemDefinition class and all the classes inside
it.

Program HVI
Sequences

You program HVI sequences by adding
flow-chart boxes using theM3601A GUI.
Configure settings for statements in the
Properties window of each flow-chart
box.

You program both HVI SyncSequences and HVI
(Local) Sequences with the API methods add_
XXX(), where XXX is the statement Name.

HVI Compile,
Load, Run

Once an .HVI file is open from a script,
users can assign each sequence to an
HW engine for it to be compiled, loaded
to HW, and executed. Project .HVIprj

API SW methods can compile the sequence
(hvi.compile()), load it to hardware (hvi.load_to_
hw()), and run it (hvi.run()).

Find us at www.keysight.com Page 29

files can be also tested directly from the
M3601A GUI using the "Compile and
Run" function.

Instrument Compatibility
Tomove to an implementation based on KS2201A PathWave Test Sync Executive please install the
latest Keysight PathWave Test Sync Executive (v1.00.10 or later)

Both KS2201A PathWave Test Sync Executive andM3601A Hard Virtual Instrument (HVI) Design Environment
work with theM3xxxA series of PXIe products. However, KS2201A requires newer firmware while M3601A
requires older firmware. The table below lists the firmware version requirements for each.

Instrument
Firmware Version Required by
M3601A

Firmware Version Required by
KS2201A

M3100A Digitizer < 2.00 ≥ 2.00

M3102A Digitizer < 2.00 ≥ 2.00

M3201A AWG < 4.00 ≥ 4.00

M3202A AWG < 4.00 ≥ 4.00

M3300A AWG& Digitizer
Combination

< 4.00 ≥ 4.00

M3302A AWG& Digitizer
Combination

< 4.00 ≥ 4.00

SD1 Software provides drivers, programming libraries and soft front panels for theM3xxxA series. As above,
there are similar version requirements included in the table below.

Instrument SD1 Version Required by M3601A SD1 Version Required by KS2201A

All M3xxxA series modules < 3.00 ≥ 3.00

New orders of the abovemodules will be shipped with the newest versions of firmware and SD1 software. In
order to use new modules with M3601A software users must downgrade the firmware and SD1 software to the
versions listed above.

To use an older module with KS2201A PathWave Test Sync Executive the firmware and SD1 software need to
be upgraded to the versions listed above. Firmware and SD1 software are available on Keysight.com. They can
be found on the Drivers, Firmware & Software tab on the technical support page for the specific instrument.

Find us at www.keysight.com Page 30

http://keysight.com/

Conclusions
This transition guide explained what are the differences and equivalences between HVI
(Hard Virtual Instrument) instances designed using the different use models of M3601A
HVI GUI (Graphical User Interface) and KS2201A HVI API (Application Programming
Interface). In this document the focus is on an HVI example designed in M3601A HVI GUI
which contains all the key functionalities provided by HVI technology. Throughout the
transition guide it is shown how the same example and functionalities can be implemented
using the new KS2201A HVI API, with an highlight on the equivalences and differences
between the two use models. Users can consume this guide to transition their own HVI
instances by leveraging from the provided explanations.

Find us at www.keysight.com Page 31
This information is subject to change without notice. © Keysight Technologies, 2020, Published in USA, December 21 2020,KS2201-90005

	Transitioning from M3601A HVI Programming Environment to KS2201A PathWave Tes...
	Introduction
	Software and Firmware Versions
	M3601A HVI (Hard Virtual Instrument) Design Environment Project Example
	Guidelines to Transition from an M3601A HVI Project to a KS2201A PathWave Tes...
	KS2201A PathWave Test Sync Executive Use Model
	System Definition
	Define HVI Constants
	Define Platform Resources: Chassis, PXI triggers
	Define HVI engines
	Define HVI actions, events, triggers

	Program HVI Sequence
	Define HVI Registers
	Start (a)
	Synchronized While
	Synchronized Multi-Sequence Block (SMSB) (a)
	Wait Statement (b)
	IF-ELSEIF-ELSE Statement (c)
	HVI Instrument-Specific Instruction: Change AWG Amplitude using an FPGA Register
	HVI Instrument-Specific Instruction: Change AWG Frequency using an HVI Constant
	Sync Register Sharing
	HVI Instrument-Specific Instruction: Queue Waveform (i)
	Action Execute: AWG Trigger (j)
	Wait Time (l)
	End of Sequence (n)

	Compile, Load, Execute the HVI
	Compile HVI
	Load HVI to Hardware
	Execute
	Release Hardware

	Further HVI API Explanations

	Comparison of M3601A HVI GUI and KS2201A HVI API Use Models
	Instrument Compatibility
	Conclusions

